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Abstract

In this work we present a new segmentation method named Smart Cage
Active Contours (SCAC) that combines a parametrized active contour
framework named Cage Active Contours (CAC), based on affine trans-
formations, with Active Shape Models (ASM). Our method effectively
restricts the shapes the evolving contours can take without the need of
the training images to be manually landmarked. We apply our method to
segment the caudate nuclei subcortical structure of a set of 40 subjects in
magnetic resonance brain images, with promising results.
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1 Introduction

Image segmentation [1] is classically defined as the process of partitioning an
image into multiple non-overlapping groups of pixels, known as segments, su-
perpixels or simply segmentation regions. These groups of pixels are usually
connected and separated by linear or surface boundaries. Ideally, segmentation
results correspond to dividing the image into regions following a certain reasoning,
like anatomical regions in medical imaging.

There are multiple methods to perform image segmentation, each of them
exploiting a different feature of the image and using a different concept of how to
define and locate the boundaries. As often occurs, there is no single method that
can be considered superior to others in general. The fitness of a segmentation
method depends largely on the type of image, the characteristics of the areas to
be segmented and also the particular conditions of the images to work with, like
the level of noise and contrast, if they are black and white or full-colored, their
size, etc. Actually, many segmentation methods are especially designed or tuned
to tackle a very specific task, as is the case of atlas-guided segmentation.

Segmentation of medical images is a very active research topic due to the
importance of its applications in medicine. While powerful image acquisition
techniques like MRI, CT or PET are already available, the information present
on these images is usually so complex that the ability to automatically separate a
certain region of interest, like an organ, from the rest of the image, can be of great
help to turn plain images into medical (and potentially life-saving) knowledge.
Otherwise, doctors would have to perform the segmentation of every image
manually, a time consuming and error-prone process subject to inter-observer
variability.

Medical image segmentation is in general a very complex and challenging
problem, mainly due to the great variability of the properties of the structures
to be segmented and the particular difficulties of some cases, like the lack of
contrast or other clear visual boundaries, the presence of noise or blur due to
motion, partial volume effects, etc. Even focusing on a specific organ and image
modality (MRI, CT, PET, etc.), the variability can affect very negatively the
overall performance of a segmentation algorithm: while it might be quite good
at segmenting the general and close-to-the-mean case, it can fail miserably for
another partially deformed or distorted image. Since these results might need
to be used for applying a therapy, like surgery or radiotherapy, it is important
for the segmentation techniques used to be robust and accurate, what makes
applied medical image segmentation even more hard and challenging. For a
general review on medical image segmentation, see [1, 2, 3, 4].

An increasingly popular approach in medical image segmentation involves
incorporating a priori knowledge about the structures to be segmented into
a deformable model [5] in the form of initial conditions, constraints on the
shape parameters or into the model fitting procedure. This is the case of Active
Shape Models [6, 7], that construct a model of shape of the selected structures
constraining the possible shapes the model can generate. However, one of main
drawbacks of Active Shape Models is that they need the images from where the
model is derived to be manually landmarked to allow the establishment of a
point-to-point correspondence.

In this work, we present a segmentation method that combines Active Shape
Models with Cage Active Contours [8], a parametric snakes framework that
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makes use of computer graphics deformation techniques to deform the whole
segmentation contour based on the relative position of all its pixels with respect
to a reduced set of control points. These relative positions are parametrized
using mean value coordinates [9], a generalization of barycentric coordinates to
arbitrary planar polygons that is easy to compute and retain desirable smoothness
properties. Constructing the Active Shape Model from the set control points
frees us from having to manually identify landmarks on the images, while keeping
the ability to establish a point-to-point correspondence to learn from. We call
our method “Smart Cage Active Contours” (SCAC) in line with the alternative
name “Smart Snakes” that Cootes and Taylor propose for Active Shape Models
in [7].

In the experimental part of this work, we apply Smart Cage Active Contours
to the segmentation of the left and right caudate nuclei of a set of 40 subjects.
After the registration of all the magnetic resonance volumes to a normalized
stereotactic space, the images are segmented slice by slice. The results are then
compared with those obtained following a basic atlas-guided methodology [10].

1.1 Objectives of this work

We can identify two main objectives in the development of this work:

1. Develop a new segmentation method, “Smart Cage Active Contours”
(SCAC), combining previous work on image segmentation using affine
transformations, with Active Shape Models.

2. Evaluate the performance of this new method in the segmentation of
subcortical structures in brain medical images and compare it with a
classical atlas-based methodology.

1.2 Structure of this report

This report is structured as follows. First, we present the different techniques
our work is based on, including deformable models, mean value coordinates,
the Cage Active Contours (CAC) framework, Active Shape and Appearance
Models and atlas-guided segmentation. Second, we explain how do we combine
the previous techniques to construct the SCAC segmentation method. Third,
we describe how do we apply SCAC to the particular case of the segmentation
of the caudate nuclei in brain magnetic resonance images. Next, we describe
our experimental setup, present the results obtained and discuss them. Last, we
extract some conclusions and indicate possible future research directions.

2 Previous work

2.1 Deformable models

Deformable models are based on an initial contour or surface, ideally reasonably
close to the desired region of interest, that evolves iteratively following a relaxation
process to try to fit that region. The evolution of the deformable models if based
in Physical principles: it is driven by internal and external (or image) forces.
The internal forces are computed using only information from the boundary
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curve or surface itself and tries to ensure smoothness. The external forces are
calculated from the image to drive the boundary towards the desired region of
interest. In some interactive models, a third type of forces called “constraint
forces” is introduced, allowing the user to specify some points the curve has to
pass through.

In analogy with Physics, these forces are usually described in terms of
associated energies that have to be minimized in order to fit the boundary.
This way the mathematical formulation of the problem is simplified and general
functional iterative optimization methods like gradient descent can be used. For
example, using a basic gradient descent method, the evolution of the boundary
is determined by:

rt+1 = rt − α∇E(rt) (2.1)

where α is the evolution rate parameter, r is a vector describing the contour and
E(rt) is the energy functional to be minimized. The energy functional can be
decomposed as

E(rt) = Eint(rt) + Eext(rt) + Ec(rt)

where Eint, Eext and Ec correspond to the internal, external and constraint
energies, discussed in the next section.

Ideally we would like to use energy functionals that:

• Have few local minima. Otherwise, since the minimization algorithms are
iterative, they are prone to get stuck easily.

• Have little dependence on starting points. Otherwise, if a small variation
would lead to very different results, the method becomes chaotic and
unstable.

• Continuous and twice differentiable. Some iterative optimization methods
use the second derivative to estimate the size and direction of the step.

We will now concentrate on one of the most popular deformable models, known
as active contour models or “snakes” [11]. Snakes are 2D deformable models, and
are given this name because of the way the contour moves during evolution. In
the snakes framework, the contour curve can be described as:

• Point-based snakes. The curve is an ordered collection of discrete points,
called snaxels.

• Parametric snakes. The curve is defined in a continuous parametric form of
the type r(s) = (x(s), y(s)), using basis functions like b-splines or Fourier
exponentials defined at certain knots in the curve.

Point-based snakes can be regarded as an extreme case of parametric snakes,
where the curves are defined in terms of b-splines of degree zero with 2 parameters
(position x and y) for each curve point. Point-based snakes thus generally
require more parameters than parametric snakes, resulting on slower optimization
algorithms. Moreover, parametric snakes can incorporate the smoothness and
other a priori constraints in the basis functions used, eliminating the necessity
of extra energy terms.
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Figure 2.1 – From left to right, snake segmentation initialization, results without
including the reparametrization energy and results including it. From [12].

2.1.1 Energies for parametric snakes

Internal energies

As have been already mentioned, internal energies try to ensure the smooth-
ness of the contour. The most common internal energy is the one introduced
by Kass [11], which is a linear combination of the length of the curve and its
curvature:

Eint =

ˆ
C

λ1(s) ‖r′(s)‖ 2ds+

ˆ
C

λ2(s) ‖r”(s)‖ 2ds (2.2)

By adjusting the weights λi of each term the relative importance of having
shorter or smoother contours at each section of the curve can be tuned. The
parameter λ1 controls the “tension”, while λ2 controls the “rigidity”.

As pointed out in [12], the second term only guarantees smoothness if the
curve is parametrized by its curve length, i.e. if the parameter s is the curvilinear
abscissa and the arc length between two knots is constant. To favor this condition
in parametric snakes, [12] includes an additional term called “reparametrization
energy” in the internal energy. Otherwise, the knot points can accumulate in a
certain section of the curve and generate pointy curves (see Figure 2.1).

Constraint energies

In interactive setups, constraint energies allow the user to enter a priori
knowledge specifying the points the curve should pass through. An easy way
to model this constraint into an energy, described in [12], is using the distance
from that specified point to the closest point of the curve:

Ec =

Nc∑
i=1

min
s

‖r(s)− rc,i‖ 2 (2.3)

where rc,i are the Nc fixed points. This energy can be visualized as springs with
one end at fixed points and the other end sliding on the curve.

External (or image) energies

Image energies are the key element of the snakes framework to drive the
contour curve to the desired area of interest. We can divide these energies into
edge-based energies and region-based energies. The first ones compute a property
of the curve considering only the pixels on the evolving contour or close to it,
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while the second ones take into account pixels belonging to the inside or the
outside of the curve, if it is closed.

Edge-based energies The most basic popular edge energy used is based
on the gradient of the image intensity:

Eedge = −
ˆ
C

‖∇I(r(s))‖ 2ds (2.4)

where C denotes the contour, and the minus sign implies that the curve should
evolve to lay over areas with a large intensity gradient, which are expected to be
region boundaries. As pointed out by [13], a fundamental problem of this energy
is that it does not incorporate information about the direction of the gradient.
A more informed approach can try to maximize the component of the intensity
gradient perpendicular to the curve:

Eedge = −
ˆ
C

∇I(r(s)) · n̂(r(s))ds (2.5)

where n̂(r(s)) is the unit vector perpendicular to the curve at the point r(s).
One of the potential problems of using gradient-based edge energies is that

the presence of noise could make the contour curve sharp and pointy. However,
as pointed out in [11], this problem is often avoided by the presence of internal
smoothing energies, that act as energy wells to good local minima. Also, [11]
proposes the use of a spatially blurred energy functional to evolve the snake first
at a coarse scale and refine later, avoiding possibly misleading local minima.

Region-based energies Since many of the regions to segment involve
closed contours, region-based energies, that use statistical information about the
pixels inside and outside the segmentation regions, are becoming increasingly
popular [14, 15, 5]. These kind of energies are especially useful to drive the snake
towards the region of interest when it is still far away from it, since edge-based
energies might not offer valuable information in this case.

A classical example is to segment a white object from a black background. If
we initialize the contour far away from the object real boundary, the gradient
energy will probably get stuck in a plateau, but an energy that gets minimized
when all pixels inside the contour are white and all pixels outside it are black can
correctly drive the evolving contour towards the boundaries of the white object.

From a generic statistical point of view, we assume that there are two
segmentation regions (inside and outside) in the image that have different
statistical properties. Therefore, given the statistical properties of both areas, we
want to maximize the likelihood of the pixels determined to be in a certain region
to really belong to that region. If we use log-likelihood and image intensity the
problem can be formulated as minimizing the functional

Eregion = − 1

|Sin|
∑

p∈Sin

log(P (I(p)|p ∈ Rin)

− 1

|Sout|
∑

p∈Sout

log(P (I(p)|p ∈ Rout) (2.6)
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where Rin and Rout denote the different image regions, Sinand Sout denote the
points that lay inside and outside the closed contour curve at that iteration, and
I(p) is the gray-level intensity of a pixel p. The normalizing terms |Sin| and
|Sout| denote the number of pixels inside and outside the region enclosed by the
evolving contour, respectively.

