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Abstract

In this Master’s Thesis, we introduce the methodology Basis-Decomposition Discriminant ICA
(BD-DICA), capable of finding the most discriminant Independent Components to characterise
a high-dimensional dataset. The algorithm provides for this characterisation for several com-
ponents with the same structure as the inputs. An adaptation of the algorithm for Feature
Extraction is derived in the conclusions of this report.

BD-DICA is constructed as a combination of the Basis-Decomposition ICA (BD-ICA), an
architecture for ICA used in fMRI data analysis, and the Basis-Decomposition Fisher’s Linear
Discriminant (BDFLD), a modified version of the classical FLD introduced in this work. BD-
DICA is originally designed to deal with fMRI Data analysis, in which often we have data of
about 105 − −106 dimensions and a much smaller number of instances. BD-DICA finds inter-
esting projections in the data whose output show a high discriminant power while maximising
independence among the obtained projectors. Additional strategies based in a high restriction
over the search subspace reduce highly the chances of overfitting.

Experiments with synthetic data show that the method is robust to noise and that it is
capable of successfully finding the discriminant generators of the data. Experiments performed
with real fMRI data show that the method offers good results with Resting-State fMRI data.
Unfortunately, no conclusive results were obtained for Task-Based fMRI data.

A Gradient-Ascend approach to BD-DICA is exposed in detail along the report, including all
needed derivatives. In addition, the implementation we used for the experimentation is publicly
available running under MATLAB in www.github/qtabs/bddica. Compatibility with Octave is
possible with a few adaptations regarding external libraries used by the algorithm.
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Preface

Dear reader,

this report is the projection of several months of work dedicated to the development of an
Analysis tool we call Basis-Decomposition Discriminant ICA. As you will discover along the
pages in this text, the development of such tool is not as direct as one might expect. Instead,
as usually happens in mathematical research, we found during the journey that some additional
non-existent theoretical frameworks were necessary to complete our development.

In my opinion, these additional derivations are the most enjoyable part of this Thesis and they
are representative of the spirit in which this work has been developed. However, a not that
enthusiastic about mathematical formalism reader might find those parts rather boring, if not
irritant, and perhaps even unnecessary for the main development. If this is the case, I ask
for some patient. I believe that all formal definitions and derivations in this Thesis have a
theoretical justification that will be evident, eventually, along the report.

In the other hand, as it is usually the case in Machine Learning, we support our method in two
widely used, well established, methodologies with which the reader might be already familiar.
However, the amount of available tools is so extensive in the Machine Learning Community that
one cannot just assume for everybody to know every algorithm. With this idea in mind, we
have decided to briefly reformulate those techniques in the language and formalism developed
in this work. This has a double purpose: the unfamiliar reader has the opportunity to catch up
without needing to read any additional literature, whereas the reader which is already familiar
with the method can appreciate the shades of our formalism and get familiar with our notation.

This set of additional derivations and reformulations takes a large part of this Master’s Thesis.
In exchange, ultimate derivation of our algorithm will be (or at least this is our intention) as
smooth and reasonable as if it where just the only logical solution to our problem.

All of this make of this report a fairly long document for a Master’s Thesis (but please take into
account that we have been generous with the spacing). I can promise you, however, that we
have tried as hard as we could to keep it short and if something is written is because we thought
that it would be essential to successfully capture all the shades and aspects of our work. We
have skipped unnecessary already formulated proofs that are always refereed in to the source
texts, in which the concepts are introduced with a mastery we cannot match and we have tried
to summarise as much as possible all reviewed previous literature.

Having said that, if you are in a hurry, probably you can skip some sections if you feel you are
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Preface

familiarised with their topics. More specifically, if you are familiar with fMRI data and you are
exclusively interested in the algorithm, you can skip without regrets the whole Appendix A, in
which we perform an alternative ICA-based analysis over a private database introducing the
main concepts of fMRI data and the Section 2.1, in which we review some of the state of the
art ICA-based techniques for fMRI data analysis.

If you already know the ICA formulation you will probably get bored reading 3.1, but try to not
skip anything else during the chapter even if it sounds familiar (like the section on preprocessing)
as we use a different formalism we will need later for the rest of the exposition.

If you have already worked with the Fisher’s Linear Discriminant and you are familiar with its
mathematical formulation, you can safely skip the discussion of Section 4.1. We use standard
notation in this exposition as well as in the rest of the Chapter, but you can always go back
to the classical formulation if you feel like you are missing something during the rest of the
exposition.

Finally, we should recognise (with a certain amount of pain and sorrow) that the Appendix
B is probably the most expendable part of this document. It presents the full derivation of
the mathematical expressions needed to implement the algorithm (which, in the other hand,
is already implemented under the MATLAB/Octave environment). We decided to write this
appendix for two reasons. First, we though that the interested reader should have all the
necessary tools to make an implementation of its own. Second, as this is after all an academical
work, we though that it would be a shame not to write such an important an laborious derivation.

And well, that’s it. There is no necessity to bore you any longer with such metadetails. I
sincerely hope you enjoy the reading of this document as much as we have enjoyed developing
this algorithm and its theoretical framework.
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Chapter 1

Introduction

The Machine Learning and Data Mining communities have been widely devoted to the task
of developing tools for knowledge discovery and data characterisation. Indeed, in a very large
set of applications, we use classical techniques developed for regression, classification or fea-
ture selection, tools clearly devoted to automatic learning, to specifically and exclusively find
structures behind the data [1].

This usage is particularly common in Neuroimaging [2], a branch of Computer Vision devoted
to the analysis of brain imaging data. In this field of application, the final purpose of the
analysis is, often, not to construct a classifier but to understand better the processes occurring
in the brain and their relations with the behaviour or health condition of the subjects of the
experiment.

In this work, we will develop a new technique directly aimed towards data characterisation based
in two widely used feature selection algorithms: Independent Component Analysis (ICA) [3]
and Linear Discriminant Analysis (LDA) [4]. Our algorithm combines the strategies of both
methodologies to find a representation of the data capturing the differences among the samples
belonging to different groups.

More specifically, we are trying to find a (small) set of independent vectors such that the pro-
jection of our dataset in the basis defined by those vectors maximises the separation among the
groups defined in by some data labels. Therefore, we want to perform some kind of Basis Decom-
position in Discriminant and Independent basis vectors. We have called Basis-Decomposition
Discriminant ICA (BD-DICA) to such process.

A similar approach has been already implemented in [5], where the authors combine the Fisher’s
Linear Discriminant and the ICA objective function to construct a feature selection algorithm
maximising both, the independence of the obtained features and its discriminant power at the
same time.

The twist is that we are going to ask to those vectors to be a linear combination of the vector
representation of the samples. This approach is not very common in the literature, but it has
been used successfully in some architectures of ICA designed to deal with high dimensional
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data [6]. We will provide a theoretical framework for this architecture to formally support this
approach to our problem.

The practical advantages of such constraint are numerous. It allows to reduce the search space
to the one spanned by the vectors of the observations (or a reduced subset of them), there-
fore decreasing the computational complexity of the algorithm whilst preserving the original
representation of the data, which is crucial in some data characterisation tasks.

These properties put altogether are particularly convenient for analysing fMRI data. fMIR is
a functional version of Magnetic Resonance Imaging that provides a 3-dimensional real-time
image of the activation in the brain [7]. The representation of such a data has an extremely
large dimensionality (∼ 105−106) which cannot be trivially reduced when we want to find brain
areas of activation.

In this report, we will expose some of the workarounds made for dealing with this kind of data
in the past and we will try to justify the Basis Decomposition approach in such context.

More specifically, the remaining of this document is structured as follows. First we will introduce
the motivation for the problem we want to assess, how this is solved in the previous literature
and why we do think that an additional method could be helpful for data characterisation.
After this motivation, we introduce a generalisation of this problem in formal terms and the
theoretical framework in which we will develop the rest of the tools. All this is done in Chapter
2.

Chapter 3 is devoted to Independent Component Analysis. We will first introduce the classical
formulation of ICA in Section 3.1, which should be taken as a brief review of the method.
During the rest of the section we complete the details of the formulation using our framework,
revealing the key points behind the Basis Decomposition architecture.

In Chapter 4 we do a similar work but this time with the Fisher’s Linear Discriminant. In Section
4.1 we introduce the classical formulation of the algorithm in the same way we introduced ICA
before, as a review of the basis of the discriminant. In the rest of sections we develop a
generalisation of FLD that we will need later to construct the missing part of the BD-DICA
algorithm.

This last algorithm is fully developed in Chapter 5. This chapter is divided in three sec-
tions. In Section 5.1 we study an already presented version of D-ICA in the Feature Extrac-
tion architecture. Then, in Section 5.2 we develop a Basis-Decomposition compatible Fisher’s
Linear Discriminant based in the generalisation described before. Finally, we present the Basis-
Decomposition Discriminant ICA in Section 5.3.

Chapter 6 is devoted to the experimentations we made to validate our method. We use a
synthetic and two real fMRI datasets for that purpose.

The conclusions of the thesis are exposed in Chapter 7, which is the closure of this work. Along
with the conclusions we present an extended collection of future work tasks, including extensions
and improvements to make this algorithm more useful.

This work has two extra appendices. Appendix A describes an analysis made with fMRI data
using an alternative approach with classical Machine Learning techniques. We use this appendix
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as an excuse to introduce in more detail the nature of fMRI data and to present the alternative
way of doing temporal inference using ICA. This work can be fully read without this appendix
(and vice versa), but we believe that it can reveal some justifications for some of the decisions
we made in the design of the BD-DICA algorithm.

Appendix B shows the minor details of the BD-DICA: the derivatives and dynamics needed for
the Gradient Ascend algorithm. While essential to implement the algorithm, those details are
not really important for the theoretical discussion.

The algorithm introduced in this work have been implemented for the MATLAB environment.
The libraries are clean and well documented, but probably not fully optimised. They will be
published soon together with some testing scripts. For the time being, the code is not publicly
available, but it is offered attached to this document. As far as we know, the code works perfectly
under Octave by itself, but unfortunately we are using some external libraries to compute the
PCA for the data that are not fully compatible with Octave. The same problem arises when
importing fMRI volumes directly from a NIFTI file, which is made with the support of SMP [8]
in the scripts provided with the implementation to import real fMRI data.
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Chapter 2

Problem Specification

During this chapter, we will specify clearly the problem we are facing in two different manners.
First, we will explain the original situation we wanted to solve: fMRI connectivity analysis.
This should be taken as a state of the art of the current existing approaches to this problem.
We will review a selection of currently used approaches in this line, so at the end we can discuss
the advantages and drawbacks of our algorithm. Note that, in addition to this review, we offer
a real case of study we made using classical techniques in the Appendix A.

This fMRI problem is presented, however, as a motivation towards the second, more formal
and general, problem. In this last specification some assumptions about the nature of the
problem will be made and we will we introduce a theoretical framework in which to develop its
solution. We will use this formal representation for the rest of the exposition of the algorithm.
Note that, even when actually representing the same problem as the fMRI one with some
additional constraints, this second description is much more general than the first one as it is
not specifically restricted to fMRI Data. Therefore any other problem fitting in such definition
should be suitable, at least in theory, for our algorithm.

2.1 Fundamentals and Background

2.1.1 fMRI and Independent Component Analysis

Functional Magnetic Resonance Imaging (fMRI) is a functional Neuroimaging technique showing
a brain-activation related signal as a 3-dimensional brain map (called volume) activating over
time [7]. While the spatial resolution of the technique is very poor in physiological terms, with
3-dimensional pixels (called voxels) of about 1mm3, the computational representation of those
images is way to large to board it without some previous feature selection methodologies1.

Given the nature of the physiological mechanisms underlying the signal, Independent Compo-
nent Analysis (ICA) has proven to be a perfect match for analysing fMRI data [9]. This is

1To read a more exhaustive description of this kind of data, please consult Section A.1, where we expose a
small summary of the technology and assumptions behind fMRI recordings
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specially true in Resting-State fMRI, where the participant is asked to think on anything with-
out falling sleep [10] during the experiment. In this kind of recordings we observe a mixing of
independent background brain processes revealing brain connectivities.

However, ICA is also a common choice dealing with another kind of fMRI experiments referred
as Task-Based, in which the patient is specifically asked to perform some task during the
recording [9]. Task-Based fMRI have a wide set of applications. For example, we can use it
to detect which areas of the brain are related with a determinate activity [11], or see how this
activation differs between healthy or brain-damaged individuals [12].

A large number of pathologies have been found to be directly related, at least at the scales
managed by fMRI, with the joint activation of localised clusters of voxels (brain areas) or sets
of unconnected clusters activating together through time (networks of activation) [7]. A number
of those networks have been isolated for some researchers in Resting-State [13]. This number
is not very high (depending on the studies, it can vary from 10 to 30) and, in theory, all the
Resting-State brain activity related with brain connectivity is represented in one or several of
those structures. Those structures can also be activated in Task-Based fMRI, in addition to the
specific brain areas activated by the performed task.

In any of the cases, the relevant activations in the brain are represented by joint activations of
a subset of the voxels along time. These subsets vary in size, but they are always much smaller
than the whole brain, which means that the vector representation of such patterns is sparse and
therefore has a clear super-Gaussian shape (most of the voxels showing barely no activation, a
few of them showing activations beyond the zero) [14].

ICA can take advantage of this non-Gaussian shape to find the statistically independent sources
of the brain activity to reduce dimensionality [15]. At the same time, it filters the non-relevant
signal patterns (associated with noise from the experimentation) of the brain in a single step.
Moreover, the extracted Independent Components (ICs) can be used to characterise the data.

Note that, as we have assumed that the non-Gaussianity is shown by the patterns of activation
in the 3-dimensional space, we need to apply ICA in such a way that the obtained Independent
Components are directly the 3-Dimensional volumes (or a vector representation of them). This
particular arrange of ICA is often called Spatial-ICA [15] in the fMRI literature, and it is
intimately related with the Basis Decomposition framework we are exposing in this work.

Spatial-ICA draw the Independent Components as linear combinations of of the 3-Dimensional
volumes composing the functional data [15]. In other words, it constructs the ICs as if they were
elements in the vector space spanned by the snapshots of the fMRI recordings. As a consequence,
the extracted ICs are directly comparable with the recordings, and they are usually superimpose
to the image of the brain to detect which parts of the organ participate in the component. The
method offers, therefore, a very straightforward way of interpreting the results.

2.1.2 Group ICA

As we have seen, ICA allows us to better characterise fMRI data. This tool can be directly
applied to a wide spectrum of experiments involving a single specimen. However, often we need
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to perform ICA over a set of fMRI recordings corresponding to different patients to obtain
Independent Components being common to all of them [9].

The are currently two well-known ways of aggregating fMRI data from different people to
perform ICA. The most elegant solution is called Tensor-ICA [6]. The one we will use in this
work is called Group-ICA.

Tensor-ICA [6] refers to tensors as generalisation of matrices in the sense that, if a matrix can be
seen as a representation of an aggregation of vectors, we can construct tensors as aggregations
of matrices, aggregations of aggregations of matrices, and so on. In particular, Tensor-ICA
takes each fMRI recording as a matrix, and them it puts all of them together aggregating the
matrices corresponding to different recordings. Each of the components of this tensor A can be
written as Ai,j,k, where the first index i moves along the space, the index j moves along the
time and the last index k moves along the patients. Then our representation is a tensor with
(voxels× time-points× patients) dimensions.

A Tensor-ICA representation of the data assumes that all the voxels and temporal snapshots of
the patients are perfectly aligned [6]. Some hard preprocessing is usually made over the spatial
part of the fMRI signal to guarantee that the first condition holds. The second one can be
forced (and usually it is) in Task-Based experiments by presenting the stimuli in all patients
at the same temporal volume. This is, however, not possible in Resting-State fMRI [10], where
there is no clear benchmark to start the experimentation (i.e. the background processes of the
brain are constantly active and we cannot restart them voluntarily).

Group-ICA aggregates fMRI recordings even when this temporal restriction does not hold [14].
The solution of Group-ICA is to treat all volumes of all patients in the same way by temporal
concatenating them. The representation is, in this case, a matrix of ((voxels · time-points) ×
patients) dimensions.

Note that while the Tensor-ICA representation saves the temporal structure of the data, Group-
ICA completely ignores it. That is why we do not need to make any restriction over the temporal
dimension in this last techniques (the recordings can even have a different length!).

2.1.3 Inference in fMRI using Group-ICA

To characterise a kind of brain activity is usually necessary to compare two different sources of
data, one presenting the given properties and other presenting a normal activity. It is therefore
convenient to define some way of performing this kind of inference over the results of Group-
ICA. Note that Group-ICA is not a Feature Extraction methodology and its outputs cannot
be fed into a classifier. These outputs are Independent Spatial representations characterising
a certain pattern of activation in the brain present in all (or some of) the subjects submitted
to the analysis. Therefore, we need to extract a subject-specific (or, at least, class-specific)
information from those spatial patterns before performing any kind of inference.
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Temporal inference

The most common way of performing inference over ICs is to decompose each of the subject-
specific fMRI recordings into a temporal dependent weighted sum of the Independent Compo-
nents. The architecture of such decomposition is illustrated in Figure 2.1. Each of the weights
represent, for each time point and subject, the relative importance of a given IC. The temporal
concatenation of those weights for a given subject and IC are usually called time courses. These
time courses are computed training a general linear model (GLM) for each of the subjects [9].

Figure 2.1: Illustration of the GICA architecture considering the mixing coeffi-
cients as temporal courses of the given Independent Components.

Once we have obtained the time courses, we can use them to perform inference over the groups
and figure out if any of the Independent Components plays a important role in the case of study
using classical Feature Selection and Classification techniques [16].

Dealing with the time courses is not trivial either. A typical experiment has about 200 time
points, which means that each of the subjects are characterised by a 200 × number-of-ICs
dimensional vector. In addition, as we saw, the time points are not necessarily aligned among
different subjects.

One can find several ways of dealing with this problem in the literature, but most of the times
the procedure involves translating the whole time course into a single number (e.g. the mean
of the difference between the time-courses and some background measure, as the time-courses
during the resting periods in a Task-Based experiment). This is the approach we have taken in
the case of study described in Appendix A. Other approaches involve Fourier decomposition of
the time courses. This approach solves the problem of the alignment and allows us to reduce
the dimensionality of the resulting representation as much as we want, by just reducing the
number of bins in the frequency histogram [8].

A more sophisticated and more successful representation for the time courses is the amplitude
of low-frequency fluctuation (ALFF) measure used in Resting State [17]. The ALFF for a time
course is computed as the integral (in frequency) of the square root of the Fourier transform
of the time course. Therefore, we are representing each of the ICs as a number containing the
amount of signal as measured in the frequency space [18].

The name low-frequency is given to this technique because usually the time courses are band-pass
filtered to preserve only Resting-State relevant signals (which are known lo lie between 0.01Hz
and 0.8Hz). In such a way, we remove all frequencies non directly related with brain processing,
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which can be caused by other physiological rhythms from systems like the cardiovascular or
respiratory (working at 0.1Hz-1.2Hz) or from artefacts from the experimentation itself. In
practise, however, those kinds of filtering are performed during the preprocessing of the data
and there is no need to take them into account during the rest of the analysis.

Spatial Inference

Sometimes, however, it is more illustrative to represent the differences between the classes in
the data using spatial representations. As the Independent Components obtained using ICA
are actually common to all subjects, we need to find a way of projecting those ICs into new
spatial maps, specific for each subject or group.

A solution is proposed in [19], where the authors use the common ICs to seed a subject-specific
search. This search is tuned to maximise group information, therefore maximising at the same
time both, independence of the obtained components and presence of group indicators.

Another solution is presented in [20] in which the temporal courses obtained as in 2.1.3 are
used to find the subject-specific spatial maps. In order to do that, the method proposes to
train yet another GLM to find the best set spatial maps for drawing the whole fMRI record of
a subject using the previously found time courses. The whole process is called Dual Regression
for evident reasons. As each of the spatial maps found by this technique corresponds to a given
time course, which at the same time corresponds to an IC, the subject specific spatial maps can
be compared easily without making out any arbitrary correspondence among them.

The inference in this spatial representation is usually done by finding statistically significant
differences between the spatial maps corresponding to each of the groups [20]. The output of
such process are t-maps showing differences between each of the ICs for each of the groups.

