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Abstract

When dealing with Grid applications, there could append a lot of different thinks that could
make the final execution differ some times. For example, is over-optimistic to suppose that all
the site calls that the Grid application management system does to perform sub-computations
are operatives the 100% of the time and no error never happens. Another case, for example
is when the final result varies depending on the values returned by the services.
When the user accepts this non-determinism, it may be good to give some estimation of
success. Here we will see some approaches to this problem based on the Expected number of
published values and the Probability of failure on non-recursive Orc expressions describing
the orchestration of sites in Grid applications. We will see that in some cases those problems
are only tractable under certain conditions and the special case created by the delay of site
calls when there are no restrictions on the Orc expressions.
After that, a new approach based on the probability of delays will be presented. With this
approach we will give a new estimations based on the average time required for values to be
published and the time required to publish the first or last value.
As an annex, a Java library to compute some of those problems is given and some important
points will be seen.
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Chapter 1

Introduction

As time passes, the number of on-line services available increases at high speed, thanks
that the distributed model of computation using on-line services is gaining more ground,
not only for task for which is essential but also more and more task are migrating from the
centralized common model.
Early applications like the SETI@home project [23] where a high workload is distributed
between users were the starting point of actual multi-client applications. Nowadays, multi-
client applications where some calculations are transferred to secondary servers in order to
reduce the workload in the main server have evolved since the first applications showing how
powerful decentralized processes can be.

Some applications uses services like on-line spell checkers and translators to solve some
problems externally and with the benefit of having always the latest version without the need
of install or actualize extra software. Other, like vacation planning, simply work retrieving
data from other services or comparing the results searching the best combinations. At present,
some applications even have completely migrated to on-line versions, like text editors, slide-
show creators or image editors, erasing the need of having high performance computers for
some tasks.

As the scope of the distributed applications nowadays is very wide, result a difficult task
to simplify and analyse their behaviour in a unique form.

An inherit pattern in most of the on-line distributed programs nowadays is this:

• Do some computations with the current data

• Ask remote services to compute some data

• Acquire new data from remote services

• Start again

This is a simple pattern but it describes quite well how most of this applications works
regardless the goal of the application.
For example, in an application like the SETI@home project the main server retrieves the data
from satellites, then do some calculations and data partition, then it ask clients (services) to
process the data and retrieve the results when clients end their tasks, after that repeat all
the process. Other example is the spell-checking in some web-browsers where, when the user
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introduces new text, the application select the new text and ask a remote service to check it
and retrieve if the text is correct or some possible corrections. Vacation planning is another
example that holds to this pattern, first the user gives some restrictions and preferences, then
the application ask for flights to some airlines and search for those with good combinations,
after that it search for hotels and finally return the best combinations founded.

When you enter the area of distributed system, there are three important words that
suddenly appear, Web services, orchestration and choreography. Quoting the glossary of
W3C [51], http://www.w3.org/TR/ws-gloss/, the definitions of Web service, orchestration
and choreography. Following a definition of web service:

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards.

Web services is nowadays a well established technology, detailed information can be found in
[3, 42]. Such a services are mainly separated into two big parts, orchestrations and chore-
ographies [43]. An orchestration represents control from one party’s perspective::

An orchestration defines the sequence and conditions in which one Web service
invokes other Web services in order to realize some useful function. I.e., an or-
chestration is the pattern of interactions that a Web service agent must follow in
order to achieve its goal.

A choreography considers multi-party sources and:

A choreography defines the sequence and conditions under which multiple cooper-
ating independent agents exchange messages in order to perform a task to achieve
a goal state.
Web Services Choreography concerns the interactions of services with their users.
Any user of a Web service, automated or otherwise, is a client of that service.
These users may, in turn, be other Web Services, applications or human beings.
Transactions among Web Services and their clients must clearly be well defined
at the time of their execution, and may consist of multiple separate interactions
whose composition constitutes a complete transaction. This composition, its mes-
sage protocols, interfaces, sequencing, and associated logic, is considered to be a
choreography.

In general we see that there are two main possible perspectives, orchestrations and chore-
ographies. An orchestrations take the view from a local machine using external services. A
choreography coordinate multiple-sites from a global perceptive without a central point.

Orchestration always represents control from one central point trying to accomplish some
goal. Here, we are interested in get some goodness measures for the accomplishment of that
goal when external services have uncertain behaviours.
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For practical issues WSDL, Web service Description Language, and BPEL, Business Pro-
cess Execution Language, appears as main languages to describe and implement orchestra-
tions [42, 43]. In order to give a high level description of orchestrations, Jayadev Misra and
William R. Cook introduce Orc [38], a minimalistic language to deal with orchestration. The
Orc language can be accessed on line through

http : //orc.csres.utexas.edu/research.shtml

It has been used both, as a programming language [32] and also as a starting point to deal
with the semantics of web services. This is a rich topic.

• A first semantic approach using trees was developed in [27].

• A trace approach has been undertaken in [30, 49].

• The approach undertaken in [30] has been extended adding time to traces to get a timed
trace semantics [52]. Links between timed trace semantics and timed automata [6] has
been developed in [9, 10].

• Other approaches have been undertaken. A description in terms of predicative semantics
[24, 25] has been undertaken for Orc in[46]. A real-time rewriting approach appears in
[5, 4]. Relation between Orc and the REO model is undertaken in [45].

Although there are many papers dealing with different semantics aspects of Orc [27, 30, 52,
6, 9, 10, 45] the link between the semantic models and computational complexity have not
been considered to the best of our knowledge.

Our main goal is to give QoS measures to orchestrations expressed in the Orc language.
QoS measures can be designed to analyse “a priori” (before execution) the quality of orches-
trations. To do so we first have to develop appropriate semantic models to capture the main
aspects of the QoS measure. We consider to semantic approaches fully defined variable model
and fully defined variable-time model.

For these measures, we first study the sub-families of Orc in which the semantics allows
the definition of the QoS measure. We analyse first the complexity versus expressibility in a
deterministic context. We finally incorporate a priori probabilistic

In general, we are going to give QoS measures from two different perspectives, measures
related to the number of items resulting of an execution and measures related to the execution
time. Our study linking QoS measures and complexity start from the measures defined in
[17, 15]. In this work we extend the study by providing adequate semantics and to more
expressive families or Orc.

1.1 Content Outline
This thesis is separated into different sections:

First, Chapter 2 give a brief introduction about the reliability of Web services and shows
some points from where we can extract probabilities for further uses. We analyse two different
kind of problems. First, problems related to attacks and other causes like natural phenomena
or human negligence, with punctual causes and difficult to modelling into probability models.
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After that, we see some problems related precisely to the network and server reliability and
to the execution of the service.

In Chapter 3, we give a short introduction to of Orc language. The Orc language represent
services as sites, we introduce the idea of non-blocking sites in order to get sites easier to
analyse. In a similar way, we present the idea of descriptors of values, in order to reduce the
big number of possible outputs of services. We introduce some operators of the Orc language,
original operators and extensions. Finally, based on descriptors and operators, we present the
different sub-families of Orc for which we are going to extract QoS measures.

In Chapters 4 and 5 we introduce two semantic approaches, the fully defined variable model
and the fully defined variable-time model. In Chapter 4, we use the fully defined variable model
in order to show possible QoS measures related to the number of items published during the
execution of an orchestration, and then we analyse those measures for each sub-family of Orc.
After that, in Chapter 5, we use the fully defined variable-time model in order to show possible
QoS measures related to the time needed for the items published during the execution of an
orchestration, and then we analyse those measures for each sub-family of Orc.

In Chapter 6, we present a probabilistic framework used to analyse orchestrations under
failures and errors, and also probabilistic sites. We present different models in order to
model different relations and dependencies between site calls and an services and observe
the relation between these models and the reality. Finally, in Chapters 4 and 8, we use the
recently introduced probabilistic framework to analyse new QoS measures related to the seen
previously.

As an appendix, following the ideas and algorithms proposed in this document, we give
a little Java library for compute some of the QoS measures related to the number of items
published. In the appendix B we will give a brief overview of this library and see all its
functions. This library will be not only able to compute these QoS measures but also to
execute Orc expressions of the sub-families seen following the model introduced in 4. We also
explain how to use this library in order to create real site and do real executions.

1.2 Technical preliminaries

1.2.1 Complexity classes and problems

Following, we resume the complexity classes and related problems appearing in this thesis.

P. Computable in poly-time. We use the complexity class P for both decision and non-
decision problems.

PSPACE. Computable in poly-space. We use the complexity class PSPACE for both
decision and non-decision problems.

NP. Poly-length membership certificates verifiable in poly-time.
A language L ∈ {0, 1}∗ is in NP if there exists a polynomial p(n) and a TM running

polynomial time such that for every x ∈ {0, 1}∗ we have:

x ∈ L⇔ ∃y ∈ {0, 1}p(|A|s.t.(M(< x, y >) = 1)
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In order to prove NP hardness, we use the 3− SAT problem:

• 3 − SAT . Given a 3 − CNF formula F with n literals x1, . . . , xn, determine if there
exist an assignation of values to x1, . . . , xn that satisfies F .

]P [48]. Class of functions f : {0, 1}∗ → ℵ s.t. there exist a poly-time TM M and a
polynomial p(n) such that for every x ∈ {0, 1}∗ we have:

f(x) = |{yin{0, 1}p(|x|) : M(< x, y >) = 1}|

In order to prove ]P hardness, we use the Counting 3−SAT and Counting MONOTONE
2− SAT problems:

• Counting 3 − SAT . Given a 3 − CNF formula F with n literals x1, . . . , xn, count the
number of satisfying assignments of values to x1, . . . , xn that satisfies F .

• Counting MONOTONE 2 − SAT . Given a MONOTONE 2 − CNF formula1 F with
n literals x1, . . . , xn, count the number of satisfying assignments of values to x1, . . . , xn
that satisfies F .

].NP [26]. Class of functions f : {0, 1}∗ → ℵ s.t. there exist a poly-time NTM M and a
polynomial p(n) such that for every x ∈ {0, 1}∗ we have:

f(x) = |{y ∈ {0, 1}p(|x|) : M(< x, y >) = 1}|

In order to prove ].NP hardness, we use the Counting with 3− SAT oracle problem:

• Counting with 3− SAT oracle. Given a 3− CNF formula F with n literals x1, . . . , xn
and a value j < n, count the number of satisfying assignments of values to x1, . . . , xj
such that exist an assignation of values to xj+1, . . . , xn that satisfies F .

Given a CNF formula F with n literals x1, . . . , xn and a string v = (v1 . . . vn) ∈ {0, 1}n,
with an abuse of the language, we write F (v) = 1 if F (v1, . . . , vn) = true, otherwise F (v) = 0.

1.2.2 Multi-sets

In order to define the fully defined variable model and the fully defined variable-time model
semantics, we need first the notion of multi-set or bag and few properties of that. A multi-set
is a non-ordered set allowing repetitions. We use the notation bbI1, . . . , Incc, taken from [35],
to describe a bag containing the items I1, . . . , In.

When using multi-sets we consider the operations +, denoting bag union, following [35,
pag 82]. As an example:

bba, bcc+ bba, ccc = bba, a, b, ccc

Given multi-sets M1, . . . ,Mn we note as usual∑
1≤i≤n

Mi = M1 + · · ·+Mn

1A MONOTONE CNF formula is a formula such that all literals never are negated.
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We introduce also the “demonic choice” operator u [35, pag 4] to denote non-deterministic
choice between bags. Given two possibilities A and B, a demonic choice between, A u B,
implies that either A or B will be chosen but no both. The demonic choice operator is
idempotent in the sense that A uA = A and follows typical distributive laws, so:

(bbxcc u bbycc) + (bbxcc u bbycc u bbzcc)
= bbx, xcc u bbx, ycc u bbx, zcc u bby, xcc u bby, ycc u bby, zcc
= bbx, xcc u bbx, ycc u bbx, zcc u bby, ycc u bby, zcc

Given a demonic choice between multi-sets M1, . . . ,Mn we note

uni=1Mi = M1 u · · · uMn

6



Chapter 2

Reliability & Probabilities

When we work with web services executed in unreliable environments we need to consider
several problems. Remote servers may be off-line at times for multiple reasons. Even if a
service is on-line, there maybe problems on the net, the server may need more time that the
given to perform its action among other sources of uncertainty.

These problems can be either instantaneous and affect a unique site call or persistent
during a certain amount of time. In case of persistent problems, we need also to take into
account that maybe there is not only one service affected, but services on the same server or
network can be also affected depending on the problem.

With all these possibilities it is clear that we cannot rely on services with deterministic
behaviours for measure orchestrations. In this chapter we analyse some cases of uncertain be-
haviour on sites and how to extract probabilities in order to use then to measure the goodness
of orchestrations. We consider three main scenarios: Attacks and Failures, Reliability, and
Time-outs. Given the large number of possible problems and the complexity of extract prob-
abilities from them, we are going to focus on searching pessimist measures of the behaviour
of services.

Finally, we need to have always in mind that, as we are working with complex systems
where almost anything can happen, the probabilities and the related results will be only
approaches to the real behaviour.

2.1 Attacks and Problems
The most serious cause of misbehaviours are human attacks and problems with physical

components. Sometimes accidents involving facilities or hardware occur, also humans can
attack web servers or network components. These problems and attacks may slow servers,
make them off-line or even turn off part of a network. This kind of failures is the most widely
spoken of network problems because of their nature. Now let us analyse different types and
examples of common problems and attacks.

Fire and another problems. Problems on physical components or facilities, commonly
occur due to human errors, poor maintenance or external actions. These problems may
have different severity, from a short disconnection to a destruction of physical components
in an unpredictable way. When the problem only causes a short disconnection there is no
additional problems. When some components are destroyed, like a hard disk that may create
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a big issue (if there is no backup available), something common for centralized services having
all the servers located in the same building. In order to prevent the worst case scenario, it is
recommended to have a backup server on a different Data Center or contract a hosting that
ensures a periodic backup, but that also mean a higher cost.

The fire on a Data Center in Macomb County, Michigan on April 17th 2013 that caused
the loss of a big number of services in the area is a good example of these type of problems
[36]. The IT services were hosted in a Data Center located in the basement of an old building
that was not prepared and besides they did not have a backup Data Center. Because that,
the fire put off-line all the IT services of the Macomb’s government and will require millions
of dollars worth of repairs and upgrades. These problems would have been easily avoided if
the government had originally invested in good facilities, but even so this is still a common
problem.

In addition to physical problems, sometimes the service can be disrupted by problems
related to the software. These problems normally are caused by bad data updates or license
expiration, usually due to human errors, and may stop all the services until they are solved.

The outage of Windows Azure Cloud servers on February 22th 2013 was caused by a
expired SSL Certificate [37]. This is an interesting example of what an oversight can cause.
Something as simple for a company like Microsoft as updating a certificate, would have avoided
an outage of more than 12 hours on their services.

Denial of Service Attacks. One of the most common attacks is Distributed Denial of
Service (DDoS for short) [50]. In these attacks, a big number of machines try to saturate
some servers with simultaneous connections. These attacks affect not only the attacked
server but also the near routers as they need to endure a bigger traffic. There are temporally
solutions to this attacks and hostings tend to proceed in a different way depending on the
price of the plans, but normally, although the web can be maintained on-line, these attacks
create a significant delay in the response from the server.

The DDoS attack suffered by the web Spamhaus on March 18th 2013, possibly the biggest
DDoS attack so far is a good example of what a DDoS attack can do [29, 44]. This attack put
the web off-line during some time until measures where taken. During almost all the attack
duration, it saturated the networks of Cloudflare (the hosting server Spamhaus) and adjacent
connecting points. As Spamhaus had contracted the costliest plan, the hosting provided the
best response against the attack and because that the web was on-line most of the time.
However, if they had contracted another plan, the same hosting would have provided a worst
response and the web would have been off-line until the attack stopped.

While the last example was a mass attack to a unique server, it is more common to have a
series of small attacks to related servers. Those series of attacks are commonly more efficient.
The series of DDoS attacks suffered by some on-line-banking sites starting in March 5th 2013
[33]. Although smaller than the Spamhaus attack, these may be a better example of what
attacks can do to on-line services. In this case, unlike in Spamhaus where a really big attack
saturated the line but the service only was ceased at the beginning, these small but scattered
attacks had much more success as, although not always achieved, they stopped momentarily
several servers, causing a considerable total off-line time.

Service Inaccessible Attacks. Besides collapsing servers, other attacks make the services
inaccessible. Following two common attacks of this kind:
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• Website defacement. This attack consist in entering into the server and modify the
data [53]. Normally there is not a big loss of information as the attacks tend to affect
configuration or access files in order to redirect all requests to a new file.

• DNS cache poisoning. This attack consist in entering into an intermediate DNS server
and add bad entries wanting them to be propagated to other DNS servers [40]. In these
cases, servers becomes inaccessible until the correct DNS entries are restored.

Although they have these type of attacks same final goal as DDoS, they follow completely
different procedure. The attack affects only the attacked server, modifying the data or making
it inaccessible, this means that nearby networks are not affected. Another difference is that in
order to recover from the attack, actions like restore data or reseed DNS entries are needed.
These measures solve the problems from root, although they may need some time. In order
to avoid those problems, it is needed to have the servers with the latest versions since they
have less known vulnerabilities. That action may be something important to consider if we
expect to have high risk of attack, but can affect the cost as highest paid servers care more
about security and tend to be more updated.

On November 24th 2012, Google Pakistan’s web page was defaced [8]. That attack make
the service unavailable until they realized and deleted the redirection from the main page
but the all problem took some more time to be solved. Attack like this proves that even the
bigger companies can be attacked successfully.

Extracting probabilities. As said, those attacks and problems are unpredictable, but we can
try to extract some probability about the likelihood of suffering a misbehaviour. We can get
an estimation of this probability from different origins. Big companies like Google, that are
often attacked, can have some public data about the status of the services offered like the
status page of Google services [19]. Big hostings also have public statistics of the server status,
like in Amazon Web Services [7]. Finally, we can also get statistics from similar services.

Example 2.1 In a report from SecureList we have that in the second half of 2011 the
average duration of a DDoS attack on the tested servers was 9 and a half hours [34], and the
most attacked received 218 attacks on the second quarter of the same year [39]. For instance,
let WSA and WSB be two different web services:

• Service WSA is attacked with high probability, let us say that it gets 22 attacks each
quarter (10% compared to most attacked server). With that high risk they have a
server contracted with good protection versus DDoS and that makes that only 1% of
the attacked time really entails problems.

• Service WSB has less probability of been attacked, let us say that it gets around 2
attacks each quarter (1% compared to most attacked server). With less probability they
contract a simple hosting without protection versus DDoS and therefore the service is
off-line during the attacks.

If the average attack time is 9.5 hours like in the average of all attacks, WSA will be under
attack around 209 hours attacked in 90 days (9, 68% of the time) and WSB around 19 hours
(0, 88% of the time). Given the difference in the services contracted, while WSB has no
protection against attacks and therefore will be on-line only 99, 12% of the time, WSA with
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the extra protection contracted will counter most of the attack and will not have problems
99, 999% of the time, and that will be a "‘perfect"’ service as will be shown next.

In general, although we can get an approximate perception of the probability of being
under attack for the services. Unless the service has a very bad maintenance, this probability
tends to be a small probability with low effect on the goodness of the orchestration using
these services.

At this point, in the reports of SecureList about attacks in the 2nd quarter of 2011 [39]
and 2nd half of 2011 [34], an interesting point is the Distribution of attacked websites by
on-line activity (figure 2.1). From that distribution we can extract the risk of being attacked
depending on the service offered. From this statistics, we may be able to compute some
estimated probability of being under attack if we knew the total number of attacks and the
number of sites of each kind. Even so, as it can be seen in the graphs, the distribution of
attacks by activity has a big variance and, apart of the site activity, there are other causes
that lead to attacks. These distribution of attacks by sites may be a good approach for
selecting groups of sites by risk when approximating problems by other methods like with
competitive games, as we will see in chapter 9 (Note that the difference on number of sites
has also importance for considering the risk of attack.).

2.2 Network and Servers Reliability
The use of web services implies to suffer all the possible problems on networks: off-line

servers, network failures and server congestion among others. In general, we have two distinct
problems that can make our orchestration fail, errors related to the reliability of the network
and the servers and time-out on calls. We analyse separately with both cases. Citing an
interesting article from New York Times [47]:

AT&T’s dial tone set the all-time standard for reliability. It was engineered so
that 99.999 percent of the time, you could successfully make a phone call. Five
9s. That works out to being available all but 5.26 minutes a year.

As it is pointed out in[47], while phone calls have a reliability of 99.999%, this standard is
almost impossible to achieve in a web service due to its higher complexity. The Five 9s mean
that a service can not be off-line more than 5 minutes a year. If the service is located in
a single machine, it is clear that Five 9s is not realistic. Either network problems or server
maintenance may cause to not reach the Five 9s.

What happens with big services? Although the great services can have a myriad of
machines, also have to deal with the reliability of the network. This fact makes impossible to
reach the 100% reliability, reaching as a maximum the Five 9s. As the senior vice president
for operations at Google Urs Hölzle said [47]: We don’t believe Five 9s is attainable in a
commercial service, if measured correctly. After that, he stated that their goal for the major
services was Four 9s (99.99%), though their search service is near the 99.999% every year.
These Four 9s are the goal for all big Web services, and every year there are more services
arriving to it, but in the end, they can not ensure more than those Four 9s.

Let us consider what happen when we go to other services, not only for the bigger ones.
In this case we can have two different possibilities services on Web Hostings or services on
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(a) Q2 2011

(b) H2 2011

Figure 2.1: Distribution of DDoS attacks by on-line activity in 2nd quarter and 2nd half of
2011 by Kaspersky Lab (look at [39], [34]).

private networks. The more common case, where the services are hosted in some servers
maintained by a third party. In general, there are a lot of combination possible of Web
hosting, from dedicated servers completely managed by the contractor to shared servers with
big restrictions or even static pages servers, but in the end there is one simple thing that
affects directly the reliability of the site, how much is paid. Web hosting is a business and as
such the price is what makes the difference.

Consider the hosting Hostinger . At the moment of writing this, the hosting offer three
different plans. The free plan does not have any cost, but ensures only 99% of on-line time.
In addition to that, they offer two paid plans, one for 2.41e/month ensuring an on-line time
of 99.5% and the other for 5.63e/month ensuring 99.9%. The different reliability of each plan
is a good example of how the price can make a difference, and that without counting other
improvements and protection on paid servers.
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Figure 2.2: Servers Log: Uptime report of 000Webhost hosting by serviceuptime.com (look
at [13]).

When working with these services a common question is: can we trust the reliability
announced by the provider?. For paid services it is more or less clear that we can somehow
accept their words because if they do not fulfil them, we have the right to complain, and if
something happens, as in the case of Windows Azure, the provider tends to compensate for
it. But in free servers, though sometimes surprising, we can also trust the reliability ensured.

Let us see the web hosting 000Webhost. Although they offer paid services, their most
important service is their free web hosting. For that service they ensures a 99% reliability.
When daily using these services sometimes it seems that they do not accomplish that, because
errors are subjectively amplified. In order to check if the 99% reliability is real the best way
is to use an external service to test it. In this case, for example there is available a report
Serviceuptime.com about the servers of 000Webhost (figure 2.2). From that report we see
that, not only all servers have at least 99% uptime, but that almost all servers have more
that 99.5% uptime.

Another possibility, although less common, is that the services are hosted in some private
network managed by the same service provider. These service providers can be either public
institutions, private companies or common users and in the same time we can have servers
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with as many varieties as in Web hosting plus the case that the server is used for other
purposes at the same time. The last case is the more common when the service provider is a
common user. These type of servers do not have any ensured on-line time and, in addition,
tend to be highly limited, specially in the number of concurrent connections, and therefore
we cannot have a ensured reliability as with Web hosting. Still, in these cases we can extract
some probabilities from statistical analysis of the service and therefore get some approximated
probabilities. These services are also more prone to problems like in the Macomb case.

Although those can all be good reliabilities, that is only the reliability of the services.
Unless the service consist in simply returning static pages, it is almost certain that the services
will use some other services like Databases. In that case, the final reliability of the service
will be something less that the stated by the provider. Web services using different servers
can be simulated by Orc expressions. In the nexts chapters we will use these orchestrations to
compute the probability of publishing in order to measure the real reliability of the services.

2.3 Time-out and failures probability
As we have pointed out, the service reliability is affected by the network reliability. How-

ever Network protocols tend to have failure correction systems and it is not common to have a
service inaccessible if the server is on-line, except in case that the server is under some attack
or has some problems. In the end, network reliability ends up affecting mainly the delay in
the communications. When working with Web services, it is quite common to establish a
maximum time for each call in order to avoid endless calls. Thus a failure is considered when
the time-out is triggered, see for example how web browsers manage long queries or scripts
[11] [12]. We can set this time-outs as a fixed big time-out for all services, time-outs to groups
of similar services or as an specific time-out for each service.

A fixed time-out for all services is a simple solution for cases where we do not know too
much about the services. In this case, as we do not know if calls will take more or less time,
we let a large amount of time to perform any action. This is the worst approach to time-outs,
as we can wait a lot of time for fast services when they fail. On the other hand, if we are only
interested in a time limit to perform all the orchestration, this method gives a fast and easy
way to compute the time-out needed.

Assigning a group time-out for similar services is a good idea when working with similar
servers and expensive processes. One of the main reasons why this approach is useful is that
Web hosting providers tend to limit the execution time of calls, depending on the contracted
plan contracted.

We can see that in the plans offered by the hosting 1 &1 . They offer four different plans
for web hosting. These plans have prices ranging from 1.99e/month to 19.99e/month and
giving 20 to 60 seconds on each call depending on the plan contracted. If all the services were
contracted in 1 &1 or hosting with similar plans, then we could have a fixed time-out of 65
seconds (5 extra seconds in order to avoid communication delays) or group the services in
groups with time-outs of 25 to 65 seconds, and with that we ensure that if the service ends
we get the response and otherwise do not wait too long.

As the servers time-outs are bigger than any possible network delay, then we can simply
fix the time-out as the server time-out plus some margin for network delays (1 extra second
for example). This time-out ensures 0 loses of packages, and therefore the probability of the
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site calls will come from the probability that the process ends during the time given by the
server. As servers can have more or less load, the execution time can vary greatly between
executions, but we can extract statistically the probability that a execution ends in time.

As observation, this strategy can be used sometimes in order to reach 0% error probability
by time if we can afford to pay a Web hosting with more execution time available that the
needed in the worst case scenario.

A specific time-out for each service is good especially in the case where we have relatively
fast services, as they finalize long before the server cuts the connection. In this case there are
three aspects that matter:

• Estimated processing time. Each service need different time to process requests, also
this time may vary a lot between requests. In general we have static and dynamic sites
with similar or varied response length.

• Ping. The ping time is the time that a message needs to arrive and return from a server.
That time caused mainly by the geographic distance and will be considered unavoidable.

• Jitter. The jitter is the average deviation in ping time. If the deviation on ping is great
we may need to take it also into account.

In general, we can estimate this time-out from statistics on the services. We propose
formulas to compute the time-out for a service in different situations, using a parameter
δ > 0 to weight deviation.

• On-line services
If the service is on-line and we are able to access to it, then we may compute the time-out
directly from the real service. We perform n random calls (this number may depend on
the stability of the response time, but we propose 10.000 calls) and compute the average
time (µ) and his deviation (σ). Then, we compute the time-out as follows:

time_out(δ) = µ+ σδ

• Pre-computed
When we are working with our services, in cases where we are unable to access to the
on-line service for testing (restriction on number of calls, service still not uploaded,...),
we may want to estimate the time-out based on the server capabilities and location.
In order to compute the time-out without having access to the server, we are going to
use the average ping (ρ) to the server, the estimated process time (µ′) and deviation
on process time (σ′) for the server capabilities (in order to compute the process time
we can do test in our machines and scale results, having into account the speed of the
network). The formula is as follows:

time_out(δ) = 2ρ+ µ′ + σ′δ

Note that in TCP we need to establish the connexion, and therefore we need 2 times
the ping.
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• Pre-computed with high jitter When pre-computing time-outs, in the case where the
jitter of the network (ε) is important we use the following formula:

time_out(δ) = 2ρ+ µ′ + (σ′ + ε)δ

In order to compute the average time and deviation, and finally the probability of failure, n
calls to each server need to be done. In case of test of on-line services it may be important
to perform those calls extended in time, in order to not bias the result. Also each call needs
to be done without any data cache and knowing previously the IP direction of location of
the service. When we have the n time values x1, ..., xn we compute the average delay and
deviation:

µ = 1
n

n∑
i=1

xi, σ = 1
n

√√√√ n∑
i=1

(xi − µ)2

and the probability of failure is given by:

Pr(δ) = 1
n

#{xi | xi > time_out(δ)}

In general, with services of the style document provider, which publish a document, a
varied length on the response is normally what makes the deviation grow up and requires
large time-outs. On the other hand, services of the solver style, that solves some problems,
usually generate more or less deviation depending on the type of process. Meanwhile, the
jitter is commonly neglected unless we deal with networks with very bad behaviour.

Example 2.2 Let us see the difference between three distinct existing sites. In order to
compute the average time and deviation, and finally the probability of failure, During a week
n = 10000 calls to each server were executed, recording the call time of each.

• Site IPFW is a service offering static pages [28]. This is static site that return a fixed
size table with Spanish verbs conjugations. Each call was done with a random verb
from a collection of 100 verbs.

• Service Stackoverflow [1] is a dynamic site for asking computing related questions. Each
call was done at random from 100 questions chosen from the web page.

• Yahoo [2]. Calls where done to the main page, a dynamic page showing the last news
from different sources and few other info.

For each server then we had:

IPFW Stackoverflow Yahoo
µ 250ms 599ms 1585ms
σ 126ms 100ms 522ms

With those values and the test of each site, we compute the probability of failure for each site
with a fixed time-out of 800ms

IPFW Stackoverflow Yahoo
Pr 0.984 0.973 0
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and the time-out and probability of failure for cases with δ = 1 and δ = 1.5.

IPFW Stackoverflow Yahoo
Time_out(1) 376ms 699ms 2107ms

Pr(1) 0.876 0.86 0.982
Time_out(1.5) 439ms 749ms 2368ms

Pr(1.5) 0.954 0.974 1

With these values we can see the big span between different time-outs. These values where
computed with a relatively low number of calls in a short period of time. In order to have a
better approximation to the behaviour of the server, a more exhaustive testing will be needed.

In addition to the probability of time-out, we can estimate the distribution of delays (the
probability of having delays in different ranges). In chapter 8 this distribution will be used
in order to compute an approximation to the distribution of minimum delay. In general, this
distribution can be easily extracted from the log of calls.

Example 2.3 Let us see which would be the distributions for the sites considered in the
Example 2.2. With the same logs used for the probability the following distributions of delays
are extracted, discretizing into groups of 100ms (See figure 2.3).

Further on, these distributions will be used in order to compute an approximation to
the delay on the first published element. Moreover we can use these distribution as another
method to compute service time-out in a way that it is easy to compute the time-out for
which we lose at most X% of the good responses.

For computing the probability of failure with time-out, we need a big number of samples
in order to have a good estimation. This is even more important when working with sites like
Yahoo with large deviation on the call time.
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Delay Prob.
100 - 199 ms 0.153
200 - 299 ms 0.673
300 - 399 ms 0.120
400 - 499 ms 0.010
500 - 599 ms 0.015
600 - 699 ms 0.01
700 - 799 ms 0.012
800 - 899 ms 0.014
+900 ms 0.002
(a) Prob: IPFW (b) Dist:IPFW

Delay Prob.
500 - 599 ms 0.578
600 - 699 ms 0.282
700 - 799 ms 0.113
800 - 899 ms 0.019
900 - 999 ms 0.006
+1000 ms 0.002
(c) Prob: Stackoverflow (d) Dist:Stackoverflow

Delay Prob.
1400 - 1499 ms 0.203
1500 - 1599 ms 0.681
1600 - 1699 ms 0.077
1700 - 1999 ms 0.019
2000 - 3499 ms 0.012

+3500 ms 0.008
(e) prob: Yahoo (f) Dist: Yahoo

Figure 2.3: Probabilitites and Delay distributions for failure
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Chapter 3

Orc Language and Sub-families

Orc is a language introduced by Misra and Cook [38] that can give a short and clear
representation of orchestrations of sites in Grid applications. Now, let us have a small view
of the Orc language.