Given an appropriate conditional probability functions P (I(p)|p ∈ Rin/out),
this energy attains a minimum when Sin = Rin and Sout = Rout. For example, if
we assume that the pixel intensities of both regions follow a Gaussian distribution
[12, 16], the conditional probability can be expressed as

P (I(p)|p ∈ Rj) =
1√
2πσj

exp

(
− (I(p)− µj)

2

2σ2
j

)
where µj and σj are the mean and the variance of the pixel intensities over the
region Rj and j ∈ {in, out}. Using this conditional probability function, the
region energy takes the form

Egauss = log σin +
1

|Sin|
∑

p∈Sin

(I(p)− µin)
2

σ2
in

+

+ log σout +
1

|Sout|
∑

p∈Sout

(I(p)− µout)
2

σ2
out

(2.7)

where the constant terms have been dropped since they have no influence in the
energy minimization.

Similarly, [14] proposes a region energy based on the intensity distance to
the mean, with good results:

Emean =
1

|Sin|
∑

p∈Sin

(I(p)− µin)
2 +

1

|Sout|
∑

p∈Sout

(I(p)− µout)
2 (2.8)

In both cases, the statistical parameters (mean and variance) can be either
fixed manually or estimated at each iteration from the image regions of the
current evolving contour:

µin/out =
1

|Sin/out|
∑

p∈Sin/out

I(p) (2.9)

σ2
in/out =

1

|Sin|
∑

p∈Sin/out

(I(p)− µin(p))
2 (2.10)

The ability of fixing these parameters let us incorporate a priori information
about the regions to be segmented in the snakes model, which can be incredibly
useful. For example, if we know about the mean intensity of some organ in an
image, we can use this to favor the algorithm to drive the contour to a region
with this mean intensity.
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Figure 2.2 – Use of unified energy in image segmentation. (a) Initialization.
(b) Use of gradient based energy (α = 1) fails to converge in regions where the
gradient information is absent. (c) Region-based energy (α = 0) is misled by the
lack of image contrast. (d) Unified energy (α = 0.5) leads to a good segmentation.
From [12].

Unified energies

Both edge- and region-based energies have advantages and disadvantages. Edge-
based energies are good at precisely localizing the contour near the boundaries,
but have a small basin of attraction and therefore fail to converge successfully
if the contour is initialized too far away from the real boundary. Conversely,
region-based energies have a larger basin of attraction, but fail at localizing
explicit edges precisely.

To join the complementary advantages of both types of energy, [12] proposes
an unified energy resulting from the convex combination of them, which takes
the form

Eunified = αEedge + (1− α)Eregion (2.11)

where α is a parameter that takes values in the interval [0, 1] and allows us to
tune the unified energy to each particular case. For example, if the images are
noisy and the gradient information is unreliable, α can be set to low values
to favor information coming from region-based energies. Conversely, in images
where the regions cannot be associated to particular statistical properties (like a
similar intensity) but the region edges are clear, values of α close to 1 can be
used. See Figure 2.2 for an example of how unified energies can improve the
segmentation results.

2.2 Mean value coordinates

2.2.1 Barycentric coordinates

An important problem in computer graphics is to linearly interpolate a function
whose values are given at certain points of a closed contour. This has a number of
applications, like shading [17, 18], deformation [19, 20, 21, 22], or parametrization
[23] methods.
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Figure 2.3 – Using barycentric coordinates, the position of the point p can be
described as a linear combination of the position of the vertices of the triangle vi.

One solution for this interpolation are barycentric coordinates, dis-
covered by A.F. Möbius in 1827. Given any geometric triangle with vertices
{v1,v2,v3}, any point p inside the triangle (see Figure 2.3) can be described
as a triple w = (w1, w2, w3) of positive real numbers that corresponds to the
masses that one would have to put at each of the triangle vertices for the point
p to be the center of mass:

p =
w1v1 + w2v2 + w3v3

w1 + w2 + w3
(2.12)

This triple (w1, w2, w3) is known as the barycentric coordinates of the point
p. Barycentric coordinates are only unique up to multiplication by a common
non-zero scalar, and that is why often normalized barycentric coordinates,

φi =
wi∑
j wj

(2.13)

satisfying
∑

i φi = 1, are used.
Now, given the value of a (possibly vector-valued) function on the triangle

vertices fi = f(vi), the value of the function on the interior point p can be
interpolated as

f(p) = w1f1 + w2f2 + w3f3 =

3∑
i=1

wifi (2.14)

This function can be, for example, the color intensity at the vertices or a
position transformation, allowing the calculation of the color value at any point
inside the triangle.

2.2.2 Extension to arbitrary planar polygons: mean value coordi-
nates

It would be desirable to extend the previous definition of barycentric coordinates
to planar polygons of arbitrary shape (including non-convex), as well as to
the whole R2 plane (including points outside the polygon). If these polygons
are described by the vertices {v1,v2, ...,vn}, one would like to find smooth
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Figure 2.4 – Calculation of the mean value coordinates of the point p with
respect to the vertex vi of the polygon, represented by the thick line (both solid
and dashed). αi−1 and αi are the signed angles from the point p to the (i− 1)-th
and the i-th vertices, and to the i-th and the (i+ 1)-th vertices, respectively .

normalized barycentric coordinates {φ1, φ2, . . . , φn}, being φi : R2 → R, such
that, for any point p,

p =

n∑
i=1

φi(p)vi (2.15)

Additionally, to be valid for interpolation purposes, the Lagrange property
must be fulfilled:

φi(vj) = δi,j (2.16)

This is, the i-th generalized normalized barycentric coordinate of the i-th vertex
is the unity, and the rest are zero. Should this not be true, the interpolated
value of a function on the vertex would not coincide with the value coming from
the vertex itself!

As discussed in [23], there is no easy obvious choice for such coordinates,
since most choices either are not well-defined everywhere in R2 or do not satisfy
the Lagrange property.

As a solution to this problem, mean value coordinates were proposed
by M. Floater in [9] for the interior of convex polygons and later extended to
arbitrary planar polygons and the whole R2 plane in [23]. Let p represent a point
in the R2 plane and Ψ an arbitrary planar polygon without self-intersections. As
can be seen in Figure 2.4 the weight function with respect to the i-th polygon
vertex vi is defined as:

wi(p) =
tan(αi−1/2) + tan(αi/2)

‖vi − p‖
(2.17)
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where αi−1 and αi are the signed angles1 from the point p the (i − 1)-th and
the i-th vertices, and to the i-th and the (i+ 1)-th vertices, respectively . The
normalized mean value coordinates are defined as:

φi(p) =


wi(p)/

∑
ij wj(p) if p /∈ Ψ, with wi from Eq. 2.17

(1− µ)δi,j + µδi,j+1 if p ∈ (1− µ)vj + µvj+1 ∈ ej

δi,j if p = vj

(2.18)

where ej denotes the edge of the polygon between the j-th and the (j + 1)-th
vertices. Note that the wi are three-point coordinates, in the sense that they
depend only on vi and its two neighbors vi−1 and vi+1.

With this definition, the normalized mean value coordinates satisfy the
following important properties:

1. Affine precision.

f(p) =
∑
i

φi(p)f(vi) (2.19)

for any affine function f to be interpolated.

2. Lagrange property. φi(vj) = δi,j .

3. Smoothness. φi is C
∞ everywhere except at the vertices, where it is only

C0.

4. Partition of unity.
∑

i φi = 1.

5. Positivity. φi is positive inside star-shaped polygons.

The first property can be used for image warping. Given a gray-level image in a
rectangular region I : Ω → R and a source polygon Ψ with vertices vi, and a
target polygon Ψ̂ with vertices v̂i(both must have the same number of vertices)
we would like to find a smooth warp function f : Ω → Ω that maps each vi to
its respective v̂i. This warp function can be used to deform the source image I
into a target image Î by simply setting Î = I ◦ f−1 = I ◦ g. It can be shown [23]
that the function

g(x) =

n∑
i=1

φ̂i(x)vi (2.20)

where φ̂i(x) are the normalized mean value coordinates of x with respect to v̂i,
maps each v̂i to vi and therefore it defines an appropriate warp function. To
generate the warped image Î, the intensity of each pixel x in Î is set to the
intensity of the source pixel g(x) in I, interpolating if necessary (see Figure 2.5
for an example).

2.3 Cage Active Contours

Cage Active Contours (CAC) [8] is a segmentation framework that combines
computer graphic deformation techniques and parametrized active contours. It
introduces the idea of parameterizing the contour according to a reduced set of

1The signed angle is positive if the involved vertices are traversed counterclockwise, and
negative if they are traversed clockwise.
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Figure 2.5 – Warping an image with mean value coordinates by moving the
vertices of two nested polygons (one convex and one star-shaped), marked in blue.
From [23].

Figure 2.6 – Stretching example of a region using the CAC framework. The cage
vertices vi are the only ones allowed to move independently, being the displacement
of the points p governed by those via an affine transformation. Note how the point
p closer to the moving vertex vi is the one that suffer a larger displacement, while
the rest of marked points, farther from vi, are barely affected. Figure from [8].

control points, that drive the evolution of the contour. This parametrization
uses mean value coordinates (see Section 2.2.2), a generalization of barycentric
coordinates to arbitrary planar polygons.

The control points vi are often disposed forming a rectangular shape that
encloses the contour. These points are denominated“cage points”, what motivates
the name of the framework. During the segmentation optimization, the control
points are the only ones allowed to move independently, being the contour points
displacement governed by the evolution of these control points (see Figure 2.6).
Actually, due to the use of region-based energies within the framework, not only
the contour points are controlled by the cage points, but also a subset of the
points inside and outside the segmentation region.

The mean value coordinates of the points of the evolving regions with respect
to the cage control points φi(p) are calculated only once at the beginning of the
optimization using Eq. (2.18). Every time a cage control point moves, the new
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position of the region points can be computed (interpolated) for each of them2

using Eq. (2.19) with fi = vi:

p =

n∑
i=1

φi(p)vi (2.21)

Due to the nature of the mean value coordinates, the closer an image point
is to a cage control point, the more influence has this last one over the image
point. That is, when a cage control point moves, the image points closer to it
are the ones that suffer a larger displacement, while the image points far from it
are barely affected (see Figure 2.6).

Since the only points that can move independently are the cage control points
vj , the optimization is formulated in terms of these control points, i.e. we look
for the configuration of vj that minimizes the energy functional. Therefore the
gradients are expressed with respect to vj , but thanks to the linearity of Eq.
(2.21) their computation is straightforward. The derivative with respect to the
variation of the x position of the j-th control point vxj is:

∂E

∂vxj
=
∑
p

∂E

∂px

∂px
∂vxj

=
∑
p

∂E

∂px
φj(p)

and analogously for vxj :

∂E

∂vyj
=
∑
p

∂E

∂py

∂py
∂vxj

=
∑
p

∂E

∂py
φj(p)

The latest two equations can be combined into a more compact form:

∇vjE =
∑
p

φj(p)(∇pE) (2.22)

The CAC optimization process given the initial position of all control cage
points and the initial mask is summarized in Algorithm 1. Here we would like to
detail only the first step of the algorithm.

The algorithm is started by means of a binary mask image from which the
internal Sin and external Sout pixels are extracted. In those, pixels that are
assumed to belong to the regions of interest are marked with 1 whereas the
rest are marked with 0. This binary image is automatically extracted and is an
approximation to the real object of interest.

The starting segmentation region is specified as a mask image: A binary
image where the pixels within the segmentation region have value 1 and the rest
of them (outside the segmentation region) have value 0. The dimensions of the
mask image and the image where segmentation optimization is to be performed
must coincide.