A very different approach is shown in [21], where the authors propose to compute directly
the subject-specific ICs for all the individuals using ICA. These spatial maps are then used as
basis elements in which to express the signals of the individuals. The coefficients of such basis
(actually measured as angles in the Grassmann manifold spanned by the basis) are then fed to
classical Machine Learning techniques in the same way in which the time courses are treated
in Section 2.1.3. The main difference is that, as the basis is constituted by subject-specific
ICs, the most discriminant element is more representative of a group that the usual common
Independent Components.

We will not insist more in this spatial representation as we will instead focus in the temporal
inference approach for the rest of this work.

2.2 The Discriminant-ICA approach

The approaches shown before for dealing with temporal inference are, however, not fully satis-
factory. They require a lot of work to finally isolate a single discriminant Independent Compo-
nent. It would be useful to have a procedure to directly extract that discriminant IC without
the necessity to extract all of them before.
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Our work is settled over this approach to the problem. We want to construct a procedure
to directly use the information about the labels of the subjects to extract only important
Independent Components. In addition, the inclusion of class information at this early stage
of the analysis could provide a better representation of the differences among classes instead
of focusing just in the statistical properties of the components, leading to a slightly different
representation of the Independent Components that might be more useful to characterise the
data.

2.2.1 Previous approaches to this problem

We will cite two previous approaches to this problem we found in the literature. The only
one directly applicable to fMRI is the one presented in [22], where the authors propose to use
Coefficient-Constrained ICA (CC-ICA)2 to introduce a cost term based in the t-statistics of the
groups into the ICA objective function.

This methodology gets very close to what we want, but it has an important drawback: the
correcting term can only be used as a correction whose effects are reflected directly in the shape
of the obtained ICs. That means that the final results are oriented towards group characterisa-
tion, but we still obtain the whole set of Independent Components. Instead, we are looking for
a procedure directly ignoring non-important components.

The second, presented in [5], is more similar to our approach. In this work, the authors propose
a dual optimisation using an objective function resulting of a weighted sum of the ICA and
the LDA objective functions. Unfortunately, this approach is incompatible with Spatial-ICA
for reasons that will become obvious later, when we had fully developed our framework, in the
detailed formulation of the algorithm in Section 5.1.

2.3 Definition of the problem

In this section we will introduce in a clear and formal way the problem we want to solve. As said
before, this problem should not be understood as the start point of our analysis. On the contrary,
the formal definition of the problem is as a mathematical formulation of the aggregation of the
objective of the method plus all the hypothesis and we have decided to include during the
journey. Therefore, before formally introducing the problem, we will take a brief review of the
already exposed assumptions and we will introduce and justify some other ones.

2.3.1 Assumptions

Independence and separability assumptions

Until now, we have outlined the problem we want to solve as a supervised version of Independent
Component Analysis suitable for the analysis of high-dimensional data such as fMRI. In this first

2CC-ICA [23] is a framework to add additional terms into the classical ICA objective function.
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outline some assumptions have been already made. We are indeed assuming that the relevant
physiological sources of brain activity are non-Gaussian and statistically independent among
each other.

We also need to assume that these sources are relatively common to all the subjects involved
in the experiment and that some explicit differences exist in the temporal expression of those
components between subjects labelled in different classes. Moreover, we need to ask to those
interclass differences to be larger than the inter-subject differences. In fact, if that is not
the case, we can argue that such physiological source does not show any statistical significant
difference among classes.

These two assumptions open the way to a discriminant version of ICA in which the discrimi-
nant power of a particular Independent Component can be evaluated using the Fisher’s Linear
Discriminant, which measures precisely the quotient between the interclass and the intraclass
variability for a given representation of the data. As we are interested in the differences mea-
sured in the temporal domain, we will ask to the discriminant to measure this quotient based
on the time courses of the samples. However, as said before, those time courses can only be
obtained using some kind of regression (e.g. a GLM) over the whole set of ICs. This leads us
to the stronger following assumption.

The orthogonality assumption

As already said, it is of capital importance to be able to measure those temporal coefficients
not only without considering all the ICs, but also in an on-line manner, in order to be able to
conduct the search towards components maximising the discriminant. Moreover, as in many
applications there is just one physiological relevant source, we need to obtain a way of doing so
considering just one component at each time during the search.

To do that, we propose to add an extra assumption to the problem statement: assume that the
ICs are orthogonal among each other. In this way, the direct projection (i.e. scalar product)
of an fMRI volume over the ICs is directly the temporal coefficient for that volume and that
component.

This is, of course, a very strong assumption, but it can be properly justified in the field of
fMRI. Indeed, let us consider the two kinds of solution we can obtain in our experiments: we
can obtain a Resting-State-like network or a single brain region. In this last case, as brain
regions are non-overlapping and the absence of activation can be modelled with a zero in the
deactivated voxels, it is clear that the space of solutions is indeed formed by orthogonal vector
representations.

The case of the Resting-State networks is not that clear. These networks usually contain several
regions and therefore can share some areas of the brain. Fortunately, in the last few years some
Neuroscientists have tried to compile a database of such networks to better understand its use.
Contrarily to the intuition, the number of such networks is actually quite small: in this work
we are using the Biswal’s [13] database, which contains 20 networks.
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To check if our assumption is plausible, we have tested the 20 Biswal’s networks for orthogonali-
sation. For that, we have imported the networks in a vector representation, we have normalised
each of the networks and we have computed the scalar product among them. The results are
summarised in a histogram in Figure 2.2, containing only crossed products.

Figure 2.2: Scalar product of the normalised vector representation of the physi-
ological networks indexed by Biswal et al [13]. Note that the histogram has been
computed omitting the products of a network with itself

As we can observe, even when the networks are not completely orthogonal, there are very few
products exhibiting a greater result than 0.1, and even those do not exceed the limit of 0.2. We
think that this result is good enough to allow us to assume that the direct projections of the
fMRI data over the considered component is a good approximation to the time course associated
to that network.

Having said that, we are not going to impose to the ICs to be orthogonal among each other,
since this is an artificial and unnecessary constraint. Moreover, this imposition would affect
to the more important statistical independence assumption (as we would be able to deduce
some properties of a component by looking at another one). We are just going to assume that
the sources of the data are orthogonal when measuring the particular discriminant power of a
component, which could be formally justified by the following affirmation: all the sources are
independently sampled from a very sparse distribution. However, this formal details are not
that important. Just keep in mind that we will use orthogonality without explicitly demanding
it.

2.3.2 Formal definition of the problem

Now that we have provided an heuristic idea of the assumptions and problematic behind our
method we are in position to formally introduce our problem.

Let S be a basis spanning the vector space V ⊆ RD, where D is the dimension of the N basis
vectors s ∈ S. Furthermore, let us impose that the representation of those vectors in RD follow
a non-Gaussian distribution3.

3We will systematically abuse the terminology in that way during this work. What we really want to say is
that, for each basis element si ∈ S, its components s j

i , are asked to be sampled by a non-Gaussian distribution.
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Along this work, we will use indistinctly the terms (original) basis element, source and some-
times, erroneously, Independent Component to talk about this vectors s ∈ S.

Let X be a set of M vectors x ∈ V, each of them representing an observation in a Knowledge
Discovery problem. We will use the terms instances, samples and observations to refer to this
vectors in this work.

Let C be a discrete set of 2 or more labels, representing the value of a target characteristic of
our observations X . Therefore, for each observation xi there will be a class label ci ∈ C. We
will refer to D as the set of all the labels ci defined over a set of observations X (i.e. the size of
X is the same of D, whilst the set of C is the same as the number of classes in the problem).

Now, let us define Sd ⊆ S as the set of discriminant basis elements. The idea is that the
coefficients of the samples x ∈ X for the basis elements in the set Sd are sampled differently for
the observations belonging to the different classes (for example, all the coefficients are sampled
from a Gaussian distribution, but the means or the variances of the distributions are different
for different classes). However, the coefficients corresponding to the basis elements s /∈ Sd are
sampled following the same distributions for all the instances, independently on the instance
class labels.

From a point of view of Knowledge Discovery, only the elements in Sd are important to char-
acterise the differences between subjects belonging to different classes.

Difinition 1 Given a set of observations X constructed using an unknown basis S with non-
Gaussian basis elements and a class label for each of those observations ci ∈ C, the Discriminant
Independent Basis Decomposition Problem is defined as the problem of finding the set of dis-
criminant basis elements Sd.

2.4 Formalism and notation

Linear algebra plays an important role in this work. Just for clarifying things, let us introduce
some concepts before continuing our exposition to fix notation.

We have already said that our observations will be represented by vectors xi ∈ RD. Now,
the jth component of the ith observation will be denoted by x j

i ∈ R. The components of
the transposed vector will be denoted by xi j . Please note that while the vertical position of
the indices has been flipped, their horizontal position remains the same. This is of crucial
importance in several derivations in this document, as we will use often component notation to
describe scalar products.

2.4.1 Projectors

Now, we can define two kinds of linear operators in this configuration. The most intuitive one
is the 1-form defined over the dual space of V. We will use the Greek letter ξ to refer to this
kinds of forms (ξ ∈ V∗), which are defined in the following way:
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ξ : V −→ R
x −→ 〈ξ,x〉 (2.1)

When considering various of those projectors, we will label them in this way: ξ1, ξ2, .... However,
the vector representation of such projectors will be written in this other way ξ1, ξ2, ...

4.

The components of ξi will be denoted as ξ j
i in such a way that the scalar product in the left

hand side of Equation 2.1 can be written as (note the transposition):

〈ξj ,xi〉 =
∑
k

ξjk x
k
i ≡ ξ

j
k x

k
i (2.2)

The last step in this last equation describes the notation convention of Einstein [24], which
establishes that whenever the same index is used twice in a product of two variables, if it
appears once up and once down, a sum is implicit in the expression:

xi y
i ≡

∑
i

xi y
i (2.3)

We will use this notation intensively in this work, since the equations are much more readable
and easier to understand this way if several operations are happening at the same time.

2.4.2 w-Applications

The second operator we can define in this context is the operator defining linear combinations
over the vectors xi ∈ V. Note that these operators do not belong to any particularly defined
vector space and that they are not restricted to have a particular dimension. Also note that the
result of any application of this operator over a subspace of V belongs to the same subspace.

We will callWN to the vector space of all these possible linear combinations involving N vectors
in V. We will denote those operators as w ∈ WN , or simply w-applications. They are defined
in the following way when considering the whole set of observations X :

w : VM −→ V
X −→ wi xi (2.4)

4This is not a gratuitous choice of notation, it emphasises the fact that whereas ξ ∈ V∗, ξ ∈ V. The reader
migh argue that we could construct this last vector representation directly in the dual space. The reason why we
did not take that approach is because when developing the BD-ICA algorithm we will use this kind of projectors
to represent the candidate Independent Component s ∈ V.
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Note that, if we need to define several w-applications, we will use wi or the vector representation
wi so that the jth component of the application is witten w j

i . Therefore:

yi = w j
i xj (2.5)

where, of course, yi ∈ V.

This kind of applications will be of capital importance during the development of the Basis
Decomposition algorithms, since the characterisation of a dataset is usually represented as a
feature vector of the same kind. For instance, in the case of fMRI data, the characterisation of
a group of observations is usually a 3-dimensional volume indicating which areas of the brain
are important in the context of the experimentation in which the data was recorded.

The dimension of the vector representation w ∈ RN of those forms will depend on the amount
of samples we want to use for defining the proper transformation, but in general we will chose
it to be the number of available samples N = M (or a PCA-reduced representation of those
samples).

For completeness, we define W ≡
⋃inf
N WN .
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Chapter 3

Independent Component Analysis

Independent Component Analysis [25] is a Blind Source Separation (BSS) [15] methodology
capable of separating non-Gaussianity distributed independent sources from a linear mixture.
ICA has been widely applied in the Machine Learning Community as a Feature Extraction [26]
technique as a substitute of PCA when one cannot assume that the best choice of features
show a Gaussian distribution, and therefore a set of decorrelated features are not, in general,
statistically independent.

During this chapter, we will review the classical formulation of ICA using the theoretical frame-
work developed in the previous section, and we will emphasise the differences between the
architecture of ICA used in Feature Extraction and Basis-Decomposition ICA (BD-ICA), the
most common architecture in fMRI data analysis.

3.1 General formulation of ICA

3.1.1 Formulation of the problem

Let si{i=1..N} be a set of N independent random variables following a non-Gaussian distribution.
Let xi{i=1..M} be a set of M random variables formed as linear combinations of the N si such
that the observation1

x j
i = A k

i s
j
k (3.1)

We will call mixing matrix to the matrix A formed by the coefficients of Equation 3.1 and
mixtures to the obtained variables xi.

Now, let suppose that we have access to D ordered samples of the mixtures. ICA tries to recover
the D ordered original samples of the sources si without knowing the mixing matrix A.

1During this section, we will use the terms observation and sample to refer to each of the samples taken from
the random variables defined before
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As an ordering is requested, we can express the set of observations for a given random variable
xi in the form of a vector xi, and analogously si −→ si. In this way, we can formulate the ICA
problem in a much more familiar form: to recover the original generative vectors si.

The approach of ICA to solve that problem is to exploit the facts that the original vectors have
non-Gaussian distributed components and that they are independent among each other.

We actually cannot recover the exact sources si ∈ S. Indeed, their norm and ordering can
be altered without affecting the mixtures by a suitable change in the mixing matrix A. As
both, the mixing matrix and the basis vectors, are unknown while facing the problem, it is
theoretically impossible to deduce either the norm or the ordering of the source vectors.

Therefore we need to restrict ourselves to find what we call a faithful representation of the basis
vectors as presented in Definition 2. Note that this representation reflects all the information
we can extract about the basis vectors with the information contained in the set of mixture
vectors xi.

Difinition 2 We will say that a set of n basis vectors yi ∈ Y is a faithful representation of a
set of N ≥ n (or a complete faithful representation if n = N) basis vectors sj ∈ S iff

∀ i ∃! j such that 〈yi, sj〉 6= 0 (3.2)

Note that in Definition 2 we are allowing only one vector yi for each of the original basis vectors
S. Also notice that anti-parallel solutions are perfectly allowed (i.e. a negative scalar product
is as good as a positive one).

We are now in position to formulate the ICA problem:

Difinition 3 Given a set of N independent non-Gaussian distributed basis vectors S and a set
of linear mixings X of such basis vectors, the final purpose of ICA is to find a set Y being a
complete faithful representation of S.

In general, of course, the exact size of the set S remains unknown to the experimenter. Several
strategies have been proposed to estimate this number, but they are out of the interest and
scope of this work.

3.1.2 Independence and non-Gaussianity

The key element in ICA is the maximisation of the statistical independence of the extracted
components yi. This is partially the reason why ICA, being originally a BSS methodology, has
become so popular in the Machine Learning community as a dimensionality reduction technique.
If the outputs of PCA are decorrelated, the outputs of ICA are statistically independent, a much
stronger condition than decorrelation. Note that, whereas this is just an interesting property
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for Feature Extraction, it is of vital importance in the sense of Definition 3, since otherwise we
cannot guarantee that the obtained components are actually a faithful representation of S.

The next step in our exposition should be, therefore, to find a way of measuring such indepen-
dence. For that, we will need to use the assumption that the mixings are produced as a linear
combination of non-Gaussian sources.

Theorem 1 Let each of the observations xi ∈ X be a linear combination of a set of non-
Gaussian random variables si ∈ S and let yi ∈ Y be a set of linear combinations of the mixings
X . Then, the two following affirmations are equivalent:

1. The statistical independence among the member in Y is maximal.

2. The shape of the members of Y is maximally non-Gaussian.

An intuition of the proof for this theorem can be draw considering the implications of the
Central Limit Theorem (see [27], Chapter 9). In short, a main consequence of that problem
is that a mixture of any two mutually independent non-Gaussian distributions is always more
Gaussian than any of the original distributions. Therefore, maximising non-Gaussianity of a
linear combination of mixtures guarantees that the obtained solution is a fair representation of
one of the original sources si. A more formal proof of this can be found in [3].

Therefore, to evaluate the independence of a candidate component y we can just measure its
non-Gaussianity. This is a quite interesting result because, among other things, it allows us to
focus in a single potential solution at each time (i.e. to maximise global mutual independence we
just need to focus in guaranteeing for each of the components to be maximally non-Gaussian).

3.1.3 Measuring non-Gaussianity

We have already argue that a valid strategy to find the correct set of yi is to try to maximise
its non-Gaussianity. Before going any further, let us define what a non-Gaussianity measures
looks like.

Difinition 4 Let y ∈ RD be a set of D samples measured from a distribution y. A non-
Gaussianity measure is a function

J : RD −→ R
y −→ J(y) (3.3)

that reaches its minima when y is a Gaussian distribution and it gets larger and larger when
the distribution is further and further from a Gaussian shape.
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Likelihood approach to measure non-Gaussianity

Respecting its Gaussianity, a non-Gaussian distribution can be either super- or sub-Gaussian.
These names represent the fact that the peak in the mode of a super-Gaussian distribution is
higher than the one for a Gaussian distribution, provided that both have the same variance.

One way to measure the non-Gaussianity of a set of observations is to maximise its likelihood
with a super- or sub-Gaussian distribution. This approach requires us to make further assump-
tions over the data (i.e. we need to stablish if we are looking for either super or sub-Gaussian
distributed sources), and we are not going to use it. However, it can be very helpful in a lot of
applications (e.g. fMRI Resting-State networks are known to be super-Gaussian [15]).

Negentropy as a measure of non-Gaussianity

A more sophisticated approach to non-Gaussianity is provided by Information Theory as an
application of the entropy. Entropy is a well defined quantity representing the amount of
information needed to codify the observations of a given distribution. Information Theory
establishes that this information in larger for samples measured form distributions closer to a
Gaussian, reaching its maxima for the Gaussian distribution itself (provided that the comparison
have been done between distributions with the same mean and variance). A proof for this
affirmation in relation with ICA can be found in [3].

It can be proven (we refer the reader again to [3]) that likelihood and Negentropy maximisation
are equivalent when the correct assumption about the shape of the distribution have been settled
in the likelihood target function. Furthermore, other approaches to this measure like directly
maximising statistical independence or minimising mutual information can be directly proven
to be equivalent to the objective of maximising Negentropy of the components. Therefore,
Negentropy offers a general and reliable approach to ICA.

Difinition 5 Consider an arbitrary distribution y and a Gaussian distribution ν with same
variance and mean that y. Then, we define Negentropy as the following quantity:

J(y) ≡ H(y)−H(ν) (3.4)

where H(·) is the entropy of a given distribution.

It is easy to see that J(y) is a negative quantity that increases with the non-Gaussianity of the
distribution y. It is, therefore, a perfect measure of Non-Gaussianity as expressed in Definition
4.

Negentropy is, however, difficult to compute. The entropy of a set of observations must to be
computed from its generative probability distribution function (pdf) whose estimation from the
data can be computationally prohibitive. Therefore, approximations to Negentropy should be
used instead.
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Approximations to Negentropy

The most common of those approximations is Kurtosis, the fourth standardised momentum of
a distribution. However, Kurtosis depends on a power of 4 with respect to the deviance of the
observations, and it is therefore quite unstable facing outliers.

A general approximation for Negentropy was proposed by Hyvarinen [26] by assuming that the
distribution of y was near to a Gaussian distribution. This approximation can be simplified to
the following expression2:

J(y) ' k(E[G(y)]− E[G(ν)])2 (3.5)

where G(y) is an arbitrary function of y exhibiting a growth lower than a quadratic function, k
is a multiplicative constant that depends on the specific choice of G(y) and E[x] stands for the
expectation value of x, which when we only have access to a discrete set of samples x can be
written this way:

E[x] ≡ 1

N

N∑
i

xi (3.6)

A wise choice of G(y) makes this quantity very robust to outliers. A very common choice in
this context is:

G(y) = −e−
y2

2 (3.7)

The approximation draw in Equation 3.5 does not, in general, hold. However, it can be proven
that it is still a monotonic increasing function of the non-Gaussianity of the distribution of y
and, therefore, is a prefect valid choice as a non-Gaussianity measure in the terms of Definition
4.

3.2 Two architectures for ICA

In the Knowledge Discovery context we can understand ICA in two different architectures. The
first architecture is largely related with this work and interprets the source vectors si as the basis
of the vector space where the observations lie. The second architecture is more related with
Dimensionality Reduction and interprets the mixings as the original features of the data and
the sources as the target extracted set of features after the Dimensionality Reduction process.

