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Abstract: Model interpretability is a problem for multivariate data in general and, very

specifically, for dimensionality reduction techniques as applied to data visualization. The

problem is even bigger for nonlinear dimensionality reduction (NLDR) methods, to which

interpretability limitations are consubstantial.

Data visualization is a key process for knowledge extraction from data that helps us to

gain insights into the observed data structure through graphical representations and metaphors.

NLDR techniques provide flexible visual insight, but the locally varying representation distor-

tion they generate makes interpretation far from intuitive.

For some NLDR models, indirect quantitative measures of this mapping distortion can

be calculated explicitly and used as part of an interpretative post-processing of the results.

In this Master Thesis, we apply a cartogram method, inspired on techniques of geographic

representation, to the purpose of data visualization using NLDR models. In particular, we

show how this method allows reintroducing the distortion, measured in the visual maps of

several self-organizing clustering methods.

The main capabilities and limitations of the cartogram visualization of multivariate data

using standard and hierarchical self-organizing models were investigated in some detail with

artificial data as well as with real information stemming from a neuro-oncology problem that

involves the discrimination of human brain tumor types, a problem for which knowledge dis-

covery techniques in general, and data visualization in particular should be useful tools.
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Chapter 1

Introduction

It is not uncommon to underestimate the value of simply looking at data in the process of

scientific knowledge extraction. Data visualization can be considered as a paramount element

in the exploratory phase of any data mining process (1). This task is often about transforming

non-visual quantitative information into visual information. Visualization, as a natural pattern

recognition process, is meant to guide us to draw explanatory or exploratory inferences. In

fact, an adequate visualization can become an inductive hypothesis about the analyzed data.

With high-dimensional data, visualization cannot be done directly, but requires some form

of dimensionality reduction, be it through feature selection or feature transformation and ex-

traction. This is not a rare situation: high-dimensional data sets are becoming commonplace in

many of today’s most active scientific research endeavors. Examples of this are, to name a few,

bioinformatics, natural language processing, or web mining.

Nonlinear dimensionality reduction (NLDR) (2) is a powerful, flexible and ultimately use-

ful strategy for data modeling and exploration. By its own nature, it is also, indeed, a natural

way to deal with high-dimensional data, for which readily intuitive insights about inner struc-

ture are hardly ever available.

One of the model families belonging to the wide palette of NLDR techniques is that which

includes manifold learning methods. These methods attempt to represent multivariate data as-

suming they can be approximated reasonably well by low-dimensional manifolds covering the

most densely populated areas where data reside. When data modeling focuses on exploration,

these manifolds are chosen to be 2-dimensional to provide the model with data visualization

capabilities. Note that the observed data might well have intrinsic dimensionalities higher than
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1. INTRODUCTION

2, but, when the goal of our analyses is exploratory visualization, a trade-off between represen-

tation faithfulness and feasibility must be reached.

A general drawback limiting the use and popularization of NLDR has to do with the inter-

pretability of the resulting data representation. Even manifold learning models, which can

represent high-dimensional data in one, two, or three dimensions, are not necessarily that

straightforward to interpret. This is because their new coordinates of representation usually

are a complex transformation of the observed ones. Different parts of the original observed

data space may undergo different levels of compression and stretching as part of the mapping

process. Consequently, the data representation may suffer strong distortion, even if assuming

that no serious manifold discontinuities occur.

The potential lack of interpretability is the price paid by NLDR methods for their superior

ability to faithfully represent multivariate data (3). Linear dimensionality reduction methods

are less flexible in the transformation they entail and, therefore, their representation of high-

dimensional data can be less faithful. Compensating for this, their subset of representation

coordinates can be expressed as a linear combination of the original coordinates (that is, of

the observed data attributes), which often makes these models easy to interpret without re-

sorting to not-too-intuitive post-processing procedures. This comes to explain the popularity,

for instance, of a method such as Principal Component Analysis (PCA) (4), which, despite its

shortcomings and the fact that it was defined over a century ago, is still widely used.

1.1 Objective of the Thesis

The limitations in interpretability, described in the previous section, are consubstantial to

NLDR methods. This highlights the importance, as a research goal, of defining novel ap-

proaches to circumvent such problem. One possible approach, and the one which is at the

core of this Master’s Thesis, is making the nonlinear distortion introduced by the models visu-

ally explicit. For some NLDR models, indirect quantitative measures of this distortion can be

calculated explicitly and used as part of an interpretative post-processing of the results.

More specifically, we will draw inspiration from a technique originally devised for geo-

graphic information, known as cartograms. Geographers have traditionally been at the fore-

front of information visualization. Cartograms are geographic maps in which the sizes of

regions such as countries or provinces appear in proportion to profiling quantities such as, for

instance, their population and their economic indicators.
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1.2 Structure of the Thesis

They have a limitation in that, to scale regions while not losing their continuity (that is,

while preserving the integrity of their borders), their shapes must be distorted in one way

or another, potentially resulting in maps that are not obvious to read. A technique inspired

on physics theory was recently proposed in (5) for building robust cartograms. It retains the

interpretability of maps while distorting them, but without suffering other drawbacks, like the

undesired overlapping of regions.

The extrapolation proposed in this thesis consists in substituting the geographical maps by

the virtual geographies created by some NLDR models with their data-driven, group-defining

borders and underlying quantities such as nonlinear distortion. These virtual geographies are

then to be represented by means of cartograms, adapting the techniques described in (5) to the

peculiarities of NLDR methods. We argue that this type of representation will at least partially

improve the interpretability of the NLDR methods, thus easing their use. This is because the

resulting cartogram-based data representation is a transformation that encodes some intended

inferential bias when viewed by the analyst, namely the inferential bias of a surface-size corre-

late of the NLDR mapping distortion.

NLDR methods are manifold and the subject of intense research over the last decade (2).

It thus makes no sense trying to cover the complete palette of techniques at hand. The ex-

periments reported in this thesis focus on one of the most popular families in NLDR, namely

Self-Organizing models.

1.2 Structure of the Thesis

Beyond the introduction, the current document is structured in the following chapters:

• Background: In this chapter we provide a general introduction to NLDR methods for

visualization with special attention to Self-Organizing Maps (SOM), a family of mod-

els proposed in the early ’80s by Prof. Teuvo Kohonen (6), and to some of its variants.

These variants include the Emergent SOM, Neural Gas, the Growing SOM and the Hi-

erarchical SOM, concluding with the Growing Hierarchical SOM, which is the focus of

the experimental chapters. We then review the general theme of distortion measures in

NLDR methods (including the concepts of U-matrix, P-matrix and U*matrix).

• Cartogram Representation of Mapping Distortion in SOM-Based Methods: In this

chapter, the Cartogram-based visual representation of multivariate data modelled by
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1. INTRODUCTION

NLDR methods is introduced. This includes a reasonably detailed account of distor-

tion and cartogram methods. We show how to apply cartograms to the representations of

NLDR distortion measures in a visualization space, providing some specific examples.

• Experiments with Synthetic Data: This chapter contains the core experimental contri-

bution of the thesis, and it is a somehow detailed investigation of the cartogram repre-

sentation of SOM-based data visualizations. The evaluation is performed through a wide

array of experiments, whose results are reported and discussed at length.

• Experiments with Real Medical Data: Once evaluated using synthetic data, the car-

togram representation is further illustrated using real data stemming from a neuro-oncology

problem. It involves the discrimination of human brain tumour types, a problem for

which knowledge discovery techniques in general (7), and data visualization in particu-

lar (8) are useful tools.

• Conclusions: This thesis concludes with a brief summary of its contributions and some

directions for future research.
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Chapter 2

Background

This chapter provides the technical background that will be necessary not only to understand

the following chapters, where we report our proposed developments and test them experimen-

tally, but also to provide readers with a wider framework in which to locate these developments.

We start by considering the problem of data visualization in general, and then we move to the

more specific problem of nonlinear dimensionality reduction. This is followed by an overview

of the well-known SOM algorithm and some of its main variants. The chapter closes with a

description of the quantitative measurement of mapping distortion in NLDR models.

2.1 Data Visualization through Dimensionality Reduction

As stated in the introduction, data visualization is a key component of data exploration and,

as such, of the data mining process as a whole. An appropriate visualization of multivariate

data should help the analyst to draw explanatory or exploratory inferences. As a result, it could

become the source of inductive hypotheses about the analyzed data (1).

The origins of computer-based data visualization are to be found in the early days of com-

puter graphics, back in the 1950’s, when the first graphs and figures were generated by com-

puters. The rapid increase in computing power in the following decades and the advent of the

personal computer allowed data analysts and statisticians to work with larger data sets and, in

the 1990’s, saw the first formalization of Information Visualization as a research field of its

own.

More recently, visualization has grown and advanced to deal with data from very hetero-

geneous sources, including the increasingly large data collections to be found in business and
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2. BACKGROUND

finance, administration, digital media (including social networks), etc. The concept of Data Vi-

sualization has thus become commonplace in the scientific and information visualization fields.

Today, data visualization has become a very active area of research with manifold applications

(9).

The pervasiveness of digital information storage systems makes the collection of large

databases (containing text, numerical information and multimedia information) commonplace

in many real world problems. An example of that, with rapidly growing social implications,

is the existence of large databases in medicine and bioinformatics (fueled by increasingly so-

phisticated measurement techniques and devices), demographics, finance (with increasingly

complex products), or the Internet.

In many of these domains, one of the main characteristics of the data is their considerably

high dimensionality (sometimes coupled with data sparseness understood as a phenomenon that

concerns small data samples). Clear examples of this are image and video databases, where

the data consist of a set of objects, and the high dimensionality is a direct result of trying to

describe the objects via a collection of features. The application of data modeling techniques to

this type of data is less than obvious and their meaningful visualization is equally challenging.

This situation invites us to consider the development of suitable, context-specific tech-

niques to reduce the data dimensionality, so that the data can be represented in low-dimensional

spaces. The problem of finding the intrinsic dimensionality of one such data set is, by itself, an

area of active research. Low-dimensional data representations should have the dimensionality

that corresponds to the minimum number of variables required to explain the observed proper-

ties of the original data (10). Unfortunately, the human eye is limited to cope with a handful of

features when the goal is inductive inference from visualization.

The dimension of the data embedding can be a key parameter specially for manifold pro-

jection methods: if the dimension is too small, important data features may “collapse” onto

the same dimension, and if the dimension is too large, the projections become noisy and, in

some cases, unstable. There is no general consensus, however, on how this dimension should

be determined (11).

The intrinsic dimension (ID) of a data set is usually defined as the minimal number of

parameters (or latent variables in latent models) needed to describe it. ID is helpful for data

visualization (and also for classification), as it should clarify the number of variables required

to represent the data adequately (12). More often than not, data sets have redundant variables

and this variables can be removed without much loss of relevant information; alternatively,
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2.1 Data Visualization through Dimensionality Reduction

many features are highly correlated and we can extract new alternative features that summarize

the observed ones. This is the field of work of dimensionality reduction (DR), which is the key

for the analysis of high-dimensional data from a visualization viewpoint.

In a general context, consider a data set represented by a matrix in which each row rep-

resents a set of attributes or dimensions that describe a particular instance of a measured phe-

nomenon. The problem of DR for this matrix could be defined as follows. Assume we have a

data set represented by a N ×M matrix X, consisting of N data vectors xi where i = (1, . . . ,M)

and xi is the ith row of the data matrix X.

Assume also that this data set has an ID of value m (where m < M, and often m ≪ M). can

be related with others and they are’nt necessaries to the new manifold with dimensionality m,

which is embedded in the M-dimensional space. DR techniques are meant to transform data

X with dimensionality M into a data set Y with dimensionality m, while trying to preserve the

main characteristics of the observed data as much as possible.

The low-dimensional counterpart of xi is denoted by yi. Even if the ID can be used to

obtain a parsimonious while faithful lower-dimensional representation of our data, this may

not be enough for data visualization purposes. If that is the case, a trade-off between repre-

sentation faithfulness and feasibility must be reached and we will have to assume that a very

low-dimensional transformation of the analyzed data may entail losing some relevant informa-

tion.

The existence of an ID for a given data set should reveal the existence of topological struc-

ture in the data (13). However, neither the ID nor the topological properties are likely to be

easily identified from just a finite set of data points. Many DR projection techniques search the

best subspace in which to project the data by minimizing some type of projection error. These

techniques could roughly be categorized into two groups: Linear DR and NLDR methods (12).

The use of linear DR methods is widespread in all types of scientific research fields. One

of their obvious advantages is that the subset of representation coordinates they produce can

be expressed as a linear combination of the original observed data attributes. This makes these

models easy to interpret because they convey new knowledge in a way that does not require

much post-processing of the results. Also, they have a non-trivial advantage over NLDR tech-

niques: when data are well separated from a particular projection (revealing grouping struc-

ture), such gap cannot close when the dimensionality of the projection is increased, so that is

easy to infer that it is the result of true separation in the observed data.

7



2. BACKGROUND

Linear methods, in any case, are less flexible in the transformation they entail and, there-

fore, their representation of high-dimensional data can be less faithful than that provided by

NLDR techniques. A very popular linear DR method is PCA, which is typically applied in

practice using biplots (4). This approach has clear and well-reported limitations, such as its

sensitivity to the presence of uninformative noise, the lack of a robust criterion for choosing

the adequate number of PCs. Often, these are compensated by the interpretability properties

described in the previous paragraph.