From the mask image, the position of the pixels inside, outside and at the
contour of the segmentation region are obtained using standard image processing
techniques:

2Both the computation of the mean value coordinates and of the new position for each
point are completely independent and therefore are open to parallelization.
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Algorithm 1 CAC optimization procedure.

1. Extract the contour, in and out evolving regions from the mask.

2. Calculate the mean value coordinates of the pixel points φi(p) in the
previous regions with respect to the initial cage control points vj using
Eq. (2.18). These mean value coordinates remain fixed during the whole
optimization process.

3. While the termination condition is not fulfilled:

(a) Recover the position of the points of every region using Eq. (2.21).

(b) Calculate the energy of the current configuration of regions. In [8]
edge- and region-based image energies, as well as an internal energy
that favors shorter-length contours, are used.

(c) Calculate the gradient of the energy being used with respect to the
movement of the vertices, using Eq. (2.22).

(d) Use a gradient descent method or L-BFGS (a limited memory quasi-
Newton optimization method) to update the position of the control
cage points vj to a position of smaller energy, if possible.

• The inside region Sin corresponds to all pixels with value 1 in the mask
image.3

• The outside region Sout does not correspond to all the pixels of the image
that are not part of the inside region, but constitute a thin band near the
contour:

Sout = Dilation(Sin, dout)− Sin (2.23)

where dout is the dilation width (see Figure 2.7). This way we can avoid
considering image information far from the active contour that is not
important for the optimization process and can even affect it negatively.

• The contour C is extracted from the binary mask following the boundary
of the pixels with value 1 with the pixels with value 0 either clockwise or
counterclockwise.

In all cases the position of the points of the contour is described parametrically
in terms of the position of the cage control points vj , and therefore Cage Active
Contours is regarded a parametric snake method (cf. Section 2.1).

An interesting property of the Cage Active Contour method is that the
smoothness of the solution is preserved directly thanks to the position interpo-
lation process. Therefore there is no need to introduce an additional internal
energy term like the one of Eq. (2.2) to favor smoothness.

The framework was evaluated using synthetic and real-world images showing
reasonably good results, but leaving large room for improvements in the field of

3In the SCAC implementation we use an inner band near the contour instead (see Figure
3.2 at page 31).
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Figure 2.7 – Dilation to find the Sout region. The dotted line corresponds to the
segmentation contour.

medical imaging. One of the possible improvements is to combine Cage Active
Contours with Active Shape Models, described in the next section.

2.4 Active Shape and Appearance Models

Since their publication in 1995, Active Shape Models (ASM) [7] have been a
popular technique to incorporate a priori knowledge about the acceptable ways
a contour model can deform to fit desired boundaries. The basic premise behind
ASM is that a model should only be able to deform in ways characteristic of
the class of objects it represents. For example, a model for the contour of an
apple can deform to account for the varieties in size and relative shape apples
can have, but the probability of that shape to become triangular is very low.

In ASM, contour models are built by learning patterns of variability from a
representative training set of landmarked images. These models can afterwards be
used to fit image boundaries using methods like parametric snakes, constrained so
these snakes can only deform in ways consistent with the training set, increasing
robustness. Although the framework is general, the shape and appearance models
built are specific for each application.

2.4.1 Building the model

This technique relies on objects to be represented by a set of landmark points
that are placed manually in the same logical positions in all training examples.
These points can represent either the boundary of the object or any feature or
point of interest inside it. In order to compare relative displacement of equivalent
points from different shapes, they must first be aligned with respect to the same
set of axes. To do so, the shapes of the training set are rotated, translated
and aligned with their mean using an iterative method to minimize the squared
distance between equivalent points (see Figure 2.8).

After the shapes have been aligned, the variations in the positions of each
of the points along the training set is analyzed to build a so-called Point
Distribution Model (PDM) that encodes the main modes of variation of
the points. These modes of variation are uncorrelated between them and can
be used as parameters to represent the shapes. This way, simple limits on each
parameter act as constraints so only shapes similar to those in the training set
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Figure 2.8 – Scatter of some points from aligned set of resistor shapes, with the
mean shape overlaid. Figure from [7].

can be generated.
To construct this PDM, each example shape of the training set in the

coordinate frame of the aligned shape is represented by a single point x in a
2n-dimensional space, being n the number of landmark points:

x = (x1, y1, x2, y2, . . . , xn, yn)

If there are N examples, the N points in this 2n-dimensional space are
expected to lay in a region of space that represents the allowable shapes of
the object being modelled. Assuming that the allowable shapes region is an
ellipsoid4, Principal Component Analysis (PCA) [24] is applied to the data
to extract the principal modes of variation as orthogonal deviations from the
mean. This way, any shape can be represented as

x = x̄+ Pb (2.24)

where x̄ = (x̄, ȳ) is the mean of the positions of every point in the coordinate
frame of the aligned shape, P is the matrix whose columns are the eigenvectors
Pi (i = 1, 2, . . . , n) corresponding to the principal components and b is a
2n-dimensional vector parameter that represents the linear decomposition of
the deformation of the shape in terms of the determined principal components.
Usually, only the first r components with higher corresponding eigenvalues λi,
which accumulate most of the variance, are taken into account, which are often
enough to approximate every shape reasonably well. Mathematically

r = min

{
k such that

k∑
i=1

λi ≥ evar

}

where evar is the accumulated variance limit. In this last case, i = 1, 2, ..., r and
the parameter vector b would have dimension r.

To restrict the model to generate only plausible shapes, limits are imposed
upon the values of the linear parameter b. If the variance of each main component
correspond to λi, [7] states that suitable limits are of the order of

− 3
√
λi ≤ bi ≤ 3

√
λi, (2.25)

where bi is the coefficient of b corresponding to the i-th principal component
(i = 1, 2, . . . , r). It is important to note that, in general, imposing equivalent

4This implies the assumption of that the variation modes of the PDM move the landmark
points along straight lines. The assumption fails when bending or relative rotational effects
occur in the shapes (cf. [7]).
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Figure 2.9 – Effects of varying the first (left), second (center) and third (right)
parameters of a resistor model. Figure from [7].

Figure 2.10 – If two or more shape parameters (s1 and s2) are correlated over a
set of shapes then simple ranges to the parameters do not restrict shapes to ones
similar to those in the original set. Figure from [7].

limits over the original coordinates of the points of the shapes does not guarantee
that the model generates only allowed shapes, because of the possible correlations
between coordinates (see Figure 2.10). Here, PCA ensures that all the principal
components are orthogonal (non-correlated).

2.4.2 Using the model in image search

After having constructed the shape model for the objects of our interest, we
would like to use it to find new examples of objects in images. For example, if we
have modelled the contour of an apple, we would like to input an unannotated
image of an apple and use an algorithm based on the model to find its contour
intelligently. This algorithm is very similar to the one used for active shape
models (snakes), with certain constraints.

Starting from an initial contour that can be, for example, the mean shape, we
proceed iteratively. Let X = (X1, Y1, ..., Xn, Yn) represent the current position
in the Cartesian frame of the landmark points of the model, initialized using the
mean shape, Genetic Algorithms or taking into account any prior knowledge. At
each step, we first use the classical tools from parametric snakes optimization
(see Section 2.1), to find the expected optimal adjustments to the positions of
the points dX = (dX1, dY1, ..., dXn, dYn) from the current estimate X. From
this, we find the translation t, rotation θ and scaling factor s that better maps
the current estimate X to (X + dX), using standard matrix methods [7]. If
this transformation is denoted by T (s, θ, t)[X], the problem consists on finding
the parameters s, θ and t such that the norm of the residual adjustments
dx = (X+ dX)− T (s, θ, t)[X] is minimized:

argmin
s,θ,t

‖(X+ dX)− T (s, θ, t)[X]‖

20



Now we can calculate the change in the model parameters db to account
for the residual adjustments dx needed. Note that this deformation will not be
fully achievable in general, since the shape is only able to deform in the modes
imposed by the selected principal components of the model constructed.

Following Eq. 2.24, we wish to find db such that

x+ dx ≈ x+ P (b+ db) (2.26)

The variation in the mode coefficients to approximate the deformation is therefore
given by

db = PT dx, (2.27)

where we can impose the limits stated above on the values of bk to deform only
to shapes consistent with the training set.

2.4.3 Active Appearance Models

Active Appearance Models (AAM) [25] combine the statistical model of
shape of Active Shape Models with a statistical model of the (gray-level) intensity
appearance of the object of interest, in a shape-normalized frame. This way, the
model can not only accommodate to the shape of new valid image examples,
but can also synthetise them using the gray-level model. Continuing with the
example of the apple, with AAM we will not only be able to find its contour,
but also to generate a synthetic image of the apple itself.

As in ASM, a set of training images are landmarked, aligned and analyzed
using PCA to construct a Point Distribution Model of their shapes, controllable
using a finite set of shape parameters bs in the linear model:

x = x̄+ Psbs (2.28)

To build the appearance model, all training images are first warped to match
the mean shape (using a triangulation algorithm) and normalized. The gray-level
appearance of any shape-normalized training image can then be described by a
vector g. Applying PCA to the g vector of all images we obtain the linear model

g = ḡ + Pgbg, (2.29)

where ḡ is the mean normalized gray vector, Pg is a matrix whose columns
correspond to the orthogonal modes of intensity variation and bg is a set of
gray-level parameters. It is important to note that both parameters control the
model in a normalized frame: bs in the normalized frame of aligned (rotated,
translated and resized) shapes and bg in the normalized frame of images warped
to the mean shape.

Now the approximate shape and appearance of any training image can be
encoded in the parameter vectors bs and bg. To avoid any possible correlations
between the shape and the gray-level variations, a concatenated vector parameter
b = (Wsbs,bg) is generated (where Ws is just a diagonal matrix of weights to
account for the difference in parameter units) joining both shape and gray-level
parameters. Applying PCA to it gives a further model

b = Qc (2.30)
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Figure 2.11 – AAM applied to faces. Left: first two modes of shape variation.
Right: first two modes of gray-level variation. Figure from [25].

where Q = (Qs, Qg)
T is the matrix of eigenvectors and c the appearance param-

eters, that now encode both the shape and gray-levels of the model:

x = x̄+ PsWsQsc (2.31)

g = ḡ + PgQgc (2.32)

To synthesize an image given c, we can generate the shape normalized image
from the vector g using Eq. (2.32) and then warp it to the control points
described by x using Eq. (2.31) and a triangulation algorithm (see Figure 2.11
for an example application to faces).

The method presented above is designed to work with 2D images, but 3D
approaches have also been developed [26, 27, 28].

Active Appearance Models Search We now turn to the central problem
these models try to address: Given a new unlandmarked image containing an
object an appearance model has been built for, adjust the parameters c so that a
synthetic example can be generated that matches the image as closely as possible,
i.e. minimize the intensity difference |δI|2, being

δI = Ii − Im (2.33)

where Ii is the intensity of the pixels of the real image and Im the intensity of
the pixels of the image synthesized by the model. To ease this apparently diffi-
cult, high-dimensional optimization problem, [25] assumes a linear relationship
between the image intensities and the parameters5:

δc = AδI (2.34)

where A is a matrix found by multivariate linear regression on a sample of known
model displacements δc and the corresponding difference images δI, generated
by a perturbation of the parameters of real or synthesized images.

The procedure to fit the model to a new input image given an initial estimate
of the model parameters c0 is summarized in Algorithm 2. The use of a multi-
resolution implementation that iterate to convergence at each level before going
to the next level of detail has reported a faster and more robust convergence.

5This assumption is later experimentally shown to be valid only over a limited range of
values of the parameters c: around 0.5 standard deviations from the mean.
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Algorithm 2 Image search in AAM

1. Repeat until no improvement can be made or convergence is declared:

(a) Synthesize a model image gm from c0.

(b) Calculate the shape positions x from c0 and warp the input image to
these positions, obtaining the sample image gs.

