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1 Abstract
The main objective of this research study is the control of a DC-AC full-bridge buck-based
inverter through an extension of Model reference adaptive control (MRAC) strategy, in
particular the Extended Minimal Controller Synthesis. This approach requires minimal
knowledge of plant and disturbance parameters offering a good robustness even in pres-
ence of parameters variation, plant unmodeled nonlinearities and external disturbances.

The rejection of undesirable effects of sudden load changes and the ability to recover
regular operation with a low transient error, in a short number of periods and the high
robustness guarantee that high performance is kept when the control signal is injected
through a PWM generator switching at realistic frequency.

2 Introduction
Most of dynamic systems show unknown or time-varying parameters resulting difficult to
control unless the controller is on-line redesigned:

• Robot manipulation may involve the handling of loads with different sizes and
weights.

• Automatic ship steering has to take into account water depth, ship load, wind and
wave conditions.

• Process control involves a hard modeling process and parameter identification, and
usually time-varying working conditions.

• Power systems may undergo large load variations.

• Aircraft dynamics depends on its altitude, speed and configuration, with a high
range of parameter variation.

2.1 Adaptive control

Adaptive control was first proposed in aerospace engineering early 1950âs in order to
keep a consistent performance of the system in the face of uncertainty or variation
in the plant parameters. The main feature was the adaptation of the controller
gains on-line according to the variation of certain system signal.

The basics stages in adaptive control are:

– estimation of the unknown plant parameters

– updating of the control gains.

The main approaches of this kind of control are:

– Self-tuning controllers Model reference adaptive control.

– Model-Reference Adaptive Control
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2.2 MRAC and MCS

he general idea behind Model Reference Adaptive Control (MRAC, also know as an
MRAS or Model Reference Adaptive System) is to create a closed loop controller
with parameters that can be updated to change the response of the system. The
output of the system is compared to a desired response from a reference model. The
control parameters are update based on this error. The goal is for the parameters
to converge to ideal values that cause the plant response to match the response of
the reference model.

The minimal control synthesis was proposed by Stoten Benchoubane in 1992, it
is a passivity based MRAC strategy [8] which, for a wide class of plant structure,
requires no knowledge of parameter values in order to achieve a stable and robust
control performance. In addition, no a priori values for the controller gains are
required,they are often set to zero, and no self-tuning component is necessary.

The key assumption of the MCS are:

– the system matrix A(t),B have known dimensions and are in canonical form.

– The sign of b is known.

– The plant parameters vary slowly with respect to the adaptive gains.

– The gains are nonlinear and of PI type.

– The real constant αandβarechosenempirically.thestrategycanbeextendedtoMIMOplants.

3 Overview of the Minimal Control Synthesis Algo-
rithm

The MCS algorithm [4][5] is derived from a general MRAC[8] algorithm. Adaptive control
provides capabilities that can be used to counteract the effect of dynamic changes and
parameter variations. MRAC needs a good degree of knowledge of the nominal plant
dynamics but this is not the case with MCS. The former must use some form of system
identification in order to adapt the gains of the controller. MCS, on the other hand,
does not require any parametric information and can start with zero gains. The main
characteristics of MCS are:

– ∗ No knowledge of the plant dynamic parameters is necessary.
∗ The stability and robustness of the algorithm have been formally proved

and tested.
∗ The algorithm can cope with parameter variations and external distur-

bances as well as non-linear regimes.
∗ It offers a high speed of response to disturbances.
∗ The adaptive gains can be started from zero or be given an initial value

to speed up convergence.
∗ The adaptive gains can be locked transforming the algorithm into a virtual

fixed-gain controller with automatic tuning.

3



∗ A linear controller can be used in parallel, allowing the algorithm to be
implemented as a retrofit to an existing controller.

