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Abstract 

Multi-class classification is the core issue of many pattern recognition tasks. Several applications 

require high-end machine learning solutions to provide satisfying results in operational contexts. However, 

most efficient ones, like SVM or Boosting, are generally mono-class, which introduces the problem of 

translating a global multi-class problem is several binary problems, while still being able to provide at the 

end an answer to the original multi-class issue.  

Present work aims at providing a solution to this multi-class problematic, by introducing a complete 

framework with a strong probabilistic and structured basis. It includes the study of error correcting output 

codes correlated with the definition of an optimal subdivision of the multi-class issue in several binary 

problems, in a complete automatic way. Machine learning algorithms are studied and benchmarked to 

facilitate and justify the final selection. Coupling of automatically calibrated classifiers output is obtained by 

applying iterative constrained regularisations, and a logical temporal fusion is applied on temporal-redundant 

data (like tracked vehicles) to enhance performances. Finally, ranking scores are computed to optimize 

precision and recall is ranking-based systems. 

Each step of the previously described system has been analysed from a theoretical an empirical 

point of view and new contributions are introduced, so as to obtain a complete mathematically coherent 

framework which is both generic and easy-to-use, as the learning procedure is almost completely automatic. 

On top of that, quantitative evaluations on two completely different datasets have assessed both the 

exactitude of previous assertions and the improvements that were achieved compared to previous methods. 
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Presentation of EADS 

EADS 

EADS (European Aeronautic Defence and Space Company) emerged in 2000 from the link-up of the 

German DaimlerChrysler Aerospace AG, the French Aérospatiale Matra and the Spanish Construcciones 

Aeronauticas SA. EADS is a global leader in aerospace, defence and related services. The group includes the 

aircraft manufacturer Airbus, the world's largest helicopter supplier Eurocopter and EADS Astrium, the 

European leader in space programmes from Ariane to Galileo. EADS is also the major partner in the 

Eurofighter consortium and a stakeholder in the missile systems provider MBDA, as well as the developer of 

the military transport aircraft A400M.  

It employs about 116,000 people at more than 70 production sites, above all in France, Germany, 

Great Britain and Spain as well as in the U.S. and Australia. A global network of more than 30 

Representative Offices maintains contact with the customers. In 2007, the company generated revenues of 

€ 39.1 billion. 

The following diagram shows the Divisions into which the company is subdivided corresponding to 

the product range and the transversal service Innovation Works in charge of the research and development 

activities for the whole group. 

 

Figure 1. Organisation of EADS 

EADS Innovation Works 

EADS is convinced that continuous innovation has been the basis of its success in the past, so this is 

one of the key areas EADS is focusing on as growth drivers for the future. 

 

 2007 2006 2005 2004 
New inventions filed 
(some of which covered by several patents) 

967 792 586 521 

EADS patents portfolio (year end) 20,653 18,366 15,036 13,515 

Table 1. Annual inventions and patents by EADS 
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EADS Innovations Works is in charge of the EADS corporate Research and Technology production 

facilities that guarantee the group’s technical innovation potential with a focus on the long-term horizon. 

Driven by the EADS R&T strategy, it identifies new technologies that will create value and competitive 

advantages. It is located in Germany, France, Spain, UK, Singapore and Russia and it employs approximately 

600 people including doctorates and university interns. These production facilities are organized according to 

a segmentation of 6 transnational Technical Capability Centres (TCC), consistent with the R&T strategy and 

covering the skills and technology fields that are critical for the Group: 

• TCC1 - Composites Technologies 

• TCC2 - Metallic Technologies and Surface Engineering 

• TCC3 - Structures Engineering, Production and Mechatronics 

• TCC4 - Sensors, Electronics and Systems Integration 

• TCC5 - Simulation, Information Technologies and Systems Engineering, 

• TCC6 - Advanced Concepts 

TCC4 and SI-IS 

With a workforce of approximately 75 people, the TCC4 supplies a high level research in the fields 

of microwaves, biological and chemical sensors, electronics and communication, autonomous systems, 

image and signal processing, optronics, chemical process engineering, natural radiation environment, and 

technologies and reliability in electronic systems. 

The SI-IS research team has been integrated in EADS IW since 2007. Its mission consists of 

proposing and developing innovative image processing solutions that will improve the performance or 

reliability of future EADS products. Some application areas are: 

• navigation, guidance and vision for piloted or autonomous systems, 

• advanced video-surveillance, 

• intelligence systems, 

• ground stations for satellites, UAV (Unmanned Air Vehicles), and reconnaissance aircrafts. 

The developed technologies encompass the following technical domains: 

• image enhancement, 

• sensor modeling, 

• video and image analysis: motion detection, tracking, automatic annotation, indexation, data 

mining, pattern recognition… 

• image-based techniques for navigation, 

• compression. 
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1 Context 

The internship took place within the SI-IS research team, in the context of the Infom@gic URBAN 

VIEW project, which focuses on following problems: consider a net of surveillance cameras and the number 

of hours of video that they generate. In order to facilitate the retrieval of an interesting piece of information 

from this huge amount of data, it is necessary to extract metadata that will allow to quickly access the 

relevant parts of the videos. 

The Infom@gic processing chain handles the videos obtained from a net of urban surveillance 

cameras and applies motion detection techniques in order to track the different moving objects, such as 

pedestrians and different kinds of vehicles. The different objects tracked are stored in a database together 

with information about motion, viewing conditions, colour, place, time... An important step in the processing 

chain is object categorisation, as it allows the access to the database via queries indicating the type of 

vehicle. The results of the request have to be a selection of tracks ranked according to their pertinence:  

those tracks with high probability of belonging to the desired category will be shown first and the ambiguous 

ones later, so that desired vehicle can be efficiently found among the results. 

This is an example of multiclass classification: we have a number of categories or classes 

(pedestrian, car, van, bus...) and a set of objects (the images of the tracked vehicles with the associated 

motion information) and we want to assign one of those categories to each object. Multiclass classification is 

typically carried out through machine learning techniques, which will be presented in the following section. 

Besides making a decision about the category of each object, it is interesting to assess the reliability of this 

decision, so to allow a correct ranking of the retrieved objects. 

The objective of the internship has been the design and implementation of a classification system 

compatible with this context, therefore in compliance with several desired characteristics such as the 

multiclass nature, the consideration of temporal aspects to infer the category of the object, an output in the 

form of a score adapted to an efficient ranking, and the user’s control of the prediction time according to its 

needs.  

The aim has been, however, the development of a general purpose system, regardless of the type of 

data to be classified or the number of categories, so that no user tuning is needed in order to adapt the 

system to different applications. 
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2 Machine learning: an overview  

2.1 Introduction 

The learning mechanism is a fascinating characteristic and a distinctive attribute of intelligent 

behaviour, and one of the central challenges addressed by artificial intelligence research from its beginning. 

This is why machine learning has been developed, in an attempt to making computers imitate the innate 

ability of humans to acquire facts, skills and more abstract concepts. 

Machine learning (ML) aims at enabling computers to automatically learn from data, that is to say to 

take data as input and give as output algorithms capable of performing, over the same kind of data, a 

desired task. 

Typically, the task consists in making a prediction or assigning a category to an object, and taking 

an action based on this. The data can be of any nature: image, sound or video, as well as any other kind of 

textual or numerical data describing a real world situation. Independently of the type of the data, there are 

two major steps to be done. First, analyse the raw data to convert it into a format suitable for ML. This step 

is often called feature extraction, and may consist of groups of measurements or observations, defining 

points in an appropriate multidimensional space. Then, apply ML techniques in order to perform the task of 

interest. Therefore, ML is suitable for wide range of applications, including search engines, medical 

diagnosis, stock market analysis, speech and handwriting recognition, robot locomotion, etc. 

The power of ML underlies in the fact that data is too variable and ambiguous to be treated “by 

hand” or to be interpreted with explicit rules covering all possible cases. ML techniques address such 

problems by using statistics to model large amounts of elementary information and their relations. In 

summary, ML makes it possible to perform complex tasks over challenging data, where the information to be 

extracted is never explicit, but rather hidden behind the data statistical properties. On the top of that, in 

recent years it has been proved to be more efficient than model-based approaches in most cases, even 

when such models are feasible. 

2.2 Machine learning paradigms 

In the case of humans, learning is the innate ability to acquire facts, skills and more abstract 

concepts. [1] describes the many facets of this phenomenon: 

Learning processes include the acquisition of new declarative knowledge, the development of motor 

and cognitive skills through instruction or practice, the organization of new knowledge into general, effective 

representations, and the discovery of new facts and theories through observation and experimentation. 

The study and computer modeling of learning processes constitutes the core of machine learning.  

It has been developed around three research lines, which borrow issues and inspiration from one 

another [1]: the simulation of human cognitive processes, the theoretical exploration of possible learning 
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methods and algorithms independent of the application domain, and task-oriented studies. Machine learning 

methods are mainly the results of the two latest. 

We can distinguish different machine learning strategies according to the amount of inference 

performed by the learner on the information provided by the teacher [1]: rote learning, learning from 

instruction, learning by analogy and learning from examples. 

Learning from examples has recently become so popular that it is simply called learning. Given a 

limited set of examples of a concept, the learning problem can be described as finding a general description 

of the concept, in the form of a concise rule that explains the examples [2]. 

Learning techniques can be grouped in three big families: supervised learning, reinforcement 

learning and unsupervised learning. In supervised learning, labeled examples are provided and the aim is to 

find a function that can yield the output given the input. In unsupervised learning the aim is to extract some 

structure from the data. In this case, the concise description of the data can be a set of clusters or a 

probability density, and the algorithm is given only unlabeled examples. In reinforcement learning, the 

algorithm learns a policy of how to act given an observation of the world. Every action has some impact in 

the environment, and the environment provides feedback that guides the learning algorithm, but the correct 

answers are not given explicitly. 

In the following section, we focus on supervised learning, as this is the kind of learning algorithm 

that best characterises the classification problem. 

2.3 Supervised learning 

In supervised learning, the examples are already associated with their target values. Given a sample 

of input-output pairs YD ×∈=
d

NN yy Rxx } ),(..., ),,{( 11   –called the training set– the task is to find a 

deterministic function Y→
d f R:  that maps any input x to an output, so that it can predict the output 

of future observations minimizing the errors as much as possible. This obtained function is the concise 

description of the data, and is also called learning machine or model. 

According to the type of output, there are two kinds of supervised learning: regression and 

classification. 

In a regression problem (or function learning) the output space is formed by continuous variables, 

i.e. 
K

R⊆Y . A typical example is the prediction of stock market indexes. 

In classification problem, the output space has no structure except whether two elements are equal 

or not. The output space consists of a number of discrete classes or categories, i.e. }{ K, ..., CC1=Y . 

The learning machine that solves the problem is called classifier. This problem characterizes most pattern 

recognition tasks, for example the recognition of handwritten letters and digits. 
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2.4 Model selection 

The performance of a supervised learning method is assessed by measuring its generalisation 

capability: the resulting model must not only explain the training set, but more importantly make accurate 

predictions for cases that are not in the training set. Learning methods can suffer from either underfitting or 

overfitting. A model that is not sufficiently complex can fail to describe all pertinent properties in a 

complicated data set, leading to underfitting. A model that is too complex may fit the noise in the training 

set, not just the information, leading to overfitting. Underfitting produces excessive bias in the outputs, 

whereas overfitting produces excessive variance, so there is a trade-off between the two. 

Learning methods are characterised by the presence of parameters that have to be tuned to obtain 

optimal performances. The same learning algorithm can be trained using different configurations of 

parameters, generating different learning machines. The problem of selecting the best one among different 

learning machines is called model selection. 

A usual approach for model selection and for generalization error estimation consists in dividing the 

available data in three subsets: a training set, a validation set and a test set. The training set is used to train 

different models that use different configurations of parameters. The validation set is used to estimate the 

performance of the different models with the aim of picking the best one. The test set is used to estimate 

the generalization error after having selected the final model. 

The theoretical issues of learning, such as model complexity and bounds on the generalization error, 

are discussed by the statistical learning theory, which provides a mathematical framework for the learning 

problem. See [2] for more details. 
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3 Problem statement  

The internship aims at designing and implementing a pattern recognition system suitable for 

multiclass classification and rankings. In the target application, we want to access to a database whose 

elements belong to a finite set of categories and a query consists of one of these categories. Results to a 

query must be shown in descending order of pertinence: the most confident elements must appear first, the 

ambiguous elements later. 

In order to achieve this, the system must assign to each element a set of scores which serve as 

basis to rank the elements with regards to each class. 

Furthermore, the system has to be able to handle several observations of the same object, 

corresponding typically to several video captures of this object over the time. The number of observations of 

each object is variable. Thus, the system has to be able to fuse a variable number of sources of information 

when they are provided. 

The system must work for any number of categories and regardless of the nature of the data. 

Moreover, it is expected to be used not only for the database ranking but also in real time classification, so 

prediction time constraints must be introduced somehow. 

 

4 Presentation of the solution 

4.1 An approach to the multiclass classification problem 

In the general case, a classification problem consists in assigning elements to a finite set of classes 

or categories. Some machine learning models, such as decision trees and neural networks, are able to 

naturally handle the multiclass case. For others, such as boosting and support-vector machines, which were 

conceived for distinguishing between only two classes, a direct extension to the multiclass case may be 

problematic [14]. 

In such cases the multiclass problem is typically reduced to many binary classification problems that 

can be solved separately. The resulting set of binary classifiers must then be combined in some way [14]. 