(c) Evaluate the current error vector δg0 = gs − gm.

(d) Compute the predicted displacement δc = Aδg.

(e) Perform a line search using c1 = c0 − kδc, with k from 1 to 0.25
(gradient descent), aiming to reduce the magnitude of the error |δg1|2.

2.4.4 ASM and AAM for medical imaging

In [6], the shape of the left ventricle of the heart as seen in an electrocardio-
gram is encoded into an ASM, marking 11 key positions and generating the
rest of landmark points by equally spacing points along the boundaries between
these key positions. An appearance model is then constructed from the one-
dimensional gray-level profiles normal to the contour at each landmark point.
This model is also applied to a 3D model of the brain ventricles, using the
projected segmentation of each slice as the starting boundary for the next one.

In [29] Active Appearance Models are used to construct a deformable brain
atlas (see Section 2.5 for an introduction to atlas-guided segmentation) model
from a set of manually landmarked images. Following the AAM algorithm
described above, the atlas can match new images of brain MR cross-sections by
minimizing the pixel/voxel differences.

In [30], a composite 3D AAM of the surfaces of multiple brain structures is
constructed, as well as an individual model for the left and right caudate nuclei.
Segmentation starts with affine registration to initialize the model within the
image, then a search using the composite model. This provides a reliable but
coarse segmentation, used to initialize the search with the individual caudate
models.

A novel feature present in this last work is that the models are built directly
from the labelled volumes, without the need of manually placing corresponding
landmarks on each training image. Following the steps described in [31], the
image volumes are divided in multiple quadrahedra. The appearance of the
pixels inside each quadrahedrum is controlled, via an affine transformation, by
the movement of the vertices of the figure, that act as control points (cf. Figure
2.12). The Point Distribution Model is then built using the control points as
landmarks. A similar approach is presented by the same authors in [32].

2.5 Atlas-guided segmentation

As mentioned in the Introduction, automated medical image segmentation is a
challenging task due to the high variability of the properties of the structures
to be segmented as well as image artifacts resulting from partial volume effects,
the presence of noise and motion blur or the lack of contrast or other clear
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Figure 2.12 – Example slices with control points superimposed. Figure from
[31].

visual boundaries between structures. Therefore, introducing a priori anatomical
information is crucial for simplifying the segmentation process. We have already
seen an example of how this can be done in practice in the case of region-based
energies: manually specifying the mean and/or the variance of the intensity of
the regions.

Atlas-guided segmentation is a powerful template-based technique that
uses all this anatomical a priori information. There, an anatomical map of
the region of interest (e.g. the brain), which constitutes the so-called atlas, is
constructed and labelled manually. Labelling (segmenting) an input image then
reduces to finding an appropriate transformation that aligns the input image
with the atlas, and then propagating the atlas labels to the image.

One can think of atlas-guided labelling as a process equivalent to transferring
to a an aerial photography taken from a plane the labels of a map of the area.
The features present in the photo (coastline shape, mountains, etc.) can be
used to match it to the map. Once the transformation that establish a correct
correspondence between the photo and the map has been found, all points of
interest can be propagated from the map to the photo itself. Figure 25 shows an
example of aerial image registration using feature matching.

The main shortcoming of atlas-guided segmentation is that it depends strongly
on the images to be similar to the atlas used. Choosing a atlas which is too
different might lead to severe segmentation errors. Also, if the structure to be
segmented shows a high variability, it might not be possible to find a suitable
atlas that works well with the whole population of study. To overcome this
last issue, models using multiple atlases have been developed. The atlases are
selected using meta-information such as age, sex, disease, etc. or using similarity
metrics. To combine the results from all the atlases selected, voting rules are
commonly applied [34].

2.5.1 Single-subject and probabilistic atlases

In the context of medical imaging, an atlas can be defined [34] as a combination
of two images: an intensity image, used as a standardized template, and a
segmented image with the labels of every region of the template. Mathematically,
an atlas can be defined as two mappings from points in a n-dimensional space
to intensity values and labels, respectively,

A : ΩA ⊂ Rn → R
LA : ΩA ⊂ Rn → L
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(a) (b)

(c)

Figure 2.13 – Registration of two satellite images using feature matching. The
numbered spots on images (a) and (b) correspond to the matched features. This
information is later used to deform the images and construct the registration result
(c). Figure from [33].
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Figure 2.14 – Tissue probability maps of the International Consortium for
Brain Mapping (ICBM) probabilistic atlas, constructed over MR images of
the brain of 452 subjects. (a) MR image, (b) white matter probability
map, (c) gray matter probability map, (d) cerebrospinal fluid probability map.
Figure from [34]. This and other probabilistic atlases can be downloaded
from http://www.loni.ucla.edu/ICBM/Downloads/Downloads ICBMprobabilis-
tic.shtml.

where the first mapping corresponds to the template image (here gray-level)
and the second one to the labelling image. Here L = {1, 2, 3..., C}, where C is
the number of classes, and ΩA represents the domain of the atlas images. In
medical imaging, atlas-guided segmentation is often applied to MRI volumes,
and therefore most atlases have spatial dimension n = 3.

The atlas definition given above correspond to topological, single-
subject, deterministic atlases such as the popular Talairach atlas for the
brain [35]. To better characterize the inter-subject variability of the structures
to be segmented, a number of so-called population-based, probabilistic or
statistical atlases have been constructed. The procedure to construct these
atlases usually consists on registering MR images coming from several hundreds
of subjects to a well-known deterministic atlas (the Talairach one in the case of
brain images), normalizing the intensities of all images and finally averaging the
results of all them to create probabilistic maps for each type of tissue (see Figure
2.14 for an example). In this last case, we can define a probability function for
each correspondingly labelled volume:

LA,c : ΩA → [0, 1]

where c ∈ L.

2.5.2 Image registration

As pointed out above, once an atlas has been selected, segmenting an input
image reduces to matching the image to the atlas template (warping it) using
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a parametrized transformation for all voxels and then propagating the atlas
labels back to the image. If the second image to be aligned is defined as
B : ΩB ⊂ Rn → R, then the transformation that maps the coordinates of that
image to the coordinates of the atlas image can be expressed as T : Rn → Rn.
The key process of finding the appropriate transformation mapping T that aligns
both images is known as image registration and constitutes an active field of
study and research on itself.

Note that for the image registration algorithms to work, in addition to the
coordinate transformation T , we need an interpolation mechanism to transform
the input image to the space of the reference image in a way we can overlay
both images and see the differences. The problems that might arise from the
differences in the sample spacing of both images are discussed in [36].

For deterministic atlases the labelling function TL can be defined as

TL :ΩB→L
x →LA(T (x))

In the case of population-based atlases, an analogous function can be defined
for each class, that determines the probability of any voxel of belonging to that
class.

There are already plenty of good surveys about medical image registration
methods in the literature [36, 37, 33, 34]. Here we only provide some information
about the two main types of registration transformations available.

Types of transformations

Image registration for automatic segmentation of complex organs like the brain
is usually decomposed in two steps.

The first one is used to obtain a coarse, computationally cheap, initial
alignment corresponding to an affine or rigid transformation to correct
for the gross image differences. In rigid transformations all distances between
points in the image are preserved. Rigid transformations have a total of 6 degrees
of freedom: three translations and three rotations. In addition to rigid-body
transformations, some algorithms add three degrees of freedom for anisotropic
scaling and another three for skewing, resulting in a total of 12 degrees of freedom.
These last type of transformations are called affine transformations and
have the properties of that they can be written in matrix form and that all the
parallel lines are preserved.

This kind of image registration is sometimes used for intra-subject registration,
since it can be used to align images of single subject but that come from different
image modalities or are deformed due to the characteristics of the acquisition
equipment, movements of the patient, etc.

Since there are many organs that do not only stretch or shear, a second step
of local, non-affine registration is often used to adapt the general model to
an specific anatomy, with a higher computational cost. This type of registration
is usually used for inter-subject registration, although it can also be used, for
example, to study the evolution of a certain organ within a single subject.

We can regard non-affine registration as a deformation field that indicates the
displacement needed at each voxel in one image to align it with the corresponding
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Figure 3.1 – Overview of the SCAC approach applied to the segmentation of an
apple. The ASM is constructed from the deformations that map the base mask to
the training masks, that correspond to example shapes of apples. This ASM is
later used during energy minimization using Cage Active Contours to segment
the image of the apple.

voxel of a second image. This alignment can be performed using a variety of
methods like thin-plate splines, a linear combination of polynomial terms, b-spline
surfaces, fluid or elastic differential equations [36].

3 Smart Cage Active Contours

In this part of the work we explain how do we combine the Cage Active Contours
(CAC) framework with Active Shape Models (ASM), both described in Section
2, to construct the Smart Cage Active Contours (SCAC) segmentation
method.

Let us assume that we have a set of K binary masks Mi (i = 1, 2, . . . ,K)
representing the shape of a certain type of structure we want to model, indicating
for all pixels of each image, which ones correspond to the structure and which
ones do not. We will call this set of mask images “training masks”.

Let us further assume that we have an unsegmented image where the cited
structure, that we want to segment, appears.

The steps of the method are illustrated in Figure 3.1 and can be summarized
as follows:

1. Construct an Active Shape Model from the set of training masks, using
CAC and an energy based on the sum of squared intensity differences
between a base mask and the manual segmentations.

2. Use CAC with edge- or region-based energies to segment the image by
adjusting the (constrained) parameters of the constructed ASM.

These steps are explained in the following subsections in detail.
In this work we will assume that all images are adequately aligned, translated

and scaled so there is no alignment step necessary in the ASM procedure
and therefore all deformations are expressed with respect to the local, aligned
coordinate frame.
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Notation

In the next sections the following notation is used:

• Ω ⊂ R2 denotes the space of the images. Since the images are not infinite
but have limits, the region cannot be the whole R2 plane but a subset,
usually rectangular-shaped.

• I : Ω → [0, 1] represents an image. The image is described as a mapping
that assigns an intensity value between 0 (black) and 1 (white) to the
points of the plane inside the image region.

• p = (x, y) ∈ Ω denotes the coordinates a 2D point in the plane.

• Φ(p) = (Φx(p),Φy(p)) = p̂ denotes the coordinates where the point p
moves after being applied the affine transformation Φ.

3.1 Construction of the Active Shape Model

Here we describe the process to construct an Active Shape Model that encodes
the possible deformations from the mean shape to generate the different shapes
of the considered structure. The process is summarized in Algorithm (3).

Note that the base mask M0 and the initial positions of the cage control
points c0 are part of both the input and the output. This is to emphasize that
the ASM is constructed using these M0 and c0 as reference and will not be valid
if it is used with a different initialization. Therefore, the base mask and the
initial positions of the cage control points are considered “part” of the ASM itself.

3.1.1 Finding the cage deformations

As mentioned in the Introduction, one of the disadvantages of the original ASM
methodology is that a set of equivalent landmark points needs to be defined on
each training image, typically over the contour shape. These points have to be
placed at the same“logical” positions of the shape on every image for the method
to work correctly. Otherwise the model would be unable to represent correctly
the position of each point since it will include terms describing the noise caused
by errors in point locations.

To circumvent this issue, rather than constructing a PDM of the points that
constitute the contour, we construct instead a PDM of the cage points that
control the contour. This PDM will encode the variations on the positions of the
cage control points vj = (vxj , v

y
j ) to deform a base mask M0 to match the manual

segmentation Mi (taken here as ground truth) of the structure at each training
image. This base mask should be general enough to be able to accommodate to
the different structure shapes present in the training set, and the best way to
determine it depends on the particular application of the SCAC method.

Assume we are given a certain M0 which corresponds to a given (binary)
base segmentation mask. Our purpose is to deform M0 to match each Mi, as
described below. In the experimental Section 5 we will see how M0 is defined.