Figure 1: Block diagram of MCS

A block diagram of the algorithm is depicted in figure 1. The demand signal is modified by
a reference model that produces the ideal close loop response. This response is compared
to the output of the plant and the adaptive gains are modified in order to achieve a good
matching between the output of the plant and the output of the reference model. The
voltage bias usually present in analog devices can be removed using a third gain, which is
computed based on the integral of the plant output error. This is known as the integral
action (MCSIA) version and is described in [7].

3.1 The Minimal Control Synthesis algorithm

The standard MCS allow to control an n state system modeled by:

ẋ(t) = Ax(t) +Br(t) + d(x, t), (1)

where u is the scalar control input and:

A =


0 1 0 . . . 0
0 0 1 0 0
...

...
...

...
...

0 0 0 0 1
−a1 −a2 . . . . . . −an

 ;B =


0
0
...
0
b

 ; d(x, t) =


0
...
0
d1

 ,

4



the matrix A and B are supposed completely unknown with the assumption of a slow
variation in comparison with the adaptive loop bandwidth; the canonical structure of A
and B is a key assumption of MCS . The term d1 represents all the effects of external
disturbances, unmodeled nonlinearities and plant parameter variation.
The control signal is:

u(t) = Lx(t)x(t) + Lr(t)r(t);

the adaptive gains are:

Lr(t) = α

∫ t

0

ye(τ)xT (τ) dτ + βye(t)x
T (t),

Lx(t) = α

∫ t

0

ye(τ)r(τ) dτ + βye(t)r(t),

where α and β are scalar adaption weights such that sign(α) = sign(β) = sign(b) and
the initial conditions are usually set to zero.
The output error is:

xe(t) = xm(t)− x(t) (2)

where xm is the state generated by a linear reference model:

ẋm = Amxm(t) +Bmr(t)

ye(t) = Cexe(t)

the output error matrix Ce is determined from positive-definite solution of Lyapunov
equation:

PAm + ATmP = −Q ;Q > 0

as:
Ce = BT

e P ;BT
e = [0 . . . 0 1]

the structure of Am and Bm is chosen to be the same of the plant:

Am =


0 1 0 . . . 0
0 0 1 0 0
...

...
...

...
...

0 0 0 0 1
−am1 −am2 . . . . . . −amn

 ;Bm =


0
0
...
0
bm


A,B and r(t) are selected by design in order to obtain:

lim
t→∞

xe(t) = 0
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3.2 The Extended Minimal Control Synthesis algorithm

The asymptotic stability of the error dynamics is not guaranteed if the term d(x,t) repre-
sents rapidly varying disturbances. The EMCS introduces an additional sliding action to
achieve global asymptotic stability of the error dynamics under that conditions [3]. The
control equation is:

u(t) = Lx(t)x(t) + Lr(t)r(t) +Nsign(ye).

The gain Lx and Lr are chosen in the same way of the standard MCS algorithm. The
N gain determines the amplitude of the switching action of the new control action term.
The choice of a suitable value for the N gain requires a minimum knowledge of the system
and in particular an estimate for b and the upper bound of the external disturbance d1;
this is against the philosophy of the MCS algorithm. To overcome the standard EMCS
limitation according with [2] is possible to set the N gain in adaptive way getting a purely
adaptive algorithm described by the control law :

u(t) = Lx(t)r(t) + Lr(t)r(t) +KN(t)sgn(ye(t))

where:

KN(t) =

∫ t

0

γ |ye(τ)| dτ, KN(0) = 0,

with γ > 0 being a positive adaptive weight. The presence of the sign function involves
high frequency discontinuity, which implies that the control signal undergoes chattering
phenomena provoking undesirable oscillations of the plant states. The use of such a
control signal might excite the plant high frequency dynamics and initiate closed-loop
instability. The robustness properties are preserved using the following continuous law:

u(t) = Lx(t)r(t) + Lr(t)r(t) +N
ye

|ye|+ ξ

where ξ is a small positive constant chosen according to 2.
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3.3 Discrete-time version