From this point of view, each binary classifier is a source of information. Both the sources and the mode of 

fusion must be chosen. Moreover, we want to ascribe a confidence to the decision. 

The straightforward solution for the reduction is to create k binary problems, where k is the number 

of classes. Each binary problem involves the discrimination between one class and the set of all other 

classes. This reduction is called one-against-all [14]. One might expect that only one of the classifiers 

responds positively to an input sample – only the classifier corresponding to the real class. It would then be 

easy to make the decision. Unfortunately, this is not always the case. In practice, many classifiers may 

respond positively or, on the contrary, none of them. The approach becomes therefore problematic. 
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Calibration 

Often, the classifier’s output is a score whose magnitude can be taken as a measure of confidence in 

the prediction. This means that these scores can be used to rank the examples in the test set from the most 

probable member to the least probable member of the positive class with regards to this classifier. This 

could lead to decide according to the class whose corresponding classifier has the highest score. However, 

this would not be appropriate, as the scores of different classifiers cannot be compared directly: they are 

problem dependent and – even after re-scaling them – they do not represent the probability that the input is 

a member of the class of interest.  

Probability estimates are needed when the classification output has to be combined with or 

compared to other sources of information for decision-making. The transformation of a classifier’s score to a 

probability estimate is called calibration. Calibration is essential if we want the outputs to be directly 

interpretable as the chance of membership of the class.  

Besides, it must be noticed that this kind of classifiers which are specialized in the detection of a 

single class can be trained towards different objectives depending on the application. Sometimes we are 

interested in detecting all targets. This is only achievable at the expense of a higher number of false alarms. 

On the contrary, in other cases it is preferable to miss targets rather than to raise false alarms. The 

objective may also be to minimize the number of mistakes in terms of false alarms and non-detections. 

Clearly, in the case of contradiction between detectors of the same class that have been trained differently, 

depending on their answers it is logical to trust more one of them rather than another, and the decision can 

be richer than if we had only one classifier. To take advantage of this aspect, we should find a way of 

quantifying this preference. Calibration is also an answer to this question. 

Exploiting redundancy 

At this point, we have been able to overcome some of the limitations of the one-against-all approach 

the way it has been presented here, notably with regards to the decision-making. Nevertheless, there are 

clues that lead to think that other ways of reducing the multiclass problem could be possible and useful. 

To begin with, it has been noticed that apparently redundant classifiers (classifiers trained differently 

to detect the same class) may indeed add extra information and improve the decision. This does not match 

with the “one classifier per class” scheme. 

Moreover, if we want to know about one particular class, in this scheme it seems that only the 

specialized classifier gives information whereas nothing can be inferred from all the rest of them. Are we 

making the most of our classifiers? 

Furthermore, we may wonder which one of these situations is preferable: a classifier that is capable 

to tell one class A from the rest but is sometimes mistaken, or a classifier that completely confuses A with B 

but tells for sure A or B from the rest. The answer clearly depends on the complementary information 

provided by the rest of classifiers. 

All this leads to envisage another approach: the combination of classifiers that discriminate between 

groups of classes.  
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Figure 2. Groups of classes and their corresponding binary classifiers 

Instead of designing individual classifiers to detect individual classes, the idea is to design the set of 

classifiers to respond differently to each class. Therefore, the set of answers is taken into account to predict 

the class. Many classifiers may respond equally to two classes, but other classifiers are designed to respond 

differently, so the two classes are distinguishable. 

 

Figure 3. Example of Coding Matrix. 

 Dietterich and Bakiri (1995) proposed to reduce the multiclass problem into multiple binary problems by 

means of assigning each class to a word of an error-correcting code. The one-against-all reduction is 

a particular case of this general framework. A possible way of classifying an example is to compare the 

set of obtained answers to each of the code words: the predicted class is the one which fits best. 

The variety of possible classifiers is much wider that in the one-against-all case and the associated 

discrimination problems may be easier, so the performances of the individual classifiers are potentially 

better. Moreover, the number of classifiers is not limited to k. Compared to the one-against-all strategy, this 

approach may add redundancy and robustness to individual classifiers mistakes. 
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4.2 Overview of the designed classification strategy 

In the design of the new classification system, we have tried as much as possible to take advantage 

of the work that has already been done in the laboratory with regards to this subject. This is why we 

propose an extension of the existing classification strategy – which consists mainly of single-class detection 

and biclass disambiguation – in order to achieve the objective in an effective way.  

On the one hand, the common points are the modelling of the classification problem by means of 

several binary classifiers and the use of the same machine learning technologies. On the other hand, the 

new classification strategy extends the previous one in two fundamental aspects. First, it provides a 

probabilistic framework for the classification system and thus a basis for the computation of ranking scores 

with strong theoretical foundation. Second, it completely generalises the type and number of binary 

problems. 

Having many observations of an object and the application of several classifiers to each observation 

make it necessary to use a fusion method. We have chosen distributed fusion, in contrast to centralised 

fusion. This means that fusion is done in two steps: we first combine all the information concerning one 

observation and then the results of these combinations on all observations of the same object. Therefore, 

we treat less data at the same time, with the resulting computational advantages. Moreover, this makes the 

system flexible to the number of observations. In particular, in the case of temporal tracking of an object, 

this makes possible to give preliminary answers before having all the observations. Usually, the risk of 

distributed fusion is the weak cooperation among sources and possible contradictory decisions. This is not 

critical in our case because the result obtained for each observation is a probability distribution over the 

classes rather than a local decision. As we will see in sections §5.4 and §5.5, the specific rule for fusing is 

conditioned by the probabilistic nature of the results. The first step reduces itself to solving an over-

constrained equation system, and the second is a probabilistic combination of distributions. See section 

§5.5.1 for more details on information fusion. 

Inference procedure 

In this section, the different functional components of the system and their relationships are 

presented. In order to infer its class, the treatment of a single observation consists of the following steps: 

���� Set of b binary classifiers. Each classifier distinguishes between a group of classes and the rest 

of classes. They have been trained and optimised1 individually with the learning and the validation sets, 

labelled according to a coding matrix2. This set of classifiers represents the reduction of the multiclass 

problem into several binary problems. 

���� Calibration of scores. Each classifier has been calibrated with the validation base. Each score is 

transformed into an estimate of the probability of belonging to the corresponding disjunction of classes: 

( ) { }kjjj ccABjAyr ,...,,...,1P
~

1⊂=∈= x  

                                                
1 Model selection is done through a genetic algorithm.  
2 The procedure for obtaining this coding matrix is detailed in section §5.3.2 



 

 

Cristina Garcia Cifuenstes 

Multiclass Classification with ML and Fusion 

 

Date: 09/01/09 

Ref.: 2009-IW-SI-000010-1  

 

This document is the property of EADS France. No part of it shall be reproduced or transmitted without the express prior written 

authorization of EADS France, and its contents shall not be disclosed. © - EADS France - 2009 

17/74 

Réservé EADS 

with: x  = the observation to be classified 

 y  = the real class of this object 

 j  = each of the classifiers 

 jA  = set of classes considered positive by the j-th classifier 

 B  = number of classifiers 

 k  = number of classes 

���� Coupling of these estimates. The estimates rj are combined according to the coding matrix to 

obtain an estimate of the probability of belonging to each class: 

( ) kici ,...,1P
~

=x  

Steps 1 to 3 are summarised in Figure 4. 

 

 

Figure 4. Treatment of a single observation.  

Then, if there are may observations of the same object: 

���� Temporal fusion. Steps �,� and � are done for all the observations. We then take the 

probability distributions obtained for each observation and we consider them as different beliefs on the 

object’s category. These beliefs are fused into a single global belief, which is a new distribution. 
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A decision on the category can be made using the obtained probability distribution. If we want to be 

able to rank all the objects in a database, a further step has to be done: 

���� Computation of the ranking scores. The probability distribution is used to compute one 

ranking score per class. Roughly, the score associated to a class is related to the distance between the 

obtained distribution and a Dirac delta distribution. 

All the steps are summarized in Figure 5. 

 

Figure 5. Processing of a track3. 

In the following section, the details on design and algorithms of each block are presented. 

 

 

                                                
3 The track consists of one or several versions of the same object. 
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5 System description 

5.1 Binary Classifiers 

5.1.1 Introduction 

There is a great deal of choice for solving supervised learning problems. Neural networks have been 

the center of most machine learning research for long years, and have proven to be suitable for a great 

number of applications. In the last decade, new learning algorithms have emerged that have excellent 

performance, mainly support-vector machines and boosting. 

In the last three years, a new technology has become popular among online articles of scientific 

vulgarisation, in spite of the criticism it has received from the AI community: hierarchical temporal memory 

networks.  

These four learning methods applied to supervised binary classification problems were studied and 

compared. In this section, the principles and strong points of each one are presented, as well as the results 

of the comparative study. 

5.1.2 Neural Networks 

Artificial neural networks are non-linear statistical tools that can be used to model complex 

relationships between inputs and outputs or to find patterns in data.  

They are based on the paradigm of connectionism4 originally inspired by the examination of the 

central nervous system. According to this paradigm, the interconnection of simple processing elements 

(called neurons or nodes) can exhibit a complex global behaviour, determined by the connections between 

the processing elements. The connections between neurons have associated weights that can be modified 

through a learning process in order to associate a desired output to a given input. 

A generic artificial neuron is shown in Figure 6. The inputs multiplied by the connections weights 

are summed to a bias and the result is given as input to an activation function5 that gives the neuron output.  

Here we focus on the multilayer perceptron (MLP), probably the most important kind of neural 

network. The MLP is a feed-forward network consisting of a set of input nodes, one or many sets of hidden 

nodes6 and a set of output nodes. Thus, they have at least two layers of connections between neurons, in 

contrast with the single layer perceptron, which has only one layer of connections as there are no hidden 

neurons. 

 

                                                
4 Also known neural computation, parallel distributed processing, neurocomputing, [2]. 
5 Typically a smoothed version of a step function. 
6 Only one hidden layer is needed for approximating arbitrarily well any decision boundary, provided that the number of hidden neurons 
is sufficiently large, [2]. 
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Figure 6. A generic artificial neuron. 

 

Figure 7. A multilayer perceptron 

In supervised learning, we wish to infer the mapping between inputs and their associated outputs. 

The training modifies the biases and the weights of the connections as data flows through the network in 

order to minimise a cost function related to the mismatch between our mapping and the data. The 

application of the gradient descent technique to minimize the mean-square error in a MLP leads to the well-

known backpropagation algorithm. 

See [2], [3] or [4] for more details on neural networks. 

5.1.3 Support Vector Machines 

Support Vector Machine (SVM) is a supervised learning technique permitting to treat non-linear 

discrimination problems and to reformulate the classification problem as a quadratic optimization problem.  

This technique is based in the notion of maximal margin. In the case of two linearly separable 

classes, the objective of the learning phase is to find a hyperplane that separates the examples of the two 
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classes and that maximises the distance to the nearest examples. These nearest examples are called support 

vectors. Generally, there are ambiguities between the classes and no hyperplane exists that perfectly 

separates the two classes. Thus, this condition is relaxed to tolerate that some examples are on the other 

side of the frontier. The violator examples introduce a cost in the objective function. 

The Lagrangian formulation of the problem depends only on scalar products between vectors in the 

input space. Therefore, the kernel trick can be used in order to apply this algorithm to non-linear 

discrimination problems. The kernel trick implicitly transforms the input space into a high (possibly infinite) 

dimensional space, where a separating hyperplane is likely to be found.  

For more details on SVMs, refer to [5]. 

 

Figure 8. A representation of a SVM.7 

5.1.4 Boosting 

Boosting belongs to the family of ensemble methods, techniques that combine the predictions of a 

set of single learners trained individually in order to obtain an overall learner which performs better than any 

of the single learners. 

Boosting is a machine learning method that builds a ‘strong’ classifier by linear combination of ‘weak’ 

classifiers. It can be viewed as a general method for improving the accuracy of any given base learning 

algorithm. AdaBoost is the main boosting algorithm. The weak classifiers are generated iteratively, by calling 

a base learning algorithm, and feeding it each time with different weightings over the training examples. At 

each iteration, the error rate of the weak classifiers is assessed, and the weight of the misclassified 

examples is increased. This has the effect of forcing the base learner to focus its attention on the “hardest” 

examples. The final classifier is obtained by a weighted majority vote of the weak classifiers, were the 

weight is higher if the error rate is lower. Provided that the base algorithm performs better than random, the 

final classifier can be (theoretically) arbitrarily accurate. 

                                                
7 Illustration from www.imtech.res.in/raghava/rbpred/svm.jpg 
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Figure 9 represents consecutive iterations of the AdaBoost algorithm. The separating lines represent 

the weak classifiers, and the size of a circle represents the weight of the example. 

 

Figure 9. A representation of AdaBoost8. 

See [6] for more details on the AdaBoost algorithm. Moreover, [7] gives an interesting comparison 

between AdaBoost and SVM. 

5.1.5 Hierarchical Temporal Memory 

Hierarchical Temporal Memory (HTM) is a machine learning model developed by Jeff Hawkins and 

Dileep George of Numenta, Inc. inspired in some of the structural and algorithmic properties of the 

neocortex. HTM is based on the memory-prediction theory of brain function described by Jeff Hawkins in his 

book On Intelligence. [8] 

The central concept of the memory-prediction framework is that bottom-up inputs are matched in a 

hierarchy of recognition, and evoke a series of top-down expectations. These expectations interact with the 

bottom-up signals to both analyse those inputs and generate predictions of subsequent expected inputs. [9] 

The HTM paradigm has been implemented in a software API called The Numenta Platform for 

Intelligent Computing (NuPIC). A research release became available on March 2007. [11] 

From [10] and [11], we can figure out how HTM works. 