Definition 3.1 An Orc expression, or simply expression, is a representation of an orches-
tration in Orc language. An expression can be represented by a name. Given an expression
E and a list of parameters L, E(L) describes an evaluation of the orchestration described by
E with parameters L.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Orc language can be used as a simple extension to a sequential programming language.
If E is the name of an Orc expression and L the list of actual parameters, an assignment of
the output of E to a variable x can be expressed in the form x :∈ E(L). If the evaluation
of E(L) outputs one or more result, the first one is assigned to x. In case of no results, the
statement execution does not terminate.

The basic unit of this language are the Sites in addition with a few number of operators
together variables and constants. A Site is a the representation of a service or a function.
Sites are also the minimum possible expressions of Orc.

3.1 Sites
Sites are the base of Orc expressions. During the evaluation of the expression, sites are

called as procedures, returning one response or halting without responding the call.
Sites are represented by site names, starting with upper-case letters, and could be either

functions (say, to compute the hash of a string), object methods (say, add a video file to an
upload queue), a monitor procedure (say, to check if a net buffer is non-empty) or a web
service (say, email web service). Also, an orchestration may involve humans in sites (like
when an explicit approval is needed).

Sites can be called with different values as input of certain types, and then publish an
output of a certain type, if not halts. If at least one variable of the input does not have a
value assigned, a site call waits until all variables have some value assigned, and in the case
that some variables never get a value the thread will halt.
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Definition 3.2 A parametrised site S is non-blocking if S(x1, . . . , xn) must publish a result
for all well-defined arguments (x1, . . . , xn) = (v1, . . . , vn) [18], otherwise S is potentially blocking.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Must be taken into account that, while it is possible that, even it the publishing type is
be a tuple, a site call only publishes one value or none, but never more than one [38, p. 2].
It is important to remember this as otherwise that would be a source of parallelism, and site
calls are not allowed to start new threads of computation inside the orchestration.

For sites performing functions, there is no change in the environment no change of status
is caused. On the other hand, there are a lot of sites that may affect the behaviour of future
calls to the same site or other sites. For example, two sites performing the actions of Add
and Get some items from a queue, here is clear that Add calls affects directly Get calls.

For a site S, a site call with input X = (x1, . . . , xn) is described as S(X). If a site S does
not has input parameter, we can call it either as S() or S.

3.1.1 Predefined Sites

In the Orc language, there are few predefined sites performing simple operations without
the need of calls to external services. The Table 3.1 shows the basic predefined sites of the
Orc language.

Site Input Description

0 None
It remains silent without publish any value.
It has no other uses than stop execution
threads without publishing any value.

1 X:Any
When called with parameters
X = {x1, . . . , xn}, it publish the last value xn.
If called without input, it publish a 1.

If b:Boolean If b = true/1 then publish 1 otherwise halts.
Rtimer t:Integer+ It publish 1 after an elapse of t ms.

Table 3.1: List of predefined sites used in this document.

In addition, Orc define other predefined sites, like Signal an alias to 1. We are going to
consider only predefined sites with the same behaviour in any call (given the input param-
eters). But, in Orc language there are also defined sites like Clock that publish the current
time in milliseconds of the machine.

3.1.2 Service Sites

In addition to the predefined sites running in the local machine, an Orc expression can
use external services as a sites. In general, any service can be represented by a site.
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In Table 3.2 a description of some of the sites with Deterministic Output appearing in
some examples is provided. Most of them are taken from [38].

Site Meaning Published Value

True publishes the true value true/1

False publishes the false value false/0

And(b1 , . . . , bn) publishes an and of the input b1 ∧ . . . ∧ bn
Or(b1 , . . . , bn) publishes an or of the input b1 ∨ . . . ∨ bn
AddressAlice publishes Alice’s email address aalice

AddressBob publishes Bob’s email address abob

Email(a,m) sends message m to email ad-
dress a

s_ + a + _ + m

EmailDad(m) sends message m to my father s_adad_ + m

Print(m) sends message m to printer print_ + m

CNN publishes a summary of the
CNN news

cnn

BBC publishes a summary of the
BBC news

bbc

Table 3.2: Some examples of services sites.

For instance Email(aAlice, cnn) publishes the string s_aalice_cnn.

3.2 Variables and Constants
Programs, in any languages, need at some point to store and re-use some kind of data

during its the execution. Orc expressions are not an exception and they also need some
variables and constants to fulfil their functionality. In the Orc language, variable names start
with lower-case letters and have block scope, that means that a variable name can be re-used
in different sub-expressions1.

Definition 3.3 During the evaluation of an expression, the Context L contains all the
actual parameters. It is a mapping from variables to their values. Given a expression E,
E(x = v) means evaluate E adding x = v to the context.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As usual, variables and constant must have a type. On Orc, there are no type restriction
on the type of variables, and in general, what is assumed is that any type of data can be

1In the original language, variables could be re-written, for simplification here we do not allow that possi-
bility.
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assigned to a variable. Common types used in Orc are Boolean values, integers and strings.
An important type are Signals, a special data type with no distinct values, in case of been
assigned to variables we consider that equivalent to a true value. Apart from these, values
like images, video or even sites can be a possible kind, used for example by a discovery service.

As we want to obtain results concerning some performance measures computed before-
hand, we are going to focus on orchestrations where the value of the variables is not important
(the orchestration behaves the same whether one or other value is used). We also consider
expressions where the data types involved are finite and with a relatively “small” domain.
As the condition of having small domains is sometimes difficult to achieve, when we analyse
orchestrations, sometimes we use Descriptors of the values instead of the actual values.

Definition 3.4 A descriptor is a short description for a set of values. A descriptor groups
together these values that meet certain properties important for the orchestration.

For example, if an orchestration has images as values and some sites are interested in the
image type and others in the relative size, then the descriptor Image can be a data type with
domain in {jpgSmall, jpgMedium, jpgLarge, pngSmall, . . ., gifLarge}.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Operators
The Orc language is composed by operations between expressions, being sites the minimum

form of expression. Since its introduction [38], Orc had 3 basic operators available to compose
expressions. These operators are Sequential composition, Parallel composition and Pruning

• Sequential composition A > x > B(x) and A� B(x)
When evaluating A > x > B(x) for a context L, for each value v published by A we
evaluate B(x = v), being the results published by B the results published by the full
expression. In case that the values published by A are not used in B, we can write it
as A� B, and in this case, we evaluate B for each value published by A.

• Parallel composition | A | B
When evaluating A | B for a context L, A and B are evaluated in parallel in separate
threads, each with context L. The full expression publish the values published by the
two sub-expressions.

• Pruning A(x) < x < B2

When evaluating A(x) < x < B, for a context L, A and B are evaluated in parallel in
separate threads, each with context L. When B publishes its first result, it is assigned
to x on A and all the threads of B are killed. If some threads of A are waiting for x
to have value, they are resumed. The full expression publish the values published the
sub-expressions A.

2Initially, it was written as A where x ∈ B, this A < x < B notation is a simplification of this.
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The language has been extended with several new operators. We present two of them.
The Otherwise operator, introduced by [31], and the Signaling introduced in [15].

• Otherwise A;B
When evaluating A;B for a context L, A is evaluated with context L. In case that A
publish at least one value, the full expression publish the values published by A. In case
that A does not publish any value, B is evaluated with context L and the full expression
publish the values published by B.
As “A does not publish” can be undecidable, we consider that A does not publish
anything if passed some defined time A has not published yet.

• Signaling A <!B
When evaluating A <!B for a context L, B is evaluated with context L. When B
publishes its first result, all the threads of B are killed and A is evaluated with context
L. The full expression publish the values published the sub-expressions A. This operator
originated as a synonym to the composition (1(x) � A) < x < B, where A does not
use x

Given these 5 operators, the precedence of operators is the following

[> x >, �, |, ; , < x <, <!]

For example:

A� B | C < x < E;F | D =
(
(A� B) | C

)
< x <

(
E; (F | D)

)
Example 3.1 With these three operators we are able to describe a large variety of possible
orchestrations. These are some examples:

LoopM (k,M) = If (k > 0)�M()� LoopM (k − 1,M)3

SendNews = (AddressAlice > a > Email(a,m))
< m < (CNN | BBC )

KeepMailing(t) = Rtimer(t)� KeepMailing(t) | SendNews
SendSomething = (CNN |BBC ) > x > EmailDad(m)

3.4 Evaluation
Orc expressions can be implemented in multiple ways. One implementation may be, an

expression and an output point:

• Create a new thread and start evaluating the expression.

• When a | operator is found, generate two new threads. In one evaluate the left side and
in the other the right side.

3Observe that is possible to have recursion in expressions.

23



• When encounter a ; operator, generate a new thread. Add an observer to the left side
and execute it in the new thread. Start a timer, then if the left side has not publish
anything when the timer stops, kill the thread of the left side (and its children) and
evaluate the right side in it, otherwise continue evaluating the left side.4

• When encounter < x < (or <!), generate a new thread. Add x = ⊥ to the context of
the left side and evaluate, then evaluate the right side with output point x. Add an
observer to x and when it takes some value, kill the right thread (and its children).

• When encounter > x > (or �), evaluate sequentially the right side for each value
published by the left side.

• If there is no following expressions, publish the last value in the output point.
This possible implementation and other possibilities have the problem that are complex

to analyse and may have poorly defined contexts.

Example 3.2 Let us analyse informally the following expression:

OneTwo =
(
If (b)� CNN | If (¬b)� (CNN | BBC )

)
< b < (1(true) | 1(false))

When starting the evaluation, in two parallel threads expressions
(
If (b)� CNN | If (¬b)�

(CNN | BBC )
)
and (1(1) | 1(0)) are evaluated. The first expression create two new threads

with the parallel operator and both wait for the variable b to take value.
The variable b takes value 0 or 1 non deterministically as this depends on what value is

published first during the evaluation of (1(1) | 1(0)). Then, can be either 0 or 1.
When b takes value, the two threads waiting for it resume their execution. In case that b

takes value true, the first one publish the value cnn and the other is killed as If (¬true) halts.
In the other hand, if b takes value false, then is the first one the expression killed and the
second one publish cnn and bbc according to the order they are published.

3.5 Orc Sub-families
Orc expressions can be really complex and difficult to analyse. Here, we are going to study

only a small part of Orc language for which the behaviour can be somehow predicted. We
are going to take into account only Finite expressions, those that does not have any recursion
or iterations. Inside the Finite expressions, we are going to consider 8 different sub-families
that share certain properties seen later on.

• ElementaryOrc. This sub-family of Orc includes expressions with only the operators |,
> x > and �.
All site in the expression are non-blocking5. Site If is not used and site Rtimer must
have a constant value as input. As an exception, site 0 can be used even being blocking.

4This is a possible implementations assuming that if within a certain time no value is published, then no
value will be published with more time.

5Remember that a non-blocking site is such that always publish something independently on the input
values.
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• ExtElementaryOrc. Extension of ElementaryOrc allowing operators <! and ;.
This sub-family of Orc includes expressions with the operators |, > x >, �, <! and ;.
All site in the expression are non-blocking. Site If is not used and site Rtimer must
have a constant value as input. As an exception, site 0 can be used even being blocking.

• PruningOrc. Extension of ElementaryOrc allowing operator < x <.
This sub-family of Orc includes expressions with the operators |, > x >, � and < x <.
All site in the expression are non-blocking. Site If is not used and site Rtimer must
have a constant value as input. As an exception, site 0 can be used even being blocking.

• ExtPruningOrc. Extension of ExtElementaryOrc and PruningOrc allowing all the operator.
This sub-family of Orc includes expressions with all the operators seen.
All site in the expression are non-blocking. Site If is not used and site Rtimer must
have a constant value as input. As an exception, site 0 can be used even being blocking.

• IfOrc. This sub-family of Orc includes expressions with only the operators |, > x > and
�.
Site in the expression are potentially blocking. All predefined sites seen can be used.

• ExtIfOrc. Extension of IfOrc allowing operators <! and ;.
This sub-family of Orc includes expressions with the operators |, > x >, �, <! and ;.
Site in the expression are potentially blocking. All predefined sites seen can be used.

• MixedOrc. Extension of IfOrc allowing operator < x <.
This sub-family of Orc includes expressions with the operators |, > x >, � and <
x <. The composition A(x) < x < B with the restriction that given a context L, the
stream produced by evaluation of B with context L only produces instances of a value
v determined by B and L.
Given that, we assume that there is a function FB(L), such that for any context L,
v ∈ B(L)⇒ v = FB(L).
Site in the expression are potentially blocking. All predefined sites seen can be used.

• ExtMixedOrc. Extension of MixedOrc allowing the operators <! and ;.
This sub-family of Orc includes expressions with all the operators seen. Operator < x <
has the same restrictions as in MixedOrc.
Site in the expression are potentially blocking. All predefined sites seen can be used.
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Table 3.3 shows a resume of the 8 sub-families. The relation between the 8 sub-families
can be seen in figure 3.1.

EOrc

EEOrc

POrc

MOrcIfOrc

EIfOrc

EPOrc

EMOrc

< x <

; and <!

Figure 3.1: Visual representation of the relationships in Orc sub-families. Straight arrows in-
dicates sub-family inclusion and da shed arrows indicate inclusion when restriction on pruning
operator usage.

This relation between sub-families give following useful results:

Observation For any problem P , an upper-bound on the complexity of P for ExtMixe-
dOrc implies at most the same upper bound for ExtPruningOrc, ExtIfOrc and MixedOrc. That
is also true for MixedOrc to PruningOrc and IfOrc and so for the rest of sub-families.

Observation For any problem P , a lower-bound on the complexity of P for ElementaryOrc
implies at least the same lower bound for ExtElementaryOrc, PruningOrc and IfOrc. That is
also true for PruningOrc to ExtPruningOrc and MixedOrc and so for the rest of sub-families.
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Sub-family Operators Sites Available

ElementaryOrc |, > x >, � Predefined sites: 1, 0
and Rtimer (with
constant parameters).
Service sites:
Non-blocking.

ExtElementaryOrc |, > x >, �, ;, <!
PruningOrc |, > x >, �, < x <

ExtPruningOrc |, > x >, < x <, �, ;, <!

IfOrc |, > x >, � Predefined sites: 1,
0,If and Rtimer .
Service sites:
Potentially blocking.

ExtIfOrc |, > x >, �, ;, <!
MixedOrc |, > x >, �, < x < (restricted)

ExtMixedOrc |, > x >, < x < (restricted), �, ;, <!

Table 3.3: List of Orc sub-families.
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Chapter 4

Number of outputs

In this chapter we are focusing in possibility of quantifying the number of values published
by an expression when it is executed, provided that it can be defined. That tends to be a
good measure of the goodness of an orchestration if we are not interested in get results fast
but in get the maximum number of results. Here we introduce the fully defined variables
model based on bags of values in order to be able to describe the behaviour of orchestrations
abstracting from time. After that we see the relation between this model and the number of
outputs and that for all the sub-families of Orc studied the number of outputs is the same in
all the executions.

Finally, we are going to analyse some related problems to the number of outputs. On
the bad side we are going to see that some of these problems have a high complexity, having
NP-Hard and ]P-Hard problems, but in the other hand we have seen that all the problems
belongs to PSPACE, at least for the sub-families of Orc seen. Table 4.1 at the end of the
chapter resumes the results found.

4.1 Fully Defined Variables Model
The semantics of Orc has been and is a rich research topic [27, 52, 46]. As we are interested

in metrics related to the outputs produced by an orchestration, we consider an operational
semantic so called fully defined variables model, a variation to the given by Misra and Cook
[38]. In such a model any variable x contains all the possible values before being used. This
approach provides a mathematical tool to derive the desired results.

Many variables in orchestrations keep a value or a stream of values. When an orchestration
E publishes a stream v1, v2, . . . , vn, the relative ordering of the values depends on the relative
response time of the sites appearing in E. If we abstract from time the possible streams can
be described by a multi-set or bag bbv1, v2, . . . , vncc. In such a case, the “meaning” of E,
denoted by [[E]] is the bag bbv1, v2, . . . , vncc and we write [[E]] = bbv1, v2, . . . , vncc.

For orchestrations like TwoCNN = (CNN | CNN ), as we are working with multi-sets,
it makes sense to write equalities like the following [[TwoCNN ]] = bbcnncc + bbcnncc =
bbcnn, cnncc. We also have that the pruning operator < x < can give rise to a non de-
terministic behaviour.

Example 4.1 Remind the orchestrations given in Example 3.2 :
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OneTwo =
(
If (b)� CNN | If (¬b)� (CNN | BBC )

)
< b < (1(true) | 1(false))

For this expression, the variable b could take either true or false as value. Then the
[[b]] = bbtruecc u bbfalsecc. In case that b takes true, OneTwo publish bbcnncc otherwise
publish bbcnn, bbccc. Given that, we have that [[OneTwo]] = bbcnncc u bbcnn, bbccc.

4.1.1 Sites

Recall that we have considered that a call site returns a bag with cardinality 0 or 1. Site
calls are dependent on the context, in particular, a site call S(x1, . . . xn) need for all variables
x1, . . . xn to be defined. Let us provide the bags associated to predefined sites:

[[1]] = bb1cc [[1(x1, . . . , xn)]] =
{
bbxncc if ∀i ∈ [1, . . . , n];xi 6= ⊥
bb cc if otherwise

[[0]] = bb cc [[Rtimer ]] = bb1cc [[If (b)]] =
{
bb1cc if b = true
bb cc otherwise

For non-predefined sites we consider 2 variations. Non-blocking sites and potentially
blocking sites (Definition 3.2).

In the case of non-blocking sites. A site call S(x1, . . . xn) with all variables define returns
s(x1, . . . xn), thus we have

[[S(x1, . . . xn)]] = bbs(x1, . . . , xn)cc

In the case of potentially blocking sites. A site call S(x1, . . . xn) with all variables define
returns s(x1, . . . xn) if r(x1, . . . xn) = true, thus we have

[[S(x1, . . . xn)]] =
{
bbs(x1, . . . , xn)cc if r(x1, . . . xn) = true
bb cc otherwise

In both cases, s(x1, . . . , xn) and r(x1, . . . , xn) need to be deterministic functions com-
putable in poly-time with respect (x1, . . . , xn).

4.1.2 Operations

With the fully defined variables model, now we can express the meaning of expressions
defined as operations between bags. Following we describe the behaviour of the operators
with the use of bags based on the behaviour on a normal execution.

• Sequential composition > x > and �
(
A > x > B(x)

)
[[A > x > B(x)]] = u

M∈[[A]]
∑
v∈M

[[B(x = v)]]
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[[A� B(x)]] = u
M∈[[A]]

∑
v∈M

[[B]]

• Parallel composition |
(
A | B

)
[[A | B]] = [[A]] + [[B]]

• Pruning < x <
(
A(x) < x < B

)
[[A(x) < x < B]] = u

M∈[[B]]

{
uv∈M [[A(x = v)]] if M 6= bbcc
[[A(x = ⊥)]] otherwise

• Otherwise ;
(
A;B

)
[[A;B]] = u

M∈[[A]]

{
[[M ]] if M 6= bbcc
[[B]] otherwise

• Signaling <!
(
A <!B

)
[[A(x) <!B]] = u

M∈[[B]]

{
[[A]] if M 6= bbcc
bb cc otherwise

Example 4.2 Let us see the orchestration SendNews (Example 3.1).

SendNews = (AddressAlice > a > Email(a,m)) < m < (CNN | BBC )

The evaluation of SendNews will go as follows.
First a call to (CNN | BBC ) with an empty context give the possible values of m.

[[CNN | BBC ]] = [[CNN ]] + [[BBC ]] = bbcnncc+ bbbbccc = bbcnn, bbccc

Then m take a value from bbcnn, bbccc, t = bbcnnccu bbbbccc. After that, (AddressAlice > a >
Email(a,m)) is called.

[[SendNews]] = u
m∈bbcnn,bbccc[[(AddressAlice > a > Email(a,m))]]

• For m = cnn:
[[(AddressAlice > a > Email(a, cnn))]] =∑

a∈[[AddressAlice]] [[Email(a, cnn)]]
[[AddressAlice]] = bbaalicecc
[[(AddressAlice > a > Email(a, cnn))]] =∑

a∈bbaalicecc [[Email(a, cnn)]] =
[[Email(aalice, cnn)]] = bbs_aalice_cnncc
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• For m = bbc:
[[(AddressAlice > a > Email(a, bbc))]] =∑

a∈[[AddressAlice]] [[Email(a, bbc)]]
[[AddressAlice]] = bbaalicecc
[[(AddressAlice > a > Email(a, bbc))]] =∑

a∈bbaalicecc [[Email(a, bbc)]] =
[[Email(aalice, bbc)]] = bbs_aalice_bbccc

Then [[SendNews]] = bbs_aalice_cnncc u bbs_aalice_bbccc.

From the behaviour of sites and operators, the following holds:

Theorem 4.1.1. Given a finite orchestration E is holds that [[E]] = bb cc or exists a unique
non-deterministic finite decomposition in multi-sets [[E]] = uni=1Mi being the elements of each
Mi values returned by an execution of E, for 1 ≤ i ≤ n.

4.2 Number of outputs
In this chapter we are focusing in the number of values published by an expression when

it is executed. Now let us see the relation between the fully defined variables model and the
number of outputs.

Definition 4.1 Given a bag M , #M denotes the cardinality of M.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As we have seen in Example 4.2, the different bags in [[E]] can have different number of
items. We prove in this section that for the Orc sub-families introduced previously, they are
guaranteed to produce outputs with the same number of items in all the executions. In order
to prove that, first let us analyse the meaning of sub-expression for these families.

Theorem 4.2.1. The meaning of [[E]] has a unique bag when restricting to expressions E in
ExtIfOrc.

Proof. It can be proved simply by the definitions of sites as generators of multi-sets and
operators as operations between them.

Sites are the basic sub-expressions that we can found. By definition, sites with determin-
istic behaviour publish at most one value determined by the context of the site call and there
is no demonic choice involved in that. Therefore, the meaning of a site call has a unique bag.

Now, let us see that no operator introduces non-determinism as they just keep it from
their sub-expressions. By induction, as the basic sub-expressions, sites, does not add non-
determinism, then the meaning of E does not has any demonic choice.

Given that we have that [[E]] = M for a unique bag M .

The pruning operator is the unique operator adding demonic choices. Now let us analyse
the sub-families that allow this operator.
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Theorem 4.2.2. The meaning of [[E]] is composed by bags with the same number of items
when restricting to expressions E in ExtPruningOrc.

Proof. In order to prove that, first let us remember that non-blocking sites always publish
something if all the input values are defined. Given that, as we are considering only the
number of items, we can consider all values as signals, only indicating that a variable is
defined. In that case, we write x = ⊥ if the variable x is undefined, and x 6= ⊥ if it is defined.
Now, let us analyse the operator A(x) < x < B under that assumption:

In the base case, B is an ExtElementaryOrc expression. Given that, we have that [[B]] has
a unique bag and therefore:

[[A(x) < x < B]] =
{

[[A(x 6= ⊥)]] if [[B]] 6= bb cc
[[A(x = ⊥)]] otherwise

Then, in the case that B is an ExtPruningOrc expression we have that as the abstraction
from values removes the non-determinism of pruning for the base case, by induction in the
general case there is also no non-determinism added with this operator, with respect the
number of items.

Then we have that, while pruning introduces non-determinism on the values, if E is a
ExtPruningOrc expression with meaning [[E]] = uni=1Mi, the cardinality of each bag is the
same, #M1 = . . .#Mn.

Theorem 4.2.3. The meaning of [[E]] has a unique bag when restricting to expressions E in
ExtMixedOrc.

Proof. To prove this, let us analyse the behaviour of the operator A(x) < x < B in ExtMixe-
dOrc.

In the base case, B is an ExtIfOrc expression. Given that, we have that [[B]] has a unique
bag. Also, the restriction imposed in ExtMixedOrc in order to allow the pruning operator
ensures that either [[B]] = bb cc or [[B]] = bbv, . . . , vcc, for a value v determined by B and the
context. Therefore, we have:

[[A(x) < x < B]] =
{

[[A(x = v)]] if [[B]] = bbv, . . . , vcc
[[A(x = ⊥)]] otherwise

Then, in the case that B is an ExtMixedOrc expression we have that as there is no non-
determinism of pruning for the base case, by induction in the general case there is also no
non-determinism added with this operator.

Given that we have that [[E]] = M for a unique bag M .

Having meanings with a unique bag or all bags with the same number of items, now we
can give a measure of the number of outputs of an expression.

Definition 4.2 For an expression E in ExtMixedOrc, out(E) denote the number of outputs
produced by an execution of E.

If [[E]] = uni=1Mi, out(E) = #M1 = . . . = #Mn.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Related to the number of outputs, we can be interested also in the number of outputs
having some specific value.

Definition 4.3 For an expression E, the domain of E, D(E), is defined as the set of
possible values v ∈ [[E]]. If an orchestration E has sites S1, . . . , Sn as endpoints, then D(E) ⊆
∪ni=1 D(Si).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 4.4 Given an expression E, we note as Ev to the expression E only allowing
it to publish the value v. The expression Ev can be interpreted as E > x > If (x = v). We
use the don’t care ∗ to denote that that the value does not matter, then E = E∗.

We note as out(Ev) the multiplicity of v in [[E]].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Observe that given an expression E in ExtMixedOrc, for any value v ∈ D(E), out(Ev) is
a well defined value. That is given by the fact that [[E]] is a unique bag M = bbv1, . . . , vncc.
Given that :

out(Ev) =| {vi | vi = v; i ∈ [1, . . . , n]} |

4.2.1 Computing the out function
Now, let us see how to compute out(E) and out(Ev) for the studied sub-families of Orc.

For ElementaryOrc, ExtElementaryOrc, PruningOrc and ExtPruningOrc we have that all
sites are non-blocking. The following algorithm to compute out(E) comes directly from the
evaluation model based on bags and the fact that in these families values does not matter to
the number of outputs.

Lemma 4.2.4. Let E be an ExtPruningOrc expression. For a given context L, out(E) can be
computed recursively as follows.
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out(0) = 0

out(1(x)) =
{

1 if (x ∈ L)
0 otherwise

out(S(X)) =
{

1 if (∀xi ∈ X;xi ∈ L)
0 otherwise

out(A | B) = out(A) + out(B)
out(A� B) = out(A) ∗ out(B)

out(A > x > B) = out(A) ∗ out(B(x 6= ⊥))

out(A < x < B) =
{

out(A(x 6= ⊥)) if (out(B) > 0)
out(A(x = ⊥)) otherwise

out(A;B) =
{

out(A) if (out(A) > 0)
out(B) otherwise

out(A <!B) =
{

out(A) if (out(B) > 0)
0 otherwise

Example 4.3 Let us consider the PruningOrc expression SendNews from the Example 3.1
:

SendNews = (AddressAlice > a > Email(a,m))
< m < (CNN | BBC )

The expression can be rewritten as:

A(m) = (AddressAlice > a > Email(a,m))
B = (CNN | BBC )

SendNews = A < m < B

We compute out(SendNews) as follows:

out(SendNews) =
{

out(A(x 6= ⊥)) if (out(B) > 0)
out(A(x = ⊥)) otherwise

out(B) = out(CNN ) + out(BBC ) = 2
out(SendNews) = out(A(x 6= ⊥))
out(A(x 6= ⊥)) = out(AddressAlice) ∗ out(Email( 6 ⊥, 6 ⊥)) = 1
out(SendNews) = 1

For IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc, the use of potentially blocking sites makes
values important to the number of outputs. In these cases, we can approach out(E) by
recursive calls to out(Ev).

Lemma 4.2.5. Let E be an ExtMixedOrc expression. out(E) can be computed recursively as
follows:

out(E) =
∑

v∈D(E)
out(Ev)
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That can seen directly by the fact that [[E]] is a unique bag and D(E) contains all the
possible values on that bag.

Now, we need to be able to compute out(Ev). Remember that potentially blocking sites
are described by two functions r(X) and s(X) that determine if a site call publish and the
value published in that case. The following algorithm to compute out(Ev) comes directly from
the evaluation model based on bags and the fact that in ExtMixedOrc there is no demonic
choice involved even having pruning as we restrict it to produce only instances of a determined
(Given A(x) < x < B and a context L, we say that v ∈ [[B]]⇒ FB(L) = v).

Lemma 4.2.6. Let E be an ExtMixedOrc expression. For a given context L, out(Ev) can be
computed recursively as follows:

out(0v) = 0

out(1(x)v) =
{

1 if (x ∈ L) and (x = v)
0 otherwise

out(If (b)v) =
{

1 if (b = true) and (v = 1)
0 otherwise

out(S(X)v) =


1 if (s(X) = x), (r(X) = true)

and (∀xi ∈ X;xi ∈ L)
0 otherwise

out((A | B)v) = out(Av) + out(Bv)
out((A� B)v) = out(A) ∗ out(Bv)

out((A > x > B)v) =
∑
w∈D(A) out(Aw) ∗ out(B(x = w)v)

out((A < x < B)v) =
{

out(A(x = FB(L))) if (out(B) > 0)
out(A(x = ⊥)) otherwise

out((A;B)v) =
{

out(Av) if (out(Av) > 0)
out(Bv) otherwise

out((A <!B)v) =
{

out(Av) if out(B) > 0
0 otherwise

Example 4.4 Let us consider the IfOrc expression SendSomething from the Example 3.1 :

SendSomething = (CNN |BBC ) > x > EmailDad(m)

The expression can be rewritten as:

A = (CNN | BBC )
B(m) = EmailDad(m)

SendSomething = A > m > B
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For v = s_adad_cnn, we compute out(SendSomethingv) as follows:

out(SendSomethingv) =
∑
w∈D(A) out(Aw) ∗ out(B(x = w)v)

D(A) = {cnn, bbc}
out(SendSomethingv) = out(Acnn) ∗ out(B(x = cnn)v)

+out(Abbc) ∗ out(B(x = bbc)v)
out(B(x = cnn)v) = 1
out(Acnn) = out(CNN cnn) + out(BBC cnn) = 1 + 0 = 1
out(B(x = bbc)v) = 0
out(SendSomethingv) = 1 ∗ 1 + 0 = 1

For v = s_adad_bbc we have the same result. Then, it holds that:

out(SendSomething) = 2 =

out(SendSomethings_adad_cnn) + out(SendSomethings_adad_bbc)

4.3 Related Problems
Having a well defined output length measure, there are some related computational prob-

lems of interest. For a given expressions E in any of the studied sub-families given in chapter
3:

• Output. Given an expression E, compute the number of items on a the bags of [[E]]
(out(E)).

• Produces. Given an expression E, determine if the bags of [[E]] contain at least one
value (out(E) > 0).

And for expressions publishing a unique bag:

• OutputValue. Given an expression E and a value v, compute the multiplicity of v in
[[E]] (out(Ev)).

• ProducesValue. Given an expression E and a value v, determine if the value v appear
on [[E]] (out(Ev) > 0).

Observer that all these problem have a well defined solution as seen before. Now let us
show some complexity bounds for the different problems and sub-families. First, let us define
some useful gadgets.

Definition 4.5 For a finite Orc expression E with n operators |, < x < and ;, we define a
trace t ∈ {0, 1}≤n as an execution path on the evaluation of E.

A trace describe an execution path in the following way. When encountering the i-th
operator during the execution, i-th position of the trace decides how to proceed. In case of
operators | and ;, the trace decides if the left side or the right side is evaluated. For the
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< x < operator, it decides if the right side is evaluated first, or if the left side is the only one
evaluated, and then x = ⊥.

We denote paths(E) ⊆ {0, 1}≤n the set of valid execution paths. Given t ∈ paths(E) we
note by val(t) the return value due to this path. Observe that val(t) = bbvcc, if the execution
path publishes a value v, or val(t) = bb cc, in the case that the execution path returns nothing.
Note that both t ∈ paths(E) and val(t) can be computed in poly-time with respect to the size
of E.