Figure 2: Block diagram of discrete MCS

A pure discrete-time version is given in [7], as it happens with the continuous-time MCS
strategy, the algorithm arises from the family of hyperstability-based discrete-time model
reference adaptive controllers introduced in [8] and is able to ensure tracking of the states
of a given reference model with minimal knowledge about plant. The discrete-version
grants the same advantages of the continuous algorithm. Also in [7] is shown a discrete-
time MCS algorithm that can be used to control discretised continuous-time plants with
the same performance features; this particular version is explicated below. Applying a
forward Eulers’s method with sampling period Ts ∈ R+[1] it is possible to discretize
(1)-(2),obtaining:

x(k + 1) = In + TsA(k) + TsBbu(k),

xm(k + 1) = In + TsAm(k) + TsBbmr(k).

Defining the state tracking error as e(k) = xm(k) − x(k), the control objective can be
easily summarized as demanding

lim
k→∞

e(k) = lim
k→∞
‖xm(k)− x(k)‖ = 0

The control problem can be solved by the following discrete-time law composed by a
feedback and a feedforward action:

u(k) = Lx(k)x(k) + Lr(k)r(k),

where Lx(k) ∈ R and Lr(k) ∈ R are adaptive gains of the form:

Lx(k) = α
t∑
0

yn(i+ 1)xT (i) + βyn(k + 1)xT (k),
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Lr(k) = α
t∑
0

yn(i+ 1)r(i) + βyn(k + 1)r(k),

with y(k) being a conveniently selected system output,yn(·) being the n-th component of
y(·) and α, β ∈ R being some constant values verifing sign(α) = sign(β) = sign(b). The
control scheme is sketched in fig.2. The dynamics of the equivalent error system is:

e(k + 1) = Ãme(k) + Inω̃(k + 1),

y(k) = C̃e(k),

where In denotes n× n identity matrix and

Ãm = In + TsAm,

ω̃(k + 1) = Tsω(k + 1)

while
w(k + 1) = [Am − A(k)−BbLx(k)]x(k) +B [bm − bLR(k)] r(k).

The computation of the control gains at the current instant k is based on the knowledge
of the value reached by the plant output at the next time instant, namely yn(k+1). This
one-delay problem can be solved by means of an estimate of yn(k + 1), say y0n(k + 1).
Assuming:

yn(k + 1) = y0n(k + 1)1 + Tsc̃nnb(α + β)(xT (k)x(k) + r2(k)),

where c̃nn is the (n,n) elements of the output matrix C.
The computation of y0n(k + 1) requires a perfect knowledge of A(k) and is in contradic-
tion with the MCS philosophy, for this reason it is replaced by yn(k). Notice that the
computation of yn(k+ 1) requires the knowledge of the uncertain plant parameter b, this
is replaced by a value falling within its range of variation, which is assumed to be know.

8



4 The full-bridge buck power converter parameter

Figure 3: buck inverter

The mathematical model of the buck converter can be easily obtained under the common
assumption of ideal components, the dynamic behavior of the full-bridge buck inverter
can be described exploiting the Kirchhoff’s equations:

it = il + ic

Eu = rit + L
dit
dt

+ vc u ∈ {−1, 1}

ic = C
dvc
dt

Setting vc and dvc
dt

as state variables, respectively x1 e x2 and consider the change of
variables:

x1 =
vc
E
, x2 =

dx1
dt
, t =

1√
LC

τ, λr = r

√
C

L
, ξl =

1

E

√
L

C
il

the dynamic model with normalized variables is:

ẋ1 = x2

ẋ2 = −x1 − λrx2 + u− λrξl − ξ̇l
for a linear load il = vc

R
the model obtained will be the following:

ẋ1 = x2

ẋ2 =
E

LC
u− R + r

RLC
x1 −

rRC + L

RLC
x2
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5 Simulation settings

The control goal is to have the converter voltage, Vc(t), robustly tracking a sinusoidal
reference profile, Vcd(t) where

Vcd(t) = Msin2πνt = Msinωt

in the face of sudden changes of load parameter,R.
The reference model is selected as a second order linear model, according to [1] i.e. of
the form

V̇cd = ÂmVcd +Br̂(t)

so as to steer the dynamics of the inverter in the desired way where

Âm =

[
0 1
−ω2 − 2k√

LC

]
r̂(t) =

2Mkω√
LC

cosωt

with initial condition Vcd(0) = (0,Mω2).