Other popular linear method that is often used for data visualization, despite the fact it was

mostly defined as a classifier technique is Linear Discriminant Analysis (LDA), which com-

putes a data transformation (projection) by minimizing the within-class variance and maximiz-

ing the between-class variance simultaneously, achieving, class discrimination as a result. The

optimal transformation in LDA can be readily computed by applying an eigen-decomposition

of the scatter matrices (14).

Many relevant contributions to multi-variate data (MVD) visualization have stemmed from

the field of nonlinear DR (2) and, more in particular, from spectral-based methods (15, 16)

and techniques of the manifold learning family. These include methods for the quantification

and visualization of the quality of the DR process (17). Manifold learning attempts to describe

(usually high-dimensional) MVD through nonlinear low-dimensional manifolds embedded in

the observed data space. These manifolds generate a model by “wrapping around” data while

usually preserving their continuity and smoothness properties.

Almost as popular in nonlinear DR for visualization as PCA is in linear DR, SOM (6) and

its many variants attempt to model MVD through a discrete version of a manifold consisting

of a topologically-ordered grid of cluster centroids. The nonlinearity of these methods entails

the existence of different levels of local distortion in the mapping of the data from the observed

space into the visualization space. Given that most of these methods rely upon the definition

of inter-point distances (Euclidean being the most commonly used) in the metric spaces they

deal with, there is no guarantee that the inter-point distances in the observed data space will be

uniformly reflected in the visualization space. In other words, points which are distant in the

observed data space may end up being represented as closely located in the visualization space

and the other way around.

These manifold stretching and compression effects can be understood as geometrical dis-

tortions introduced by the nonlinear mapping (18). Such effects can also be seen as a local

magnification process. The data representation flexibility provided by nonlinear DR methods

8



2.2 Self-Organizing Maps

often makes them more faithful models of the observed MVD than linear ones. The price that

these methods must pay for such ability is the usually less straightforward interpretability of

the visualizations they provide (3), given that the coordinates of visual representation are no

longer linear combinations of the original data attributes.

This limitation of NLDR methods makes the definition of approaches to attenuate it a

research goal on its own right. The following chapters propose a method for explicitly reintro-

ducing the geometrical distortion created by a nonlinear DR manifold learning model into its

low-dimensional representation of the MVD. For that, we draw inspiration from a technique

originally devised for the analysis of geographic information, namely density-equalizing maps,

or cartograms (5). It will be applied to variants of the SOM algorithm, which is summarily

introduced in the following paragraphs.

2.2 Self-Organizing Maps

The most emblematic and popular NLDR method is undoubtedly Kohonen’s SOM, a type of

artificial neural network with two layers, input and output, that is trained using unsupervised

learning procedures to generate a low-dimensional (typically two-dimensional) output visual-

ization space.

SOM has extensively been used in numerous applications of data analysis and can be in-

terpreted intuitively as a kind of nonlinear but discrete PCA where a hyperplane is fitted to the

data cloud, in such a way that points are encoded through centroids residing on that hyperplane.

One way to put this idea in practice consists on replacing the continuous hyperplane with a dis-

crete (and bounded) representation. For example, a grid or lattice defined by a finite number of

points.

The task it performs is easy to understand. SOM simultaneously performs the combina-

tion of two subtasks: vector quantization (VQ) and topographic mapping (i.e., dimensionality

reduction). VQ can be understood as a way to reduce the size of a data set by replacing data

points by representative prototypes of the data. Therefore, VQ and DR are somewhat com-

plementary techniques and is noteworthy that several DR methods use vector quantization as

preprocessing. In practice, VQ is achieved by replacing the original data points with a smaller

set of points called centroids, prototypes or weight vectors in the output space, sometimes

called also the codebook (2).

9



2. BACKGROUND

These are linked to a grid of units(neurons). Each of the units on the map has assigned a

weight vector, which is of the same dimensionality as the vectors in the input space. During

the training process (the learning), the vectors from the input space are presented to the SOM,

and the unit with the most similar weight vector to this input (the one whose distance to the

input vector is the lowest) is selected as winner. After that, the weight vector of this unit, and

the neighboring ones, are adapted as much as possible to the input, that is, their distance in the

input space is reduced. For this, SOM incorporates a nonlinear neighborhood function. This is

not uniquely defined, although Gaussian type functions are the most commonly used.

As a result of this training process, the output space will be arranged in a way that fits the

input space as closely as possible.

An important property of the SOM is that the mapping preserves the topology of the input

data, that is to say, elements which are located close to each other in the input space will com-

monly be closely located in the output space, while the dissimilar will be mapped on opposite

regions of the map (20), taking in consideration the physical arrangement of the nodes. This

feature makes the SOM very useful in data analysis and data visualization where a common

goal is to represent data from a high-dimensional space in a low-dimensional space so as to

preserve the internal structure of the data in the input space. Preserving neighborhood in the

mapping makes the exploration of the output visualization space and the investigation of the

structure hidden in the high-dimensional data, such as clusters, a more intuitive undertaking.

The SOM algorithm does not make any assumption about the input data distribution. This

algorithm uses a set of neurons, often arranged in a 2D rectangular or hexagonal grid (output

space), to form a discrete topological mapping of an input space X ∈ Rm. At the start of the

learning, all the weights wr1,wr2, ...,wrm (where wri is the weight vector associated to neuron i

and is a vector of the same dimension, n, that the input space) are initialized to small random

numbers or to conform a linear shape, being m the total number of neurons and ri the weight

vector of neuron i on the grid. Then, the standard algorithm repeats the steps described in the

following subsection (21).

2.2.1 The SOM Algorithm

1. At each time t, present an input, x(t), select the winner,

2. Calculate the best matching unit (BMU) in terms of the Euclidean norm of the difference

between two vectors, being Ω the set of neuron indexes and w−→
k (t) the weight vector

10



2.2 Self-Organizing Maps

associated to the neuron k at time t, it is to say, x(t).

bmu = argmin
k∈Ω

∥x(t)−w−→
k (t)∥ (2.1)

3. Updating the weights of winner neuron and its neighbors:

∆(t) = α(t)η(bmu,k, t)[x(t)−wbmu(t)] (2.2)

wbmu(t +1) = wbmu(t)+∆(t) (2.3)

where η(bmu,k, t) is the neighborhood function. If selected Gaussian then:

η(bmu,k, t) = exp[−∥bmu− k∥2

2σ(t)2 ], (2.4)

with σ representing the effective changing range of the neighborhood. The coefficient

α(t), t > 0 is a scalar-valued learning rate, that decreases monotonically satisfying:

(i) 0 < α(t)< 1

(ii) lim
t−→∞∑α(t)→ ∞

(iii) lim
t−→∞∑α2(t)< ∞, or a less restrictive: lim

t−→∞∑α(t)→ 0

4. Repeat from step 1 until some convergence criterion is met, with decreasing neighbor-

hood kernel (21, 22).

One must be sure that the mapping has been correctly estimated. For this purpose, there

are different measures to quantify the goodness of a map. The accuracy of the maps in pre-

serving the topology, or neighborhood relations, of the input space has been also measured in

various ways. During the training, we have to make assumptions about several parameters of

the map, such as learning parameters, map topology and map size. These features influence the

final map, thus it is very important to choose these parameters carefully in order to reach the

appropriate one.

Once different choices have been tested, some measure can be used to evaluate the quality

of the map and select the optimal one to represent the data. Several measures have been used to

evaluate the quality of a SOM. A very used measurement is the quantization error (QE) which
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measures the approximation quality of the map, i.e. the distance between each data vector and

its BMU.

Normally, the number of data items is far greater than the number of neurons and the

precision error is always different from zero. The average of QE (MQE) is calculated as shown

in Eq. 2.5, where N is the number of data-vectors and bmu−→x i
is the best matching prototype of

the corresponding −→x i data-vector.

qe =
1
N
∥−→x i −bmu−→x i

∥ (2.5)

Thus, the optimal map is expected to yield the smallest MQE. A smaller quantization er-

ror signifies that the data vectors are closer to their prototypes. But, what happens with the

topological preservation? (23).

Topology preservation (TP) has, however, turned out to be a quite difficult to define for a

discrete grid. There seem to exist two different approaches for measuring the degree of TP.

In the first approach, the relations between the reference vectors and the relations between the

corresponding units on the map lattice are compared as the topographic product does.

An alternative approach for measuring TP is to use input samples to determine how con-

tinuous the mapping from the input space to the map grid is. One of the most extended indices

for this purpose is the topographic error (TE). It is also one of the errors proposed by Koho-

nen himself. This error measures the proportion of all data vectors for which first and second

BMUs are not adjacent vectors. So the lower TE is, the SOM that preserves the topology.

The TE is calculated as

te =
1
N

N

∑
i=1

u(−→xi ), (2.6)

where the function u(−→xi ) is 1 if −→xi data vector’s first and second BMUs are adjacent and, 0

otherwise (23).

One form of representation of a SOM that allows to get a more suitable picture of the vector

distribution and the distortion of the space undergone in the mapping process is the U-matrix

(unified distance matrix), which is a technique that shows the distances between neighboring

prototype vectors. It is the most common method associated with SOM although alternative

methods have been proposed: the gradient field has some similarities with the U-matrix, but

applies smoothing over a larger neighborhood and uses a different style of representation. The
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U-matrix, normally uses the Euclidean distance between the codebook vector of the neighbor-

ing neurons in a gray scale image and for each unit in the output space, there is a corresponding

element ui j in the U-matrix. In some cases, it is also common to use the U-matrix in such a

way that the value of a particular node is the average distance between the node and its closest

neighbors.

Other simpler visualization techniques take into account the distribution of the data too,

for example hit histograms, but the U-matrix contains therefore a geometrical correct approx-

imation of the vector distribution in the Kohonen net. To get a visual impression of how this

distribution is, the better way to display the U-matrix is in no more than two or three dimensions

(24).

2.2.2 U-matrix

A SOM is a self-organizing projection from the high dimensional data space onto a low-

dimensional grid of neuron locations. The grid of neurons is usually embedded in a two dimen-

sional manifold. This space is called a map with a geographical interpretation in mind. The

learning algorithm of the SOM is designed to preserve the neighborhood relationships of the

high dimensional space on the map. Therefore the map can be regarded as a “roadmap” of the

data space.

The U-Matrix is constructed on top of such map. Let n be a neuron on the map, NN(n)

be the set of immediate neighbors on the map, w(n) the weight vector associated with neuron

n, then Uheight(n) = d(w(n),w(m))/m ∈ NN(n), where d(x,y) is the distance used in the SOM

algorithm to construct the map. The U-matrix is a display of the Uheights on top of the grid

positions of the neurons on the map (25). A U-matrix is usually displayed as a grey level

picture or as three dimensional landscape, in both cases displaying the local distance structure

of the data set. Properties of the U-matrix include:

• The position of the projections of the input data points reflect the topology of the input

space.

• Weight vectors of neurons with large U-heights are very distant from other vectors in the

data space.

• Weight vectors of neurons with small U-heights are surrounded by other vectors in the

data space.
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• Projections of the input data points are typically found in depressions.

• Outliers in the input space are found in “funnels”.

• “Mountain ranges” on a U-Matrix point to cluster boundaries.

• “Valleys” on a U-Matrix point to cluster centers.

Using the SOM/U-matrix methods for clustering has the advantage of disentangling non-

linear complex cluster structures. U-matrices have been used in a number of applications to

detect new and meaningful knowledge in data sets. To name a few: sea level prediction, DNA

microarray analysis, customer segmentation in mobile phone markets, stock portfolio selection

(25).

2.2.3 P-matrix

The concept of P-matrix was introduced as an extension of the U-matrix (26) to represent,

instead of the local distances, density values in data space measured at the neurons weights are

used as height values. The Pheight of a neuron n, with associated weight vector w(n), is defined

as: Pheight(n) = p(w(n),X), where p(x,X) is an empirical density estimation at point x in the

data space X.

For each neuron n of a SOM, the P-matrix displays the density measured in the data space

at point w(n), where w(n) is the weight vector associated with neuron n of the ESOM or SOM.

In principle, any density estimation, which works for the input data set of the SOM can be used.

A commonly used density estimation is the Pareto Density Estimation (PDE). PDE calculates

the density at some point x as the number of points inside a hypersphere (Pareto sphere) around

x. The radius of the hypersphere is called the Pareto radius. It has been shown that PDE leads

to a meaningful density estimation and it fits nicely into the SOM U-Matrix calculation. A P-

matrix is defined in the same manner as an U-Matrix. The U-matrix reveals the (local) distance

structures, while the P-matrix gives insights into the density structures of a high dimensional

data set. The elements of a P-matrix are called P-heights.

Properties of a P-matrix include:

• The position of the projections of the data on the SOM reflect the topology of the input

space. This is inherited from the underlying SOM algorithm.

• Neurons with large P-heights are situated in dense regions of the data space
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• Neurons with small P-height are “lonesome” in the data space

• Outliers in the input space are found in “funnels”.

• “Ditches” on a P-matrix point to cluster boundaries

• “Plateaus” on a P-matrix point to regions with equal densities one can see, that many,

but not all, properties of the P-matrix are the inverse of an U-matrix display. In contrast

to the U-matrix, which is based on the distance structure of the data space, the P-matrix

is based on the data density structure and this gives a new and complementary insight

into the high dimensional data space (25).

2.2.4 U*-matrix

In dense regions of the data space, the local distances depicted in an U-matrix are presumably

distances measured inside a cluster. In this populated regions of the data space, however, the

distances matter. In this case, the U-matrix heights correspond to cluster boundaries. This leads

to the definition of an U*-matrix which combines the distance based U-matrix and the density

based P-matrix. The U*-matrix is derived from an U-matrix as follows:

• When the data density around a weight vector of a neuron is equal to the average data

density, the heights shown in an U*-matrix should be the same as in the corresponding

U-matrix.