HTM networks are a multi-level hierarchy of nodes in a tree structure.   

                                                
8 Illustration from http://www.cc.gatech.edu/~kihwan23/imageCV/Final2005/images/bestrong.JPG 
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Figure 10. Representation of a HTM. 9 

The HTM documentation makes an extensive use of the concept of cause. It defines it as a 

persistent and repeating structure in the world: an object, a situation, an idea. The data depends on the 

underlying causes that generate it. These causes are what we want to identify. This is roughly equivalent to 

the notion of category in other machine learning contexts. 

An HTM network receives sensory input and builds an internal representation of the causes in an 

unsupervised way, looking for correlations between data points that are adjacent in space and time. In 

other words, it assigns causes to recurring spatial and temporal patterns in its input.  

The HTM Network as a whole performs the functions of identifying these recurring spatial and 

temporal patterns, and classifying its input data relative to known patterns that it has identified. Moreover, it 

can predict future events based on the input and the learned temporal sequences. 

Each node in a HTM network implements a common learning and memory function: they all 

encapsulate the same algorithm. They store a number of recurring spatial patterns and temporal 

sequences10. At any time, a node looks at its input and assigns a probability that this input matches each 

element in a set of stored spatial patterns. Then the node takes this probability distribution and assigns a 

probability that the current input is part of the stored temporal sequences. The distribution over the set of 

sequences is the output of the node, and it is passed up the hierarchy.  

As outputs are distributions over the stored patterns, the number of output variables is the number 

of stored patterns. This number is fixed. If the node is learning, then it might modify the set of stored spatial 

and temporal patterns to reflect the new input. This means that over the course of learning the meaning of 

the outputs gradually changes. In fact, the nodes do not have a separate training and inference mode. If 

learning is enabled, the set of stored patterns might change with the new input learning is off; else, the set 

                                                
9 From http://www.numenta.com/for-developers/education/htm_symb_rep.jpg 
10 This was true in the first implementation of HTM. Nowadays, the spatial and temporal functionalities have been separated into two 
different types of nodes. These two kinds of nodes must work together as a unit in order to achieve the original behaviour. 
Nevertheless, it remains true that roughly all nodes encapsulate the same algorithm: a node stores a quantization of its input space 
according to the recurring patterns seen, either from the spatial or temporal point of view, in an unsupervised way. 
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of stored patterns remains fixed. It is possible to disable learning when the training is finished, or to keep on 

learning while inferring. 

A HTM network resembles a Bayesian network in the sense that the nodes constantly share 

information. HTMs exploit a variation of belief propagation to do inference, so that all nodes quickly reach 

a set of mutually consistent beliefs. The sensory data imposes a set of beliefs at the lowest level in an HTM 

hierarchy, and by the time the beliefs propagate to the highest level, each node in the system represents a 

belief that is consistent with the lower levels. Moreover, it has to be noted that the information does not only 

circulate upwards. As it has been said, part of the learning algorithm performed by each node is to store 

likely sequences of patterns. By combining memory of likely sequences with current input, each node has 

the ability to make predictions of what is likely to happen next. This prediction goes downwards in the 

hierarchy and acts as prior probability, meaning it biases the inferences in the lower node. This prediction 

helps the system understand noisy or missing data. 

 

Figure 11. Illustration of the information flow in a HTM network.11 

The learned sequences act as an a priori for the following inferences. 

Each node in the lowest level of the hierarchy receives raw local sensory data. Nodes at higher levels 

do not receive sensory data, but rather the beliefs of their child nodes. For nodes at higher levels, spatial 

patterns consist of commonly occurring combinations of beliefs that their child nodes simultaneously report. 

The temporal sequences consist of recurring changes in those beliefs: they are sequences of sequences. 

Therefore, HTMs do not just exploit the spatial hierarchy. They take advantage of the temporal 

hierarchy of the input as well. As the information rises up the hierarchy, beliefs are formed at successively 

higher nodes, each representing causes over larger and larger spatial areas and longer and longer temporal 

periods. 

                                                
11 Image by Arno Ghelfi, from http://www.wired.com/wired/archive/15.03/images/MF_104_hawkins2_f.gif 
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Figure 12. Example of the hierarchical arrangement of nodes. 

The input can be a vector (1D sensor) or an image (2D sensor) 

 

 

Figure 13. A very simple supervised network.  

It has only a sensor and one level of spatial-temporal nodes. The top node can be any traditional 

classifier. 

As it has been said, a HTM works in an unsupervised way. However, supervision can be introduced 

by imposing beliefs at the top level of the hierarchy during the training. The top node in the hierarchy works 

in a different way from the rest. It is a classifier node: it makes groups and maps those groups to 

categories. If category information is submitted during the training (supervised learning), the groups are 
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created according to the categories (see Figure 13). If not (unsupervised learning), the groups are created 

based on the characteristics of the input data. Even if Numenta has developed its own algorithms for the top 

node, the user can substitute it by any other kind of classifier. SVM, for example, could be a suitable 

candidate in the case of a supervised binary problem.  

An important constraint in the use of HTMs is that even if we want to use the network for static 

inference, the system needs to be trained on time-varying inputs. This is because the learning of sequences 

is a key point in the HTM inference12, notably in the downward flow of information13.  

All things considered, it can be drawn that a suitable application for HTMs would satisfy these 

conditions: the domain to model has an inherent hierarchy, the data have some spatial and temporal 

correlation, and the problem domain provides a large set of training examples organized in temporal 

sequences. 

5.1.6 Preliminary comparison 

From the theoretical foundations of the different algorithm, we can anticipate some of their 

properties. 

An important practical aspect is the number and impact of the parameters of the model. The more 

parameters to tune, the more difficult will it be to find the optimal configuration, and this can lead to poor 

performances in general cases. In a multilayer perceptron, the parameters are the number of hidden units 

(assuming that there is only one hidden layer) and eventually the parameters of the backpropagation 

algorithm. The number of iterations is given by the training set size. In a SVM, the parameters are trade-off 

between regularisation, low training error and the kernel function. In AdaBoost, the parameters are the type 

of weak learner and the number of weak learners. In a HTM, each node has a considerable amount of 

spatial and temporal parameters to tune, besides the number of outputs. Moreover, the hierarchy structure 

must be chosen. 

The best algorithm with regards to the parameter tuning is therefore AdaBoost, because the impact 

of its parameters is not critical. We can fix a weak learning algorithm (we use decision trees in this work) 

and give a sufficiently high number of iterations (AdaBoost hardly ever overfits) in order to achieve 

reasonable performances. On the contrary, HTM have too many parameters to tune, and they are critical. 

Thus, the optimization time therefore explodes, and there is a risk of poor performances if incompatible 

parameters are chosen. Moreover, the complexity of the representation of the problem must be tuned by the 

user, so there is a risk of assigning unnecessarily too many resources. SVM can perform poorly if the type of 

kernel function and the associated parameters do not suit the data. In a multilayer perceptron the optimal 

network structure is also problem dependent, and the number of possibilities explodes if we do not use 

heuristics. 

However, an important characteristic of neural networks and HTMs is that they are inherently 

multiclass. This means that they could be used directly to solve our multiclass classification problem. At the 

same time, the multiclass nature is related to the difficulty to handle the notion of reject class. 

                                                
12 Recall that there is no separation between the training and the inference mode. 
13 This has changed lately, see footnote 10. It remains true as long as the network incorporates the temporal functionalities. 
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An advantage of SVM and AdaBoost is their ability to efficiently handle high dimensionality [7], as 

they both find linear classifiers for extremely high dimensional spaces. They address the problem of 

overfitting by maximising the margin (explicitly in the case of SVMs and implicitly in the case of AdaBoost, 

see [7]). The computational problem is addressed by kernels in the case of SVMs, as low dimensional 

calculations are equivalent to inner products in a high dimensional, and in the case of AdaBoost by the 

greedy search of those weak classifiers that have a non-negligible correlation with the labels of the 

examples.  

On the contrary, high dimensional input vectors force the multilayer perceptron and the HTM to have 

a high number of inputs, and the resources used by the network must be high in order to handle such 

complexity. 

An extra advantage of AdaBoost is its ability to handle noisy components of the input vectors and 

to identify outliers.  

Besides, HTM is the only that automatically exploits complex sequential redundancy, which can 

be very useful in many applications. 

5.1.7 Comparative study 

5.1.7.1 Description of the comparison protocol 

The classical and mostly used biclass problem is taken into consideration. We compare directly on 

the same databases the accuracy and efficiency of the four machine learning approaches. Each machine 

learning algorithm benefits from exactly the same inputs and is tested on exactly the same data as the other 

ones.  

Several synthetic datasets have been generated. They simulate different discrimination problems 

with different kinds of difficulty: non-linearly separable classes, non-convexity, non-connectivity, ambiguity, 

high dimensionality, noisy components, under-represented learning sets. Our aim is to examine the 

behaviour of the different approaches under different conditions, to explore and confirm their theoretical 

advantages and disadvantages.  

Moreover, there is an interest in the visualisation of these behaviours, so we have generated some 

datasets in a 2-dimensinonal input space corresponding to the coordinates in a plane, allowing the graphical 

representation of the model that each approach generates of each kind of problem. Real data has also been 

used. 

All the algorithms have parameters (see previous section) which are optimised through a genetic 

algorithm. The multilayer perceptron always uses the same structure (in terms of nodes and layers) which is 

based on classic heuristics. It could have been optimised also, which would have been very tedious; 

therefore, the basic structure was always chosen, which justifies some very limited results (in other terms: 

an optimised neural network could obtain better results than those illustrated here, but it implies much more 

efforts of optimisation). In the SVM, the possible kernels were sigmoid, Gaussian and polynomial. In 
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AdaBoost the weak learners are decision trees. During optimisation, the maximal depth of the trees is 

selected. 

HTM is a special case, because the required optimisation process is not compatible with the genetic 

algorithm. To begin with, we limit the HTM’s structure to spatial nodes (as no temporal functionalities are 

supported by the rest of algorithms). Besides, when working with synthetic data (2 and 50-dimensional) a 

fixed hierarchy of nodes is chosen. All nodes have the same parameters, which are optimised through the 

genetic algorithm. In the case of real data, if the dimensionality is low enough, the architecture of the net 

has been chosen manually according to the hierarchy of the components in the feature vector, and the 

parameters of each node have been tuned by hand. 

5.1.7.2 Results and analysis 

A selection of the most relevant tests is presented here, and the conclusions of the study. 

2-D data 

The black-and-white background corresponds to the real data distribution. Green and red points are 

evaluated points, green being points where the predict function answered 1 (should be white in the 

background), red where it answered 0 (should be black in the background). Training, optimisation and 

evaluation were each done with 1000 points per class. 

On the first and second databases (Figure 14 and Figure 15) which are very easy, the four 

algorithms are coarsely equivalent. HTM is however significantly slower in prediction time. 

On the third one (Figure 16) boosting is clearly the best algorithm. It profits from its very limited 

number of parameters, which helps it to achieve more easily the optimal parameterisation. HTM and SVM 

have honourable results, but SVM performs better with half the computational cost. 

The following test (Figure 17) illustrates how the four machine learning algorithms deal with 

complex 2D-data where some confusions exist (grey values indicate the probability of belonging in each 

class). In this case, boosting provides decent results. SVM and HTM have comparable predictions and 

comparable results, but SVM are five times faster so that they are the best algorithm on this database (since 

boosting is twice faster, if computational cost is an issue then boosting should be chosen). 
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Neural Network    Boosting 

  
SVM      HTM 

Figure 14.  Results on non-connected data. 

 

 
Neural 

Network 
Boosting SVM HTM 

Probability of 
false alarm 

3.8% 1.9% 4.5% 3.7% 

Probability of 
detection 

99.2% 97.2% 100% 96.4% 

Precision 87.9% 93.2% 86.1% 87.7% 

Prediction time 
(in seconds) 

4.84e-5 6.24e-5 8.75e-5 43.1e-5 

Table 2. Results on non-connected data. 
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Neural Network    Boosting 

  
SVM      HTM 

Figure 15. Results on non-convex data. 

 

 
Neural 

Network 
Boosting SVM HTM 

Probability of 
false alarm 

4.6% 5.5% 3.7% 5.3% 

Probability of 
detection 

96.7% 95.1% 98.3% 96.8% 

Precision 89.9% 87.9% 91.9% 88.3% 

Prediction time 
(in seconds) 

4.68e-5 8.13e-5 8.12e-5 27.5e-5 

Table 3. Results on non-convex data. 
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Neural Network    Boosting 

  
SVM     HTM 

Figure 16. Results on non-connected and non-convex data. 

 

 
Neural 

Network 
Boosting SVM HTM 

Probability of 
false alarm 

22.4% 6.9% 12.0% 11.2% 

Probability of 
detection 

95.3% 95.7% 99.0% 96.4% 

Precision 50.6% 76.9% 66.4% 67.4% 

Prediction time 
(in seconds) 

3.75e-5 8.45e-5 10.8e-5 28.0e-5 

Table 4. Results on non-connected and non-convex data. 
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Neural Network    Boosting 

  
SVM      HTM 

Figure 17. Results on complex 2D-data with some confusions. 