Figure 4: Output load resistance profile

The specific value for the reference profile are M = 312V and ν = 50Hz which means
that the expected output voltage should show European line frequency and 220V of Root
Main Square (RMS) voltage. The high values of the parameters and signals involved
suggest to carry out the control law implementation through normalized variables and,
after validating the effectiveness proceed with the implementation in a denormalized
fashion. α and β have been chosen heuristically as a trade off between convergence time
and reactivity as suggest by the empirical rule α

β
= 10 according to [4]

The following simulations have been carried out with MATLAB-SIMULINK software.
The solver uses a variable step ode45 algorithm or a fixed step algorithm ode4, depending
of the cases, with minimum step size set to 10−7. The controller performance in the face of
load uncertainty has been assessed for the profile shown in fig.4: from t = 0 to t = 0.205s
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the load was set to R = 17Ω;at t = 0.205s its value has been changed to R = 680Ω,and
at t = 0.405s it has bean newly set to R = 6.8Ω; The total duration for the test was of
2s

6 Closed loop MCS on normalized buck dynamic model

the converter parameters for this simulation are:
E = 220V , L = 6mH, C = 100, r = 0.2Ω, R = 34Ω
, the expected output voltage is: vcd(τ) = 220sin(100πτ), ν = 50Hz,
in normalized variables it is: x1d(t) = sinω0t with ω0 = 100π

√
LC,

the selected reference model is:

Am =

[
0 1
−ω2

0 −2k

]
, bm = 1, r(t)=2kω0cos(ω0t)

the MCS controller gains are set to: α = 50, β = 5,
the initial conditions for the plant are :x1(0) = 0.5, x2(0) = 0,
the initial conditions for the reference model are :x1(0) = 0, x2(0) = ω0.
The simulation results are the following:

6.1 Linear dynamic model

Figure 5: Output voltage evolution Figure 6: A zoom of the output voltage
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Figure 11: Control effort evolution Figure 12: A zoom of the control effort

Figure 7: Error transient magnification Figure 8: A zoom of the voltage tracking error

Figure 9: Lr gain evolution Figure 10: Lx gain trajectory
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6.2 Nonlinear dynamic model

The shape of the nonlinear current il is the following:

Figure 13: Nonlinear current shape

The results of simulation are:

Figure 14: Output voltage evolution Figure 15: Output voltage transient zoom

13



Figure 16: Voltage error trajectory Figure 17: Zoom of error trajectory transient

Figure 18: Control effort trajectory Figure 19: A zoom of control effort trajectory

Figure 20: Lx gains trajectories Figure 21: Lr dynamic
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6.3 Results

The simulation shown consistent results as expected, the tracking of the reference signal
is almost perfect as depicted in figure 5. A magnification of the very short transient is
given in fig.6. The tracking error is depicted in fig.7, and a zoomed portray in fig.8, the
maximum error is of 3% and is showed at very first time instants of the simulation as
expected when the adaption process is just started, from that point it decays drastically
towards zero. In fig.8 it is possible appreciate the recovery of the steady state error
value in the face of a large load jump. The MCS gain evolution is shown in fig.9 and
fig.10, where the response is the typical adaptive behavior. The control effort is given in
fig.11 and fig.12, notice that never saturated but is kept in the bandwidth ±1. For the
Nonlinear load current depicted in fig.13 the results are almost the same as shown from
fig.14 to fig.21.
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7 Closed loop MCS on denormalized buck dynamic
model

