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Abstract. It has been recently proved that the connectivity of distance regular graphs is the
degree of the graph. We study the Johnson graphs J(n,m), which are not only distance regular
but distance transitive, with the aim to analyze deeper connectivity properties in this class.

The vertex k-connectivity of a graph G is the minimum number of vertices that have to
be removed in order to separate the graph into two sets of at least k vertices in each one.
The isoperimetric function µG(k) of a graph G is the minimum boundary among all subsets of
vertices of fixed cardinality k. We give the value of the isoperimetric function of the Johnson
graph J(n,m) for values of k of the form

(

t

m

)

, and provide lower and upper bounds for this
function for a wide range of its parameter. The computation of the isoperimetric function is used
to study the k-connectivity of the Johnson graphs as well. We will see that the k-connectivity
grows very fast with k, providing much sensible information about the robustness of these graphs
than just the ordinary connectivity.

In order to study the isoperimetric function of Johnson graphs we use combinatorial and
spectral tools. The combinatorial tools are based on compression techniques, which allow us
to transform sets of vertices without increasing their boundary. In the compression process
we will show that sets of vertices that induce Johnson subgraphs are optimal with respect to
the isoperimetric problem. Upper bounds are obtained by displaying nested families of sets
which interpolate optimal ones. The spectral tools are used to obtain lower bounds for the
isoperimetric function. These tools allow us to display completely the isoperimetric function for
Johnson graphs J(n, 3).
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CHAPTER 1

Introduction

The study of connectivity properties of graphs is a wide subject in graph theory. The survey [3]

gives a panoramic view of the many results in the area in recent years. The classical notion of

connectivity of a graph is defined as the minimum number of vertices whose deletion disconnects

the graph. Stronger measures of connectivity have been proposed in the literature, see e.g.

[2]. In this work we will consider two of these stronger measures, the k–connectivity and the

isoperimetric function.

Let G = (V,E) be a graph, usually considered to be simple (no loops nor multiple edges) and

undirected. Given a set X ⊂ V of vertices, we denote by

∂X = {y ∈ V \X : d(X, y) = 1},

the boundary of X, and by

B(X) = {y ∈ V : d(X, y) ≤ 1} = X ∪ ∂X,

the ball of X. we write ∂G and BG when the reference to G has to be made explicit.

The k–connectivity of G is defined to be

κk(G) = min{|∂X| : k ≤ |X| ≤ |B(X)| ≤ |V | − k}.

In other words, the k–connectivity of G is the minimum cardinality of a set of vertices which

separate the graph into two sets, each with cardinality at least k. This notion was introduced by

Hamidoune (see e.g. [5]) and is close to the notion of extraconnectivity [2], where the additional

requirement that the separator leaves connected components of size at least k. For k = 1, κ1(G)

is just the ordinary connectivity of the graph.

The isoperimetric function of G is defined as

µ(k) = min{|∂X| : X ⊂ V, |X| = k},

that is, µ(k) is the size of the smallest boundary among sets of vertices with cardinality precisely

k. It is clear that

κk(G) = min{µ(t) : k ≤ t ≤ |V | − µ(t)− k}.

5



6 1. INTRODUCTION

Hence, the knowledge of the isoperimetric function allows us to obtain the k–connectivity of the

graph.

The isoperimetric function is known only for some rather specific classes of graphs. One of

the seminal results is the exact determination of the isoperimetric function for the n–cube

obtained by Harper [13] in 1966. Analogous results were obtained for cartesian products of

chains by Lindstrom [7], cartesian products of even cycles by Riordan [9], and some other

cartesian products by Bezrukov and Serra [34]. The survey on discrete isoperimetric problems

by Bezrukov [6] gives a good panoramic view of the isoperimetric problem in discrete spaces.

The above generalizations arise from the fact that the n–cube can be seen as the cartesian

product of edges. However the n–cube is also one of the most important examples of distance

regular graphs. A graph G is said to be distance–regular if, for any two vertices v and w, the

number of vertices at distance j from v and at distance k from w depends only upon j, k, and

the distance i = d(v, w) between v and w. An analogous definition is the following one. Let x0

be a distinguished vertex in the graph and denote by

Si = {y ∈ V : d(x0, y) = i},

the sphere of radius i centered at x0. The graph is distance regular if, for each i and every

vertex y ∈ Si, the number of neighbours of y in Si−1 on Si and on Si+1 do not depend on y.