• When the data density around a weight vector of a neuron is big, local distances are

primarily distances inside a cluster. In this case the U*-matrix heights should be low.

• When the data density around a weight vector of a neuron is lower than average, local

distances are primarily distances at a border of a cluster. In this case the U*-matrix

heights should be higher than the corresponding U-height. This leads to the following

formula: let U-height(n) denote the U-height of a neuron n, mean(P) denote the mean of

all P-heights, min(P) the minimum of all P-heights, then the U*-height of an U-Matrix

for neuron n, the U*-height(n), is calculated as:

U ∗−height(n) =U −height(n)∗ScaleFactor(n) (2.7)
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with

ScaleFactor(n) =
(Pheigt(n)∗mean(P)

mean(P)∗max(P)
+1 (2.8)

From the previous definition it follows that:

• P−height(n) = mean(P−heights) =⇒U ∗−height(n) =U −height(n)

• P−height(n)< mean(P−heights) =⇒U ∗−height(n)>U −height(n)(intercluster)

• P−height(n)> mean(P−heights) =⇒U ∗−height(n)<U −height(n)(intracluster)

• P−height(n) = max(P−heights) =⇒U ∗−height(n) = 0(intracluster)1

2.2.5 Batch-SOM

The Batch-SOM algorithm is a variant of SOM the that, unlike basic SOM, updates the weight

vectors only at the end of a learning iteration (i.e. after the complete training set has been

imputed). It does so using the equation:

wk(t f ) =

t f

∑
t=t0

hck(t)x(t)

t f

∑
t=t0

hck(t)

(2.9)

where Wk(t0) is the neuron weight vector calculated at the end of the previous stage. The

neighborhood function remains as presented in Eq. 2.2. The learning-rate factor, the coefficient

α(t) does not exist in the Batch method and t0 and t f mean, respectively, the beginning and end

of the current training stage. The winner neuron will be found with the following equations:

dk(t) = ∥x(t)−Wk(t0)∥2 (2.10)

dc(t) = min
k

dk(t) (2.11)

Thus Batch-SOM algorithm can be summarized as follows:

1for a discussion of the ScaleFactor see Appendix 1 in (25)

16



2.3 Variants of the Standard SOM Algorithm

1. Find the BMU for an input vector x(t), using the Eq. 2.10 and 2.11 and accumulate

numerator and denominator of Eq. 2.9 for all neurons.

2. Update neuron weights with the Eq. 2.9.

3. Repeat from step 1 until some convergence criterion is met, with a narrowing neighbor-

hood function.

In large problems, the Batch algorithm has the advantage to be an order of magnitude faster

that the Sequential SOM. A particular difference between both methods is that the weights

are not updated immediately and there is no dependency on the order that input vectors are

presented to the network. This also eliminates the concern that the last input vectors presented

influence the final results (22). However, several researchers clearly state that on-line training

is faster that batch training, especially in pattern recognition problems with large training sets.

Some researchers have noticed the superiority of on-line training for redundant data too (26).

2.3 Variants of the Standard SOM Algorithm

2.3.1 Emergent SOM

The Emergent SOM (ESOM) is a variant of the basic SOM that also takes a set of high di-

mensional data points and maps them onto a low dimensional grid, called map. This grid is

less restrictive than in the basic algorithm and consists of an almost arbitrarily large number of

prototypes, typically in the thousands. An ESOM thus differs from a traditional SOM in that a

very large number of neurons (at least a few thousands) are used.

In rectangular grids, the number of immediate neighbors of a neuron is 4, while in hexago-

nal grids there are 6 immediate neighbors. Nevertheless, at the borders of the grid, the number

of immediate neighbors is less as shown in Fig. 2.1.

In these map spaces, border effects occur, increasing the probability of topology errors. To

avoid such border effects, grids can be embedded in a finite but boundless space such as, e.g., a

sphere or a toroid. In a toroid, the top row is connected to the bottom row and the left column

to the right column within the lattice. But, the concept of border less maps (e.g. toroid maps

(27) to avoid border effects is rarely used. Emergent phenomena involve, by definition, a large

number of items, where large means at least a few thousands. This is why large SOMs called

ESOM were defined to emphasize the distinction.

17



2. BACKGROUND

Figure 2.1: Rectangular grid (left) and hexagonal grid (right)

The 2-D grids can be square or rectangular. If the number of rows and columns is equal,

the map is called square, otherwise rectangular. The ratio of rows to columns is proposed to

be chosen according to the ratio of the first and second eigenvalues of the covariance matrix.

An experimental analysis of topology errors showed, however, that it is convenient to chose

the ratio of rows and columns to be different from unity even when no dominant direction of

variance exists. In (28), the authors recommend the following ESOM architecture: bound-

less toroid grids with at least 4,000 neurons and a ratio of rows and columns different from

unity. This is reported to avoid border effects, topology errors (the topology preservation of

the SOM projection is of little use when using small maps), and enable an intuitive undistorted

visualization.

When using supervised neural nets, e.g. Multi Layer Perceptrons, a common concern is the

model size. Too small neural nets have low accuracy, while too large nets are prone to over-

fitting. However, this is not the case with ESOM. Using larger maps does not really increase

the degrees of freedom in the same sense, because the neurons are restricted by the topology

preservation of the map. Using large maps should rather be viewed as increasing the resolution

of the projection from the data space onto the map (28).

2.3.2 Growing SOM

The Growing Self Organizing Map (GSOM) model is an architecturally dynamic variant of

the SOM and was developed to solve some of its weaknesses, which included the problems

of identifying the correct dimensions (height and width) of the rectangular map. The GSOM

preserves a rectangular grid, which keeps representation straightforward. The difference with

an SOM is that the number of rows and columns of the map grid is a variable whose optimal

value is to be estimated.
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Figure 2.2: Growing-SOM and New nodes in GSOM.

Growing (or incremental) models have no predefined structure. At first, this makes them

more complicated than networks with static structure, whose topology must be chosen a priori

and does not change during parameter adaptation. For growing networks, however, suitable

node insertion strategies have to be defined, as well as criteria to stop the growth.

GSOM starts with a minimal number of nodes (usually 4) and grows only from the bound-

ary of the network to adapt the data set. The new nodes are grown only from the boundary of

he network as illustrated in Fig. 2.3.

The size of a GSOM is controlled by a parameter called growth threshold(GT), which is

defined as:

GT =−D∗ ln(SF), (2.12)

where D is a dimensionality of the data an SF is a user-defined spread factor, a term unique to

the GSOM that takes values between 0 and 1, being 0 for minimum growth and 1 the maximum

growth.

The GSOM algorithm can summarized in the following steps:

1. Initialize the weight vectors of the starting nodes with random numbers closer to 0.5.

2. Calculate the Growth Threshold (GT) of the inputs with Eq. 2.12. The SF determines

the level of spread required by the map. A higher SF value will give a wider spread and

more detailed clusters while a lower SF gives more summarized clusters.

3. Present one of the inputs to the network.

4. Find the winner node q from the current nodes using the following expression:

q = argmin
i
∥x−wi∥, (2.13)
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where ∥x−wi∥ is the distance between the input x and the weight vector of node i, wi

measured in the D dimensional space.

5. Calculate the Error = ∥x−wq∥

6. If Error > GT and q is a boundary node, grow new nodes from q such that its neighbor-

hood is completely filled. An example can be found in Fig. 2.3.

7. Else perform a weight adaptation to the winner and its neighbors similar to that of the

standard SOM.

8. Repeat steps 3-7 until all the data items have been imputed to the network and the speci-

fied number of algorithm iterations have elapsed (29).

At inception, GSOM was mostly applied to small dimensional data sets but, recently, it has

also been evaluated on very high-dimensional data (29).

2.3.3 Hierarchical SOM

Many methods based in SOM have attempted to expand its capabilities beyond the provision of

a single data mapping. They include Multi-Layer SOMs, Multiresolution-SOMs, Multi-stage

SOMs, Fusion SOMs and Tree-SOMs. In one way or another, all this techniques remit to the

concept of hierarchical clustering.

A Hierarchical SOM (HSOM) is a method that includes several layers of SOMs and where

the output of each one is used to feed another. That is to say, when a data point is present at the

first level of the hierarchy, it can be present at second level giving the index and coordinates of

its BMU, the QE and all parameters of activation for the first level. The important issue, is that

the output of first level is used to train the second level.

Many configurations are possible for a HSOM. They may vary in the number of levels

used, in the way the connections are established and even in the information sent through each

connection (30).

There are two main reasons that may motivate using a HSOM instead of a standard SOM:

• A HSOM can require less computational effort than a standard SOM to achieve certain

goals. This can be made in two ways:
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1. Reducing the dimensionality of the inputs to each individual SOM using several

SOMs, each using a subset of the components of each input vector.

2. Reducing the number of neurons in each SOM, given the reduced the number of

variables imputed. This way, the distance functions used for training the different

SOMs will be simpler and faster to compute.

• HSOMs are often used in application fields where a structured decomposition in smaller

problems is convenient. That is, when hierarchical cluster structure may be expected in

the data, which is a commonplace situation. An HSOM can therefore be better suited to

model a problem that has, by its own nature, some kind of hierarchical structure (30).

2.3.4 Neural Gas

Neural gas (NG) is an artificial neural network inspired by the SOM (31). It is a simple algo-

rithm that combines vector quantization with soft competition between the units. It was coined

“neural gas” because of the dynamics of the feature vectors during the adaptation process,

distribute like a gas in the data space (32).

The NG algorithm aims to find optimal data representations based on feature vectors. Given

a set of data vectors x from the input space and a finite number of feature vectors or prototypes

mk,k = 1, ...,N, in each training step the Euclidean distances between a randomly selected input

vector xi from the training set x and all prototypes mk are calculated as

dik = ∥xi −mk∥2 = (xi −mk)
T ∗ (xi −mk) (2.14)

The vector of these distances is d. Each prototype k is assigned a rank rk(d) = 0, ...,K − 1,

where a rank of 0 indicates the closest and a rank of K-1 the most distant prototype to x. Then,

at time t+1 the mk is adapted according to the following learning equation:

mt+1
k = mt

k + ε ∗hρ [rk(d)]∗ (xi −mt
k), (2.15)

where

hρ(r) = exp(−r/ρ) (2.16)

is a monotonically decreasing function of the ranking that adapts all the prototypes, with a

factor exponentially decreasing with their rank. The scope of this influence is determined by
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the neighborhood range ρ . The learning process is also affected by a global learning rate ε

(33). The values of ρ and ε decrease exponentially from an initial positive value (ρ(0), ε(0))

to a smaller final positive value (ρ(T), ε(T)) according to

ρ(t) = ρ(0)∗ [ρ(T )/ρ(0)](t/T ) (2.17)

and

ε(t) = ε(0)∗ [ε(T )/ε(0)](t/T ) (2.18)

After sufficient adaptation steps, the feature vectors cover the data space with minimum

representation error. This method is applied when data compression or vector quantization is

an issue, for example in speech recognition and image processing (32).

2.3.5 Growing Hierarchical SOM

As previously mentioned, the standard SOM learning algorithm suffers from some structural

limitations. The first, as stated in the introduction, is that the standard model provides a single

flat cluster partition. This may not suffice to correctly characterize real data in many practical

situations, as these data are expected to show grouping structure at different levels of detail

that can only be correctly described through hierarchically organized partitions. This led, quite

early on, to the definition of the hierarchical SOM (34). For a review on hierarchical models

for clustering and visualization, see, for instance, (35).

A second limitation of the standard model is its fixed, static architecture, which must be

defined prior to data observation. In order to find adaptive SOM architectures that are suited

to the specificity of the data, thus avoiding tedious processes of trial-and-error, several authors

have designed grid-growing algorithms, usually known as GSOM, which automatically define

the adequate size of map in the form of an appropriate height-to-width ratio (36, 37).

To overcome these limitations of the basic standard model, Rauber and colleagues (38) pro-

posed a simultaneously growing and hierarchical artificial neural network architecture, called

GHSOM. It uses a hierarchical structure of multiple layers, where each layer consists of a

number of independent SOMs.

Starting from a top-level map, each individual map, similar to the growing grid SOM

model, grows in size to represent a subset of data at a specific level of detail. After a certain im-

provement regarding the granularity of data representation is reached, the units are individually

analyzed for data diversity. Those units representing too-diverse input data are then expanded
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Figure 2.3: Illustration of the architecture of the GHSOM model (Adapted from (38)).

to form a new small growing SOM at a subsequent layer in the hierarchy, where the subset

of data is represented in more detail. These new maps again grow in size until a specified

improvement of the quality of data representation is reached. Units representing an already

rather homogeneous enough set of data, will not require any further expansion into subsequent

layers. The resulting GHSOM should therefore reflect, by its very architecture, the hierarchical

structure inherent in the data, allocating more space for the representation of inhomogeneous

areas in the input space. The topology of GHSOM is illustrated in Fig. 2.3.

In GHSOM, each unit determines its activation according to the Euclidean distance be-

tween its weight vector and the input pattern. The unit with the smallest distance is denoted as

the winner, and several units in the vicinity of the winner are adapted.

This training process is repeated for a fixed number N of training iterations. After N train-

ing iterations, the unit with the largest deviation between its weight vector and the input patterns

represented by this very unit is selected as the error unit e. Then, either a new row or column

of units is interpolated between e and its most dissimilar neighbor d. The weight vectors of

these new units are initialized as the average of their neighbors.