The converter parameters for this simulation are:
E = 400V , L = 6mH, C = 10, r = 0.2Ω, R = 34Ω,
the expected output voltage is: vcd(τ) = 320sin(100πτ), ν = 50Hz, ω0 = 100π
, the selected reference model is:

Am =

[
0 1
−ω2

0
−2k√
LC

]
, bm = 1, r(t) = 2kω0cos(ω0t)

the MCS controller gains are set to: α = 2.5× 106 , β = 2.5× 105,
the initial conditions for the plant are :x1(0) = 0.5, x2(0) = 0,
the initial conditions for the reference model are :x1(0) = 0, x2(0) = 312ω0.
The simulation results are the following:

7.1 Linear dynamic model

Figure 22: Voltage output evolution Figure 23: A zoom of the voltage evolution
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Figure 24: Voltage error evolution Figure 25: A zoom of error trajectory

Figure 26: Lr gain evolution Figure 27: Lx gain trajectory

Figure 28: Control effort evolution Figure 29: Control action magnification
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7.2 Non linear dynamic model

Figure 30: Nonlinear current shape

Figure 31: Output voltage evolution Figure 32: Output voltage transient
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Figure 33: Voltage error dynamic

Figure 34: Lx gain evolution trajectories Figure 35: Lr gain trajectory

7.3 Results

The results obtained after the denormalization of the variables are satisfactory and con-
sistent with the expected ones. In fig.22 it is possible realize the perfect tracking offered
after the steady state is reached; a magnification of the transient, longer than the previ-
ous case, is given in fig.23. The maximum error is showed in fig.24: it is about 2.5% and
it appear in the very first time instants of the simulation, then it decays dramatically
toward zero. In fig.25 are highlighted the effects of the load variation to show the recovery
capabilities of the MCS algorithm. The control effort is given in fig.28 and fig.29: notice
that it never saturated,as desired. The MCS gain evolution is shown in fig.26 and fig.27,
where it is evident the adaptation in the face of the load change. For the Nonlinear
load depicted in fig.30 the results are almost the same as shown from fig. 31 to fig. 35
confirming the confirming the extraordinary robustness of the control algorithm.
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8 Closed loop EMCS on denormalized power converter
model

The converter parameters for this simulation are:
E = 400V , L = 60, C = 40, r = 0.2Ω, R = 17Ω, k = 2,
the expected output voltage is: vcd(τ) = 320sin(100πτ), ν = 50Hz, ω0 = 100π,
the reference model parameters and the initial conditions are the same setted in the
precedent simulation the MCS controller gains are set to: α = 2.5× 1010 , β = 2.5× 109.

8.1 Linear dynamic model

Figure 36: output voltage Figure 37: A zoom of the voltage evolution

Figure 38: Voltage error dynamic
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Figure 39: Control effort dynamic Figure 40: A zoom of the control effort

Figure 41: Lx gain dynamics Figure 42: Lr gain evolution

Choosing the N gain in adaptive way:

Figure 43: output voltage Figure 44: A zoom of the voltage evolution
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Figure 45: Voltage error dynamic

Figure 46: Control effort dynamic
Figure 47: A zoom of the control effort trajec-
tory
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Figure 48: Lx gain dynamics Figure 49: Lr gain evolution

Modeling the sliding action with a continuous law:

Figure 50: output voltage Figure 51: A zoom of the voltage evolution
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Figure 52: Voltage error dynamic

Figure 53: Control effort dynamic Figure 54: A zoom of the control effort

Figure 55: Lx gain dynamics Figure 56: Lr gain evolution
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8.2 Nonlinear dynamic model

Figure 57: output voltage Figure 58: A zoom of the voltage evolution

Figure 59: Voltage error dynamic
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Figure 60: Control effort dynamic
Figure 61: A zoom of the control effort trajec-
tory