To find out which cage deformation corresponds to this matching we make
use of the CAC framework with a custom energy function based on the sum
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Algorithm 3 Construction of the Active Shape Model for SCAC

Input:

• Set of training masks Mi, where i = 1, . . . ,K.

• Base mask M0.

• Initial positions of the cage control points c0.

• Contour C, inner region Sin and outer region Sout extracted from the base
mask of the ASM M0.

Output:

• ASM including:

– The r principal component vectors Pi

– Their r associated eigenvalues λi

– The mean configuration of control points c̄.

– The base mask M0 (same as input).

– The initial positions of the cage control points c0 (same as input).

Procedure:

1. For all training masks Mi:

(a) Set the initial position of ci to c0.

(b) While the termination condition is not fulfilled:

i. Find the current position in the image of the points of C, Sin and
Sout, that are parametrized with respect to ci, using Eq. (2.15).

ii. Compute the image energy for the current configuration using
Eq. (3.1).

iii. Calculate the image energy gradients using Eqs. (3.5) and (3.6).

iv. Use the gradient descent algorithm to decide the next value of ci,
that lowers the total energy, if it exists.

2. Apply PCA to {ci}Ki=1, obtaining the r principal components Pi, their
associated eigenvalues λi and the mean configuration of control points c̄.
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Figure 3.2 – Sin and Sout regions extracted from the base mask (in solid, thick
stroke) using an erosion of din and a dilation of dout.

of squared intensity differences (SSD) between the base mask and the manual
segmentation:

ESSD =
1

|Sin ∪ Sout|
∑

p∈Sin∪Sout

‖Mi(Φ(p))−M0(p)‖ 2 (3.1)

where p = (x, y),M0 : Ω ⊂ R2 → [0, 1] denotes the intensity of base segmentation
mask and Mi : Ω ⊂ R2 → [0, 1] the manual segmentation mask, both defined
over the image space Ω.

The Sin and Sout regions correspond to bands around the contour constructed
from the dilation and erosion of the base mask M0:

Sin = M0 − Erosion(M0, din) (3.2)

Sout = Dilation(M0, dout)−M0 (3.3)

where din and dout are adjustable dilation parameters corresponding to the width
of the in and out bands (see Figure 3.2). This constitutes a difference with
respect to the original CAC formulation, where the Sin region corresponds to
the base mask itself, i.e. Sin = M0. The contour C is extracted from the mask
using the Canny method [38]. After extraction, the relative position of all points
belonging to these three regions with respect to the cage control points vj are
calculated. From then on, their position is governed by the movement of the vj .

Remember that the Cartesian position of a point in the image can be recovered
from the position of the control points and the mean value (affine) coordinates
with respect to it:

Φ(p) =
∑
i

ϕi(p)vi = (Φx(p),Φy(p)) (3.4)

The derivative of the energy expression (3.1) with respect to the x coordinate
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of the vertices of the cage, vxj is:

∂ESSD

∂vxj
=

∂ESSD

∂Φx(p)

∂Φx(p)

∂vxj
=

=
2

|Sin ∪ Sout|
∑

p∈Sin∪Sout

‖Mi(Φ(p))−M0(p)‖
(
∂Mi(x, y)

∂x

)
Φ(p)

φj(p) (3.5)

and similarly for the y coordinate:

∂ESSD

∂vyj
=

∂ESSD

∂Φy(p)

∂Φy(p)

∂vyj
=

=
2

|Sin ∪ Sout|
∑

p∈Sin∪Sout

‖Mi(Φ(p))−M0(p)‖
(
∂Mi(x, y)

∂y

)
Φ(p)

φj(p) (3.6)

The initial position of the set of cage control points v0 can be specified
manually or be automatically determined from the base mask using user-defined
criteria. In Section 4 we discuss a suitable choice for our application to brain
image segmentation, although the problem of finding the optimal initial positions
of the cage control points (optimal as in providing best segmentation results) is
out of the scope of this work and has been proposed as future work.

3.1.2 Principal Component Analysis

After finding out the cage deformations that adjust the atlas base mask to the
manual segmentations, the next step is to perform the principal component
analysis (PCA) of these deformations. The deformation vectors are constituted
by the concatenated x and y positions of the control points of every deformed
cage for each image. If there are n cage control points these feature vectors are
2n-dimensional and take the form:

c = (vx1 , v
y
1 , v

x
2 , v

y
2 , . . . , v

x
n, v

y
n) (3.7)

From the analysis we extract the identified orthogonal6 principal components
Pi, their associated eigenvalues λi (which correspond to the variances) the
percentage of the total variance they explain and the mean position of the
control points c̄ (that produces the mean shape). We take only the first r
most important principal components that accumulate evar of the variance and
therefore can explain most deformations.

The ASM of the structure is therefore given by:

• The r principal component vectors Pi

• Their r associated eigenvalues λi

• The mean positions of the control points c̄.

• The base mask M0.

6As mentioned in [7], the orthogonality of principal components is crucial for the PDM to
effectively limit the allowable shapes to possible ones (see Figure 2.10).
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• The initial positions of control points c0.

It is important to understand that each of these principal components can
involve multiple control points and coordinates at the same time, what provides
significative expression power. Imagine we were modelling a circle and the
possible deformations were scale variations to make the circle smaller or bigger.
If the cage forms a square around the circle, a single principal component would
suffice to model the deformations. Rigid translations can also be modelled
with a single principal component (see Figure 2.9 for an example with resistor
shapes). However, due to their linearity, the principal components cannot express
rotations.

3.2 Segmentation of new images

We now have a model that encodes the possible deformations from the mean
shape to generate the different shapes of the considered structure. This model can
be used in combination with any image energy, including edge- and region-based
or an unification of both (see Section 2.1), to obtain a segmentation of any new
input image. The iterative optimization algorithm to apply to the image is
summarized in Algorithm 4.

We only need to know two things: how to calculate the energy and its
gradients in terms of the ASM parameters bi and how to limit the values of bi
to belong to produce only allowed shapes.

3.2.1 Energy and gradients in terms of the ASM parameters

When using the ASM, the cage control points cannot move independently: their
movement is controlled by the ASM parameters bi, and therefore the optimization
has to be formulated in terms of bi. But thanks to the linearity of the ASM it is
straightforward to compute the energies and their gradients with respect to bi.

Given b, the positions of the control cage points c can be calculated using
Eq. (2.24):

c = c̄+ Pb (3.8)

where c is the vector containing the x and y coordinates of all control points as
defined in Eq. (3.7). From the position of the control points, we can derive the
location of the points belonging to C, Sin and Sout and, from there, the image
energies.

Conversely, we can calculate the value of b that corresponds to a certain
known position of the control points:

b = PT (c− c̄) (3.9)

We make use of the chain rule to calculate the derivatives with respect to bi:

∂Eimage

∂bj
=

2n∑
i=1

∂Eimage

∂ci

∂ci
∂bj

=

2n∑
i=1

∂Eimage

∂ci
P i
j (3.10)

where P i
j denotes the value at i-th row and j-th column of the principal com-

ponents matrix. The previous equation can be expressed in a more compact
form:

∇bEimage = PT (∇cEimage) (3.11)
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Algorithm 4 Segmentation of new images using CAC and ASM

Input:

• ASM of the structure to segment, including Pi, λi, c̄, c0 and M0.

• Contour C, inner region Sin and outer region Sout extracted from the base
mask of the ASM M0.

• Image I containing the structure to segment.

• Image energy functionals to use, including any hyper-parameters needed.

• Parameters m and s of EASM .

Output:

• Segmentation mask indicating which pixels belong to the structure in the
given image MI .

Procedure:

1. Set the initial ASM parameters as bi = 0 ∀k. This gives us the mean shape.

2. While the termination condition is not fulfilled:

(a) Calculate the position of the control points c from the values of b
using Eq. (3.8).

(b) Find the current position in the image of the points of C, Sin and
Sout, that are parametrized with respect to ci, using Eq. (2.15).

(c) Compute the image energy for the current configuration.

(d) Calculate the image energy gradients in terms of the parameters b
using Eq. (3.11).

(e) Compute the ASM internal energy EASM and its derivatives using
Eqs. (3.12) and (3.13) and add them to the total energy and its
gradient.

(f) Use the gradient descent algorithm to decide the next value of b, that
lowers the total energy, if it exists.

3. Deform the base mask M0 using the cage control points deformation from
c0 to the last value of c, following the steps described in Section (3.2.3).
The deformed M0 gives us the required segmentation.
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Therefore the energy gradients can be computed with respect to the movement
of the cage control points and then apply Eqs. (3.8) and (3.11) to find the gradient
with respect to the principal components parameters b.

3.2.2 Limiting the possible shapes

For the model to generate only allowed shapes we place limits over the values
of the linear parameters bi. In [7] a range within three standard deviations is
proposed:

−3
√

λi ≤ bi ≤ 3
√

λi

To enforce similar limits during active contour segmentation, we use the
internal energy:

EASM =
∑
i

(
bi

s
√
λi

)2m

(3.12)

with derivative

∂EASM

∂bj
=

2m

s
√
λj

(
bj

s
√
λj

)2m−1

(3.13)

Values of bi within s standard deviations will produce energies smaller than
the unity, while values of bi out of this range will give energies larger than one.
The values of s and m can be tuned to specify the “variation width” and the
importance of these limits: the larger the value of m, the harder the limits will
be (see Figure 3.3).

The internal energy of Eq. (3.12) is included in the energy functional to be
minimized:

E = Eimage + EASM (3.14)

3.2.3 Deforming the base mask

Once the optimization is finished and we have the final position of the control
points vf , we generate deformed masks for each image using Eq. (2.20) to find
out which pixels of the given image belong to the structure. This corresponds to
step 3 of Algorithm 4.

Let v0 denote the position of the cage control points prior to optimization,
vf their final position after optimization on a certain image and M0 the base
mask. The steps to find the deformed mask MI are:

1. Use Eq. (2.18) to calculate the mean value coordinates with respect to the
final cage control points vf of all points p of the mask MI .

7 .

2. Compute the position x on the base mask M0 that corresponds to the
previous points p using Eq. (2.20).

7Since this calculation is quite time consuming, in our application we only consider the
region inside the minimal rectangle that covers all the control points of the final cage. We are
therefore making the assumption of that all non-zero pixels of the mask will lay inside this
rectangle.
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Figure 3.3 – EASM (b) for different values of s and m, with λ = 1. From top
to bottom: s = 1, 2, 3. From left to right: m = 1, 3, 5. Note how higher values
of s enlarge the range of movement, while increasing m makes the barrier b = s
stronger.

3. Set the intensity of the point p in the deformed mask MI to the intensity
of the point x in the base mask M0, i.e. set MI(p) = M0(x). Since x
will generally not lay exactly over a single pixel of the base mask, an
interpolation mechanism is used.

Due to the interpolation, some pixels of the deformed masks might have a
gray-level value that is neither 0 nor 1 but in between. Therefore a threshold
(for example at 0.5) is applied to decide which pixels belong to the structure.

4 Application to brain image segmentation

We now describe how do we apply SCAC to the segmentation of the right and
left caudate nuclei in magnetic resonance images. The application has been
implemented using Matlab 2011 and uses the library SPM 88. The SPM 8 library
is a toolbox for Matlab that uses the concepts of Statistical Parametric Mapping
[39] to implement a series of routines to register, segment, normalize and analyze
brain imaging data. It was designed to analyze fMRI data, but can be used
out-of-the-box to work with MRI data.