Although the training process is very similar to the GSOM model, it uses a decreasing

learning rate and a decreasing neighborhood range, instead of a fixed value. After growing the

map, calculate the mean mqe of all units (MQE) in the current map. A map grows until its

MQE is reduced to a predefined fraction (the growing-stopping criterion) of the mqe of the unit
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in the preceding layer of the hierarchy. In other words, the MQE of each map in the current

layer should be smaller than a certain fraction value (τ1) of the unit in the preceding layer. The

lower the value of the quantization error, the better the map has been trained

MQEm < τ1 ∗mqeu,

where m denotes the units in the current map and u the mapped unit in the preceding layer.

After that, the next step is determine the depth of each topic in the current layer according

to a predefined fraction (τ2) of the mqe of the parent unit of the precedent layer and such the

mqe of each unit in the current layer should be smaller than a certain fractional value of the

unit in layer 0.

MQEi < τ2 ∗mqe0,

where i denotes the unit in the current layer. The stopping criterion of any unit in the hierarchy

is always compared with layer 0. Details of this procedure can be found in (24).

With this, the GHSOM algorithm can be summarized as:

Start with one unit to expand initialized to the average of the input vectors, level 0. Then

loop until no more units to expand and:

1. For each unit to expand create new 2×2 SOM.

2. Train SOM on data assigned to parent unit and:

(a) Insert new row or column? If yes: insert new row/column and go to step 2.

(b) Hierarchically expand units of map? If yes: add units to expand list.

where insert row/column if MQEm > τ1mqe0, where mqe0 is the MQE of a map unit m0

representing the mean of all instances covered by the parent unit:

m0 = ∑
i

Xi/n

and expand unit if MQEi > τ2mqe∗0, where mqe∗0 is the mean quantization error of all data set

which generated the new map either the parent unit or all input data set as the beginning (in

contrast to mqe0, which is the mean quantization error of the map unit)(? ). Generally τ1,τ2

are chosen such that 1 > τ1 >> τ2 > 0.
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2.3.5.1 U-matrix for the GHSOM

The U-Matrix is built from the SOM (and generalized to GHSOM) map prototypes as follows:

Let n be a neuron on the map; NN(n) be the set of immediate neighbors of n on the map; and wn

the prototype or weight vector associated with neuron n. Then Uheight(n) = ∑
m∈NN(n)

d(wn−wm),

where d(·) is the Euclidean distance used in the SOM algorithm to construct the map. The U-

Matrix is a display of Uheight on top of the grid positions of the neurons on the map, frequently in

the form of a grey-level color-coded picture. Among its properties, we find that: the prototypes

of neurons with large Uheight values are very distant from other prototypes in the data space

(high mapping distortion) and, correspondingly, the prototypes of neurons with small Uheight

values are closely surrounded by others in the data space (low mapping distortion); projections

of the input data points are typically found in areas of low Uheight values; high-valued Uheight

areas on a U-Matrix are an indication of cluster boundaries, while low-valued Uheight areas on

a U-Matrix are an indication of cluster center locations.

In the experiments reported on the following chapters, the U-matrix values are used as

approximations of the mapping distortions generated by GHSOM at each stage of the hierarchy.
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Chapter 3

Cartogram Representation of
Mapping Distortion in SOM-Based
Methods

3.1 Nonlinear Mapping Distortion

A possible generic definition of distortion in NLDR mapping could be the departure from

natural, normal or original shape or size due to the application of a NLDR technique over

a set of elements from a multidimensional space in the process of representing it in a low-

dimensional visualization space.

Mapping distortion can be quantified and is popular criterion for assessing the quality of

a data mapping process. NLDR techniques usually attempt to minimize the unavoidable dis-

tortion they introduce in the mapping of the high-dimensional data from the observed space

onto lower-dimensional spaces. For a more faithful interpretation of models, a large number of

distortion measures have been proposed and adapted to visualization techniques for different

NLDR methods.

While reducing dimensionality, NLDR methods generate heterogeneous levels of local

mapping distortion that potentially lead to a loss of information that, in one way or another, we

aim to palliate in the visualization space.

Stretching or compressing a space affects the preservation of pairwise distances between

points. If dealing with continuous techniques, we can apply, for instance Shepard diagrams,

which plot pairwise distances of points as coordinates; for example, if x is the distance in
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the observed space and y is the correspondent distance in the projected space, the output of

this diagram that represents x against y should be easy to interpret, as points in the diagonal

represent those whose distance remained the same after projection.

Other less obvious measures proposed in (39) intend to estimate distortion focusing on the

preservation of the neighborhood projection of each data point. Both measures could be an

appropriate tool to compare different DR methods (or different projections performed using

the same method), but they do not provide visualization or locally evaluate distortion.

An interesting contribution in (18) identifies different types of distortion, classified as geo-

metrical and topological (including: manifold compression, stretching, gluing and tearing) and

proposes the use of Voronoi diagrams and color scales to visualize manifold-based measures

such as point-based, segment-based and triangle-based measures.

As stated above, the nonlinearity of DR methods such as SOM entails the existence of local

distortion in the mapping of the data from the observed space onto the visualization space. This

fact limits the direct interpretation of the visual data representation and there have been efforts

to provide visual solutions to this limitation by defining and visualizing DR quality measures

that, embedded in the method, can be associated to each map.

In SOM methods, which concern most of the thesis, a proposed distortion measure for a

discrete data set can be written as:

Ed =
n

∑
i=1

m

∑
j=1

hbi j∥xi −m j∥2 (3.1)

where n is the number of training samples, and m is the number of map units. The neighborhood

function hbi j is centered at unit b, which is the BMU of vector xi, a sample vector evaluated for

unit j and hbi = argmin j∥xi −m j∥2 (40).

This equation can be used for measuring the quality of a given SOM. One of the major

advantages is that the error can be decomposed into two parts:

Ed =
n

∑
i=1

Hbi∥xi −nbi∥2 +
m

∑
i=1

Ni

m

∑
j=1

hi j∥ni −m j∥2 (3.2)

where Hbi = ∑m
j=1 hbi j

The first term, measures the quantization quality as the variance of the data vectors within

each Voronoi set but, if the neighborhood function values for each map unit are normalized to

unity such that Hbi = 1, ∀i, then it corresponds to the classical vector quantization error. In this
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3.2 Cartograms

case, the equation, is slightly different from the measure typically used to calculate quantization

quality of a SOM. Normally, to calculate the average quantization error the Euclidean distance

is used, that is to say, ∑n
i=1 ∥xi −bi∥ but, to calculate the distance between vectors many others

can and are used too, such as the Minkowski, Hausdorff distances, etc. (41).

The second term measures the topological quality of the SOM. More specifically, it is a

measure of closeness of prototype vectors on the map grid and it measures the goodness of the

map topology. Both errors grow in inverse form, that is, if we want to decrease one it, we are

bound to increase the other.

A widespread method to measure the distortion in SOM and proposed in (24) is the Unified

distance Matrix or U-matrix. There are others as well such as P-matrix, the inverted P-matrix

and the U*-matrix which allow the visualization in the latent space of the pairwise distances

between corresponding points in the original data space. The values of these distances can

be visually and intuitively represented with a color map together with the SOM topographic

grid. Nevertheless, this representation os limited by issues of color contrast perception and

overlapping with the own data projection representation.

The Cartogram representation described in the next sections is meant to at least partially

overcome this limitation.

3.2 Cartograms

Cartograms are cartography maps in which specific geographical areas, delimited by artificial

borders, are locally distorted by stretching or compression in proportion to locally-varying un-

derlying quantities of interest, such as, for instance population density. In two dimensions, this

distortion takes the form of a continuous transformation from an original plane to a transformed

one, in which a vector x = (x1,x2) belonging to the former is mapped onto the latter according

to x → T (x). The Jacobian of the transformation is proportional to a distorting variable d:

∂T x1

∂x1

∂T x2

∂x2
∝ d (3.3)

A computationally tractable approach to this map distortion process requires the discretiza-

tion of the plane to conform a regular grid of points. The distorting variable is assumed to take

a uniform value over each of the plane fragments defined by such grid. To avoid the potential

loss of connectivity between the plane fragments, a method for cartogram building based on the

physics principle of linear diffusion processes was recently proposed in (5). In this method, the
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3. CARTOGRAM REPRESENTATION OF MAPPING DISTORTION IN
SOM-BASED METHODS

distorting variable d is let to diffuse over the map over time so that the final result, for t → ∞, is

a map of uniform distortion in which the original locations are displaced while preserving the

integrity of the existing borders.

As part of this diffusion, the current density C follows the gradient of the distortion ∇d and

can be written as product of the current flow velocity v and the distortion itself, so that C = -∇d

= v(x, t)d(x, t). The diffusion equation takes the form

∇2d − ∂d
∂ t

= 0 (3.4)

which has to be solved for distortion d(x, t), assuming that the initial condition corresponds

to each map fragment being assigned its value of the distorting variable. Thus, the distortion

diffusion velocity can be calculated as:

v(x, t) =−∇d (3.5)

The calculation of the cartogram involves solving Eq. 3.4 for d(x,t) starting from the initial

condition in which d is equal to the density of the region of interest and then calculating the

corresponding velocity field from Eq. 3.5. The cumulative displacement x(t) of any point on

the map at time t can be calculated by integrating the velocity field:

∆x =
∫ t

0
v(x, t ′)dt ′ (3.6)

In the limit t → ∞ the set of such displacements for all points on the original map defines

the cartogram (5). Details of this procedure as applied to other NLDR methods can be found

in (42).

3.2.1 Cartogram representation for NLDR methods

In this section, we describe and assess cartogram representation as a tool for increasing the

interpretability and usability of MVD visualization. In particular, we describe our proposal

and preliminary assessment of a cartography-inspired method of cartogram representation of

mapping distortion that should help to intuitively interpret the data visualizations generated by

NLDR methods.

For techniques such as the SOM and the GHSOM, this distortion can be quantified on the

map using a U −matrix, P−matrix, or U ∗−matrix. This topic is the main technical goal of
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3.2 Cartograms

the current master thesis. The visualization of the map of the NLDR manifold learning methods

that we use is transformed into a cartogram taking into account these two points:

1. The square (or hexagonal) regular grid formed by the lattice of latent points uk in the

SOM-based maps can be used to define the map internal boundaries.

2. It is assumed that the level of distortion in the space beyond this square is uniform and

equal to the mean distortion over the complete map, that is 1/K ∑K
k=1 J(uk), where J is

the Jacobian of the transformation of the considered method. Likewise, we assume that

the level of distortion within each of the squares (hexagons) associated to uk is itself

uniform.

The cartograms reveal the internal relationships of the data and an advantage of this cartogram-

based method is its portability, as it should be easy to implement for different representation

architectures and with alternative NLDR visualization techniques for which distortion can be

quantified. In the next chapters we reports the evaluation experiments carried out with this

method.

3.2.2 Cartograms for SOM

As previously mentioned, a SOM consists of a layer (map) of units (or neurons) arranged in

a low dimensional regular grid (often 2D). Each of these neurons k (k = 1, . . . ,K) is assigned

a d-dimensional reference vector yk. Summarily, the algorithm proceeds by finding, for each

input data point x j ( j = 1, ...,N) the best matching unit (BMU) yk j of index k j computed as

k j = argminkd(x j,yk). The distance d(.,.) is often chosen to be the Euclidean one L2(x j,yk) =

∥x j − yk j∥. The locations of the reference vectors are iteratively updated to fit data points

according an evolving learning rule. Details were explained in the previous chapter.

In the previous chapter, we also described some measures that quantify, in an approximate

manner, the distortion introduced by the SOM mapping. They include the U-matrix, the P-

matrix and the U*-matrix. These measures of distortion of the basic SOM algorithm can be

visualized using cartograms (41).

The visualization of the U-matrix on the SOM map may inform us of the existence of

data clusters and the sparsely populated spaces that separate them, as they undergo different

levels of distortion: low in dense areas, while high in empty ones. This direct visualization is

not always intuitive. Instead, the cartogram-based representation of the SOM map retains its
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simplicity while visually factoring out the nonlinear distortion as measured by the U-matrix

and U*-matrix. In the following experiments, the SOM maps are transformed into a cartogram

by using the rectangular grid, defined by the squares centered on the nodes, and assuming that

the level of distortion in the space beyond this rectangle is uniform and equal to the mean

distortion over the complete map.

The P-matrix displays the density measured in the data space at prototype or weight vector

w(n) and its inverse can be used for cartogram visualization. This inverted P-matrix displays

empty data space areas associated to neurons with large Pheights, whereas neurons with small

Pheights are allocated in dense regions of the data space. The idea is the P-matrix can be inter-

preted as the U-matrix, that is to say, the nearest vectors have less density and the farthest more

density. The algorithm to invert the P-matrix is:

1. Calculate P-matrix.

2. Search the minimun value of P-matrix.

3. Search the maximun value of P-matrix.

4. Calculate the inverted P-matrix as fallow.

• For each row of P-matrix,

1 For each column of P-matrix:

inverted P-matrix(row,column)=absolute-value(P-matrix(row,column) - max-

imun value of P-matrix).

2 Inverted P-matrix(row,column) = minimum value of P-matrix + inverted P-

matrix(row,column). (at this point, the minimum value of the inverted P-

matrix is where the minimum of P-matrix was).