These numbers are usually denoted by

ci = |∂y ∩ Si−1|, ai = |∂y ∩ Si|, bi = |∂y ∩ Si+1|,

with the convention that a0 = b0 = 0. Of course distance regular graphs are regular, and the

degree is b0 = k, while ai+ bi+ ci = k for all suitable i. The monograph by Brouwer and Cohen

[14] is an excellent reference for the topic of distance regular graphs.

Distance regular graphs enjoy combinatorial regularity properties which make them a very in-

teresting family of graphs for which detailed properties should be particularly accessible. In

spite of this, their connectivity properties have been an open problem for long time. The first

result in the study of connectivity properties of distance regular graphs was obtained by Cioaba,

Kim and Koolen [1], who proved that the connectivity of strongly regular graphs, the class of

distance regular graphs of diameter two, equals the degree. They actually prove more, that

the only separating sets with cardinality k, the degree, isolate a single vertex. In terms of the

k–connectivity this is equivalent to the statement that κ2(G) > k. Some years later the same

result was extended by Brouwer and Koolen [4] to the general class of distance regular graphs.

In view of the much larger values of the isoperimetric function in the particular class of n–cubes,

it is likely that stronger bounds on the k–connectivity can be obtained in the general class of
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distance regular graphs. The purpose of this work is to explore the situation in the case of the

Johnson graphs defined as follows.

Definition 1.1. Given n,m ∈ N with m ≤ n
2 , the Johnson graphs J(n,m) is the graph defined

by:

(1) The vertex set is the set of all subsets of [n] with cardinality exactly m.

(2) Two vertices are adjacent if and only if the symmetric difference of the corresponding

sets has cardinality two.

Johnson graphs arise from the so–called Johnson association schemes and are objects with a

particular high degree of symmetry. However the study of their connectivity properties, beyond

the ones provided by the fact that they are distance regular graphs, is quite open. In the next

section the general properties of Johnson graphs will be discussed. It will be shown that, in

fact, the Johnson graphs are not only distance regular but also distance–transitive. A graph is

distance–transitive if for any two pairs of vertices x, y and u, v such that d(x, y) = d(u, v), there

is an automorphism of the graph which send one pair to the other one. Distance-transitivity is

a very strong property and it is known that there is only a finite number of distance transitive

graphs of given degree.

The plan of the work is as follows. In Chapter 2 we set the notation we are going to use and dis-

cuss the basic properties of Johnson graphs. In Chapter 3 we introduce and analyze compression

operators which will be our main combinatorial tool in the analysis of the isoperimetric function

for Johnson graphs. The main result in the chapter says that optimal sets with respect to the

isoperimetric problem can be found among stable sets under some given classes of compression

operators. This result is used in Chapter 4 to determine the values of the isoperimetric function

µ(k) in the Johnson graph J(n,m) for values of k of the form k =
(

t
m

)

. Moreover we will iden-

tify optimal sets for these values as sets of vertiecs inducing subgraphs isomorphic to Johnson

graphs. In Chapter 5 we will show how to interpolate between two consecutive optimal sets to

obtain an upper bound for the isoperimetric function in a dense set of values of its argument.

Lower bounds for the isoperimetric function will be obtained via spectral techniques. There is

a well–known connection between isoperimetric properties and spectral analysis of graphs whch

allows us to obtain good lower bounds, particularly for cardinalities of sets which are not too

big nor too small. Finally, in Chapter 6 we analyze in particular the cases of the Johnson graphs

J(n, 2) and J(n, 3) were more specific results can be given.





CHAPTER 2

Johnson graphs

In this chapter we introduce the Johnson graphs and discuss some of their basic properties. As

it has been mentioned in the introduction, Johnson graphs arise from the association schemes

with the same name. They are defined as follows.