 

 
Neural 

Network 
Boosting SVM HTM 

Probability of 
false alarm 

51.3% 27.1% 15.3% 20.8% 

Probability of 
detection 

95.2% 82.5% 66.2% 60.1% 

Precision 40.3% 52.5% 66.2% 60.1% 

Prediction time 
(in seconds) 

3.76e-5 5.64e-5 12.3e-5 58.8e-5 

Table 5. Results on complex 2D-data with some confusions. 
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Neural Network    Boosting 

  
SVM      HTM 

Figure 18. Results on complex 2D-data with strong confusions. 

 

 
Neural 

Network 
Boosting SVM HTM 

Probability of 
false alarm 

27.1% 24.4% 37.5% 21.1% 

Probability of 
detection 

84.4% 76.9% 92.0% 82.0% 

Precision 75.7% 75.9% 72.0% 79.5% 

Prediction time 
(in seconds) 

3.90e-5 7.85e-5 11.7e-5 16.4e-5 

Table 6. Results on complex 2D-data with strong confusions. 
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Neural Network    Boosting 

  
SVM      HTM 

Figure 19. Results on complex 2D-data with strong confusions, with few learning data 

 

 
Neural 

Network 
Boosting SVM HTM 

Probability of 
false alarm 

21.0% 28.0% 26.0% 22.0% 

Probability of 
detection 

70.0% 70.0% 77.0% 79.0% 

Precision 76.9% 71.4% 74.7% 78.2% 

Prediction time 
(in seconds) 

0 
(below 1e-5) 

0 
(below 1e-5) 

7.5e-5 N/A 

Table 7. Results on complex 2D-data with strong confusions, with few learning data. 
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The databases shown in Figure 18 and Figure 19 were generated with Gaussian mixtures, resulting 

in non-connected, non-convex and mixed data (strong confusion). These pictures must be read as follows: 

white dots are learning base positive samples (class “1”), black dots are learning base negative samples 

(class “0”), green pixels are prediction values at 1 and red pixels are prediction values at 0. Ideally, green 

pixels should be below white dots and red pixels below black dots. 

In the first case, all algorithms have decent results. Neural networks and boosting have interesting 

prediction times (boosting is twice faster than HTM). SVM and HTM have very good prediction results. 

In the second case, the training and evaluation data has been generated as in the previous one, but 

with only 50 elements per class for training. This database illustrates the same degree of complexity as 

many real databases, for which training data is insufficient and where the intrinsic complexity introduces 

strong confusions. The four machine learning algorithms deal pretty well with this concrete example of 

reduced training data. 

N-D data 

Real data mostly have lots of dimensions, resulting in far more complex predicting models as those 

illustrated before in two dimensions. 

Therefore, training and evaluation data were generated in a 50 dimensions space, with distributions 

consisting of mixtures of Gaussians. 

 
Neural 

Network 
Boosting SVM HTM 

Probability of 
false alarm 

27.0% 10.7% 9.4% 63.4% 

Probability of 
detection 

85.0% 91.5% 93.1% 97.5% 

Precision 75.9% 89.5% 90.8% 60.5% 

Prediction time 
(in seconds) 

0 
(below 1e-5) 

0 
(below 1e-5) 

7.5e-5 N/A 

Table 8. Results on synthetic 50-dimensional data. 

Best results are achieved with the SVM. However, they lack in computational efficiency (boosting is 6 

times faster and even HTM is faster in this test). Boosting is an appropriate trade-off between computational 

cost and classification power. We observe that the fixed architecture chosen for HTM is insufficient for 

modelling the problem, as can be deduced from the high false alarm rate. 

Real data 

The data used in the following tests corresponds to real video-surveillance sequences (see section 

§6.1.1). MPEG-7 (texture, colours, shape) and geometric descriptors were extracted resulting in input 

vectors of several hundreds and 7 values respectively. Data is complex since the resolution of the vehicles 

objects is very poor and compression artefacts are important. Here we show the results obtained for the 

classifier of cars and the classifier of trucks.  

 Boosting SVM HTM 

Probability of 1.7% 1.9% 4.2% 
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false alarm 

Probability of 
detection 

94.4% 72.7% 91.1% 

Precision 98.9% 98.4% 97.2% 

Prediction time 
(in seconds) 

1.8e-3 0.3e-3 3.6e-3 

Table 9. Results on real data (MPEG and geometric descriptors). 

 Car detector. 

 Boosting SVM HTM 

Probability of 
false alarm 

3.1% 1.7% 0% 

Probability of 
detection 

71.1% 59.0% 0% 

Precision 78.8% 85.0% 0% 

Prediction time 
(in seconds) 

1.8e-3 0.29e-3 N/A 

Table 10 Results on real data (MPEG and geometric descriptors). 

Truck detector. 

 Boosting SVM HTM 

Probability of 
false alarm 

1.7% 1.5% 3.7% 

Probability of 
detection 

88.4% 74.8% 96.1% 

Precision 98.8% 98.8% 97.6% 

Prediction time 
(in seconds) 

4.9e-5 12.6e-5 30e-5 

Table 11. Results on real data (only geometric descriptors). 

 Car detector. 

Globally, boosting achieves the best results. It is beaten by HTM on the last test (with only 

geometric descriptors), but is still 6 times faster to provide predictions. SVM have very good prediction times 

(less support vectors were chosen, resulting in lower quantitative results for classification). 

HTM have interesting results on cars (it can deal properly with noisy data, which is the reason why 

SVM has limited performances), even the best ones on the geometric descriptors only. However, one must 

know that the HTM has been precisely defined (in terms of structure) according to a priori knowledge 

concerning the descriptors contained in the input vectors, which is an information that wasn’t provided to 

the other algorithms. 

The interpretation is that real data is noisy data. It looks as if geometric descriptors have some very 

discriminative values and some noisy values, whereas MPEG-7 descriptors are globally noisier. Boosting 

achieves the best performances with all the available data, since it can remove by its own useless and noisy 

values within the input vectors. The HTM and the SVM suffer from noisy data, but HTM is more robust to it. 

It is remarkable that HTM could not achieve a single classifier on the truck data. This shows to which 

extent they are difficult to parameterise.  
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Interpretation 

All these benchmarks tend to explain why Boosting and SVM are currently used in almost any 

classification problem. Generally, SVM obtains better results when data is not noisy, when boosting is usually 

characterized by lower computational costs and performs better in presence of noisy descriptors.  

These tests have allowed observing some other advantages and drawbacks of HTM, compared to 

these state-of-the-art machine learning algorithms. The advantages are that it can be defined so as to profit 

from the structure of the input data; it performs good results, most of the time with scores equivalent or 

close to those of Boosting or SVM. Besides, it is still under development, so it is still promising. The 

drawbacks are that it needs a very complex and tedious preliminary step of definition, so as to select the 

structure and to fix all the available parameters to their adequate values (or poor results – sometimes even 

no result at all – are achieved); for classification scores similar to those of Boosting and SVM, it needs more 

computational cost (from two to ten times more); it is a proprietary technology which is more complex than 

Boosting and SVM. The high prediction time can also be a consequence of the fact that the complexity of the 

representation of the problem must be tuned by the user, and we run the risk of assigning too many 

resources. 

In our work, we have chosen SVM as the binary classifier. We also use boosting in certain steps of 

the system optimisation, when binary classifiers must be generated quickly and there is no time for 

optimising its parameters. 

5.2 Calibration 

5.2.1 Introduction 

As explained in previous sections, many binary learning algorithms map the input to a score whose 

sign indicates if the input has been classified as positive or negative and whose magnitude can be taken as a 

measure of confidence in the prediction, [14] [13]. This means that these scores can be used to rank the 

examples in the test set from the most probable member to the least probable member of the positive class.  

However, these scores depend on each classifier and they only can rank the examples with regards 

to this classifier. Even after re-scaling them, they do not represent the probability that the input is a member 

of the class of interest, and therefore the direct comparison of scores from different classifiers does not 

make sense. This is especially true with SVM, where the score is the distance to the learned hyperplane and 

where the measure of distance varies with the choice of the kernel function. Probability estimates are 

needed when the classification output has to be combined with other sources of information for decision-

making.  

Consider the example in Figure 20. It shows two classes (black and white) in a 2-dimensional space, 

and three possible classifiers depending on the adopted optimization criterion: a penalty for false alarms, a 

penalty for non-detections or an equal penalty for both types of errors. Each classifier models the problem 

differently, and we have the output score as the only insight to the model. We can see that examples far 

from the separating hyperplane are more likely to be classified correctly – this is what we mean when we 
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say that the score ranks the examples. But the score itself is not directly interpretable as the chance of 

membership of the class. For instance, if we consider two symmetric scores coming from one classifier, we 

can see that they do not necessarily correspond to the same probability of error. If score magnitudes cannot 

be thought of as probabilities within the context of one single classifier, even less are they comparable 

among several classifiers. 

We can think of a score as the projection of the example into a 1-dimensional space, which 

presumably corresponds to the direction that best discriminates between the two classes. Calibration 

attempts to regain some of the lost information in this projection. 

 

Figure 20. Calibration 

The reliability of the answer depends on the classifier and on the answer. 

During the training of the whole system, calibration consists in finding the mapping from raw scores 

to accurate probability estimations. When inferring the class of a new example, calibration is the application 

of this mapping to the obtained raw score. 
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5.2.2 Related work 

[13] recalls the definition of a calibrated classifier: 

Assume that we have a classifier that for each example x outputs a score s(x) between 0 and 1. This 

classifier is said to be well-calibrated if the empirical class membership probability P(c|s(x)=s) 

converges to the score value s(x)=s, as the number of examples classified goes to infinity. 

The straightforward way of calibrating consists in dividing the possible scores into intervals and 

calculating the empirical probability in each of them. In the simplest version, the size of the interval would 

be fixed.  However, this does not guarantee a sufficient number of examples in each interval for an accurate 

estimate. The choice of the intervals size is a trade-off between a sufficiently fine representation of the 

mapping function and a sufficiently accurate estimate in each interval. 

[13] makes a review of other existing methods for calibrating two-class classifiers: Platt’s method 

and binning. 

The calibration proposed by Platt (1999) is a parametric approach. It consists in fitting a sigmoid 

function, so as to minimize the negative log-likelihood of the data. This method is motivated by the fact that 

imposing a parametric shape is a possible way of regularizing and avoiding overfitting, and the relation 

between SVM scores and empirical probabilities seems to be sigmoidal for many datasets. The problem is 

that this does not necessarily hold for all datasets and all learning algorithms: the shape of the function is 

unknown. 

Binning is a non-parametric method. The examples are sorted according to their score and divided 

into groups with the same number of examples (bins). This induces a division of the score range into 

intervals and an associated probability estimate in each interval. On the contrary to the straightforward 

solution, this method imposes a number of examples in each interval. However, this approach does not 

maintain the idea of local averaging to obtain the estimates. Examples with very different scores may be 

grouped. If examples that clearly should have different probability estimates are averaged together, the 

method will fail to give accurate estimates. Again, the optimal size of the bins is unknown. 

[13] proposes a new method based on Isotonic Regression (Robertson et al., 1988). This calibration 

is non-parametric, and imposes that the mapping has to be non-decreasing. This is an interesting way of 

regularizing, because the scores are supposed to be a measure of confidence in the prediction. 

As for which learning methods need calibration, [13] remarks that Naive Bayes and SVM scores are 

not well-calibrated. [12] uses Platt’s method and isotonic regression to calibrate several learning methods. 

Empirically, it is shown that the best calibration method depends on the algorithm and the dataset. In 

general, boosted trees and SVM perform better in their experiments when calibrated with Platt’s method. 

They also claim that neural nets are so well calibrated from the beginning that they are even slightly hurt by 

calibration.  

In this work, Platt’s calibration is rejected because it imposes a shape of the function, which 

contradicts the objective of designing a completely general system. Among the non-parametric methods, 
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isotonic regression is preferred, because no arbitrary choice of the size of the bins or the intervals has to be 

done. 

We have noticed that binning and isotonic regression are in fact particular cases of the 

straightforward solution, in which the size of the intervals is variable and induced by the distribution of the 

data. Thus, they can be analyzed in a common framework of probability distribution estimation. Moreover, 

we will also address the issue of computing the reliability of these estimates.  

5.2.3 Formal framework 

5.2.3.1 Probability distribution estimation 

The starting point is an already trained binary classifier. The classifier represents one possible model 

of the binary problem. It assigns a score to each input example. We want to translate this score into the 

probability of belonging to the positive class, given this particular model. 

Consider the random variable formed by the pair class-score ( )SCX ,= , which takes values in the 

space { } DT ×= 1,0  with R⊆D . This random variable follows a probability distribution ( ) ( )SCPXP ,= . 

To infer the distribution of the random variable X , we have a random sample of independent 

observations ( )nXXX ,...,, 21 . Each observation ( )iii SCX ,= corresponds to an input example from the 

validation base. 

In particular, we are interested in the conditional probability ( ) ( )srsSCP ≡== |1 , which verifies 

the following relations (Bayes): 

( )
( )

( )

( ) ( )

( )sf

CPCsf

sf

sf
sSCP

S

S

S

CS
11|,1

|1
==

====  

where CSf  and Sf denote density functions. 

In the following paragraphs, we are going to infer an estimator for this probability, based on the 

course material about empirical distributions in [15]. Refer to this source for more details or general insights 

into the basic theory and applications of probability, statistics, and certain special models and random 

processes. 