The U*-matrix combines the distance based U-Matrix and the density based P-Matrix. The

visualization of the U*-matrix on the SOM map may inform us of the existence of data clusters

more concentrated than the U-matrix and it exhibits more structure of the data set than the

U-Matrix. Again, it can be used as a distortion measure for cartogram representation.
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Chapter 4

Experiments with Synthetic Data

The cartogram-based representation method described in the previous chapter is meant to

merge the powerful modeling capabilities of self-organizing NLDR methods and the explicit

measurement of the local nonlinear distortion they generate. In doing so, it is aimed to provide

an intuitive and compact visualization tool for the exploration of MVD data.

In the case of the SOM and GHSOM, used here to illustrate the cartogram method, the

direct visualization of the distortion in the form of the U-matrix, mainly for GHSOM, and

the P-matrix, the inverted P-matrix and the U*-matrix for SOM, can provide insight into the

possible existence of densely populated data areas (or data clusters) and the sparsely populated

areas that separate them.

This is the result of model prototypes being more densely located in densely data-populated

areas (thus associated with low values of distortion) and more sparsely located in emptier

spaces (thus associated with comparatively high values of distortion), reflecting, overall, het-

erogeneous levels of distortion as a result of the nonlinear mapping.

The cartogram-based representation of the SOM and GHSOM visualization space in which

the observed data are mapped is expected to provide visual insight into the cluster structure of

the data. The following and somehow detailed experiments, in which both artificial (in this

chapter) and real (in the next one) data sets were analyzed, have the objective of assessing

these expectations and, as a result, provide the data analyst with some general guidelines about

the interpretation of the cartogram-based visual representation.

More in detail, the cartogram visual representation of U-matrix, P-matrix, Inverted P-

matrix and U*-matrix using using SOM was first investigated using artificial data sets of simple
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4. EXPERIMENTS WITH SYNTHETIC DATA

statistical properties, so that the impact of their varying characteristics could be adequately in-

terpreted. The first set of experiments thus involves data and model architectures of varying

characteristics. Variations were of three main types:

• Varying number of input data clusters.

• Varying model architectures, concerning lattice size and relative dimensions, and ge-

ometry of the inter-neuron connections.

• Varying input data dimensions, from low-dimensional observed data to moderately

high-dimensional input data.

Initialization of the method

Several parameters must be defined for model training, including the map size (number of map

units), the neighborhood function, the radius of the neighborhood, and the learning coefficient.

For all of them, there are loose rules that, at least, provide the analyst with rough adequate

estimations.

• The number m of neurons conforming the map can be approximated as:

m = 5×
√

n

where n is the number of input vectors. An alternative criterion proposed in (43) is to

calculate m as approximately the 10% of the number of input vectors.

• The map shape must be rectangular approximately according to the ratio between the

two biggest eigenvalues of the covariance matrix of input vectors (6) defined as:

ψ ≈ 1
N

N

∑
t=1

(x(t)− x)(x(t)− x)T (4.1)

where

ψi, j =


ψ1,1 ψ1,2 ... ψ1, j
ψ2,1 ψ2,2 ... ψ2, j
... ... ...

ψi,1 ψi,2 ... ψi, j


and x(t) is an input vector; x is the mean of the input vectors; i in the number of input

vectors and j their dimension.
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• A standard Gaussian neighborhood function is chosen.

• The neighborhood radius as well as learning ratio are monotonically decreasing functions

over time (training iterations). The starting radius depends on the map size but the final

radius is always 1.

For the following experiments further pre-processing entailed:

• That data sets underwent normalization and scaling.

• The weight vectors were linearly initialized, a procedure that is computationally more

complex than random initialization but consistent for different runs of the algorithm.

Eigendecomposition of the autocorrelation matrix of input vectors is performed, and the

2 eigenvectors with largest eigenvalues are used to span a 2-dimensional subspace and

initialize the model vectors.

• Models were left to converge in the training process (with training stopping according

to a minimum quantization error criterion). Some experiments report results in which

the models were still undertrained, for illustrative purposes. We also explored a default

provided by expression:

map units number
input vectors number

(4.2)

multiplying this ratio by 40 for the first phase training, by 160 for the second and then

adding both (44). If the epochs number is low the model can underfit the data, whereas

it can overfit if it is too big. After preliminary experimentation, the value taken by the

learning parameter was 0.5.

Computational complexity

According the algorithm described in Sec. 2.2.1, there are m×n×d operations (additions, sub-

tractions, multiplications, divisions or exponents) in each epoch, where m are the map units, n

the input vectors and d the dimension of all vectors. Then if n ≫ m the computational com-

plexity of one epoch of sequential-SOM is about θ(nmd). We chose the sequential algorithm

because it spends less memory than the batch algorithm despite the fact that the computational

complexity of the latter is about half of the former, but the speed of convergence to the final

solution is often less effective for the batch version.

35



4. EXPERIMENTS WITH SYNTHETIC DATA

4.1 Varying the Number of Data Clusters

These experiments involve the analysis of artificial data. A total of 1,500, 1,800 and 1,600 3-D

points were, in turn, randomly drawn from 3, 6 and 8 identical spherical Gaussian distributions,

respectively including 500, 300, and 200 points each, all with unit variance. We choose 3-D

data for this batch of experiments in order to explicitly allow the direct visualization of the

reference (or weight) vectors, also known as prototypes in the observed data space. In that

way, we will better understand the effects of the nonlinear dimensionality reduction operated

by SOM. At the end we can see the quality measure for each model and the order of complexity.

The SOM was implemented in MAT LABr, using the publicly available SOM-Toolbox1

and Computer software for making cartograms (Cart)2 using the technique described in the

paper (45). As previously stated , data were pre-processed with both normalization and scaling.

Given the nature of the data, square grids of 20×20 size were used.

In every case, the reported visualization maps include the standard U-matrix map as well

as the P-matrix, the inverted P-matrix and the U*-matrix, together with the direct visualization

of the original data visualization overlapped by the lattice of prototypes.

4.1.1 Experiment with three clusters

A total of 1,500 3-D points were randomly drawn from 3 identical spherical Gaussians distri-

butions (500 points each), with centers sitting at the vertices of a triangle. They were fitted

with a sequential SOM algorithm. A preliminary test involved underfitting the data by setting

only a small number of iterations. The result is shown in Fig. 4.1. The rationale for this exper-

iment was the exploration of the effect of model undertraining on the mapping distortion and,

therefore, on its cartogram representation.

These results must be compared to those of the same model, but this time trained until

convergence. They are displayed in Fig. 4.2.

Discussion

The fact that input data are 3D allows us to visualize directly not only the data themselves, but

also the model weight vectors or prototypes. This helps us to investigate the fitting behavior

of the model. The top-right corner plots of Fig. 4.1 and 4.2 display the data points as crosses

1www.cis.hut.fi/somtoolbox
2www-personal.umich.edu/ mejn/cart/
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4.1 Varying the Number of Data Clusters

and the prototypes as black dots; the latter are linked by their square-shaped connections in the

visualization space.

It is clear from the comparison of both plots that, in the case of the undertrained SOM, the

regular square grid is far less distorted than for the fully trained SOM. It is also apparent that

many more SOM prototypes are occupying the empty inter-cluster space in the undertrained

model than in the fully trained one. This could be expected, given the the training process is

meant lo “lead” prototypes towards dense data areas (and many prototypes are “squashed” in

data-dense regions), which, in the case of this experiment, are obviously located.

How is all this reflected in the distortion measures? Again, the comparison between the

color-coded U-matrix maps in Fig. 4.1 and 4.2 (top row-left plots, labeled as “distance ma-

trix”) is quite telling. In the undertrained model, only the areas immediately surrounding the

clusters are clearly distorted, but this distortion has not yet reached the central data-empty

areas. Instead, distortion has reached most of the empty areas in the fully trained model.

The cartogram representations of these U-matrices (2nd row-left plots in 4.1 and 4.2) add

further clarity to the visualization of the distortion. While the undertrained model does seem

to be similarly distorted in the data-occupied areas and in the empty central space, the fully

trained model shows a clearly different distortion in data-dense and empty areas.

Note also that the implicit encoding of the distortion in the form of grid stretching and

compression yields a more transparent visual representation that allows us to clearly overlay the

data projections themselves (as solid areas of different gray hues). The SOM prototypes (and

thus SOM map areas) to which data points have been assigned are clearly isolated reflecting

the three-cluster structure of the data.

The message conveyed by the rest of distortion measures is consistent with all the previous

discussion. The P-matrix (2nd row-right plot in 4.1) is not quite capturing the data densities

in the undertrained model. This effect obviously has a negative impact on the corresponding

inverted P-matrix and U*-matrix cartogram representations (3rd plots in 4.1). Instead, the P-

matrix (2nd row-right plot in 4.2) neatly captures the higher data densities right in the cluster

centers and the cartogram provides an expressive visualization of this result. This has a positive

impact on the corresponding inverted P-matrix and U*-matrix cartogram representations (3rd

plots in 4.2), which are very similar to the U-matrix cartogram.
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Figure 4.1: Visualization maps for the undertrained SOM model. Top row: left) Color-coded
distance-matrix, indicating the level of mapping distortion for each of the SOM map units in the
square 20×20 lattice (in a gray scale, dark gray indicates low distortion and, therefore, concentra-
tion of input data points, while light gray indicates high distortion and, correspondingly, low con-
centration of data points or borders between clusters) in which three isolated and equally-spaced
clusters (of 500 3-D data points); right) SOM grid of prototypes (black dots) overlaid to the data
points (cross symbols). Middle row: left) cartogram of the U-matrix with the three data clusters
codified in different shadows of grey; right) cartogram of the P-matrix. Bottom row: left) cartogram
of the inverted P-matrix; right) cartogram of the U*-matrix.

38



4.1 Varying the Number of Data Clusters

The same model, fully trained
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Figure 4.2: Visualization maps for the fully trained SOM model, using the same data set consisting
of three clusters. Display as in Fig. 4.1.
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4.1.2 Experiment with six clusters

For this second experiment, a total of 1,800 3-D points were randomly drawn from 6 identical

spherical Gaussian distributions (300 points each) and again trained with the sequential-SOM

algorithm. The rationale for increasing the number of clusters is finding out whether this in-

crease has an impact on the calculation of the mapping distortion and whether this distortion is

still clearly captured by its cartogram representation.

No undertraining experiment was performed this time. Thus, the reported results corre-

spond to a SOM fully trained to convergence. They are displayed in Fig. 4.3.

Discussion

The grid of prototypes (top row-right plot) is quite distorted in the empty inter-cluster spaces,

while quite densely concentrated in the dense data clusters themselves.

This varying local levels of distortion are neatly reflected by the U-matrix distortion mea-

sure (top row-left plot), with sharply defined light/dark areas, and also by all the rest of the

distortion measures as described through cartograms (U-matrix, P-matrix, inverted P-matrix

and U*-matrix in the rest of plots in Fig. 4.3).

The separation between clusters is less evident than in Fig. 4.2, because the dimensions

of the grid remain the same while the number of clusters has increased. The borders between

clusters are far more narrow now and, interestingly, they are far better reflected through the

U-matrix cartogram, which isolates clusters more clearly by magnifying the between-cluster

spaces. In comparison, the rest of distortion measures only partially manage to reflect distortion

correctly, mostly due to the failure of the P-matrix to estimate relative data densities.
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Figure 4.3: Visualization maps for a fully trained SOM model, using a six cluster data set. Display
layout as in previous figures.
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4.1.3 Experiment with eight clusters

For the last experiment of this series, a total of 1,600 3-D points were randomly drawn from 8

identical spherical Gaussian distributions (200 points each) and trained with the same sequential-

SOM algorithm as previous experiments.

Again, no undertraining experiment was performed. Thus, the reported results correspond

to a SOM fully trained to convergence. They are displayed in Fig. 4.4.

Discussion

The grid of prototypes (top row-right plot) is once again quite distorted in the empty inter-

cluster spaces, while quite densely concentrated in the dense data clusters themselves. The

abundance of clusters, though, makes the stretching of the grid of prototypes more complex.

The varying local levels of distortion are still reflected by the U-matrix distortion measure

(top row-left plot), although the light/dark areas are less sharply defined this time.

The separation between clusters is again less evident than in Fig. 4.2 and the borders

between clusters are more irregular, indicating that the SOM model has managed to separate

some clusters better than others.

This affects all the distortion measures as described through cartograms (U-matrix, P-

matrix, inverted P-matrix and U*-matrix in the rest of plots in Fig. 4.4). In fact, it could

be concluded that the cartogram representation in standard SOM might perhaps be used with

great caution when many distinct clusters are present in the data set. Alternatively, when many

clusters might be expected, cartograms might better be used with larger maps, using strategies

such as those of the ESOM.
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Figure 4.4: Visualization maps for a fully trained SOM model, using an eight cluster data set.
Display layout as in previous figures.

The results in the Table 4.1 show that, as we increase the number of clusters, the TE in-

creases. The QE, though does not follow a clear trend. The complexity and θ(nmd) is of one

epoch.
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♯ points Dimension Clusters Points/Cluster QE TE Complexity θ(nmd)

1500 3 3 500 0.0172 0.1153 1,800,000 θ(1500×400×3)

1800 3 6 300 0.0178 0.1300 2,160,000 θ(1800×400×3)

1600 3 8 200 0.0119 0.1588 1,920,000 θ(1600×400×3)

Table 4.1: Results for rectangular lattices.

4.2 Varying the Dimension of Input Data

The rationale for the next set of experiments is the investigation of the impact of the observed

data dimensionality on the mapping of the data in terms of the magnitude of the local distortion

and its impact on the cartogram visual representation of this distortion.