Given a trace t and s ∈ {0, 1}|t|, s is a sub-trace of t (s\t) if s describes the execution of t
without considering entering on pruning. We denote subpaths(E) ⊆ {0, 1}≤n the set of valid
sub-paths s. Given s and t, s\t can be checked in poly-time simply following the traces.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 The complexity of problems Output & Produces
For ElementaryOrc and PruningOrc these two problems has been previously studied an

proved to pertain to P [15]. Now let us see that this results also hold for ExtElementaryOrc
and ExtPruningOrc.

Theorem 4.3.1. The problem Output belongs to P when restricted to ExtPruningOrc.

Proof. Directly from the formula of how to compute out for these sub-families. With a quick
look, we see that each operator ask for the out(E) of its sub-expressions at most one time.
As that is true for all operators and for sites we can solve it in poly-time in the number of
variables, then we can compute out(E) in poly-time.

Theorem 4.3.2. The problem Produces belongs to P when restricted to ExtPruningOrc.

Proof. Directly from Output ∈ P, as E ∈ Produces⇔ out(E) > 0.

For IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc the results are not as good as in this case.
We have that solve Produces is as hard as to solve SAT.

Theorem 4.3.3. The problem Produces is NP-Complete when restricted to IfOrc, ExtIfOrc,
MixedOrc and ExtMixedOrc.

Proof. First, let us see that the problem is NP. With the use of traces, we have that Produces
can be seen as the NP problem:

E ∈ Produces ⇔ ∃t ∈ {0, 1}≤n s.t. (t ∈ paths(E) and val(t) 6= ⊥).

Now, in order to prove that it is also NP-Hard, let us consider a reduction form 3-SAT.
Given a 3-CNF formula F = C1 ∧ . . . ∧ Cm with n literals x1, . . . , xn, where Ci = yia ∨

yib ∨ yic , {y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode each one of the

cause through calls to site If . Given Ci = yia ∨ yib ∨ yic define

ECi(yia , yib , yic) = (If (yia) | If (yib) | If (yic))
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Taking True = 1(1) and False = 1(0) the orchestration EF associated to F is:

Double = (True | False)
E(x1, . . . , xn) = EC1(x1a , x1b

, x1c)� . . .� ECm(xma , xmb
, xmc)

EF = Double > x1 > · · · > Double > xn > E(x1, . . . , xn)

Note that for (v1, . . . , vn) ∈ {0, 1}n we have E(v1, . . . , vn) ∈ Produces⇔ F (v1, . . . vn) = 1.
As (x1, . . . , xn) takes all possible values in {0, 1}n by construction of EF , we have:

F ∈ 3− SAT ⇔ ∃(v1, . . . , vn) ∈ {0, 1}n s.t. (F (v1, . . . , vn) = 1) ⇔
∃(v1, . . . , vn) ∈ {0, 1}n s.t. (E(v1, . . . , vn) ∈ Produces) ⇔ Produces(EF )

Then, as the problem is NP and NP-Hard, it is NP-Complete.

For Output we have that for IfOrc and MixedOrc that this problem is ]P-Complete and
].NP-Complete.

Theorem 4.3.4. The problem Output is ]P-Complete when restricted to IfOrc.

Proof. In order to prove that Output for an expression E in IfOrc is ]P-Complete, first let us
see that this problem is in ]P. For that, let us reuse the proof of Produces(E) in NP. For an
expression E we had that

E ∈ Produces⇔ ∃t ∈ {0, 1}n s.t. (t ∈ paths(E) and val(t) 6= bb cc).

In this case, each valid certificate corresponds to an output of E, therefore

out(E) = ‖{t ∈ {0, 1} | ( t ∈ paths(E) and val(t) 6= bb cc ) }‖

and that is a typical ]P problem.

Now, in order to proof that it is also ]P-Hard, let us consider a different reduction form
3-SAT to the used for Produces.

Given F = C1∧. . .∧Cm with n literals x1, . . . , xn, where Ci = yia∨yib∨yic , {y1a , y1b
, y1c} ⊆

{x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode each one of the cause through calls to
site If . Given Ci = yia ∨ yib ∨ yic define

ECi(yia , yib , yic) = (If (yia) | (If (¬yia)� (If (yib) | (If (¬yib)� If (yic)))))

Taking True = 1(1) and False = 1(0) the orchestration EF corresponding to the formula
F is:

Double = (True | False)
E(x1, . . . , xn) = EC1(x1a , x1b

, x1c)� . . .� ECm(xma , xmb
, xmc)

EF = Double > x1 > · · · > Double > xn > E(x1, . . . , xn)

Note that now for (v1, . . . , vn) ∈ {0, 1}n we have F (v1, . . . vn) = 1⇔ out(E(v1, . . . , vn)) =
1 . As (v1, . . . , vn) takes all possible values in {0, 1}n by construction of EF , we have:

]F =
∑

(v1,...,vn)∈{0,1}n F (v1, . . . , vn) =∑
(v1,...,vn)∈{0,1}n out(E(v1, . . . , vn)) = out(EF )

As the problem is ]P and ]P-Hard, it is ]P-Complete.

Theorem 4.3.5. The problem Output is ].NP-Complete when restricted to MixedOrc.
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Proof. In order to prove that Output for an expression E in MixedOrc is ].NP-Complete, first
let us see that this problem is in ].NP. In this case, the definition of traces used to proof
Produces was NP does not work, as we can have multiple traces publishing one value when
pruning. What we can do now is use sub-traces in order to count without taking the multiple
possibilities of pruning into account. Given that, we can describe the problem Produces as
follows:

E ∈ Produces⇔ ∃t ∈ {0, 1}≤n,∃s ∈ {0, 1}≤n s.t. (s\t, t ∈ paths(E) and val(t) 6= bb cc).

In this case, each sub-trace s for witch exist trace t publishing such that s\t corresponds to
an output of E, therefore

out(E) = ‖{s ∈ subpaths(E) | ∃t ∈ paths(E) s.t. (s\t and val(t) 6= bb cc) }‖

and that is a typical ].NP problem.

Now, in order to proof that it is also ].NP-Hard, let us consider the following reduction
from counting with oracle in 3-SAT.

Given F = C1∧. . .∧Cm with n+m literals x1, . . . , xn, x
′
1, . . . , x

′
m, where Ci = yia∨yib∨yic ,

{y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode each one of the cause

through calls to site If . Given Ci = yia ∨ yib ∨ yic define

ECi(yia , yib , yic) = (If (yia) | If (yib) | If (yic))

Taking True = 1(1) and False = 1(0) the orchestration EF corresponding to the formula
F is:

Double = (True | False)
E(x1, . . . , xn) = EC1(x1a , x1b

, x1c)� . . .� ECm(xma , xmb
, xmc)

E ′ = 1(w) < w < (Double > x′1 > · · · > Double > x′m >
E(x1, . . . , xn, x

′
1, . . . , x

′
m))

EF = Double > x1 > · · · > Double > xn > E ′(x1, . . . , xn)

Note that now for (v1, . . . , vn, v
′
1, . . . , v

′
m) ∈ {0, 1}n+m we have F (v1, . . . vn, v

′
1, . . . , v

′
m) =

out(E(v1, . . . , vn, v
′
1, . . . , v

′
m)). As we have that (v′1, . . . , v′m) takes all possible values in {0, 1}m

inside a pruning expression, we have that for each (v1, . . . , vn) ∈ {0, 1}n:

out(E′(v1, . . . , vn)) = 1⇔
∃(v′1, . . . , v′m) ∈ {0, 1}m s.t. (out(E(v1, . . . , vn, v

′
1, . . . , v

′
m)) = 1) ⇔

∃(v′1, . . . , v′m) ∈ {0, 1}m s.t. (F (v1, . . . , vn, v
′
1, . . . , v

′
m) = 1) ⇔

Given fixing (x1, . . . , xn) = (v1, . . . , vn), F ∈ 3− SAT

As (v1, . . . , vn) takes all possible values in {0, 1}n by construction of EF , we have that
out(EF ) is the result of counting with oracle in 3-SAT.

As the problem is ].NP and ].NP-Hard, it is ].NP-Complete.

For ExtIfOrc and ExtMixedOrc, the operator ; does not allow the completeness on the
counting problems, as we need to know if the left side publish or not in order to get the out
from the left or right side, and that cannot be done by certificates.

Theorem 4.3.6. The problem Output belongs to PSPACE when restricted to ExtIfOrc and
ExtIfOrc.
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Proof. Remember that we can compute out(E) as the sum of out(Ev) for each possible value
v ∈ D(E). From the algorithm to compute out(Ev) we can see that it is a recursive algorithm
with depth inferior to |E| and in each level we only need to store a fixed amount of data.
Given that, we can compute recursively out(Ev) in poly-space on the size of E. Then we
can compute out(E) simply summing recursively out(Ev) for each value v ∈ D(E) within
poly-space.

4.3.2 The complexity of problems OutputValue & ProducesValue
As we have seen for Output and Produces, when values are involved, the problems tend

to increment its complexity. I this case, for OutputValue and ProducesValue the filtering to a
unique output value increments considerable the complexity in some cases.

For ProducesValue, we have that for all families the problem becomes as difficult to solve
SAT.

Theorem 4.3.7. The problem ProducesValue is NP-Complete when restricted to Elementary-
Orc, ExtElementaryOrc, IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc.

Proof. First, let us see that the problem is NP. With the use of traces, we have that Pro-
ducesValue can be seen as the NP problem:

< E, v >∈ ProducesValue⇔ ∃t ∈ paths(E) s.t. (val(t) = bbvcc).

Now, in order to proof that it is also NP-Hard let us remind the definition of non-blocking
sites. For those sites, we have that a site call S(v1, . . . vn) will publish always a value deter-
mined by s(v1, . . . vn). For E ∈ Produces and out(E), the value published does not matter,
but in this case that is different.

Given that, let us consider a reduction form 3-SAT. Given a 3-CNF formula F with n
literals x1, . . . , xn, let the site SF (x1, . . . , xn) be defined by the following function s(x1, . . . , xn).

s(v1, . . . , vn) =
{
success if F (v1, . . . , vn) = 1
fail otherwise

Note that s is a valid polynomial function describing a site. Now, define the expression
associated to F , EF , as follows:

Double = (True | False)
EF = Double > x1 > · · · > Double > xn > SF (x1, . . . , xn)

Produces(EF
success) implies that exist a trace t = (t1, . . . , tn) ∈ {0, 1}n such that val(t) =

bbsuccesscc. By construction, a trace t = (t1, . . . , tn) ∈ {0, 1}n makes the variables (x1, . . . , xn)
take values (t1, . . . , tn). Therefore, val(t) = bbsuccesscc ⇔ F (t1, . . . , tn) = true.

See that EF is an ElementaryOrc expression, and for the relation between sub-families,
this result is also valid for ExtElementaryOrc, IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc.

Then, as the problem is NP and NP-Hard, it is NP-Complete.

For OutputValue on ElementaryOrc, IfOrc and MixedOrc we found complexities related to
counting problems.
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Theorem 4.3.8. The problem OutputValue is ]P-Complete when restricted to ElementaryOrc
and IfOrc.

Proof. First, let us see that the problem is ]P. For that, let us reuse the proof of ProducesValue
in NP. For an expression E we had that

< E, v >∈ ProducesValue⇔ ∃t ∈ {0, 1}n s.t. (t ∈ paths(E) and val(t) = bbvcc).

In this case, each valid certificate corresponds to an output of E, therefore

out(Ev) = ‖{t ∈ {0, 1} | ( t ∈ paths(E) and val(t) = bbvcc ) }‖

and that is a typical ]P problem.

Now, in order to proof that it is also ]P-Hard, let us re-use the expression used in order
to prove ProducesValue is NP-Hard

Given a 3-SAT formula F with n literals x1, . . . , xn, let the site SF (x1, . . . , xn) be defined
by the following function s(x1, . . . , xn).

s(v1, . . . , vn) =
{
success if F (v1, . . . , vn) = 1
fail otherwise

Now, define the expression EF as follows:

Double = (True | False)
EF = Double > x1 > · · · > Double > xn > SF (x1, . . . , xn)

By construction, out(EsuccessF ) = #F as for each trace t = (t1, . . . , tn) ∈ {0, 1}n, val(t) =
bbsuccesscc ⇔ F (t1, . . . , tn) = true, and, by construction, each trace describe an output value.

For the relation of sub-families, this result is also valid for IfOrc.

Then, as the problem is ]P and ]P-Hard, it is ]P-Complete.

Theorem 4.3.9. The problem OutputValue is ].NP-Complete when restricted to MixedOrc.

Proof. In order to prove OutputValue of MixedOrc is ].NP-Complete, first let us see that this
problem is in ].NP.

With the same double trace t and s used to prove out ∈]P for MixedOrc, were t ∈ paths(E)
was a trace of E and s was a sub-trace of t describing the execution without entering on
pruning. We can describe the problem ProducesValue as follows:

< E, v >∈ ProducesValue⇔
∃t ∈ {0, 1}≤n,∃s ∈ {0, 1}≤n s.t. (s\t, t ∈ paths(E) and val(t) = bbvcc).

In this case, each certificate s for witch exist a valid certificate t publishing v such that s\t
describes a published value v, therefore

out(Ev) = ‖{s ∈ {0, 1}≤n | ( ∃s ∈ {0, 1}≤n s.t. ((s\t, t ∈ paths(E) and val(t) = bbvcc) ) }‖
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and that is a typical ].NP problem.

Now, in order to proof that it is also ].NP-Hard, let us consider the following reduction
from out. Given an MixedOrc expression E, define F as follows:

F = E � 1(success)

Then, by construction out(F success) = out(E). As out(E) is ].NP-Complete for MixedOrc,
then OutputValue is ].NP-Hard for MixedOrc.

Then, as the problem is ].NP and ].NP-Hard, it is ].NP-Complete.

For ExtElementaryOrc, ExtIfOrc and ExtMixedOrc we have the same problems in order to
get completeness, as the operator ; need to know if the left side publish or not in order to get
the out from the left or right side, and that cannot be done by certificates.

Theorem 4.3.10. The problem OutputValue belongs to PSPACE when restricted to ExtMixe-
dOrc.

Proof. From the algorithm to compute out(Ev) we can see that it is a recursive algorithm
with depth inferior to |E| and in each level we only need to store a fixed amount of data.
Given that, we can compute recursively out(Ev) in poly-space on the size of E.

Output Produces OutputValue ProducesValue
ElementaryOrc P P ]P-C NP-C

ExtElementaryOrc P P ]P-H NP-C
PruningOrc P P not included not included

ExtPruningOrc P P not included not included
IfOrc ]P-C NP-C ]P-C NP-C

ExtIfOrc ]P-H NP-C ]P-H NP-C
MixedOrc ].NP-C NP-C ].NP-C NP-C

ExtMixedOrc ].NP-H NP-C ].NP-H NP-C

Table 4.1: Resume of problems related to the number of outputs. All problems belong to
PSPACE.
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Chapter 5

Delay of output values

This chapter focuses in the delay of values published by the execution of an expression.
That tends to be a good measure of the goodness of an orchestration if we are more interested
in get results fast that in get a lot of results. Here we expand the fully defined variables model
based on bags described in Chapter 4 into the fully defined variables-delay model in order to
take execution time into account. After that we see the relation between this model and the
delay of outputs and that for all the sub-families of Orc studied the values are published with
the same delays in all the executions.

Finally, we are going to analyse some related problems to the delay of outputs. On the
bad side we are going to see that some of these problems have a high complexity, having
NP-Hard and ]P-Hard problems, but in the other hand we have seen that all the problems
belongs to PSPACE, at least for the sub-families of Orc seen. Table 5.1 at the end of the
chapter resumes the results found.

5.1 Fully Defined Variables-Delay Model
In the fully defined variables model we abstracted from execution time describing the

possible output streams as bags of values. Given that model, we where able to describe the
output of an execution without the complexity the threads add. However, when we want to
define measures related to the execution time, the fully defined variables model is not useful.

In order to deal up to some extent with time, we extend the fully defined variables model
adding the required time for publish each value. We name this new model fully defined
variables-delay model. In this model, bags not only contain the published values but also
their associated delay.

We assume delays are measured with milliseconds, and therefore are non-negative integers.
We denote “never returns” by the special symbol ω then taking δi = ω means “infinite” delay.
Assume δ + ω = ω + ω = ω and min(δ, ω) = δ.

When an orchestration E publishes a stream v1, v2, . . . , vn, each value vi have a delay δi
from the start of the execution to its publication. The possible streams can be described by
a multi-set or bag bb 〈v1 : δ1〉 , 〈v2 : δ2〉 , . . . , 〈vn : δn〉 cc. In such a case, with an abuse of the
language, the “meaning” of E is the bag bb 〈v1 : δ1〉 , 〈v2 : δ2〉 , . . . , 〈vn : δn〉 cc.

We consider the same operation + between multi-sets and the demonic choice operator.
Also, we assume that for any bag M = bb 〈v1 : δ1〉 , . . . , 〈vn : δn〉 cc, we remove any value vi
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with delay δi = ω, as having delay ω means that the value never will be published.

We need to introduce a new operator between multi-sets. The “add delay” operator ⊕ to
denote an addition of delay to each value of a bag. It is defined as:

bb 〈v1 : δ1〉 , . . . , 〈vm : δm〉 cc ⊕ bb 〈w1 : δ′1〉 , . . . , 〈wn : δ′n〉 cc
= bb 〈w1 : (δ1 + δ′1), w1 : (δ2 + δ′1)〉 , . . . , 〈wn : (δm + δ′n)〉 cc

We can also use it to add delay directly as follows:

δ ⊕ bb 〈v1 : δ1〉 , . . . , 〈vm : δm〉 cc = bb 〈v1 : (δ1 + δ)〉 , . . . , 〈vm : (δm + δ)〉 cc

As examples:

bb 〈v1 : 100〉 , 〈v2 : 200〉 cc ⊕ bb 〈cnn : 500〉 , 〈bbc : 600〉 cc
= bb 〈cnn : 600〉 , 〈cnn : 700〉 , 〈bbc : 700〉 , 〈bbc : 800〉 cc

1000⊕ bb 〈cnn : 500〉 , 〈bbc : 600〉 cc = bb 〈cnn : 1500〉 , 〈bbc : 1600〉 cc

When abstracting from the values, we define 3 different measures related to the delays:

Definition 5.1 Given a multi-set M = bb 〈v1 : δ1〉 , 〈v2 : δ2〉 , . . . , 〈vn : δn〉 cc, we introduce
the first item delay value first(M) to denote min(δ1, δ2, . . . , δn). As an example

first(bb 〈cnn : 500〉 , 〈bbc : 600〉 cc) = 500

We assume that first(bb cc) = ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 5.2 Given a multi-set M = bb 〈v1 : δ1〉 , 〈v2 : δ2〉 , . . . , 〈vn : δn〉 cc, we introduce
the last item delay value last(M) to denote max(δ1, δ2, . . . , δn). As an example

last(bb 〈cnn : 500〉 , 〈bbc : 600〉 cc) = 600

We assume that last(bb cc) = ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 5.3 Given a multi-set M = bb 〈v1 : δ1〉 , 〈v2 : δ2〉 , . . . , 〈vn : δn〉 cc, we introduce
the average item delay value avgDelay(M) as

∑n
i=0 δi/#M . As an example

avgDelay(bb 〈cnn : 500〉 , 〈bbc : 600〉 cc) = 550

We assume that avgDelay(bb cc) = ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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5.1.1 Sites

Under this semantics, a site call can be seen as an expression publishing one bag either
with empty or with one item and delay distinct to ω. Site calls are dependent on the context,
in particular, a site call S(x1, . . . xn) need for all variables x1, . . . xn to to be defined in order
to publish something.

As variables defined by pruning take value in a parallel execution, they may have an
associated delay in case that they are not defined at the moment of a site call. These delays
are stored in the context with the value of the variables and may affect the delay of a site call.
In particular, a site call S(x1, . . . xn) need for all variables x1, . . . xn to have value in order to
publish something, if those variables takes delays δ1, . . . , δn until they are defined, if the site
call publishing the value v in time δ, then [[S(x1, . . . xn)]] = max(δ1, . . . , δn) ⊕ bb 〈v : δ〉 cc as
site S is not called until all its input parameters are defined.

For predefined sites, as they implement simple functions in the main machine, we consider
that they have delay depreciable (01) with respect to other sites. Let us provide the bags
associated to predefined sites:

[[1]] = bb 〈1 : 0〉 cc [[1(x1, . . . , xn)]] =
{
bb 〈xn : 0〉 cc if ∀i ∈ [1, . . . , n];xi 6= ⊥
bb cc if otherwise

[[0]] = bb cc [[Rtimer(t)]] = bb 〈1 : t〉 cc [[If (b)]] =
{
bb 〈1 : 0〉 cc if b = true
bb cc otherwise

For non-predefined sites we have considered two different behaviours depending on whether
these sites are non-blocking sites or potentially blocking sites. For non-blocking sites we
assume the constant delay hypothesis.

Definition 5.4 The constant delay hypothesis assume that every non-blocking site S has
associated a delay δS . In any successful call S publishes after δS time units from the time at
which all their parameters are defined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, a site call S(v1, . . . vn) with all variables define returns the value s(v1, . . . vn) in time
δS :

[[S(v1, . . . vn)]] = bb 〈s(v1, . . . , vn) : δS〉 cc

In the case of potentially blocking sites we assume the deterministic delay hypothesis.

Definition 5.5 The deterministic delay hypothesis assume that every potentially blocking
site S has associated a delay function r. Any call S(v1, . . . , vn) publishes after r(v1, . . . , vn)
time units from the time at which all their parameters are defined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1The use of delay 0 is only for simplification and we can use any value that we consider appropriate.
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We assume that a site call S(v1, . . . vn) with all variables define returns s(v1, . . . vn) if
r(v1, . . . vn) 6= ω, then:

[[S(v1, . . . vn)]] =
{
bb 〈s(v1, . . . , vn) : r(v1, . . . , vn)〉 cc if r(v1, . . . vn) 6= ω
bb cc otherwise

In both cases, s(x1, . . . , xn) and r(x1, . . . , xn) assume them to be computable in poly-time
with respect to its input values.

5.1.2 Operations

With the fully defined variables model, now we can express operators as operations be-
tween bags. For that, we need to take some things into account.

First, we need to keep in mind that variables have an associated delay until their definition,
then these delays need to be decremented according to the time the expressions need to publish
each value. Also, in pruning we are going to get only values for which their delay is minimum.
Given an expression E(x), we denote as E(x = 〈v : δ〉) to an execution of E where x takes
the value v after δ time units. We also consider E(x = 〈v : 0〉), when x takes value before the
execution of E.

Also, the operator ; was defined as to execute the right side if the left side does not publish
anything. We have assumed that in order to ensure that a expression does not publish, we
take a big enough time-out and consider that it does not publish if it does not publish within
that time. Now, in order to express that time, we present the notation A;tB where t is the
time for within the expression A can publish, in replacing to the original A;B.

Following we describe the behaviour of operators with the use of bags.

• Sequential composition A > x > B(x) and A� B

[[A > x > B(x)]] = u
M∈[[A]]

∑
〈v:δ〉∈M

δ ⊕ [[B(x = 〈v : 0〉)]]

[[A� B]] = u
M∈[[A]]

∑
〈v:δ〉∈M

δ ⊕ [[B]]

• Parallel composition A | B

[[A | B]] = [[A]] + [[B]]

• Pruning A(x) < x < B

[[A(x) < x < B]] = u
M∈[[B]] u〈v:δ〉∈M ;δ=first(M) [[A(x = 〈v : δ〉)]]

In case of M = bb cc we take x = ⊥.
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• Otherwise A;tB

[[A;tB]] = u
M∈[[A]]

{
M if first(M) ≤ t
t⊕ [[B]] otherwise

• Signaling A <!B

[[A(x) <!B]] = u
M∈[[B]] first(M)⊕ [[A]]

Example 5.1 Let us see the orchestration SendNews (Examples 3.14.2).

SendNews = (AddressAlice > a > Email(a,m)) < m < (CNN | BBC )

Let us say that sites CNN ,BBC , AddressAlice and Email have delay 500, 600, 200 and
1000 respectively.

The evaluation of SendNews will go as follows.
First a call to (CNN | BBC ) with an empty context give the possible values of m.

[[CNN | BBC ]] = [[CNN ]] + [[BBC ]]
= bb 〈cnn : 500〉 cc+ bb 〈bbc : 600〉 cc
= bb 〈cnn : 500〉 , 〈bbc : 600〉 cc

Then m take a value from bb 〈cnn : 500〉 , 〈bbc : 600〉 cc. As cnn is the only value with
minimum delay, t = bb 〈cnn : 500〉 cc.

After that, (AddressAlice > a > Email(a, cnn)) is called.
AddressAlice publish aalice with delay 200. After publishing it, m is updated as m =

(cnn : 300).
Now it call to Email(aalice, cnn). This call publish s_aalice_cnn with delay 1000, but

as it needs m to be defined, in total it takes 1300 time units to publish.
In the end, [[SendNews]] = bb 〈s_aalice_cnn : 1500〉 cc. Observe that, in this case, while

there is a pruning operator with different values involved, as there is only one with minimum
delay, then no demonic choice is involved.

From the behaviour of sites and operators, the following holds:

Theorem 5.1.1. Given a finite orchestration E is holds that [[E]] = bb cc or exists a unique
non-deterministic finite decomposition in multi-sets [[E]] = uni=1Mi being the elements of each
Mi pairs of value and delay returned by an execution of E, for 1 ≤ i ≤ n.

5.2 Delay
In this chapter we are focusing in the delay of values published by an expression when it

is executed. Now let us see the relation between the fully defined variables-delay model and
the delay of outputs.
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Definition 5.6 Given a bag M = bb 〈v1 : δ1〉 , . . . , 〈vn : δn〉 cc, the delay bag ∆M denotes
the multiset of delays bbδ1, . . . , δncc containing the delays of each value of M .

If two bags M1 and M2 have the same delay bag ∆M1 = ∆M2 , we say that M1 and M2
are time-equivalent.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As we have seen, for general Orc expressions, the different bags in [[E]] can have different
number of items. Even so, we proved that, for the Orc sub-families introduced previously,
expressions have the same number of published items in each execution. Now, we prove in
this section that, for those sub-families, expressions are guaranteed to produce outputs with
the same delays on items in all the executions. In order to prove that, first let us analyse the
meaning of sub-expression for these families.

Theorem 5.2.1. The meaning of [[E]] has a unique bag when restricting to expressions E in
ExtIfOrc.

Proof. As in the fully defined variables model, it can be proved simply by the definitions of
sites as generators of multi-sets and operators as operations between them.

Sites are the basic sub-expressions that we can found. By definition, sites with determin-
istic behaviour publish at most one value with a delay, both determined by the context of the
site call and there is no demonic choice involved in that. Therefore, the meaning of a site call
has a unique bag.

Now, let us see that no operator introduces non-determinism as they just keep it from
their sub-expressions. By induction, as the basic sub-expressions, sites, does not add non-
determinism, then the meaning of E does not has any demonic choice.

Given that we have that [[E]] = M for a unique bag M .

The pruning operator is the unique operator adding demonic choices. Now let us analyse
the sub-families that allow this operator.

Theorem 5.2.2. The meaning of [[E]] is composed by time-equivalent bags with the same
delay on items when restricting to expressions E in ExtPruningOrc.

Proof. In order to prove that, first let us remember that non-blocking sites always publish
something if all the input values are defined and, by the constant delay hypothesis, it takes
always the same amount of time. Given that, as we are considering only the delay of items,
we can consider all values as signals with an associated delay, only indicating that a variable
is defined at certain moment. In that case, we write x = 〈⊥ : ω〉 if the variable x is undefined,
and x = 〈1 : δ〉 if it is defined at time δ. Now, let us analyse the operator A(x) < x < B
under that assumption:

In the base case, B is an ExtElementaryOrc expression. Given that, we have that [[B]] has
a unique bag and therefore:

[[A(x) < x < B]] =
{

[[A(x = 〈1 : first([[B]])〉)]] if [[B]] 6= bb cc
[[A(x = 〈⊥ : ω〉)]] otherwise

Then, in the case that B is an ExtPruningOrc expression we have that as the abstraction
from values removes the non-determinism of pruning for the base case, by induction in the
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general case there is also no non-determinism added with this operator, with respect the
number of items.

Then we have that, while pruning introduces non-determinism on the values, if E is
a ExtPruningOrc expression with meaning [[E]] = uni=1Mi, all bags M1 . . .Mn are time-
equivalent.

Theorem 5.2.3. The meaning of [[E]] has a unique bag when restricting to expressions E in
ExtMixedOrc.

Proof. To prove this, let us analyse the behaviour of the operator A(x) < x < B in ExtMixe-
dOrc.

In the base case, B is an ExtIfOrc expression. Given that, we have that [[B]] has a unique
bag. Also, the restriction imposed in ExtMixedOrc in order to allow the pruning operator
ensures that either [[B]] = bb cc or [[B]] = bb 〈v : δ1〉 , . . . , 〈v : δn〉 cc, for a value v determined by
B and the context. Therefore, we have:

[[A(x) < x < B]] =
{

[[A(x = 〈v : first([[B]])〉)]] if [[B]] = bb 〈v : δ1〉 , . . . , 〈v : δn〉 cc
[[A(x = 〈⊥ : ω〉)]] otherwise

Then, in the case that B is an ExtMixedOrc expression we have that as there is no non-
determinism of pruning for the base case, by induction in the general case there is also no
non-determinism added with this operator.

Given that we have that [[E]] = M for a unique bag M .

Having meanings with a unique bag or all bags time-equivalents, now we can give a
measure of the delay of outputs of an expression.

Definition 5.7 Given an expression E with [[E]] = uni=1Mi, where M1, . . . ,Mn are time-
equivalent, the delay of E is denoted as ∆(E) = ∆M1 = . . . = ∆Mn .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Related Problems
Having a well defined delays, there are some related computational problems of interest.

For a given expressions E in any of the studied sub-families given in chapter 3:

• first. Determine the minimum delay for a value published during an execution of E.

• last. Determine the maximum delay for a value published during an execution of E.

• avgDelay. Compute the average delay for the outputs published by an execution of E.

Observer that all these problem have a well defined solution as seen before. Now let us
show some complexity bounds for the different problems and sub-families.
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In Chapter 4 we had defined traces and sub-traces of a expression 4.5. For a finite Orc
expression E with n operators |, < x < and ;, a trace t ∈ {0, 1}≤n was defined as an execution
path on the evaluation of E. We noted paths(E) ⊆ {0, 1}≤n the set of valid execution paths,
and given t ∈ paths(E) we noted by val(t) the return value due to that path. Now, let us see
the relation between delay and traces.

Definition 5.8 Given a trace t ∈ paths(E), we note as time(t) the time needed to publish
following the path t. Observe that if val(t) = bbcc then time(t) = ω. Note that time(t) can be
computed in poly-time with respect to the size of E.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As in some cases we have to differentiate between the maximum delays and no publish,
we introduce the following function between delays.

Definition 5.9 Given two delays δ1 and δ2 we define the function “max time”, max∗ as
follows:

max∗(δ1, δ2) =



δ1 if δ2 ≤ δ1 6= ω
δ2 if δ1 ≤ δ2 6= ω
δ2 if δ2 ≤ δ1 = ω
δ1 if δ1 ≤ δ2 = ω
ω if δ1 = δ2 = ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3.1 The complexity of problems first
Let us see how to compute first for ElementaryOrc and ExtElementaryOrc. The following

algorithm to compute first(E) comes directly from the evaluation model delay based on bags
and the fact that in ElementaryOrc and ExtElementaryOrc there is no distinction in values in
order determine the delay of sites.

Lemma 5.3.1. Let E be an ExtElementaryOrc expression. For a given context L, the first of
E can be computed recursively as follows:
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first(0) = ω

first(1(x)) =
{

0 if (x 6= ⊥)
ω otherwise

first(S(X)) =
{
δS if (xi 6= ⊥; ∀xi ∈ X)
ω otherwise

first(A|B) = min(first(A), first(B))
first(A� B) = first(A) + first(B)

first(A > x > B) = first(A) + first(B(x 6= ⊥))

first(A;tB) =
{

first(A) if (first(A) ≤ t)
t+ first(B) otherwise

first(A <!B) =
{

first(A) + first(B) if (out(B) > 0)
ω otherwise

Corollary 5.3.2. This recursive algorithm can be extended to ExtIfOrc simply taking values
into account, in a similar way as was done for compute out(Ev).