Let us assume that we have the MR grayscale brain image volumes of a set
of subjects and their corresponding manually segmented left and right caudate
nuclei as a binary mask volumes, as well as a suitable atlas with segmentation
labels for the caudate nuclei, being these labellings also described as binary mask

8Available at http://www.fil.ion.ucl.ac.uk/spm/.
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Figure 4.1 – Overview of the application of the SCAC approach to the segmen-
tation of the caudate nuclei in brain magnetic resonance images. The solid lines
correspond to the operations performed using SPM and the dashed ones to the
SCAC process itself.

volumes. Let us further assume that we have an unsegmented brain MR image
volume from another subject, where we want to localize the cited structures.

The approach is illustrated in Figure 4.1 and consists on the following steps:

1. Register the MR brain images of the manually segmented subjects as well as
of the unsegmented one with the atlas. Apply the same transformation to
the manual segmentations of the caudate nuclei of the segmented subjects,
bringing all them to a normalized space.

2. Construct an Active Shape Model for the shape variations of the caudate
nuclei on each slice, using the process described in Section 3.1 over the
manual segmentations of the structures in the normalized space, using an
anatomical atlas mask as base mask M0. There will be a different ASM
for each slice and structure.

3. Perform the segmentation of the caudate nuclei structures in the normalized
space, using the procedure described in Section 3.2 over the slices of the
MR brain image volume of the unsegmented subject.

4. Apply the inverse registration transformation to the segmented volume
found in the previous step to obtain the final segmentation in the original
space.

These steps are explained in detail in the next sections.
Cage Active Contours is a technique originally designed to work with 2D

images9. To be able to work with 3D brain structures, we simply extract

9There is a recent extension of Cage Active Contours to 3D in [40].
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transversal image slices from the image volumes, perform all operations over the
slices and construct back the volumes using the information from the slices.

4.1 Atlas-based registration

The first step consists on bringing the image volumes of all the subjects to the
same coordinate space so we can statistically analyze the deviations in contour
shape from the template later. From a Machine Learning perspective, what
we are doing is ensuring that all instances share the same features (which are
coordinates in this case) so we can learn patterns from them.

To do so, we warp the image volumes of both the segmented subjects and the
unsegmented one to match the atlas. This process is known as image registration
and is described in Section 2.5.2.

SPM 8 includes a function to perform image registration using a combined
model [41]. This function is based in a probabilistic framework that combines
tissue classification, bias correction and image registration into a single generative
model based on Gaussian mixtures to match the white matter, gray matter
and cerebro-spinal fluid of the subjects volumes being processed to defined
probabilistic templates. Since we have no specific needs, we use the default
parameters of SPM for the integrated tissue classification and normalization
process.

Apart from the normalized image volumes, the function produces by default,
among other things, the parametric specification of the spatial normalization
transformations for every subject (direct and inverse). These transformations
can be used later to transform from the original space to the normalized one
(direct) and from the normalized space to the original one (inverse). We use
these parametrized transformations to bring all the manual segmentations to
the normalized space of the atlas.

This pre-processing registration step can be seen as equivalent to the rotation
and scaling step to minimize the sum of squared distances between landmark
points in ASM [7]. Also, as noted in [30], a prior registration step can help to
initialize the segmenting contour closer to the structure of interest. Without a
proper initialization our method would probably fail to converge to the correct
solutions in most cases, since it relies solely on local cues close to the segmentation
region.

It is important to note that, while the original manual segmentations are
given as a binary masks (either a voxel does belong to a given structure or
it does not), the corresponding masks in the normalized space are no longer
binary but gray-level, being more interpretable as probability maps. This is so
because the registration transformation is not in general a one-to-one mapping
between voxels, but one voxel in the original space can end up laying partially
over several voxels and therefore the intensity values must be interpolated (here
we use the linear interpolation methods from SPM and Matlab). For a more
in-depth discussion about the issues that can arise during registration due to
the discrete nature of the medical images, see [36].

4.2 Construction of an ASM for each slice and structure

To construct an ASM encoding the possible shape variations of the left and right
caudate nuclei, we apply Algorithm 3 to the normalized manual segmentation
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(a) (b) (c) (d)

Figure 4.2 – Evolution of the Sin and Sout regions while minimizing the SSD
energy. The points belonging to Sin are shown in red and the ones to Sout in
blue. The arrows indicate the directions in which the energy would grow. (a)
Initialization, (b) after 4 iterations, (c) after 14 iterations and (d) after 28 iterations
(convergence).

masks. We create an ASM for each slice and structure where there is at least a
small portion of the caudate nuclei in the atlas mask, using the following inputs:

• Set of training masks Mi: manual segmentation mask for that slice and
structure.

• Base mask M0: anatomical atlas mask for that slice and structure.

• Initial configuration of cage control points c0: automatically determined
from the base mask. We use a rectangular cage with 8 control points
around the structure contour (see Figure 4.2 for an example).

The Sin and Sout band regions are extracted from the base mask using din = 20,
since we want to consider all the whole interior of the caudate nuclei, which is
narrower than 20 pixels and dout = 5, because almost all the background of the
slice images is black and therefore a narrow out band is enough (see Figure 4.2).

4.3 Segmentation using SCAC

We now follow the procedure described in Section 3.2 with a convex combination
of edge and region energies especially designed to take into account the anatomical
peculiarities of these caudate nuclei in the slice images. This energy combination
constitute an unified energy (see Section 2.1.1):

Eimage = αEedge + (1− α)Egauss (4.1)

where α is a parameter between 0 and 1 that allows us to balance the importance
of finding sharp edges and a region of uniform intensity. Figure 4.3 shows an
example evolution with α = 0.7. Again, we only apply the method to the slices
where the caudate nucleus is present in the atlas mask image.

The inputs for Algorithm 4 for each structure and slice are:

• ASM: the ones found in the previous section for that slice and structure.

• Image I containing the structure to segment: slice of the MR image of the
subject.

• Parameters m and s of EASM : tuned experimentally (see Section 5).

We now provide a detailed explanation of the energies used.
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(a) (b) (c)

Figure 4.3 – Example of SCAC segmentation evolution with α = 0.7. (a)
Initialization, (b) first iteration and (c) convergence. The red areas of (a) and
(b) show the interior region and the contour. (c) shows the contours for manual
(green), atlas-based (blue) and SCAC (red) segmentation after convergence.

Figure 4.4 – Two examples of MRI slices (left: overview and right: detail). The
red contour indicates the manual segmentation of the left caudate nucleus.

4.3.1 Region-based energies

As Figure 4.4 shows, the caudate nuclei are areas of gray matter surrounded
by white matter in the exterior part, and a hollow area (of black color) in the
interior part. As Figure 4.4 shows, the caudate nuclei are gray matter areas
surrounded by two types of tissues: white matter (light gray color in the image)
and cerebrospinal fluid (black color in the image). Since the caudate nuclei area
exhibits a quite similar and homogeneous gray color, we include a region-based
energy that enforces the intensity of this area to be uniform and close to a certain
mean.

However, the difference in intensities of the exterior of the caudates inhibits
us from including a term in the energy to enforce a similar intensity in the
exterior. For this reason, we set din = 20 to include the whole caudate nuclei in
the interior region, and dout = 0 so there is no exterior segmentation region.

For the interior region we can use the mean-based energy from Eq. (2.8) or
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the Gaussian energy from Eq. (2.7). If we estimate the value of σ2
in using Eq.

(2.10), the squared term of Eq. (2.7) vanishes and the Gaussian energy is just
the logarithm of the mean energy:

Egauss = log σin = logEmean (4.2)

To use the gradient descent method in the parametric snakes framework we
first need to compute the gradients with respect to the control points. The
derivative of the mean energy with respect to the movement of the cage control
point vj is:

∂Emean

∂vj
=

∂Emean

∂Φ(p)

∂Φ(p)

∂vj
=

=
2

|Sin|
∑

p∈Sin

(I(Φ(p))− µin)

φj(p)∇I(Φ(p))− 1

|Sin|
∑

p′∈Sin

∇I(Φ(p′))φj(p
′)

 =

=
2

|Sin|
∑

p∈Sin

(I(Φ(p))φj(p)∇I(Φ(p))− µinφj(p)∇I(Φ(p)))−

− 2

|Sin|

µin

∑
p′∈Sin

∇I(Φ(p′))φj(p
′)− µin

∑
p′∈Sin

∇I(Φ(p′))φj(p
′)

 =

=
2

|Sin|
∑

p∈Sin

(I(Φ(p))φj(p)∇I(Φ(p))− µinφj(p)∇I(Φ(p))) =

=
2

|Sin|
∑

p∈Sin

(I(Φ(p))− µin)φj(p)∇I(Φ(p)) (4.3)

where µin is defined at Eq. (2.9). The derivatives of the Gaussian energy take a
very similar form:

∂Egauss

∂vj
=

∂Egauss

∂Φ(p)

∂Φ(p)

∂vj
=

1

2σ2
in

∂Emean

∂vj
=

=
1

σ2
in

1

|Sin|
∑

p∈Sin

(I(Φ(p))− µin)φj(p)∇I(Φ(p)) (4.4)

As we can see both energy functionals are essentially the same, with the only
difference of that the gradient of the Gaussian energy functional is normalized
by the intensity variance. For this reason, we make use of the Gaussian energy
in our experiments and disregard the mean-based one.

To make the method more robust, we can take advantage of the fact that the
caudate nuclei always show a similar gray-level intensity and specify the mean
value µin manually, which ranges from 1 (white) to 0 (black). In our tests we
use µin = 0.65. To normalize the intensity of the caudate nuclei over all slices
we apply an intensity equalization preprocessing to the slice images prior to
segmentation.
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4.3.2 Edge energy

If region energies were used alone, the parametric snakes would evolve trying
to make the segmentation region smaller, since this way it is easier for all the
pixels inside to have a similar intensity. That is, the region energies alone do not
characterize the areas we want to segment, since a minimum in these energies
do not necessarily correspond to a good segmentation.

To solve this issue, we include an edge-based energy, based on Eq. (2.4), to
the previous region-based one:

Eedge = − 1

|Sin|
∑
p∈C

||∇I(Φ(p))||2 (4.5)

where C is the contour of the segmentation region. This contour C is obtained
using the Matlab implementation of the Canny method [38].

By using the edge-based energy, the contour is driven towards the regions
of the image with a larger variation in the intensity, that often correspond to
the boundary between brain structures. In our case, the boundary between the
caudate nuclei and the hollow area closer to the center of the brain is reasonably
clear and can therefore can detected with that gradient-based edge energy, but
the frontier with the white matter is not as clear (see Figure 4.4).

The derivative of the previous equation with respect to the x coordinate of
the cage control point vj takes the form:

∂Eedge

∂vxj
= − 1

|Sin|
∑
p∈C

(∂I(Φ(p))/∂x)
2
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and similarly for y:
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4.4 Inverse mapping

To be able to evaluate the quality of the SCAC segmentation we warp the resulting
mask back to the original space. To do so, we make use of the parametrized
transformation registration found in the first step of the process (see Section
4.1).

As happens with the first transformation step, it is important to note the
differences in the resulting masks in the original space. On one hand, the manual
segmentation masks are created manually labelling the structures at each slice
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in a binary way: a voxel either belongs to a structure or it does not. On the
other hand, the anatomical atlas and the SCAC masks are not binary but have
255 levels of gray10, representing the probability of a pixel/voxel to be part of
the selected structure.

4.5 Technical aspects

An important component of the work done in the context of the Master Thesis
was to write the Matlab code to perform all the operations described in Sections
3 and 4. The code of Smart Cage Active Contours is a completely new version
based on the code from [8], although a some stubs where taken from the work
from [40] and the functions used for atlas-guided registration were taken from
the code from [42].

Since this document is not intended as a complete guide to modify and extend
the SCAC code, the code listings will not be explained here (although they are
heavily commented and hopefully easy to follow along). However, in the next
subsections we comment on certain features of our implementation.