Three experiments are considered for 3-D, 10-D and 15-D data sets.

4.2.1 3-D input data

For all the experiments in this section, we set the architecture of the SOM to fixed 20× 20

maps. Therefore, the experiment for 3-D data is exactly the same reported in section 4.1.1 and

the results of the next subsections are to be compared with those reported in Fig. 4.2

4.2.2 10-D input data

The only difference with the previous experiment is the dimensionality of the observed data.

Thus, a total of 1,500 10-D points were randomly drawn from 3 identical spherical Gaussians

distributions (500 points each) and with centers sitting at the vertices of a triangle and trained

with the sequential-SOM algorithm.

Results are displayed in Fig. 4.5. The only difference with previous displays is that the

data and the prototypes defined by SOM to fit them cannot be displayed directly any longer.

Discussion

The gray-coded U-matrix (Fig. 4.5, top row) conveys very similar information to that of the

3-D data reported in Fig. 4.2. The main difference is that the range of values is more extreme,

indicating that the empty areas are more distorted in the higher dimensional space.

This is very explicitly captured by all the cartograms in the rest of plots of Fig. 4.5. The

cartogram of the U-matrix sharply delimits the little-distorted hyper-spherical shapes of the

original clusters while homogeneously showing the high distortion of the inter-cluster spaces.
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The U-matrix reveals itself as the most visually informative distortion measure to use with

cartograms, and somehow making more intuitive, by extension, the inverted P and U* matrices.
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Figure 4.5: Visualization maps for the fully trained SOM model of 10-dimensional data organized
in three clusters. Top row: Colour-coded distance-matrix, indicating the level of mapping distortion
for each of the SOM map units in the square 20×20 lattice. Middle row: left) cartogram of the U-
matrix with the three data clusters codified in different shadows of grey; right) cartogram of the
P-matrix. Bottom row: left) cartogram of the inverted P-matrix; right) cartogram of the U*-matrix.
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♯ Points Dimension Clusters Points/Cluster QE TE Complexity θ(nmd)

1500 3 3 500 0.0172 0.1153 1,800,000 θ(1500×400×3)

1500 10 3 500 0.1044 0.1553 6,000,000 θ(1500×400×10)

1500 15 3 500 0.1720 0.1527 9,000,000 θ(1500×400×15)

Table 4.2: Results for rectangular lattices.

4.2.3 15-D input data

A total of 1,500 15-D points were now randomly drawn from 3 identical spherical Gaussians

distributions (500 points each) and with centers sitting at the vertices of a triangle and trained

with the sequential-SOM algorithm.

Results of the last experiment of this section are displayed in Fig. 4.6.

Discussion

The gray-coded U-matrix (Fig. 4.6, top row) conveys results that are almost identical to those

of the previous experiments.

Again, the different local levels of distortion are very explicitly captured by all the car-

tograms in the rest of plots of Fig. 4.6. Some cautious preliminary conclusion is that, at least

for data sets with well-separated cluster structure, the increase of data dimensionality not only

does not hamper the visual exploration of the cluster structure of the data through cartogram-

based visualization of the mapping distortion, but in fact makes it clearer.

Further research should extend the reported one in two directions: First, data of truly large

dimensionality should also be investigated and, second, more complex data with less obvious

cluster structure should be put to the same tests.

The Table 4.2 summarizes some mapping quality data, showing that, as the number of

variables of the input data (dimension) increases, the QE correspondingly increases, whereas

the TE does not follow a clear increasing trend. The complexity and θ(nmd) is of one epoch.
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Distance matrix

U−matrix  20 x 20 P−matrix  20 x 20

Inverted P−matrix  20 x 20 U*matrix  20 x 20

Figure 4.6: Visualization maps for the fully trained SOM model of 15-dimensional data organized
in three clusters. Display as in the previous figure.
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4.3 Varying the SOM Architecture: Grid Dimensions and Lattice
Type

The rationale for the following set of experiments is finding out what is the impact, if any, of

varying the characteristics of the fixed architecture of the standard SOM model.

The SOM architecture was varied in the experiments according to different characteristics.

All throughout the experiments in this section, square lattices (that is, lattices in which only

vertical and horizontal inter-unit connections -4 per unit- are allowed) will be compared with

hexagonal lattices (in which diagonal inter-unit connections -6 per unit- are allowed); rectan-

gular grids (different number of rows and columns) will be compared to square ones (same

number of rows and columns); and, finally, square grids of different sizes (10× 10, 20× 20,

30×30 and 50×50,) will be compared.

Once again, in these experiments 3 clusters of 1,500 3-D input vectors were used.

4.3.1 Experiments with varying grid dimensions

4.3.1.1 Rectangular 10×20 grid with rectangular lattice

A first experiment was performed using a 10×20 layout for the SOM map, which is the default

one obtained using the formula in Eq. 4. The lattice has rectangular connections, that is, only

horizontal and vertical inter-unit connections.

The map, while small, perfectly reflects the three clusters of the data. Results can be seen

in Fig. 4.7

The same experiment is repeated with an hexagonal lattice, and its results are reported in

Fig. 4.8
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Figure 4.7: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 10×20 grid with rectangular layout. Display as in previous figures.
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4.3.1.2 Rectangular 10×20 grid with hexagonal lattice

Distance matrix
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0.6
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1

Grid and vectors

U−matrix  10 x 20 P−matrix  10 x 20

Inverted P−matrix  10 x 20 U*matrix  10 x 20

Figure 4.8: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 10×20 grid with hexagonal layout. Display as in previous figures.

4.3.1.3 Rectangular 20×10 grid with rectangular lattice

The next two experiments replicate the previous two, but using a symmetrical 20× 10 layout

for the SOM map, which is equally the default obtained using the formula in Eq. 4. The lattice

is rectangular (results can be seen in Fig. 4.9) for the first experiment.
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Figure 4.9: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 20×10 grid with rectangular layout. Display as in previous figures.

4.3.1.4 Rectangular 20×10 grid with hexagonal lattice

Results for the same experiment with hexagonal lattice are shown in Fig. 4.10.
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Figure 4.10: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 20×10 grid with hexagonal layout. Display as in previous figures.

Discussion

The results of the four previous experiments are clear.
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4. EXPERIMENTS WITH SYNTHETIC DATA

• First of all, the four experiments isolate the three clusters perfectly well.

• The exchange of grid dimensions (10× 20 by 20× 10) has no effect whatsoever in the

modeling of the data. In fact, results are almost perfectly symmetrical.

• the use of either a rectangular or an hexagonal lattice has no impact whatsoever in the

results, including the distortion measures.

• All distortion measures neatly separate the highly distorted data-empty between-cluster

areas from the barely distorted data-rich cluster areas. This distortion is intuitively cap-

tured by the cartogram representations of all the distortion measures over the SOM map.

4.3.2 Experiments with varying grid sizes

This subsection considers the effect of increasing grid sizes (that is, increasing number of units

in the visualization map) on the cartogram representation.

We start from an overall similar number of units as the latest experiments, using a square

13×13 grid with rectangular lattice (169 units) and increase it to a size of 50×50 (2,500) grid.

For this latter size, we also try a further experiment to illustrate the effect of under-training and

over-training.

4.3.2.1 Square 13×13 grid with rectangular lattice

The results for the square 13× 13 grid map with rectangular lattice are summarized in Fig.

4.11.

4.3.2.2 Square 13×13 grid with hexagonal lattice

Similarly, the results for the square 13×13 grid map with hexagonal lattice are summarized in

Fig. 4.12.
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U−matrix  13 x 13 P−matrix  13 x 13

Inverted P−matrix  13 x 13 U*matrix  13 x 13

Figure 4.11: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 13×13 square grid with rectangular layout. Display as in previous figures,
but restricted to cartogram representations.
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U−matrix  13 x 13 P−matrix  13 x 13

Inverted P−matrix  13 x 13 U*matrix  13 x 13

Figure 4.12: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 13×13 square grid with hexagonal layout. Display as in previous figure.
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4.3.2.3 Square 30×30 grid with rectangular lattice

The results for the square 30× 30 grid map with rectangular lattice are summarized in Fig.

4.13.

U−matrix  30 x 30 P−matrix  30 x 30

Inverted P−matrix  30 x 30 U*matrix  30 x 30

Figure 4.13: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 30×30 square grid with rectangular layout. Display as in previous figures.

4.3.2.4 Square 30×30 grid with hexagonal lattice

Similarly, the results for the square 30×30 grid map with hexagonal lattice are summarized in

Fig. 4.14.
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U−matrix  30 x 30 P−matrix  30 x 30

Inverted P−matrix  30 x 30 U*matrix  30 x 30

Figure 4.14: Visualization maps for the fully trained SOM model of 3-dimensional data organized
in three clusters, using a 30×30 square grid with hexagonal layout. Display as in previous figures.

4.3.2.5 Square 50×50 grid with rectangular lattice: 10 iterations

Now, once reached the maximum map size under experimentation, namely 50×50, we set to

illustrate the differences between maps trained for a bare 10 iterations, for 17 iterations, as

recommended by default by the SOM toolbox, and then for 110 and 800 iterations.

The results for the square 50×50 grid map with rectangular lattice are summarized in Fig.

4.15.
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U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.15: Visualization maps for a SOM model, trained for only 10 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with rectangular layout. Display as in
previous figures.

4.3.2.6 Square 50×50 grid with hexagonal lattice: 10 iterations

Similarly, the results for the square 50×50 grid map with hexagonal lattice in a SOM trained

for 10 iterations are summarized in Fig. 4.16.

4.3.2.7 Square 50×50 grid with rectangular lattice: 17 iterations

The results for the square 50× 50 grid map with rectangular lattice in a SOM trained for 17

iterations are summarized in Fig. 4.17.
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U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.16: Visualization maps for a SOM model, trained for only 10 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with hexagonal layout. Display as in
previous figures.
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U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.17: Visualization maps for a SOM model, trained for 17 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with rectangular layout. Display as in
previous figures.

4.3.2.8 Square 50×50 grid with hexagonal lattice: 17 iterations

Similarly, the results for the square 50×50 grid map with hexagonal lattice in a SOM trained

for 17 iterations are summarized in Fig. 4.18.

4.3.2.9 Square 50×50 grid with rectangular lattice: 110 iterations

The results for the square 50× 50 grid map with rectangular lattice in a SOM trained for 110

iterations are summarized in Fig. 4.19.
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U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.18: Visualization maps for a SOM model, trained for 17 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with hexagonal layout. Display as in
previous figures.

62



4.3 Varying the SOM Architecture: Grid Dimensions and Lattice Type

U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.19: Visualization maps for a SOM model, trained for 110 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with rectangular layout. Display as in
previous figures.

4.3.2.10 Square 50×50 grid with hexagonal lattice: 110 iterations

Similarly, the results for the square 50×50 grid map with hexagonal lattice in a SOM trained

for 110 iterations are summarized in Fig. 4.18.

4.3.2.11 Square 50×50 grid with rectangular lattice: 800 iterations

Finally, the results for the square 50× 50 grid map with rectangular lattice in a SOM trained

for 800 iterations are summarized in Fig. 4.21.
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U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.20: Visualization maps for a SOM model, trained for 110 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with hexagonal layout. Display as in
previous figures.

4.3.2.12 Square 50×50 grid with hexagonal lattice: 800 iterations

The corresponding final results for the square 50× 50 grid map with hexagonal lattice in a

SOM trained for 800 iterations are summarized in Fig. 4.22.
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U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.21: Visualization maps for a SOM model, trained for 800 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with rectangular layout. Display as in
previous figures.
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U−matrix  50 x 50 P−matrix  50 x 50

Inverted P−matrix  50 x 50 U*matrix  50 x 50

Figure 4.22: Visualization maps for a SOM model, trained for 800 iterations, of 3-dimensional
data organized in three clusters, using a 50×50 square grid with hexagonal layout. Display as in
previous figures.

4.3.3 Discussion

The results of this last set of experiments with the standard SOM algorithm are quite straight-

forward. Their interpretation can be summarized in the following points:

• Yet again, there is almost no difference between the results obtained using a square lattice

and those obtained using an hexagonal one. This is the case both in terms of the cluster

distribution over the representation map and in terms of the local distribution of the

mapping distortion, as measured by the U-matrix, the P and inverted P matrices and the

U*-matrix. This is clearly reflected in the cartogram representations of all these measure

and for all map sizes.
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• The effect of increasing the map size does not yield qualitatively different . The only

differences can be expressed in terms of map resolution (as fewer data points are assigned

to each of the map units), which increases the detail in proportion to the map size. Given

that increasing the map sizes has an impact on computation times, it could be argued that

increasing the map size arbitrarily has no advantage in terms of data and model visual

interpretation.

• Again, it has been clearly illustrated that the achievement of convergence in the SOM

training process has a strong impact on the quality of the results. Sufficient adaptive

training iterations of the algorithm must be performed to achieve an adequate mapping

of the data.

• The use of cartogram representations of the distortion measures has been shown to pro-

vide the data analyst with a rich and intuitive visual tool for NLDR projection display

that reflects the true distribution of the modelled data more faithfully by explicitly rein-

troducing the local distortion into the visualization map.