Example 5.2 Let us consider the ElementaryOrc expression SendNews :

SendPrint = (CNN | BBC ) > m > (EmailDad(m) | Print(m))

The expression can be rewritten as:

A = (CNN | BBC )
B(m) = (EmailDad(m) | Print(m))

SendPrint = A > m > B(m)

Let us say that sites CNN ,BBC , EmailDad and Print have delay 500, 600, 1000 and 1500
respectively.
We compute first(SendNews) as follows:

first(SendPrint) = first(A) + first(B(m 6= ⊥))
first(A) = min(first(CNN ), first(BBC ))min(500, 600) = 500

first(B(m 6= ⊥)) = min(first(EmailDad(m 6= ⊥)), first(Print(m 6= ⊥)))
= min(1000, 1500) = 1000

first(SendPrint) = 500 + 1000 = 1500

Now, let us give some complexity bounds for the problem. First, let us see that at least
this problem can be solved in poly-space for all the sub-families studied.

Theorem 5.3.3. The problem first belongs to PSPACE when restricted to MixedOrc.

Proof. Given an expression E, we can solve first(E) as :

first(E) = min
t∈paths(E)

time(t)
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Theorem 5.3.4. The problem first belongs to PSPACE when restricted to ExtMixedOrc.

Proof. As the operator A <!B is an special alias for the composition (1(x) � A) < x < B,
we can do the same process for compute first as for PruningOrc and MixedOrc families.

In the other hand, the operator A;k B adds the problem that while we can compute time(t)
in poly-time for any trace t, we cannot compute if val(t) will be a published value. In case
that t describes an execution path through A, we need only need to know if the part of t
relative to A takes time ≤ k, as we consider are seeking for the first value published. In the
other hand, in case that t describes an execution path through B, we do not need to check
anything, as it will take always more time that the fastest execution through A if there is one
within time k.

After having that the problem belongs to PSPACE for all the sub-families, let us search for
lower bounds on the complexity. For ElementaryOrc and ExtElementaryOrc, as for the output
related problems, we have that first can be solved in poly-time.

Theorem 5.3.5. The problem first belongs to P when restricted to ExtElementaryOrc.

Proof. Directly from the algorithm to compute first for these sub-families. With a quick look,
we see that each operator ask for the first of its sub-expressions at most one time. As that
is true for all operators and for sites we can solve it in poly-time in the number of variables,
then we can solve first in poly-time.

Given the relation between publish and the delay on publishing, when adding values we
encounter the same NP hardness as for Produces.

Theorem 5.3.6. The problem first is NP-Hard when restricted to IfOrc.

Proof. Observe that given a finite Orc expression E, the problem E ∈ Produces can be solved
as first(E) 6= ω. That means that if an evaluation publish something, then that is done in
less than infinite time, otherwise we can wait forever for the first published value.

Given that reduction, we have that as Produces is NP-Complete for IfOrc, the problem first
is at least NP-Hard.

For PruningOrc and ExtPruningOrc the complexity lower-bound of first remains as an open
question.

5.3.2 The complexity of problems last
Let us see how to compute last for ElementaryOrc and ExtElementaryOrc. The following

algorithm to compute last comes directly from the evaluation model delay based on bags and
the fact that in ElementaryOrc and ExtElementaryOrc there is no distinction in values in order
determine the delay of sites.

Lemma 5.3.7. Let E be an ExtElementaryOrc expression. For a given context L, last of E
can be computed recursively as follows:
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last(0) = ω

last(1(x)) =
{

0 if (x 6= ⊥)
ω otherwise

last(S(X)) =
{
δS if (xi 6= ⊥; ∀xi ∈ X)
ω otherwise

last(A|B) = max∗(last(A), last(B))
last(A� B) = last(A) + last(B)

last(A > x > B) = last(A) + last(B(x 6= ⊥))

last(A;tB) =
{

last(A) if (first(A) ≤ t)
t+ last(B) otherwise

last(A <!B) =
{

last(A) + first(B) if (out(B) > 0)
ω otherwise

Corollary 5.3.8. This recursive algorithm can be extended to ExtIfOrc simply taking values
into account, in a similar way as was done for compute out(Ev).

Example 5.3 Let us consider the ElementaryOrc expression SendNews :

SendPrint = (CNN | BBC ) > m > (EmailDad(m) | Print(m))

The expression can be rewritten as:

A = (CNN | BBC )
B(m) = (EmailDad(m) | Print)(m)

SendPrint = A > m > B(m)

Let us say that sites CNN ,BBC , EmailDad and Print have delay 500, 600, 1000 and 1500
respectively.
We compute last(SendNews) as follows:

last(SendPrint) = last(A) + last(B(m 6= ⊥))
last(A) = max∗(last(CNN ), last(BBC )) = max∗(500, 600) = 600

last(B(m 6= ⊥)) = max∗(last(EmailDad(m 6= ⊥)), last(Print(m 6= ⊥)))
= max∗(1000, 1500) = 1500

last(SendPrint) = 600 + 1500 = 2100

Now, let us give some complexity bounds for the problem. First, let us see that at least
this problem can be solved in poly-space for all the sub-families studied.

Theorem 5.3.9. The problem last belongs to PSPACE when restricted to IfOrc.

Proof. Given an expression E, we can solve last as :

last(E) = max∗t∈paths(E)time(t)
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Theorem 5.3.10. The problem last belongs to PSPACE when restricted to MixedOrc.

Proof. The pruning operator adds the complexity that it only takes the fastest value pub-
lished. When proving out in ].NP for MixedOrc we found a similar problem. In that case we
solve it using the sub-traces introduced in 4.5.

Given an expression E, we can solve last as :

last(E) = max∗s∈subpaths(E)mint∈paths(E); s\ttime(t)

Theorem 5.3.11. The problem last belongs to PSPACE when restricted to ExtMixedOrc.

Proof. As the operator A <!B is an special alias for the composition (1(x) � A) < x < B,
we can do the same process for compute first as for PruningOrc and MixedOrc families.

In the other hand, the operator A;k B adds the problem that while we can compute time(t)
in poly-time for any trace t, we cannot compute if val(t) will be a published value. In case
that t describes an execution path through A, we need to ensure that first(A) ≤ k, as we
consider are seeking for the last value published and it can go through A if there is at least
one value published through A in needing lees than time t. In the other hand, in case that t
describes an execution path through B, we need to ensure that first(A) > k, as in the other
hand does not matter if time(t) is the maximum time as val(t) will not be published.

After having that the problem belongs to PSPACE for all the sub-families, let us search for
lower bounds on the complexity. For ElementaryOrc and ExtElementaryOrc, as for the output
related problems, we have that last can be solved in poly-time.

Theorem 5.3.12. The problem last belongs to P when restricted to ExtElementaryOrc.

Proof. Directly from the algorithm to compute last for these sub-families. With a quick look,
we see that each operator ask for the last of its sub-expressions at most one time. As that
is true for all operators and for sites we can solve it in poly-time in the number of variables,
then we can solve last in poly-time.

As for first, when adding values we encounter the same NP hardness as for Produces.

Theorem 5.3.13. The problem last is NP-Hard when restricted to IfOrc.

Proof. Observe that given a finite Orc expression E, the problem E ∈ Produces can be solved
as last(E) 6= ω. That means that if an evaluation publish something, then that is done in less
than infinite time, otherwise we can wait forever for that to publish any value.

Given that reduction, we have that as Produces is NP-Complete for IfOrc, the problem last
is at least NP-Hard.

For PruningOrc and ExtPruningOrc the complexity lower-bound of last remains as an open
question.
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5.3.3 The complexity of problems avgDelay
Let us see how to compute avgDelay for ElementaryOrc and ExtElementaryOrc. The fol-

lowing algorithm to compute avgDelay comes directly from from modify the algorithms for
first and last. Taking into account that for parallel composition each sub-expression return
a different number of outputs, we simply need to weigh the contribution of each part, in
this case if out(A) = out(B) = 0, then avgDelay(A|B) = ω. For sequential compositions, it
holds that the average time is the sum of the average of each sub-expression, as all published
value bye the left side trigger the publication of the same number of values for the right side.
Finally, for ; and <! operators, as we have always at most one average and one fixed time,
then the formulas comes direct from first and last.

Lemma 5.3.14. Let E be an ElementaryOrc or ExtElementaryOrc expression. For a given
context L, avgDelay of E can be computed recursively as follows:

avgDelay(0) = ω

avgDelay(1(x)) =
{

0 if (x 6= ⊥)
ω otherwise

avgDelay(S(X)) =
{
δS if (xi 6= ⊥;∀xi ∈ X)
ω otherwise

avgDelay(A|B) = avgDelay(A) ∗ out(A) + avgDelay(B) ∗ out(B)
out(A) + out(B)

avgDelay(A� B) = avgDelay(A) + avgDelay(B)
avgDelay(A > x > B) = avgDelay(A) + avgDelay(B(x 6= ⊥))

avgDelay(A;tB) =
{

avgDelay(A) if (first(A) ≤ t)
t+ avgDelay(B) otherwise

avgDelay(A <!B) =
{

avgDelay(A) + first(B) if (out(B) > 0)
ω otherwise

Corollary 5.3.15. This recursive algorithm can be extended to ExtIfOrc simply taking values
into account, in a similar way as was done for compute out(Ev).

Example 5.4 Let us consider the ElementaryOrc expression SendNews :

SendPrint = (CNN | BBC ) > m > (EmailDad(m) | Print(m))

The expression can be rewritten as:

A = (CNN | BBC )
B(m) = (EmailDad(m) | Print(m))

SendPrint = A > m > B(m)

Let us say that sites CNN ,BBC , EmailDad and Print have delay 500, 600, 1000 and 1500
respectively.
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We compute last(SendNews) as follows:

avgDelay(SendPrint) = avgDelay(A) + avgDelay(B(m 6= ⊥))
avgDelay(A) = (avgDelay(CNN ) + avgDelay(BBC ))/2 = (500 + 600)/2 = 550

avgDelay(B(m 6= ⊥)) = (avgDelay(EmailDad(m 6= ⊥)) + avgDelay(Print)(m 6= ⊥))/2
= (1000 + 1500)/2 = 1250

avgDelay(SendPrint) = 550 + 1250 = 1800

Now, let us give some complexity bounds for the problem. First, let us see that at least
this problem can be solved in poly-space for all the sub-families studied.

Theorem 5.3.16. The problem avgDelay belongs to PSPACE when restricted to IfOrc.

Proof. Given an expression E. In case that out(E) = 0 ⇒ avgDelay(E) = ω. Otherwise, we
can solve avgDelay(E) as :

avgDelay(E) =
∑
t∈paths(E);time(t) 6=ω time(t)

out(E)

Theorem 5.3.17. The problem avgDelay belongs to PSPACE when restricted to MixedOrc.

Proof. The pruning operator adds the complexity that it only takes the fastest value pub-
lished. When proving last belongs PSPACE for MixedOrc we found the similar problem. Let
us take now a similar approach based on sub-traces.

Given an expression E, we can solve avgDelay as :

avgDelay(E) =
∑
s∈subpaths(E)mint∈paths(E); s\ttime(t)

out(E)

Theorem 5.3.18. The problem avgDelay belongs to PSPACE when restricted to ExtMixedOrc.

Proof. As the operator A <!B is an special alias for the composition (1(x) � A) < x < B,
we can do the same process for compute first as for PruningOrc and MixedOrc families.

In the other hand, the operator A;k B adds the problem that while we can compute time(t)
in poly-time for any trace t, we cannot compute if val(t) will be a published value. In case
that t describes an execution path through A, we need to ensure that first(A) ≤ k, as val(t)
will be published only if there is at least one value published through A in needing lees than
time t. In the other hand, in case that t describes an execution path through B, we need to
ensure that first(A) > k, as in the other hand val(t) will not be published.

After having that the problem belongs to PSPACE for all the sub-families, let us search for
lower bounds on the complexity. For ElementaryOrc and ExtElementaryOrc, as for the output
related problems, we have that avgDelay can be solved in poly-time.

Theorem 5.3.19. The problem avgDelay belongs to P when restricted to ExtElementaryOrc.
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Proof. Directly from the algorithm to compute avgDelay for these sub-families. With a quick
look, we see that each operator ask for the avgDelay of its sub-expressions at most one time.
For the operator | it also ask for out, but as we have seen previously, that can be done in
poly-time for these two sub-families or Orc. Then, as for sites we can solve it in poly-time in
the number of variables, then we can solve avgDelay in poly-time.

When adding values, we encounter new complexity issues, as for example we can use time
to weigh publishing an non-publishing paths with different delays and then use those delays
to compute the number of publishing paths. Given that, we encounter ]P and ].NP hardness
on families that take values into account.

Theorem 5.3.20. The problem avgDelay is ]P-Hard when restricted to IfOrc.

Proof. Let us consider the following reduction form 3-SAT
Given a 3-CNF formula F = C1 ∧ . . . ∧ Cm with n literals x1, . . . , xn, where Ci = yia ∨

yib ∨ yic , {y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode each one of the

cause through calls to site If . Given Ci = yia ∨ yib ∨ yic define

ECi(yia , yib , yic) = If (yia) |
If (¬yia)�

(
If (yib) |
If (¬yib)�

(
If (yic) |
If (¬yic)� 1(0)

))
Taking True = 1(1) and False = 1(0) the orchestration EF associated to F is:

Double = (True | False)
Tz(z1, . . . , zm) = If (¬z1) |

If (z1)�
(

If (¬z2)� Rtimer(1) |
If (z2)�

(
. . .

If (zm)� Rtimer(1) |
If (¬zm) . . .

))
E(x1, . . . , xn) = EC1(x1a , x1b

, x1c) > z1 > . . .� ECm(xma , xmb
, xmc)

> zm > Tz(z1, . . . , xm)
EF = Double > x1 > · · · > Double > xn > E(x1, . . . , xn)

Note that now for (v1, . . . , vn) ∈ {0, 1}n we have that E makes a call to T with (z1, . . . , zm),
where zi = 1 if (v1, . . . , vn) satisfies Ci and zi = 0 otherwise. For its part, given (z1, . . . , zm) ∈
{0, 1}m, Tz(z1, . . . , zm) produces always 1 output, with delay 1 if all z1, . . . , zm are 1, and 0
otherwise.

Given that, for each (v1, . . . , vn) ∈ {0, 1}n we have that F (v1, . . . vn) = avgDelay(E(v1, . . . , vn)).
As (v1, . . . , vn) takes all possible values in {0, 1}n by construction of EF , we have:
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]F =
∑

(v1,...,vn)∈{0,1}n F (v1, . . . , vn) =∑
(v1,...,vn)∈{0,1}n avgDelay(E(v1, . . . , vn))/2n = avgDelay(EF )/2n

Theorem 5.3.21. The problem avgDelay is ].NP-Hard when restricted to MixedOrc.

Proof. In order to proof that it is also ].NP-Hard, let us a similar reduction from counting
with oracle in 3-SAT as the used for out on MixedOrc.

Given a 3-CNF formula F = C1∧ . . .∧Cm with n+m literals x1, . . . , xn, x
′
1, . . . , x

′
m, where

Ci = yia ∨ yib ∨ yic , {y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode each

one of the cause through calls to site If . Given Ci = yia ∨ yib ∨ yic define

ECi(yia , yib , yic) = (If (yia) | If (yib) | If (yic))

Taking True = 1(1) and False = 1(0) the orchestration EF associated to F is:

Double = (True | False)
E(x1, . . . , xn) = EC1(x1a , x1b

, x1c)� . . .� ECm(xma , xmb
, xmc)

E ′ = 1(w) < w <
(
Rtimer(1) |
(Double > x′1 > · · · > Double > x′m >

E(x1, . . . , xn, x
′
1, . . . , x

′
m))

)
EF = Double > x1 > · · · > Double > xn > E ′(x1, . . . , xn)

Note that now for (v1, . . . , vn, v
′
1, . . . , v

′
m) ∈ {0, 1}n+m we have F (v1, . . . vn, v

′
1, . . . , v

′
m) =

out(E(v1, . . . , vn, v
′
1, . . . , v

′
m)). As we have that (v′1, . . . , v′m) takes all possible values in {0, 1}m

inside a pruning expression, we have that for each (v1, . . . , vn) ∈ {0, 1}n:

avgDelay(E(v1, . . . , vn)) = 0⇔
∃(v′1, . . . , v′m) ∈ {0, 1}m s.t. (out(E(v1, . . . , vn, v

′
1, . . . , v

′
m)) = 1) ⇔ ∃(v′1, . . . , v′m) ∈ {0, 1}m

s.t. (F (v1, . . . , vn, v
′
1, . . . , v

′
m) = 1) ⇔

Fixing (x1, . . . , xn) = (v1, . . . , vn), F ∈ 3− SAT

As (v1, . . . , vn) takes all possible values in {0, 1}n by construction of EF , we have that
(1− avgDelay(EF )) ∗ 2n is the result of counting with oracle in 3-SAT.

For PruningOrc and ExtPruningOrc the complexity lower-bound of avgDelay remains as an
open question.
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first last avgDelay
ElementaryOrc P P P

ExtElementaryOrc P P P
PruningOrc

ExtPruningOrc
IfOrc NP-H NP-H ]P-C

ExtIfOrc NP-H NP-H ]P-H
MixedOrc NP-H NP-H ].NP-C

ExtMixedOrc NP-H NP-H ].NP-H

Table 5.1: Resume of problems related to the delay of outputs. All problems belong to
PSPACE.
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Chapter 6

Probabilistic Frameworks

In Chapter 2 we had seen that deterministic sites like the one studied until now are not
very realistic. Even so, we have seen that sometimes sites can be described in terms like “is
on-line at least 99% of the time” or “publish a random bit”. In these cases, we are able to
extract some probabilities about the behaviour of sites, and now we are going to use these
probabilities to predict the behaviour of expressions using those sites. In this chapter we
are going to extend the definition of sites adding the probabilistic behaviour in order to give
an estimation of the internal non-determinism, performance and execution environment of
services.

6.1 Probabilistic Sites
Without taking failures into account, the goal main goal of a service can make it non-

deterministic. Sometimes the goal of the service is generate random data, perform some
random or probabilistic computation or they can simply map real life facts. In this case we
can have both a probability for return and a probability for the published value.

For these sites, sometimes we are able to extract some kind of probability about the
behaviour of site calls either by its own internal behaviour or from logs of previous calls. We
call these sites probabilistic sites.

Definition 6.1 For a disjoint group of behaviours, a behaviour distribution gives the proba-
bility for each behaviour. Taking a notation inspired in [35, page 20], a behaviour distribution
is denoted as a tuple (B1@p1 [] . . . [] Bn@pn), where pi is the probability of having the be-
haviour Bi, for 1 ≤ i ≤ n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given a way to express probabilistic behaviours, now we can give a more complete defini-
tion of probabilistic sites.

Definition 6.2 A probabilistic site is such that, without taking errors and delays into ac-
count, a site call publish different values (or halt) following a behaviour distribution. For a site
call S(X), its behaviour distribution is denoted as PS(X) = (v1@p1(X) [] . . . [] vn@pn(X) [] ⊥@q(X))
where {v1, . . . , vn} = D(S) and pi(X) denotes the probability of publish vi given input X for
1 ≤ i ≤ n, q(X) denotes the probability of halting on input X.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The probabilistic behaviour can come in multiple ways. A site S can have a random
execution independent on the input, in that case PS is a unique distribution for each site call.

Example 6.1 Let us consider two different sites mimicking random choices. A call to Coin
publishes true with probability 1/2 otherwise publish false. A call to BlockingCoin publishes
a signal with probability 1/2 otherwise halts. Then we have PCoin = (true@1/2 [] false@1/2)
and PBlockingCoin = (1@1/2 [] ⊥@1/2).

On the other hand, can be also possible to have a certain behaviour depending on the
input values.

Example 6.2 Let us define a site DiceX(x) as a generator that, for an input x ∈ [1, 6]
generates a number between 1 and 6, then if the number is bigger that x halts, otherwise
publish the value. For this site then we have:

PDiceX (1) = (1@1/6 [] ⊥@5/6)
PDiceX (2) = (1@1/6 [] 2@1/6 [] ⊥@4/6)
PDiceX (3) = (1@1/6 [] 2@1/6 [] 3@1/6 [] ⊥@3/6)
PDiceX (4) = (1@1/6 [] 2@1/6 [] 3@1/6 [] 4@1/6 [] ⊥@2/6)
PDiceX (5) = (1@1/6 [] 2@1/6 [] 3@1/6 [] 4@1/6 [] 5@1/6 [] ⊥@1/6)
PDiceX (6) = (1@1/6 [] 2@1/6 [] 3@1/6 [] 4@1/6 [] 5@1/6 [] 6@1/6)

Definition 6.3 We denote probabilistic sites as input independent in case where the be-
haviour distribution does not depend on the input values and input dependent in case where
the behaviour distribution depends in some way on the values of the call.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Observe that deterministic sites are a special case of probabilistic sites where the behaviour
distribution for a call only have one possible outcome.

Example 6.3 Let us consider some deterministic sites defined in the Table 3.2. True,
False, And(b1 , . . . , bn) and Or(b1 , . . . , bn). We consider these sites as a probabilistic sites
with the following behaviours:

PTrue = (true@1)
PFalse = (false@1)

PAnd(b1, . . . , bn) =
{

(true@1) if (b1 ∧ . . . ∧ bn) = true
(false@1) otherwise

POr(b1, . . . , bn) =
{

(true@1) if (b1 ∨ . . . ∨ bn) = true
(false@1) otherwise
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6.2 Site Call Profiles
We have seen that problems like network congestion or server failures can make site calls

take different execution time or even fail. Also, we have that probabilistic sites does have
different behaviour, even if failures are not considered, and that behaviour can or cannot be
affected by the input values.

Now, we are going to consider only behaviour related to independent site calls. Given a
site S, we assume that the possible output values belong to D(S) and the possible delays to
∆(S), being D(S) and ∆(S) finite and well defined domains.

We can describe a site taking into account both the probabilities of delay/failure and
probabilistic behaviours of sites with a unique profile. In that case, the probability of halting
in a successful execution is added to the probability of having delay ω or fail.

In general, for a probabilistic site S(X) we have that things like the execution time or the
probability of failure may depend in the input values and also in the published value.

Example 6.4 Let Video(cat) be a site that given a video category, cat ∈ {music, funny, trailer},
returns a random video of that category. Let us assume that we describe the videos as short,
normal and long given the duration.

As each category has different videos, for each there are different probabilities for each
duration. Also, is clear that a short video will take less time to be transmitted that a long
video.

Definition 6.4 Given a site S(X), a delay&value profile DVS(X) describes define the
distribution of 〈value : delay〉 for the output for a successful call to S with input X and the
probability of halting.

DVS(X) = (〈v1 : δ1〉@p1,1(X) [] . . . [] 〈vn : δm〉@pn,m(X) [] 〈⊥ : ω〉@q(X))

For {v1, . . . , vn} = D(S) and {δ1, . . . , δm} = ∆(S), pi,j(X) is the probability of publish the
value vi with delay δj in a site call with input X, for 1 ≤ i ≤ n,1 ≤ j ≤ m.

A halting&value profile HVS describes the distribution of values for the output for a
successful call to S with input X and the probability of halting.

HVS(X) = (v1@p1(X) [] . . . [] vn@pn(X))

For {v1, . . . , vn} = D(S), pi(X) is the probability of publish the value vi is the probability of
publish the value vi in a site call with input X, for 1 ≤ i ≤ n.

The abstraction from time on halting &value profiles gives the relation pi(X) =
∑m
j=1 pi,j

for 1 ≤ i ≤ n. In both cases, q(X) is the probability of halting with input X.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We assume that without matter the encoding of a site S, we can compute DVS(X) and
HVS(X) in polynomial time on the size of X.

With an abuse of language, for a site S we write directly:

S(X) = (〈v1 : δ1〉@p1,1(X) [] . . . [] 〈vn : δm〉@pn,m(X) [] 〈⊥ : ω〉@q(X))
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or abstracting from time:

S(X) = (v1@p1(X) [] . . . [] vn@pn(X))

There are cases where the behaviour of sites does not depend on the input values neither
on the published value.

Example 6.5 Let Noise be a site that returns a random 1Kb string when called (like the
offered by Random.org [21, 22]), for example for cryptographic purposes. As Noise does not
have any parameter, it is clear that the behaviour does not depend on the input. Also, we
may assume that the value published will not influence the delay for publish it.

Then, we have that the site Noise has a distribution of delay and probability of halting
independent on the input and the published value.

Now, in a similar way as we had non-blocking sites in case of deterministic sites without
failures 3.2, let us describe these special sites independent on values.

Definition 6.5 A site S(X) is non-dependent on values if the distribution of delays for
site call to S does not depend on X neither on the published value.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If S(X) = (〈v1 : δ1〉@p1,1(X) [] . . . [] 〈vn : δm〉@pn,m(X) [] 〈⊥ : ω〉@q(X)), we have that
for any pair X,X ′, pi,j(X) = pi,j(X ′) for 1 ≤ i ≤ n, 1 ≤ j ≤ m and also pi,j(X) = pi′,j(X)
for 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ m.

Given that, we can define the behaviour of delay/halting and published values with simple
profiles:iour with the use of different profiles.

Definition 6.6 Given a non-dependent on values site S(X), a delay profile DS describes
time needed for a site call to S(X) to publish.

DS = (δ1@p1 [] . . . [] δm@pm [] ω@q)

For {δ1, . . . , δm} = ∆(S), pj is the probability of publish with delay δj in a site call, for
1 ≤ j ≤ m.

A halting profile HS gives the probability that a site call to S succeeds. HS = (1− q)
In both cases, q is the probability of halting.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 6.7 Given a non-dependent on values site S(X), a value profile VS(X) describes
distribution of output values call to S(X), given that S(X) publish a value.

VS(X) = (v1@pv1(X) [] . . . [] vn@pvn(X))

For {v1, . . . , vn} = D(S), pvi (X) is the probability of publish the value vi in a site call to S(X)
given that the site call succeeds, for 1 ≤ i ≤ n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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With an abuse of language, for a site S we write directly:

S(X) = 〈(v1@pv1(X) [] . . . [] vn@pvn(X)) : (δ1@p1 [] . . . [] δm@pm [] ω@q)〉

or abstracting from time:

S(X) = (v1@p1(X) [] . . . [] vn@pn(X) [] ⊥@q)

In cases where the output value is not important, we can write it as:

S(X) = 〈1 : (δ1@p1 [] . . . [] δm@pm [] ω@q)〉

or abstracting from time:
S(X) = (1@(1− q) [] ⊥@q)

6.3 Environment Profiles
We have seen that site calls can have a probabilistic behaviour where we can consider all

site calls as independent. But, as we have seen also in Chapter 2, site calls are not completely
independent as problems like an attacked server affect to all site calls. In a similar way, the
behaviour of a different site calls can be the same during all the execution, for example if site
calls depend on some stored data.

Given that, in order to get better QoS measures, we may want to analyse each case
separately.

Definition 6.8 We define as environment all the set of data, hardware, networks... that
may affect the execution of an orchestration.

An environment can have different states, describing status of the environment for which
site calls follow an specific behaviour.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 6.6 Let us consider a possible interpretation of the site BBC (Table 3.2). Let
the service BBCspain be a news service that returns the number of news published in the BBC
page [20] in the last hour related to the topic “Spain”.

If we take {0, 13, 3+} = D(BBCspain), to describe no new news, between 1 and 3 and more
than 3, depending on the number of stored news the behaviour of BBCspain may be:

BBCspain =


(0@(1− q) [] ⊥@q) no new news
(13@(1− q) [] ⊥@q) between 1 and 3 news
(3+@(1− q) [] ⊥@q) more than 3 news

As in the last example. sometimes there is a part of the environment that only affect a
single sites.
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Definition 6.9 Given a site S in an orchestration E, we define the site environment of S
as the environment that may affect the behaviour of S and only site S.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We assume that, for a site environment, we can describe the behaviour of independent
site calls with the site call profiles seen previously (delay&value, halting&value, delay, halting
and value profiles).

Definition 6.10 Given a site S, the state profile ES = (Q1@p1 [] . . . [] Qn@pn) define the
probability distribution for the states of environment related to the site S. The environment
is in the state Qi with probability pi, for 1 ≤ i ≤ n.

For each state Qi, there are site call profile associated for site S.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 6.7 Let us consider the site BBCspain (Example 6.6). This site has 3 possible
states, 0 news, 1 to 3 news or more that 3 news, let us call them QA, QB and QC . Given
that site calls may take different delays or even fail, the following could be a possible stable
profile for BBCspain if we are going to take into account the call time.

EBBCspain = (QA@0.2 [] QB@0.4 [] QC@0.4)
QA = (〈0 : 500〉@0.5 [] 〈0 : 700〉@0.499 [] 〈⊥ : ω〉@0.001)
QB = (〈13 : 500〉@0.5 [] 〈13 : 800〉@0.499 [] 〈⊥ : ω〉@0.001)
QC = (

〈
3+ : 500

〉
@0.5 []

〈
3+ : 1000

〉
@0.499 [] 〈⊥ : ω〉@0.001)

With the status profile we are considered the case where each site has its own environment
and states, but sometimes we can have sites with common environments. For example, two
sites in the same server, both sites go off-line if the server is disconnected. Given that, we are
going to consider also the case where sites can have common environments.

Definition 6.11 Given site S1, . . . , Sn in an orchestration E, we define the common en-
vironment of S1, . . . , Sn as the environment that may affect the behaviour of these sites and
only these site.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We assume that, for a common environment, we can describe the behaviour of independent
site calls with the site call profiles seen previously (delay&value, halting&value, delay, halting
and value profiles).

Definition 6.12 Given site S1, . . . , Sn, the type profile ES1,...,Sn = (C1@p1 [] . . . [] Cn@pn)
define the probability distribution for the states of the common environment related to the
sites S1, . . . , Sn. The environment is in the state Ci with probability pi, for 1 ≤ i ≤ n.

For each state Ci, there is an state profile Qi,j associated for each site Sj .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68



A site S only can only follow one type profile.

Example 6.8 Let us consider the site Email(a,m) and EmailDad(m) (Table 3.2). We
can assume that both sites use the same mail server, and therefore if that server is off-line
then both sites fail, otherwise both sites succeeds. Then, the following is a possible correlated
profile for those sites:

EEmail,EmailDad = (COK@0.999 [] CFAIL@0.001)
COK = QOKEmail , Q

OK
EmailDad

CFAIL = QFAILEmail , Q
FAIL
EmailDad

Where QOKEmail and QOKEmailDad are the stable profiles for Email(a,m) and EmailDad(m) when
the mail server is on-line and QFAILEmail and QFAILEmailDad are the stable profiles when it is off-line.

Example 6.9 Given 4 sites Site1, Site2, Site3 and Site4, with a common environment,
the following can be a possible description of the environments and the behaviour of Site1:

Type Profile for sites Site1, Site2, Site3 and Site4:

Common1@p1 Common2@p2 Common3@p3
Site1 Stable11 Stable12 Stable13
Site2 Stable21 Stable22 Stable23
Site3 Stable31 Stable32 Stable33
Site4 Stable41 Stable42 Stable43

State profiles of site S1 for the states of the common environment Common1:

Stable11 Behaviour111@p111 [] Behaviour112@p112 [] Behaviour113@p113
Stable12 Behaviour121@p121 [] Behaviour122@p122 [] Behaviour123@p123
Stable13 Behaviour131@p131 [] Behaviour132@p132

Delay&value and halting&value profiles of site Site1 for the state Behaviour111 of the site
environment Stable11:

Behaviour111
Delay&value 〈v1 : δ1〉@pr11 [] 〈v1 : δ2〉@pr12 [] 〈v2 : δ1〉@pr21 [] 〈⊥ : ω〉@q
Halting&value v1@(pr11 + pr12) [] v2@pr21 [] ⊥@q

6.4 Models

Definition 6.13 Given an orchestration E having calls to sites S1, . . . , Sn, a probabilistic
environment P describe probabilistic profiles of the environments and sites involved in E.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Given the different possible profiles, we introduce four different models:

• Deterministic Model. All sites have deterministic behaviours.
The environment only has one state and all site calls have the same behaviour in all the
executions.