4.5.1 Platform and language

Although the code for the original Cage Active Contours framework was written
in C using the OpenCV and MegaWave libraries, we decided to switch to Matlab
for several reasons:

• Unlike C, Matlab uses an interpreted language, which allows faster proto-
typing and testing.

• Basic operations like fast matrix multiplication, vector manipulation, plot-
ting, etc. are easily accessible within Matlab.

• Matlab includes an image processing toolbox with useful functions similar to
those of OpenCV, like edge detection, image erosion and dilation, filtering,
etc.

• Scalability constraints were not severe. Most segmentation processes run
in less than a second, being the calculation of the mean value coordinates
one of the main bottlenecks.

• SPM runs on Matlab, therefore it is much easier to inter-operate with that
library if our code is also written for Matlab.

The code was tested to work on Matlab 2011 running on a Linux platform.

4.5.2 Modularity

Although the code was developed with the application to brain image segmenta-
tion in mind, there has been an effort to keep it modular and reusable. To this
end, the code included with this work has been split in two parts:

10In all cases, the image intensities are considered to be normalized and take values between
0 and 1, not between 0 and 255.
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• Smart Cage Active Contours. The method that combines Cage Active
Contours with Active Shape Models, which is independent of the medical
imaging application and can therefore be used to segment other kind of
images.

• Brain image segmentation using SCAC. Uses SCAC as a library and
takes care of manipulating the image volumes, transforming them to the
normalized space and back, and evaluating the quality measures, among
other MRI manipulation related tasks.

The code for brain image segmentation can be found in the Code folder of the
project, while the SCAC library is placed into the SCAC sub-folder.

4.5.3 Configuration parameters

To improve re-usability and understandability, all configuration parameters that
are expected to be specified by the user are placed in two files:

• The first file, named brain_parameters.m, is in the root of the project
code. It contains the parameters related to the application of the SCAC
method to segment the caudate nuclei in magnetic resonance images:

– Numerical ids of the subjects to consider. We can use the whole
database (40 subjects) or select a subset of them for all the process.

– Slices of the normalized space to work on using SCAC. The rest of
them will be considered mask background not containing any part of
the structure to segment.

– Accumulated variance limit for PCA evar. The system picks the
first principal components until this value of accumulated variance is
explained.

– Parameters s and m of the EASM energy defined in Eq. (3.12).

– Number of cross-validation folds nfolds to use for performance vali-
dation.

– Values of dASM
in and dASM

out for the determination of the inside and
outside regions when constructing the ASM from the masks.

– Values of dSCAC
in and dSCAC

out for the determination of the inside and
outside regions when using SCAC.

– Value of the parameter α of the unified energy of Eq. (2.11). The
closer this value is to 1, the more importance the edge energy acquires.

– Mean value intensity µin of the interior of the segmentation region.
A value of 1 is white, while 0 is black. If it is not specified, it is
estimated at each step using Eq. (2.9).

– Paths to the input, temporary and output folders for the placement
of the files used during the process.

• The second file, named defaultParameters.m, can be found in the SCAC
sub-folder. It controls the parameters specific to the SCAC method and
not related to the medical application:
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– Algorithm used to minimize the energy functional. Gradient descent
and L-BFGS are available. L-BFGS behaved strangely in our tests so
we stuck to basic gradient descent.

– Relative energy difference etol in an step to stop optimization. If
(E(xt+1)− E(xt)) /E(xt) < etol, the algorithm considers that a local
minimum has been reached.

– Maximum number of steps maxIter to stop optimization. If no local
minimum has been found after maxIter steps, the algorithm stops
and returns the last position x tested.

– Maximum position jump maxMove when using the gradient descent
optimization algorithm. When performing line search, consider only
displacements that satisfy max(xt+1 − xt) ≤ maxMove. This allows
to be conservative and avoid too large jumps that might affect the
robustness of the optimization.

– Padding π and complexity χ of the initial set of cage control points.
The initial cage will be rectangular, with sides at a minimal distance
of π pixels from the contour and 2χ+1 control points.

4.5.4 Verbosity and debug modes

To ease research, three levels of verbosity or “debug modes” for the SCAC
optimization can be set as a global variable during execution. From most verbose
to least verbose:

• DEBUGMODE = 2. At each iteration, show the evaluation value of
each of the energies and the gradient in the control point positions they
induce as vectors on the image.

• DEBUGMODE = 1. Show only the segmentation results after the
contour evolution finishes, which can be due to convergence or because
the maximum number of steps was exceeded. For the brain segmentation
application, the atlas-guided segmentation, the manual segmentation and
the SCAC segmentation, as well as the initial and final energies of this last
method, are also shown for comparison.

• DEBUGMODE = 0. No information about the energy values evolution
or figures are shown.

For the two most verbose debug modes, the execution pauses after showing the
information, having the user to hit any key to continue. Otherwise, the amount
of data output to the screen would be too much to be analyzed properly.

4.5.5 Unused implemented features

There are two features implemented in the SCAC code but that are not used in
the experiments in this work:

• Multiple region control using a single cage. The user can define several
regions (named “areas” in the code) to be controlled by a single cage
enclosing both regions. Each region can contribute to the cage control
points evolution with a custom energy function, chosen by the user. This
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Figure 5.1 – Example images of the transversal slices number 28, 30, 34 and 36
of a random subject from the dataset.

opens the possibility to combining local information from multiple regions
to achieve a more informed deformation. Also, it can be used to deform
one region using the information from another region.

• Multiple resolution depth. Instead of defining a fixed set of cage control
points, start with a cage of n points and evolve until convergence. Then
refine the cage placing one extra control point between each two points
(resulting in n2 points at this level) and evolve again. Repeat this as many
times as desired.

5 Experiments

Before presenting the results of our experiments, we describe the material and
methods of comparison, as well as the measures used to assess the quality of the
segmentation and the parameter adjustment and validation protocol followed.

5.1 Material

The magnetic resonance volume images of the subjects were taken from the
control set of the URNC Database. This is the database used in [42], which
includes 40 control subjects recruited from the community, compiled by the
Unit of Child Psychiatry at the Vall d’Hebron Hospital in Barcelona, Spain,
and coordinated by the Unit of Research in Cognitive Neuroscience (URNC)
at the IMIM Foundation. The mean age of the group was 11.7 (σ = 3). The
resolution of the scans is 256× 256× 60 pixels with 2-mm thick slices. Expert
segmentations of the 80 individual caudate nuclei (left plus right) was obtained,
using the MRIcro software11 for volume labelling and manipulation.

Figure 5.1 shows four examples of transversal projection slices from the
dataset, and Figure 5.2 shows examples of manual segmentations.

The atlas tissue probability maps (corresponding to gray matter, white matter
and cerebro-spinal fluid) we used for image registration are the standard ones
shipped with SPM, which are a slightly modified version of the ICBM Tissue
Probabilistic Atlas12. The atlas masks for the left and right caudate in the
normalized space were extracted from the Anatomical Automated Labelling
(AAL) atlas from [43].

11Available at http://www.mccauslandcenter.sc.edu/mricro/.

12Available at http://www.loni.ucla.edu/ICBM/ICBM Probabilistic.html.
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Figure 5.2 – Transversal slices number 28, 30, 34 and 36 showing the manual
segmentation of the left caudate nucleus of a random subject from the dataset.

Figure 5.3 – Flowchart of the atlas-guided segmentation approach used in this
work. Note that in this case the inverse transformation is applied is directly to the
atlas anatomical caudate masks, instead of to their deformed versions resulting
from the SCAC energy minimization process.

5.2 Methods

As mentioned in the Introduction, we compared the SCAC method against a
current state-of-the-art method: classical atlas-guided segmentation. The SCAC
method applied to brain image segmentation is described in Section 4. The
atlas-guided segmentation process for a subject is illustrated in Figure 5.3 and
consists on the following steps:

1. The brain image of the subject is elastically registered from the original to
the normalized space of the atlas using the unified segmentation and nor-
malization process implemented in SPM. From this calculation an inverse
deformation transformation can be extracted, that maps the normalized
space back onto the original one.

2. The inverse deformation is applied to the atlas masks of the caudate nuclei
to obtain their segmentation in the original space.
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5.3 Quality quantitative measures

We use two measures to quantitatively assess the quality of the resulting segmen-
tation volume masks, always comparing with the manual segmentation, taken as
ground truth:

• Volumetric union overlap (VO). We first convert all images to binary using
a probability threshold of 0.5: all voxels with a probability of 0.5 or more
to be part of the structure are considered part of this structure (and given
a value of 1), and the rest are discarded (with a value 0). Using R to
denote the estimated segmentation, G to denote the manual segmentation
and |·| to denote the cardinality of a set:

VO =

∣∣∣∣R ∩G

R ∪G

∣∣∣∣
A value of 1 indicates a prefect segmentation, while a value of 0 means no
overlap between the estimated segmentation and the manual one.

• Sum of squared intensity differences (SSD). We compare how far are the
estimated segmentations from the manual ones, without binarizing:

SSD =
1

|R ∪G|
∑

p∈|R∪G|

(IR(p)− IG(p))

where R represents here the voxels of the image volume that are not 0
and IR/G(p) the intensity value of the corresponding image volume at the
point p. In this case, a perfect segmentation would be represented by a
value of 0, while a totally wrong segmentation correspond to the value 1.

5.4 Parameter adjustment and validation protocol

As is widely known in the Machine Learning community, estimating the accuracy
of a model over the same data that was used to create the model (the training
data) is prohibited. This is so because when we construct a model we want to
encode some patterns but also to have generalization capabilities. The model
must be able to work with data that is similar to the training data (similar in
the sense that it follows a common pattern) but not necessarily identical.

If we checked the performance of a model over the training data we would
be probably obtain “too good” results. To avoid this problem we use a cross-
validation strategy and split randomly our subjects dataset in two:

• A learning dataset, with 75% of the subjects (30), used to create and tune
the model. We further split this set in 5 to adjust the parameters using
5-fold cross-validation. For each cross-validation iteration, we denominate
“training” to the set used to construct the ASM (see Section 3.1) and
“validation” to the set used to perform the SCAC segmentation and quality
assessment (see Sections 3.2 and 5.3).

• A test (also called hold-out) dataset with the resting 25% of them (10
subjects), used to check the accuracy of the final “winner” model. After
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constructing the ASM with the whole learning dataset, we perform seg-
mentation over the subjects of the test dataset and evaluate the quality of
the results.

The protocol followed is described in Algorithm 5. For all experiments the
parameters were set to m = 5 (to strongly restrict the allowable ranges of the
ASM parameters bi, see Figure 3.3) d

ASM
in = dSCAC

in = 20, dASM
out = 5, dSCAC

out = 0
(see Sections 4.2 and4.3), accumulated variance eV ar = 0.95 (because it seems
enough to encode the main variations), slices from 22 to 39 (the ones containing a
portion of the caudate nucli in the anatomical atlas), nfolds = 5, padding π = 5
and cage complexity χ = 2 (8 control points). These last two parameters were
assigned rather arbitrarily, and the development of a methodology to optimize
them, and the position of the control points in general, has been proposed as
futured work.

Algorithm 5 Parameter adjustment and validation protocol

Let TR(i) and VA(i) be the training and validation set of subjects, respectively,
of the i-th cross-validation fold, and TE the test set of subjects.

1. For every combination of parameters:

(a) For every fold i:

i. Construct the ASMs using TR(i).

A. Perform SCAC and atlas-guided segmentation over VA(i).

B. Evaluate the quality measures over VA(i).

(b) Compute the mean of the quality measures over all the folds.

2. Take the combination of parameters that provides better results over VA(i).

3. Construct an ASM using all subjects from
⋃

i TR(i) ∪VA(i).