The following tables 4.3 and 4.4 summarize the quantization and topographic error results

for, in turn, rectangular and hexagonal lattices. The complexity row is of one iteration. The

computational complexity is θ(Inmd), being I total iterations.
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Grid QE TE Iter. Complexity θ(Inmd)

10×20 0.0293 0.1840 2 9,000,000 2×1500×200×3

20×10 0.0304 0.1540 2 9,000,000 2×1500×200×3

13×13 0.0296 0.2067 2 760,500 2×1500×169×3

30×30 0.0194 0.1260 10 4,050,000 10×1500×900×3

30×30 0.0159 0.1460 20 4,050,000 20×1500×900×3

50×50 0.0186 0.1513 10 11,250,000 10×1500×2500×3

50×50 0.0167 0.1133 17 11,250,000 17×1500×2500×3

50×50 0.0158 0.1573 20 11,250,000 20×1500×2500×3

50×50 0.0138 0.1300 30 11,250,000 30×1500×2500×3

50×50 0.0127 0.1427 40 11,250,000 40×1500×2500×3

50×50 0.0117 0.1633 50 11,250,000 50×1500×2500×3

50×50 0.0097 0.1560 80 11,250,000 80×1500×2500×3

50×50 0.0088 0.1520 100 11,250,000 100×1500×2500×3

50×50 0.0083 0.1487 110 11,250,000 110×1500×2500×3

50×50 0.0082 0.1727 120 11,250,000 120×1500×2500×3

50×50 0.0024 0.1820 800 11,250,000 800×1500×2500×3

Table 4.3: Results for rectangular lattices.

4.4 Experiments with the Growing Hierarchical SOM

4.4.1 First experiment

GHSOM was implemented in MAT LABr, using the SOM-Toolbox1, the GHSOM-Toolbox2

and Computer software for making cartograms (Cart)3 using the technique described in the

paper (45). A standard Gaussian neighborhood function was used and the batch-SOM method.

The required U-matrices were calculated and their corresponding cartograms were generated

using them and the model grids. For the U-matrix we used, for each unit, the average of the

distances to its neighboring units.

We illustrate the cartogram representation of the U-matrix for the GHSOM with a basic

preliminary experiment using artificial data. A total of 1,500 3-D points were randomly drawn

from 3 spherical Gaussians (500 points each), all with unit variance, and with centers sitting at

1www.cis.hut.fi/somtoolbox
2www.ofai.at/ elias.pampalk/ghsom/
3www-personal.umich.edu/ mejn/cart/
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Grid QE TE Iter. Complexity θ(Inmd)

10×20 0.0295 0.0360 2 9,000,000 2×1500×200×3

20×10 0.0294 0.0687 2 9,000,000 2×1500×200×3

13×13 0.0293 0.0613 2 760,500 2×1500×169×3

30×30 0.0218 0.0440 6 4,050,000 6×1500×900×3

30×30 0.0193 0.0580 10 4,050,000 10×1500×900×3

30×30 0.0185 0.0440 12 4,050,000 12×1500×900×3

30×30 0.0142 0.0493 30 4,050,000 30×1500×900×3

50×50 0.0160 0.0480 17 11,250,000 17×1500×2500×3

50×50 0.0175 0.0320 110 11,250,000 110×1500×2500×3

50×50 0.0025 0.0680 800 11,250,000 800×1500×2500×3

Table 4.4: Results for hexagonal lattices.

the vertices of an equilateral triangle. In this experiment, the three cluster regular structure was

chosen as one that should yield a most basic hierarchic structure with a single level, reflecting

internally homogeneous clusters in the leaves.

All results are compiled and displayed in Fig. 4.23. They include, for reference, a basic

SOM map visualization of the data with a hexagonal grid in the top row. It reflects a neat

but narrow separation between clusters (46) as would be expected from the non-overlapping

3-cluster structure of the synthetic data.

The GHSOM estimated a single layer in the hierarchy. This reflects the fact that each

cluster has no sub-cluster structure (it is internally homogeneous). This single layer estimates

three leaves stemming from the root map (each of them displayed in a different row of the

figure). In each, data from each cluster are almost perfectly separated.

Given that each of this three leaves reflects a single cluster with no internal structure, we

would expect them to show a locally low-varying mapping distortion. This distortion is cap-

tured by the U-matrices (left column) and the corresponding cartograms (right column). The

difference between both representations is quite telling: from the color-coded visualization of

the U-matrices, the analyst might wrongly infer significant differences in distortion between

different areas of the map (that is, internal structure). This is correctly (and intuitively) refuted

by the cartograms, which reflect the low variability in distortion, as they retain the original rect-

angular grid with little change. The existence of neat internal between-sub-cluster gaps would

have been reflected in the form of a heavily distorted cartogram.
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Figure 4.23: Top row: Data projection of the three isolated and equally-spaced clusters in the
hexagonal 20×20 grid of a trained SOM. The original clusters were labeled 1-to-3 and, thus, the
labels 1-to-3 in each unit of the visualization map indicate that clusters have been correctly sep-
arated by the model. Each of the following rows correspond to one of the three leaves of the
hierarchy. Left column: U-matrices corresponding to each of the leaves of the hierarchy, in grey-
scale representation coding, quantified in the colorbar on the right of each map. Right column:
Cartogram coding of the U-matrix values in the grid. Each of the three clusters are codified in
different shadows of grey. More than two different shadows overlapping in a SOM unit indicates
that data points of different clusters were assigned to the same BMU.
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4.4.2 Second experiment

For the second experiment, also 1,500 3-D points were randomly drawn, but this time they cor-

respond to 5 spherical Gaussians (300 points each), all with unit variance, but heterogeneously

distributed in three groups: one of them consisting of three clusters close to each other but

without overlapping, and two consisting on isolated clusters at similar distances to the previous

group of three. This configuration is meant to reflect a hierarchical structure that should reveal

a first partition between the three groups and a secondary one between the three clusters of the

first group. This last level should yield internally homogeneous clusters in the leaves of the

hierarchy.

All results are compiled and displayed in Figs. 4.24, 4.25 and 4.26.

Fig. 4.24 displays the hierarchical structure found by GHSOM. It is precisely as expected:

it includes a first level in which a cluster 1 dominated map is separated from a cluster 2 domi-

nated one and these, in turn, are separated from the group

The 3 maps of this first level of the hierarchy are shown in 4.25. The first two rows cor-

respond to the maps assigned to clusters 1 and 2. As we might expect theiy are internally

homogeneous and, therefore, yield a completely “flat” cartogram, devoid of heterogeneity in

the local distortion.

The third map (last row), represents the group containing clusters 3, 4, and 5 and due to

the internal heterogeneity of this group. GHSOM finds sufficient heterogeneity as to split into

a second level of the hierarchy. The three maps of this second level displayed in 4.26, separate

the three clusters quite nicely and, again, yield cartograms that are devoid of heterogeneity in

the local distortion.
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Figure 4.24: GHSOM map partition for the second experiment as reported in the text.
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map 2, layer  2, parent map  1, parent−unit 2

U−matrix

 

 

0.0341

0.106

0.178

Cartogram U−matrix map 2 layer 2 , parent 1 , parent−unit 2

map 3, layer  2, parent map  1, parent−unit 3

U−matrix

 

 

0.0348
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0.183

Cartogram U−matrix map 3 layer 2 , parent 1 , parent−unit 3

map 4, layer  2, parent map  1, parent−unit 4

U−matrix

 

 

0.0297

0.224

0.418

Cartogram U−matrix map 4 layer 2 , parent 1 , parent−unit 4

Figure 4.25: GHSOM map partition for the second experiment as reported in the text. First level
of the hierarchy. Display as in Fig. 4.23
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Figure 4.26: GHSOM map partition for the second experiment as reported in the text. Second
level of the hierarchy. Display as in Fig. 4.23
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Chapter 5

Experimentation with real data

Once the main capabilities and limitations of the cartogram visualization of MVD for SOM-

based models have been investigated in some detail with artificial data, we now proceed to

illustrate the method using real data stemming from a neuro-oncology problem. It involves

the discrimination of human brain tumor types, a problem for which knowledge discovery

techniques in general, and data visualization in particular (42) should be useful tools.

5.1 Materials: Neuro-oncology data

The available data are single-voxel1 (and therefore spatially localized in an area of the brain)

proton magnetic resonance spectroscopy (SV-1H-MRS) cases acquired in vivo from brain tu-

mor patients. They are part of the multi-center, international web-accessible INTERPRET

project database (47). A total of eight clinical centers from five countries contributed cases to

this database.

The spectra provide a metabolic signature of the brain tissue (be it tumor or healthy), as

certain metabolites are known to be reflected by resonances at certain frequencies or bands of

frequency.

The analyzed data were acquired at long echo time (LET). The echo time is an influential

parameter in 1H-MRS data acquisition. The use of LET yields relevant information on fewer

metabolites, but with clearly resolved amplitude peaks and little baseline distortion, resulting

in a more readable spectrum. The data include 78 glioblastomas, 31 metastases (these are

1A voxel is a volume element - a cube - within a grid covering a the global delimited volume under study in
the brain.
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high-grade, malignant tumors of poor prognosis; importantly in our experiments, both of these

pathologies are know to be heterogeneous as expressed by their SV-1H- MRS), 15 normal

(healthy) tissue cases (which should have a very homogeneous SV-1H-MRS signature), and 8

abscesses (abnormal masses that may or may not be a byproduct of tumors, but which are often

distinct from the tumors themselves).

Clinically-relevant regions of the spectra were sampled to obtain 195 frequency intensity

values (data features), spanning approximately from 4.22 down to 0.49 ppm (parts per mil-

lion) in the frequency range. These frequency intensity values become the input to our self-

organizing models.

5.2 Experiments

Two problems were investigated:

• Glioblastomas vs. normal tissue: Both types of brain tissue should be well separated (as

they both differ radically in their metabolic composition), but their visualization should

reveal that, while normal tissue forms a compact group, glioblastomas lack homogeneity.

Atypical cases might be expected (44).

• Metastases vs. normal tissue and abscesses: These types should also be separated due to

their different metabolic composition. As previously mentioned, normal tissue forms a

compact group and most abscesses should be similar. On the contrary, metastases should

not show much homogeneity. Some atypical cases might again be expected (44).

5.2.1 Results and discussion

Glioblastomas vs. normal tissue

Aggressive tumors (glioblastomas) and normal (healthy) tissue data were investigated in this

experiment using GHSOM. For this, the model settings included a standard Gaussian neigh-

borhood function; a linear initialization on the weights; (τ1) = 0.55, (τ2) = 0.003, and the

sequential-SOM method as a basis.

The number of grid nodes is a key parameter as well. The use of a small number of nodes

yields high quantization error but well-defined clusters, while a large number of nodes results

in low quantization error but, in the most extreme case, a cluster for each data sample, which

might not be useful to investigate cluster structure.
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Some balance must thus be struck in the choice of this parameter. Several of these choices

were investigated in order to obtain the best workable and visually revealing U-matrix. A map

size with 9 rows and 6 columns as a approximation of the Eq. 4 was finally selected as the best

map size to represent the data. The required U-matrices of each map were calculated and their

corresponding cartogram representations were generated.

The results for the first of the problems include SOM (where the map dimensions were ap-

proximated according to Eq. 4) and GHSOM modelling. The shape of the map grid was chosen

according to the approximate ratio between the two largest eigenvalues of the covariance matrix

of the input vectors (of values 661.63 and 384.59).

It is interesting to see that the dimensions of the estimated SOM map are very similar to

the ones chosen for the parent map of GHSOM.

Let us first have a look at the SOM results, as reported in Fig. 5.1. As expected, normal

tissue has mostly been mapped to a tight and compact area of the map in the bottom left cor-

ner, predominating, in fact, in only two units of the grid. The area occupied by normal tissue

is neatly separated from the area dominated by glioblastomas by an empty space. Beyond it,

glioblastomas occupy most of the rest of the map, but, again as expected, in a very hetero-

geneous manner. That is, a clear subgroup structure is observed, with empty spaces between

groups of glioblastomas. Moreover, the values of the U-matrix reveal that there is a core dense

subgroup of them in the middle-right hand side of the maps but more heterogeneous groups in

the rest of the areas were they are mapped. In any case, the cartogram representation in the

same figure clearly indicates that these local distortions are rather moderate, signifying that the

mapping process has probably been rather homogeneous and not too-nonlinear in nature.

Now moving to the first-layer representation generated by the GHSOM, whose results are

displayed in Fig. 5.2, we find a fairly similar situation. Normal tissue is again quite isolated

(now mostly in four units at the bottom-right corner of the square map) and neatly separated

from the rest of glioblastomas. Consistently with the SOM results the local distortion reflected

by the cartogram representation suggests an homogeneous and predominantly linear mapping

process.

For glioblastomas, a second level of the hierarchy only appears in units of the left hand-

side of the map that are also densely populated while undergoing relatively high distortions.

Only the most populated unit of normal tissue splits up to a second level of the hierarchy.