• Oblivious Model. During an execution, all site calls are independent one from an-
other.
The environment only has one state. All sites follow site call profiles (delay&value,
halting&value,... profiles).

• Stable Model. During an execution, all site calls are independent from calls to other
sites, but can maintain certain degree of dependency with other site calls to the same
site given the state site environment. A state for the site environment of each site is
selected before the execution.
Sites can have a site environment with more than one state. There are no common
environment between sites.

• Typed Model. During an execution, all site calls are independent from calls to other
sites out of a common environment, but can maintain certain degree of dependency with
other site calls given the states of the common and site environments.
Sites can have a common and site environments with more than one state each. A state
for the common environment and site environment of each site is selected before the
execution.

Observe that the Deterministic Model is the model seen until now. A deterministic be-
haviour can be seen as a special case of site call profile where for any input values there is
one possible behaviour with probability 1 and the others have probability 0.

Given that, the relation of these models is the following:

Deterministic→ Oblivious→ Stable→ Typed

Example 6.10 Let us consider the following expression:

WinWinWin = BCoin > a > If (a)� BCoinBCoin
> b > If (b)� BCoin > c > If (c)

This expression publish if the 3 calls to BCoin publish true. Let BCoin be a site that
selects with probability 1/2 between a unbiased coin and a biased coin with probability 4/5
of publish true. Let us analyse this expression for both the oblivious and stable model.

In the Oblivious model BCoin choose between the two coins in each call, then we have
probability 1/2(1/2 + 4/5) = 13/20 of publish true in each call.

P = (PBCoin)
PBCoin = (true@13/20 [] false@7/20)
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As we need 3 consecutive true outputs, WinWinWin will publish with probability 2197/8000 ≈
0.27

For the Stable model, BCoin first choose between the two coins, then do all calls with the
chosen coin.

P = (PBCoin)
PBCoin = (Qunbiased@1/2 [] Qbiased@1/2)

Qunbiased = (true@1/2 [] false@1/2)
Qbiased = (true@4/5 [] false@1/5)

If the unbiased coin is selected WinWinWin will publish with probability 1/8 and if it
is the biased one, then it will publish with probability 64/125. As each case has the same
probability, WinWinWin will publish with probability 1/2(1/8 + 64/125) = 637/2000 ≈ 0.32.

The relation between the different models give useful results:

Lemma 6.4.1. For any problem P and a sub-family of Orc, an upper-bound on the complexity
of P given a probabilistic environment P in Typed Model implies at most the same upper bound
given a probabilistic environment P in Stable Model. That is also true for Stable and Oblivious
models and Oblivious and Deterministic models.

Lemma 6.4.2. For any problem P and a sub-family of Orc, a lower-bound on the complexity
of P given a probabilistic environment P in Deterministic Model implies at least the same
lower bound given a probabilistic environment P inOblivious Model. That is also true for
Oblivious and Stable models and Stable and Typed models.

In the Stable and Typed models, the selection of the states of each site is done before
the execution. As we define these profiles to be encoded in a way that each state is defined
independently from another, then we can describe the selection of a state with a boolean
string of length inferior to encoding of the profile.

Definition 6.14 Given probabilistic environment P for the Stable or Typed models, we
define a global state as a selection of states for each environment. The set of global states,
G(P), is the set of all global states.

Given Q ∈ G(P), |Q| ≤ |P| and we can compute the probability of selecting that global
state Pr(Q) in poly-time. Also, we denote as (E|Q) the execution of an expression E following
the global state Q.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In chapter 3 we had defined 8 different non-recursive sub-families of Orc based on non-
blocking/potentially blocking sites and the use of operator < x < or ; and <!. Now, given
a probabilistic environment, we redefine these sub-families replacing non-blocking sites for
non-dependent on values and potentially blocking sites for general probabilistic sites with the
posibility of failures.
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Chapter 7

Number of outputs in probabilistic
frameworks

In Chapter 4 we have seen some problems related to the number of outputs for the
Deterministic Model. In that model, and the studied sub-families of Orc, the number of
outputs when evaluate an expression is a well defined value, even if there are non-deterministic
choices involved. Now, in the Oblivious, Stable and Typed models that is not true, and
therefore we cannot study the same problems but a related ones.

Given a expression E and a probabilistic environment P:

• PrProduction Compute the probability of publish at least one value during an execution
of E (Pr(out(E) > 0)).

• ExpOut. Compute the expected number of outputs of an execution of E (E(out(E))).

• PrOut. Given k ≥ 0, compute the probability of publish at least k values during an
execution of E (Pr(out(E) ≥ k)).

Table 7.1 at the end of the chapter resumes the results found for the different families and
models.

7.1 The complexity of problems PrProduction
The problem PrProduction returns,for a given an Orc expression, the probability of pub-

lishing at least one value during an execution. Let us analyse it under the Oblivious, Stable
and Typed models.

7.1.1 Oblivious model

In order to compute the probability of return, first we need to introduce additional tools.

Definition 7.1 Given a sub-orchestration A in an orchestration E with a probabilistic
environment P in Oblivious Model. the post probability of A is the probability that for each
value published by A, this value triggers the publication of at least one value in E. Finally
Pr(A, post) denotes the probability to get at least one output on a given post.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taking post = 1 we have that Pr(E, post) = Pr(out(E) > 0). From the definitions we get
the following result.

Let us see how to compute PrProduction for ElementaryOrc, ExtElementaryOrc, PruningOrc
and ExtPruningOrc. The following algorithm to compute Pr(out(E) > 0) comes directly from
the evaluation model based on bags and the fact that in these families values does not matter
to the number of outputs.

Lemma 7.1.1. Let E be an ExtPruningOrc expression. For a given context L, Pr(E, 1) can
be computed recursively as follows.

Pr(0, post) = 0

Pr(1(x), post) =
{

post if (x ∈ L)
0 otherwise

Pr(S(X), post) =
{
FS(1) ∗ post if (∀xi ∈ X;xi ∈ L)
0 otherwise

Pr(A | B, post) = 1− (1− Pr(A, post)) ∗ (1− Pr(B, post))
Pr(A� B, post) = Pr(A,Pr(B, post))

Pr(A > x > B, post) = Pr(A,Pr(B(x 6= ⊥), post))
Pr(A < x < B, post) = Pr(A(x 6= ⊥, post) ∗ Pr(B, 1)

+ Pr(A(x = ⊥), post) ∗ (1− Pr(B, 1))

Pr(A;B, post) = Pr(A, post) + Pr(B, post) ∗ (1− Pr(A, post))
Pr(A <!B, post) = Pr(A, post) ∗ Pr(B, 1)

For ElementaryOrc and ExtElementaryOrc, as for the output related problems, we have that
PrProduction(E) can be solved in poly-time.

Theorem 7.1.2. In the Oblivious model, the problem PrProduction belongs to P when re-
stricted to ExtElementaryOrc.

Proof. Directly from the algorithm to compute Pr(E, post) for these sub-families. With a
quick look, we see that each operator ask for the Pr(E, post) of its sub-expressions at most
one time. As that is true for all operators and for sites we can solve it in poly-time in the
number of variables, then we can solve Pr(out > 0) in poly-time.

For PruningOrc or ExtPruningOrc the algorithm does not give the same polynomial bound
because the pruning operator involves check two different possibilities. Then, let us see what
happen in these cases.

Theorem 7.1.3. In the Oblivious model, the problem PrProduction belongs to PSPACE when
restricted to ExtPruningOrc.

Proof. Directly from the algorithm to compute Pr(E, post) for these sub-families. With a
quick look, we see that this algorithm is a common recursive algorithm with polynomial
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depth and a fixed amount of stored data for each step. Given that, we can solve Pr(out > 0)
in poly-space.

Theorem 7.1.4. In the Oblivious model, the problem PrProduction is ]P-Hard when restricted
to PruningOrc.

Proof. Let us consider the following reduction from the counting MONOTONE 2-SAT. Let F
be a MONOTONE 2-CNF formula as follows: F = C1 ∧ · · · ∧ Cm with n variables x1, . . . , xn
where Ci = yia ∨ yib , {yia , yib} ⊆ {x1, . . . , xn}, for 1 ≤ i ≤ m.

Given the site BlockingCoin with a halting profile

HBlockingCoin = (success@1/2 [] failure@1/2)

Let us define the orchestration EF associated to F as follows:

for 1 ≤ i ≤ m, ECi
(yia

, yib
) =

(
1(yia

)|1(yib
)
)

E(x1, . . . , xn) = 1(s) < s < (EC1(y1a
, y1b

)� · · · � ECm
(yma

, ymb
))

EF = (· · · (E(x1, . . . , xn) < x1 < BlockingCoin) · · · ) < xn < BlockingCoin

During a evaluation of EF , all variable x1, . . . , xn will be defined or not each with prob-
ability 1/2 independently one of another. Then, we can describe the variables as a string
s = s1, . . . , sn, where si = 1 if xi 6= ⊥ and si = 0 if xi = ⊥, for 1 ≤ i ≤ n. If we denote the
execution of EF following s as EF |s, by construction of EF we have that F (s) = out(EF |s)
Then, as each evaluation has probability 1/2n :

Pr(out(EF ) > 0) =
∑
s∈{0,1}n out(EF |s)/2n =

∑
s∈{0,1}n F (s)/2n = #F/2n

Then, 2n Pr(out(EF ) > 0) is the number of satisfying assignments for F .

Now, let us analyse the case of IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc. Without loss
of generality, let us focus on Boolean expressions. With a simple modification of Pr(A, post)
used for ExtPruningOrc, now Pr(A, post0, post1) denotes the probability to get at least one
output on a given post0 when publishing 0 and post1 when publishing 1.

Taking post0 = post1 = 1 we have that Pr(E, post0, post1) = Pr(out(E) > 0). From the
definitions we get the following result.

Let us see how to compute PrProduction for IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc.
The following algorithm to compute Pr(out(E) > 0) is a modification of the previous algo-
rithm taking into account published values into a Boolean domain. Also, it is easy to see that
we can extend it for any finite domain of values.

Lemma 7.1.5. Let E be an ExtMixedOrc expression. For a given context L, Pr(E, 1, 1) can
be computed recursively as follows.
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Pr(0, post0, post1) = 0

Pr(1(x), post0, post1) =
{

postx if (x ∈ L)
0 otherwise

Pr(S(X), post0, post1) =


FS(X, 1)∗

(VS(X, 0)post0
+VS(X, 1)post1) if (∀xi ∈ X;xi ∈ L)

0 otherwise

Pr(A | B, post0, post1) = 1− (1− Pr(A, post0, post1))
∗(1− Pr(B, post0, post1))

Pr(A� B, post0, post1) = Pr(A,Pr(B, post0, post1),
Pr(B, post0, post1))

Pr(A > x > B, post0, post1) = Pr(A,Pr(B(x = 0), post0, post1),
Pr(B(x = 1), post0, post1))

Pr(A < x < B, post0, post1) = Pr(A(x = FB(L), post0, post1)
∗Pr(B, 1, 1)

+ Pr(A(x 6= FB(L)), post0, post1)
∗(1− Pr(B, 1, 1))

Pr(A;B) > 0) = Pr(A, post0, post1)
+ Pr(B, post0, post1)

∗(1− Pr(A, post0, post1))
Pr(A <!B, post0, post1) = Pr(A, post0, post1)

∗Pr(B, 1, 1)

Now, let us give some complexity bounds for PrProduction on these families.

Theorem 7.1.6. In the Oblivious model, the problem PrProduction belongs to PSPACE when
restricted to ExtMixedOrc.

Proof. Directly from the formula of how to compute Pr(E, post0, post1) for these sub-families.
With a quick look, we see that this algorithm is a common recursive algorithm with polynomial
depth and a fixed amount of stored data for each step. In case of bigger value domain, would
need to repeat that for more values. Given that, we can solve Pr(out > 0) in poly-space.

Theorem 7.1.7. In the Oblivious model, the problem PrProduction is ]P-Hard when restricted
to IfOrc.

Proof. Let us consider the following reduction from the counting 3-SAT.
Given a 3-CNF formula F = C1 ∧ . . . ∧ Cm with n literals x1, . . . , xn, where Ci = yia ∨

yib ∨ yic , {y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode each one of the

cause through calls to site If . Given Ci = yia ∨ yib ∨ yic define

ECi(yia , yib , yic) = (If (yia) | (If (¬yia)� (If (yib) | (If (¬yib)� If (yic)))))

76



Taking Coin as a site following a value profile VCoin = (true@1/2 [] false@1/2) the or-
chestration EF associated to the formula F is:

E(x1, . . . , xn) = EC1(x1a , x1b
, x1c)� . . .� ECm(xma , xmb

, xmc)
EF = Coin > x1 > · · · > Coin > xn > E(x1, . . . , xn)

Note that now for (x1, . . . , xn) ∈ {0, 1}n we have F (x1, . . . xn) = 1⇔ out(E(x1, . . . , xn)) =
1 . As, by construction of EF , (x1, . . . , xn) takes any value in {0, 1}n with the same probability
(1/2n), we have:

Pr(out(EF ) > 0)
∑

(x1,...,xn)∈{0,1}n out(E(x1, . . . , xn))/2n = =∑
(x1,...,xn)∈{0,1}n F (x1, . . . , xn)/2n = ]F/2n

Given that, we have that 2n Pr(out(EF ) > 0) is the number of satisfying assignments for
F .

7.1.2 Stable and Typed models

For the Oblivious model we have that PrProduction can be computed in poly-space for all
the sub-families studied, now let us see what happens in case of expressions in the Stable and
Typed models.
Theorem 7.1.8. In the Typed model, the problem PrProduction belongs to PSPACE when
restricted to ExtMixedOrc.

Proof. We can compute Pr(out(E) > 0) in the following way:

Pr(out(E) > 0) =
∑

Q∈G(P)
Pr(out(E) > 0|Q) ∗ Pr(Q)

E|Q is an expression following a Oblivious probabilistic environment, then we can com-
pute Pr(out(E|Q) > 0) in poly-space. Given that, we can simply compute Pr(out(E) > 0)
computing Pr(out(E|Q) > 0) recursively for each Q ∈ G(P).

Theorem 7.1.9. In the Stable model, the problem PrProduction is ]P-Hard when restricted
to ElementaryOrc.

Proof. Let us consider the following reduction from counting MONOTONE 2-SAT.
Given a MONOTONE 2-CNF formula F = C1∧ · · ·∧Cm with n variables x1, . . . , xn where

Ci = yia ∨ yib , {yia , yib} ⊆ {x1, . . . , xn} for 1 ≤ i ≤ m.
For 1 ≤ i ≤ n, let Xi be a site following the Stable behaviour PXi :

PXi = (Qitrue@1/2 [] Qifalse@1/2)
Qitrue = (1@1)
Qifalse = (⊥@1)

Then for 1 ≤ i ≤ m define ECi = (Xia |Xib), where ia and ib are the indexes of the variables
used in clause Ci. Then we define EF associated to F as follows

EF = EC1 � · · · � ECm

Given a global profile Q = (q1 · · · qn) by construction out
(
(EF )|Q

)
> 0)⇔ F (Q) = 1.

As for anyQ ∈ {0, 1}n, Pr(Q) = 1/2n it holds Pr(out(EF ) > 0) =
∑
Q∈{0,1}n Pr(out(EF |Q) >

0) = (1/2n)
∑

Q∈{0,1}n F (Q).
Then, 2n Pr(out(EF ) > 0) is the number of satisfying assignments for F .
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7.2 The complexity of problems ExpOut
The problem ExpOut returns, given an Orc expression, the expected number of outputs

of an execution. Let us analyse it under the Oblivious, Stable and Typed models.

7.2.1 Oblivious model

Let us see how to compute ExpOut for ElementaryOrc, ExtElementaryOrc, PruningOrc and
ExtPruningOrc. The following algorithm to compute E(out(E)) is modification of the equiv-
alents for out in the Deterministic model. In this case, we taken into account that sites may
fail even if all variables are defined. Also, given that all calls are independent, for parallel and
sequential compositions the expected output is the sum or multiplication of expected outputs
as was the sum or multiplication of the number of outputs in deterministic cases. Finally, in
cases where its needed that one sub-expression publish or not in order to evaluate in one way
or another, as the two cases (publish or not) are disjoint, we only need to evaluate each case
times the probability of each case (note that for the operator A;B, in E(out(A)) it is already
included the probability that A publish.).

Lemma 7.2.1. Let E be an ExtPruningOrc expression. For a given context L, E(out(E)) can
be computed recursively as follows.

E(out(0)) = 0

E(out(1(x))) =
{

1 if (x ∈ L)
0 otherwise

E(out(S(X))) =
{
FS(1) if (∀xi ∈ X;xi ∈ L)
0 otherwise

E(out(A | B)) = E(out(A)) + E(out(B))
E(out(A� B)) = E(out(A)) ∗ E(out(B))

E(out(A > x > B)) = E(out(A)) ∗ E(out(B(x 6= ⊥)))
E(out(A < x < B)) = E(out(A(x 6= ⊥))) ∗ Pr(out(B) > 0)

+E(out(A(x = ⊥))) ∗ (1− Pr(out(B) > 0))

E(out(A;B)) = E(out(A)) + E(out(B)) ∗ (1− Pr(out(A) > 0))
E(out(A <!B)) = E(out(A)) ∗ Pr(out(B) > 0)

For ElementaryOrc and ExtElementaryOrc, as for the output related problems, we have that
ExpOut can be solved in poly-time.

Theorem 7.2.2. In the Oblivious model, the problem ExpOut belongs to P when restricted to
ExtElementaryOrc.

Proof. Directly from the formula of how to compute E(out) for these sub-families. With a
quick look, we see that each operator ask for the E(out) of its sub-expressions at most one
time, and other calls as seen to be polynomial. As that is true for all operators and for
sites we can solve it in poly-time in the number of variables, then we can solve E(out) in
poly-time.
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For PruningOrc or ExtPruningOrc the algorithm does not give the same polynomial bound
because the pruning operator involves check two different possibilities. Then, let us see what
happen in these cases.

Theorem 7.2.3. In the Oblivious model, the problem ExpOut belongs to PSPACE when re-
stricted to ExtPruningOrc..

Proof. Directly from the algorithm to compute E(out(E)) for these sub-families. With a
quick look, we see that this algorithm is a common recursive algorithm with polynomial
depth and a fixed amount of stored data for each step. Given that, we can solve E(out(E))
in poly-space.

Theorem 7.2.4. In the Oblivious model, the problem ExpOut is ]P-Hard when restricted to
PruningOrc.

Proof. Let us consider the following reduction from the counting MONOTONE 2-SAT. Let F
be a MONOTONE 2-CNF formula as follows: F = C1 ∧ · · · ∧ Cm with n variables x1, . . . , xn
where Ci = yia ∨ yib , {yia , yib} ⊆ {x1, . . . , xn}, for 1 ≤ i ≤ m.

Given the site BlockingCoin with a Halting profile

HBlockingCoin = (success@1/2 [] failure@1/2)

Let us define the orchestration EF as follows:

for 1 ≤ i ≤ m, ECi
(yia

, yib
) =

(
1(yia

)|1(yib
)
)

E(x1, . . . , xn) = 1(s) < s < (EC1(y1a
, y1b

)� · · · � ECm
(yma

, ymb
))

EF = (· · · (E(x1, . . . , xn) < x1 < BlockingCoin) · · · ) < xn < BlockingCoin

During a evaluation of EF , all variable x1, . . . , xn will have or not value each with prob-
ability 1/2 independently one of another. Then, we can describe an execution as a string
s = s1, . . . , sn, where si = 1 if xi 6= ⊥ and si = 0 if xi = ⊥, for 1 ≤ i ≤ n. If we denote the
execution of EF following s as EF |s, by construction of EF we have that F (s) = out(EF |s)
Then, as each evaluation has probability 1/2n :

E(out(EF )) =
∑
s∈{0,1}n out(EF |s)/2n =

∑
s∈{0,1}n F (s)/2n = #F/2n

Then, 2n E(out(EF )) is the number of satisfying assignments for F .

Now, let us analyse the case of IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc. Let us do
a similar approach as for the Deterministic model where we computed out(E) as the sum
out(Ev) for each possible value v. In this case, we are going to compute E(out(E)) as follows:

E(out(E)) =
∑

v∈D(E)
E(out(Ev))

The following algorithm to compute E(out(Ev)) is a modification the algorithm for com-
puting out(Ev) in the Deterministic model. In this case, as for the previous algorithm for solve
E(out), we take into account the probability that a site fails, but now we add the distinction be-
tween the different values published. We use Pr(out(Av) > 0) describing the probability that
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A publish at least one value v, that can be seen as an alias to Pr(out(A > x > If (x = v) > 0)
and therefore we know how to compute it. In the same way, we use E(out(A)) that can be
computed as the sum of E(out(Av)) for each possible value v as we have seen.

Lemma 7.2.5. Let E be an IfOrc, ExtIfOrc, MixedOrc or ExtMixedOrc expression. For a
given context L, E(out(Ev)) can be computed recursively as follows.

E(out(0v)) = 0

E(out(1(x)v)) =
{

1 if (x ∈ L) and (x = v)
0 otherwise

E(out(If (b)v)) =
{

1 if (b = true) and (v = 1)
0 otherwise

E(out(S(X)v)) =
{
FS(X, 1) ∗ VS(X, v) if (∀xi ∈ X;xi ∈ L)
0 otherwise

E(out((A | B)v)) = E(out(Av)) + E(out(Bv))
E(out((A� B)v)) = E(out(A)) ∗ E(out(Bv))

E(out((A > x > B)v)) =
∑
w∈D(A) E(out(Aw)) ∗ E(out(Bv(x = w)))

E(out((A < x < B)v)) = E(out(Av(x = FB(L)))) ∗ Pr(out(B) > 0)
+E(out(Av(x = ⊥))) ∗ (1− Pr(out(B) > 0))

E(out((A;B)v)) = E(out(Av))
+E(out(Bv)) ∗ (1− Pr(out(Av) > 0))

E(out((A <!B)v)) = E(out(Av)) ∗ Pr(out(B) > 0)

Now, let us give some complexity bounds for ExpOut on these families.

Theorem 7.2.6. In the Oblivious model, the problem ExpOut belongs to PSPACE when re-
stricted to ExtMixedOrc.

Proof. Directly from the formula of how to compute E(out(Ev)) for these sub-families. With
a quick look, we see that this algorithm is a common recursive algorithm with polynomial
depth and a fixed amount of stored data for each step. In case of bigger value domain, would
need to repeat that for more values. Given that, we can solve E(out) in poly-space.

Theorem 7.2.7. In the Oblivious model, the problem ExpOut is ]P-Hard when restricted to
IfOrc.

Proof. Direct from computing out(E) in IfOrc and ExtIfOrc. out in the Deterministic model is
the equivalent problem as E(out) for the Oblivious model. Given that, as out(E) was proved
to be ]P-Complete, we have that E(out) is at least ]P-Hard.

Theorem 7.2.8. In the Oblivious model, the problem ExpOut is ].NP-Hard when restricted
to MixedOrc.

Proof. Direct from computing out(E) in MixedOrc and ExtMixedOrc out in the Deterministic
model is the equivalent problem as E(out) for the Oblivious model. Given that, as out(E)
was proved to be ].NP-Complete, we have that E(out) is at least ].NP-Hard.
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7.2.2 Stable and Typed models

For the Oblivious model we have that ExpOut can be computed in poly-space for all the
sub-families studied, now let us see what happens in case of expressions in the Stable and
Typed models.

Theorem 7.2.9. In the Typed model, the problem ExpOut belongs to PSPACE when restricted
to ExtMixedOrc.

Proof. We can compute E(out(E)) in the following way:

E(out(E)) =
∑

Q∈G(P)
E(out(E|Q)) ∗ Pr(Q)

E|Q is an expression following a Oblivious probabilistic environment, then we can com-
pute E(out(E|Q)) in poly-space. Given that, we can simply compute E(out(E)) computing
E(out(E|Q)) recursively for each Q ∈ G(P).

Theorem 7.2.10. In the Typed model, the problem ExpOut is ]P-Hard when restricted to
ElementaryOrc.

Proof. Let us consider the following reduction from counting 3-SAT.
Given 3-CNF formula F = C1∧. . .∧Cm with n literals x1, . . . , xn, where Ci = yia∨yib∨yic ,

{y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n.

Let us see the encoding used for prove out ∈ ]P-Complete for IfOrc.
Given Ci = yia ∨ yib ∨ yic define

ECi(yia , yib , yic) = (If (yia) | (If (¬yia)� (If (yib) | (If (¬yib)� If (yic)))))

Now, for each ECi let us replace If (xj) for a call to Xj and If (¬xj) for a call to Xj . For
example:

ECi(x1, x2, x3) = (If(x1) | (If (¬x1)� (If (¬x2) | (If (x2)� If (x3)))))

⇒ ECi = (X1 | (X1 � (X2 | (X2 � X3))))

Let us define each pair of sites (Xi, Xi) as a pair of sites following a type profile:

E(Xi,Xi) = (Ctrue@1/2 [] Cfalse@1/2)
Ctrue =

(
(success@1), (failure@1)

)
Cfalse =

(
(failure@1), (success@1)

)
With probability 1/2 all calls to site Xi succeeds and calls to Xi fail, and with probability
1/2 otherwise. Then the orchestration EF associated to the formula F is:

EF = EC1 � . . .� ECm

We can describe a global profile for EF as a string Q = q1, . . . , qn ∈ {0, 1}, where qi = 1
means Xi success and Xi fails and otherwise for qi = 0 By construction of EF we have that
F (Q) = out(EF |Q) Then, as each evaluation has probability 1/2n :

E(out(EF )) =
∑
Q∈{0,1}n out(EF |Q)/2n =

∑
Q∈{0,1}n F (Q)/2n = #F/2n
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Then, 2n Pr(out(EF ) > 0) is the number of satisfying assignments for F .

For ElementaryOrc and ExtElementaryOrc In Stable model, the complexity lower-bound of
ExpOut remains as an open question.

We have an interesting relation in cases where an evaluation can publish at most one
value.

Lemma 7.2.11. If an expression E publish only 0 or 1 value during any of its evaluations,
then E(out(E)) = Pr(out(E) > 0).

That is because in these cases,

E(out(E)) =
1∑
i=0

i ∗ Pr(out(E) = i) = 1 ∗ Pr(out(E) = 1) = Pr(out(E) > 0)

This result can be extended for any sub-family and probabilistic environment P in Oblivi-
ous, Stable or Typed model.

7.3 The complexity of problems PrOut
The problem Pr(out > k) is an extension of the problem Pr(out > 0), where we ask not

only that the expression publish some values, but that the number of published values is more
k. Let us analyse it under the Oblivious, Stable and Typed models.

7.3.1 Oblivious model

In order to compute PrOut, first we need to introduce some tools.

Definition 7.2 Given a sub-orchestration A in an orchestration E with a probabilistic
environment P in Oblivious Model. The postK distribution of A is the probability that for
each value published by A, this value triggers the publication of postK[i] values in E, for
0 ≤ i < k. Finally Pr(A, post) denotes the distribution of probability to get i values on a
given postK, 0 ≤ i < k.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taking postK = [0, 1, 0, . . . , 0], if P = Pr(E, postK) we have that:

Pr(out(E) > 0) = 1−
k−1∑
i=0

P [i]

Definition 7.3 Given two arrays A and B, we define Prod(A,B) in the following way
Prod(A,B) =

Array V [0 . . . k]
fori : 0→ k

forj : 0→ k − i
V [i+ j] = V [i+ j] +A[i] ∗B[j]

Return V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Now, let us see how to compute PrOut for ElementaryOrc, ExtElementaryOrc, PruningOrc
and ExtPruningOrc. The following algorithm to compute Pr(E, postK) comes directly is a
modification of the algorithm to compute Pr(out(E) > 0), using postK for the probability of
ending publishing 0, 1, . . . , k−1 values. Then, we only need to modify the parallel composition
to get the probabilities of having 0, 1, . . . , k− 1 outputs, coming each output from one side or
another. We use value ∗Array and Array +Array functions in the common way.

Lemma 7.3.1. Let E be an ElementaryOrc, ExtElementaryOrc, PruningOrc or ExtPruningOrc
expression. For a given context L, Pr(E, [0, 1, 0, . . . , 0]) can be computed recursively as follows:

Pr(0, postK) = 0

Pr(1(x), postK) =
{

postK if (x ∈ L)
0 otherwise

Pr(S(X), postK) =
{
FS(1) ∗ postK if (∀xi ∈ X;xi ∈ L)
0 otherwise

Pr(A | B, postK) = Prod(Pr(A, postK),Pr(B, postK))
Pr(A� B, postK) = Pr(A,Pr(B, postK))

Pr(A > x > B, postK) = Pr(A,Pr(B(x 6= ⊥), postK))
Pr(A < x < B, postK) = Pr(A(x 6= ⊥, postK) ∗ Pr(out(B) > 0)

+ Pr(A(x = ⊥), post) ∗ Pr(out(B) = 0)

Pr(A;B, postK) = Pr(A, postK)− [Pr(out(A) = 0), 0, . . . , 0]
+ Pr(B, postK) ∗ Pr(out(A) = 0)

Pr(A <!B, postK) = Pr(A, postK) ∗ Pr(out(B) > 0)
+[Pr(out(B) = 0), 0, . . . , 0]

Corollary 7.3.2. This recursive algorithm can be extended to ExtMixedOrc simply taking
values into account, in a similar way as was done for compute PrProduction(E).

In this case, for ElementaryOrc and ExtElementaryOrc with a probabilistic environment P
in Oblivious model, is open if the problem belongs to P or if it is NP-Hard or ]P-Hard. In case
of limiting k to a polynomial value on |E|, the presented algorithm can be used to compute
Pr(out(E) ≥ k) in poly-time.

In order to give upper-bounds on the complexity, we need to introduce additional tools.

Definition 7.4 Given an expression E, in a similar way that the post probability was
defined, we define Pt(A) for a sub-expression A in E as the remainder part of E for evaluate
after evaluate A. We call it Post Expression.

For example, given E = A � ((B � C) | D) � F , we have that Pt(A) = ((B � C) |
D)� F , Pt(B) = C � F , Pt(C) = F , Pt(D) = F .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 7.3.3. In the Oblivious model, the problem PrOut belongs to PSPACE when re-
stricted to ExtMixedOrc.
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Proof. Following the algorithm presented, is clear that post arrays may be exponentially big,
and therefore are not a valid approximation to get poly-space. Now, let us see that we can
compute Pr(out(E) > k) as Pr(out(E) > k) = 1−

∑k
i=0 Pr(out(E) = i).

Following the algorithm, we can ask, not for the full post array but only for a unique value
of this array. In that way, we can compute Pr(out(E) = k) through recursive calls for different
values on each sub-expression. For example, for Pr(out(A|B) = k) we can ask Pr(out(A �
Pt(A)) = 0) ∗ Pr(out(B � Pt(B)) = k) + . . . + Pr(out(A � Pt(A)) = k) ∗ Pr(out(B �
Pt(B)) = 0). A similar thing can be done for the operator ;. For Pr(out(A � B) = k), we
can ask for Pr(out(A � Pt(A)(x 6= ⊥) = k) ∗ Pr(out(B) > 0) + Pr(out(A � Pt(A)(x =
⊥)) = k) ∗ Pr(out(B) = 0) or with values in case of IfOrc and MixedOrc.

In general, what we can do is compute it recursively walking for all the execution tree.
Given that, we claim that the problem PrOut belongs to PSPACE.

Theorem 7.3.4. In the Oblivious model, the problem PrOut is ]P-Hard when restricted to
PruningOrc and IfOrc.

Proof. Direct from computing Pr(out > 0). Pr(out > 0) is a special case of Pr(out > k)
where k = 0, given that, as that problem is ]P-Hard for these sub-families, Pr(out > k) is also
]P-Hard.

For ElementaryOrc and ExtElementaryOrc In Oblivious model, the complexity lower-bound
of PrOut remains as an open question.

7.3.2 Stable and Typed models

Now, let us consider the Stable and Typed models.

Theorem 7.3.5. In the Typed model, the problem PrOut belongs to PSPACE when restricted
to ExtMixedOrc.