Figure 62: Lx gain dynamics Figure 63: Lr gain evolution

Choosing the N gain in adaptive way:
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Figure 64: output voltage Figure 65: A zoom of the voltage evolution

Figure 66: Voltage error dynamic
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Figure 67: Control effort dynamic
Figure 68: A zoom of the control effort trajec-
tory

Figure 69: Lx gain dynamics Figure 70: Lr gain evolution
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Modeling the sliding action with a continuous law:

Figure 71: output voltage Figure 72: A zoom of the voltage evolution

Figure 73: Voltage error dynamic
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Figure 74: Control effort dynamic Figure 75: A zoom of the control effort

Figure 76: Lx gain dynamics Figure 77: Lr gain evolution

8.3 Results

By comparing the obtained results it’s easy to see that in the first solution the sys-
tems states error decays smoothly towards a bandwidth ±0.3V fig.38 instead of zero,
in addition the discontinuous sliding action improves the controller performance but, as
expected, the EMCS control input is affected by the chattering introduced by the high
frequency switching action and also saturate fig.39 and fig.40.;another problem is the in-
crease of the control gains as shown in fig.41 and fig.42. The difference between the classic
and the adaptive is not appreciable in this particular case as depicted in fig.45-49. On the
other hand the continuous solution, choosing properly the N gain, seems to significantly
reduce the error amplitude fig.52 without introducing any kind of ripple and distorsion
on the control action as shown in fig.53 and fig.54 and on control gains fig.55 and fig.56;
this seems to be the best solution. For the Nonlinear load the results are almost the same
of the linear ones.
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9 Closed loop MCS controller with PWM modulation

In this section has been introduced a PWM generator that inject the signal produced
by the controller into the plant switches at 20kHz,in order to make more faithful to
reality the simulation, it has been implemented using the MATLAB/SIMULINK toolbox
SimPowerSystems.

9.1 Linear model

Figure 78: output voltage Figure 79: A zoom of the voltage trajectory

Figure 80: Error dynamic Figure 81: A zoom of the error trajectory
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Figure 82: Control effort trajectory Figure 83: A control effort magnification

Figure 84: Lr gain trajectory Figure 85: Lx gains evolution

9.1.1 Gain locking and gain bounding

The numerical results shows that the Lx gain increases indefinitely in absolute value.In
order to avoid controller memory overflow problems has been implemented a gain locking
strategy introducing a correction term g(t) in the integral part of the gain to lock as:

LI =

∫
(αy(t)x(t) + g(t))dt

g(t) =


0 if LI ∈ (LaI , L

b
I)

−αy(t)x(t) if LI = LaI
−αy(t)x(t) if LI = LbI

where LaI and LbI are respectively the lower and the upper bound. This solution can
imply a loss of performance for this reason is possible,according with [9] to retain the
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favorable dynamics of the gain imposing only a bounding and not a complete locking in
the following way:

LI =

∫
(αy(t)x(t) + g(t))dt

g(t) =


0 if LI ∈ (LaI , L

b
I)

0 if LI = LaI and αy(t)x(t) ≥ 0
0 if LI = LbI αy(t)x(t) ≤ 0

−αy(t)x(t) if L̇I = 0

where LI ,LaI and LbI have the same meaning of the previous case.