Definition 2.1. Given n,m ∈ N with m ≤ n
2 , the Johnson graph J(n,m) is defined by:

(1) The vertex set is the set of all subsets of [n] with cardinality exactly m.

(2) Two vertices are adjacent if and only if the symmetric difference of the corresponding

sets is two.

It follows from the definition that, for m = 1, the Johsnon graph J(n, 1) is the complete graph

Kn. For m = 2 the Johnson graph J(n, 2) is the line graph of teh complete graph on n vertices,

also known as the triangular graph T (n). Thus, for instance, J(5, 2) is the complement of the

Petersen graph, displayed in Figure 1, and, in general, J(n, 2) is the complement of the Kneser

graph K(n, 2).

01

02

1213

23

24

34

30 40

41

Figure 1. The Johnson graph J(5, 2).

Throughout this work we will identify subsets of [n] by its characteristic vectors, which will be

denoted by lower boldface characters. Thus the subset {1, 2, 3} ⊂ {1, 2, 3, 4, 5} is denoted by

9



10 2. JOHNSON GRAPHS

x = (1, 1, 1, 0, 0). We usually write x = (x1, . . . , xn) so xi denotes the i–th coordinate of x,

which is 1 if i is in the corresponding set and 0 otherwise. We denote the support of x as

supp(x) = {i : xi = 1}.

We use the XOR operation

x⊕ y

of binary vectors defined as (x⊕y)i = xi+yi (mod 2). It corresponds to the symmetric difference

between the corresponding sets. Finally we write

|x| =
∑

i

xi

for the weight (or ℓ1 norm) of a vector. It is the cardinality of its support. With this notation,

the set of vertices of the Johnson graph are all vectors with weigth m, and we refer to their

support as teh set corresponding to the vector. We also denote by e1, . . . , en the unit vectors

ei = (0, . . . , 0,
i)

1, 0, . . . , 0), i = 1, . . . , n.

Thus, the neighbors of x in J(n,m) are the vectors

x⊕ ei ⊕ ej ,

for each pair i, j such that xi + xj = 1.

Some elementary properties of the Johnson graph are summarized in the next proposition.

Proposition 2.1. Given the graph J = J(n,m) with m ≤ n/2

(1) |V (J)| =
(

n
m

)

(2) J is a regular graph with degree m · (n−m).

(3) E(J) = 1
2m(n−m)

(

n
m

)

(4) Given x,y ∈ V (J), then d(x,y) = 1
2 |x⊕ y|

(5) The diameter of J is m.

Proof. The two first properties come directly from the definition. The third one can be

derived from (1) and (2).

Given two vertices x and y, a minimum length path from x to y requires exchanging the elements

in the symmetric difference of the sets corresponding to x and y. Each step in the path decreases

the symmetric difference by two and therefore, the distance d(x,y) is just 1
2 |x⊕y|. In particular,

since m ≤ n/2, the maximum distance between two vertices is m = diam(J). �
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One of the key properties of the Johnson graph is that they have a high degree of symmetry. It

is clear that every permutation σ ∈ Sym(n) in the symmetric group induces in a natural way a

permutation of the vertices of the graph:

σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)),

which is an automorphism of the graph. By using these automorphisms one can see that J(n,m)

is distance transitive.

Proposition 2.2. The Johnson graph J(n,m) is distance transitive.

Proof. Let x1,x2 and y1,y2 two pairs of vertices of J(n,m) at mutual distance d,

d(x1,x2) = d(y1,y2) = d.

We consider three disjoint subsets of the set [n]. Let be Ax = supp(x1) ∩ supp(x2), Bx =

supp(x1) \ supp(x2) and Cx = supp(x2) \ supp(x1). Let us define in the same way the sets Ay,

By and Cy for the vertices y1 and y2.

Since d(x1,x2) = d(y1,y2), we have |Ax| = |Ay|, |Bx| = |By| and |Cx| = |Cy| and, by definition,

the two collections of three sets are pairwise distinct. Therefore, there is a permutation σ ∈

Sym(n) whith

σ(Ax) = Ay, σ(Bx) = By, and σ(Cx) = Cy.