Proof. We can compute Pr(out(E) ≥ k) in the following way:

Pr(out(E) ≥ k) =
∑

Q∈G(P)
Pr(out(E|Q) ≥ k) ∗ Pr(Q)

E|Q is an expression following a Oblivious probabilistic environment, then we can compute
E(out(E|Q)) in poly-space. Given that, we can simply compute Pr(out(E) ≥ k) computing
Pr(out(E|Q) ≥ k) recursively for each Q ∈ G(P).

Theorem 7.3.6. In the Stable model, the problem PrOut is ]P-Hard when restricted to Ele-
mentaryOrc.

Proof. Direct from computing Pr(out > 0). Pr(out > 0) is a special case of Pr(out > k) where
k = 0, given that, as that problem is ]P-Hard, Pr(out > k) is also ]P-Hard.
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Problem Model ElemOrc EElemOrc PruOrc EPruOrc IfOrc EIfOrc MixOrc EMixOrc

PrProduction
Deterministic P P P P NP-C NP-C NP-C NP-C
Oblivious P P ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

ExpOut
Deterministic P P P P ]P-C ]P-H ].NP-C ].NP-H
Oblivious P P ]P-H ]P-H ]P-H ]P-H ].NP-H ].NP-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ].NP-H ].NP-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ].NP-H ].NP-H

PrOut
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

Table 7.1: Resume of problems related to the number of outputs with probabilistic environments. All problems belong to PSPACE.
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Chapter 8

Probabilistic Delay

In Chapter 5 we have seen some problems related to the delay of outputs for the Deter-
ministic Model. In that model, and the studied sub-families of Orc, the delay of outputs
when evaluate an expression is a well defined bag, even if there are non-deterministic choices
involved. Now, in the Oblivious, Stable and Typed models that is not true, and therefore we
cannot study the same problems but a related ones.

Given a expression E and a probabilistic environment P:

• PrFirst. Given k ≥ 0, Compute the probability of publish the first value in at most
time k during an execution of E (Pr(first(E) ≤ k)).

• ExpFirst. Compute the expected delay for the first published value of an execution
(E(first(E))). Only executions publishing at least one value are considered.

• MinFirst. Minimum first. Compute the minimum possible delay for a published value
of an execution (min(first(E))).

• PrLast. Given k ≥ 0, Compute the probability of publish the last value after time k
during an execution (Pr(last(E) > k)).

• ExpLast. Compute the expected delay for the last published value of an execution
(E(last(E))). Only executions publishing at least one value are considered.

• MaxLast. Compute the maximum possible delay for a published value of an execution
(max(last(E))).

Tables 8.1 and 8.2 at the end of the chapter resumes the results found for the different
families and models.

8.1 PrFirst & ExpFirst
The problem PrFirst returns, given an Orc expression and a value k ≥ 0, the probability

of publishing the first value within time k during an execution. The problem ExpFirst returns,
given an Orc expression, the expected time of publishing the first value published during an
execution, taking only into account executions publishing some values. Let us analyse them
under the Oblivious, Stable and Typed models.
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8.1.1 Oblivious model

In order give bounds to PrFirst and ExpFirst, first let us see that we can compute the
probability that the first value is published at time k. This problem is defined as, given an
expression E and a value k ≥ 0, compute Pr(first(E) = k).

Theorem 8.1.1. In the Oblivious model, the problem Pr(first(E) = k) belongs to PSPACE
when restricted to ExtMixedOrc.

Proof. We are going to use the post expression (Pt) defined previously 7.4. Then, following
the evaluation of the expression we ask for the probabilities of having delay k. As some
sub-families can have pruning operators, we are going to use the same context with time on
variables as used in order to compute first for the Deterministic model, in that case, we write
Pr(first(A(x = 〈v : δ〉)) = k) meaning that we ask for the probability that first(A) = k given
that x will take the value v after time δ.

This time, we are not going to give the full algorithm but a brief description of the
behaviour of each.

• Pr(first((A|B)(x = 〈v : t〉)) = k).
For A and B, we can ask Pr(first(A(x = 〈v : t〉)) = k′) and Pr(first(B(x = 〈v : t〉)) = k′)
for any k′. Then, we can solve Pr(first((A|B)(x = 〈v : t〉)) = k) with a recursive
algorithm like the following:

prAlK =
∑k−1
i=0 Pr(first(A(x = 〈v : t〉)) = i)

prBlK =
∑k−1
i=0 Pr(first(B(x = 〈v : t〉)) = i)

prAK = Pr(first(A(x = 〈v : t〉)) = k)
prBK = Pr(first(B(x = 〈v : t〉)) = k)

Pr(first((A|B)(x = 〈v : t〉)) = k) = (1− prAlK) ∗ prBK
+prAK ∗ (1− prBlK − prBK)

• Pr(first((S � A)(x = 〈v : t〉)) = k).
For a site following a sub-expression, we can ask for each possible delay δ of S inferior
to k (δ ∈ D(S), δ ≤ k). Then, for each δ, we can ask for the probability that A publish
in time k − δ, Pr(first(A(x = 〈v : t− δ〉)) = k − δ).
In case that the call to S needs at least one variable undefined at that point, we can
simply discount the time needed for that variable to take value. In the same way, if S
defines a variable y with value v′, then we will ask for Pr(first(A(x = 〈v : t− δ〉 , y =
〈v′ : 0〉)) = k − δ), for each possible value v′.
In this case, A is always Pt(S), as we consider all the following calls.

• Pr(first((A < y < B)(x = 〈v : t〉)) = k).
For each time t′ ∈ [0, k] we can ask for Pr(first(B(x = 〈v : t〉)) = t′). Then, we can ask
to A for Pr(first(A(x = 〈v : t〉 , y = 〈v′ : t′〉)) = k), with v′ = FB(L) in case of MixedOrc
and ExtMixedOrc or v′ 6= ⊥ for PruningOrc and ExtPruningOrc.
Then, we can solve Pr(first((A < y < B)(x = 〈v : t〉)) = k) with a recursive algorithm
like the following:

88



ST =
∑k
t′=0 Pr(first(B(x = 〈v : t〉)) = t′)

Pr(first((A < y < B)(x = 〈v : t〉)) = k) =
∑k
t′=0 Pr(first(B(x = 〈v : t〉)) = t′)
∗Pr(first(A(x = 〈v : t〉 , y = 〈v′ : t′〉)) = k)
+(1− ST )
∗Pr(first(A(x = 〈v : t〉 , y = 〈⊥ : ω〉)) = k)

• Pr(first((A <!B)(x = 〈v : t〉)) = k).
In this case, we can ask to A and B for a pair of delays that make k in total Then,
we can solve Pr(first((A <!B)(x = 〈v : t〉)) = k) with a recursive algorithm like the
following:
Pr(first((A <!B)(x = 〈v : t〉)) = k) =

∑k
i=0

(
Pr(first(B(x = 〈v : t〉)) = 0)

∗Pr(first(A(x = 〈v : t− i〉)) = (k − i))
)

• Pr(first((A;q B)(x = 〈v : t〉)) = k).
In this case, we need to consider possible cases into account.
If k < q, then the value never will appear from B, simply because we assume that B
will not be executed until time q. In that case, Pr(first((A;q B)(x = 〈v : t〉)) = k) =
Pr(first(A(x = 〈v : t〉)) = k)
In case that k > q, then there is the possibility that Pr(first(A(x = 〈v : t〉)) ≤ q). We
can solve it computing recursively the probability of Pr(first(A(x = 〈v : t〉)) = i) for
0 ≤ i ≤ q, then Pr(first((A;q B)(x = 〈v : t〉)) = k) = (1 − Pr(first(A(x = 〈v : t〉)) ≤
q)) ∗ Pr(first(B(x = 〈v : t− q〉)) = k − q).
For k = q we have the limit case. We have that Pr(first(A(x = 〈v : t〉)) = k) return the
probability that the first value is published by A in time k, the in a similar way as for
k > q, we have that B will publish the first value if A takes times > q for its first value
and then B takes time 0 to publish its first value.

Given this outline of algorithm, we claim that Pr(first(A) = k) belongs to PSPACE.

Given this outline of algorithm, we claim that Pr(first(A) = k) belongs to PSPACE. Then,

if we can compute Pr(first(E) = k) in poly-space, we can compute also Pr(first(E) ≤ k) and
E(first(E)).

Theorem 8.1.2. In the Oblivious model, the problem PrFirst belongs to PSPACE when re-
stricted to ExtMixedOrc.

Proof. Given an expression E and a value k, we can compute Pr(first(E) ≤ k) with k + 1
recursive calls to Pr(first(E) = i). Then, we can solve PrFirst at follows:

Pr(first(E) ≤ k) =
k∑
i=0

Pr(first(E) = i)

As Pr(first(E) = i) can be computed in poly-space, also Pr(first(E) ≤ k) can be done in
poly-space.
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Theorem 8.1.3. In the Oblivious model, the problem ExpFirst belongs to PSPACE when
restricted to ExtMixedOrc.

Proof. Given an expression E with n site calls, if the all sites publish in at most δmax and
otherwise does not publish, then any value published by E will take at most n ∗ δmax time.
Given that, we can compute E(first(E)) with recursive calls to Pr(first(E) = i) for 0 ≤ i ≤
n ∗ δmax. Then, we can solve ExpFirst at follows:

E(first(E)) =
n∗δmax∑
i=0

i ∗ Pr(first(E) = i)/Pr(out(E) > 0)

As both Pr(out(E) > 0) and Pr(first(E) = i) can be computed in poly-space, then
E(first(E)) can be computed in in poly-space.

In case that Pr(out(E) > 0) = 0 we say that E(first(E)) = ω.

Now that we know that both PrFirst and ExpFirst can be computed in poly-space, let
see some lower bound on their complexity for the different sub-families. First, let us see an
interesting relation between PrFirst and PrProduction.

Lemma 8.1.4. In the Oblivious Stable or Typed model, the problem PrProduction reduces to
PrFirst when restricted to a finite Orc expression.

Proof. We have seen that for any expression E with n site calls, if δmax is the maximum time
needed for any site when it publish, then any value published by an execution of E will be
published within time n ∗ δmax. Given that, is easy to see that:

Pr(out(E) > 0) = Pr(first(E) ≤ n ∗ δmax)

Given that relation the we have that PrFirst is at least as hard as PrProduction.

Theorem 8.1.5. In the Oblivious model, the problem PrFirst is ]P-Hard when restricted to
PruningOrc and IfOrc.

Proof. Direct from Lemma 8.1.4, as PrProduction is ]P-Hard for these sub-families of Orc,
PrFirst is also ]P-Hard.

For ExpFirst(E) we cannot take the same approach from PrProduction as executions that
not publish are not considered while computing ExpFirst, but we can find similar results.

Theorem 8.1.6. In the Oblivious model, the problem ExpFirst is ]P-Hard when restricted to
PruningOrc.

Proof. Let us consider the following reduction from counting MONOTONE 2-SAT.
Given a MONOTONE 2-CNF formula F = C1∧ · · ·∧Cm with n variables x1, . . . , xn where

Ci = yia ∨ yib , {yia , yib} ⊆ {x1, . . . , xn} for 1 ≤ i ≤ m. Let DelayCoin be a site with delay
profile (0@1/2 [] 1@1/2). Let us define the orchestration EF as follows:
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for 1 ≤ i ≤ m do ECi(yia , yib) =
(
1(yia)|1(yib)

)
E(x1, . . . , xn) = (EC1(y1a , y1b

)� · · · � ECm(yma , ymb
))

EF = (· · · (E(x1, . . . , xn) < x1 < DelayCoin) · · · ) < xn < DelayCoin

Given v = (v1, . . . vn) such that vi has delay ∈ {0, 1} let us define map a boolean version
b(v1, . . . vn) = (b(v1), . . . b(vn)) such that for 1 ≤ i ≤ n

b(vi) =
{

1 if vi has delay 0
0 if vi has delay 1

first(E(v1, . . . , vn)) =
{

0 if F (b(v1), . . . b(vn)) = 1,
1 otherwise

As DelayCoin follows a delay profile (0@1/2 [] 1@1/2), each v ∈ {0, 1}n occurs with probability
1/2n, then E(first(EF )) = (1/2n) ∗

∑
v∈{0,1}n first(E(v)) = (1/2n) ∗

∑
v∈{0,1}n(1 − F (b(v))) =

1− ]F/2n. Therefore, 2n(1− E(first(EF ))) solves counting MONOTONE 2-SAT.

Theorem 8.1.7. In the Oblivious model, the problem ExpFirst is ]P-Hard when restricted to
IfOrc.

Proof. Let us consider the following reduction from counting 3-SAT.
Given a 3-CNF formula F = C1∧. . .∧Cm with n literals x1, . . . , xn, where Ci = yia∨yib∨yic ,

{y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode clauses through calls to

site if . Given Ci = yia ∨ yib ∨ yic define
ECi(yia , yib , yic) = (if (yia) | (if (¬yia)� (if (yib) | (if (¬yib)� if (yic)))))� 1
Let us encode clause failures as follow. Given Ci = yia ∨ yib ∨ yic define
FCi(yia , yib , yic) = (if (¬yia)� if (¬yib)� if (¬yic)� RTimer(1).
Taking Coin as a site following a value profile VCoin = (true@1/2 [] false@1/2), the

orchestration EF associated to the formula F is:
E(x1, . . . , xn) = EC1(x1a , x1b

, x1c)� . . .� ECm(xma , xmb
, xmc)

F(x1, . . . , xn) = FC1(x1a , x1b
, x1c) | . . . | FCm(xma , xmb

, xmc)
EF = Coin > x1 > · · · > Coin > xn > (E(x1, . . . , xn) | F(x1, . . . , xn))
Given v = (v1, . . . vn) such that vi ∈ {0, 1} we have that:

first(E(v)) =
{

0 if F (v1, . . . vn) = 1,
1 otherwise

As each v ∈ {0, 1}n occurs with probability 1/2n, then:

E(first(EF )) = (1/2n) ∗
∑
v∈{0,1}n first(E(v)) =

(1/2n) ∗
∑
v∈{0,1}n(1− F (v)) = 1−#F/2n

Therefore, 2n(1− E(first(EF ))) solves counting 3-SAT.

For ElementaryOrc and ExtElementaryOrc In Oblivious model, the complexity lower-bound
of PrFirst and ExpFirst remains as open questions.
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8.1.2 Stable and Typed models

For the Oblivious model we have that PrFirst and ExpFirst can be computed in poly-space
for all the sub-families studied, now let us see what happens in case of expressions in the
Stable and Typed models.
Theorem 8.1.8. In the Typed model, the problem PrFirst belongs to PSPACE when restricted
to ExtMixedOrc.

Proof. For the Stable and Typed models we can compute Pr(first(E) ≤ k) in the following
way:

Pr(first(E) ≤ k) =
∑

Q∈G(P)
Pr(first(E|Q) ≤ k) ∗ Pr(Q)

E|Q is an expression following a Oblivious probabilistic environment, then we can com-
pute Pr(out(E|Q) > 0) in poly-space. Given that, we can simply compute Pr(out(E) > 0)
computing Pr(out(E|Q) > 0) recursively for each Q ∈ G(P).

Theorem 8.1.9. In the Typed model, the problem ExpFirst belongs to PSPACE when restricted
to ExtMixedOrc.

Proof. For the Stable and Typed models we can compute E(first(E)) in the following way:

E(first(E)) =
∑

Q∈G(P); Pr(out(E|Q)>0)
E(first(E|Q)) ∗ Pr(Q)

Theorem 8.1.10. In the Stable model, the problem PrFirst is ]P-Hard when restricted to
ElementaryOrc.

Proof. Direct from Lemma 8.1.4, as PrProduction is ]P-Hard for ElementaryOrc, PrFirst is also
]P-Hard.

Theorem 8.1.11. In the Stable model, the problem ExpFirst is ]P-Hard when restricted to
ElementaryOrc.

Proof. Let us consider the following reduction from counting MONOTONE 2-SAT.
Given a MONOTONE 2-CNF formula F = C1∧ · · ·∧Cm with n variables x1, . . . , xn where

Ci = yia ∨ yib , {yia , yib} ⊆ {x1, . . . , xn} for 1 ≤ i ≤ m.
For 1 ≤ i ≤ n, let Xi be a site following the status profile PXi :

PXi = (Pitrue@1/2 [] Pifalse@1/2)
Pitrue = (〈1 : 0〉@1)
Pifalse = (〈⊥ : ω〉@1)

Then for 1 ≤ i ≤ m define ECi = (Xia |Xib), where ia and ib are the indexes of the variables
used in clause Ci. Then we define EF as follows

EF = (EC1 � · · · � ECm) | Rtimer(1)

Given a global profile Q = (q1 · · · qn) by construction E(first(EF |Q)) = 1− F (s).
As for anyQ ∈ {0, 1}n, Pr(Q) = 1/2n it holds E(first(EF )) =

∑
Q∈{0,1}n E(first(EF |Q))/2n =

(1/2n)
∑

Q∈{0,1}n(1− F (Q)) = (1−#F )/2n.
Then, 2n(1− E(first(EF ))) is the number of satisfying assignments for F .
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8.2 MinFirst
The problem MinFirst returns, given an Orc expression, the minimum possible delay of a

value published during an execution. Let us analyse it under the Oblivious, Stable and Typed
models.

8.2.1 Oblivious model

Let us see an interesting relation between compute MinFirst in the Oblivious model and
compute first in the Deterministic model.

Theorem 8.2.1. In the Oblivious model, the problem MinFirst reduces to first in Deterministic
model when restricted to ElementaryOrc, ExtElementaryOrc, PruningOrc and ExtPruningOrc.

Proof. For these sub-families, MinFirst can be seen as compute first given that all sites publish
always and with its minimum delay. That is because, as the values of variables does not matter
to the delay of sites, is clear that the minimum possible delay will correspond to an execution
path when all sites take their minimum delay.

Theorem 8.2.2. In the Oblivious model, the problem MinFirst reduces to first in Deterministic
model when restricted to IfOrc and MixedOrc.

Proof. Given a site S(x1, . . . , xn), for each value vi ∈ D(S) we define VSi(x1, . . . , xn) as a site
publishing vi with the minimum delay for which a call to S(w1, . . . , wn) can publish vi. Then,
given an expression E, we define E′ as a copy of E replacing each site S by a sub-expression
(VS1 | VS1 | . . .).

Now, we can solveMinFirst of E as first of E′, given that E′ follow all the possible execution
paths of E for all the possible values with their minimum delay.

Observe that for ExtIfOrc and ExtMixedOrc we cannot take the same approach, as for A;tB
it is possible that an execution through B trigger the publication of the value with minimum
delay, and we can lose that value if there is a path publishing through A in lees than time t.
We cannot replace either A;tB by A|(Rtimer(t) � B) as, while in that case we will find if
there is a fastest path through B, it is possible that there is always a path from A needing
less that time t and therefore B never will be executed.

In Theorem 8.1.2 we have seen that Pr(first(E) ≤ t) can be computed in poly-space for
all the sub-families seen. Now let us use that to give upper bounds to MinFirst.

Theorem 8.2.3. In the Oblivious model, the problem MinFirst belongs to PSPACE when
restricted to ExtMixedOrc.

Proof. Given a expression E, we can compute MinFirst recursively with calls to Pr(first(E) ≤
t). For that, starting with i = 0 we check Pr(first(E) ≤ i) = 0 and go incrementing i until
Pr(first(E) ≤ i) > 0. The first delay i for which Pr(first(E) ≤ i) > 0 will be MinFirst of E.
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8.2.2 Stable and Typed models

For the Oblivious model we have that MinFirst can be computed in poly-space for all the
sub-families studied, now let us see what happens in case of expressions in the Stable and
Typed models.

Theorem 8.2.4. In the Typed model, the problem MinFirst belongs to PSPACE when restricted
to ExtMixedOrc.

Proof. For the Stable and Typed models we can compute MinFirst in the following way:

min(first(E)) = minQ∈G(P)MinFirst(E|Q)

Theorem 8.2.5. In the Typed model, the problem MinFirst is NP-Hard when restricted to
ElementaryOrc.

Proof. Let us remind the reduction from counting 3-SAT used to prove E(out) in ]P-Hard also
for the Typed model (Theorem 7.2.10).

Given a 3-CNF formula F = C1∧. . .∧Cm with n literals x1, . . . , xn, we had transformations
of clauses into sub-expressions using sites as variables, in the form:

Ci = (x1 ∨ x2 ∨ x3)⇔ ECi = (X1 | (X1 � (X2 | (X2 � X3))))

Each pair of sites (Xi, Xi) follow a status profile where only one site succeeds on its calls,
now let us add time to this profile:

S(Xi,Xi) =
((
{〈⊥ : ω〉@1}, {〈1 : 0〉@1}

)
@1/2 []

(
{〈1 : 0〉@1}, {〈⊥ : ω〉@1}

)
@1/2

)
Then the orchestration EF associated to F was:

EF = EC1 � . . .� ECm

Describing a global profile for EF as a string Q = q1, . . . , qn ∈ {0, 1}, where qi = 1
means Xi success and Xi fails and otherwise for qi = 0 By construction of EF we have that
F (Q) = 1⇔ MinFirst(EF |Q) = 0. Then, we have that:

min(first(EF )) = 0 ⇔ ∃Q ∈ {0, 1}n s.t. (out(EF |Q) = 1) ⇔
∃Q ∈ {0, 1}n s.t. (F (Q) = 1) ⇔ F ∈ 3− SAT

For ElementaryOrc, ExtElementaryOrc, PruningOrc and ExtPruningOrc In Stable model, the
complexity lower-bound of MinFirst remain as an open questions.

8.3 PrLast & ExpLast
The problem PrLast returns, given an Orc expression and a value k ≥ 0, the probability

of publishing the last value after time k during an execution. The problem ExpLast returns,
given an Orc expression, the expected time of publishing the last value published during an
execution, taking only into account executions publishing some values. Let us analyse them
under the Oblivious, Stable and Typed models.
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8.3.1 Oblivious model

In order give bounds to PrLast and ExpLast, first let us see that we can compute the
probability that the last value is published at time k. This problem is defined as, given an
expression E and a value k ≥ 0, compute Pr(last(E) = k).

Theorem 8.3.1. In the Oblivious model, the problem Pr(last(E) = k) belongs to PSPACE
when restricted to MixedOrc.

Proof. We are going to use the post expression (Pt) defined previously 7.4. Then, following
the evaluation of the expression we ask for the probabilities of having delay k. As some
sub-families can have pruning operators, we are going to use the same context with time on
variables as used in order to compute last for the Deterministic model, in that case, we write
Pr(last(A(x = 〈v : δ〉)) = k) meaning that we ask for the probability that last(A) = k given
that x will take the value v after time δ.

This time, we are not going to give the full algorithm but a brief description of the
behaviour of each.

• Pr(last((A|B)(x = 〈v : t〉)) = k).
For A and B, we can ask Pr(last(A(x = 〈v : t〉)) = k′) and Pr(last(B(x = 〈v : t〉)) = k′)
for any k′. Then, can solve Pr(last((A|B)(x = 〈v : t〉)) = k) with a recursive algorithm
like the following:

prAlK =
∑k−1
i=0 Pr(last(A(x = 〈v : t〉)) = i)

prBlK =
∑k−1
i=0 Pr(last(B(x = 〈v : t〉)) = i)

prAK = Pr(last(A(x = 〈v : t〉)) = k)
prBK = Pr(last(B(x = 〈v : t〉)) = k)
prAO0 = Pr(last(A(x = 〈v : t〉)) = ω)
prBO0 = Pr(last(B(x = 〈v : t〉)) = ω)

Pr(last((A|B)(x = 〈v : t〉)) = k) = prAK ∗ (prBlK + prBO0)
+prBK ∗ (prAlK − prAK + prAO0)

• Pr(last((S � A)(x = 〈v : t〉)) = k).
For a site following a sub-expression, we can ask for each possible delay δ of S inferior
to k (δ ∈ D(S), δ ≤ k). Then, for each δ, we can ask for the probability that A publish
in time k − δ, Pr(last(A(x = 〈v : t− δ〉)) = k − δ).
In case that the call to S needs at least one variable undefined at that point, we can
simply discount the time needed for that variable to take value. In the same way, if S
defines a variable y with value v′, then we will ask for Pr(last(A(x = 〈v : t− δ〉 , y =
〈v′ : 0〉)) = k − δ), for each possible value v′.
In this case, A is always Pt(S), as we consider all the following calls.

• Pr(last((A < y < B)(x = 〈v : t〉)) = k).
For each time t′ ∈ [0, k] we can ask for Pr(first(B(x = 〈v : t〉)) = t′). Then, we can ask
to A for Pr(last(A(x = 〈v : t〉 , y = 〈v′ : t′〉)) = k), with v′ = FB(L) in case of MixedOrc
and ExtMixedOrc or v′ 6= ⊥ for PruningOrc and ExtPruningOrc.
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If maxB is an upper-bound to the maximum possible delay of B, for example maxB =
n ∗ δmax where n is the number of sites in B and δmax the maximum delay of a site call
for the sites of B, then we can solve Pr(last((A < y < B)(x = 〈v : t〉)) = k) with the
following recursive algorithm:

ST =
∑maxB
t′=0 Pr(first(B(x = 〈v : t〉)) = t′)

Pr(last((A < y < B)(x = 〈v : t〉)) = k) =
∑maxB
t′=0 Pr(first(B(x = 〈v : t〉)) = t′)
∗Pr(last(A(x = 〈v : t〉 , y = 〈v′ : t′〉)) = k)
+(1− ST )
∗Pr(last(A(x = 〈v : t〉 , y = 〈⊥ : ω〉)) = k)

Given this outline of algorithm, we claim that Pr(last(A) = k) belongs to PSPACE.

Theorem 8.3.2. In the Oblivious model, the problem Pr(last(E) = k) belongs to PSPACE
when restricted to ExtMixedOrc.

Proof. We can extend the algorithm to compute Pr(last(E) = k) for MixedOrc expressions
adding for the operators <! and ;t:

• Pr(last((A <!B)(x = 〈v : t〉)) = k).
In this case, we can ask to A and B for a pair of delays that make k in total Then,
we can solve Pr(last((A <!B)(x = 〈v : t〉)) = k) with a recursive algorithm like the
following:
Pr(last((A <!B)(x = 〈v : t〉)) = k) =

∑k
i=0

(
Pr(first(B(x = 〈v : t〉)) = 0)

∗Pr(last(A(x = 〈v : t− i〉)) = (k − i))
)

• Pr(last((A;q B)(x = 〈v : t〉)) = k).
In this case, we need to consider possible cases into account.
If k < q, then the value never will appear from B, simply because we assume that B
will not be executed until time q. In that case, Pr(last((A;q B)(x = 〈v : t〉)) = k) =
Pr(last(A(x = 〈v : t〉)) = k).
In case that k ≥ q, then there is the possibility that Pr(first(A(x = 〈v : t〉)) ≤ q). We can
solve it computing recursively the probability as Pr(last((A;q B)(x = 〈v : t〉)) = k) =
Pr(first(A(x = 〈v : t〉)) ≤ q) ∗ Pr(last(A(x = 〈v : t− q〉)) = k|first(A(x = 〈v : t− q〉)) ≤
q) + (1− Pr(first(A(x = 〈v : t〉)) ≤ q)) ∗ Pr(last(B(x = 〈v : t− q〉)) = k − q).
For k = q we have the limit case. We have that Pr(first(A(x = 〈v : t〉)) = k) return the
probability that the first value is published by A in time k, the in a similar way as for
k > q, we have that B will publish the first value if A takes times > q for its first value
and then B takes time 0 to publish its first value.

We claim that Pr(last(E) = k|first(E) ≤ t) can be computed in poly-space with a similar
algorithm asking in parallel composition the probability that one side has first ≤ t and to the
other the probability that last = k and asking to each side the probability that last = k given
that first ≤ t.

Given this outline of algorithm, we claim that Pr(last(A) = k) belongs to PSPACE.
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Then, if we can compute Pr(last(E) = k) in poly-space, we can compute also Pr(last(E) >
k) and E(last(E).

Theorem 8.3.3. In the Oblivious model, the problem PrLast belongs to PSPACE when re-
stricted to ExtMixedOrc.

Proof. Given an expression E and a value k, we can compute Pr(last(E) > k) with k + 1
recursive calls to Pr(last(E) = i). Then, we can solve PrLast at follows:

Pr(last(E) > k) = 1−
k∑
i=0

Pr(last(E) = i)

As Pr(last(E) = i) can be computed in poly-space, also Pr(last(E) > k) can be done in
poly-space.

Theorem 8.3.4. In the Oblivious model, the problem ExpLast belongs to PSPACE when re-
stricted to ExtMixedOrc.

Proof. Given an expression E with n site calls, if the all sites publish in at most δmax and
otherwise does not publish, then any value published by E will take at most n ∗ δmax time.
Given that, we can compute E(first(E)) with recursive calls to Pr(last(E) = i) for 0 ≤ i ≤
n ∗ δmax. Then, we can solve ExpLast(E) at follows:

E(last(E)) =
n∗δmax∑
i=0

i ∗ Pr(last(E) = i)/Pr(out(E) > 0)

As both Pr(out(E) > 0) and Pr(last(E) = i) can be computed in poly-space, then
E(last(E)) can be computed in in poly-space.

In case that Pr(out(E) > 0) = 0 we say that E(last(E)) = ω.

Now that we know that both PrLast and ExpLast can be computed in poly-space, let
see some lower bound on their complexity for the different sub-families. First, let us see an
interesting relation between PrLast and PrProduction.

Lemma 8.3.5. In the Oblivious Stable or Typed model, the problem PrProduction reduces to
PrLast when restricted to a finite Orc expression.

Proof. We have seen that for any expression E with n site calls, if δmax is the maximum time
needed for any site when it publish, then any value published by an execution of E will be
published within time n ∗ δmax. Given that, is easy to see that:

Pr(out(E) > 0) = 1− Pr(last(E) > n ∗ δmax)

Given that relation the we have that PrLast is at least as hard as PrProduction.

Theorem 8.3.6. In the Oblivious model, the problem PrLast is ]P-Hard when restricted to
PruningOrc and IfOrc.
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Proof. Direct from Lemma 8.3.5, as PrProduction is ]P-Hard for these sub-families of Orc,
PrLast is also ]P-Hard.

For ExpLast(E) we cannot take the same approach from PrProduction as executions that
not publish are not considered while computing ExpLast, but we can find similar results.

Theorem 8.3.7. In the Oblivious model, the problem ExpLast is ]P-Hard when restricted to
PruningOrc.

Proof. Let us consider the following reduction from counting MONOTONE 2-SAT.
Given a MONOTONE 2-CNF formula F = C1∧ · · ·∧Cm with n variables x1, . . . , xn where

Ci = yia ∨ yib , {yia , yib} ⊆ {x1, . . . , xn} for 1 ≤ i ≤ m. Let DelayCoin be a site with delay
profile (0@1/2 [] 1@1/2). Let us define the orchestration EF as follows:

for 1 ≤ i ≤ m do ECi(yia , yib) =
(
1(yia)|1(yib)

)
E(x1, . . . , xn) = (EC1(y1a , y1b

)� · · · � ECm(yma , ymb
))

EF = (· · · (E(x1, . . . , xn) < x1 < DelayCoin) · · · ) < xn < DelayCoin

Given v = (v1, . . . vn) such that vi has delay ∈ {0, 1} let us define map a boolean version
b(v1, . . . vn) = (b(v1), . . . b(vn)) such that for 1 ≤ i ≤ n

b(vi) =
{

0 if vi has delay 0
1 if vi has delay 1

last(E(v1, . . . , vn)) =
{

1 if F (b(v1), . . . b(vn)) = 1,
0 otherwise

As DelayCoin follows a delay profile (0@1/2 [] 1@1/2), each v ∈ {0, 1}n occurs with probability
1/2n, then E(last(EF )) = (1/2n) ∗

∑
v∈{0,1}n last(E(v)) = (1/2n) ∗

∑
v∈{0,1}n F (b(v)) = ]F/2n.

Therefore, 2n E(last(EF )) solves counting MONOTONE 2-SAT.

Theorem 8.3.8. In the Oblivious model, the problem ExpLast is ]P-Hard when restricted to
IfOrc.