2The notation here is a little bit messy, but this cannot be expressed in a more precise way. In the following
expression, y is used to name a set of samples of the random variable y. We could make this using a vector as
before, but the G(y) function has to be a single variable function. This problem is produced by the unfortunate
but common notation for the expectation value, which has to be defined over a set of variables when used to
characterise observations
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3.2.1 Basis Decomposition oriented ICA

Let S be a basis spanning the vector space V whose representations follow a non-Gaussian
distribution and X be a set of M observations represented by vectors xi ∈ V of dimension D.

Difinition 6 Basis Decomposition oriented ICA (BD-ICA) is an architecture for ICA that finds
a given number n of mutually orthogonal linear applications wi ∈ WM (as defined in Equation
2.4) such that the resulting linear combinations yi = w j

i xj present the possible less Gaussianity
measure of all the elements in V.

In other words, Definition 6 finds the more non-Gaussian elements in the vector space spanned
by the set of observations V.

In the fMRI context, this architecture assumes that there exist some statistically independent
spatial patterns in the 3-Dimensional volumes that are activated in a sympathetic way along
time. The linear coefficients of this patterns (i.e. the numbers constituting the mixing matrix
A) can be understood as the time courses we talked about in Section 2.1.3 when performing
ICA over a single individual.

Since this architecture assumes spatial independence, the method is usually called Spatial-ICA
in the Neuroimage literature.

3.2.2 Feature Extraction oriented ICA

The other architecture for ICA is summarised in the following definition:

Difinition 7 Feature Extraction oriented ICA (FE-ICA) is an architecture for ICA that finds a
given number n of mutually orthogonal linear applications ξi ∈ RD such (as defined in Equation
2.1) that3 the resulting projections yij = 〈ξi,xj〉 constitute a new representation of X in a

subspace Rn ⊆ RD, in such a way that the estimated distribution behind the observations in a
given variable of the new feature vectors are as less Gaussian as possible.

This last definition maximises the non-Gaussianity of the distribution of the features after the
projection. The assumption here is not that there exist some generative patterns in the feature
space, but that the final features we want to represent our data are maximally non-Gaussian
and therefore independent among them. This can be very useful in Feature Selection as it could
allow the experimenter to obtain a non-redundant representation of its data before training a
classifier.

Nevertheless, this approach can be also useful in Knowledge Discovery. In the fMRI context, we
are simply making a very different assumption than in the case of (BD-ICA). The hypothesis
here is that there are some patterns behind the data hidden in the temporal domain, being

3Note that, in this case, ξ ∈ RD, not ξ ∈ V.
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mixed in a linear way in the spatial domain. Therefore, we are assuming that now the temporal
patterns are independent. This hypothesis has demonstrated to not be very useful in fMRI
image, but other techniques showing a better temporal resolution like Electroencephalography
(EEG) imaging show a very good compatibility with this architecture [15]. For these reason, in
the Neuroimage context this approach is usually called Temporal-ICA4.

This is also the approach used in the Cocktail Party problem, the best well known example of
the BSS family. In this scenario, a set of microphones record a mixture of several conversations
in a party. The particular location of the microphones is what determines here the coefficients
of the mixing matrix. Analogously, the source vectors are the original speeches of each of the
people in the party, whilst the mixings are in this case the recordings of the microphones. Once
more, assuming independence along the time dimension, we can recover a faithful representation
of the source conversations.

3.3 Preprocessing before ICA

Besides classical noise-reduction and other filtering techniques, some data-transformation like
preprocessing is usually made before applying ICA to a given dataset. More specifically, a first
run of PCA can make the process much easier and computationally cheaper.

3.3.1 The case of BD-ICA

Consider now the BD-ICA architecture presented in Definition 6. Note first that the search space
of ICA is in that case the vector space V. This is an immediate consequence of characterising
the Independent Component as w-applications (see Equation 2.4).

Now, according to the assumptions draw in the Problem Definition (Section 2.3.2), V is spanned
by the original N source vectors si ∈ S. Therefore, we can characterise this vector space with
a set of N linearly independent vectors lying in that vector space. That means that we can
represent it by just a subset of N linearly independent (or a set of N non-singular linear
combinations of) observations.

PCA preprocessing

PCA naturally finds an orthogonal set of decorrelated linear combinations of the observations
holding the maximal amount of variance. This last consideration is interesting because the
noise can introduce subtle differences in otherwise parallel observations. We want to preserve
as much variability as possible of the (actually larger) vector space spanned by the observations.

Therefore, we can use the first N Principal Components (i.e. the N ones with higher eigenval-
ues5.) derived from our observation set X to span the search space of the algorithm, therefore

4A very interesting discussion about these two architectures in the Neuroimage context is exposed in [15]
5Actually, a possible strategy to estimate the number of Independent Components is to use the eigenvalues of

PCA to estimate how many vectors do we need to span the vector space V
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reducing the computational cost of the search.

From now on, we will consider the set of reduced whitened samples zi ∈ Z as the result of
applying PCA to the original set of samples X . Let U be the projection matrix built with the
N first eigenvectors computed by PCA. If we apply PCA over the observations Z is defined in
the following way:

z j
i = U k

i x j
k , 1 ≤ i ≤ N (3.8)

Note that, however, any other kind of Dimensionality Reduction can be used to form the Z
subset. The only constraint is that the vectors have to be linearly independent. However, as we
will see in a moment, the PCA Feature Extraction technique has some other desirable effects
over the search process.

The reduced space V̂

In addition, the output of PCA is formed by a white (i.e. decorrelated normally-distributed)
set of samples. As decorrelation in Gaussian distributions means independence, we can use the
result of Probability Distribution Theory (see [27], Chapter 7) that establishes that any unitary
linear combination of independent normally distributed samples is also normally distributed.

This implies that, if we use a subset of the output of PCA to span the vector space V and
we restrict ourselves to unitary w-applications we are actually reducing the search space to a
subset V̂ ⊂ V in which all samples are normally distributed6. This restriction allows us to fix at
the same time the variance of the Independent Components yi ∈ Y, a free parameter in ICA.

We will call Ŵ to the set of those unitary w-applications defined over the reduced space of
observations. Note that this unitary restriction simply means that the vector representation of
the application is unitary and its dimension is N :

Ŵ = {w ∈ WN such that ‖w‖2 = 1} (3.9)

To maintain a clear document, we will not use any different notation for these applications. If
not specified, assume for now on that any used w-application belongs to Ŵ.

In addition, this reduction of the search space largely simplifies the measure of non-Gaussianity,
that no longer needs to be mean/variance independent. In the case of Negentropy, that means
that the right side of the difference in Equation 3.5, E[G(ν)], will remain constant for all
considered w ∈ Ŵ Great news if we use a Gradient Ascend based technique (and we will).

6Note that, however, V̂ is no longer a vector space.
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3.3.2 The case of FE-ICA

All this results hold in the case of FE-ICA (Definition 7) with a few small changes. To begin
with, the PCA has to be performed over the features instead of the observations. Then, instead
of redefining the observations xi we need to redefine the features xi (imagine xi as columns
of an hypothetical matrix formed by gathering as row vectors the mixings xi). Let U be the
eigenvector matrix from PCA. Then:

z j
i = U j

k x k
i , 1 ≤ i ≤M (3.10)

where, as before, M is the number of samples.

Also, instead of using an unitary version of the w-applications, we will need to use an unitary
version of the 1-forms ξ to fix the variance of the Independent Components and to keep constant
the variance and mean of the distributions considered by the non-Gaussianity measure.

The rest of differences are trivial and they are not really necessary to this exposition. The pre-
processing for this architecture is largely developed in [26] using a slightly different framework.

3.4 Algorithms for ICA

There are currently two well-developed architecture independent approaches to solve the ICA
problem as introduced in Definition 3.

3.4.1 Very briefly: the infomax approach

The most elegant approach is infomax [28]. It uses a Feed-Forward two-layered Neural Network
to find the Independent Components. In this approach the weights in each of the neurons in the
hidden layer represents an Independent Component. The optimisation algorithm then tries to
maximise the information preserved by the network during the transformation produced from
the input to the output layer. It can be proven that the preserved information is maximised when
the mutual information between the components represented in each of the neurons is minimal
if we set the activation function of the neurons to be similar to the cumulative probability
function (cdf) of the expected distribution of the ICs.

This approach is equivalent to likelihood maximisation. Actually, it only works if we choose the
cdf in the activation function correctly (it doesn’t need to be precise, but it should correctly
indicate whether if the expected IC is super or sub-Gaussian).

This is the ICA approach used in some of the Discriminant-ICA approaches described in Section
2.2, like [22]. It is also the standard approach implemented in most of the fMRI-oriented ICA
software, like FSL-MELODIC [29] or the SPM based GIFT [8].
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3.4.2 Projection Pursuit approach

We are not using infomax in this work for two reasons. First of all, we want to extract a small
subset of the Independent Components (if not a single one), so we need an approach that let
us to extract the components one by one, without worrying about the rest of them.

In the second place, infomax requires to specify the expected kind of non-Gaussianity of the
components, making it less general than Negentropy based approaches.

The second approach to ICA satisfy these two requirements. The basic idea of this approach is
to find at each time the most promising Independent Component (e.g. the most Non-Gaussian
one) until we have obtained a satisfactory set of vectors Y.

In the rest of this section we will develop the Gradient Ascend Negentropy-based version of this
algorithm. This is, however, not the state of the art of this version of ICA. Indeed, Hyvarinen
et al. have developed a Fixed-Point based algorithm for ICA that outperforms greatly the
Gradient Ascend one. This algorithm is called Fast-ICA, presented for the first time in [30]7.

This way of extracting the components is called Projection Pursuit in the BSS literature [15].

3.4.3 Gradient Ascend Methodology for ICA

As discussed, we will now develop a procedure for extracting the ICs with Gradient Ascend using
Negentropy as objective function. It can be proven [3] that the Negentropy measure guarantees
no spurious maxima (i.e. all local maxima correspond to an Independent Component).

As said before, one Independent Component is extracted at each time and an orthogonalisa-
tion restriction between the candidate linear applications and the ones that have been already
extracted is used during hill-climbing to guarantee that the subsequent runs do not extract the
same ICs more than once.

More specifically, in the architecture of Definition 6 (BD-ICA), we try to find a w-application
in each of the runs such that the considered vector y = wi xi corresponds to a maxima in the
Negentropy function in the search space V̂. The use of this search space (in opposition to the
wider search space V) implies that we are using the reduced observation set of N elements Z
and unitary w-applications w ∈ Ŵ, where N is the number of ICs we want to extract.

To find the first Independent Component we first initialise randomly the considered w-application.
Then we run iteratively

w← w + ∇J(y(w)) (3.11)

until some condition has been fulfilled (e.g. the change in w gets lower than some threshold).
In this last equation we have used that y(w) = wi xi.

7We talk a little bit more about this in Section 7.2.3
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To guarantee that w remains unitary during the search, we can force it in each iteration by
simply running:

w← w

‖w‖
(3.12)

Other solution is to use a Langrangian approach and add a term into the gradient of the
objective function with a multiplier of Lagrange and the term (‖w‖−1)2. However, we will not
use this approach in this work to keep our algorithm compatible with Second Order approaches
to Gradient-Ascend.

Once we obtain the first application w1 we can search for another one by just imposing w2 to
be orthogonal to w1. More generally, we will impose to any new application wi to be orthogonal
to all the already found ones wj for all j < i.

This can be done by using Gram-Schmidt orthogonalisation at each step just before the nor-
malisation step:

wi ← wi −
∑
j<i

〈wi,wj〉
‖wi‖‖wj‖

wj (3.13)

Putting all together we obtain a procedure for extracting the tth w-application corresponding
to the tth Independent Component. This procedure is introduced in Algorithm 3.1

Algorithm 3.1: Basis Decomposition ICA

input : Z, set of previously found w-applications {wi}{i<t}
output: The tth w-application wt

1 Randomly initialise a unitary vector representation for wt;
2 while not convergence do
3 Apply Equation 3.11 to wt using Z;
4 Apply Equation 3.13 to wt using {wi}{i<t};
5 Apply Equation 3.12 to wt;

6 end

The explicit expression for the gradient of the Negentropy is derived in Section B.3.

This process is identical for the architecture of Definition 7 (FE-ICA) but considering projectors
ξ ∈ RD instead of linear applications w ∈ W.

3.5 Group-ICA revisited

Now that the ICA base have been formulated, we can review the concepts introduced in Section
2.1.2.

27



Independent Component Analysis

Let first consider a single-subject fMRI recording as presented as an example in Section 3.2.1.
The recording of this subject can be expressed as a set of L ordered observations x ∈ X .
Moreover, in relation with the sources S, we can establish that the coefficients of the mixing
matrix A defined as in Equation 3.1 constitute the time courses for each of the s ∈ S. Indeed,
if we consider the ith source vector, the set of coefficients A i

j with j = 1..L corresponds to the
time courses of that source vector.

Note, however, that this ordering is not important during the search of the ICs, and it only
plays an important role when interpreting the results. As we have already argued, we do not
even need the whole set of observations to reproduce the ICs.

Now, let us consider an analysis involving the recordings of k subjects, in which X =
⋃k
i=1Xi,

where the set Xi represents the set of observations belonging to a given subject. In this case,
the mixing matrix represents a concatenation of the time courses of the subjects, and therefore
we are assuming that the Independent Components are the same for all subjects. That does not
mean that all the ICs have to be equally expressed in all of them. On the contrary, if the ith
IC is not activated at all for the subject m, we would just observe that the mixing coefficients
A i
j = 0 for all j such that xj ∈ Xm. This partially explains why we can make some spatial

inference based only in the temporal courses of the Independent Components.
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Chapter 4

The Fisher’s Linear Discriminant

The Fisher’s Linear Discriminant (FLD) was introduced in [31] to evaluate the interest of a
certain linear function of the features describing the data to characterise different taxonomic
classes. The discriminant has been widely used in the Machine Learning Community as the
key piece of Linear Discriminant Analysis (LDA), a supervised Feature Projection technique
capable of finding the projection of the data showing the best linear separability [4].

In this chapter, we will briefly review the classical discriminant to set the background to develop
a generalisation of FLD for arbitrary data transformations. Later, we will show how a Gradient
Ascend algorithm would work for such generalised FLD to perform a generalised version of
LDA.

4.1 Classical formulation of the FLD

4.1.1 General considerations

In this report, we will understand the term linear discriminant as a measure of the linear
separability of a given representation of a dataset as reported in [4]. Note that here the linear
constraint is applied to the frontiers separating the dataset in its classes, not to the particular
representation of the dataset.

The Fisher’s Linear Discriminant is in this sense a linear discriminant. A kernelised version
of FLD [32] extends the method to consider also non-linear frontiers. However, we will limit
ourselves to the linear version of method during the rest of this exposition.

In addition, the FLD as presented in [31] only considers representations of the data built using
linear 1-dimensional projections and problems with two classes. The generalisation of the FLD
for more than two classes have been widely used in the literature [33], but we will consider only
the binary case in this work.

29



The Fisher’s Linear Discriminant

Let us now formally introduce the FLD. Let X be a dataset with observations x ∈ V and labels
ci ∈ D defined over the space of (two) classes C. Let X(c) ⊂ X be the set of observations
belonging to the class c.

Difinition 8 The Fisher Linear Discriminant is a Linear Discriminant considering the repre-
sentation built by projecting the dataset over a projector ξ:

Φ : VM , CM ,V∗ −→ R
X ,D, ξ −→ Φ(X ,D, ξ) (4.1)

The function Φ(X ,D, ξ), specified in Equation 4.1, is directly proportional to the distance be-
tween the centroids of the projections of each subset X(c) and an inversely proportional function
of the distance among observations belonging to the same subset X(c).

This definition settles an elegant solution to the problem of how to measure linear separability.
Note that, as the distance is by definition a positive quantity, the FLD is a definite positive
function.

4.1.2 Analytical formulation

The analytical representation of the FLD as presented in Definition 8 is easy to compute and
have been developed widely in the literature (see, for example, [4]). However, we will reproduce
here that derivation as its comprehension is crucial to the later generalisation.

Now, let us call x̂ = 〈ξ,x〉 to the projected samples. Then we can define the mean of each class
as

µc ≡
1

Mc

∑
x∈X(c)

x̂ (4.2)

and the scatter of each class

σc ≡
∑

x∈X(c)

(µc − x̂)2 (4.3)

where Mc represents the number of samples in X(c). Then:

Φ(X ,D, ξ) ≡ |µ1 − µ2|
2

σ21 + σ22
(4.4)
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4.1.3 Matrix Formulation

Usually a matrix representation of the FLD is used in the applications. Let us introduce the
within scatter matrix SW:

SW(X ,D) ≡ 1

M
(m1 −m2)(m1 −m2)

T (4.5)

and between scatter matrix SB:

SB(X ,D) ≡ 1

M

∑
c∈C

∑
x∈Xc

(x−mc)(x−mc)
T (4.6)

where mc represent the mean of the subset X(c) and m the mean of X . As many times before,
M equals the number of observations in X .

Note that Equation 4.5 captures the mean distance between the samples belonging to the same
class whereas Equation 4.6 reflects the mean distance between the centroids of the two classes.

Now, if we project the within scatter matrix SW:

ξ SW ξt = ξ (m1 −m2)(m1 −m2)
t ξt

= (ξ m1 − ξ m2)
2

= (µ1 − µ2)2 (4.7)

The same process for the between scatter matrix SB yields:

ξ SB ξt =
∑
c∈C

∑
x∈Xc

ξ(x−mc)(x−mc)
T ξt

=
∑
c∈C

∑
x∈Xc

(ξ x− ξ mc)
2

=
∑
c∈C

σ2c =

= σ21 + σ22 (4.8)

Therefore, we can rewrite Equation 4.4 as

Φ(X ,D, ξ) =
ξ SB(X ,D) ξt
ξ SW(X ,D) ξt

(4.9)
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4.1.4 Dimensionality of the output of LDA

Linear Discriminant Analysis (LDA) aka Fisher’s Discriminant Analysis is a technique that,
maximising the FLD with respect to the projection vector ξ, finds the best possible 1-Dimensional
projection of the data to discriminate between the classes.

The fact that the representation is 1-Dimensional makes of LDA a perfect candidate for a linear
classifier: we just need to fix a threshold in the resulting feature to use the projection to classify
new observations. It can be, however, a drawback when dealing with Feature Projection.

This limitation is inherent to the way in which LDA finds the maxima in the FLD (see [4]). In the
multi-class generalisation of the discriminant the limitation also appears in a more general way:
the technique allows to extract a total of number-of-classes − 1 projections of the data. Some
strategies have been developed to extend this number to an arbitrary number of projections.
We will adopt the strategy proposed in [34], where the authors use the same methodology we
exposed for the extraction of the Independent Components applied to the LDA problem (i.e.
the step shown in Equation 3.13).

Even with those solutions, it is interesting to outline the restriction from a Knowledge Discovery
perspective. When we consider two classes, LDA outputs exactly one linear combination of
features to distinguish them. This is of course enough if the problem is linearly separable.
Consider now the case of three classes. In that case, even if the problem is linearly separable,
we need at least two dimensions to successfully separate the data. Actually, all we need is a
plane (we do not really care about the particular direction of the two extracted projections, as
long as they draw the correct plane).

This considerations are literal in the LDA problem. It can be proven (see, again, [4]) that, for a
given dataset with C classes, LDA provides a C − 1 hyperplane to project the data in the form
of C − 1 projectors. The particular vectors are, however, not uniquely determined, as any set
of projectors defining the same manifold draw a maxima in the FLD function.

We will come back to these considerations later in the context of Knowledge Discovery, to show
that the best strategy to deal with multi-class data is to subdivide the problem into 2-class
problems.

4.2 FLD for arbitrary transformations

In this section we will develop a generalisation of the FLD to consider arbitrary parametrised
data transformations. Actually, non-parametrisable transformations are also allowed in this con-
text, but this restriction will be necessary later when deriving a Gradient Ascend methodology
for the generalised LDA.

The generalisation is performed in two ways: first, the new version of the FLD will allow non-
linear transformations. This can be interesting in order to add some prior knowledge to the
data. We will use this generalisation later to include a quadratic term in the representation of
the data.
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Second, the considered transformations will be extended to considered output spaces with more
than one dimension. This last generalisation breaks the restriction exposed in 4.1.4 in a much
wider sense than the trick of the orthogonalisation step made during Gradient Ascend. Indeed,
as we will consider directly transformations to arbitrary dimensional spaces, we will measure
the linear separability directly in that space.