As we have already mentioned, this permutation induces an automorphism of the graph J(n,m)

with σ(xi) = yi, i = 1, 2. �

Being distance transitive, the Johnson graph J(n,m) is in particular vertex and arc–transitive

and distance regular. It follows that the subgraph induced by two vertices x,y at distance d and

all vertices lying in minimal paths connecting x and y are isomorphic. For d = 2 the resulting

graph is the octahedron, isomorphic to J(4, 2) as displayed in Figure 2. For general d we call

such graph a d–octahedron, which is isomorphic to J(2d, d).

axy

azt

axzaxt

ayz

ayt

Figure 2. The octahedron induced by two vertices at distance two.





CHAPTER 3

Reducing the neighbourhood of a subset of the Johnson graph

1. The transformations Tij and T ∗
ij

Shifting techniques are one of the key ingredients in the study of set systems. They were initially

introduced in the original proof of the Erdős–Ko–Rado theorem [12] and have been particularly

used in the solution of the isoperimetric problem for hypercubes due to Frankl, see e.g. [11, 8].

We shall use the shifting transformations Tij and T ∗
ij defined below. The main purpose of this

chapter is to show that, for each set S f vertices, the boundary of a transformed set Tij(S) in

the Johnson graph J(n,m) is not larger than the boundary of S.

We recall that subsets of [1, n] are identified by their characteristic vectors x ∈ {0, 1}n, and that

ei denotes the n–vector with all entries equal to zero but the i–th one which equals one.

Definition 3.1. Let S be a family of sets in 2[n] and let i, j ∈ [n] with i 6= j. For each x ∈ {0, 1}n

we define

T ∗
ij(x) =

{

x⊕ ei ⊕ ej if xi = 0 and xj = 1
x otherwise

We also define

Tij(S) = {Tij(S,x) : x ∈ S},

where, for x ∈ S,

Tij(S,x) =

{

T ∗
ij(x) if T ∗

ij(x) 6∈ S

x otherwise

We next prove some basic properties of the transformations T ∗
ij and Tij which will be useful

later on.

Lemma 3.1. The following statements hold for the Johnson graph J(n,m) and each pair i, j ∈

[1, n] of distinct elements.

(i) T ∗
ij is a contraction: for every pair of vertices x,y ∈ V (J(n,m)) we have

d(T ∗
ij(x), T

∗
ij(y)) ≤ d(x,y).

13



14 3. REDUCING THE NEIGHBOURHOOD OF A SUBSET OF THE JOHNSON GRAPH

In particular, for each subset S containing x and y, we also have

d(Tij(S,x), Tij(S,y)) ≤ d(x,y).

(ii) For each subset S ⊂ V (J(n,m)) we have |T (S)| = |S|.

Proof. (i) Recall that the distance in the Johnson graph is given by

d(x,y) =
1

2
|x⊕ y|.

If the transformation T ∗
ij either leaves both vertices x and y invariant or changes both

of them then |x⊕ y| = |T ∗
i (x)⊕ T ∗

ij(y)| and their distance is preserved by T ∗
ij . On the

other hand, if T ∗
ij(x) = x⊕ ei ⊕ ej and T ∗

ij(y) = y then the transformed vectors agree

in the coordinate j where x and y disagree and its distance is reduced by one unit.

The same argument proves that d(Tij(S,x), Tij(S,y)) ≤ d(x,y).

(ii) This follows directly from the definition of Tij .

�

We now can prove that the switching transformation Tij on a set S of vertices of the Johnson

graph J(n,m) does not enlarge its neighbourhood.

Theorem 3.2. Let S be a set of vertices in the Johnson graph J(n,m). For each 1 ≤ j < i ≤ n

we have

B(Tij(S)) ⊆ Tij(B(S)). (1)

In particular,

|∂(Tij(S))| ≤ |∂(S)|. (2)

Proof. We will show that, for each y ∈ Tij(S), we have B(y) ⊆ Tij(B(S)). This will prove

(1). We observe that then (2) follows since

|∂(Tij(S))| = |B(Tij(S))| − |Tij(S)| ≤ |Tij(B(S))| − |Tij(S)| = |B(S)| − |S| = |∂S|.