 

Empirical distribution 

The distribution of X is the probability measure in T given by )()( AXPAP ∈=  for TA ⊆ . The 

relative frequency of TA ⊆  corresponding to a random sample of size n  is 

( )
{ } ( ){ } ( )

n

AXN

n

ASCXni
AP niii

n

∈
=

∈=∈
=

,:,...,2,1#
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were ( )BNn designates the number of times that the event B  has happened (the frequency of B ) in n  

observations. The relative frequency nP
 
satisfies the axioms of a probability measure. In fact, it gives the 

empirical distribution of X  based on the random sample. It is a discrete distribution that places 

probability mass n1  at each iX . The empirical distribution has the following properties: 

( )[ ] ( )

( )[ ] ( ) ( )[ ]

( ) ( ) 1) probabilty(with     as 

1var

∞→→

−=

=

nAPAP

APAPAP

APAPE

n

n

n

 

Empirical density function 

In our case, we are working simultaneously withC  – a random variable with a discrete distribution 

on the countable set{ }1,0
 
–, and S  – a random variable with a continuous distribution on a subset R⊆D . 

Their density functions are estimated differently. 

In the case of the discrete variableC , let Cf denote its density function such that 

( ) ( ) { }1,0for     ∈== ccCPcfC . 

The empirical density function corresponds to the relative frequency function defined before: 

( ) ( )
{ }{ } ( )

{ }1,0for     
:,...,2,1#

 ∈
=

=
=∈

=== c
n

cCN

n

cCni
cCPcf ni

nnC  

Thus, it also verifies: 

( )[ ] ( )

( )[ ] ( ) ( )[ ]

( ) ( ) ∞→→

−=

=

ncfcf

cfcfcf

cfcfE

CnC

CCnC

CnC

 as 

1var  

The case of the continuous variable S  is somehow more complicated. Let Sf  
denote the 

density function of S . Technically, Sf  is the density with respect to 1m , the length measure on R . By 

definition 

( ) ( ) DAdssfASP
A

S ⊆∫=∈ for      

In order to define its empirical density function, a partition of D  into a countable number of 

intervals { }lD  must first be defined. As before, the empirical probability of lD  can be defined by: 

( )
{ }{ } ( )

n

DSN

n

DSni
DSP lnli

ln

∈
=

∈∈
=∈

:,...,2,1#
 

The empirical density function is then defined as: 
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It corresponds to the distribution for which ( )ln DSP ∈
 
is uniformly distributed over lD . This 

empirical density function depends on the partition, so we cannot establish the same relationships 

between ( )sf
nS  and ( )sfS  as in the previous case. But by the very definition of density, if the partition is 

sufficiently fine (so that lD
 
is small for each l ) and if n is sufficiently large, then by the law of large 

numbers, ( ) ( ) lSnS Dsfsf ∈sfor    ~ . 

The obtained estimator 

Putting all these results together, we obtain an estimator for our probability of interest for each 

lDs ∈  that fits perfectly with our intuition: 

( ) ( )
( ) ( )

( )

( )
( )ln

ln

nS

nnS

DSN

DSCN

sf

CPCsf
sSCPsr
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=

==
===≡

,111|
 |1

~~  

or equivalently: 

( ) ( )
( )

( )ln

ln
l

DSP

DSCP
DSCPsr

∈

∈=
=∈==

,1
|1

~~  

Obviously, the properties of ( )sr~  as an estimator of ( )sr  depend on the partition of the scores into 

intervals. To obtain accurate estimates, the partition has to be sufficiently fine and the number of 

observations sufficiently high. 

Remark that both binning and isotonic calibration are particular cases of this framework. What 

differentiates one method from the other is the way in which the partition of scores is made. 

5.2.3.2 Variability of the estimation 

The probability estimates ( )sr~  issued from calibration are not used isolated. As we will see in 

section §5.4.2, these estimates are combined in a way such that we are not only interested in the obtained 

estimate but also in its reliability, so that we can weight differently the contribution of each source of 

information. 

As a first approach, we have empirically studied the variability of the obtained mapping with 

regards to the validation set. In particular, we have split the validation set in two subsets, and we have 

combined the two obtained calibrations in the following way: 

• the resulting mapping is the average of both calibrations; 

• at each score, the two calibrations and the average are used to output a variance. 

In early phases of the design, we have empirically verified that the use of this variance as a measure 

of confidence in the estimate improves the results of the posterior combination. 

In Figure 21 we show a result on real data. Pink and blue curves have been generated with the two 

halves of the validation data. The yellow curve has been generated with all the available data.  
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Figure 21. Empirical test on calibration variability 

Other variants of this approach would be inspired by cross-validation, in which the original validation 

set is split into t subsets, and t-1 are used each time to obtain t different calibrations. On the one hand, each 

of the calibrations would be presumably more accurate, as a higher number of examples are used. On the 

other hand, the subsets are not independent, so the variability of the calibration with regards to the set 

would be less evident. 

As a second approach, we have tried to analyse this problem from the theoretical point of view, in 

order to assess the reliability of the estimates from the statistical properties of the data, without having to 

calibrate several times with random subsets of the available data. 

We have seen that the obtained estimate is the same for all scores within an interval lD . With our 

estimate, we try to calculate ( )sSCP == |1  averaged in lD∈s . To avoid confusion, we highlight the 

two different sources of error: the error that we make in the estimation of ( )lDSCP ∈= |1 , and the 

difference between ( )lDSCP ∈= |1  and each ( )sSCP == |1 . The first one decreases with the 

number of examples in the interval, but the second one decreases when the partition of scores is fine. Thus, 

there is a trade-off between the two, and they are so coupled that it is very difficult to analyse them 

separately. For example, intuitively we could think that the variance of the estimate in an interval is inversely 

proportional to the number of examples in the interval. This is not appropriate because the choice of the 

intervals may follow a regularisation criterion14 that in practice makes the estimator much less variable. This 

kind of global aspects should also be taken into account. 

As it has been said, the dependence with the partition prevents from deducing the properties of the 

estimator. However, we will try to give insights on this question. 

The following approach lies on the concept of the “sufficiently fine” partition of scores into subsets 

and on the computation of a confidence interval for the estimate ( )sr~  in each subset. 

                                                
14 This is the case of the calibration method that we have adopted : isotonic regression. 
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We define the indicator variable I so that it takes the value 1 when 1=C  and 0 otherwise. If we 

restrict it to a subset of examples whose scores fall in A , this indicator variable has the Bernoulli distribution 

with parameter ( )ASCP ∈= |1 . For brevity, we note this probability ( )Ap : 

[ ] ( ) ( )

[ ] ( ) ( )[ ]ApAp

ApASCPIE

−=

≡∈==

1Ivar

|1
 

Recall that at each lD , ( )sr  is estimated through the estimation of ( )jDp . The obtained ( )sr~  is 

the mean value of I  in lD , for lDs ∈ . 

We define lD  to be sufficiently fine if ( )lDSCP ∈= |1  is representative of ( )sSCP == |1  for 

all lDs ∈ . That is to say that ( ) ( )lDPAp =  for all lDA ⊆ . 

First, we establish the hypothesis that lD
 
is sufficiently fine. We then analyse some relevant subsets 

of lD  and try to find if there is sufficient statistical evidence to reject the hypothesis. In that case, we could 

assign to the violator subsets a low reliability in the estimate ( )sr~ . 

We do not know the exact values of ( )Ap , but we can compute estimates ( )Ap~  as the mean of I  

in A : 

( )
m

I

MAp

m

j
j∑

==
=1~   

where ( )mj III ,...,,...,1  corresponds to the subset of examples whose scores fall in A . Moreover, 

supposing that ( )mj III ,...,,...,1  is a random sample15 from the Bernoulli distribution with unknown 

parameter ( )Ap , we can compute approximate confidence intervals for these estimates ( )Ap  using the 

properties of the Bernoulli distribution (see [15]). If we use M as an estimator for ( )Ap , we can 

approximate the variance of this estimator as 
( )

m

MM −1
 and, by the central limit theorem16, build a 

random variable with approximately a standard normal distribution17: 

( )

( )

m

MM

ApM
Z

−

−
=

1
 

and hence an approximate pivot variable for ( )Ap . An approximate r−1  level confidence interval (a), 

confidence upper bound (b), and confidence lower bound (c) for ( )Ap  are thus given as: 

                                                

15 mj III ,...,,...,1 independent and identically distributed. 

16 Valid if m is large. As an alternative we could use a variable with binomial distribution as pivot variable. The inconvenient is that the 

quantiles depend on m , so they should have to be extracted from a table containing all possible values. 
17 The distribution of Z  is closest to normal when ( )Ap is near to ½, and farthest when ( )Ap is near to 0 or 1. 
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where rz  is the quantile of order r  for the standard normal distribution. 

We can then use these confidence intervals to test the hypothesis and assign different reliability 

values to different subsets of lD , according to the statistical properties of the data. See section §5.2.4 for 

more details on a possible implementation of these tests. 

5.2.3.3 Weights trick 

In practice, to calibrate our classifiers we have at our disposal a database whose distribution among 

classes may be very different from the distribution in the system’s operational environment. This happens for 

example when one of the classes has considerable variability and the others much less. For this variability to 

be well represented in the database, there must be a great number of examples of the first class, and a low 

number of examples of the second class is enough, independently of the real proportion of classes in the 

operational context. 

In this case, the observation do not follow the probability law that we want to estimate, and 

therefore the estimation with the previous approach will not be pertinent. In an attempt to correct this 

database fault, we add some extra knowledge about the operational distribution of classes and use it to 

weight the examples. 

In the following paragraphs, we give a possible interpretation of this correcting mechanism, and the 

resulting expression for the probability estimation. 

 

We can consider that, instead of a sample of the real distribution P , we have a sample of another 

distribution Q . We suppose that we know the real distribution between classes: ( )1=CP  and 

( ) ( )110 =−== CPCP . Besides, we make the hypothesis18 that the law Q  has the same behaviour as 

P  with regards to the scores: if we compare Q  and P , we find the frequency of each class increased or 

decreased uniformly along the scores, i.e. multiplied by a factor independent of the score. Therefore, we 

have the following relations: 

( ) ( )

( ) ( )
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|1  |1

0

1
s

sCQ

sCQ
k

sCP

sCP
s

sCQksCP

sCQksCP
∀

=

=
=

=

=
⇒∀





===

===
 

Besides, a consequence of this hypothesis is: 

                                                
18 This hypothesis may not be true in general, especially is one class is formed by a disjunction of classes. 
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( ) ( ) sCsPCsQ ∀= |  |  

In particular, we have: 

( )

( )

( )

( )
( )2

0

1

0

1

=

=
=

=

=

CQ

CQ
k

CP

CP
 

Therefore, we can characterise completely P  through Q  is we find the factor k . 

According to this trick, we have a sample of observations that follows the law Q : 

( )nXXX ,...,, 21  

We want to estimate ( )sCP |  from this sample. The following relations hold: 
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Thus, we obtain as an estimator for jDs ∈ : 

( ) ( ) ( )
( )
( )

( )
( ) ( )

jnjn

jn

jn

jn

j

DSCNwDSCNw

DSCNw

DSCN

DSCN

k

DSCPsSCPsr

∈=+∈=

∈=
=

∈=

∈=
+

=∈====≡

,0,1

,1

,1

,0
~
1

1

1
|1

~
|1

~~

01

1

 

We see that it is equivalent to calculate the relative frequency of the class 1 in the interval jD  with 

the counting of each class being affected by some weights 0w
 
and 1w  such that: 

( )

( )

( )

( )1

0

0

1

0

1

=

=

=

=
==

CN

CN

CP

CP
k

w

w

n

n~
 

We remark that these weights are random variables, as there are statistics obtained from the 

sample. Moreover, they break the independence of the observations, as each observation is affected by a 

weight that depends on the whole sample. 
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If we wanted to apply the computation confidence intervals to assess the reliability of these 

estimates, we should have to calculate an approximate variance of this weighted average. To simplify the 

analysis, we consider that 0w
 
and 1w  are deterministic. 

Again, consider ( )mj III ,...,,...,1  the indicator variables corresponding to the subset of examples 

whose scores fall in A . Let ∑=
=

m

j
jIN

1
1 . It is a binomial variable. 

All the possible outputs are given by 
( )

mi
imwiw

iw
ri ,...,1for     

01

1 =
−+

=  

Each of these possible outputs has probability ( ) imi
i qq

i

m
p −









= -1   

where ( )ASCQq ∈== |1  that we estimate as 
m

N1 . 

Therefore, the estimate for interval A  is  

( )
( )1011

11|1
NmwNw

Nw
ASCP
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and an approximate variance  
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This approximate calculation of the variance depends on the weights and on the estimate of 

( )ASCQq ∈== |1 . We observe that there are extreme cases which are very unfavourable. Very 

different weights may lead to considerable errors, notably when one class has much more weight than the 

other and the opposite proportion is observed in the studied interval A . Figure 22 shows the variance 

obtained with the previous formula for different weight ratios, different number m  of examples in the 

interval and with q chosen so that the obtained value is maximal. The vertical axis corresponds to 

1
m

1
-10.25

0.25 -maxvar 

+







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Figure 22. Worst case of variance for different weight rations. 

Therefore, we think that the theoretical study in this case may not be appropriate, and a better 

solution could be the empirical assessment through multiple calibrations using subsets of the data. 

5.2.4 Chosen approach: Isotonic Regression 

Consider 
dX R∈ the explanatory variable (input) and R∈Y the corresponding response variable. 