4.2.1 Analytical formulation

Consider a general transformation with parameters α = (α1, α2, ...):

Tα : V −→ RR

x −→ Tα(x) (4.10)

where R is the number of dimensions in the transformed space.

If we redefine Equations 4.2 and 4.3 in the following way:

µc ≡
1

Mc

∑
x∈X(c)

Tα(x) (4.11)

σc ≡
∑

x∈X(c)

‖µc − Tα(x)‖2 (4.12)

We can rewrite Equation 4.4 as

Φgen(X ,D, T ) ≡ ‖µ1 − µ2‖2

σ21 + σ22
(4.13)

Note that Equation 4.4 is equivalent to this last one if we set the transformation Tα to be a
1-Dimensional projection of the data

Tξ(·) ≡ 〈ξ, ·〉

where we have used projector ξ ∈ V∗ as the parameter of the transformation.

33



The Fisher’s Linear Discriminant

4.2.2 Matrix representation

We can also develop a matrix representation for this generalisation based in the within and
between scatter matrices from Section 4.1.3. However, as the transformation is no longer linear
we cannot simply try to transform them in the way we did before.

Instead, consider the following decomposition:

‖µ1 − µ2‖2 =

R∑
i=1

(µ i
1 − µ i

2 )2

= (µ i
1 − µ i

2 )(µ1i − µ2i)
= Tr

(
(µ1 − µ2)(µ1 − µ2)

t
)

= Tr Sw(Tα(X ),D) (4.14)

A similar reduction can be done for the between matrix:

σ21 + σ22 =
∑
c∈C

σ2c

=
∑
c∈C

∑
x∈Xc

Tr
(
(Tα(x)− µc)(Tα(x)− µc)

t
)

= Tr SB(Tα(X ),D) (4.15)

Now, putting altogether, we finally obtain:

Φgen(X ,D, Tα) =
Tr SB(Tα(X ),D)

Tr SW(Tα(X ),D)
(4.16)

One interesting conclusion come out explicitly from this form: the discriminant itself is invariant
under rotations in the space formed by the transformation T . This is a natural result if we
take into account that the discriminant considers linear separation frontiers. The discriminant
is invariant under any kind of affine transformation because it reports linear separability no
matter the scale or orientation of the data.

This can be seen as an evidence of the considerations exposed in Section 4.1.4: any two trans-
formations defining the same projection plane are equivalent.

4.3 A Gradient Ascend approach for a generalised LDA

LDA can be solved using analytic matrix methods to minimise the expression in Equation 4.9
(see, again, [4]). This methodology is built over the classical FLD, which allows only linear
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projections to a C − 1 dimensional space. In addition, as it is an analytic method, it does not
easily allow us to add other objectives to the optimisation process, which is fundamental for
combining the FLD with some independence measure.

A more versatile approach to maximise the FLD is to use Gradient Ascend. It will allow us
to use general parametrisable transformations Tα and the addition of other objectives can be
trivially achieved by just adding an additional term to the objective function.

To construct the objective function of this version of LDA we only need to use the FLD as
described in Equation 4.16. To apply LDA, we first need to define what kind of transformation
Tα do we want and on which parameters does it depend. Those are the priors of our model.
Then LDA will find the best set of parameters maximising the linear separability of the data in
the representation defined by the transformation. The only non-fixed variable in Φ(X ,D, Tα)
is, therefore, α.

To construct a Gradient Ascend algorithm to maximise the discriminant consider, for the tst set
of transformation parameters αt we want to find, the Algorithm 4.1 with the following Gradient
Ascend step:

α← α + ∇αΦgen(X ,D, Tα) (4.17)

The derivatives required in this last equation are derived in Section B.1. The expression is, of
course, dependent on the derivatives of the specific transformation and parametrisation used in
the discriminant.

Algorithm 4.1: LDA for general transformations

input : X , D, Tα, set of previously found parameters {αi}{i<t}
output: The tth vector of parameters αt

1 Randomly initialise a parametrisation vector αt;
2 while not convergence do
3 Apply 4.17 to αt using X , D, Tαt ;
4 Apply 3.13 to αt using {αi}{i<t};
5 end
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Chapter 5

Discriminant Independent
Component Analysis

We now have all the tools we need to present a solution for our problem, as defined in Section
2.3. As probably the reader has already noticed, we are going to propose a solution grounded
on the dual optimisation of the Basis-Decomposition ICA (see Section 3.2.1) and some version
of the Fisher’s Linear Discriminant that we have not developed yet.

In this chapter, we will first review Discriminant ICA [5], in which the authors introduce a
combination of Feature Extraction ICA (see Section 3.2.2) and the classical FLD to achieve a
Feature Extraction oriented Discriminant ICA. Then we will present the Basis Decomposition
FLD, a BD oriented version of the classical FLD, compatible with the architecture of BD-ICA.
Then, we will finally combine the already introduced BD-ICA and the new discriminant to
construct BD-DICA, the solution for the problem introduced in Section 2.3, at the beginning
of this report.

5.1 Feature Extraction Discriminant ICA

Discriminant-ICA was introduced in [5] presenting a methodology to combine both, FLD and
ICA objective functions to construct a Feature Extraction method in which the projected vari-
ables were maximally independent (i.e. non-redundant) among each other while presenting good
properties for linear discrimination. This is the purpose of a dual optimisation process involving
the Feature Extraction architecture of ICA (Definition 7) and the classical FLD (Definition 8).

This section is a brief review of such work presented in our formalism and notation. Any missed
demonstration is therefore refereed to the original paper in [5], in which the subject is considered
in a much greater detail.
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5.1.1 D-ICA objective function

As usual, we will start to build our Gradient Ascend algorithm by defining its objective function

J DICA(ξi) ≡ J(yi(X , ξi)) + κ Φ(X ,D, ξi) (5.1)

where, as in FE-ICA, y j
i = ξjk x

k
i . As before, we have used J(yi) for denoting the approxima-

tion of Negentropy described in Equation 3.5 and Φ(X ,D, ξi) is the FLD as described in 4.1.
The factor κ is a modulation constant to adjust the importance of the FLD in the algorithm.

5.1.2 D-ICA Algorithm

As the normalisation and orthogonalisation steps needed to reduce unimportant degrees of
freedom and let the algorithm find several different components are identical in both techniques,
the Gradient Ascend algorithm for this problem is straightforward.

For the tth extracted component:

ξt ← ξt + ∇J DICA(ξt) (5.2)

ξt ← ξt −
∑
j<t

〈ξt, ξj〉
‖ξt‖

ξj (5.3)

ξt ←
ξt
‖ξt‖

(5.4)

where, in the expression of Equation 5.3, we have use the fact that the previously found com-
ponents ξi with i < t had been normalised before.

Note that, as the combination described in Equation 5.1 is purely linear, the derivatives are
easily computed using the derivatives of ICA and FLD:

∇J DICA(ξi) = ∇J(yi) + κ∇Φ(X ,D, ξi) (5.5)

Usually a set of reduced observations Z is used instead of the original set X in order to reduce
the computational cost of the algorithm. This reduction is usually performed using PCA over
the features of the observations as described in Equation 3.10.

5.1.3 Applications and results

The authors test the D-ICA algorithm with various datasets from the UCI database to explore
the effect of putting together such different techniques. What they find is that the effect of the
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κ just tune what kind of output they will obtain. The performance results when applying a
classifier to the projected data got better when the FLD term has more importance than the
ICA term. In return, they obtain a more independent set of features when decreasing κ.

Note that the main application of this algorithm is, as we said, to perform Feature Extraction.
Under the assumption that statistically independent features present a good characterisation of
the data, the ICA term can push the FLD to avoid extremely overfitted solutions.

5.2 The Basis Decomposition FLD

After studying D-ICA, it is clear that the remaining piece to complete the BD-ICA is a ver-
sion of FLD compatible with the optimisation problem of BD-ICA, as presented in Section
3.4.3. This section is devoted to the development of such discriminant, which we will call
Basis-Decomposition Fisher’s Linear Discriminant (BDFDL), in analogy with the BD-ICA ar-
chitecture.

5.2.1 The Basis Decomposition Transformation

The starting point to develop the BDFDL is to consider the generalised FLD (see Equation
4.13) and find a transformation as defined in Equation 4.10 suiting our interests.

Requisites

Such transformation should satisfy two conditions. First, it should be compatible with the
architecture of the Gradient Ascend algorithm of BD-ICA. In order to achieve that, we need to
arrange the free parameters of the transformation (i.e. the vector α) to coincide with the free
parameters of the ICA model (i.e. the coefficients of the w-application).

Second, the transformation should carry the prior information we have about the separability
of the problem (i.e. the transformed data should be separable under the assumptions of the
problem).

The first condition sets Tα ≡ Tw. The second condition requires some further considerations.

As we described in more depth in Section 2.3.1, the discriminative information of the data
should rely in the time courses of the sources. In other words, considering the set of sources S
and the set of observations X , the information in a sample xi ∈ X

x j
i = A k

i s
j
k

interesting for the discriminant is contained in the set of coefficients

A k
i , ∀k such that sk ∈ S (5.6)
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Therefore, our transformation should provide the FLD for a representation of those coefficients.

The shape of the transformation

Unfortunately, the only way of getting those coefficients is to first extract all the components us-
ing ICA and then perform a GLM to find the best fit for the coefficients. However, a workaround
can be done if we use the assumption of the sources being orthogonal. This condition can be
written as:

∀si, sj ∈ S 〈si, sj〉 = si k s
k
j = K(i) δij (5.7)

where K(i) = ‖si‖2 and δij is the Kronecker delta.

Now, consider the following projection of a sample xi over one of the sources sj :

〈sj ,xi〉 = x k
i sjk

= A l
i s k

l sjk

= A l
i K(l) δjl

= A j
i K(j) (5.8)

Note that, for a given source vector sj , the multiplicative coefficient K(j) is the same for all

the samples, whilst the coefficients A j
i are characteristic of the sample. Then we can use those

projections, now for a general projector ξ, to evaluate how good the candidate is, if we force
ξ ∈ V∗.

To understand this better, let us expand a projector in the basis formed by the sources (as
ξ ∈ V it should be decomposable in terms of the basis elements of V):

ξ = aj sj , sj ∈ S (5.9)

The desired result is to find a ξ in which the linear coefficient corresponding with one of the
discriminant sources is much higher than the rest. As we do not really know the sources sj we
cannot know the linear coefficients aj for a given projector ξ, but as the correct choice offers a
better separation of the data in terms of the coefficients of the mixing matrix, we can expect for
a good projector ξ to have a high FLD if the coefficients of its base are arranged in the desired
way, and vice versa. In simpler terms, the FLD will be higher and higher as the projector ξ gets
more and more similar to the discriminant sources, reaching a maxima when ξ = s ∀ s ∈ Sd.

We do not really want ξ = s but ξ ∝ s. Actually, allowing the projector representations to have
different norms could lead the optimisation process to a solution with a large norm of ξ rather
than a solution with a low angle between ξ and s. Therefore, it is convenient to force ‖ξ‖ = 1.
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Sometimes, however, the comparison of the weights in the mixing matrix is not enough. Con-
sidering the case in which the discriminant source has a large variance in comparison with the
others, but all of them have the same mean. For the discriminant to be able to successfully
analyse also those cases, it is convenient to add a quadratic term to the transformation. We will
resume this discussion after we have achieved a proper parametrisation for the transformation.

The parametrisation

The next natural step is to parametrise the transformation described before to be compatible
with BD-ICA.

As for now, the transformation depends just on the projector ξ just like the classical FLD.
However, we do not need for this projector to be defined in RD, since the sources are confined
in V. Actually, having a search space larger than we need is counter productive, since it increases
the chances of overfitting.

A simple way of making the BDFDL compatible with BD-ICA while constricting the search
space for the ξ to the vector space V is to parametrise the projector using its basis expansion
over the set of observations:

ξ =
1

‖bj xj‖
bj xj , xj ∈ X

but the coefficients bj are clearly related with the concept of w-application defined in Section
2.4.2:

ξ =
1

‖wj xj‖
wj xj , xj ∈ X (5.10)

where w ∈ W. Or, in the more usual case in which we are using a reduced set of observations:

ξ =
1

‖wj zj‖
wj zj , zj ∈ Z (5.11)

and now w ∈ Ŵ. We will use this later case from now on to parametrise the transformation.

Analytical expression

Now that we have justified the decisions taken to conform the transformation, we can define it
in formal terms. But first, let us introduce a further constraint over the data samples.

The projection of the observations x ∈ X usually have very different mixing coefficients A j
i that

can be scaled in a different manner for each of the instances (consider for example a microphone
much more distant than the others from the cocktail party). Therefore, the projected mixing
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coefficients cannot be directly compared by the discriminant without a previous normalisation
of the data instances.

One way of solving this issue is to project directly a normalised version of the samples x /‖x‖
over ξ. Another (more efficient) way of doing it is to normalise the data instances as a previous
step in the analysis.

We attempted to use the first approach in the formulation of this work to keep the algorithm as
much general as possible, but the theoretical exposition became too dirty and incomprehensible,
so we have decided to just assume the second one. Remember however that this assumption is
not a requirement of the method but a simplification made to let the derivation clearer. The
interested reader can trivially substitute any x by an x/‖x‖ if it is needed to keep differently
normed instances in X during the implementation. This changes are shown explicitly in Section
B.2.1.

Without more preambles, let us define the Basis-Decomposition Transformation.

Difinition 9 Let ξ be a candidate element of the basis spanning the vector space V, and a
normalised observation x ∈ X lying in that vector space. If the instance is not normalised,
the transformation normalises it as part of the process. We define the Basis Decomposition
Transformation as a mapping T in the following way:

T BD
w : V −→ R2 (5.12)

x −→ Tw(x)

where

T BD
w (x) ≡

(
〈ξ,x〉
〈ξ,x〉2

)
(5.13)

where ξ = 1
‖wj zj‖w

j zi, with zi ∈ V and wj ∈ Ŵ

We have justified already the quadratic term because of the possibility of being the variance of
the time courses the discriminant parameter of the class structure.

Another way (more Basis-Decomposition like) of understanding this term is to consider the
decomposition of an observation1 x in its parallel and perpendicular projections to ξ. Obviously,
the first component in Equation 5.13 corresponds to x‖. The second component is a monotonic
function of x‖. To see that, consider the norm of x‖:

‖x‖‖2 = ‖x‖2 − ‖x⊥‖2 (5.14)

1We are not asking now for x to be normalised to make this derivation as general as possible.
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The aggregation of both quadratic and linear terms captures therefore the essence of the effect
of projecting a given observation into the subspace spanned by the projector parameter ξ and
its perpendicular component. If well it is true that the real perpendicular component is not
exactly a quadratic term, this representation will become very advisable when we consider the
derivatives of the discriminant for the gradient ascend algorithm. And, after all, we are not
using this representation in a classifier. It is just a way of letting the FDL to consider terms
beyond the linear projection.

Just one more justification for the quadratic kernel comes from the ALFF representation (see
[18]) we have introduced in Section 2.1.3. This representation captures the amplitude measured
in the frequency space of the time courses. Naturally, it is completely out of the limits of
our generalised version of the FLD to perform Fourier Transforms over the time courses as
the instances in the algorithm are each of the 3-Dimensional volumes (i.e. we are limiting
ourselves to operations we can make with one volume). However, we can take advantage of the
Plancherel’s theorem, proven in [35]. This theorem establishes that, for a sequence x formed by
N elements xn and its Discrete Fourier Transform x̂ = F(x):

N∑
n=1

‖xn‖2 =
N∑
k=1

1

N
‖x̂k‖2 (5.15)

The right side of Equation 5.15 is easy identified as the mean of the Fourier transform of the
sequence. Therefore, the expected value of the square of the coefficients in the frequency space
(the ones considered by ALFF) is proportional to the expected values of the squares of the time
courses. ALFF does not consider these coefficients, however, but its square root. Nevertheless,
as in the case of the previous justification, we have enough with a representation made with a
monotonic increasing function of the quantity we want to measure.

With all that considerations, it could be argue that rather than a generalised function of the
FLD we could use directly a quadratic kernel in the FLD. However, please consider that a
quadratic discriminant is not the same that a discriminant finding linear frontiers in the space
spanned by a linear and a quadratic term. This last representation is much versatile, as it allows
to the Discriminant to detect frontiers made in both, quadratic and linear terms at the same
time.

5.2.2 The Basis Decomposition FLD Formulation

Now we have all the pieces to formulate the Basis Decomposition version of the FLD:

Difinition 10 The Basis Decomposition Fisher’s Linear Discriminant is the result of imposing
the BD-Transformation (Definition 9) over the generalised FLD described in Equation 4.13:

ΦBD : VM , CM , Ŵ −→ R (5.16)

X ,D,w −→ ΦBD(X ,Z,D,w)
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such that

ΦBD(X ,Z,D,w) = Φgen(X ,D, T BD
w (Z)) (5.17)

where T BD
w (Z) denotes explicitly the dependency of the transformation with the reduced set of

observations.

This discriminant is compatible with the desired architecture of ICA, since the only parameters
we can vary in the problem are captured by the linear application ξ. The discriminant has
two additional practical advantages. In the first place, as the search space of the projector is
limited to those vectors in V, the risk of overfitting is considerably lower that in the case of the
original FLD, where the search space is RD. In addition, as we choose w ∈ Ŵ, we only have
N variables in the Gradient Ascend process, so a large dimensionality of the observations does
not represent a problem in the efficiency of the algorithm.

Summarising, this discriminant is suitable for problems with a large dimensionality, avoiding
the most common issues related with those kinds of datasets: the curse of dimensionality and
the computational cost of the analysis.

The algorithm for the generalised-FLD-based Linear Discriminant Analysis has been already
presented in Section 4.3. The adaptation is straightforward, we just need to use w ∈ Ŵ instead
of α and add the normalisation step of Equation 3.12 to the Gradient Ascend algorithm to force
‖w‖ = 1. The specific derivatives for the BD-Transformation will be derived in Section B.2

5.2.3 Some empirical evidence

Before going ahead with this discriminant, we performed some empirical tests over an early
implementation to check if it was actually a good candidate for performing inference over our
data. These tests were fairly simple, but at the same time they proved the necessity of both,
the linear and quadratic terms in the BDFLD.

The experimentation was performed using synthetic data built using some basis vectors, a
randomly generated set of time courses and some noise. The construction showed different
parameters in the generation of the time courses for the discriminative basis vectors and similar
parameters for the rest of networks. Then, all the basis vectors were shown to the BDFLD
along with the generated data, to see if the discriminant was able to assign a greater score
to the discriminative vectors. We repeated those tests for datasets generated using different
amounts of noise.

The results were satisfactory for all tested levels of noise for the construction exposed in this
section. However, similar constructions showing only the quadratic or only the linear terms
were not as satisfactory. Actually, the discriminant did not score correctly to approximately a
half of the networks in both cases.
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The details of such experiments are not really important, as we will test the discriminant using
more formal methods in Section 6.1. But for now this is presented as one of the main causes
contributing to preserve both terms in the discriminant.

5.3 Basis Decomposition Discriminant ICA

The Basis Decomposition Discriminant ICA (BD-DICA) represents our solution for the problem
addressed in this work. The construction of the algorithm is quite similar to the already shown
Gradient Ascend algorithms. Actually, the procedure is the same as the one we used for BD-ICA
(see Section 3.4.3), but considering a different objective function.

5.3.1 The BD-DICA Algorithm

The BD-DICA objective function is just the weighted sum of the objective functions of BD-
DICA and BDFDL algorithms2:

J (w) ≡ (1− κ) J (yi(Z,w)) + κ Φ(X ,Z,D,w) (5.18)

Note that we have made a slight change in the meaning of κ with respect to [5] in order to better
modulate the relative importance of both components of the objective function. In this case,
κ = 1 means to ignore Negentropy and focus only on the discriminant part of the algorithm,
whereas κ = 0 is equivalent to an ICA. This parameter can play an important role in the
dynamics of the hill climbing if modulated during the Gradient Ascend.

As announced, the rest of the algorithm is analogous to the one presented in Section 3.4.3 for
BD-ICA. Algorithm 5.1 shows the procedure to extract the tth w-application corresponding to
the ith Component yt.