Let x be the element in S such that y = Tij(S,x). We consider two cases.

Case 1. (xi, xj) 6= (0, 1). In this case we certainly have y = x. Moreover, for each z ∈ N(x)

such that zi = 0 and zj = 1, we have z ⊕ ei ⊕ ej ∈ B(x). Therefore, since B(x) ⊆ B(S), the

transformation Tij(B(S), ·) leaves all vectors in B(x) invariant. Hence,

B(y) = B(x) = Tij(B(S), B(x)) ⊆ Tij(B(S)).

Case 2. Suppose now that xi = 0 and xj = 1. Then z = x⊕ ei ⊕ ej is the only neighbour of x

with zi = 1 and zj = 0.
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Case 2.1 If y = x then, by the definition of Tij(S, ·), we have z ∈ S and Tij(S, z) = z. Observe

that every neighbour z′ of x is left invariant by Tij(B(S), ·). This is clearly the case if (z′i, z
′
j) 6=

(0, 1) and, if (zi, zj) = (0, 1), because we then have z′′ = z′ ⊕ ei ⊕ ej ∈ B(z) ⊂ B(S). Hence

B(y) = B(x) ⊆ Tij(B(S), B(x)) ⊆ Tij(B(S)).

Case 2.2 Suppose that y 6= x. Then y 6∈ S but y ∈ B(x) ⊆ B(S). Each neighbour z of y

distinct from x is of the form z = z′⊕ei⊕ej for some neighbour z′ of x and therefore it belongs

to Tij(B(S)). For x itself we have Tij(B(S),x) = x because y = T ∗
ij(x) ∈ B(S). Thus we again

have B(y) ⊂ Tij(B(S). This completes the proof of (1). �

Example 3.1. Let us consider J(6, 2) and the set S = {{1, 2}, {1, 3}, {3, 4}}. The boundary of

this set is

∂S = {{1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 6}, {4, 5}, {4, 6}},

|∂S| = 11.

Choose x = 4 and y = 2 for the transformation, and apply T42 (see Fig. 3.1). We have

T42S = {{1, 2}, {1, 3}, {2, 3}}; and

∂T42S = {{1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}}

|∂S| = 9.

46

36

35
16

15

26

25

24

14 23

45

12

13

34 46

36

35
16

15

26

25

24

14 23

45

12

13

34

Figure 1. The effect of compression T42 on S = {12, 13, 34} on the left hand
side of the picture.

We can see how the vertex {3, 4} belongs to the boundary of T42S but can not be the transformed

by T ∗
42 of any vertex of ∂S. This is the ghost neighbour, which replaces the vertex {2, 3}. They

are just the vertices transformed by T42. The other two vertices that the boundary lose are the

vertices touching the element 4, the vertices {4, 5} and {4, 6}.
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Now we know how the transformation Tij works, we are going to apply a sequence of these

transformations to a given set S. Consider the set of transformations

T = {Tij : 1 ≤ j < i ≤ n}.

By the condition j < i, we eventually reach a set S′ such that Tij(S
′) = S′ for each Tij ∈ T .

This kind of sets are called T –stable sets. It follows from Theorem 3.2 that, for each given

cardinality, we will find a set of vertices of J(n,m) with smallest boundary among stable sets.

We conclude this chapter by stating the main result which motivates the use of compression

techniques.

Theorem 3.3. For every cardinality k there is an optimal set in the Johnson graph which is

T –stable for T = {Tij : 1 ≤ j < i ≤ n}.



CHAPTER 4

Critical cardinals

In this chapter we determine optimal sets of the Johsnon graph J(n,m) for cardinalities k of the

form k =
(

t
m

)

, m ≤ t ≤ n. We first observe that sets of vertices inducing a subgraph isomorphic

to a Johnson graph must be (isomorphic to) T –stable sets.

Lemma 4.1. If the graph induced by S ⊂ V (J(n,m)) is the Johnson graph J(t,m) on {i1, . . . , it} ⊂

[1, n] for some t with m ≤ t ≤ n on , then S is isomorphic to a T –stable set.