The problem of isotonic regression (or monotonic smoothing) on a set ( ){ }iYiX n

i
,

1=
of two-dimensional 

data can be formalized as follows [16]: 

- Sort the data ( ){ }iYiX n

i
,

1=  
by X  into ( ){ })()( 1

, ii
n

i
YX

=
 

- Find { })(ˆ
)( 1i

n

i
Xm

=

 to minimize ( )
2

1

)(ˆ
1

)()(
∑
=

−
n

i
ii

XmY
n  

subject to the monotonicity restriction: 

( ) ( ) ( ) )(ˆ...)(ˆ)(ˆ
21 nXmXmXm ≤≤≤  

The pool adjacent violators algorithm (PAV) (Ayer et al., 1955) gives a stepwise-constant 

solution. Roughly, it consists in sorting the data by X , scanning the data in order and averaging those 

outputs Y that violate the monotonicity restriction as one goes along. See [16] for more details. 

In our context of application, R∈X is the score and { }1 , 0∈Y  is the class19. The intervals of 

score are defined by the groups of examples that we average together following the PAV algorithm. The 

output values correspond to the empirical probability in each interval. If the classifier ranks the examples 

correctly, the mapping between scores and probabilities is indeed non-decreasing. Thus this calibration 

method is very appropriate, as this is a presumable characteristic of the classifiers that we use. 

                                                
19 Moreover, the algorithm has been adapted to include the different weights of each piece of data. 



 

 

Cristina Garcia Cifuenstes 

Multiclass Classification with ML and Fusion 

 

Date: 09/01/09 

Ref.: 2009-IW-SI-000010-1  

 

This document is the property of EADS France. No part of it shall be reproduced or transmitted without the express prior written 

authorization of EADS France, and its contents shall not be disclosed. © - EADS France - 2009 

49/74 

Réservé EADS 

The interesting advantage of this calibration method is that the user does not choose any parameter. The 

intervals are defined according to the statistical properties of the data and the regularisation constraint 

(monotonicity). We could say that the intervals are narrow or wide where it is needed. 

The problem arises when the classifier does not rank the examples correctly, i.e. the ideal mapping 

is not non-decreasing. From the point of view of the PAV algorithm, this provokes outliers or aberrant 

observations among the data. If there are outliers, the PAV algorithm produces long flat levels (Figure 23). 

 

Figure 23. Calibration through isotonic regression (orange), and approximation of the 

underlying distribution (blue). 

In these cases, the estimate for the given interval may not be pertinent for all the scores: it is 

impossible to know if the outliers are just due to noisy data or if the ideal mapping is decreasing in that 

interval. We can then use the approach described in following paragraphs to assign different reliability to 

different sub-intervals. 

In Figure 24, we can see the underlying function in an interval of scores and the estimated average. 

We can assign an upper bound to this estimate and keep it as a reference20. Then, we can consider shorter 

sub-intervals towards the left, calculate the average and the corresponding lower bound. If the underlying 

function is indeed decreasing, we could find sufficient statistical evidence to affirm that the estimated 

average in the sub-interval does not correspond to the average in the whole interval, i.e. the lower bound is 

greater than the reference upper bound. We can repeat the same process towards the left, considering the 

bounds in the other sense.  

In the case of finding this statistical evidence, we could assign a new estimate to the sub-interval. 

This would obviously violate the non-decreasing constraint. Instead, we can choose to keep the estimate as 

it is (i.e. the one obtained through isotonic regression) but give less reliability to the sub-interval, according 

to the difference between the local average and the average in the whole interval. 

 

                                                
20 For clarity purposes, the figure shows the confidence interval. In practice, it may be more convenient to work only with upper or 
lower bounds according to the need, as the obtained bounds are tighter. 
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Figure 24. Exploration of an interval towards the left and towards the right. 

We can see the underlying function (black), the reference average (orange) and the reference 

confidence interval (dotted orange), the average on a subinterval (red) and the corresponding 

confidence interval (dotted red). 
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5.3 Error Correcting Output Codes 

5.3.1 Related work 

For some classification problems, both two-class and multiclass, it is known that the lowest error 

rate is not always reliably achieved by trying to design a single best classifier [17]. An alternative approach 

is to combine a set of simpler classifiers. These classifiers may be simpler for different reasons. For example, 

in boosting, the weak classifiers are allowed to have a performance only better than chance [6]. In other 

cases, the classifiers handle simplified versions of the original problem. This is the case of the reduction of 

the multiclass problem into several binary problems, which has already been introduced in section §4.1. 

A necessary condition for improvement by combining is that the results of the base classifiers are 

not too well correlated, as discussed in [18]. Strategies to promote independence are perturbing feature 

sets, injecting randomness or perturbing training sets [17]. The last is the case of bagging and boosting [2]. 

The reduction of the multiclass problem to several binary problems can be seen as a perturbation of class 

labels [17]. 

There are several motivations for decomposing the original problem into separate and 

complementary binary problems. The main one is that there are some accurate and efficient binary 

classifiers that cannot be naturally extended to handle the multiclass case [14]. Moreover, solving different 

binary sub-problems may help to reduce error in the original problem, [21]. 

There are many ways of making this decomposition. In the one-against-all approach mentioned in 

section §4.1, each class is compared to all others.  

Hastie and Tibshirani suggest a different approach in which all pairs of classes are compared to each 

another. This approach is called all-pairs and generates 








2

k
 binary classifiers.  

A more general suggestion was given by Dietterich and Bakiri. Their idea is to associate each class 

to a row of a coding matrix { }kxl
M 1,1−∈ for some l . Each column induces a binary problem, as explained 

in section §4.1. This is the method of error-correcting output codes (ECOC) [20]. The ECOC method was 

originally motivated by error-correcting principles, under the assumption that the learning task can be 

modelled as a communication problem, in which class information is transmitted over a channel. 

Allwein et al. [14] propose a unifying generalization of all three. In fact, they take the matrix from 

the larger set { }kxl
1,0,1− . If 1),( =bcM , then the examples of the class c  are considered to be positive 

examples for the binary classification problem b . If 1),( −=bcM , the examples belonging to c  are 

considered to be negative examples for b . Finally, if 0),( =bcM , the examples belonging to c  are not 

used to train b . This extension allows the inclusion of the all-pairs approach as a particular case. 
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Figure 25. The all-pairs code matrix in the 4-class case. 

Since its appearance, ECOC has been successfully used in many application areas but there is 

discussion about why it works well, and some have brought into question the significance of the coding 

strategy [17]. Several papers have appeared that address the problem of choosing an appropriate coding 

matrix21.  

From the perspective of error-correcting theory, it is desirable that codewords are far apart. [14] 

deduce a bound on the generalisation error that confirms this, as well as a low number of zero entries. 

However, they note that this may lead to difficult binary problems. 

[17] discusses different aspects of the ECOC algorithm, notably the desired properties of the coding 

matrix and a method for producing equidistant codes. They note that sub-problems are more independent 

and likely to benefit from combining if distance between columns is high. They remark that according to 

previous reported results, a long random code appears to perform as well or better than a code designed for 

its error-correcting properties. 

 In [19] the authors attempt to prove a theoretical statement about the performance of the ECOC 

approach. They argue that one reason why the powerful theorems from coding theory cannot be directly 

applied to prove stronger bounds on the performance of the ECOC approach is that, unlike in coding theory 

where one usually assumes that the errors in the different bit positions occur independently, in the 

classification context the errors made by the various hypothesis can be considerably correlated. They prove 

that, given strong error-correction properties of the underlying code and a small error-correlation between 

the hypotheses, the ECOC approach is guaranteed to produce a classifier with small error. They use a 

particular family of codes called Hadamard-matrix codes. 

[26] list some of the different families of codes that have been suggested besides the one-against-all 

and the all-pairs: random codes, exhaustive codes and linear correcting codes. They argue that the use of 

predefined output codes ignores the complexity of the induced binary problems. They are the first to discuss 

the problem of designing a good output code for a given multiclass problem, instead of using predefined 

                                                
21 For clarity, the the possible combining strategies are discussed separately in section §5.4. However, it has to be remarked that both 
aspects may be tightly related. Thus, the optimal matrix ultimately depends on which combining strategy is used. 
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codes. Motivated by the intractability results, they introduce the notion of continuous codes in opposition to 

discrete codes, and they cast the design problem as a constrained optimization problem. 

With the same concern about the learnability of the binary problems, [27] introduce the notion of 

probabilistic output codes, and propose an approach that ties the learning problem with the class 

representation problem: they describe an algorithmic framework in which the set of classifiers and the code 

are found concurrently. We have observed that, as far as our work is concerned, this framework has the 

limitation that the classifiers must be logistic regressors. Margin classifiers like SVM are not suitable because 

the do not provide an analytical expression for the conditional probabilities. 

In parallel to the work about the decomposition of the multiclass problem into binary problems, it is 

still desirable to have a multiclass algorithm that treats all classes simultaneously. This is addresses by [28]. 

They focus on margin-based classifiers, among which SVM and boosting are the most popular techniques. 

They remind that both techniques have excellent performances in the binary classification problem, but it is 

nontrivial to extend them to multiclass cases. About the widely used one-against-all strategy, they say that 

while working fine with AdaBoost, this approach can perform poorly with SVM if there is no dominant class, 

and give some references to these results. Then they recall some recent and successful proposals of treating 

the multiclass problem directly, without decomposing it into binary problems. Moreover, they propose a new 

framework to formulate the margin classifier, in which the binary and the multiclass problems are solved by 

the same principle: regularized empirical risk minimization. We think that this approach may be very 

interesting, and it is worthy to follow the improvements in this field. However, in spite of the good 

performances in the classification task, we must reject it as a possible approach in this work because it does 

not focus on the discovering of the conditional probabilities of belonging to each class, which is our 

objective. Instead, the output is a vector of scores, which we cannot calibrate with the techniques proposed 

so far due to the curse of dimensionality. 

In the next section we focus on the construction of a matrix with good properties. We propose a 

heuristic method compatible with practical constraints of computational cost. The decoding or combination 

strategies will be treated in section §5.4. 

5.3.2  Construction of the coding matrix 

The number of possible matrices explodes with the number of classes. Considering all of them is 

neither possible nor interesting. As an alternative we limit our research to a maximal number of columns. 

Besides, we are going to focus on two-valued matrices (-1/+1) instead of the more general case of three-

valued matrices (-1/0/+1), as we consider interesting the fact that all classifiers give some information about 

all classes, and that all classifiers are trained with the same number of samples22.  

If we wanted to create a coding matrix with determined correcting properties from the point of view 

of coding theory, we would have to generate an error-correcting code and pick a number of words equal to 

the number of classes in our problem. The number of classifiers would be the length of the words. 

                                                
22 In the context of the matrix construction, we may use -1/+1 or 0/1 interchangeably. 
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In practice, we want to build a coding matrix in which the number of rows (classes) and columns 

(classifiers) is adapted to the problem. The ideal number of columns is unknown, but intuitively it increases 

with the number of classes. As codes are not easy to generate, it is not practical to generate a different code 

for each case. And even if this could be done, repeated classifiers must be deleted from the coding matrix, 

so the integrity and properties of the code would not be guaranteed. In any case, it has already been 

discussed that the correcting properties are useful only if the classifiers are sufficiently uncorrelated. The 

correlation among classifiers cannot be studied theoretically as we do not know anything about the nature of 

the classes. Therefore, we can only assess the quality of the matrix empirically. 

As alternative to the matrix being exactly a code, we rather use a code only as a base for building 

the matrix. Concretely, we have chosen a fixed BCH code23. The code has 32 words 15 bits long each and 

the Hamming distance between words is at least 7. With this code24 and a given number of classes, we can 

build a matrix of a sufficiently large number of columns, and presumably with better correcting properties 

than a random matrix. The procedure is illustrated in Figure 26. 

 

(a) 

 

                                                
23 See [29] and [30] for more details on polynomial codes and the correcting properties of BCH codes, as well as their construction. 
24 This particular code was chosen because it is sufficient for a large number of classes and the distance was high. If it turned out to be 
insufficient for a particular number of classes, we can always generate a different one. 
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(b) 

Figure 26. Procedure for generating the classifier candidates for the coding matrix: first (a) 

and second (b) iteration. 

Consider the sub-matrix formed by the first k words (from 1 to k) of the BCH code. We take its 

columns one by one and add them to our coding matrix, provided that the column or its complementary 

does not already exist in the coding matrix. We repeat the same actions for words from 2 to k+1, until the 

32 words have been considered. When the number of classes is very low, this procedure generates all 

possible classifiers. When the number of classes is high, a sufficiently high number of classifiers are 

generated and we expect the matrix to have better correcting properties than a random matrix, as it 

has been constructed using pieces of codewords as “bricks”. 

Once this maximal number of columns has been generated, we would like to find the optimal 

combination, because keeping all the columns may not be the most appropriate solution. Besides, we have 

constraints in the prediction time. 

The number of possible combinations explodes. We have designed a heuristic procedure for 

iteratively exploring these possible matrices and choosing one. Initially, the matrix is evaluated. At each 

iteration the worst column is deleted and the resulting matrix is re-evaluated. By “worst column” we 

mean that the induced binary problem is the most difficult. The evaluation of the matrix and the 

difficulty of the binary problems are based on empirical performance, as it is described next. 