Algorithm 5.1: Basis-Decomposition Discriminant ICA

input : Z, X , D, the set of previously found projections {ξi}{i<t}
output: The tth projector wt

1 Randomly initialise a unitary vector representation for wt;
2 while not convergence do
3 wt ← wt + ∇J (wt);

4 wt ← wt −
∑

j<i
〈wt,wj〉
‖wt‖ wj ;

5 wt ← wt
‖wt‖ ;

6 end

2From now on we will use J to denote the objective function of BD-DICA and Φ for the BDFDL discriminant
to keep the notation clear
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As before, thanks to the linearity of the derivative, we can decompose the gradient in the
Equation in Line 2 of Algorithm 5.1 in the following way:

∇J (wi) = (1− κ) ∇J(wi) + κ∇Φ(wi) (5.19)

This process is repeated several times until we have obtained a desired number of components.
One advantage of this approach is that we can visualise on-line the extracted components and
monitor the value of the discriminant for each of them, so we can use this information to
construct a stop criterion during the run of the algorithm. However, for most of applications,
probably one or two components are enough to characterise the differences between two classes.

5.3.2 Multi-Class extension

An analytical multi-class extension of the algorithm has not been either developed or tested.
The missing parts to construct such algorithm will be supply shortly in this section, but first
let us consider if such an extension is really useful in the context of knowledge discovery, or if
it is better to adopt an one-VS-all strategy to deal with multi-class problems.

One-VS-All strategy

Consider a problem with C classes. We have already introduced the limitation of the classical
FLD in the dimensionality of the output, that is constricted to have C−1 features. We have also
mentioned the implications of a projection of more than one dimension: the projection obtained
from the FLD is actually a hyperplane with dimension C − 1, not a set of C − 1 well-defined
features. In other words, all projectors lying in the hyperplane will be acceptable maxima of
the FLD.

This considerations suggest that the use of a multi-class FLD is not the best option to char-
acterise a dataset with more than two classes, if we want a characterisation represented by a
vector of the same dimension of the instances.

This is perhaps clearer with the fMRI example, in which we want to characterise ground dif-
ferences among several groups in the fMRI signal. These differences can be physiologically
interpreted if the output of the algorithm is an fMRI volume indicating relevant parts of the
brain (in the two-classes problem, usually the part of the brain showing different patterns of
activation in the two groups). If we consider an fMRI problem with three classes, we should
expect to obtain two equally good solutions from the maximisation of the FLD. These solutions
are, however, not interpretable as an fMRI volume but as the vector space spanned by them,
as any rotation of such vectors would provide the same score in the FLD.

Therefore, we think that it is better to face the multi-class problem following an all-versus-one
strategy, therefore obtaining single-Dimensional projectors ξi characterising the differences of
one class with respect to the others. This result is much likely to be interpretable and probably
it has more sense from a Knowledge Discovery point of view, in which it is more interesting

46



5.3 Basis Decomposition Discriminant ICA

to obtain detailed information about the classes than having a good representation to separate
them.

The extension

We cannot imagine a situation in which a hyperplane over the space of the instances can be of
any help to characterise a multi-class dataset, but just in case, we will now shape the natural
multi-class extension of our algorithm.

As the only supervised part in the objective function of Equation 5.18 is the FLD, we only need to
supply a generalisation for that part of the algorithm. This extension can be easily implemented
by just substituting the distance between the centroids of the classes by the weighted sum of
the distances between these centroids and the centre of the whole dataset µ:

‖µ1 − µ2‖2 −→
∑
c∈C

Mc

M
‖µc − µ‖2 (5.20)

Note that the relative importance of a class c is measured as the portion of samples belonging
to the given class Mc

M .

This has a direct effect in the definition of the within-scatter matrix (see Equation 4.5):

SW(X ,D) ≡
∑
c∈C

Mc

M
(mc −m)(mc −m)T (5.21)

The within scatter measure is trivially substituted by the sum of the scatter of each of the
classes.
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Chapter 6

Experimentation

In this chapter we will test our algorithm in three different datasets. First, we will use synthetic
data satisfying our premises regarding the structure behind the data. This will suffice to prove
empirically our theoretical derivation.

Later, we will use two real fMRI datasets, to check if the whole process works in this context.
The two dataset correspond to the two kinds of fMRI data analysis problems described in this
work: Task-Based and Resting-State.

We will centre our experimentation in Knowledge Discovery and Data Characterisation, and
therefore we will not test the performance of the algorithm used as a Feature Extraction method-
ology (actually, we have not formalised yet the application of the algorithm in Feature Extrac-
tion, which we will introduce briefly in the discussion in Section 7).

6.1 Synthetic Data

The validity of the results of the algorithm applied to real data is very difficult to assess, since
we cannot be sure about what are the real discriminant patterns in the data, if any. The
output of this algorithm is, in addition, difficult to compare with other methodologies since
the representation of the characterisation is slightly different than other classical techniques
(see Section 2.1.3). Therefore, it is convenient to explore the results of the algorithm knowing
beforehand what is the precise solution to the problem.

In this section we will solve a series of synthetic problems showing a different amount of noise and
generated accordingly with the current state of the art of Resting-State fMRI. The procedure
of the construction of the dataset is first specified, and then we will expose the experimentation
and the results of the experiment.
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6.1.1 The Generator

The data generator built to perform the synthetic experiments of the algorithm is based in
the hypothesis that ALFF is a reliable measure of the differences between groups of subjects.
This hypothesis has been successfully tested in several works in Resting-State fMIR analysis
(see [18]). This measure has been previously detailed in Section 2.1.3.

To construct our dataset we will use the 20 Resting-State networks isolated by Biswal [13] as
the basis constructors of the data (i.e the set of initial basis vectors S). Then, we will select
randomly n of those basis vectors to construct the set of discriminant vectors Sd ⊂ S. This
number is a free parameter of the generator, but following the physiological guidance of the
generator we will restrict ourselves to n = 1, 2, 3.

This set of networks Sd will activate differently (i.e. will have a different ALFF measure) for two
sets of patients showing different mental conditions. In a clinical case, the abnormal activation
of those networks is usually connected with the given disorder (ADHD, schizophrenia...). To
avoid such dark topics, at least for a while, we will assume that our networks characterise the
Jedi abilities of the affected patients.

The number of subjects is another free parameter of the generator. As it is usual to have about
40 subjects in clinical studies, we used that same amount of subjects in our experimentation. In
addition, the distribution of the two groups is usually compensated since, while the experimenter
has a limited access to affected patients (there are not a lot of Jedies these days), the access to
controls is much easier to achieve and to obtain a balanced dataset is always possible. Therefore,
our generator splits equally both groups.

Another important parameter is the length (i.e. the number of volumes) of the experiment.
Resting-State experiments are usually of 8 minutes which correspond to L = 240 volumes in
standard machines (with a temporal resolution of 2 seconds). To spare some memory, however,
we have set this number to L = 100 in our experimentation.

Now we have most of the pieces to explain the algorithm of our generator, outlined in Algorithm
6.1. We only need to specify how do we draw the frequency distributions. This is made by
placing a number of Gaussian with random variances and means along the frequency space. The
height of the Gaussian is, however, not completely random. This quantity is chosen randomly
with a multiplicative factor a which is different for the normal and the abnormal activations
(more specifically, we selected aabnormal = 2anormal).

The frequency distribution and the corresponding time courses of one of those runs are shown
in Figure 6.1 for a = 1, 2, 4.

The Gaussian noise added at the end of the process is also a free parameter of the generator.
The quantity of noise is measured as the quotient between the norm of the generated signal
before adding the noise and the norm of the added Gaussian noise. Note that α = 1 means
that the Gaussian noise is half of the final signal, but additional irrelevant terms are contained
in the remaining half: the apportion of the non-relevant networks, for example.
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6.1 Synthetic Data

Algorithm 6.1: Generate synthetic Resting-State data

input : Set of source networks S, number of discriminant sources n, dimension of the
data D, number of subjects M , length of the recording L

output: The problem {X ,D} and the solution Sd

1 Randomly select a subset of n discriminant networks to built Sd;
2 Split the subjects in two groups: Jedies and controls;
3 for subject j ∈ 1..M do
4 for source vector sj ∈ S do
5 if si ∈ Sd and subject k is a Jedi then
6 µ = µabnormal

7 end
8 else
9 µ = µnormal

10 end
11 Draw the frequency distribution using the parameter µ of L points {dik(j)}k=1..L;
12 Compute the time course as the Discrete Fourier Transform of the distribution d:

{bit(j)}t=1..L;

13 end
14 Generate the tth volume of the subject j xt ∈ Xj as the pondered sum of the source

networks xt = b i
t (j) si;

15 end
16 Aggregate the volumes by subjects to construct X ;
17 Aggregate the labels of each subject to construct D;
18 Add some Gaussian noise to all the instances in X using the same parameters;
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Figure 6.1: Frequency distribution (and its corresponding time course) generated
with different Gaussian height baselines a for a run with 100 volumes.

6.1.2 Performed experiments

For the experiments we generated a battery of synthetic datasets with different n (number of dis-
criminant networks) and α (extra amount of Gaussian noise added to the dataset). Specifically,
we construct eight datasets with α = 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 for each value of
n = 1, 2, 3. In total, 24 different datasets sharing all the rest of parameters. We additionally
tested the behaviour of the algorithm under optimal conditions (α = 0, n = 1).

We should again insist on the fact that the quantity of noise presented is not as small at it
seems. To see that, consider the mean difference between the time courses of an abnormally
activated network and the time course of a normally activated network δ against the mean value
of the amount of noise for a given time course coefficient η. Table 6.1 summarises the amount of
noise measured in that way as an average between datasets with the same α. This calculations
show that a coefficient of α = 1 actually means that the amount of noise per volume is about
ten times larger than the mean difference of activation of a discriminant source between a Jedi
and a control subject.

The rest of the experimentation was relatively straightforward. We tested the algorithm using
different Gradient Ascend parameters and different values for κ. We also asked the algorithm
to extract two more networks than the expected ones (i.e. we asked for n = N + 2). We used
κ = 0.4 during all the synthetic experimentation.

6.1.3 Results

The results over the synthetic datasets were highly satisfactory. To measure this performance
we computed the similarity of the obtained components with the source networks, expecting to
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6.1 Synthetic Data

α 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1

mean abnormal 177 183 198 162 167 172 182 187

mean normal 109 127 101 115 117 112 94 101

η 0.6 1.2 5.0 11 54 98 593 1011

η/δ 0.009 0.02 0.05 0.23 1.1 1.6 6.8 11.7

Table 6.1: This table shows a comparison between the norm of the noise α with
the coefficient η/δ. We can see that α = 1 is actually equivalent to apply ten
times more noise to the dataset than the mean difference between the activation of
the discriminant networks in the two groups of subjects. The measures were taken
empirically from the data used in the rest of the experimentation.

find a high similarity for the discriminant networks and a low similarity for the rest of them.
This similarity was measured as the normalised scalar product of the vector representation of
the two networks:

sim(y, s) =
1

‖y‖ ‖s‖
|yts| (6.1)

These similarities are computed for each output of the algorithm and each of the generative
networks. Then we label each obtained component with the reference of the generative network
and the computed similarity and we compare the labels of the components with the original
discriminant networks to see if the output is correct. The mean similarity of the correct outputs
is plotted in Figure 6.2 for different levels of noise and amount of discriminant sources.

We can see in Figure 6.2 that the degradation is very small for α ≤ 0.1, obtaining similarities
of sym > 0.95. This degradation increases when α ∼ 1, probably because the level of noise
is destroying the original signal. This seems to indicate that the discriminant part of the
objective function does not disrupt the Independent Components too much, probably because
in this almost-ideal case the whole IC is entirely responsible for the group differences.

Of course, the similarity is only important when the discriminant source networks are correctly
extracted. The found components together with its similarities are represented in the plots of
Figure 6.3, in which we also indicate which components actually correspond to discriminant
sources.

Note that the algorithm is capable of correctly extracting all the discriminant networks self for
the case of N = 3, in which a network is missed for α = 1. This seems to indicate that the
algorithm does not work well with too many discriminant networks and very high levels of noise.

Another interesting effect that can be observed in the results exposed in Figure 6.3 is that
the similarity with non-discriminant networks is in general lower than the similarities for the
real discriminant ones. This is probably a result of the fact that, when finding non-discriminant
networks, both addends in the objective function are working on different problems: the BDFLD
wants to get closer to a discriminant position, which now is forbidden by the orthogonalisation
step as all discriminant networks have been already found. In the other hand, the Negentropy
addend just needs one Independent Component to reach a maxima.
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Experimentation

Figure 6.2: Mean similarity of the correctly extracted components for different
levels of noise (α) and number of discriminant networks N . Note that the x axis is
shown in log scale.

It could also be of interest to check the final value of the BD-DICA objective function of the dif-
ferent solutions. Moreover, we also inspected the final score of the BDFLD and the Negentropy
of the solutions. These results are plotted in Figures 6.4, 6.5 and 6.6. The images show that
the objective function (Figure 6.4) is not necessarily greater for all the correct solutions, as one
might expect. This effect occurs only in cases with n > 1 and it seems to be a consequence of
the following phenomenon: some linear combinations of networks were obtained as outputs in
some of these sets, but they were not considered as solutions because they had a lower similarity
with the original networks than previously found entire solutions.

The value of the Negentropy (Figure 6.5) is also more or less independent on the correctness of
the solution or the order in which they were extracted. The BDFLD score (Figure 6.6), however,
holds much desirable behaviour than the other measures. Indeed, this score is strictly higher
for correct solutions than for the other extracted components, including the spurious linear
combinations of real sources. This is a very convenient result, because it means that we can use
the score of the BDFLD to, in somehow, have a guidance of the value of each solution. This is
perhaps the most expected result of all of them, as the role of the determinant is precisely to
ensure that the networks are indeed discriminant.

6.1.4 Discussion

The results of the experimentation show what are the limits of our algorithm for this kind of
data: a extremely large noise and a large number of components could make the algorithm to
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6.1 Synthetic Data

Figure 6.3: Similarities with the nearest network for the extracted components
for different levels of noise. Each of the plots correspond to a different number
of discriminant sources N = 1, 2, 3. Note that in all experiments we extracted
n = N + 2 networks. The x-axis represents the number of component. The points
surrounded by a big square are correct solutions.
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Figure 6.4: Score of the objective function of the BD-DICA algorithm for the
extracted components for different levels of noise. Each of the plots correspond to
a different number of discriminant sources N = 1, 2, 3. Note that in all experiments
we extracted n = N + 2 networks. The x-axis represents the number of component.
The points surrounded by a big square are correct solutions.
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6.1 Synthetic Data

Figure 6.5: Negentropy as measured by the approximation of Equation 3.5 for the
extracted components for different levels of noise. Each of the plots correspond to
a different number of discriminant sources N = 1, 2, 3. Note that in all experiments
we extracted n = N + 2 networks. The x-axis represents the number of component.
The points surrounded by a big square are correct solutions.
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Figure 6.6: Score of the BDFLD discriminant for the extracted components for
different levels of noise. Each of the plots correspond to a different number of
discriminant sources N = 1, 2, 3. Note that in all experiments we extracted n =
N + 2 networks. The x-axis represents the number of component. The points
surrounded by a big square are correct solutions.
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6.2 Task-Based dataset

miss some solutions. This is not a very restricting problem when dealing with fMRI, as we do
not expect for the data to have more than one or two real sources in its structure.

Beside that, we think that BD-DICA offers a very precise representation of the discriminant
Independent Components behind the data, even when this sources are not entirely orthogonal,
showing an interesting robustness facing different levels of noise.

Of course these results have been obtained using synthetic data satisfying some of the assump-
tions up to a certain degree, but that does not mean that the problem is trivial. Consider the
Figure 6.1 plotting the time courses for different networks of our problem. In our data, we use
the baselines a1 = 1, a2 = 2, which correspond to the red and blue lines in the example. The
BDFLD would consider a degraded version (the representation would be exactly the same if
the networks were really orthogonal and we had no noise) of those time courses to guess how
discriminant are the sources.

The computation time was also relatively satisfactory. Each iteration took about 22 seconds,
and depending on the parameters a maxima can be reached in about 10− 15 iterations. All of
this with a poorly optimised code running over MATLAB. We will talk more about this topic
during the general discussion.

A general conclusion we obtained from the experimentation results is that BD-DICA can be
understood as a modified BDFLD more than a modified BD-ICA. We prefer to see it this way
because it is clear that the leading role in the interpretation of the solutions is contained in the
BDFLD. The BD-ICA term in the objective function plays a much discrete role devoted to the
avoidance of overfitting, restricting the maxima to those solutions maximising independence
meaning.

6.2 Task-Based dataset

The natural continuation of this experimentation is to test the algorithm with a real dataset.
As we have oriented most of the exposition towards fMRI analysis, it seems fair to test the
algorithm with fMRI data. This is the aim of the following two sections, in which we will
present to the algorithm both Resting-State and Task-Based fMRI data.

6.2.1 Description of the dataset

In this section we will use a private clinical dataset we call MST which is described later. The
analysis of this dataset was the actual trigger for this project1 in which we wanted to find
physiological indicators of a good recovery in patients treated with a music supported therapy
(therefore MST data) after suffering a stroke in the brain. All the subjects of the analysis
suffered of a loss of mobility in one of their upper extremities, and all of them were treated
with an experimental technique in which the patients combine a standard therapy routine with

1The analysis of this data using a more classical approach to temporal inference have been included in this
report in the Appendix A. The interested reader can safely skip this description and read the appendix instead
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sessions of playing and hearing music. It have been proven that such routines can improve the
performance of the therapy in some patients [36].

The objective of the problem assessed with this dataset is to characterise the brain activation
of those patients while listening to music showing an improved performance in the therapy in
opposition to the patients showing a standard performance in the treatment. This characteri-
sation is expected to be implemented in the form of a connection between parts of the brain,
as the therapy is constructed in the basis of an interaction between the motor and auditory
cortices of the brain [37]. Therefore, we need to analyse the whole brain at once, and not only
a part of it.

This dataset is really limited, because we need to deal only with patients suffering from sim-
ilar lesions and being treated with the same rare experimental procedure. This limitation is
translated in a dataset with just nine patients. The recordings have 200 volumes each, which is
translated into 1800 instances.

We have two groups in the dataset: improved performance (4 patients) and normal performance
(5 patients). Each instance had about 110000 voxels, mapped in the MNI standard of 4mm×
4mm× 4mm.

The data was appropriately preprocessed in the standard terms in the field, which includes sev-
eral steps: normalisation (correcting differences among the brains of the patients and correction
of the possible movements during the experiment), noise reduction, bandpass filtering and some
Gaussian blur to refine possible mistakes in the motion correction [7] [8].

The nature of the problem and the characteristic of the data are introduced in much more depth
in Section A.2

6.2.2 Single-Subject Preprocessing

Our analysis started with all the appropriate fMRI preprocessed as explained in the previous
section. However, we still needed to perform some high-level preprocessing over the data before
using it in out algorithm.

In the first place, we need to perform some Task-Based specific transformations to take into
account the structure of a Task-Based fMRI recording. These kind of recordings are composed by
a series of task periods separated by resting periods. This resting periods are then subtracted
to the task periods to filter secondary activations and artefacts. Usually, the final signal is
described as the task signal in which we have removed the mean of the adjacent resting period
and we have normalised to that same variance. In that way, all voxels are normalised according
to their mean activation during the resting periods. This representation is a variant of the usual
z-score used in statistics, in which we characterise the standard behaviour of each attribute by
looking at the resting period [7].

After this correction, we preserve approximately one half of the volumes of the original recording
(the other half correspond to resting periods). A second step is then done to reduce the cost of
the algorithm by reducing a little bit more the number of volumes considered for each subject.
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6.2 Task-Based dataset

This reduction is simply performed with a PCA (with the same architecture as in Section
3.3.1) run over the volumes belonging to the subject. Note that, as the linear combinations are
performed over the volumes of the same subject no class information is destroyed during the
process.

At the end of the single-subject preprocessing we preserve between 20 and 50 volumes for each
patient (the precise number depends on the eigenvalues of the PCA). After that, the data is
gathered in a single dataset and fed to the algorithm. The treated dataset had a final total of
280 instances.

6.2.3 Results

We run the algorithm to find four Components, all of them were quite similar, but complemen-
tary to each other. One of this solutions is shown in Figure 6.7.

Figure 6.7: A representation of the first Independent Component found by our
algorithm. The component was thresholded and superimposed to a standard of the
brain to appreciate the position of the activation pattern within the brain

In comparison, we offer the Independent Component (extracted using Group-ICA over this same
data with another 26 ICs as described in Section A.3.3) showing the greatest similarity with
the solution of our algorithm. This component is shown in Figure 6.8.