Proof. We may assume that {i1, . . . , it} = [1, t]. Then, for every x ∈ S and each pair

1 ≤ j < i ≤ n with xi = 1 and xj = 0 we have x⊕ ei ⊕ ej ∈ S and thus Tij(S,x) = x. �

It turns out that these stable sets are actually optimal sets. The next Theorem is the main

result in this chapter.

Theorem 4.2. Let J(n,m) be a Johnson graph and let t be an integer with m ≤ t ≤ n. The set

S ⊂ V (J(n,m)) consisiting of all m–subsets of [t] is an optimal set of J(n,m) with cardinality
(

t
m

)

.

The proof of Theorem 4.2 will follow from the more general statement below.

Lemma 4.3. Let k be a positive integer with
(

t−1
m

)

< k ≤
(

t
m

)

. There is an optimal set S with

cardinality k such that
(

[t− 1]

m

)

⊂ S ⊆

(

[t]

m

)

.

Proof. Choose a T –stable optimal set S which maximizes the number |S∩
(

[t]
m

)

| of elements

in
(

[t]
m

)

. Suppose that S 6⊆
(

[t]
m

)

and we will obtain a contradiction. Denote by

S0 = S ∩

(

[t]

m

)

and S1 = S \ S0.

We observe that, if either i, j ≤ t or i ≤ t < j, then S′ = Tij(S) satisfies

|S′
0| = |S′ ∩

(

[t]

m

)

| ≥ |S0| and |∂S′| ≤ |∂S|.

17



18 4. CRITICAL CARDINALS

The first part of the sentence comes from the conditions on i, j, and the second part by Theorem

3.2.

Let x ∈
(

[t]
m

)

\ S0 be a vertex in
(

[t]
m

)

and not in S, and let y ∈ S1 a vertex whose support has

largest intersection with the support of x among the vertices in S1. Let

A = (supp(y) \ supp(x)) ∩ [t], B = supp(y) \ [t], and C = supp(x) \ supp(y).

By our choice of y, the cardinality of A is smallest for all choices of elements in S. If A 6= ∅,

choose i ∈ A and j ∈ C and consider the transformation Tij . We note that Tij(y, S) = y⊕ei⊕ej

by the minimality of |A| (otherwise there is an element in S whose support has larger intersection

with the support of x.)

Denote by S′ = Tij(S) and define similarly S′
0 = S′ ∩

(

[t]
m

)

and S′
1 = S′ \ S′

0. Choose again

an element y′ ∈ S′
1 whose support has largest intersection with the support of x. By defining

|A′| = (supp(y′) \ supp(x)) ∩ [t] we clearly have |A′| < |A|, because y ⊕ ei ⊕ ej belongs to S′.

By iterating this procedure we eventually reach a set S′ which contains an element y′ whose

support has a largest intersection with the suport of x and with

supp(y′) ∩ [t] ⊆ supp(x).

If B′ = supp(y′) \ [t] = ∅ then y′ = x and |S′
0| > |S0|, contradicting our choice of S that it

maximizes its intesection with
(

[t]
m

)

. Otherwise we consider transformations Tij with i ∈ B′ =

supp(y′) \ [t] and j ∈ C ′ = supp(x) \ supp(y) which again increase the intersection with x. At

the end of the process we eventually reach a set with one more element in
(

[t]
m

)

without increasing

its boundary, so the transformed set is still optimal. This contradicts our initial choice of S.

Since in the above argument the choice of x is arbitrary, we can select x ∈
(

[t−1]
m

)

\ S as long as

there are elements in this set. Therefore we can also construct an optimal set S′ with
(

[t−1]
m

)

⊂ S′.

This completes the proof. �

Once the optimal sets with cardinality
(

[t]
m

)

have been identified, the isoperimetric function for

these values can be easily determined.

Proposition 4.4. The isoperimetric function of the Johnson graph J(n,m) satisfies

µ

(

t

m

)

=

(

t

m− 1

)

(n− t), t = m,m+ 1, . . . , n.