The upper and lower bound empirically imposed for the gains are:

∗ LbIr = 5

∗ LaI r = −1.5

∗ LbI1 = 2.1

∗ LaI 1 = −0.3

∗ LaI 2 = 0.5

∗ LbI2 = −2
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Figure 86: Lx gain locked Figure 87: Lx gain bounded

Figure 88: Lr gain locked Figure 89: Lr gain bounded
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9.2 Nonlinear dynamic model

Figure 90: output voltage Figure 91: A zoom of the voltage trajectory

Figure 92: Voltage error dynamic
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Figure 93: Control effort evolution Figure 94: A zooom of control effort transient

Figure 95: Lr gain trajectory Figure 96: Lx gains evolution
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9.2.1 Gain locking and gain bounding

Also for this case had been implemented a gain locking and a gain bounding strategy:

Figure 97: Lx gains locked Figure 98: Lx gains bounded

Figure 99: Lr gain locked Figure 100: Lr gain bounded
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9.3 Results

Observing the output voltage shape in fig.78 it is possible to see a good tracking of the
reference signal, in this case the tracking is not perfect, contrarily to previous simulation,
as showed in fig. 80 where the maximum error is about 2.5%, the same of the previous
case, but it decays to a bandwidth of about ±0.01V , this ripple is due to the PWM
action. In fig.81 it’s given a zoom of the error trajectory corresponding to the load jump
to evaluate the recovery capabilities of the control. The control effort in this case is not
a pure sine but a very good approximation as showed in fig.83. The Lx and Lr gains
evolutions are shown in fig.84 e fig.85,notice that in this particular case do not reach a
steady-state but grow indefinitely, below are compared the gain locking, fig.86 and fig.88,
and the gain bounding, fig.87 and fig.89, solutions. For the Nonlinear load current the
results are almost the same as shown from fig.90 to fig.96.
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10 Discrete MCS

In the previous sections is proven that the best performance are offered by the EMCS
controller, in particular when the sliding action it is modeled by a continuous function,
but considering that:

∗ the improvement is very little compared with the standard MCS
∗ there is a ripple due to the sliding action
∗ do not exist a discrete time extended minimal control synthesis theory

In this section the simulations are done with the standard MCS algorithm for comparative
purposes.

10.1 Closed loop discrete MCS on linear model

Figure 101: Output voltage Figure 102: Voltage transient magnification

Figure 103: Error trajectory Figure 104: A zoom of the error evolution
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Figure 105: Lx gain trajectory Figure 106: Lr gains evolution

Figure 107: Control effort Figure 108: A zoom of the control effort

In fig.102 is shown the output voltage shape, in fig.103 and 104 is depicted the error
trajectory, in fig 105 and fig.106 the gains evolution and in fig.107 and fig.108 the control
effort all affected by noise.
In order to improve the discrete controller performances is introduced a high frequency
filtering action on the current.
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10.2 Closed loop discrete MCS on linear model with current
filtering action

Figure 109: Output voltage Figure 110: Voltage transient magnification

Figure 111: Error trajectory Figure 112: A zoom of the error evolution
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Figure 113: Lx gain trajectory Figure 114: Lr gains evolution

Figure 115: Control effort Figure 116: A zoom of the control effort
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10.3 Closed loop discrete MCS on nonlinear model with current
filtering action

Figure 117: Output voltage Figure 118: Voltage transient magnification

Figure 119: Error trajectory
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Figure 120: Lx gain trajectory Figure 121: Lr gains evolution

Figure 122: Control effort Figure 123: A zoom of the control effort

The upper and lower bound empirically imposed for the gains are:

∗ LbIr = 0.9

∗ LaI r = −0.09

∗ LbI1 = 1.3

∗ LaI 1 = −0.1

∗ LaI 2 = −1

∗ LbI2 = 0.1
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Figure 124: Lx gains bounded Figure 125: Lr gain bounded