Proof. Let us consider the following reduction from counting 3-SAT.
Given a 3-CNF formula F = C1∧. . .∧Cm with n literals x1, . . . , xn, where Ci = yia∨yib∨yic ,

{y1a , y1b
, y1c} ⊆ {x1, . . . , xn, x1, . . . , xn} for 1 ≤ i ≤ n. Let us encode clauses through calls to

site if . Given Ci = yia ∨ yib ∨ yic define
ECi(yia , yib , yic) = (if (yia) | (if (¬yia)� (if (yib) | (if (¬yib)� if (yic)))))� 1
Let us encode clause failures as follow. Given Ci = yia ∨ yib ∨ yic define
FCi(yia , yib , yic) = (if (¬yia)� if (¬yib)� if (¬yic).
Taking Coin as a site following a value profile VCoin = (true@1/2 [] false@1/2), the

orchestration EF associated to F is:
E(x1, . . . , xn) = EC1(x1a , x1b

, x1c)� . . .� (ECm(xma , xmb
, xmc)� RTimer(1))

F(x1, . . . , xn) = FC1(x1a , x1b
, x1c) | . . . | FCm(xma , xmb

, xmc)
EF = Coin > x1 > · · · > Coin > xn > (E(x1, . . . , xn) | F(x1, . . . , xn))
Given v = (v1, . . . vn) such that vi ∈ {0, 1} we have that:

last(E(v)) =
{

1 if F (v1, . . . vn) = 1,
0 otherwise
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As each v ∈ {0, 1}n occurs with probability 1/2n, then:

E(last(EF )) = (1/2n) ∗
∑
v∈{0,1}n last(E(v)) =

(1/2n) ∗
∑
v∈{0,1}n F (v) = #F/2n

Therefore, 2n E(last(EF )) solves counting 3-SAT.

Now, let us see an interesting relation between PrLast and PrFirst.

Lemma 8.3.9. Given a expression E, if for any execution of E, all values are produce at the
same time, then E(first(E)) = E(last(E)) and Pr(first(E) ≤ k) = 1− Pr(last(E) > k)

That is because if all values take the same delay during a evaluation then that delay is
both the first and the last time.

For ElementaryOrc and ExtElementaryOrc In Oblivious model, the complexity lower-bound
of PrLast and ExpLast remain as open questions.

8.3.2 Stable and Typed models

For the Oblivious model we have that PrLast and ExpLast(E) can be computed in poly-
space for all the sub-families studied, now let us see what happens in case of expressions in
the Stable and Typed models.

Theorem 8.3.10. In the Typed model, the problem PrLast belongs to PSPACE when restricted
to ExtMixedOrc.

Proof. For the Stable and Typed models we can compute Pr(last(E) > k) in the following
way:

Pr(last(E) > k) =
∑

Q∈G(P)
Pr(last(E|Q) > k) ∗ Pr(Q)

E|Q is an expression following a Oblivious probabilistic environment, then we can com-
pute Pr(out(E|Q) > 0) in poly-space. Given that, we can simply compute Pr(out(E) > 0)
computing Pr(out(E|Q) > 0) recursively for each Q ∈ G(P).

Theorem 8.3.11. In the Typed model, the problem ExpLast belongs to PSPACE when re-
stricted to ExtMixedOrc.

Proof. For the Stable and Typed models we can compute E(last(E)) in the following way:

E(last(E)) =
∑

Q∈G(P); Pr(out(E|Q)>0)
E(last(E|Q)) ∗ Pr(Q)

Theorem 8.3.12. In the Stable model, the problem PrLast is ]P-Hard when restricted to
ElementaryOrc.

Proof. Direct from Lemma 8.3.5, as PrProduction is ]P-Hard for ElementaryOrc sub-families
of Orc, PrLast is also ]P-Hard.
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Theorem 8.3.13. In the Stable model, the problem ExpLast is ]P-Hard when restricted to
ElementaryOrc.

Proof. Let us consider the following reduction from counting MONOTONE 2-SAT.
Given a MONOTONE 2-CNF formula F = C1∧ · · ·∧Cm with n variables x1, . . . , xn where

Ci = yia ∨ yib , {yia , yib} ⊆ {x1, . . . , xn} for 1 ≤ i ≤ m.
For 1 ≤ i ≤ n, let Xi be a site following the status profile EXi :

EXi = (Pitrue@1/2 [] Pifalse@1/2)
Eitrue = (〈1 : 0〉@1)
Eifalse = (〈⊥ : ω〉@1)

Then for 1 ≤ i ≤ m define ECi = (Xia |Xib), where ia and ib are the indexes of the variables
used in clause Ci. Then we define the expression EF associated to F as follows:

EF = (EC1 � · · · � ECm) | Rtimer(1)

Given a global profile Q = (q1 · · · qn) by construction E(first(EF |s)) = 1− F (s).
As for anyQ ∈ {0, 1}n, Pr(Q) = 1/2n it holds E(first(EF )) =

∑
Q∈{0,1}n E(first(EF |Q))/2n =

(1/2n)
∑

Q∈{0,1}n(1− F (Q)) = (1−#F )/2n.
Then, 2n(1− E(first(EF ))) is the number of satisfying assignments for F .

8.4 MaxLast
The problem MaxLast returns, given an Orc expression, the maximum possible delay of a

value published during an execution. Let us analyse it under the Oblivious, Stable and Typed
models.

8.4.1 Oblivious model

Let us see an interesting relation between compute MaxLast in the Oblivious model and
compute last in the Deterministic model.

Theorem 8.4.1. In the Oblivious model, the problem MaxLast reduces to last in Deterministic
model when restricted to ElementaryOrc.

Proof. For this sub-families, MaxLast can be seen as compute last given that all sites publish
always and with their maximum delay. That is because, as the values of variables does not
matter to the delay of sites, is clear that the maximum possible delay will correspond to an
execution path when all sites take their maximum delay.

Theorem 8.4.2. In the Oblivious model, the problem MaxLast reduces to last in Deterministic
model when restricted to IfOrc.

Proof. Given a site S(x1, . . . , xn), for each value vi ∈ D(S) we define VSi(w1, . . . , wn) as a
site publishing vi with the maximum delay for which a call to S(w1, . . . , wn) can publish vi
(without consider ω, unless vi cannot be published). Then, given an expression E, we define
E′ as a copy of E replacing each site S by a sub-expression (VS1 | VS1 | . . .).

Now, we can solve MaxLast of E as compute last of E′, given that E′ follow all the possible
execution paths of E for all the possible values with their maximum delay.
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Observe that for ExtIfOrc and ExtMixedOrc we cannot take the same approach, as for A;tB
it is possible that an execution through A trigger the publication of the value with maximum
delay, and we can lose that value if there are no paths publishing through A in lees than time
t.

In a similar way, for PruningOrc, ExtPruningOrc, MixedOrc and ExtMixedOrc, the pruning
operator has the problem that with nested pruning the maximum delay comes either from an
execution where some sites fail at some point.

In Theorem 8.3.3 we have seen that Pr(last(E) > t) can be computed in poly-space for all
the sub-families seen. Now let us use that to give upper bounds to MaxLast.

Theorem 8.4.3. In the Oblivious model, the problem MaxLast belongs to PSPACE when
restricted to ExtMixedOrc.

Proof. Given a expression E, we can compute MaxLast recursively with calls to Pr(last(E) >
t). First, let prOut = Pr(out(E) 6= 0) For that, starting with i = 0 we check Pr(last(E) >
i) > prOut and go incrementing i until Pr(last(E) > i) > prOut. The previous delay to the
i for which Pr(last(E) > i) = prOut will be MaxLast.

For ExtElementaryOrc, PruningOrc and ExtPruningOrc In Oblivious model, the complexity
lower-bound of MaxLast(E) remain as an open questions.

8.4.2 Stable and Typed models

For the Oblivious model we have that MaxLast can be computed in poly-space for all the
sub-families studied, now let us see what happens in case of expressions in the Stable and
Typed models.

Theorem 8.4.4. In the Typed model, the problem MaxLast belongs to PSPACE when restricted
to ExtMixedOrc.

Proof. Using the function max∗ (Definition 5.9), for the Stable and Typed models we can
compute MaxLast in the following way:

max(last(EF )) = max∗Q∈G(P)MaxLast(E|Q)

Theorem 8.4.5. In the Typed model, the problem MaxLast is NP-Hard when restricted to
ElementaryOrc.

Proof. Let us remind the reduction from counting 3-SAT used to prove E(out) in ]P-Hard also
for the Typed model (Theorem 7.2.10).

Given a 3-CNF formula F = C1∧. . .∧Cm with n literals x1, . . . , xn, we had transformations
of clauses into sub-expressions using sites as variables, in the form:

Ci = (x1 ∨ x2 ∨ x3)⇔ ECi = (X1 | (X1 � (X2 | (X2 � X3))))
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Each pair of sites (Xi, Xi) follow a type profile where only one site succeeds on its calls, now
let us add time to this profile:

E(Xi,Xi) =
((
{〈⊥ : ω〉@1}, {〈1 : 0〉@1}

)
@1/2 []

(
{〈1 : 0〉@1}, {〈⊥ : ω〉@1}

)
@1/2

)
Then the orchestration EF corresponding to the formula F was:

EF = EC1 � . . .� ECm

Describing a global profile for EF as a string Q = q1, . . . , qn ∈ {0, 1}, where qi = 1
means Xi success and Xi fails and otherwise for qi = 0 By construction of EF we have that
F (Q) = 1⇔ MaxLast(EF |Q) = 0. Then, we have that:

max(last(EF )) = 0 ⇔ ∃Q ∈ {0, 1}n s.t. (out(EF |Q) = 1) ⇔
∃Q ∈ {0, 1}n s.t. (F (Q) = 1) ⇔ F ∈ 3− SAT

For ElementaryOrc, ExtElementaryOrc, PruningOrc and ExtPruningOrc In Stable model, the
complexity lower-bound of MaxLast remain as an open questions.
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Problem Model ElemOrc EElemOrc PruOrc EPruOrc IfOrc EIfOrc MixOrc EMixOrc

PrFirst
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

ExpFirst
Deterministic P P P P ]P-H ]P-H ]P-H ]P-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

MinFirst
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious P P P P NP-H NP-H NP-H NP-H
Stable NP-H NP-H NP-H NP-H
Typed NP-H NP-H NP-H NP-H NP-H NP-H NP-H NP-H

Table 8.1: Resume of problems related to the first delay of outputs with probabilistic environments. All problems belong to PSPACE.
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Problem Model ElemOrc EElemOrc PruOrc EPruOrc IfOrc EIfOrc MixOrc EMixOrc

PrLast
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

ExpLast
Deterministic P P P P ]P-H ]P-H ]P-H ]P-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

MaxLast
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious P NP-H NP-H NP-H NP-H
Stable NP-H NP-H NP-H NP-H
Typed NP-H NP-H NP-H NP-H NP-H NP-H NP-H NP-H

Table 8.2: Resume of problems related to the last delay of outputs with probabilistic environments. All problems belong to PSPACE.
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Chapter 9

Conclusions & Future Work

Applications based on the use of external web-services in order to reduce the computa-
tional burden are becoming more important as cloud computing becomes a common model,
especially for inexpensive devices. The Orc Language is an easy but flexible language for de-
scribe the orchestration of those services, that abstracts from the functionality of the services
used, basing on the connection between them.

In order to build better and more efficient orchestrations, we need some measure of the
goodness of an orchestration. For that, we have focused on measures related to the number of
values published and the delay from the start of the execution until the publication of values.

As Orc language can be a really powerful language, for which a simple analysis may not
even be enough to know even if an execution finishes or not, we focus on few sub-families of
Orc for which we ensure not only that the execution will end, but that if the services have
a deterministic behaviour and no failure, the number of outputs published will be always
the same in each execution. We called those sub-families ElementaryOrc, ExtElementaryOrc,
PruningOrc, ExtPruningOrc, IfOrc, ExtIfOrc, MixedOrc and ExtMixedOrc and those were created
by adding functionality to the base sub-family ElementaryOrc, a finite sub-family where only
operators |, > x > and � were allowed and sites do not depend on values (see figure 9.1).
For example, PruningOrc added the operator < x < to ElementaryOrc and IfOrc added the use
of values.

EOrc

EEOrc

POrc

MOrcIfOrc

EIfOrc

EPOrc

EMOrc

< x <
; and <!

Figure 9.1: Visual representation of the relationships in Orc sub-families.
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Given that, for orchestrations where sites where deterministic, we studied the following
problems:

• Output. Compute the number of outputs of an execution.

• Produces. Solve if an execution will or not publish some values during an execution.

• OutputValue. Compute the number of outputs of a values = v during an execution.

• ProducesValue. Solve if an execution will or not publish some values = v during an
execution.

We have also seen that if site calls are also deterministic in the time needed, for those
families, the results published follows a certain publication times. In those cases, the following
problems where studied:

• first. Time required for the first value to be published.

• last. Time required for the last value to be published.

• avgDelay. Average time required for a value to be published.

The assumption of sites with deterministic behaviour was not too realistic, as we have
seen that web-services does not have a 100% reliability, sometimes can perform some random
computation, can be affected by real life actions,... Given that, we proposed a new framework
based on probabilistic sites. For those sites, we defined different profiles for independent calls:

• Delay&Value Profile. Describing the probability of publish a certain value with certain
delay or halt.

• Halting&Value Profile. Describing the probability of publish a certain value or halt.

• Delay Profile. Describing the probability that a site call take some time.

• Halting Profile. Describing the probability that a site call succeeds.

• Value Profile. Describing the probability of publish a certain value on a successful call.

We also define 2 different profiles in order to describe the environment of sites:

• Status Profile. Describe the behaviour of a site, given a status of the environment
related only to it.

• Type Profile. Describe the behaviour of sites, given a status of the environment related
only to them.

With those different probabilistic profiles, then we are able to represent more realistic sites,
with probabilities of failures or on random computations an also describe some behaviours of
related sites. Then, we extend the deterministic model with 3 new probabilistic models based
in probabilistic and independent site calls.

• Oblivious model. The case where the environment has only one possible state.
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• Stable model. The case where the environment of each site is independent.

• Typed model. The case where some sites have common environments.

Given these models, we see some QoS measures related to the seen before. For output
related problems, we studied the following problems:

• ExpOut. Compute the expected number of outputs of an execution.

• PrProduction. Compute the probability of publish at least one value during an execution.

• PrOut. Compute the probability of publish more than k values during an execution.

And for time related problems:

• ExpFirst. Compute the expected delay of the first published value.

• PrFirst. Compute the probability of publish the first value in time ≤ k.

• minDelay. Compute the minimum possible delay for the first published item.

• maxDelay. Compute the maximum possible delay for the last published item.

• ExpLast. Compute the expected delay of the last published value.

• PrLast. Compute the probability of publish the last value in time > k.

• avgDelay. Compute the average delay of all published values.

We show that all those problems belongs to PSPACE, with the assumption of having
“small” domains of values, but different lower bound on complexity were found. As the
solution of these problems are not integer or boolean values but decimal values, we need to
take into account that there will be some precision errors according to the type of data used,
the expression and the probabilistic profile. The following tables resume the results found:
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Problem Model ElemOrc EElemOrc PruOrc EPruOrc IfOrc EIfOrc MixOrc EMixOrc

PrProduction
Deterministic P P P P NP-C NP-C NP-C NP-C
Oblivious P P ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

ExpOut
Deterministic P P P P ]P-C ]P-H ].NP-C ].NP-H
Oblivious P P ]P-H ]P-H ]P-H ]P-H ].NP-H ].NP-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ].NP-H ].NP-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ].NP-H ].NP-H

PrOut
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

Table 9.1: Resume of problems related to the number of outputs with probabilistic environments. All problems belong to PSPACE.
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Problem Model ElemOrc EElemOrc PruOrc EPruOrc IfOrc EIfOrc MixOrc EMixOrc

PrFirst
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

ExpFirst
Deterministic P P P P ]P-H ]P-H ]P-H ]P-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

MinFirst
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious P P P P NP-H NP-H NP-H NP-H
Stable NP-H NP-H NP-H NP-H
Typed NP-H NP-H NP-H NP-H NP-H NP-H NP-H NP-H

Table 9.2: Resume of problems related to the first delay of outputs with probabilistic environments. All problems belong to PSPACE.
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Problem Model ElemOrc EElemOrc PruOrc EPruOrc IfOrc EIfOrc MixOrc EMixOrc

PrLast
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

ExpLast
Deterministic P P P P ]P-H ]P-H ]P-H ]P-H
Oblivious ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Stable ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H
Typed ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H ]P-H

MaxLast
Deterministic P P P P NP-H NP-H NP-H NP-H
Oblivious P NP-H NP-H NP-H NP-H
Stable NP-H NP-H NP-H NP-H
Typed NP-H NP-H NP-H NP-H NP-H NP-H NP-H NP-H

Table 9.3: Resume of problems related to the last delay of outputs with probabilistic environments. All problems belong to PSPACE.
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9.1 Future Work
We have seen some QoS measures for orchestrations, both for deterministic sites without

failures and for probabilistic sites with failures, but in some cases we were unable to get
lower bounds on the complexity of those problems. The unknown lower bounds, all appear
on classes where the value does not affect the result to the number of outputs published or
the time of their publication. In those cases, it will be interesting to find if there are some
lower-bound bigger than P or if they are actually P.

We selected families were the non-determinism on the values defined by pruning does not
matter. The next direct step is to extend the problems seen to all the finite Orc expressions,
for deterministic and probabilistic models.

Different approaches can be done, but we propose an approach based on delay and value
profiles. In that case, we can try to get the multiplicity of values published with minimum
delay and get then the probability for each delay. This approach is more or less easy to do
for the Deterministic model, but for probabilistic models that may be a bit more complex.

In addition to the problems seen, there can be other interesting QoS measures related to
the seen. For example, for the Deterministic model:

• Determine if an expression publish at least k/half of its values within some time t.

• Compute the deviation on delay of published values.

• Compute the probability that the first published value has some value v.

Or for probabilistic models:

• Compute the probability of publishing at least k values.

• Compute the probability that an expression publish at least k/half of its values within
some time t.

• Compute the average delay of published values.

• Compute the probability that the first published value has some value v.

On the other hand, besides of study new problems, we can see the studied problems with
the addition of new operators extending the language. For example, we propose the following:

• Operator : Besides A : B
This operator would be the opposite of otherwise (A;B). In this case, the sub-expression
B will start its execution when A publish its first value. In case that A does not publish
anything, then B will not be executed.
In the Deterministic model, if only consider QoS measures for the orchestration, it will
be equivalent to A|(B <!A). That is not the case for the probabilistic models.

• Operator : Last pruning A(x) < x|B
Modification of the pruning operator where x is not defined by the first value published
by B, but by the last value published. As the operator otherwise, sometimes it can be
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undecidable if there will be or not new values published by B, in that case we can add
a time-out t for within all the values of B need to be published (A < x|tB)

Having measures of the goodness of orchestrations, the next step will be to optimize those
orchestrations to get the maximum number of outputs, minimum delays, minimum cost for
at least some probability of publish... Optimization problems tend to have high cost when
multiple variables are involved, in this case sites. Also, we have that only compute the
“values” for a defined set of sites is in most cases practically incommutable, having in many
cases complexities from NP-Hard onwards. Even so, orchestrations commonly do not tend to
be “really big”, as in those case too many things could fail, therefore we find interesting the
optimization “small” of orchestrations for which we can compute some goodness measure.

Some approaches based on Game Theory [41] has been done related to sites with determin-
istic behaviours [14, 16] under site failures. There, a competitive game named Angel-Daemon
game was proposed. In that game, two players, the Angel and the Daemon, decided a which
fail one in order to increases the number of outputs and other in order to decrease it.

Basing on this idea, we propose new similar games based on the angel-daemon behaviour
of players to optimize get orchestrations that, although without optimum, will have a good
behaviour under certain assumptions.

1. Angel-Daemon with probabilistic sites.
First, we extend the Angel-Daemon for sites with probabilistic behaviour. In this case,
instead of selecting the set of sites that will fail, each player has to select a set of “bad”
status profiles for his set of sites.

2. Security-Vs-Attack.
As we have seen, an increase on the security contracted affects directly to the behaviour
of sites when they are under attack. In this game, the angelic player will select a number
of sites to have high security. Then, the daemonic player will select a set of “bad” status
profiles for the sites.
This game goal is to search for the critical services that can cause the worst behaviour
under attack in order to avoid the worst case scenario.

3. Replicate-Vs-Attack.
Another way of increasing the goodness of orchestrations is to replicate sites in order
to have more security under failures, avoid instantaneous problems,... In this game,
the angelic player will add some copies of sites in order to increase the goodness of the
orchestration. Then, the daemonic player will select a set of “bad” status profiles for
the sites of the resulting orchestration.
This game goal is to search for the critical services that can cause the worst behaviour
under attack for which replication can appease those problems.

For these different games, we can focus either on measures related to the number of
outputs as for related to the delay. Also, these games can be extended with different rules as
be within a maximum cost, sites that are related under attack or that can not be improved
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to a certain extent of without the improvement of another site... Given that, the study of
some of these problems can be a good starting point to create best orchestrations of sites,
now that cloud computing is on the rise.
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Appendix A

Java Library

Together with the text of the thesis, we provide 3 little Java libraries based on the algo-
rithms seen. In this chapter we provide a description of each part of the libraries and how to
use them. The 3 libraries are the following:

• ProbOrcSignal. Library for compute Output and Produces of ExtPruningOrc expres-
sions in the oblivious model.

• ProbOrcBool. Library for compute Output and Produces of ExtMixedOrc expressions
in the oblivious model.

• VModelOrc. Library for execute Orc expressions by the fully defined variables model.

A.1 Working with expressions
All 3 libraries are based on a class singleton class ORC that is the responsible of define

and store expressions along with to manage the computations.
In order to define expression we use the functions AddExpression and AddSite. During

the definition, we can refer to sites and expressions not yet available, given that, it is possible
to define recursive expressions. We can also redefine expressions and sites.

Example A.1 Let us consider the PruningOrc expression SendNews (Example 3.1) :

SendNews = (AddressAlice > a > Email(a,m))
< m < (CNN | BBC )

This expression can be codified as:

ORC o = ORC.Singleton();
o.AddExpression("SendNews() = ( AddressAlice() >a> Email(a,m) )

<m< (CNN() | BBC() ) ");

In Example 4.3, we have seen this expression rewritten as:

A(m) = (AddressAlice > a > Email(a,m))
B = (CNN | BBC )

SendNews = A < m < B
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ORC o = ORC.Singleton();
o.AddExpression("A() = AddressAlice() >a> Email(a,m)");
o.AddExpression("B() = CNN() | BBC() ");
o.AddExpression("SendNews() = A(m) <m< B() ");

When writing expressions, calls to sites and other expressions are codified using the no-
tation Name(x1, . . . , xn) in case of a call with parameters x1, . . . , xn and Name() for a call
without parameters.

A.2 Defining sites
Each library has is own kind of site.

• ProbOrcSignal : SignalSite.

• ProbOrcBool : BoolSite.

• VModelOrc : Site.

A.2.1 SignalSite

Sites used to compute Output and Produces on ExtPruningOrc expressions. These sites are
described by the probability of success given when initializing it. That probability can be
given as a double or preferably as a fraction, with the numerator and denominator.

Example A.2 Let us consider that sites CNN and BBC have probabilities of success 9/10
and 19/20, then we define these sites as follows:

ORC o = ORC.Singleton();
o.AddSite("CNN", SignalSite(9,10));
o.AddSite("BBC", SignalSite(19,20));

A.2.2 BoolSite
Sites used to compute Output and Produces on Boolean ExtMixedOrc expressions. The

base class is abstract and we need to generate our own sites extending it.

public abstract class BoolSite {
abstract public BigFraction P(Boolean[] vals, BigFraction postF,

BigFraction postT);
abstract public BigFraction E(Boolean[] vals, Boolean r);

}

We need to implement the methods BigFractionP and BigFractionE.
The method P takes the array vals as input and postF and postT as the post probability

if produced false or true. When implementing it, we need to ensure that it never returns a
value bigger than 1.
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The method E takes the array vals and a value r as input. It returns the probability of
publish the value r in case that r = true or r = false or the probability of publish something
in case that r = null. When implementing it, we need to ensure that it never returns a value
bigger than 1.

Example A.3 Let us consider that sites Coin (Example 6.1), then we define this site as
follows:

public class Coin extends BoolSite{
@Override
public BigFraction P(Boolean[] vals, BigFraction postF, BigFraction postT) {

return postT.add(postF).divide(2);
}

@Override
public BigFraction E(Boolean[] vals, Boolean r) {

if(r==null){
return BigFraction.ONE;

} else {
return BigFraction.ONE.divide(2);

}
}

}

In order to compose expressions, there are some operators available:

• Sequential A >> B.

• Define A > x > B.

• Parallel A|B.

• NParallel |nA.
Equivalent to A| . . . |A, for n parallel calls to A.

• Pruning A < x < B.

• Signaling A <!B.

Site 1() is a default site for all the libraries. Also, site If(a op b) for ProbOrcBool (where
a and b can be variables or true/false and op can be =, ! =, <, <=, > and >=).

A.2.3 Site
Sites used to execute expressions with the fully defined variables model. The base class is

abstract and we need to generate our own sites extending it.

public abstract class Site {
abstract public ArrayList Ex(Object[] vals);

}
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We need to implement the method ArrayListEx.
The method Ex takes the array vals as input. It returns an empty list if the site call does

not publish and otherwise publish a list with the value published.

Example A.4 Let us consider that sites Coin (Example 6.1), then we define this site as
follows:

public class Coin extends Site{
@Override
public ArrayList Ex(Object[] os) {

ArrayList ret = new ArrayList();
Random rand = new Random();
if(rand.nextBoolean()){

ret.add(true);
} else {

ret.add(false);
}
return ret;

}
}

As the implementation of sites is open to the user, they can be implemented publishing
any number of values, unlike in the standard. In the same way, they can be implemented as
local functions or with calls to external services.

A.3 Computing QoS measures and Executing
ProbOrcSignal and ProbOrcBool are libraries thought to compute two different QoS

measures, the probability of publish something and the expected number of items published
during an execution. In both cases, the manager class ORC is the responsible of computing
these measures.

In order to compute Produces we use the function P , returning the probability as a
BigFraction:

public BigFraction P(String name) throws Exception
public BigFraction P(String name, Boolean[] pars) throws Exception

The parameter name is the name of an expression or site. The extra parameter pars is
an array containing the parameters to the call, used for cases of expressions and sites with
input parameters.

In order to compute Output we use the function E, returning the expected number of
items as a BigFraction:

public BigFraction E(String name) throws Exception
public BigFraction E(String name, Boolean[] pars) throws Exception
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The parameter name is the name of an expression or site. The extra parameter pars is
an array containing the parameters to the call, used for cases of expressions and sites with
input parameters.

VModelOrc is a library thought to execute Orc expressions using the fully defined vari-
ables model. The manager class ORC is the responsible of start the execution.

In order to start the execution we use the function Ex, returning an array of output
values:

public ArrayList Ex(String name) throws Exception
public ArrayList Ex(String name, Object[] pars) throws Exception

The execution is done sequentially and because that we need to be careful with big outputs
and time expensive sites in parallel compositions.

A.4 Code and Dependencies
The libraries and the code can be found on https://github.com/gaixas1/ProbOrc. All

the code is open and free to modify and use.
There are also two dependencies needed to use it (both included in the folder “dependen-

cies/”):

• ANTLR v3. Library used for parsing the Orc expressions.

• Appache Commons Math. Library containing the BigFraction class used to compute
results (only needed for ProbOrcSignal and ProbOrcBool).
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Appendix B

Working examples

Now that we have the models and problems defined, let us see some examples with simple
expressions.

Following we have the list of examples and case studies:

1. All4All
TwoNews = (CNN | BBC )
SendNews(a) = (TwoNews > x > Email(a, x))
Addresses = (AddressAlice | AddressBob)
All4All = (Addresses > a > SendNews(a))

An ElementaryOrc expression.
Problems:
Deterministic model : Output, Produces, first, last and avgDelay.
Oblivious model : ExpOut, PrProduction, ExpFirst, PrFirst, ExpLast and PrLast.
Typed model : ExpOut and PrProduction.

2. MyNews
TwoNews = (CNN | BBC )
MyEmails(a, x) = (EmailDad(x) | Email(a, x))
SendNews(a) = (TwoNews > x > MyEmails(a, x))
Addresses = (AddressAlice | AddressBob)
MyNews = (SendNews(a) < a < Addresses)

A PruningOrc expression.
Problems:
Deterministic model : Output and Produces.
Oblivious model : ExpOut and PrProduction.
Typed model : ExpOut and PrProduction.

3. OneOrTwo

OneOrTwo = Coin > b >(
If (b)� CNN | If (¬b)� (CNN | BBC )

)
An IfOrc expression.
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Problems:
Oblivious model : ExpOut, PrProduction, ExpFirst and PrFirst.
Stable model : ExpOut and PrProduction.

4. Cron

Backup = DB.new > x > BackupServer .send(x)
> d > BackupDB.save(d)

DBActions = (Backup | DB.day())
Cron = Server .access()� DBActions > y > Mail.send(y)

A site composed by different servers expressed by an ElementaryOrc expression.
Problems:
Halting profiles under the Typed Model.

B.1 All4All

TwoNews = (CNN | BBC )
SendNews(a) = (TwoNews > x > Email(a, x))
Addresses = (AddressAlice | AddressBob)
All4All = (Addresses > a > SendNews(a))

All4All is an ElementaryOrc expression, therefore we can consider that all sites publish a
signal. Let us analyse it under Deterministic, Oblivious and Typed models.

B.1.1 Deterministic Model

For the deterministic model all sites success in any call, also we say that sites have the
following delays:

Site Delay
CNN 500
BBC 600

AddressAlice 200
AddressBob 200

Email 800

Let us compute first out(All4All):

out(All4All) = out(Addresses) ∗ out(SendNews)
out(Addresses) = out(AddressAlice) + out(AddressBob) = 2
out(SendNews) = out(TwoNews) ∗ out(Email)

= out(TwoNews) ∗ 1
out(TwoNews) = out(CNN ) + out(BBC ) = 2
out(SendNews) = 2
out(All4All) = 2 ∗ 2 = 4

As out(All4All) = 4, All4All ∈ Produces.
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Now, let us compute first(All4All) and last(All4All):

first(All4All) = first(Addresses) + first(SendNews)
first(Addresses) = Min(first(AddressAlice), first(AddressBob))

= Min(200, 200) = 200
first(SendNews) = first(TwoNews) + first(Email)

= first(TwoNews) + 800
first(TwoNews) = Min(first(CNN ), first(BBC ))

= Min(500, 600) = 500
first(SendNews) = 500 + 800 = 1300
first(All4All) = 200 + 1300 = 1500

last(All4All) = first(Addresses) + first(SendNews)
last(Addresses) = Max(first(AddressAlice), first(AddressBob))

= Max(200, 200) = 200
last(SendNews) = first(TwoNews) + first(Email)

= first(TwoNews) + 800
last(TwoNews) = Max(first(CNN ), first(BBC ))

= Max(500, 600) = 600
last(SendNews) = 600 + 800 = 1400
last(All4All) = 200 + 1400 = 1600

Finally, let us compute avgDelay(All4All):

avgDelay(All4All) = avgDelay(Addresses) + avgDelay(SendNews)
avgDelay(Addresses) = AV G(first(AddressAlice), first(AddressBob))

= AV G(200, 200) = 200
avgDelay(SendNews) = avgDelay(TwoNews) + avgDelay(Email)

= first(TwoNews) + 800
avgDelay(TwoNews) = AV G(first(CNN ), first(BBC ))

= AV G(500, 600) = 550
avgDelay(SendNews) = 550 + 800 = 1450
avgDelay(All4All) = 200 + 1450 = 1550

It holds that first(All4All) ≤ avgDelay(All4All) ≤ last(All4All) (1500 < 1550 < 1600).