This is what is usually called a noisy network in the fMRI context, an Independent Component
produced by a noisy source (probably due to some not-corrected movement of the patient or
some artefact from the recorder2). These kind of networks always appear when performing an
ICA over this kind of data and they are usually localised in the outside region of the brain. The

2Another plausible explanation is that we were just looking a noise resulting from a bad choice of the threshold.
The choice of the thresholding point for the components is an open issue in our algorithm. This subject will be
discussed again the next section and later in the discussion in Sections 7.1.1 and 7.2.1
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Figure 6.8: One of the networks found using ICA over the dataset. The Inde-
pendent Component is represented here by the red points of the image. The black
and white background is a standard representation of the brain. The image was
automatically produced by FSL-MELODIC [29]

problem with this kind of networks is that, when dealing with a small sample, they can be very
discriminative. They have a lot of randomly activated voxels and therefore a perfect target for
overfitting.

To clarify this effect we run an alternative procedure for analysing this kind of data over the
dataset consisting in to first perform an ICA, compute the time courses using a GLM and making
inference with such time courses. The most discriminative network according to this procedure
was the same network we found before, the one exposed in Figure 6.8. The discriminative
power was measured using linear SVMs over the time courses corresponding to each network.
The cited IC had the best performance in a 3000 Cross-Validation procedure, showing a mean
performance of 0.68. The following best-scored network showed a performance of 0.66, so this
value has to be considered carefully. Still, that was the most discriminant network.

6.2.4 Discussion

The results for this dataset were inconclusive. Indeed, we can see that our algorithm found
something very close to the most discriminative network as defined by the classical procedures.
The visual differences between the images showing both results (the one from ICA and the
one form BD-DICA) should not be taken very seriously. Our algorithm is finding a slightly
different representation than an Independent Component (i.e. a solution for our algorithm is
not a solution for ICA).

However, the result is not satisfactory at all, as it shows that our algorithm cannot avoid to
overfit the data when a candidate network exist. This problem is usually overcome in the
classical approach by removing the noisy components from the set of candidates by visual
inspection (performed by experts in the field) before starting the inference. This is, of course,
not an option in our case, as we do not have access to S beforehand.
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In exchange, our procedure was extremely faster. The algorithm took only one minute to find
the first discriminant network, and the whole process, including the Single-Subject preprocessing
took less than 20 minutes. The same procedure using the classical approach took 30 minutes
only to find the discriminative networks (to that we have to add the the processing time of the
GLM and the inference analysis). These times are even more promising if we take into account
that the code of our algorithm has not been optimised and it is written in MATLAB, whereas
the classical approach were run using the software package FSL [29], a serious tool implemented
in C widely used in the fMRI community.

6.3 Resting-State dataset

Resting-State fMRI data can be analysed in a more direct fashion than Task-Based fMRI, but
the set of tools applicable to this problem is smaller (for instance, Tensor-ICA is not directly
applicable). In addition, Resting-State analysis is performed in the whole brain in most of
applications. For all these reasons, this kind of data is a more desirable target for ourselves
algorithm than Task-Based fMRI data.

6.3.1 Description of the dataset

For the Resting-State experimentation we used a very extensive public dataset called ADHD200
[38].

The data deals with the clinical problem of characterising ADHD, a mental disorder affecting
between 5% and 10% of scholarised children which is very hard to diagnose with the classical
psychological techniques, based in (often subjective) behavioural indicators. An fMRI charac-
terisation for ADHD is very interesting, not only because it can help to better understand the
disorder, but also because it would make it much easier to diagnose and threat.

This dataset is offered already preprocessed following the standard fMRI Resting-State proce-
dures [39]. The whole dataset includes a large number of subjects, but we restricted ourselves
to a subset including instances from the Neuroimage sample [40] and the Oregon Health and
Science University sample [41].

Our subsample included 37 controls and 37 patients suffering from Combined ADHD, one of
the three modalities of the disorder. The instances have about 130000 voxels.

6.3.2 Single-Subject Preprocessing

The original recordings have, for each subject, 257 volumes. As in the previous case, it is
convenient to perform a PCA over the volumes of each subject to reduce the computational
cost of the algorithm. However, the computation of the z-score representation is much easier
this time, as we normalise the data according to its own distribution, taking as reference the
whole resting-state signal. This process is actually a part of the PCA process itself, so it does
not require any additional step.
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The final subjects had about 40 volumes each one, which makes a total of about 2900 instances.
In comparison with the 280 from the Task-Based case, a much larger data sample.

6.3.3 Results

As in the Task-Based case, we look for four components. Only the two first ones show a good
score in the objective function. These two networks are printed in Figure 6.9 and, as it can
be seen, they seem to have a very well defined structure. The representation with the same
threshold for the other two found networks is almost empty, self for a small number of voxels
uniformly scattered around the image. We also have to stress the fact that the threshold for
this components was much larger than the threshold imposed in the results from Section 6.23.

Even when we still do not have a good way to measure the meaning of that threshold in
significance terms, it is clear that whereas the maps found in the Task-Based experimentation
would not pass the statistical tests, these new networks would pass. Specifically, the components
are normalised to be demeaned and have unit variance before printing them into an fMRI
volume. The network of Figure 6.7 was thresholded so that only the voxels with values over
v > 0.2 were displayed. In contrast, the images from Figure 6.9 were thresholded so that v > 2.
Both thresholds are rather arbitrary, as no formal statistical correspondence have been defined
in any case. However, this last threshold is the one usually employed by fMRI scientists to
visualise raw normalised ICA outputs.

6.3.4 Discussion

The resulting networks are much better defined than the results obtained in the Task-Based
data. We believe that this improvement in the quality of the result might have two sources:
first, it could be a consequence of the increase of the size of the sample respect with the Task-
Based case; second, this could reflect the fact that our assumptions are correctly fulfilled by
Resting-State data but they are not by Task-Based data.

In any of the cases, it seems that the results are conclusive in this case. The two obtained
networks are very complementary and they are actually part of the same Resting-State registered
network [38]. This network is shown in Figure 6.10

To check if this network is actually the most discriminant for our subset of subjects we used the
extracted time courses for the network in Figure 6.10 and nine extra well known Resting-State
networks. These networks were selected for the team gathering the data [38] and the time
courses for each network and patient were offered as part of the dataset.

To perform inference (i.e. to find out what is the most discriminant IC for our subsample of
the dataset) we characterised each of the 74 instances with the mean of the square of their
time courses (the linear term was removed from the experimentation because the time attached

3As before, we refer the reader to Sections 7.1.1 and 7.2.1 for a deepest discussion about this issue
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Figure 6.9: A representation of the first two components found by our algorithm
for the ADHD200 dataset. The component was thresholded and superimposed to a
standard of the brain to appreciate the position of the network.
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Figure 6.10: A representation of one of the standard Resting State networks,
showing a great similarity with the found network of Figure 6.9. Image by [38]

to the data had been demeaned). The inference was performed using linear SVMs with cross-
validation as we did with the MST data (this process is explained in more detail in Section
A.3.5).

The results of the experimentation performed using only the extracted time courses show that
the network in Figure 6.10 was actually the most discriminant one when using a linear classifier4.

This result adds some empirical evidence over the validity of our assumptions and the perfor-
mance of our algorithm. However, it should not be forgotten that this dataset hold a very large
sample with respect to usual fMRI studies.

4This result confirms that the output of our method is correct in the sense that it found something really
similar to what the classical algorithm would found with the same data. However, it should not be taken as
a valid result in an fMRI data analysis context. Indeed, a more detailed analysis shows that the result do not
survive to any test of significance performed over the classical approach and therefore it is not conclusive as a
neuroscientific result.
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Chapter 7

Discussion

During the closing chapter of this thesis we will briefly discuss the results of our development,
exposing its strong points and its weak spots. During this process, will discuss the lacking parts
of the algorithm and later, as Future Work, we will try to draw some solutions together with
some possible extensions for the algorithm. In this section, we will also introduce an architecture
to use BD-DICA as a Feature Extraction technique.

7.1 Conclusions

We have presented a reliable, relatively efficient and robust algorithm to find independent non-
Gaussian discriminant patterns characterising a dataset. This algorithm is capable of dealing
with data of high dimensionality presenting several strategies to not fall into overfitted solutions.
However, our succeed is very limited in practical terms. In one hand, the results over the validity
of the algorithm for dealing with Task-Based data are completely inconclusive, and they show
that our algorithm can overfit to a given source when the sample is small. In the other hand,
we could not provide a significance test, a key point in data characterisation, for the results of
our algorithm

During this section we will draw in more depth those conclusions, regarding the use of this
algorithm in both fMRI and general data.

7.1.1 BD-DICA for fMRI data

In our opinion, the experiments performed with the Resting State dataset show that this algo-
rithm has the potential to become a powerful tool in the field of fMRI data characterisation.
In the other hand, the experiments performed with the Task-Based dataset show that the algo-
rithm has not reach the required maturity to face complex problems in which the addition of
prior information can be crucial.
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Strong points

The advantages of this approach with respect to the classical ones have been widely described
during this whole document. We are presenting a single-step procedure, much faster than the
complex staged processes, based in formalised assumptions that have been widely tested and
proved by the community during the last decade.

In addition, our algorithm does not require an exact value for the number of sources N . We
just need an estimation for the size of the reduced set Z, that does not need to be precise at
all. This parameter is automatically found in our implementation of the algorithm by the PCA
function we used (implemented by J. Hurri as part of the FastICA library [42]). In comparison,
the number of sources is a crucial parameter in most of the classical approaches using ICA to
perform inference (specially in those using infomax), and the results can depend very hardly in
the exactitude of this number.

Another minor advantage of our algorithm with respect to the classical approaches is the pos-
sibility of selecting the amount of components we want to extract in an on-line manner. We
can monitor the search and, after a number of networks have been extracted, decide if we want
to go for another one or we want to stop the process. However, this is not a great advantage
in the case of fMRI characterisation in which, in general, one or two networks are enough to
characterise a given behaviour.

Weak spots

The disadvantages are also clear: our algorithm cannot include additional prior information
about the data, which is crucial in most of the Task-Based whole brain experiments. In this
prior information we include the capacity of rejecting noisy networks, a disadvantage that have
been made clear during our experiments.

More importantly, there is no procedure defined in our algorithm to deal with significance
tests, which eventually leads to the lack of a formally valid thresholding point for the extracted
component. This problem is described in more detail bellow.

We have also failed to extract any conclusive result regarding the validity of our assumptions in
Task-Based data. Further experiments could provide a better insight on whether Task-Based
data is a valid candidate for this algorithm but, for the time being, we think that BD-DICA
should only be used over Resting-State data.

Several possible solutions to the problems described in this section are sketched in Section 7.2.

The thresholding problem In general, when a result is extracted from the data, it is im-
portant to know how significant your result is. In the case of fMRI and our algorithm this is
translated in knowing, for a given component extracted from the data, how likely is for each
of the voxels to belong to the given component. In other words, the probability of 0those vox-
els of being also activated in the component if there were no real structure behind the class
information.
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The way of representing this kind of information in Group-ICA is to perform some kind of
significance test and use as intensity of each voxel of the IC the significance of the hypothesis
this voxel belongs to this IC. This kind of representation is often called t-map, as it is spatial
map of t-statistics for the given Independent Component.

Moreover, dealing with spatial differences between the same component for different groups of
subjects, another kind of t-map can be extracted in which now the hypothesis is that the voxel
is activated for one group but not for the other.

This t-map representation is very useful when visualising the networks, as we can choose a
threshold as if it were a p-vale (i.e. we choose to display the voxels belonging to such network
under a certain degree of significance).

The most important missing part of our algorithm is precisely the capacity to print that kind
of information. This presents two problems: first, we do not have a formal measure to know
where to threshold our ICs; second, we cannot know how reliable the result is (i.e. how likely
it would be to extract that result with no label information over the data).

7.1.2 BD-DICA for general data

It is worth to remark that, even when this algorithm has been constructed for and tested
with fMRI data, it could surely work as well with any other dataset whose problem satisfies
Definition1. Moreover, the properties of the algorithm make it perfect to work with high
dimensional data with a small number of instances in comparison (i.e. D �M). This is often
the case of a lot of Computer Vision applications, where the whole input of the sensor is shown
to the classifier during the learning phase.

Specifically, the algorithm present to major advantages with respect to other traditional ap-
proaches to Dimensionality Reduction (an adaptation for the algorithm to Feature Extraction
is presented in Section 7.2.4) like PCA, LDA or FE-ICA.

Scalability of the algorithm

One of the main problems facing a data characterisation problem is that often it is necessary
to work with the whole data representation instead of a reduced version of the instances. This
is a key issue in ICA, in which the distribution of each of the instances along its features has
to be present at all points of the algorithm to correctly measure the non-Gaussianity of the
projection.

The architecture of the BD-DICA is built in such a way that such large dimensionalities are
manageable in an efficient way by the algorithm. Actually, the computational cost of the
algorithm is linear in both, dimensionality and number of instances. Empirical evidence of this
property is provided in Figure 7.1.

This scalability is a great advantage in comparison with other methods like LDA. Even per-
forming some Feature Extraction (such as PCA) before LDA presents really hard scalability
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problems not only in time but also in space (the covariance matrix needed to perform a PCA
in the direction of the features in an fMRI set of volumes could need up to 8GB of RAM).

Figure 7.1: Time dependency of the algorithm shown empirically using different
synthetic datasets. Note that the dimension of the instances is scaled by a 104

factor.

In the other hand, we can see that the dependence on the size of the reduced dataset Z in the
interval used by the algorithm is negligible.

Avoiding overfitting

Our algorithm have been constructed keeping in mind the usual problems carried by a large
dimensionality of the data. We have already talked about the scalability of the algorithm but
there is another risk usually associated with high dimensional data: the risk of overfitting.

To reduce this risk, we have two main strategies. First of all, the use of a reduced dataset Z
to span the search space for the projector, which makes it much difficult for the FLD to find
configurations taking advantage of the noise in the data to find highly separable projections.
The number of vectors in that dataset is a key parameter in this strategy: the lower, the less
the possibilities of overfitting.

More importantly, the use of the Negentropy term in the objective functions makes the algorithm
to not accept insubstantial solutions with no structural meaning, which are usually related with
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a poor generalisation capacity. In the fMRI context, we say that the incentive of the optimisation
process to achieve highly separable projections are as great as the incentives for this projector
to have physiological significance. This same affirmation is valid for other data in different
contexts.

This also represents a great advance with respect to other methods like LDA or classifiers dealing
directly with the volumes (like k-NN), which suffer heavily the Course of Dimensionality.

7.1.3 Using the algorithm: some guidance

We have seen a direct application of the algorithm to some dataset in Chapter 6. However,
we have not reveal what are the best parameters to successfully find discriminant ICs in a new
dataset. We will discuss now the effect of the different parameters of the method.

The parameter κ

This is probably the most important parameter of our algorithm. It fixes the proportion of
discriminative power and Negentropy we want in our solution. The bigger the κ, the more
important the BDFLD term is in the algorithm.

In the ideal case in which all our assumptions are fulfilled and there exist no noise, a run with
κ = 1 (its bigger value) would yield quickly to the correct solution, as the most discriminant
projection is, after all, a source vector. The Negentropy term helps to avoid overfitting, dis-
tancing the search from those noisy projectors that take advantage of the random variation of
the data. Therefore, κ should be decreased as the noise gets bigger and bigger in relation with
the number of instances we have.

However, a extremely low value of κ could make the algorithm to choose the most non-Gaussian
network before the most discriminative one. So careful must be taken in the choice of this
parameter.

Our choice for the analysis of the real fMRI data was κ = 0.2, which yield to good solutions in
the case of the synthetic data, but κ = 0.5 worked better in the cases with low noise.

Samples in the reduced dataset

The other adjustable parameter of the algorithm is the size of the reduced dataset Z. As we
saw previously in this section, it is convenient to keep this number small to decrease the chances
of overfitting. However, a extremely low value could yield to a subspace not containing all the
sources vectors.

Probably the best way of choosing this parameter is to inspect the eigenvalues of the PCA, if
that is the way in which the samples are being reduced. In general, the greater variability will
be observed in the vector space containing the source vectors, whilst the variations provoked
by small changes in the shape of the networks for different observations and other artefacts will
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be smaller in comparison, if good noise-reduction preprocessing have been applied to the data
beforehand.

Therefore, a tipping point in the eigenvalues of PCA could imply that we are changing the kind
of basis vector from those responsible from the large variations to those responsible for the small
irrelevant ones.

7.1.4 The assumptions, revisited

At the beginning of this work we presented some assumptions. It is time now to look backwards
and revise them briefly.

The strongest assumption we have made in this work is the orthogonalisation of the basis
sources si ∈ S. This orthogonalisation was an hypothesis maintained to construct the BDFLD
but it has not been forced during the search of components. Actually, we cannot completely
assume that the networks are orthogonal to each other, because in that case we would break the
assumption of statistical independence (i.e. we could extract information of a vector by looking
at another one).

The results with the synthetic data show that the partial compliance of the data with this
assumption is enough to produce satisfactory results in much of the times. At the same time,
the results obtained with the Resting-State dataset demonstrated that there are complementary
interesting networks overlapping with each other. Therefore, our strategy seems to work with
the data we have inspected.

This does not necessarily hold, however, for the Task-Based data. Indeed, one of the things we
saw when performing ICA over our Task-Based dataset was that there were classical Resting-
State networks coexisting with the more clustered task-based related regions of the brain. Un-
fortunately, the set of such regions overlap, in general, greatly with the Resting-State networks
as described by Biswal [13]. Therefore, we cannot conclude that this algorithm would work with
Task-Based fMRI data.

Another assumption was the linear separability, later extended to quadratic plus linear sep-
arability. This assumption has demonstrated to work reasonably well for the synthetic and
Resting-State datasets, and there is nothing indicating that this would stop working in any
other fMRI dataset, where the mechanisms of the mixing of the source vectors are similar.

Finally, we think that the non-Gaussianity and independence assumptions do not require a
review. They have been established based on a large set of empirical evidence present in the
literature [10] and everything seemed to work in that sense in our algorithm.

7.2 Future Work

During this section we will show some ideas we have to further improve the algorithm and
partially fix some of the weak spots we have found during the journey. This section represents
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all the things we wanted to do but we could not implement on time, and show the possible
future directions of our research in Neuroimage.

7.2.1 Statistical significance tests

A possible path to create a statistical significance test for the components extracted by our
algorithm is to follow the classical strategy of the Fisher’s Permutation test [43]. This kind
of test draws a baseline with which the extracted solution can be compared by running the
algorithm several times using different random permutations of the labels, destroying the real
information contained in the classes but preserving the distribution of the data. In theory,
if the algorithm cannot find something solid using mislabelled data, a solid result should be
interpreted as a real characterisation of an existing structure. However, if the algorithm is
capable of finding acceptable similar solutions even with mislabelled data, the results for the
real dataset should be tagged as inconclusive.

This procedure could be used to produce a sample of the distribution of the final values for the
objective function J or the score of the BDFLD, which could help to interpret the significance
of the obtained network.

However, performing such tests requires a huge number of permutations, which is prohibitive
with our algorithm taking up to 15 minutes in finding a component. Even in the best case
scenario, a duration of 1 minute of analysis would yield to 35 hours of analysis to have a
reasonable amount of samples in our distribution. Therefore, we need a way of improving
performance of the algorithm before implementing those kind of tests.

Another different problem is the extraction of the t-maps of the networks. This problem could
be solve using a probabilistic approach to ICA [44]. We are, however, still far from the designing
of such improvement in our algorithm.

7.2.2 Improving performance with the representation

The most expensive step in our algorithm is to compute all the projections of the data over the
proposed projector ξ in every iteration. In this section, we will propose an approach to reduce
this kind of projections to a fixed number. This solution can be used to perform quick random
permutation tests or to improve the computational performance of the algorithm in situations
requiring a large number of iterations.

The main idea of this approach is that we can decompose all the samples in the dataset X in
to the basis spanned by Z, which in theory corresponds to the original vector space V.

In this context, an observation xi ∈ X can be expressed as xi = r j
i zj , where of course the r j

i

are the coefficients of xi in this new basis.

Now, consider the projector ξ, which is actually obtained in our algorithm as a linear combina-
tion of the vectors in the reduced sample: ξ = wj zj .
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The projection of the sample xi ∈ X over the projector ξ can then be written in the following
way:

〈ξ,xi〉 = ξj x
j
i (7.1)

= wk zkj r
l
i z j

l

= wk r
l
i δkl K(k)

= wk r
k
i K(k) (7.2)

where we have assumed that the samples in Z are orthogonal to each other (this is actually the
case if we extract Z using PCA) and K(k) = ‖zk‖2.