The step following the generation of all columns is the generation of the induced classifiers. To do 

so, a learning set labelled according to each column is used to train a binary classifier, and a validation base 

to calibrate it. For the procedure to be quick, no optimization of the classifier’s parameters is done, so it is 

desirable that the parameterisation of the classifier algorithm does not critically influence its performance, in 

order to reliably estimate the difficulty of the binary problem. Boosting is a good candidate provided it is 

implemented to output scores and not binary decisions. The difficulty of the problem is assessed according 

to the accuracy of its predictions on the validation base. In particular, the minimal probability of detection is 
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taken as evaluation of the classifier. For each example in the validation base, the predictions of the set of 

classifiers are combined to obtain a probability distribution, and the class with maximal probability is 

compared to the real class of the example. We take the percentage of correct answers as the evaluation of 

the whole matrix. We include also a penalty for the number of classifiers (or equivalently the prediction 

time). 

The predictions of the classifiers on the validation base and the evaluation of the difficulty of the 

binary problems are always the same independently of the combination of classifiers. So, in order to save 

time and memory resources, they are pre-calculated only once and stored. The only thing that has to be 

done at each iteration is the fusion of these predictions in order to obtain the evaluation of the considered 

sub-matrix. 

When a number of columns equal to the number of classes has been reached, the procedure stops 

and we take as definitive matrix the one with the best evaluation among the set of sub-matrices that 

we have evaluated. Optimised classifiers can then be trained and calibrated. 

5.4  Combination of classifiers outputs  

5.4.1 Related work 

Once we have produced diverse classifiers, a suitable combining strategy must be designed. 

Different approaches have been suggested according to two possible aims: inferring the correct class given 

the set of outputs, or obtaining probability estimates for each class. 

5.4.1.1  Making decisions in the context of ECOC 

According to the original motivation of the ECOC method, it seems sensible to predict the class 

whose row of the matrix is closest to the set of outputs, for some distance.  

The first method of combining was Hamming decoding. Here, the distance is the number of 

positions in which the decisions of the base classifiers differ from the row. This is a hard-level combining 

strategy, meaning that it only takes into account the individual decisions, in contrast with soft-level which 

considers a measure of confidence associated to each individual prediction. 

[14] propose a combining strategy suitable for margin-based classifiers, a general class of binary 

algorithms that attempt to minimize a loss function of the margins25. SVM and AdaBoost are particular cases, 

among others26. They remark that the disadvantage of Hamming decoding is that it ignores entirely the 

magnitude of the predictions, which can be taken as a measure of confidence in the case of margin-based 

classifiers. They propose loss-based decoding as an alternative. This approach takes into account not only 

the obtained scores but also the loss function that was minimized during the training to generate the 

                                                
25 The margin of an example is defined as the magnitude of the output and a positive sign or negative sign depending on if the example 
is correctly classified or not 
26 They show that SVM and AdaBoost can be viewed as a binary margin-based learning algorithm in which the loss function is 

( ) ( )
+

−= zzL 1  and ( ) z
ezL

−
=  respectively.  
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classifiers. The distance measure is the total loss on an example. They also note that the loss-based 

decoding method for log-loss is the well-known and widely used maximum-likelihood decoding, which was 

studied briefly in the context of ECOC by [19]. 

 [17] describes also Dempster-Shafer decoding, based on maximising probability mass function, and 

Centroid decoding, based on minimising Euclidean distance to Centroid of classes. 

5.4.1.2  Probability estimation in the context of ECOC 

Other decoding strategies consist in recovering individual class probabilities. 

Let’s consider an arbitrary matrix { }kxl
M 1,0,1−∈  and the associated set of binary classifiers, whose 

outputs are probability estimates. For each column b  of M  and each example x  with class c , we have an 

estimate ( )xbr  such that: 

( ) ( )

( )

( )∑

∑

∪∈

∈

=

=

=∪∈∈=

JIc

i
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i
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JIcIcPr
x

x

xx
|

|

,|  

where I and J  are the sets of classes for which ( ) 1, =bcM  and ( ) 1, −=bcM  respectively. For each 

example x , we would like to obtain a set of probabilities ( ) ( )xx ii pccP == |  compatible with the set of 

( )xbr . Note that if the matrix has no zero entries, the expression reduces to 

( ) ( ) ( )∑
∈

=∈=
Ic

ib

i

pIcPr xxx | . 

This is an over-constrained problem. [13] recalls two approaches that have been proposed to solve 

it. The first one is a least-squares method with non-negativity constraints [22]. The second one is a method 

called coupling [23], an iterative algorithms that finds the best approximate solution minimizing the Kullback-

Leibler divergence instead of squared error. It is an extension of the pairwise coupling method proposed by 

Hastie et Tibshirani [24] that only applies to all-pairs matrices. Which approach is the most appropriate is 

still an open question. 

5.4.2 Chosen approach: coupling 

In the case of the one-against-all matrix, the simplest way of obtaining the membership probability 

estimates consist in normalizing the results, as each result already corresponds to the estimate of belonging 

to one class. For an arbitrary matrix, the over-constrained system presented above has to be solved. We 

have chosen the extension of the Hastie-Tibshirani method for coupling the probability estimates produced 

by the calibrated binary classifiers.  

The method starts with a guess of probabilities (we choose kpi /1=  for all classes). The set of br̂  

corresponding to these probabilities are calculated according to the expression in section §5.4.1.2., and they 
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are compared to the observed br
27. The probabilities ip  are then updated in a way that progressively 

minimizes the Kullback-Leibler divergence between the vectors formed by the set of br̂  
and the set of br . At 

each iteration, the probabilities ip
 
are normalized to sum 1. See [23] for more details. 

In [24] a demonstration of the convergence of the algorithm for the all-pairs case is provided. In 

[23], the extended method is claimed to converge as well. In our implementation we have included a 

criterion that stops the algorithm when the divergence has varied little with regards to the previous iteration. 

We have observed that after few iterations there is normally one class whose probability stands out from the 

rest. This means that if we only want to make a classification – i.e. to decide a class without caring about 

probabilities – we can adjust this parameter to save a lot of computation time without an impact on 

performances. On the contrary, if we are interested in accurate probability estimates – notably in order to 

make a ranking later on – we have to push the algorithm further.    

It is important to remark that the calculation of the divergence – and thus the value of the updating 

factors – may be weighted to give more or less importance to the match between certain components br̂  

and br . The idea is to focus on matching the reliable observations br , so as to converge to the good 

solution even if the br  are not compatible.  

In the original paper [24] for the all-pairs matrix, Hastie and Tibshirani include the number of 

examples used for training each classifier28 as weights as “a crude way for accounting for the different 

precisions in the pairwise probability estimates”. We argue that this can be done in a finer way. In our case, 

the probability estimates come from the calibration. We have observed that depending on the score, the 

obtained estimates can be more or less reliable. Instead of assigning a confidence to each classifier, we have 

paid attention to the assignation of a confidence to each output score of each classifier. Thus, each classifier 

is weighted differently according to the input example and its ambiguity. 

Finally, we have remarked that the Kullback-Leiber divergence is widely used to compare probability 

distributions [25], but the set of br  
is not a probability distribution. They are individual probability estimates, 

but they not correspond to mutually exclusive events, and thus the sum is not supposed to be 1. In our 

opinion, this leaves an open door to other possible measures and other resulting algorithms. 

5.5 Temporal fusion 

5.5.1 Fusion of information sources 

A number of different paradigms for performing data and information fusion have been developed. 

They differ in the way they represent information and more concretely in the way they represent 

uncertainty. This means that each of them models different aspects of knowledge. Therefore, they are 

                                                
27 The Kullback-Leibler divergence between the two vectors is calculated. 
28 In the all-pairs case, and in general when the matrix has zero entries, the classifiers are not trained with all the examples in the data 
set, as the classes corresponding to the zero entries are ignored. 
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difficult to compare in order to choose the most appropriate for a given problem. In this section, we describe 

briefly the three big families, based on the explanations in [31] and the introductions in [34] and [35]. 

Bayesian probability theory articulates belief through the assignment of probability mass to mutually 

exclusive hypothesis. Typically, the combination method in this framework consists in applying Bayes rule. 

Probabilistic approaches have many advantages, notably their axiomatic justification, a coherent and 

powerful mathematic framework and the great number of existing statistics tools, due to their generalised 

utilisation for many years. They have also many disadvantages. The probabilistic approach constitutes a very 

constrained model of knowledge, which represents uncertainty but is unable to model imprecision or 

ignorance, and which finds it hard to introduce information that is not easily represented as probabilities. 

Moreover, it needs a lot of prior information and imposes hypothesis that are not always verified in practice.  

The paradigm based on fuzzy logic and possibilities represents belief through the definition of a 

mapping between quantities of interest and belief functions. It handles imprecision and offers a great 

number of fusion operators with different behaviours, which gives flexibility in the modes of combination. 

Dempster-Shafer theory generalises Bayesian theory to consider upper and lower bounds on 

probability. This theory – so called theory of evidence or theory of belief functions – has been further 

reinterpreted and generalised by means of the transferable belief model and Dezer-Smarandache theory. It 

represents uncertainty through the assignment of probability mass – or degrees of belief – to all possible 

subsets of a set of mutually exclusive hypotheses. The strong point of this theory is that it manipulates 

uncertain, imprecise and conflicting information, as well as ignorance. Furthermore, it handles the case of 

different judgement spaces among the sources of information. Dempster's rule is the basic tool for 

combining the degrees of belief when they are based on independent items of evidence, which does not 

necessarily hold in practice. Many alternative combination rules have been proposed in this framework (see 

[34]). See [32] or [33] for an introduction to this theory and applications. An important drawback is that the 

computational cost of the associated methods is considerably high, as it increases exponentially with the 

number of classes. 

Recently, some work has appeared that tries to conciliate the probability theory and the theory of 

evidence approaches. In particular, [35] considers how to devise Bayesian models that have the same 

properties of handling uncertain, imprecise and conflicting information, exploiting recent advances in the 

Bayesian analysis of complex data. 

In [36] they propose a conceptual framework for fusion of beliefs in hypothesis represented by 

propositions of the form “the element e belongs to the set V”. They use the notion of belief in such a 

hypothesis in the framework presented by R.T. Cox in 1946, which combines propositional logic and 

probability theory. Probability is reinterpreted as a formal system of logic, an extension of classical logic in 

which the valuation of propositions is not known with certainty [37]. In their paper, the approach by logical 

fusion is deduced and different modes of fusion are obtained.  

As a probabilistic approach, logical fusion has the advantage that all the obtained modes of fusion 

are formal theorems – and not heuristics – directly deduced from the axiomatic of probabilities. Moreover, it 

allows the handling of contradictory beliefs in a naturally way, which is not possible with purely Bayesian 

fusion. However, the authors remark that its main drawback is precisely due to its logical foundations, as the 
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fusion is limited to a simple logical combination, which might not be enough in some applications. They 

leave an open door to approaches based in the theory of evidence and the handling of multimodal 

hypotheses. 

We have chosen logical fusion for this part of our processing chain because it is coherent with the 

probabilistic framework so far, it is less complex to implement, it has a very low computational cost and the 

logical combination of beliefs is well-adapted to the ranking purpose. 

5.5.2 Probabilistic Logical Fusion 

In the framework of logical fusion, the system ignores if a hypothesis H is true, and asks the opinion 

of n experts. The particular case of interest to our work is when the H has the form “element e belongs to 

set V”. In our case, the element is the object to which we want to assign a category, and the set is a 

singleton containing one of the possible categories. Each expert i provides a belief, which is conditioned to a 

set of hypothesis29. The system assumes that this set of hypothesis is considered actually true by this expert 

– this assumed proposition is called Ei –  and obtains a belief of the form P(H|Ei), i = 1,…,n.30 

Roughly, the output of the fusion is the probability of H conditioned to the knowledge of the system 

and a logical combination of experts Ei. However, to be consistent with the axiomatic of probability, not all 

combinations are possible. The conjunction can only be applied to sets of globally non-contradictory experts. 

A group of experts is globally non-contradictory if the intersection of their law’s supports is not empty, 

that is that they all agree at least in one of the categories. 

 

Figure 27. Group of globally contradictory experts.  

The figure represents the support of their beliefs in the space of the possible categories. 

In the example of Figure 27, experts 1 and 2 are non-contradictory, experts 2 and 3 too, but experts 

1 and 3 are contradictory. Thus, the system considers that E1 and E3 are necessarily exclusive. As E1E3 is 

false, the system cannot possibly condition his belief to this proposition. Instead, it could condition its belief 

to E1E2 + E2E3.
31 

The framework provides different modes of fusion depending on the logical combination of 

experts. The typical modes are: 

- Conjunctive. In this mode of fusion, the system assumes that all combined experts are reliable. 

Of course, it can only be applied to a group of globally non-contradictory experts. Therefore, there are cases 

where it is impossible to apply it to the total of experts. The resulting belief is limited to the categories in 

                                                
29 For example, the circumstances surrounding the expert influence his belief. These circumstances are unknown by the system.  
30 This belief is a probability distribution, as there is one different H for each possible category. 
31 We use the product for conjunctions and the sum for disjunctions. 

1 2 3 
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which all the combined experts believe. From the computational point of view, it corresponds to the product 

of the P(H|Ei) followed by a normalisation. 

- Disjunctive. In this mode of fusion, the system assumes that at least one expert is reliable. The 

resulting belief is limited to the categories in which at least one expert believes. From the computational 

point of view, it corresponds to the normalised average of the P(H|Ei) pondered by the degree of confidence 

in each expert. 

- Hybrid. It consists of a conjunctive fusion of those groups of experts that are globally non-

contradictory, and a disjunctive fusion of the beliefs of these groups. Thus, it reduces to the conjunctive 

fusion when all experts are globally non-contradictory and to the disjunctive fusion when all experts are in 

contradiction. We can think of it as the most conjunctive fusion possible that takes into account all experts. 