10.4 Results

Fig.109 and fig.110 depicted the output voltage and the reference profile. The tracking er-
ror of the overall simulation is depicted in fig.111 a magnification is given in fig.112.Notice
the maximum error, as expected, appears in the very first time instants of simulation,
when the adaptation is just started than decays quickly to a bandwidth of ±2V , i.e. a
0.6%, in a very short time. This steady error is mainly due to the finite switching fre-
quency of the PWM Generator. Only when load changes arise the error goes up to±4V ,
i.e.below a ±1.2% , witch means an extremely low overshoot for such a large jump of the
parameter value.This is in accordance with the reported improvement of the disturbance
accommodation capabilities of the MCS controlled systems as time increases due to adap-
tive gain evolution. In fig 113 and fig.114 are shown the Lx and Lr gain evolution, the
response of the adaptive mechanism to the load changes is evident. The control effort
is given in fig.115 and fig.116, notice that never saturated, because it is kept within the
expected bandwidth ±1. For the nonlinear load the results are at least the same of the
linear case as shown in fig.117-123. To avoid the possibility of overflow errors also in this
case has been implemented a gain bounding strategy fig.124 and fig.125.
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11 Discrete EMCS

With no theoretical guarantee the sliding continuous term had been discretized with
forward Euler’s method and implemented only as a try, below are shown the empirical
results:

11.1 Discrete EMCS on linear model

Figure 126: Output voltage Figure 127: Voltage transient magnification

Figure 128: Error trajectory Figure 129: A zoom of the error evolution
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Figure 130: Lx gain trajectory Figure 131: Lr gains evolution

Figure 132: Control effort Figure 133: A zoom of the control effort
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11.2 Discrete EMCS on nonlinear model

Figure 134: Output voltage Figure 135: Voltage transient magnification

Figure 136: Error trajectory
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Figure 137: Lx gain trajectory Figure 138: Lr gains evolution

Figure 139: Control effort Figure 140: A zoom of the control effort

11.3 Results

The simulation shown that the EMCS retains all the advantages of the MCS controller
offering a reduction of the steady error over the 60% to the previous simulation as shown
in fig.128 and fig.136.
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12 Conclusions

Numerical results showed that the control algorithm, used for the first time on this kind of
power converter, offered an excellent closed-loop behavior even though the control signal
was injected to the plant by a PWM generator at a realistic frequency. The advantage
provided are:

∗ shorter transients,
∗ lower steady-state error,
∗ superior ability to compensate large resistive load jumps without losing

performance,
∗ the good compensation of nonlinear loads.

Concluding the MCS strategy reveals as a promising alternative for controlling this kind
of device.

50



References

[1] A. Salvi, S. Santini, D. Biel and J. M. Olm, Model reference adaptive
control of a full-bridge buck inverter with minimal controller synthesis,
accepted for presentation in the 52th IEEE conference on Decision and
Control, Florence, Italy, 2013.

[2] M. di Bernardo D. P. Stoten, A New Extended Minimal Control Synthesis
Algorithm with an Application to the Control Chaotic Systems, Proceed-
ings of the 36th Conference on Decision Control, San Diego, California
USA, 1997

[3] D. P. Stoten, H. Benchoubane, The extended minimal controller synthesis
algorithm, International Journal of Control, 56:5, 1139-1165, 1992

[4] D. P. Stoten, H. Benchoubane, Empirical studies of an MRAC algorithm
with minimal controller synthesis, Internat. J. Control, vol 51, no. 4, pp.
823-849,1990.

[5] D. P. Stoten, H. Benchoubane, Robustness of a minimal controller synthesis
algorithm, Internat. J. Control, vol 51, no. 4, pp. 851-860.

[6] D. P. Stoten, The adaptive minimal control synthesis algorithm with inte-
gral action, In Proc. 21st, Conf. on Ind. Elec. Control and Inst., Orlando
(FLA), pp. 1646-1651, 1995

[7] M. di Bernardo, F. di Gennaro, Olm, J. M.,S. Santini, Discrete-time mini-
mal control synthesis adaptive algorithm., International Journal of Control,
Vol. 83, No. 12, 12.2010, p. 2641 - 2657.

[8] Y.D. Landau, Adaptive Control: The Model Reference Approach, Marcel
Dekker, Ink., NY,1979.

[9] G. Tao, Adaptive Control of Systems with Nonlinearities,John Wiley Sons,
2003.

51