Proof. Let S =
(

[t]
m

)

. Given a vertex in ∂S, its support has m − 1 elements in common

with any vertex of S and exactly one element of the support lies in [n] \ [t]. �



CHAPTER 5

Boundary of optimal subsets with non critical cardinality

In this chapter we determine the isoperimetric function of the Johnson graph J(n,m) for car-

dinalities different from
(

t
m

)

. For this we will use the fact, proved in Lemma 4.3, that, if
(

t
m

)

< k <
(

t+1
m

)

, then there is an optimal set S satisfying
(

[t− 1]

m

)

⊂ S ⊂

(

[t]

m

)

. (3)

The above equation gives general upper and lower bounds for the isoperimetric function.

Proposition 5.1. If
(

t−1
m

)

< k <
(

t
m

)

then
(

t− 1

m− 1

)

(n− t) +

(

t

m

)

− k ≤ µ(k) ≤

(

t

m− 1

)

(n− t) +

(

t

m

)

− k.

Proof. Let S be an optimal set with cardinality k satisfying (3). Let S0 =
(

[t]
m

)

. Since

S ⊂ S0 we have ∂S ⊂ ∂S0 ∪ (S0 \ S). This gives the upper bound.

For the lower bound, let S′
0 =

(

[t−1]
m

)

. Since S′
0 ⊂ S ⊂ S0, we have ∂S′

0 \ S0 ⊂ ∂S. Moreover,

since S0 ⊂ ∂S′
0 we have ∂S ⊃ (∂S′

0 \ S0) ∪ (S0 \ S). The cardinality of ∂S′
0 \ S0 is

(

t−1
m−1

)

(n− t)

and the lower bound follows. �

In what follows we will see that the upper bound can be tight. We will give a tight improvement

of the lower bound for some values of k.

1. Taking out vertices of a critical set

We first determine the isoperimetric function of J(n,m) for cardinalities below but close to
(

t
m

)

.

Proposition 5.2. Let k <
(

t
m

)

. If
(

t
m

)

− k ≤ t−m then

µ(k) = µ

((

t

m

))

+

(

t

m

)

− k =

(

t

m− 1

)

(n− t) +

(

t

m

)

− k. (4)

Proof. Let S be an optimal set with cardinality k satisfying (3). Let S0 =
(

[t]
m

)

. We observe

that every vertex w in ∂S0 has precisely t − (m − 1) neighbours in S0 (one for each choice of

19
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a coordinate in [t] \ supp(x).) Since |S0 \ S| ≤ t −m, such a vertex w still belongs to ∂S. On

the other hand, since S contains
(

[t−1]
m

)

every vertex u ∈ S0 \ S belongs to ∂S. It follows that

∂S = ∂S0 ∪ (S0 \ S). �

The above proposition shows that the isoperimetric function of the Johnson graph is not mono-

tone.

2. Adding vertices to a critical set

We next give the value of the isoperimetric function for values of k above
(

t−1
m

)

but close to it.

Proposition 5.3. If x = k −
(

t−1
m

)

≤ t−m+ 1 then

µ(k) =

(

t− 1

m− 1

)

(n− t) +

(

t

m

)

− k + (x(m− 2) + 1)(n− t). (5)

Proof. Choose an optimal set S satisfying (3). Let S0 =
(

[t]
m

)

, S′
0 =

(

[t−1]
m

)

and set U =

S \ S′
0. As shown in the proof of Proposition 5.1, we have

(∂S′
0 \ S0) ∪ (S0 \ S) ⊂ ∂S.

Let us denote by W = (∂S′
0 \ S0) ∪ (S0 \ S) this subset of ∂S. Each vertex w in U contributes

to the boundary of S in (m− 1)(n− t) vertices which do not belong to W , namely the vertices

which contain t in its support. They can be found by choosing m−2 elements in supp(w)∩ [t−1]

and adding one element in [n] \ [t]. This shows that |∂S| is at least |W | + (m − 1)(n − t), and

the equality holds for x = 1.