Therefore, to characterise a given projection, all we need to know are the coefficients r k
i and the

constants K(k). All this numbers can be extracted at the same cost of N iterations, where N is
the size of the reduced set Z. Of course, the operations in Equation 7.2 are much cheaper as the
operations in Equation 7.1. The first one is actually equivalent to a problem with dimension
D = N . Note that, in the fMRI context, N ∼ 20, D ∼ 105 and the number of iterations
required to extract a single component can oscillate between 10 and 30.

Unfortunately, we have not had the time to implement this approach and perform the appro-
priate experiments to empirically check the predicted theoretical performance.

7.2.3 A Fixed-Point algorithm for BD-DICA

FAST-ICA is an implementation of ICA developed by Hyvarinen et al. [30] [42] in which instead
of a Gradient Ascend approach to find the maxima of the objective function a Fixed-Point
algorithm is used. This version of ICA works much faster than the Gradient Ascend versions.

A Fixed-Point optimisation algorithm does not travel through the search space looking for a
maxima, but tries to reach a point satisfying the conditions of the maximum. More specifically,
a maximum is characterised by a null derivative, therefore, we can try to find a point satisfying
∇J = 0 to reach the solution. This can be achieved by using Newton-Raphson over the previous
equation, as Hyvarinen did for the case of BD-ICA [3].

We would still need to compute derivatives, but the number of iterations could be much smaller.
Unfortunately, we did not have enough time to derive the expression for such algorithm and
perform the corresponding experiments to check if this approach could lead to a faster version
of BD-DICA.

7.2.4 BD-DICA as a Feature Extraction technique

Even when this algorithm is clearly oriented towards data characterisation, the scalability with
the dimensionality of the instances and its strategies to avoid overfitting make it a nice candidate
to Feature Extraction.
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Now, as we have already said this is a Basis-Decomposition algorithm and its adaptation to Fea-
ture Extraction is not direct. Our proposal for such adaptation is, however, relatively straight-
forward: as the procedure tries to optimise the parameters for the representation obtained by
the BD-Transformation, it seems reasonable to use this same transformation to represent the
data using the resulting parameters.

This approach presents, however, two possibilities, depending on the interpretation of the
quadratic term of the BD-Transformation we choose. To see that, consider that we have ex-
tracted n components yi. We can represent the sample x ∈ X in this way:

x −→
(
〈y1,x〉, 〈y1,x〉2, 〈y2,x〉, 〈y2,x〉2, . . . 〈yn,x〉, 〈yn,x〉2

)
(7.3)

or in this other way:

x −→
(
〈y1,x〉, 〈y2,x〉, . . . 〈yn,x〉, ‖x⊥‖2

)
(7.4)

Equation 7.3 assumes that the quadratic term is important by itself, whereas Equation 7.4
assumes that the quadratic term is only important is it represents the perpendicular projection
of the sample with respect to the hyperplane described by the projectors.

Both representations are equally valid for a general dataset. Probably they perform different in
different situations. Neither of them is better than the other even when the BDFDL optimises
a representation much similar to Equation 7.3, since the optimisation is performed over each
component at each time.

As in the previous case, we had not the opportunity to appropriately test these representations
in a real data experimentation, and therefore they are left as future work.

7.2.5 Further extensions

Some further extensions can be added to the algorithm easily by adding a term depending on
parameters that can be encode as a w-application in the algorithm’s objective function.

A possible extension of this kind is, for example, a term penalising highly scattered components.
This can be useful to avoid noisy sources as discussed in Section 7.1.1.

A simpler extension can be made to penalise the presence of the component over desired features
(e.g. voxels in regions belonging to non-interesting areas of the volumes, as the zones without
brain or as in the previous example of the auditory and visual cortices).

The development of such extensions could be actually very easy. They are, however, out from
the scope of this work which does not intend to develop a sophisticated algorithm, but to set
the grounds of an approach to Basis Decomposition D-ICA.
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7.2.6 Orthogonal Basis Decomposition

As a last idea in this gathering of possible future directions, we want to introduce the idea
of Orthogonal Basis Decomposition Feature Extraction. We believe that the orthogonality
assumption can be further extend to develop new techniques oriented towards Data Character-
isation.

As an example, let us introduce an experiment we performed in this direction using Deep
Networks. Deep Neural Networks (DNNs) [45] are a set of ANN architectures considering a large
number of hidden layers. Those kinds of architectures allow to represent different abstractions
of the data in different layers, and they are therefore a nice instrument for data characterisation.

In our experiment, we constructed a DNN with D inputs, a very small number of neurons in the
hidden layers (4-5 units) and a single unit in the output layer. Then we fed our noiseless synthetic
data to the network and, once the learning was done, we inspected the weights connecting the
input layer with the first hidden layer. Note that we have D weights for each unit in the hidden
layer and that they are ordered, so they have the same structure as the instances of our dataset.

Indeed, consider the input z of one unit of the first hidden layer when we show the sample
x ∈ X to the network: z = wi x

i where wi are the weights of that layer. Now, if x is actually a
linear combinations of source vectors si, the input z will represent the mixing coefficient for that
sample if the weight vector w is one of the source vectors. Therefore, if the network optimises
its weights to maximise accuracy, it is reasonable to expect to find source vectors in the weights
of the first hidden layer.

The complicated operations needed to extract information from the coefficients can be imple-
mented automatically by the network in the rest of the hidden units.

The experiment we performed confirms that hypothesis. We were able to find the discriminant
network in two of the five hidden units of the first hidden layer with a similarity of sim ∼ 0.78.

Of course, this is just an example, but this kind of approach can be taken to find more efficient
ways of characterising data satisfying those conditions.

7.3 Summary

During this work, we have presented the Basis-Decomposition Discriminant Independent Com-
ponent Analysis (BD-DICA) algorithm. To do that, we have first proposed a new framework
called Basis-Decomposition to express operations made with the instances of the data instead
of with the features and we have reformulated the two already existing architectures of ICA in
the terms of our framework.

Later, we have developed a generalised version of the FLD to deal with arbitrary parametrisable
transformations and we have specifically developed the Basis-Decomposition transformation,
building in this way a Basis Decomposition version of the famous discriminant.
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Then we have used the two Basis-Decomposition algorithm to built a Basis-Decomposition
version of Discriminant ICA, which was our first objective.

We have tested the algorithm with synthetic and real data. We have obtained satisfactory
results in the synthetic and one of the real datasets, dealing with Resting State fMRI, but
inconclusive results with the other dataset, dealing with Task-Based fMRI.

Finally, we have presented some conclusions and some future directions to further develop the
algorithm and extend the scope of the Basis-Decomposition framework.

The end.
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Appendix A

A case of study in fMRI

In this appendix we will introduce which was the first objective of this thesis in its preliminary
versions: to analyse the MST problem described in Section A.2. This work was done using
classical Machine Learning techniques for temporal inference after an ICA. This project was
carried along with a parallel project in Resting-State that triggered what finally became the
main topic of this Master’s Thesis, the BD-DICA. However, our work with the MST data
allowed to us to understand in a much deeper sense the structure behind the fMRI data, and we
think that the exposition of this analysis could also help the reader to get more familiar with
the characteristics of this special kind of signal. In our opinion, the results obtained with this
dataset justify partially some of the design decisions we took for the BD-DICA project, whereas
give a more deep explanation about the causes behind the weak points of the algorithm.

A.1 About fMRI data and the BOLD signal

A.1.1 The BOLD signal

Functional Magnetic Resonance Image (fMRI) is a Neuroimaging technique to scan blood-
oxygenated levels in the human brain used since 1992.

The technique utilises the differences between the magnetic properties of oxygen-rich and
oxygen-poor blood to register evidence of brain activity. Specifically, physiological studies
of the brain cells seem to indicate that brain activation requires an increase of the levels of
oxygenated blood in the regions of activation [46]. This incoming flow of oxygenated blood
displaces the de-oxygenated blood, presenting a gradient in the oxygenation levels of the blood
in the activating brain areas. This gradient shows up about 2 seconds after the activation [7].
After this increasing, the cells consume the oxygen and the levels go back to its previous state.

This phenomenon allows us to characterise large-scale neural activity as a change in the oxygen
levels in the blood in the area of activation. We say large scale because the spatial resolution
of the technique is highly limited. The blood flow irrigates relatively large areas of the brain,
so we cannot characterise activation of small clusters of neurons (to not say nothing about
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individual ones). Therefore, fMRI is a technique that allows us to study correlations between
the activation of brain areas and certain behaviours or mental conditions.

The resolution of an fMRI machine is measured in voxels. The voxels are the equivalent to pixels
in the 3-Dimensional space of the brain. The smallest the voxel in proportion to the brain, the
larger the resolution of the recordings performed by the machine. Current fMRI present voxels
with edges between 0.5mm and 2mm.

But returning to the previous discussion, we still need to explain how can we measure this
changes on the blood flow without cutting the skulk of the subject in two halves. This is
possible because, whereas de-oxygenated haemoglobin (dHb) is paramagnetic, the oxygenated
haemoglobin (Hb) is diamagnetic [7]. Therefore, we just need to find a method to measure the
gradients of magnetic responses in the brain.

As the reader might have already guessed, this is done by means of magnetic resonance. This
phenomena occurs when we expose magnetically active materials to a oscillating magnetic field.
When we apply a magnetic field to such materials, the spin of their unpaired electrons tends
to align with the applied field. This alignment creates by itself an induced magnetic field, that
can be measured from outside the material. As the external field oscillates, this phenomenon is
produced constantly in the material.

The twist is that whereas paramagnetic materials present an induced field in the same direction
than the external applied field, diamagnetic materials present an induced field in the opposite
direction of the external field. Therefore, Magnetic Resonance can be used to detect the amounts
of Hb and dHb within the brain in a not invasive way.

However, electrons usually need some time to adjust to the changes in the external field, so the
oscillations have to be low. The fMRI machine register a snapshot of the brain for each of those
oscillations, allowing us to observe the state of the brain each time the external magnetic field
have been reversed. The time separating those snapshots fixes the temporal resolutions of the
recordings, which is usually of about 2 seconds [7].

The signal described in this section, produced by this changes in the blood magnetism in the
brain is usually called Blood-oxygen-level dependent (BOLD) signal.

A.1.2 fMRI data description and preprocessing

fMRI data constitutes of a series of 3-Dimensional snapshots called volumes. Each of those,
contains a large number of voxels, representing each of the areas of the brain in which we are
measuring the levels of Hb and dHb.

A problem arises however when visualising volumes: the position of the head in the 3-Dimensional
space in which the signal has been measured usually changes due to unavoidable movements
of the patient. This could be problematic if we want to keep track of a determined voxel.
Movement correction techniques should be applicable to remove this effect.

A much serious problem arises when comparing activations of different subjects. Not only the
positions inside the machine tend to be different, but also the brain size may differ. It could
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be even possible that both patients present slightly different sizes in some brain areas. Making
inference about the participation of an area of the brain in different subjects is, therefore,
difficult.

To overcome this difficulty it is necessary to project all the volumes of all patients into a
common pattern usually defined by an external standard. This procedures are computationally
expensive and difficult, involving transformations up to 2000 degrees of freedom and they are
usually performed with the help of structural MRI images form the patients, showing a higher
resolution [8].

The standardised spaces are well defined and widely used in the fMRI community. There exists
an standard for each resolution (i.e. for voxel edges of 1, 2, 4 and 8mm). To draw an idea of the
size of the volumes, the MNI (the standard template proposed by the International Consortium
of Brain Mapping) space of 4mm has 110000 voxels.

After those normalisations, the outer side of the brain is usually removed. This includes not
only the skull and other not-related tissues, but also the empty space out of the head which is
usually full of noise.

Other usual preprocessing steps include noise reduction, bandpass filtering and spatial smooth-
ing. The noise reduction step is usually performed with very sophisticated techniques varying
by a simple filter to an intelligent system removing artefacts from major arteries which always
carry oxygenated blood. The bandpass filtering is crucial to remove physiological rhythms not
related with brain activity (as the beating of the heart) that can arise in the recording as well
as other artefacts produced by the machine itself. The spatial smoothing is usually the last
step of the preprocessing and it is intended to polish the work of the normalisation and motion
correction steps, which in most of the times have to interpolate the values of the voxels in the
new representation.

For most of applications involving whole-brain analysis, independently on the original spatial
resolution of the recording, it is convenient to resample the volumes to a 4mm standard to
reduce the computational complexity of the analysis (this is actually a requisite in ICA, which
needs to store in memory whole volumes).

A.1.3 fMRI experiments

Human experiments with fMRI are performed in a relatively non-invasive way. The subject is
asked to hold still during the experiment inside the machine. The recordings usually take about
8 minutes or less but sometimes the experimentation has different stages. The magnetic fields
are believed to be harmless to the tissues, but the machine have been described as claustrophobic
and the generators of the magnetic field produce a very loud noise.

The set of the experimentation is therefore sometimes difficult, as the subject have a limited
capacity to perform tasks.

The length of an fMRI recording is usually of about 240 volumes (with a TR = 2s exactly 8
minutes, as we said before).
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A.2 The Music-Supported-Treatment Problem

During this appendix, we will try to find predictors of the success of a recovery therapy called
Music Supported Therapy (MST) believed to be related with the audio-motor coupling of the
human brain. We will use of course fMRI data to find those indicators.

In the case of study, we use data from patients that have suffered an stroke in the brain, resulting
in a lost of mobility in one of their arms. The physiological reason of this effect is the death
of the cells in the affected brain area, in this case responsible of the movement of the affected
arm. This patients are usually treated with conventional and constraint induced therapy, two
methods that, by inducing a phenomenon of plasticity in the brain, are capable of assigning the
responsibilities of the dead brain area to another one (usually the symmetric one located in the
opposite hemisphere).

Music Supported Therapy has been recently developed to improve this plasticity, and therefore
to improve the performance of the treatment in this kind of patients [47]. MST combines the
strategies of the classical treatments with the audition and execution of music. This strange
effect is believed to be connected with the audio-motor coupling of the brain, a series of mech-
anisms that allow us to react rapidly to sudden noises from the environment, and that it is
ultimately responsible of the capacity of musicians to adapt its execution to the sound of their
instrument [37].

Along several studies [36], MST has demonstrated to show a better performance than con-
ventional and constraint induced therapy in the recover of the patients. However, still a non
negligible variance has been observed between patients, in which differentiate two groups: a
group of patients showing a standard recovery in the same way than patients treated with
classical therapies and another group showing a clearly improved performance.

The aim of this problem is to try to characterise this variation in the success of the MST
therapy using fMRI data collected from a group of patients with similar affections in upper
extremities. Several studies explained the success of the MST therapy with a well documented
effect called audio-motor coupling [37], a connection in brain activity from auditory and motor
regions believed to be responsible of the plasticity phenomena responsible of the recovery of the
patients [48]. Therefore, it would be perfect if we were able to find patterns involving those
cortices in the characterisation of our phenomenon.

Our study is part of a much larger project [47] devoted to characterise in every possible aspect
the Music Supported Therapy. For that purpose lots of recordings have been taken from the set
of affected patients, including recordings during the performance of motor and auditory tasks
previous, in the middle and after the treatment.

Our objective is to characterise the performance of the recovery using only auditory data taken
before the therapy. We want to use only auditory data to avoid to learn the gravity of the
lesion, greatly characterised by the activation during the motor tasks. We want to use only
data previous to the therapy for two reasons: first, it would be too easy to learn how well the
subject have been recovered by just looking at the aftermath images, in which the auditorium
coupling is known to be strengthened; second, from a clinical point of view, it would be very
interesting to be able to predict how good is going to perform a subject before assigning her a
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determined therapy. This second objective is, however, just theoretical. We have a quite reduced
sample of patients and we do not expect to obtain large significances, but a sign justifying a
larger study.

A.3 Experimentation

A.3.1 Recording the data

As we said, we will centre ourselves in recordings of auditory tasks performed before the therapy.
Those recordings were taken just once for each patient and they last for 194 volumes (i.e. about
6.5 minutes).

The first 12 seconds are left for the patient to get used to the noise of the measure and then a
series of melodies are played. The patient is asked to focus in the sounds and not to think at
anything else. Each melody lasts about 15 seconds. Between the melodies, a resting period of
other 15 seconds is recorded during which the patient does not hear nothing and it is asked to
keep the mind in blank.

There are four kind of melodies played this way. Two of them are whole melodies, and the other
two are just sequences of tones. Those four kind of melodies are played three times in total
during the experiment, yielding to a total of 12 playings and 13 resting periods.

Before the analysis, the first 6 volumes (i.e. the first 12 seconds corresponding to the adaptation
time of the patient) are removed from the recording.

A.3.2 Preprocessing and description of the data

The preprocessing of the data was performed thoroughly by the research group conducting
the whole project [47]. The preprocessing of this kind of data is actually very hard, as the
normalisation process involves patients affected by a stroke, having completely deactivated a
whole part of the brain. To complete the normalisation, masks should be constructed for each
patient to cover this affected parts.

In any case, we received all the data perfectly preprocessed and registered in an MNI standard
of 4mm× 4mm× 4mm, which totals about 110000 voxels per volume.

We have two groups in the dataset: improved performance (4 patients) and normal performance
(5 patients). The construction of those groups was made based in the ARAT index, a quanti-
tatively behavioural indicator describing the gravity of the reduction of mobility of the arms of
the patients.

We had access to the ARAT score of the patients before and after the treatment. To separate
the patients in two groups we just needed to split the distribution of the pairs of those indices
into two separate independent distributions. This was done by assuming a linear dependence
between the pre and post ARATs with a different linear coefficient for each of the groups. The
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split of the subjects was chosen such that the linear regression in the two groups presented the
best possible fit. After this process, some patients should need to be removed from the study
because they show similar affinities to the linear fits of both groups. This patients correspond
to cases with high pre ARAT scores, in which any possible variance in the recover performance
cannot be appreciated because of the small margin of recover of the patient.

A.3.3 Finding the Independent Components

Our analysis is performed in three steps following the guidance exposed in Section 2.1.3. First,
we will extract the Independent Components from the data using Group-ICA (see Section 2.1.2).
Then, we will extract a representation of the time courses of those components and finally we
will perform inference using that representation.

To extract the Independent Components, we feed the data into Spatial Group-ICA algorithm
(we used FSL MELODIC [29]). The number of components is estimated automatically by the
software and chosen to be 27. Additionally, MELODIC performs a significance test and prints
the Independent Components (ICs) into NIFTI volumes in which the value of a voxels represents
the t-stat of that voxel belonging to a given IC.

These representations are then thresholded and examined. Some of them are easily identifiable
as noise and they are discarded from the analysis, whereas other components are directly as-
sociated with the lesions and also discarded. Only 11 of the initial 27 components survived to
this filter.

An example of both, filtered (because of noise presence) and kept components are shown in
Figure A.1. An additional example of a noisy network from this analysis is shown in Figure 6.8

A.3.4 Constructing the descriptors

Once the ICs have been identified, we need to represent each of them as a vector ready to be
fed to a classifier.

Our descriptor for each patient and each network has a representation of the previously described
four kind of melodies. Actually, since we have only 9 subjects, we decided to increase the number
of samples by taking each of the three repetitions as an observation by itself. Each of these
samples is represented by a vector of four numbers, one for each of the melodies.

To obtain those numbers, we first used a Generalised Linear Model (GLM) to estimate the time
courses associated with each of the networks. This regression finds the best mixing coefficients
associated to each of the ICs to reconstruct the original fMRI signal. Therefore, the series of
all those coefficients along time are a good representation of the relative activation of each of
the ICs during the experiment.

These coefficients are then separated to correspond to each of the iterations and each of the
stages. The coefficients of each of the tasks are normalised using the values of the adjacent
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Figure A.1: Two ICs found by Group-ICA in the MST data. Up, an irrelevant
network corresponding to either noise or not correctly removed tissues (perhaps the
eyes?). Down, a component activated in the auditory cortex. The Independent
Components are represented here by the red points of the image. The black and
white background is the MNI standard used in the normalisation process. The
images were automatically produced by FSL-MELODIC [29].

resting period by subtracting the mean of the resting and dividing by its variance. The number
representing that stage in this iteration is, finally, the mean of the normalised coefficients.

After this process, we have 27 observations with 4 features for each of the 11 Independent
Components. The observations are labelled with the class of the patient (we have just two
classes) but we also take record of which observation belong to each patient since we will need
it before to make the permutation tests, since the observations are not fully independent from
each other.