The maps of this second level of the hierarchy are shown in Fig. 5.3 and its continuation,

5.4. All these maps have almost completely regular cartograms, indicating an almost complete
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lack of distortion on the local mapping and thus an almost complete lack of internal cluster

sub-structure.
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Figure 5.1: Visualization maps corresponding to the trained SOM with a 9× 6 rectangular grid
for the Glioblastomas vs. Normal Tissue problem. Left: Color coded distance U-matrix, where
dark shades of gray correspond to high distortion values and light shades correspond to low values.
Each unit of the map is labeled according to the predominant type of tissue (G for Glioblastomas,
NT for Normal Tissue and unlabeled when no data point has been mapped into that unit). Right:
Corresponding cartogram, where the relative size of the solid gray area inside each unit is directly
proportional to the ratio of data inputs mapped into that unit. Light gray are predominantly Normal
Tissue units and dark gray are predominantly Glioblastomas.
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Figure 5.2: Visualization maps corresponding to the first level of the hierarchy of the trained
GHSOM for the Gliblastomas vs. Normal Tissue problem. Top row, left: Hierarchy map, with
labels as in previous figure. Six glioblastoma-dominant units on the left hand-side column (showing
the corresponding internal grid) are further split into the second layer. From top to bottom they will
be labelled with numbers 1 to 6. A Normal Tissue-dominant unit on the bottom right corner is also
split into a second layer of the hierarchy level. All the split units in the second level are shown in
Fig. 5.3; right: Color coded complete U-matrix. Bottom row: Corresponding cartogram, displayed
as in previous figure.
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Figure 5.3: Visualization maps corresponding to the second level of the hierarchy of the trained
GHSOM for the Gliblastomas vs. Normal Tissue problem. Left column: Color coded complete
U-matrices; from top to bottom, glioblastoma-dominated units from 1 to 6, as labelled from the
previous figure, followed in the last row by the Normal Tissue-dominated unit. Right column:
Corresponding cartograms, displayed as in previous figures with the difference that the proportion
of cases belonging to each of the two classes is explicitly.
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Figure 5.4: Continuation of previous figure.

Assessment of the quality of SOM and GHSOM

As already mentioned in previous experiments, the issue of gauging the quality of SOM-based

methods is a complicated one, as the measures are quite data-dependent. Typically, the quality

of the map is measured in terms of the training data and two evaluation criteria: resolution

(average quantization error, or average distance between data vectors and their BMUs) and

topology preservation (topographic error as the proportion of all data vectors for which first

and second BMUs are not neighboring units), in turn QE and TE.

Table 5.1 summarizes the quality measures for the two methods.
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Method Map Units QE TE

SOM 9×6 34.938 0

GHSOM Map 1 level 1 parent-map 0 parent-unit 0 7×7 33.031 0.097

Map 2 level 2 parent-map 1 parent-unit 1 5×3 84.509 0.473

Map 3 level 2 parent-map 1 parent-unit 2 4×3 73.226 0.215

Map 4 level 2 parent-map 1 parent-unit 3 3×3 66.404 0.140

Map 5 level 2 parent-map 1 parent-unit 4 5×3 61.612 0.376

Map 6 level 2 parent-map 1 parent-unit 5 4×3 62.992 0.054

Map 7 level 2 parent-map 1 parent-unit 7 3×3 69.526 0.140

Map 8 level 2 parent-map 1 parent-unit 49 2×5 84.332 0.215

Table 5.1: QE: quantification error; TE: topological error.

Metastases vs. normal tissue and abscesses

The second experiment concerned metastases, normal tissue and abscesses using (as in the

previous case) a standard Gaussian neighborhood function; a linear initialization of weights;

(τ1) = 0.55, (τ2) = 0.003, and the sequential-SOM method. A map size with 8 rows and 5

columns was selected as the best map size to represent the data.

The required U-matrices of each map were calculated and their corresponding cartograms

were generated.

The results for this second problem again include SOM (where the map dimensions were

approximated according to Eq. 4) and GHSOM modeling. The shape of the map grid was cho-

sen according to the approximate ratio between the two largest eigenvalues of the covariance

matrix of the input vectors (of values 478.03 and 334.29).

Also for this problem, the dimensions of the estimated SOM map are very similar to the

ones chosen for the parent map of GHSOM.

The SOM results, as reported in Fig. 5.5, provide us with a less obvious image than the

previous problem. Once again as expected, normal tissue has mostly been mapped to a tight

and compact area of the map in the bottom left corner, predominating in four units of the grid.

The area occupied by normal tissue is reasonably well separated from the area dominated by

metastases and abscesses. Beyond it, metastases and abscesses share the same areas, although

a good deal of abscesses occupy the right hand-side of the map. Metastases are almost as

heterogeneous as glioblastomas in the previous problem. That is, clear subgroup structure is
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observed, with empty spaces between subgroups. Yet again, the cartogram representation in

the same figure clearly indicates that local distortions measured by the U-matrix are rather

moderate, signifying that the mapping process has probably been rather homogeneous and not

too-nonlinear in nature.

The maps of the first-layer representation generated by the GHSOM are displayed in Fig.

5.6. Metastases are separated in subgroups, predominantly in the left and central columns

of the map. Normal tissue is again quite isolated (now mostly in four units at the bottom-

right corner of the square map) and neatly separated from the rest of the data. Abscesses

predominate dispersely in right hand-side areas of the map. Consistently with the SOM results

the local distortion reflected by the cartogram representation suggests an homogeneous and

predominantly linear mapping process.

For metastases, a second level of the hierarchy only appears in units of the left hand-side

of the map that are also densely populated (light for glioblastomas in the previous problem).

The two normal tissue units split up to a second level of the hierarchy. The maps of this second

level of the hierarchy are shown in Fig. 5.7. All these maps have almost completely regular

cartograms, indicating an almost complete lack of distortion on the local mapping and thus an

almost complete lack of internal cluster sub-structure.
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Figure 5.5: Visualization maps corresponding to the trained SOM with a 8×5 rectangular grid for
the Metastases vs. Normal Tissue vs. Abscesses problem. Left: Color coded distance U-matrix,
where dark shades of gray correspond to high distortion values and light shades correspond to
low values. Each unit of the map is labelled according to the predominant type of tissue (M for
Metastases, NT for Normal Tissue, A for Abscesses and unlabelled when no data point has been
mapped into that unit). Right: Corresponding cartogram, where the relative size of the solid gray
area inside each unit is directly proportional to the ratio of data inputs mapped into that unit. Light
gray are predominantly Metastases units, medium gray are predominantly Normal Tissue and dark
gray are predominantly Abscesses.
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Figure 5.6: Visualization maps corresponding to the first level of the hierarchy of the trained
GHSOM for the Metastases vs. Normal Tissue vs. Abscesses problem. Top row, left: Hierarchy
map, with labels as in previous figure. Two glioblastoma-dominant units on the left hand-side
column (showing the corresponding internal grid) are further split into the second layer. From top
to bottom they will be labelled with numbers 1 and 2. Two Normal Tissue-dominant units on the
bottom right corner are also split into a second layer of the hierarchy level, and labelled as 3 and 4.
All the split units in the second level are shown in Fig. 5.7; right: color coded complete U-matrix.
Bottom row: Corresponding cartogram, displayed as in previous figure.
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Figure 5.7: Visualization maps corresponding to the second level of the hierarchy of the trained
GHSOM for the Metastases vs. Normal Tissue vs. Abscesses problem. Left column: Color coded
complete U-matrices; from top to bottom, metastases-dominated units 1 and 2, followed by the
Normal Tissue-dominated units 3 and 4. Right column: Corresponding cartograms, displayed as
in previous figures.
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Table 5.2 summarizes the quality measures for the two methods.

Method Map Units QE TE

SOM 8×5 37.985 0.037

GHSOM Map 1 level 1 parent-map 0 parent-unit 0 7×6 36.663 0.019

Map 2 level 2 parent-map 1 parent-unit 1 4×4 84.556 0

Map 3 level 2 parent-map 1 parent-unit 5 3×4 68.957 0.037

Map 4 level 2 parent-map 1 parent-unit 41 5×4 79.431 0.093

Map 5 level 2 parent-map 1 parent-unit 42 6×4 80.464 0.037

Table 5.2: QE, quantification error. TE, topological error.
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Chapter 6

Conclusions

The visualization of MVD can provide us with inductive reasoning insights that could be diffi-

cult to gain from direct deductive reasoning from the raw data. Most available observed data,

though, involve information contained in many variables and are thus commonly expressed, in

a quantitative manner, through high-dimensional data.

High-dimensional data can only be visually inspected in an indirect fashion. One possibility

is that of using projection methods. Linear projection methods, in particular, have been used

for decades to this purpose. They are fairly easy to interpret, even though the faithfulness of

their representation is limited when data are complexly structured.

Over the last decade, NLDR methods for MVD visualization (2) have provided novel ap-

proaches to circunvent this limitation but their adoption is hindered by the difficulty of inter-

preting the visualizations they provide in terms of the original data attributes and also by the

non-uniform distortion they generate.

In this Master Thesis we have adapted a technique, originally defined for the distortion

of geographic maps according to underlying attributes, to provide MVD visualization using

NLDR models of the self-organizing family, namely, SOM and GHSOM. The latter is extension

of the former that includes partially-adaptive architecture and hierarchical mapping structure.

We have shown, through a batch of experiments, that the proposed density-equalizing car-

togram representation of the visualization maps of SOM and GHSOM allows explicitly reintro-

ducing the mapping distortion created by the models, so that more intuitive data visualizations

are created. The capabilities and limitations of the proposed technique have been assessed

through both artificial and real medical data concerning a human neuro-oncology problem.

The contributions of this thesis can be summarized as follows:
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• Previous preliminary experiments for the cartogram representation of the U-Matrix in

batch-SOM were carried out in (48). For the sequential SOM model, though, the cartogram-

based visualization of MVD has for the first time been investigated in some detail using

not only the more standard U-matrix as a proxy for local nonlinear distortion, but also

the P and, importantly, the inverted P matrices as well as the U*-matrix, which combines

the information of the U and the P.

• The cartogram-based method has been defined and investigated for the first time (to the

best of the author’s knowledge) as applied to the GHSOM model.

• The hierarchical clustering setting has been applied for the first time to the problem of

human brain tumour cluster structure exploration from SV-1H-MRS data.

• The cartogram-based method for MVD visualization in NLDR methods has for the first

time been used in the aforemention neuro-oncology problem using self-organizing arti-

ficial neural networks.

6.1 Proposals for future research

The research carried out for this Master Thesis does not provide closure, by any means, to the

investigation in the problem of cartogram-based visual MVD exploration in NLDR methods.

You could say that, in fact, this research has opened up some possibilities that could only be

investigated in full by following some of the lines that we summarily suggest next:

• All experiments in this thesis have concerned just two self-organizing artificial neural

network models, namely the standard SOM and the GHSOM. As stated in Chapter 2,

these are two options out of the many self-organizing methods defined in the literature.

Cartogram representations could be defined for any of them. We consider that some spe-

cially interesting alternatives would include Neural Gas models and alternative Growing

SOM variants.

• Beyond alternative self-organizing alternatives, cartogram visualization of nonlinear dis-

tortion can be implemented in any other NLDR method that provides prototype-based

data mapping. That is, it could be investigated for other manifold learning techniques

and even for non-prototype-based methods using, for instance, Voronoi tesselations of

the data projections.
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• The experiments carried out in Chapter 4 using artificial data have involved the varia-

tion of a given number of parameters, such as number of clusters, data dimensionality

or model architecture. These variations do not cover all the available possibilities. In

fact, future research should involve the simultaneous variation of more than one of these

characteristics. For instance, we could investigate the simultaneous effect of increasing

the data dimensionality and the number of clusters.

• The aforementioned experiments with artificial data have been limited to data sets of very

specific and simple characteristics (fairly symmetric and clearly separated clusters). Fur-

ther research should consider the use of data set of a wider range of characteristics, such

as partially overlapping clusters, clusters of varying densities, or clusters contaminated

with uninformative noise, just to list a few possibilities.
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Publications resulting from the thesis

Àngela Martı́n and Alfredo Vellido. Cartogram-Based Data Visualization using the Grow-

ing Hierarchical SOM. in Proceedings of the Decimosexto Congreso Internacional de la Aso-
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[27] Nöcker, M., Mörchen, F., Ultsch, A. (2006). An algorithm for fast and reliable ESOM

learning. In Procs. of the 14th European Symposium on Artificial Neural Networks

(ESANN 2006), Bruges, Belgium, pp. 131-136. 4

[28] Ultsch, A. (1999). Data mining and knowledge discovery with emergent self-organizing

feature maps for multivariate time series. In: Oja, E., Kaski, S. (Eds.) Kohonen Maps, pp.

33-46.

[29] Amarasiri, R., Alahakoon, D., and Smith, K. (2004). Applications of the growing self

organizing map in high dimensional data. In Procs. of the International Information Tech-

nology Conference (IITC 2004), Colombo, Sri Lanka. 4

[30] Henriques, R., Lobo, V., and Basao, F. (2012). Spatial Clustering Using Hierarchical

SOM. In Johnsson, M. (Ed.) Applications of Self-Organizing Maps, Ch.12. 6

[31] Martinetz, T., Schulten, K. (1991). A “neural-gas” network learns topologies. In Kohonen,

T. et al. (Eds.) Artificial Neural Networks, pp. 397-402, Elsevier.

97



BIBLIOGRAPHY

[32] Garcı́a, S., Rowe, D., Gonzı́lez, J., and Villanueva, J. J. (2005). Articulated object mod-

elling using Neural Gas networks. In Procs. of Visualization, Imaging, And Image Pro-

cessing: Fifth IASTED International Conference. 6

[33] Pena, M., Barbakh, W., and Fyfe, C. (2008). Topology-preserving mappings for data

visualisation. In Principal Manifolds for Data Visualization and Dimension Reduction,

pp. 131-150, Springer.

[34] Luttrell, S.P. (1989). Hierarchical self-organizing networks. In Procs. of the International

Conference on Neural Networks (ICANN’89). London, U.K., pp.2-6.

[35] Vicente, D., and Vellido, A. (2004). Review of hierarchical models for data clustering and

visualization. Tendencias de la Minera de Datos en España, Red Española de Minera de
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