B.1.2 Oblivious Model

For the Oblivious model all sites fail in independent calls with certain probability and also
can take different times to publish. The following table shows the probability of each delay,
we take failure as delay ω:
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Site Delay
CNN 500@1/2 [] 700@1/3 [] ω@1/6
BBC 600@3/4 [] 700@1/6 [] ω@1/12

AddressAlice 200@1/2 [] 250@9/20 [] ω@1/20
AddressBob 200@1/2 [] 250@9/20 [] ω@1/20

Email 800@1/2 [] 1000@1/2

Let us compute first E(out) and Pr(out > 0).

E(out(All4All)) = E(out(Addresses)) ∗ E(out(SendNews))
E(out(Addresses)) = E(out(AddressAlice)) + E(out(AddressBob))

= 19/20 + 19/20 = 19/10
E(out(SendNews)) = E(out(TwoNews)) ∗ E(out(Email)

= out(TwoNews)) ∗ 1
E(out(TwoNews)) = E(out(CNN )) + E(out(BBC ))

= 5/6 + 11/12 = 7/4
E(out(SendNews)) = 7/4
E(out(All4All)) = (19/10) ∗ (7/4) = 133/40 = 3.325

Pr(out(All4All) > 0) = Pr(All4All, 1)
Pr(All4All, 1) = Pr(Addresses,Pr(SendNews, 1))
Pr(SendNews, 1) = Pr(TwoNews,Pr(Email, 1))

= Pr(TwoNews, 1)
Pr(TwoNews, 1) = 1− (1− Pr(CNN , 1)) ∗ (1− Pr(BBC , 1))

= 1− (1/6) ∗ (1/12) = 71/72
Pr(SendNews, 1) = 71/72
Pr(All4All, 1) = Pr(Addresses, 71/72)
Pr(Addresses, 71/72) = 1− (1− Pr(AddressAlice, 71/72)) ∗ (1− Pr(AddressBob, 71/72))

= 1− (1− 1349/1440) ∗ (1− 1349/1440) = 2065319/2073600
Pr(All4All, 1) = 2065319/2073600 ≈ 0.996

For E(first) and Pr(first ≤ k), let us compute the delay distribution of first(All4All)1

1We are going to use + and ∗ to describe sequential and parallel composition of distributions.
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first(All4All, [0]) = first(Addresses, first(SendNews, [0]))
first(SendNews, [0]) = first(TwoNews, first(Email, [0])) =

first(TwoNews, (800@1/2 [] 1000@1/2))
first(TwoNews, (800@1/2 [] 1000@1/2)) =

first(CNN , (800@1/2 [] 1000@1/2)) + first(BBC , (800@1/2 [] 1000@1/2))
first(CNN , (800@1/2 [] 1000@1/2)) =

(500@1/2 [] 700@1/3 [] ω@1/6) ∗ (800@1/2 [] 1000@1/2) =
(1300@1/4 [] 1500@5/12 [] 1700@1/6 [] ω@1/6)

first(BBC , (800@1/2 [] 1000@1/2)) =
(600@3/4 [] 700@1/6 [] ω@1/12) ∗ (800@1/2 [] 1000@1/2) =
(1400@3/8 [] 1500@1/12 [] 1600@3/8 [] 1700@1/12 [] ω@1/12)

first(TwoNews, (800@1/2 [] 1000@1/2)) =
(1300@1/4 [] 1500@5/12 [] 1700@1/6 [] ω@1/6)+

(1400@3/8 [] 1500@1/12 [] 1600@3/8 [] 1700@1/12 [] ω@1/12) =
(1300@1/4 [] 1400@9/32 [] 1500@83/288 [] 1600@1/8 [] 1700@1/24 [] ω@1/72)

first(Addresses, (1300@1/4 [] . . . [] ω@1/72)) =
first(AddressAlice, (1300@1/4 [] . . . [] ω@1/72))+

first(AddressBob, (1300@1/4 [] . . . [] ω@1/72))
first(AddressAlice, (1300@1/4 [] . . . [] ω@1/72)) =

(200@1/2 [] 250@9/20 [] ω@1/20) ∗ (1300@1/4 [] . . . [] ω@1/72) =
(1500@1/8 [] 1550@9/80 [] 1600@9/64

[] 1650@81/640 [] 1700@83/576 [] 1750@83/640
[] 1800@1/16 [] 1850@9/160 [] 1900@1/48
[] 1950@3/160 [] ω@91/1440)

first(AddressBob, (1300@1/4 [] . . . [] ω@1/72)) =
first(AddressAlice, (1300@1/4 [] . . . [] ω@1/72))

first(Addresses, (1300@1/4 [] . . . [] ω@1/72)) =
(1500@1/8 [] . . . [] ω@91/1440) ∗ (1500@1/8 [] . . . [] ω@91/1440) ≈
(1500@0.2344 [] 1550@0.1842 [] 1600@0.1947

[] 1650@0.1414 [] 1700@0.122 [] 1750@0.0743
[] 1800@0.0238 [] 1850@0.0147 [] 1900@0.0038
[] 1950@0.0027 [] ω@0.004)

Given this delay distribution, we can see that it holds Pr(out > 0) = Pr(first 6= ω). Now,
from this distribution we have: E(first(All4All)) =

∑
(δ,p)∈first(All4All) δ ∗ p/Pr(out(All4All) >

0) ≈ 1608.34

B.1.3 Typed Model

For the Typed model we are going to compute E(out) and Pr(out > 0). For this, we need
type profiles for the sites. In this case, we say that CNN and BBC are related, having similar
behaviours in time and sites AddressAlice and AddressBob are in the same server. Given that,
the following table show the different type profiles for each site:
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Sites Type Profile
(CNN ,BBC ) ((1@1), (1 @1/2 [] 0 @1/2))@5/6 []

((0@1), (0 @1))@1/6
(AddressAlice, ((1 @1), (1 @1))@19/20
AddressBob) [] ((0@1), (0 @1))@1/20

Email (1@1)

In this case we have 4 global profiles.

Sites Global Profile A Global Profile B
CNN (1@1) (0@1)
BBC (1 @1/2 [] 0 @1/2) (0@1)

AddressAlice (1 @1) (1 @1)
AddressBob (1 @1) (1 @1)

Email (1@1) (1@1)
Probability 19/24 19/120

Sites Global Profile C Global Profile D
CNN (1@1) (0@1)
BBC (1 @1/2 [] 0 @1/2) (0@1)

AddressAlice (0 @1) (0 @1)
AddressBob (0 @1) (0 @1)

Email (1@1) (1@1)
Probability 1/24 1/120

In this case, is clear that with profiles B, C and D, All4All does not publish anything, as
each execution path goes for CNN or BBC and for AddressAlice or AddressBob. Then, let
us see what happens with the profile A. As AddressAlice, AddressBob and Email never fail
in this case, then :
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E(out(All4All)|A) = E(out(Addresses)|A) ∗ E(out(SendNews)|A)
E(out(Addresses)|A) = E(out(AddressAlice)|A) + E(out(AddressBob)|A) = 2
E(out(SendNews)|A) = E(out(TwoNews)|A) ∗ E(out(Email|A)

= out(TwoNews)|A) ∗ 1
E(out(TwoNews)|A) = E(out(CNN )|A) + E(out(BBC )|A)

= 1 + 1/2 = 3/2
E(out(SendNews)|A) = 3/2
E(out(All4All)|A) = 2 ∗ (3/2) = 3

Pr(out(All4All) > 0|A) = Pr(All4All|A, 1)
Pr(All4All|A, 1) = Pr(Addresses|A,Pr(SendNews|A, 1))
Pr(SendNews|A, 1) = Pr(TwoNews|A,Pr(Email|A, 1))

= Pr(TwoNews|A, 1)
Pr(TwoNews|A, 1) = 1− (1− Pr(CNN |A, 1)) ∗ (1− Pr(BBC |A, 1))

= 1− (1− 1) ∗ (1− 1/2) = 1
Pr(SendNews|A, 1) = 1
Pr(All4All|A, 1) = Pr(Addresses|A, 1)
Pr(Addresses|A, 1) = 1− (1− Pr(AddressAlice|A, 1))

∗(1− Pr(AddressBob|A, 1))
= 1− (1− 1) ∗ (1− 1) = 1

Pr(All4All|A, 1) = 1

As the profile A has probability 19/24, we have that E(out(All4All)) = E(out(All4All)|A)∗
19/24 = 2.375 and Pr(out(All4All) > 0) = Pr(All4All|A, 1) ∗ 19/24 ≈ 0.7917.

B.2 MyNews

TwoNews = (CNN | BBC )
MyEmails(a, x) = (EmailDad(x) | Email(a, x))
SendNews(a) = (TwoNews > x > MyEmails(a, x))
Addresses = (AddressAlice | AddressBob)
MyNews = (SendNews(a) < a < Addresses)

MyNews is an PruningOrc expression, therefore we can consider that all sites publish a
signal. Let us analyse it under Deterministic, Oblivious and Typed models.
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B.2.1 Deterministic Model

Let us compute first out(MyNews):

out(MyNews) = out(SendNews) ∗ hasOut(Addresses)
out(Addresses) = out(AddressAlice) + out(AddressBob) = 2
hasOut(Addresses) = (out(Addresses) > 0) = (2 > 0) = 1
out(SendNews) = out(TwoNews) ∗ out(MyEmails)
out(MyEmails) = out(EmailDad) + out(Email) = 2
out(TwoNews) = out(CNN ) + out(BBC ) = 2
out(SendNews) = 2 ∗ 2 = 4
out(MyNews) = 4 ∗ 1 = 4

As out(MyNews) = 4, then MyNews ∈ Produces.

B.2.2 Oblivious Model

For the Oblivious model all sites fail in independent calls with certain probability. The
following table shows the probability of success/failure for each site:

Site Success Failure
CNN 5/6 1/6
BBC 11/12 1/12

AddressAlice 19/20 1/20
AddressBob 19/20 1/20

Email 1 0
EmailDad 1 0

Let us compute Pr(out(MyNews) > 0) and E(out(MyNews)).
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Pr(out(All4All) > 0) = Pr(MyNews, 1)
Pr(MyNews, 1) = Pr(SendNews(a 6= ⊥), 1) ∗ Pr(Addresses, 1)

+ Pr(SendNews(a = ⊥), 1) ∗ (1− Pr(Addresses, 1))
Pr(Addresses, 1) = 1− (1− Pr(AddressAlice, 1))(1− Pr(Bob, 1))

+1− (1− 19/20)(1− 19/20) = 399/400
Pr(SendNews(a 6= ⊥), 1) = Pr(TwoNews,Pr(MyEmails(a 6= ⊥), 1))
Pr(MyEmails(a 6= ⊥), 1) = 1− (1− Pr(EmailDad))(1− Pr(Email(a 6= ⊥)))

= 1− (1− 1)(1− 1) = 1
Pr(SendNews(a 6= ⊥), 1) = Pr(TwoNews, 1)
Pr(SendNews(a = ⊥), 1) = Pr(TwoNews,Pr(MyEmails(a = ⊥), 1))
Pr(MyEmails(a = ⊥), 1) = 1− (1− Pr(EmailDad))(1− Pr(Email(a = ⊥)))

= 1− (1− 1)(1− 0) = 1
Pr(SendNews(a = ⊥), 1) = Pr(TwoNews, 1)
Pr(MyNews, 1) = Pr(TwoNews, 1) ∗ Pr(Addresses, 1)

+ Pr(TwoNews, 1) ∗ (1− Pr(Addresses, 1))
= Pr(TwoNews, 1)

Pr(TwoNews, 1) = 1− (1− Pr(CNN , 1)) ∗ (1− Pr(BBC , 1))
= 1− (1/6) ∗ (1/12) = 71/72

Pr(MyNews, 1) = (71/72) ≈ 0.986

E(out(MyNews)) = E(out(SendNews(a 6= ⊥))) Pr(Addresses, 1)
+E(out(SendNews(a = ⊥)))(1− Pr(Addresses, 1))

E(out(SendNews(a 6= ⊥))) = E(out(TwoNews)) ∗ E(out(MyEmails(a 6= ⊥))
E(out(MyEmails(a 6= ⊥) = E(out(EmailDad)) + E(out(Email(a 6= ⊥))) = 2
E(out(SendNews(a = ⊥))) = E(out(TwoNews)) ∗ E(out(MyEmails(a = ⊥))
E(out(MyEmails(a 6= ⊥) = E(out(EmailDad)) + E(out(Email(a = ⊥))) = 1
E(out(TwoNews)) = E(out(CNN )) + E(out(BBC ))

= 5/6 + 11/12 = 7/4
E(out(SendNews(a 6= ⊥))) = 7/2
E(out(SendNews(a = ⊥))) = 7/4
E(out(MyNews)) = (7/2) ∗ (399/400) + (7/4) ∗ (1/400) = 5593/1600 ≈ 3.496

B.2.3 Typed Model

For the Typed case, let us consider the same profiles as for All4All. 2

Sites Global Profile A Global Profile B
CNN (1@1) (0@1)
BBC (1 @1/2 [] 0 @1/2) (0@1)

AddressAlice (1 @1) (1 @1)
AddressBob (1 @1) (1 @1)

Email (1@1) (1@1)
EmailDad (1@1) (1@1)

Probability 19/24 19/120
2EmailDad is an alias of Email with a fixed address, therefore have the same probability, in this case 1.
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Sites Global Profile C Global Profile D
CNN (1@1) (0@1)
BBC (1 @1/2 [] 0 @1/2) (0@1)

AddressAlice (0 @1) (0 @1)
AddressBob (0 @1) (0 @1)

Email (1@1) (1@1)
EmailDad (1@1) (1@1)

Probability 1/24 1/120

Like for All4All, is clear that with profiles B, and D, MyNews does not publish anything
as there are no news in those cases. Now, let us see what happens with the profile A. As
AddressAlice, AddressBob and Email never fail in this case, then :

Pr(out(MyNews) > 0) = Pr(MyNews, 1)
Pr(Addresses, 1) = 1− (1− Pr(AddressAlice, 1))(1− Pr(Bob, 1))

+1− (1− 1)(1− 1) = 1
Pr(MyNews, 1) = Pr(SendNews(a 6= ⊥), 1) ∗ Pr(Addresses, 1)

+ Pr(SendNews(a = ⊥), 1) ∗ (1− Pr(Addresses, 1))
= Pr(SendNews(a 6= ⊥), 1) + 0

Pr(SendNews(a 6= ⊥), 1) = Pr(TwoNews,Pr(MyEmails(a 6= ⊥), 1))
Pr(MyEmails(a 6= ⊥), 1) = 1− (1− Pr(EmailDad))(1− Pr(Email(a 6= ⊥)))

= 1− (1− 1)(1− 1) = 1
Pr(SendNews(a 6= ⊥), 1) = Pr(TwoNews, 1)
Pr(MyNews, 1) = Pr(TwoNews, 1)
Pr(TwoNews, 1) = 1− (1− Pr(CNN , 1)) ∗ (1− Pr(BBC , 1))

= 1− (1) ∗ (1/2) = 1
Pr(MyNews, 1) = 1

E(out(MyNews)) = E(out(SendNews(a 6= ⊥))) Pr(Addresses, 1)
+E(out(SendNews(a = ⊥)))(1− Pr(Addresses, 1))
= E(out(SendNews(a = ⊥))) Pr(Addresses, 1) + 0

E(out(SendNews(a 6= ⊥))) = E(out(TwoNews)) ∗ E(out(MyEmails(a 6= ⊥))
E(out(MyEmails(a 6= ⊥) = E(out(EmailDad)) + E(out(Email(a 6= ⊥))) = 2
E(out(TwoNews)) = E(out(CNN )) + E(out(BBC ))

= 1 + 1/2 = 3/2
E(out(SendNews(a 6= ⊥))) = 3/2 ∗ 2 = 3
E(out(MyNews)) = 3 ∗ 1 = 3

Now, in the profile C. As AddressAlice and AddressBob always fail in this case, then :
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Pr(out(MyNews) > 0) = Pr(MyNews, 1)
Pr(Addresses, 1) = 1− (1− Pr(AddressAlice, 1))(1− Pr(Bob, 1))

+1− (1− 0)(1− 0) = 0
Pr(MyNews, 1) = Pr(SendNews(a 6= ⊥), 1) ∗ Pr(Addresses, 1)

+ Pr(SendNews(a = ⊥), 1) ∗ (1− Pr(Addresses, 1))
= 0 + Pr(SendNews(a = ⊥), 1)

Pr(SendNews(a = ⊥), 1) = Pr(TwoNews,Pr(MyEmails(a = ⊥), 1))
Pr(MyEmails(a = ⊥), 1) = 1− (1− Pr(EmailDad))(1− Pr(Email(a = ⊥)))

= 1− (1− 1)(1− 0) = 1
Pr(SendNews(a = ⊥), 1) = Pr(TwoNews, 1)
Pr(MyNews, 1) = Pr(TwoNews, 1)
Pr(TwoNews, 1) = 1− (1− Pr(CNN , 1)) ∗ (1− Pr(BBC , 1))

= 1− (1) ∗ (1/2) = 1
Pr(MyNews, 1) = 1

E(out(MyNews)) = E(out(SendNews(a 6= ⊥))) Pr(Addresses, 1)
+E(out(SendNews(a = ⊥)))(1− Pr(Addresses, 1))
= E(out(SendNews(a = ⊥))) + 0

E(out(SendNews(a = ⊥))) = E(out(TwoNews)) ∗ E(out(MyEmails(a = ⊥))
E(out(MyEmails(a = ⊥) = E(out(EmailDad)) + E(out(Email(a = ⊥))) = 1
E(out(TwoNews)) = E(out(CNN )) + E(out(BBC ))

= 1 + 1/2 = 3/2
E(out(SendNews(a 6= ⊥))) = 3/2 ∗ 1 = 3/2
E(out(MyNews)) = 3/2 ∗ 1 = 1.5

As the profile A has probability 19/24 and profile C probability 1/24, we have that
E(out(MyNews)) = E(out(MyNews)|A) ∗ 19/24 + E(out(MyNews)|C) ∗ 1/24 ≈ 2.4375 and
Pr(out(MyNews) > 0) = Pr(MyNews|A, 1) ∗ 19/24 + Pr(MyNews|C, 1) ∗ 19/24 ≈ 0.8333.

B.3 OneOrTwo

OneOrTwo = Coin > b >(
If (b)� CNN | If (¬b)� (CNN | BBC )

)
OneOrTwo is an IfOrc expression, therefore we can consider that all sites publish a boolean

value or a signal (true). Site Coin publish true or false each with probability 1/2. Let us
analyse it under Oblivious and Stable models.

For simplification on the algorithm, let us rewrite it as

CIFT = If (b)� CNN
CIFF = If (¬b)� (CNN | BBC )
CIF = CIFT | CIFF

OneOrTwo = Coin > b > CIF
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B.3.1 Oblivious Model

For the Oblivious model all sites fail in independent calls with certain probability and also
can take different times to publish. The following table shows the probability of each delay,
we take failure as delay ω:

Site Delay
CNN 500@1/2 [] 700@1/3 [] ω@1/6
BBC 600@3/4 [] 700@1/6 [] ω@1/12

Let us compute first E(out) and Pr(out > 0).

E(out(OneOrTwo)) = E(out(Coin0)) ∗ E(out(CIF(b = 0)))
+E(out(Coin1)) ∗ E(out(CIF(b = 1)))

E(out(Coin0)) = 1/2
E(out(CIF(b = 0))) = E(out(CIFT (b = 0)) + E(out(CIFF(b = 0))
E(out(CIFF(b = 0)) = If (0 = 0) ∗ E(out(CNN )) = 1 ∗ 5/6 = 5/6
E(out(CIFT (b = 0)) = If (0 = 1) ∗ (E(out(CNN ))

+E(out(BBC ))) = 0 ∗ (5/6 + 11/12) = 0
E(out(CIF(b = 0))) = 5/6 + 0 = 5/6
E(out(Coin1)) = 1/2
E(out(CIF(b = 1))) = E(out(CIFT (b = 1)) + E(out(CIFF(b = 1))
E(out(CIFF(b = 1)) = If (1 = 0) ∗ E(out(CNN )) = 0 ∗ 5/6 = 0
E(out(CIFT (b = 1)) = If (1 = 1) ∗ (E(out(CNN ))

+E(out(BBC ))) = 1 ∗ (5/6 + 11/12) = 7/4
E(out(CIF(b = 1))) = 0 + 7/4 = 7/4
E(out(OneOrTwo)) = (1/2)(5/6) + (1/2)(7/4) = 31/24 ≈ 1.292

Pr(out(OneOrTwo) > 0) = Pr(OneOrTwo, 1)
Pr(OneOrTwo, 1) = Pr(Coin,Pr(CIF(b = 0), 1),Pr(CIF(b = 1), 1))
Pr(CIF(b = 0), 1) = 1− (1− Pr(CIFF(b = 0), 1))(1− Pr(CIFT (b = 0), 1))
Pr(CIFF(b = 0), 1) = If (0 = 0) ∗ Pr(CNN = 1 ∗ 5/6 = 5/6
Pr(CIFT (b = 0), 1) = If (0 = 1) ∗ (1− (1− Pr(CNN )(1− Pr(BBC ))

= 0 ∗ (71/72) = 0
Pr(CIF(b = 0), 1) = 5/6
Pr(CIF(b = 1), 1) = 1− (1− Pr(CIFF(b = 0), 1))(1− Pr(CIFT (b = 0), 1))
Pr(CIFF(b = 1), 1) = If (1 = 0) ∗ Pr(CNN = 0 ∗ 5/6 = 0
Pr(CIFT (b = 1), 1) = If (1 = 1) ∗ (1− (1− Pr(CNN )(1− Pr(BBC ))

= 1 ∗ (71/72) = 71/72
Pr(CIF(b = 1), 1) = 71/72
Pr(Coin, 5/6, 71/72) = (1/2)(5/6) + (1/2)(71/72) = 131/144
Pr(out(OneOrTwo) > 0) = 131/144 ≈ 0.910

For E(first) and Pr(first ≤ k), let us compute the delay distribution of first(OneOrTwo) in
a fast way.
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first(OneOrTwo, [0]) = first(Coin, first(CIF(b = 0), [0]), first(CIF(b = 1), [0]))
first(CIF(b = 0), [0]) = first(CIFF(b = 0), [0]) + first(CIFT (b = 0), [0])

= first(CIFF(b = 0), [0]) = first(CNN , [0])
= (500@1/2 [] 700@1/3 [] ω@1/6)

first(CIF(b = 1), [0]) = first(CIFF(b = 1), [0]) + first(CIFT (b = 1), [0])
= first(CIFT (b = 1), [0]) = first(CNN , [0]) + first(BBC , [0])
= (500@1/2 [] 700@1/3 [] ω@1/6) + (600@3/4 [] 700@1/6 [] ω@1/12)
= (500@1/2 [] 600@3/8 [] 700@1/9 [] ω@1/72)

first(Coin, (500@1/2 [] 700@1/3 [] ω@1/6),
(500@1/2 [] 600@3/8 [] 700@1/9 [] ω@1/72))
= (500@1/2 [] 600@3/16 [] 700@2/9 [] ω@13/144))

first(OneOrTwo) = (500@1/2 [] 600@3/16 [] 700@2/9 [] ω@13/144))

Given this delay distribution, we can see that it holds Pr(out > 0) = Pr(first 6= ω). Now,
from this distribution we have : E(first(OneOrTwo)) =

∑
(δ,p)∈first(OneOrTwo) δ∗p/Pr(out(OneOrTwo) >

0) ≈ 569.47

B.3.2 Typed Model

For the Typed case, let us consider two profiles.

Sites Global Profile A Global Profile B
CNN (1@1) (0@1)
BBC (1 @11/12 [] 0 @1/12) (1 @11/12 [] 0 @1/12)

Probability 5/6 1/6

Let us see what happens with the profile A. In this case calls to CNN never fail in this
case, then :
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E(out(OneOrTwo)|A) = E(out(Coin0)) ∗ E(out(CIF(b = 0)))
+E(out(Coin1)) ∗ E(out(CIF(b = 1)))

E(out(Coin0)) = 1/2
E(out(CIF(b = 0))) = E(out(CIFT (b = 0)) + E(out(CIFF(b = 0))

E(out(CIFF(b = 0))
E(out(CIFF(b = 0)) = If (0 = 0) ∗ E(out(CNN )) = 1 ∗ 1 = 1
E(out(CIF(b = 0))) = 1
E(out(Coin1)) = 1/2
E(out(CIF(b = 1))) = E(out(CIFT (b = 1)) + E(out(CIFF(b = 1))

E(out(CIFT (b = 1))
E(out(CIFT (b = 1)) = If (1 = 1) ∗ (E(out(CNN ))

+E(out(BBC ))) = 1 ∗ (1 + 11/12) = 23/12
E(out(CIF(b = 1))) = 23/12
E(out(OneOrTwo)) = (1/2)1 + (1/2)(23/12) = 35/24 ≈ 1.458

Pr(out(OneOrTwo|A) > 0) = Pr(OneOrTwo, 1)
Pr(OneOrTwo, 1) = Pr(Coin,Pr(CIF(b = 0), 1),Pr(CIF(b = 1), 1))
Pr(CIF(b = 0), 1) = 1− (1− Pr(CIFF(b = 0), 1))(1− Pr(CIFT (b = 0), 1)) =

Pr(CIFF(b = 0), 1)
Pr(CIFF(b = 0), 1) = If (0 = 0) ∗ Pr(CNN = 1 ∗ 1 = 1
Pr(CIF(b = 0), 1) = 1
Pr(CIF(b = 1), 1) = 1− (1− Pr(CIFF(b = 0), 1))(1− Pr(CIFT (b = 0), 1)) =

Pr(CIFT (b = 1), 1)
Pr(CIFT (b = 1), 1) = If (1 = 1) ∗ (1− (1− Pr(CNN )(1− Pr(BBC ))

= 1 ∗ 1 = 1
Pr(CIF(b = 1), 1) = 1
Pr(Coin, 5/6, 71/72) = (1/2)1 + (1/2)1 = 1
Pr(out(OneOrTwo) > 0) = 1

In the other hand, for the profile B, all calls to CNN fail, then :

136



E(out(OneOrTwo)|B) = E(out(Coin0)) ∗ E(out(CIF(b = 0)))
+E(out(Coin1)) ∗ E(out(CIF(b = 1)))

E(out(Coin0)) = 1/2
E(out(CIF(b = 0))) = E(out(CIFT (b = 0)) + E(out(CIFF(b = 0))

E(out(CIFF(b = 0))
E(out(CIFF(b = 0)) = If (0 = 0) ∗ E(out(CNN )) = 1 ∗ 0 = 0
E(out(CIF(b = 0))) = 0
E(out(Coin1)) = 1/2
E(out(CIF(b = 1))) = E(out(CIFT (b = 1)) + E(out(CIFF(b = 1))

E(out(CIFT (b = 1))
E(out(CIFT (b = 1)) = If (1 = 1) ∗ (E(out(CNN ))

+E(out(BBC ))) = 1 ∗ (0 + 11/12) = 11/12
E(out(CIF(b = 1))) = 11/12
E(out(OneOrTwo)) = (1/2)0 + (1/2)(11/12) = 11/24 ≈ 0.458

Pr(out(OneOrTwo) > 0) = Pr(OneOrTwo, 1)
Pr(OneOrTwo|B, 1) = Pr(Coin,Pr(CIF(b = 0), 1),Pr(CIF(b = 1), 1))
Pr(CIF(b = 0), 1) = 1− (1− Pr(CIFF(b = 0), 1))(1− Pr(CIFT (b = 0), 1)) =

Pr(CIFF(b = 0), 1)
Pr(CIFF(b = 0), 1) = If (0 = 0) ∗ Pr(CNN = 1 ∗ 0 = 0
Pr(CIF(b = 0), 1) = 1
Pr(CIF(b = 1), 1) = 1− (1− Pr(CIFF(b = 0), 1))(1− Pr(CIFT (b = 0), 1)) =

Pr(CIFT (b = 1), 1)
Pr(CIFT (b = 1), 1) = If (1 = 1) ∗ (1− (1− Pr(CNN )(1− Pr(BBC ))

= 1 ∗ 11/12 = 11/12
Pr(CIF(b = 1), 1) = 1/12
Pr(Coin, 5/6, 71/72) = (1/2)0 + (1/2)(11/12) = 11/24
Pr(out(OneOrTwo) > 0) = 11/24 ≈ 0.458

As the profileA has probability 5/6 and profileB probability 1/6, we have that E(out(MyNews)) =
E(out(MyNews)|A) ∗ 5/6 + E(out(MyNews)|C) ∗ 1/6 ≈ 1.292 and Pr(out(MyNews) > 0) =
Pr(MyNews|A, 1) ∗ 5/6 + Pr(MyNews|C, 1) ∗ 1/6 ≈ 0.910.

Observe that E(out(MyNews)) and Pr(out(MyNews) > 0) are the same for the Oblivious
and Stable Model. That is a special case that happens when all sites are called at most 1
time each during a evaluation and sites are not related.

B.4 Cron
Now lets see a real example with errors and randomness. For that we will see the backup

service of one of my personal web sites. The service goal is to backup some of the new data
and send a report by mail of the data and new comments.
The service use the following servers and functions:
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• Server. Main server an access point to the web site database. Functions allowed:

– access(). Query to the web server.

• BackupServer. Server hosting the backup page and access point to the backup database.
Functions allowed:

– send(x). Query to the web server with new data as input. Output the data into
the database language.

• DB. Database of the main site holding the data and comments. Functions allowed:

– new(). Query for the last 24 hours data. Output the data.
– day(). Query for the last 24 hours comments. Output the comments.

• BackupDB. Database of the backup site holding the backup data. Functions allowed:

– save(x). Quuery for save the data given as input. Output the data.

• Mail. Google e-mail server. Functions allowed:

– send(y). Send message y by e-mail.

Given these sites, the following expression represents the service:

Backup = DB.new > x > BackupServer .send(x)
> d > BackupDB.save(d)

DBActions = DB.connect()� (Backup | DB.day())
Cron = Server .access()� DBActions > y > Mail.send(y)

The mail provider is Google Mail with reliability 99.99% and the other server are all from
the same plan that ensures a 99% online time, but all in independent machines.

Now in each server we have some services available. For Web servers we have the access
function that always return if the server is online, the same does the function send of Mail
and save of the databases. In the other hand, functions new and day returns only if there are
new entries or new comments. The service is called daily and by statistic we know that each
day we have probability 0.2 to have a new entry and 0.8 of having at least a new comment.

Given that, the following table shows the global profiles for this service:

Sites Global Profile A Global Profile B
Server .access (1@0.99 [] 0@0.01) (1@0.99 [] 0@0.01)

BackupServer .send (1@0.99 [] 0@0.01) (1@0.99 [] 0@0.01)
DB.new (1@0.2 [] 0@0.8) (0@1)
DB.day (1@0.8 [] 0@0.2) (0@1)

BackupDB.save (1@0.99 [] 0@0.01) (1@0.99 [] 0@0.01)
Mail.send (1@0.9999 [] 0@0.0001) (1@0.9999 [] 0@0.0001)

Probability 0.99 0.01
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Is clear that for the profile B there will be no value published during the execution, as
the DB server will be off-line. Only profile A will publish.

Then, for profile A, we compute the probability of produce at least one value:

Pr(out(Cron) > 0) = Pr(Cron, 1)
Pr(Cron, 1) = Pr(Server .access()� DBActions,

Pr(Mail.send(y 6= ⊥), 1))
Pr(Mail.send(y 6= ⊥), 1) = 0.9999

Pr(DBActions, 0.9999) = 1− (1− Pr(Backup, 0.9999)) ∗ (1− Pr(DB.day, 0.9999))
Pr(DB.day, 0.9999) = 0.8 ∗ 0.9999 = 0, 79992
Pr(Backup, 0.9999) = 0.2 ∗ 0.99 ∗ 0.99 ∗ 0.9999 ≈ 0.196

Pr(DBActions, 0.9999) = 1− (1− 0.79992) ∗ (1− 0.196) ≈ 0.839
Pr(out(Cron) > 0) = Pr(Server .access, 0.839) = 0.99 ∗ 0.839 ≈ 0.831

As the profile A has probability 0.99, then Pr(out(Cron) > 0) ≈ 0.822. Given that, the ser-
vice Cron can be used as a site following the halting profile (success@0.822 [] failure@0.178).
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