4. Perform the SCAC and atlas-guided segmentation over TE.

5. Evaluate the quality of this segmentation over TE.

The region-based energy used was the Gaussian one. The CAC optimizations
were performed using the gradient descent method until the relative energy
variation is less than 0.1% (what means that we reached a local minimum, or a
maximum number of 150 iteration steps is exceeded).

The following parameters were tuned using cross-validation:

• Standard deviations allowed s = 1, 2, 3 (cf. Eq. (3.12)).

• Relative weight between edge and region-based energy in the unified energy
α = 0.3, 0.4, 0.5, 0.6, 0.7 (cf. Eq. (4.1)).

• Whether to fix the mean intensity at the interior of the segmentation
region µin = 0.65 or estimate it at each step. The value of µin = 0.65
was estimated empirically by analyzing the intensity levels of the caudate
nuclei regions in the MR brain images of some of the subjects.

See Section 4.5.3 for a description of all the mentioned parameters.
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Figure 5.4 – Example segmentation of the caudate nuclei. The manual segmen-
tation is marked in green, the blue corresponds to the atlas mask and the red one
is the result of the SCAC segmentation with α = 1 and s = 1. Note the lack of
contrast between the caudate nucleus and the white area under it.

5.5 Results and Discussion

Table 1 shows the results for the cross-validation tuning of the parameters s
and α. As can be observed, larger values of s provide a significantly poorer
segmentation results for all values of α. That is, giving more freedom to the CAC
model to deform in ways less typical in the training set was counter-productive.
A possible explanation for that result is that the mask initialization to the
mean shape in the normalized frame of reference constitutes already a good
approximation to many cases and most individual shapes resemble those of the
training set.

A perhaps more surprisingly result is that the unified energy that provides
best results is the one that only uses the edge-based energy (α = 1), completely
ignoring the region-based Gaussian one. This means that trying to minimize the
intensity difference between the pixels inside the segmentation region did not
help segmenting the caudate nuclei. We believe there are two possible reasons for
this. First, if the mask initialization to the mean shape is already close enough
to the solution, it is more important to make the contour follow strong edges. As
explained in Section 2.1.1, region-based energies have a larger basin of attraction,
but fail at localizing explicit edges precisely when there is a lack of contrast
(cf. Figure 2.2 and Figure 5.4). And second, the manual segmentations of the
structures often include a small band of the darker pixels next to the caudate
nuclei in the interior of the segmentation region. The Gaussian energy penalizes
the inclusion of this dark region, being more conservative and resulting in a
smaller overlap (cf. Figure 5.5).

The cross-validation results obtained for atlas-guided segmentation (in all
cases, since they are not influenced by the tuning of parameters) are V OAG =
0.6494 and SSDAG = 0.1907, which are clearly worse than those obtained using
the SCAC methodology and best combination of parameters.

Table 2 shows the quality results over the test set for both the atlas-guided
segmentation and SCAC with α = 1 s = 1 and µin = 0.65, together with the
standard deviations of the results over the segmentation of the 20 caudate nuclei
(10 subjects, left and right caudate). A t-test over these values results in the
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Figure 5.5 – Detail of a segmentation example. The green points indicate the
manual segmentation contour. Note how considering this green contour includes a
band of dark pixels inside the segmentation region.

µin = 0.65 µin = 0.65 µin = (2.9) µin = (2.9)
s α V OSCAC SSDSCAC V OSCAC SSDSCAC

1 0.3 0.6799 0.1330 0.6760 0.1361
1 0.4 0.6826 0.1312 0.6788 0.1343
1 0.5 0.6859 0.1295 0.6810 0.1325
1 0.6 0.6886 0.1277 0.6843 0.1302
1 0.7 0.6909 0.1261 0.6879 0.1280
1 0.8 0.6925 0.1248 0.6906 0.1260
1 0.9 0.6934 0.1238 0.6924 0.1243
1 1 0.6934 0.1232 0.6934 0.1232
2 0.3 0.6342 0.1627 0.6167 0.1753
2 0.4 0.6421 0.1570 0.6250 0.1695
2 0.5 0.6523 0.1507 0.6362 0.1622
2 0.6 0.6637 0.1435 0.6497 0.1530
2 0.7 0.6747 0.1365 0.6641 0.1435
2 0.8 0.6721 0.1315 0.6771 0.1347
2 0.9 0.6879 0.1267 0.6853 0.1286
2 1 0.6869 0.1259 0.6869 0.1259
3 0.3 0.5690 0.2083 0.5318 0.2409
3 0.4 0.5824 0.1993 0.5476 0.2281
3 0.5 0.6012 0.1845 0.5701 0.2092
3 0.6 0.6252 0.1678 0.5980 0.1875
3 0.7 0.6471 0.1529 0.6297 0.1647
3 0.8 0.6651 0.1403 0.6588 0.1445
3 0.9 0.6735 0.1330 0.6689 0.1357
3 1 0.6721 0.1315 0.6721 0.1315

Table 1 – Mean VO and SSD quality measures for 5-fold cross-validation. Best
results are marked in bold.
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Method VO SSD

Atlas-guided 0.6335± 0.0799 0.1975± 0.0632
SCAC 0.6975± 0.0475 0.1186± 0.0267

t-test (99%) SCAC > AG SCAC < AG

Table 2 – Quantitative quality measures for atlas-guided and SCAC segmentations
over the test set (with 10 subjects).

Figure 5.6 – Example segmentation contours of the last slices of the left caudate
nucleus (from 36 to 39) in the normalized space. The manual segmentation is
shown in green, the atlas-guided one in blue and the SCAC one in red.

acceptance of the hypothesis of that the SCAC segmentation quality measures
are significantly better than those of the atlas-guided segmentation, with a 99%
of confidence. Therefore, we can safely affirm that the SCAC segmentation
method provides results closer to the manual segmentation than those from the
atlas-guided method.

Looking into the results more in detail, we can find out that the slices where
SCAC segmentation provides worse results correspond to the last ones, at the
tail of the caudate nuclei. Figure 5.6 shows some examples of these wrong
segmentations. As can be observed, all them are cases where there are very few
visual cues to drive the algorithm, like poor contrast or the absence of reasonably
strong edges around the whole structure. Moreover, the tail and head are the
areas of the caudate nuclei more difficult to capture in an atlas, due to the
variability of manual segmentations on them. Thus, atlas contains not correct
information about the caudate tail and the error is propagated to the result of
the atlas-guided method and the initialization of the SCAC.

This is probably an intrinsic limitation of the method coming from the fact of
that it works with transversal slices. When working with tridimensional images,
it might be necessary to take into account multiple complementary points of view
to determine the limits of an structure. Therefore, to overcome this limitation it
would be interesting to extend SCAC to 3D structures.

We can see that the segmentation provided by the atlas mask for this slices
is also bad in most cases. Since SCAC uses only local information, it is highly
dependent on a good initialization. Therefore, if the mean segmentation shape
for a slice13 is very different from the manual segmentation contour, SCAC
segmentation will probably provide poor results.

Finally, obtaining a good initialization in the normalized space largely depends
on a correct image registration. A more accurate initialization might be obtained
by tweaking the registration parameters or choosing an atlas that matches better

13Remember that the mean segmentation shape is just the anatomical atlas mask deformed
using the mean position of the control points over the set used to construct the ASM.
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the population under study.

6 Conclusions

In this work, we present a new segmentation method, Smart Cage Active Contours
(SCAC), that combines a parametric active contours framework, Cage Active
Contours (CAC) with Active Shape Models (ASM). The evolution is driven by a
reduced set of control points, that modify the shape of the segmentation contour
via an affine transformation. The Active Shape Model is constructed using these
control points, avoiding the difficult and tedious work of placing the landmarks
manually over the training shapes.

We apply our method to the segmentation of the right and left caudate nuclei
in the normalized magnetic resonance brain images of a set of 40 subjects. We
use 30 of them to tune the parameters of the model and construct an ASM,
and test on the rest. The segmentation is initialized to the mean shape and
evolved using an edge-based energy functional that looks for strong edges, while
deforming the shapes only in ways consistent with the ASM.

The results show that the SCACmethod clearly outperforms the segmentation
of the same structures using a classical atlas-guided strategy, as evaluated by
using two different quantitative quality measures. The worse results for the
SCAC method correspond to the tail of the caudate nuclei, an area where the
atlas-guided strategy also provided bad quality segmentations, indicating that
SCAC depends strongly on a good initialization.

Also, using only edge-based energies provides better results than using only
region-based ones, or a convex combination of both. This suggests that, for our
particular application, region-based energies do not provide useful information
to finely adjust the segmentation contour to the region of interest due to the
lack of contrast, being strong edges a much more informative cue.

7 Future work

Our method approaches the segmentation of volumetric structures by working
on them slice by slice and combining the results to create a segmented volume.
However, the boundaries of these 3D structures are likely to be more easily
identifiable with a real 3D segmentation model. The use of a 3D model would
allow the evaluation of relevant information like the image intensity gradients
perpendicular to the model surface. Moreover, it would ensure the smoothness
of the segmentation volume itself by fitting all slices simultaneously. This
factor is completely overlooked by our method now, where the slices are treated
independently. The extension of Active Shape Models and Active Appearance
Models techniques to 3D images is already has already been considered in
[26, 27, 28]. Also, the generalization of mean value coordinates to R3 is presented
in [44], and the use of the Cage Active Contours framework to 3D is explored in
[40]. Therefore, we think that it should be easy and interesting to extend Smart
Cage Active Contours to deal with 3D models.

We have also observed that the power of generic energy functionals, like the
ones we used, to segment medical images, is somewhat limited. Very often, the
structures on these images do not exhibit strong edges or high contrast variations.
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A much more sensible approach would be to construct a combined model of the
gray-level (especially at the boundaries) and shape of the structures to segment,
i.e. to use Active Appearance Models instead of Active Shape Models in our
framework. This is indeed the strategy followed by some of the most promising
medical imaging model-based methods [29, 30, 31, 32]. Actually, some of these
works represent the deformation of the brain structures using a tetrahedral mesh
of control points covering the region of interest and affine interpolation.

Another possible research direction is the simultaneous search of multiple
segmentation regions in SCAC using the same set of control points. Instead of
constructing a model for just one structure, we can create a composite model
involving more than one and adjust that composite model to an input image.
This is the approach followed by [30], where the adjustment of the composite
model is used to initialize an individual model of the left and right caudate
nuclei.

An area that deserves special attention that is not related directly to SCAC
but to our application to brain image segmentation is image registration. In
this work we use image registration as a way to align all images to be able to
construct and use the Active Shape Models, as well as to provide a good contour
initialization. The optimality of the registration process therefore affects the
quality of the segmentation. Here we just use SPM with the default parameters,
but a tuning of these parameters or the selection of the atlas (including multi-atlas
approaches) could be used to improve the results.

The choice of the base mask that deforms to adapt to the individual shapes
of the structures from the training subjects is also very important. In our
application, we use the anatomical atlas of each caudate nuclei as base masks, but
we have noticed bad results in the cases where this atlas was very different from
the manual segmentation. Therefore, it would be more sensible to derive the base
mask from the manual segmentations themselves. A groupwise strategy to register
images without the need of manually establishing a landmark correspondence
that can be used to find a good-quality base mask is described in [31].

Another interesting research direction would be to experiment with hierar-
chical approaches, where a set of control points controls another set of control
points (extended up to any hierarchy depth). This would allow for an initial
coarse segmentation by moving the higher level of control points that could
be later refined by adjusting the position of the control points at lower levels.
Also, a composite model for a complex structure could be coarsely adjusted,
passing the control later to smaller “cages” to obtain a finer segmentation of
every substructure.

Last, some work could be done in investigating the best placement of the
control points relative to segmentation contour. In our application we consider
a rectangular cage with 8 control points around the contour, but some other
configurations of cage shapes, number of control points and relative positioning
could be explored.
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