Alternatively to this representation, we also built a similar vector using the square of the time
courses instead (i.e. each feature corresponds to the mean of the square of the time courses).
We performed the inference stage separately for this two representations.

A.3.5 Inference

In this stage of the process we use linear Support Vector Machines (SVMs) to classify the
observations in the two existing groups. The learning/testing procedure is performed using n-
fold Cross-Validation, with 4 samples for the testing in each iteration and using 2000 iterations
for each test. The discriminative power of each of the ICs (or combinations of ICs) is then
measured with the performance obtained in the cross validation procedure.

We decided to test each of the networks and, furthermore, combinations of two and three
networks. To test a given combination, we just put together the four descriptors of each network
involved in the combination making a 4× n feature vector (with n = 1, 2, 3).
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The tests were run following a greedy strategy. Firstly, we test all the networks, one by one.
The best performing one is then selected as one of the outputs of the procedure. Then we test
the possible combinations of two ICs involving the one found in the previous step (therefore, we
have 11 combinations). The best performing combination of two ICs is then held and we repeat
again the same process with combinations of three networks involving the two best performing
ones found before. In this way, we just need to perform 33 tests instead of the 113 + 112 + 11
that would be necessary to test all the possible combinations.

A.4 Results

A.4.1 Measuring statistical significances

Once we have found our discriminant ICs, we need to obtain a measure of the statistical signif-
icance of the result. For that, we use a non-parametric method called Permutation Test. The
main idea behind this technique is to execute the inference algorithm several times feeding into
the algorithm different permutations of the labels of the observations. In this way, we remove
all the information contained in the data without altering the distribution of the features. The
result is the distribution characterising the expected output of the inference process (in this
case, the expected obtained performance) when there is no class structure behind the data.

Our first statistical test (test-1) is for checking if we could have obtained the same performance
in our chosen combination of ICs using random data with the same distribution than ours.
We performed an additional second test, to check if we could have obtained that performance
following the whole process. This second test (test-2) is connected with the so called corrected1

p-values and measures the significance of our result involving the whole supervised part of the
experiment.

In other words, while the first test tries to answer if we could find the same results in a given
combination of ICs if there were no structure behind the data, the second test tries to answer
if we could find a (combination of) IC(s) showing the performance of our results with random
data.

For both tests, we first prepared all the possible combinations of the labels of the observations.
To ensure that the classifier is not learning directly from the individuals, we forced the obser-
vation belonging to the same patient to have the same class label. Mathematically, we needed
to prepare all the different permutations of a vector of nine binary values (two classes). In
addition, we also removed the permutations showing the weaker changes (i.e. when only two
different labels have been permuted).

After all that process, we had about 120 permutations of the labels. For the first test, we just
recorded the performance of the given permutation using the data with all the built combinations
of the labels in the same manner than in the real experiment (i.e. 4-folded Cross-Validation
with 2000 its.). For the second test, we repeated the whole process than before for each of the
label permutations. The best performances of each of the possible permutations were recorded.

1The result is however not corrected in any sense in our case, as we compute the significances in an exact way.
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IC(s) Performance test-1 test-2

22 0.66 1.49 0

22, 14 0.68 1.45 0

22, 14, 13 0.77 2.37 0

Table A.1: Main results of our experimentation for the MST data using the plain
representation (i.e. using directly the mean of the time courses). Please note that
any negative value has been represented with a zero.

IC(s) Performance test-1 test-2

5 0.76 2.30 0.99

5, 14 0.80 2.89 0.89

5, 14, 13 0.81 3.15 0.88

Table A.2: Main results of our experimentation for the MST data using the
squared representation. Please note that any negative value has been represented
with a zero.

These recordings show the probability distribution that we would obtain using the same pro-
cedure of a dataset with no real information about the classes. With that distribution, we can
easily measure the probability of finding our result if our data would not have class information
at all.

As the founded probability distributions were Gaussian-shaped, we measured their mean/variance
to find the significance of our results. Let σ be the variance of that distribution, µ its mean and
p the performance of the given combination of ICs. Then, our parameter of significance can be
written as t = (p− µ)/σ2.

A.4.2 Results of the experimentation

The results of best combinations for 1, 2 and 3 ICs, including the significance values founded
with our two permutation tests are summarised in Tables A.1 and A.2.

The four networks included in the results (i.e. ICs 5, 13, 14 and 22) are displayed in Figure A.2

A.4.3 Conclusions

The results using simply the mean of the time courses for representing each instance is not
significant at any level for the test-2 test of significance. Note that even the results for the t in
the test-1 are large enough, we are not considering this as a valid significant test.

The results for the other representation, including the mean of the squares of the time courses
are, however, more significant. Specifically, the t of the test-2 shows that the results correspond
to a p < 0.2, with the hypothesis of that similar results could have been obtained by chance. This
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Figure A.2: From top to bottom, ICs 5, 13, 14 and 22, as found by Group-ICA
over the MST data. This four networks show some discriminant properties. The
Independent Components are represented here by the red an blue points of the
image (this last one present significant negative values instead of positive). The
black and white background is the MNI standard used in the normalisation process.
The images were automatically produced by FSL-MELODIC [29].
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is not a very good result, but at least shows significance at some level. This is an encouraging
result, if we take into account that we have only nine samples.

In addition, the obtained networks seem to have all the sense from the point of view of MST.
Let us consider the most significant results, including only the ICs 22 and 142 (see Figure A.2.
The IC 22 show a clear frontal presence, in zones related with cognition and intelligence, that
has been connected with recovery performances in different treatments [49]. This connection
has been empirically proven, but in addition it has a very intuitive explanation: people with a
better cognitive abilities usually show a better performance on the recovering from brain lesions.
Because of that, we believe that this IC is not really characterisation the performance with the
MST treatment, but the performance with any treatment, including MST.

The IC 14 has, however, a much direct implication in MST. This network shows two contri-
butions. In one hand, we have the two large clusters in both hemispheres at the middle of
the section which are known to correspond to the auditory cortex [46]. In the other hand,
the smaller cluster in the left top side in the sections correspond to sensi-motor regions. This
kind of network was the same observed in [47] with the same set of patients. In this study,
it is observed that the network shown here in Figure A.2 presents a giant change during the
treatment in a single-subject study. Indeed, this network present a much larger activation after
the treatment and it is believed to be the one responsible from the induction of plasticity in
MST. It would be reasonable to argue that the activation of that network before the treatment
could be a predictor of the success of the treatment.

Having said that, it is important to note that our p-value is not small enough to consider
these results as a real scientific discovery. However, as we said, we believe that they are very
encouraging and we plan to resume this project once the set of patients has grown and we have
a sample large enough to resolve the effect we want to characterise.

2The other two networks play a much unimportant role in the set of results, but we believe that their presence
in the frontal lobe could indicate that their discriminant power comes from the same source as the IC 22.
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Appendix B

Details on the BD-DICA algorithm

We have strategically skipped all the implementation details of the algorithm for two reasons:
first, it is convenient to gather all information regarding the implementation in the same place, in
case some reader wants to make its own code to execute the algorithm; second, some expressions
will take a large portion of space to be derived, and their inclusion in the main discussion could
divert the attention of the reader from the more complex theoretical discussion.

In this appendix, we will derive the missing parts of the algorithms developed along this work:
the generalised LDA algorithm, the BDFLD algorithm and the BD-DICA algorithm. As the
reader might guess, each of them is supported in the previous one.

Finally, we will expose the dynamics of the BD-DICA algorithm, which, in our opinion, are not
entirely trivial.

B.1 Gradient Ascend algorithm for generalised LDA

As in the following two sections, we will deal with the basis of the already draw algorithm, in
this case Algorithm 4.1, in which we have only skip the derivatives.

In this case, we need to derive the following gradient:

∇αΦ(X ,D, Tα) = ∇α

(
‖µ1 − µ2‖2

σ21 + σ22

)
(B.1)

where we are differentiating with respect to the set of parameters α, and µi and σi are defined
as in Equations 4.14 and 4.15.

Now note that output of the transformation Tα is, in general, a vector. Let us define

ui(α) ≡ Tα(xi) (B.2)
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and the sets

U(c) ≡ {ui : xi ∈ X(c)} (B.3)

Note that we have omitted the explicit dependence with the parameters of the transformation
α for simplicity.

We can rewrite Equations 4.14 and 4.15 in the following way:

µc =
1

Mc

∑
u∈U(c)

u (B.4)

σc =
∑

u∈U(c)

‖µc − u‖2 (B.5)

Expanding the expression in its components, this expressions are written as:

µ i
c =

1

Mc

∑
u∈U(c)

ui (B.6)

σc =
∑

u∈U(c)

(µ i
c − ui)(µci − ui) (B.7)

Now, we can also write α in components αi. With the spirit of making the derivation simpler
we will compute the derivatives of the generalised FLD with respect to one of the components
of α, rewriting the gradient operator in the following way:

∇ =

(
∂

∂α1
,
∂

∂α2
, ...

)
≡ (∂1, ∂2, ...) (B.8)

From now on we will use that notation to write the gradient. Specifically, for the components
of the α vector we will use ∂β whereas for differentiating with respect to the components of u
we will use ∂i.

Now, consider the derivative with respect to an arbitrary component of the parameter vector
α of the generalised FLD:

∂βΦ =
1

σ21 + σ22

(
∂β
(
‖µ1 − µ2‖2

) (
σ21 + σ22

)
+
(
‖µ1 − µ2‖2

)
∂β
(
σ21 + σ22

))
(B.9)

We can compute separately now the two derivatives of the last expression:

92



B.1 Gradient Ascend algorithm for generalised LDA

∂β‖µ1 − µ2‖2 = (µ1 − µ2) ∂β(µ1 − µ2)
t + (µ1 − µ2)

t ∂β(µ1 − µ2)

= 2(µ1 − µ2)
t ∂β(µ1 − µ2)

= 2(µ1 − µ2)
t (∂βµ1 − ∂βµ2) (B.10)

where we have used that the transposition commutes with the derivative, and

∂β
(
σ21 − σ22

)
= 2 ∂βσ1 + 2 ∂βσ2 (B.11)

The derivatives of the mean can be written as the derivatives of its components:

∂βµ
i
c =

1

Mc

∑
u∈U(c)

∂βu
i (B.12)

And the derivatives of the σ as:

∂βσc =
∑

u∈U(c)

(∂βµ
i
c − ∂βui)(∂βµci − ∂βui) (B.13)

This reduces the problem to find the derivatives of the transformed instances u j
i . Now, if

we call T jα(xi) to the jth component of the transformation Tα 1, we can formally define the
components of the u instances:

u j
i (α) ≡ T jα(xi) (B.14)

So we can write the derivatives in the following way:

∂βu
j
i (α) = ∂βT jα(xi) (B.15)

This ends the derivation of the gradient of the generalised FLD as the last expression depends
only on the chosen transformation Tα.

1Actually, we could picture each of the T j
α as a transformation by its own, and interpret Tα as a vector

representation of the gathering of all those transforms.
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B.2 Gradient Ascend algorithm for the BDFLD

The Basis Decomposition FLD is just a generalised FLD considering the Basis-Decomposition
Transformation as defined in Definition 5.12. Therefore, we only need to compute the derivatives
of the transformation.

To simplify the notation, as the BD Transformation has only two components, we will slightly
change the notation for the components of the transformed instances in the following way:

ui = T 1
w(xi) =

1

‖wj zj‖
〈wj zj ,xi〉 (B.16)

vi = T 2
w(xi) = u2i (B.17)

where, remember, we are assuming that the instances x ∈ X are normalised. Note that we
have renamed the generic parametrisation α to fit the parameters of the BD Transformation
w. We will still use, however, Greek letters to derive with respect to the parameters of the
transformation (i.e. ∂β ≡ ∂/∂wβ).

The derivatives for the second component of the transformation can be trivially reduced in
terms of the derivatives of the first component:

∂βvi = 2ui ∂βui (B.18)

Therefore, we just need to compute the derivatives for the ui to complete the derivation:

∂βui = ∂β〈ξ,xi〉

=
1

‖wj zj‖
∂β〈wj zj ,xi〉+ ∂β

(
1

‖wj zj‖

)
〈wj zj ,xi〉 (B.19)

As before, we will compute separately those two derivatives:

∂β〈wj zj ,xi〉 = ∂β(wj)〈zj ,xi〉
= δjβ 〈zj ,xi〉
= 〈zβ,xi〉 (B.20)
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∂β

(
1

‖wj zj‖

)
=

−1

2 ‖wj zj‖3
∂β
(
‖wj zj‖

)
= − 1

‖wj zj‖3
〈wj zj , ∂βw

jzj〉

= − 1

‖wj zj‖2
〈ξ, δjβzj〉

= − 1

‖wj zj‖2
〈ξ, zβ〉

= − 1

‖wj zj‖2
uβ (B.21)

Putting altogether Equations B.19, B.20 and B.21 we finish our derivation:

∂βui =
1

‖wj zj‖
〈zβ,xi〉 −

1

‖wj zj‖2
uβ m〈wj zj ,xi〉

=
1

‖wj zj‖
〈zβ,xi〉 −

1

‖wj zj‖
uβ 〈ξ,xi〉

=
1

‖wj zj‖
(〈zβ,xi〉 − uβ ui) (B.22)

B.2.1 Dealing with non-normalised instances

In some situations, the instances set cannot be normalised. This kind of constraint can arise
from adding more terms into the objective function. For instance, when adding the BD-ICA
contribution later, if we would not use the reduced set of instances Z but the original set X to
construct the candidates ξ, it would be convenient to force the instances to be demeaned and
to have unit variance, as we did with z ∈ Z. Of course, this last constraint is incompatible
with the norm normalisation. We could still maintain two versions of the instances, but it is
customary to be thrifty in this sense when dealing with fMRI. In these kind of cases, it could be
convenient to have a discriminant working with non-normalised instances. As we said before,
such discriminant can be built with just substituting x by x/‖x‖. In terms of the discriminant,
we only need to change the transformation in Equation 5.13 by the alternative transformation
in Equation B.23, described as follows:

T BD
w (x) ≡

(
1
‖x‖〈ξ,x〉
1
‖x‖2 〈ξ,x〉

2

)

This change is linearly propagated to the derivatives. This means that instead of Equation B.22
we need to use Equation B.23:
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∂βui =
1

‖wj zj‖

(
1

‖xi‖
〈zβ,xi〉 − uβ ui

)
(B.23)

and instead of Equation B.18, we have to use Equation B.24:

∂βvi =
2

‖x‖
ui ∂βui (B.24)

B.3 Gradient Ascend algorithm for BD-DICA

We are now in position to show the final derivatives for BD-DICA. As before, we will compute
the derivative with respect to an arbitrary component of w instead of the gradient of Equation
5.19.

Consider the following expression:

∂βJ (w) = (1− κ) ∂βJ(w) + κ ∂βΦ(w) (B.25)

The second term on the right side of B.25 has been already solved along the previous two
sections. We will therefore centre ourselves in the first term, corresponding to the objective
function of BD-ICA in Equation 3.5. During this section, we will use the notation y = wj zj
to save some ink.

∂βJ(w) = ∂β(E[G(y)]− E[G(ν)])2

= 2(E[G(y)]− E[G(ν)]) ∂βE[G(y)] (B.26)

where we have assumed that E[G(ν)] is a constant, for the reasons exposed before in Section
3.3.1. Actually, as all distributions will be demeaned and will have unit variance, µ is actually
a normal distribution. That means that, for our choice of G(y) described in Equation 3.7, it
can be derive [5] that:

E[G(ν)] = − 1√
2

(B.27)

Following our derivation, we need still to compute the flowing derivative:

∂βE[G(y)] =
1

N

N∑
i

∂βG(yi)

=
1

N

N∑
i

∂yi(G(yi)) ∂βy
i (B.28)
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Now, the derivatives of G(y) and yi = wlz i
l :

∂yG(y) = − ∂y
(
e−

y2

2

)
= y e−

y2

2 = y G(y) (B.29)

∂β y = ∂β w
l z i

l = δlβ z
i
l = z i

β (B.30)

Grouping the terms:

∂βJ(w) = 2

(
E[G(y)] +

1√
2

)
1

D

D∑
i

yi G(yi) z i
β (B.31)

B.4 Dynamics of the Gradient Ascend algorithms

As the reader might already noticed, the objective function of BD-DICA has a series of spurious
maxima we cannot avoid. They are caused by the Negentropy term, which have maxima in all
the projections aligned with the source vectors s ∈ S. Therefore, it would be interesting to
count with an implementation of Gradient Ascend capable of skipping small maxima.

To deal with this problem, we have implemented two different strategies. First of all, the first
steps of the algorithm are conducted with a different (larger) κ, to seed the starting point of
the actual process to a position with a high score in the discriminant.

In addition, inspired in the implementation of several algorithms for back propagation in Neural
Networks (see [50]) we added a term of inertia to the Hill Climbing process which could help to
avoid falling in too shallow maxima. The implementation of this term is quite easy. Suppose
that the variation in w of the kth iteration is ∆k. Then, in the following iteration:

w← w + η∇J (w) +m∆k (B.32)

where m is the mass term, which manages the amount of inertia of the algorithm.

The resulting algorithm is highly configurable. We have found a combination of such parameters
that work relatively fine with fMIR data: the number of steps in the initialisation (set to 5),
the κ value for that part of the process (κinit = κ+ 0.2), the mass term (m = 0.4), the learning
rate (η = 0.15), the tolerance for convergence (θ = 10−5), a possible number of max iterations
(we chose MaxIt = 99). The value for κ will depend on the amount of noise and the size of the
dataset, but a value of κ ∼ 0.4 has demonstrated to work nicely.

If another combination has to be performed to deal with new data, we can offer some advices.
We have seen that a too high distances between the κs can make the algorithm start too far
away from the optimal condition, which is translated in a large number of iterations. Each of
those iterations can take from 2 to 40 seconds, so this number should be taken seriously.
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A m > 0.5 might cause the algorithm to oscillates indefinitely when a reasonable learning rate
is selected and it is therefore not recommended.

Within the parameters of the initialisation it is possible to select a different η for this part of the
process. This can help to jump quickly to a point with good solutions and spare some iterations
in the rest of the process if ηinit > η. We have hard coded ηinit = 4η. This combination seems
to work very good. However, be careful when increasing this number as the Hill Climbing of
the rest of the process inherits a term of inertia form the initialisation.

An additional implemented possibility is to repeat the initialisation for several random seeds
and select the best one for the rest of the process. This can help to avoid local maxima when
dealing with situations with lots of spurious solutions. In the case of fMRI, however, it proved
to be of no use at all.

An implementation of this algorithm as described in this appendix will be soon publicly available
in www.github/qtabs/BDDICA/ running under MATLAB. The code could theoretically works
perfectly under Octave self for an external library implementing PCA. In addition, SPM is
needed to import fMRI images.
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Mineŕıa de Datos. Pearson Educación, 2004.

[2] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby, “Beyond mind-reading: multi-
voxel pattern analysis of fmri data,” Trends in cognitive sciences, vol. 10, no. 9, pp. 424–430,
2006.

[3] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. Adaptive and
Learning Systems for Signal Processing, Communications and Control Series, Wiley, 2004.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, vol. 10. Wiley, 2001.

[5] C. S. Dhir and S.-Y. Lee, “Discriminant independent component analysis,” Trans. Neur.
Netw., vol. 22, pp. 845–857, June 2011.

[6] V. D. Calhoun, J. Liu, and T. Adalı, “A review of group ica for fmri data and ica for joint
inference of imaging, genetic, and erp data,” Neuroimage, vol. 45, no. 1, pp. S163–S172,
2009.

[7] R. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles and Tech-
niques. Cambridge University Press, 2002.

[8] K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, eds., Statistical Parametric
Mapping: The Analysis of Functional Brain Images. Academic Press, 2007.

[9] V. D. Calhoun, T. Adali, L. K. Hansen, J. Larsen, and J. J. Pekar, “ICA of functional
MRI data: An overview,” in Fourth International Symposium on Independent Component
Analysis and Blind Source Separation, (Nara, Japan), pp. 281–288, April 2003.

[10] B. B. Biswal, “Resting state fmri: a personal history,” Neuroimage, vol. 62, no. 2, pp. 938–
944, 2012.

[11] S. A. Harrison and F. Tong, “Decoding reveals the contents of visual working memory in
early visual areas,” Nature, vol. 458, no. 7238, pp. 632–635, 2009.
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