We have implemented all possible modes of fusion, verifying which logical combinations of experts 

are compatible. In the context of a query with regards to a particular class, a conjunctive fusion would rank 

an object for which all experts agree in this class before another object for which not all of them agree. On 

the other hand, a disjunctive fusion would rank an object for which one expert believes in this class before 

another object for which any expert does. Both behaviours are appropriate in our context, so we have finally 

chosen a weighted sum of hybrid and disjunctive fusion, and we have empirically observed that it works 

better that simply hybrid fusion in some databases. The weight can be set to obtain a fusion that varies from 

disjunctive fusion to the most conjunctive fusion possible. We have chosen a balance between the two of 

them, but we could think of more sophisticated ways of adjusting this parameter according to the nature of 

the data. In particular, we could use a training set to learn it statistically.  

5.6 Computation of the ranking scores 

Consider the two distributions obtained for two objects in Figure 28. If we want to rank them with 

regards to the second class, we would intuitively prefer the first one rather than the second, as it seems to 

be less doubt that it belong to the desired class. So the estimated probability alone seems not enough to do 

a sensible ranking. We have empirically verified this in the case of a lot of classes, when the probabilities are 

spread out among the classes. Sometimes a class stands out from the rest but its absolute value is not high 

because the other classes have important residual probabilities. So not only the probability estimate for one 

class is a relevant aspect, but also the relationship with the estimates for the rest of classes. A score that 

represents all this information would be useful. 
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 (a) (b) 

Figure 28. Two distributions obtained for two objects. 

The class probability estimate is not enough to rank the objects. 

To solve this question, we have thought of the Dirac delta distribution as the representation of the 

most pertinent distribution with regards to a particular class. For each possible query, we can compute a 

distance between the obtained distribution and a Dirac delta distribution and use it to build a score that 

leads to sensible rankings. We have chosen a Euclidean distance because it introduces a penalty in the case 

of Figure 28.a in comparison to Figure 28.b. In the case of a query consisting of multiple classes, we could 

first sum the probability estimates and then apply the same procedure for computing the score. 
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6 Evaluation 

6.1 Infom@gic database 

6.1.1 Description 

In the context of the Infom@gic URBAN VIEW chain, we have worked with the NGSIM database. It 

consists of very low resolution images obtained from several surveillance cameras. Each small image belongs 

to one of these categories: pedestrian, group of people, bicycle, motorbike, car, van, bus, truck and group of 

cars. Moreover, each image is associated to metadata issued from the motion detection and the viewing 

conditions, notably a binary mask that separates the object from the background and information about the 

speed vector. 

   

Figure 29. Examples from the NGSIM database 

This information has been used to extract 6 geometric descriptors that represent each example. 

Some categories have been merged to avoid insufficient representation of the classes in the database. The 

learning, validation and test sets come from different cameras, so that they are not too correlated. The 

tables below show the distribution of the elements in the different sets, before and after merging classes.  

 

  Learning Validation Test 

  # % # % # % 

0 pedestrian 725 10,5% 282 6,1% 164 13,2% 

1 car 4848 70,5% 2335 50,2% 648 52,0% 

2 van 207 3,0% 307 6,6% 117 9,4% 

3 bicycle 9 0,1% 1 0,0% 0 0,0% 

4 motorbike 17 0,2% 20 0,4% 0 0,0% 

5 group of people 16 0,2% 19 0,4% 69 5,5% 

6 truck 348 5,1% 576 12,4% 133 10,7% 

7 bus 80 1,2% 215 4,6% 40 3,2% 

8 group of cars 385 5,6% 769 16,5% 51 4,1% 

99 false alarm 241 3,5% 130 2,8% 25 2,0% 

  total 6876  4654  1247  

Table 12. Distribution of classes in the NGSIM database before merging 
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 Learning Validation Test 

 # % # % # % 

0and5 741 10,8% 301 6,5% 233 18,7% 

1and2 5055 73,5% 2642 56,8% 765 61,3% 

3and4and99 267 3,9% 151 3,2% 25 2,0% 

6and7 428 6,2% 791 17,0% 173 13,9% 

8 385 5,6% 769 16,5% 51 4,1% 

Total 6876  4654  1247  

Table 13. Distribution of classes in the NGSIM database after merging 

6.1.2 Results 

In order to assess the quality of the obtained ranking, we have represented the curve precision-

recall. Each point of the curve corresponds to the precision and recall for the first N answers to a given 

query, with N from 1 to the size of the test base. A possible measure of the ranking quality is the area under 

the curve (the average precision). Other interesting measures are the precision for a given number of 

answers, or the precision at which we reach a recall equal to one. 

In Figure 30 we can see the curves for different queries. Three different coding matrices have been 

tested: matrix1 is the one-against-all matrix (5 classifiers), matrix2 is a matrix formed by 7 classifiers32 and 

matrix3 is the union of the classifiers from matrix1 and matrix2. There is no temporal fusion of the images 

corresponding to a same track. We have also represented the curve for the previous ranking strategy in the 

laboratory (based in a one-against-all classification with all-pairs disambiguation). 

 It is interesting to note that the previous strategy does not rank all the images in the set, so in 

general it does not reach a recall equal to one. The remaining images would be ranked randomly. This does 

not happen with the new approach. 

For pedestrians (Figure 30.a) and cars (Figure 30.b) the ranking was already excellent, and the new 

approach is roughly equivalent when not better. For trucks (Figure 30.c) the new approach outperforms the 

previous one. In particular, if we compare the previous with the new one-against-all matrix, we can see that 

with the same set of classifiers we can obtain much better results, thanks to the probabilistic approach and 

without the need of the disambiguating classifiers. It is also remarkable than matrix2 does not work better 

than matrix1 even if it has more classifiers, and even if it globally outperforms the previous strategy, the first 

errors occur in higher positions. Interestingly, matrix3 performance is roughly between that of matrices 1 

and 2. 

We have explored the influence of some aspects of the Hastie-Tibshirani method for coupling 

probability estimates. In particular, we have tested matrix2 leaving more time to reach convergence. We 

have also tested matrix2 introducing some confidence information. There is no remarkable difference in the 

results for pedestrians and cars. The results for trucks are shown in Figure 31.  

                                                
32 An optimized matrix was not generated because a lack of time.  
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 (a) (b) 

 

(c) 

Figure 30. Ranking results on the NGSIM base for pedestrians (a), cars (b) and trucks (c) 

without temporal fusion. 

In the design phase we had already observed that modifying the stopping criterion was not critical 

for classification purposes. Here we can see that increasing the convergence time does not necessary 

improve performance. In fact, in this case it works worse for the lower ranking positions. On the other hand, 

the introduction of confidence information slightly improves the ranking for the higher positions in this case. 
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 (a) (b) 

Figure 31. Ranking results for trucks with perturbations in the coupling algorithm (without 

temporal fusion) 

We now introduce the results with temporal fusion of the observations belonging to the same track. 

In Figure 32 we can see the difference between disjunctive fusion and weighted sum of hybrid and 

disjunctive, for cars and trucks (for pedestrians both kinds of fusion lead to perfect rankings). 

 

 

 

 (a) (b) 

Figure 32.  Ranking results for cars (a) and trucks (b) with two different kinds of temporal 

fusion. 
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In Figure 33 we compare once again the results for matrices 1, 2 and 3, this time with temporal 

fusion (weighted hybrid and disjunctive fusion). We show also the results for the previous strategy (the 

fused score is the mean of scores). The results for pedestrians are not shown because they were perfect 

with the four strategies. 

 

 

 (a) (b) 

Figure 33. Ranking results on the NGSIM base for cars (a) and trucks (b) with temporal 

fusion. 

This time, matrix2 outperforms matrix1 for cars. The results for trucks are less representative 

statistically, as there are few tracks in the base. 
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6.2 ISOLET database 

6.2.1 Description 

ISOLET is a database of letters of the English alphabet spoken in isolation. The database consists of 

7797 elements, which are the 26 letters spoken by 150 subjects (each subject spoke the name of each letter 

twice, and three elements are missing). The speakers are grouped into sets of 30 speakers each, and are 

referred to as isolet1, isolet2, isolet3, isolet4, and isolet5. We have used isolet4 as the validation set, isolet5 

as the test set and the rest as the training set. Each letter is represented by 617 numerical features. The 

features include spectral coefficients, contour features, sonorant features, pre-sonorant features, and post-

sonorant features. Exact order of appearance of the features is not known.  

This database can be downloaded at [38]. 

It has been useful for verifying and improving the scalability of our system. 

6.2.2 Results 

We have tested the one-against-all matrix (matrix1) with another matrix (matrix2) consisting of 39 

classifiers including the 26 one-against-all classifiers. In this dataset there is no possible temporal fusion. We 

do not have any previous ranking results to compare with. The rankings are perfect or excellent for most of 

the letters. Here we show the worse cases (letters M and N) and also other groups of letters that tend to be 

occasionally confused (T-G and E-B-V). 
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Figure 34. Ranking results on the ISOLET database for some letters. 

6.3 Results analysis 

In the NGSIM dataset, the comparison between matrix1 and the previous strategy (which is also 

based in the one-against-all set of classifiers) leads to think that the probabilistic approach introduced in this 

work (both calibration and coupling of probabilities) works better than the previous comparison of individual 

classifications. 

With regards to the ECOC approach, is cannot be worse than the previous approach, as the one-

against-all is a particular case. However, we have noticed the importance of an appropriate optimization 

method for the coding matrix, as the performance can be poor if the errors of the retained classifiers are too 

correlated. In particular, it is important to ensure that the selected matrix is at least as good as the one-

against-all matrix (as it gives a reference of the reachable performance with a low number of classifiers). 

Sometimes, we have observed that one matrix is better than another one for a given class but it is the other 

way round for other classes (see Figure 34). It is difficult to examine the dependencies among all classes. 

Furthermore, it is not trivial to assess the quality of the ranking for all possible queries in order to obtain a 

single score. Besides, we have observed that the obtained ranking can be perfect even is the classification 

statistics for a given class are not. All these aspects could be taken into consideration to elaborate an 

appropriate criterion for the matrix evaluation during the optimization process. 

The results shown in Figure 31.b makes us think that a more sophisticated way of computing the 

confidence of the single classifiers and a more appropriate way of using them in the coupling process could 

lead to better results, at least in the case of not too ambiguous examples, in which we can take advantage 

of the redundancy provided by the codewords. This redundancy allows to safely ignore some classifiers, if 

the correcting capability of the code is high enough. Thus, the obtained probability distribution could be 

more accurate. 

More extensive databases should be tested in order to assess the capabilities of the new system. 
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7 Future work 

There are many open questions concerning different aspects.  

To begin with, it would be interesting to study the most appropriate way of splitting the available 

data into the training, validation and test sets. Concerning the binary classifiers, the kind of learning 

algorithm and the optimisation criteria should be validated. 

In this work, a hypothesis about the operational environment (the expected distribution on the 

classes) is automatically taken into account in some phases of the system construction. It should be verified 

if this introduction of extra knowledge is appropriate. And if it is so, the question is how to estimate this 

distribution. 

With regards to the matrix optimisation, it is worthy to focus on the heuristic method in order to 

improve it. In particular, it is interesting to study the choice of an appropriate evaluation criterion that fits 

the application needs. For instance, it might be relevant to substitute the current correct classification rate 

by some ranking-oriented measure. Another promising possibility is to investigate if the mutual information 

provided by the classifiers is an appropriate criterion to take into account when deciding which classifier 

should be deleted at each iteration. 

As for calibration, further work can be done in order to find the best way of assessing the confidence 

in the probability estimate. Some axes of investigation have been already suggested in the corresponding 

section. 

With respect to coupling, the stopping criterion does not seem to be critical. It seems more 

interesting to investigate how to use the confidence information provided by the previous step in order to 

improve the obtained probability distribution. 

Regarding the temporal fusion, we have said that disjunctive and hybrid fusion can be combined to 

obtain different behaviours, but the optimal weight of each one depends on the data. For the moment, this 

weight is fixed. It could be possible to introduce a phase to statistically learn from examples a suitable 

weight. 

We also leave an opened door to more sophisticated ways of transforming the probability 

distributions into ranking scores. 

Other directions of work that differ more radically from the proposed one could be an approach not 

handling probabilities but other ways of representing and fusing information, or an approach not based on 

the reduction of the multiclass problem into binary problems, as briefly discussed in the end of section 

§5.3.1, but intrinsically multiclass. 
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8 Conclusions 

We have developed a system that satisfies the specifications and is adapted to the laboratory’s 

resources and needs. 

The design is creative. It differs from the previous strategy in several fundamental aspects. We have 

introduced the probabilistic approach, by means of the calibration and the subsequent probabilistic fusion, 

inexistent in the previous strategy. The system is also a general solution, in the sense that we have 

expanded the possible binary classifiers to any suitable set, the one-against-all approach remaining a 

particular case. Moreover, it is scalable to a very high number of classes, the system definition is fully 

automatic, independent of the nature and properties of the data. 

We have had a global vision of the problem. The design is ranking-oriented, and the obtained 

system is both elegant and coherent as a whole from a theoretical point of view, thanks to a strong formal 

framework.  

This work did not only consist in putting suitable parts together. Each part has been worked in 

depth, from the theoretical and empirical point of view. Benchmarks have proven this whole framework to 

be efficient, easy to use and to adapt, and more accurate than previous solutions. 

The result is a system that provides to the laboratory a complete and automatic multiclass system 

with a significant gain of performances, in the field of multiclass classification, compared to former 

implementations. 
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