We observe that every two vertices w,w′ in S \S′
0 have at most n−t common vertices in ∂S \W ,

because the support of every vertex in this last set contains precisely m− 2 elements in [t− 1]

in addition to the element t. This shows that

|∂S \W | ≥ x(m− 1)(n− t)− (x− 1)(n− t) = (x(m− 2) + 1)(n− t), (6)

and therefore the righthand side of (5) is a lower bound for µ(k).

However we can find up to m − t + 1 vertices in S \ S0 with this same number of common

neighbours in S \W , for instance the vertices w1, . . . ,wm−t+1 with support

supp(wi) = {1, 2, . . . ,m− 2} ∪ {i+m− 2} ∪ {t}, 1 ≤ i < t−m+ 1.

By choosing U to contain x of those vertices, we have equality in (6) and therefore equality in

(5) as claimed. �
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3. Some optimal subsets without critical cardinality

Let consider a optimal subset of vertices S =
(

[t]
m

)

with n > t > m and consider a vertex v of

its boundary. This vertex v has exactly m − 1 elements of [1 : t], lets call Bv to this block of

m − 1 elements. All the other vertices of the boundary which contains B are adjacent to the

same subset of vertices of S.

In other words, there exist a partition of the vertices of ∂S such that all the vertices in the same

class are adjacent to exactly the same vertices of S. It means that if we remove the vertices of

S that we need for delete a vertex of the boundary, automatically, we will delete all the vertices

of the class.

All this vertices of the same class contain the same block in common; and for delete this class

of the boundary of S, we have to remove all the vertices of S that contains this block. We can

see this like a bijection between the quotient set of the boundary and J(t,m−1). We will study

this bijection in the future.

For delete the first class of vertices, we just have to remove all the vertices that contain a block

B1. There are exactly t− (m− 1) vertices to remove.

For delete the second class of vertices of ∂S we have to remove all the vertices that contains

another block B2. Totally, there are t−(m−1) vertices, but we can use some of the vertices that

we removed for the first class of vertices. Given two different blocks, there are at most one vertex

that contains both blocks, and this happen if and only if this two blocks have m − 2 elements

in common. Thus, for delete the second class of vertices, we just have to remove t− (m− 1)− 1

vertices.

Taking the bijection between the blocks and J(t,m− 1), we have that two blocks have a vertex

that contains them if and only if their images are adjacent in J(t,m − 1). This is a prove for

the following property:

Property 5.4. The optimal way of chose the classes of vertices of the boundary for delete, is

to maximize the number of edges in the induced subgraph of J(t,m− 1).

In particular, the complete subgraphs correspond to optimal classes of vertices for delete. For

use this particular case, we have to know that the maximum complete subgraph of J(t,m− 1)

has size t− (m− 2). It means that we can remove t−m+2 classes of vertices knowing that for

all the possible pair of blocks there exist a vertex containing both of them.
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We remove t −m + 1 for the first class, t −m for the second, . . . t −m + 2 − i for the i class,

. . . . The last one of this set, for i = t−m+2, we have to remove 0 vertices, it means that if we

delete t−m+ 1 classes, the t−m+ 2 class is deleted for free.

After this, we will have removed

t−m+2
∑

i=1

t−m+ 2− i =
t−m+1
∑

i=0

i =
(t−m+ 1) · (t−m+ 2)

2
.

It means that we can draw exactly the function of optimal boundary for the intervals of size
(t−m+1)·(t−m+2)

2 before the critical cardinal
(

t
m

)

. We now only need to calculate how many

vertices are in each class of the boundary.

This classes has all the possible vertices that contains a given block of m− 1 elements, and we

can chose the last element between all the other n− t elements. Thus there are n− t vertices in

each class.

Let see an example of the function for the graph J(15, 4) and the parameter t = 8.

The initial critical set has size
(

8
4

)

= 70 and the expression (t−m+1)·(t−m+2)
2 takes the value 15.

Then, using this, we can know the function in the interval [55, 70]. We can appreciate how the

graphic has steps of constant high, separated each one much more when we walk near the critical

set of size 70. And also, we can appreciate that the size of the last step is twice the size of the
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others. This is because the last block that we have to remove, has size 0; it means, the last one

are two steps together.

For the first interval, between the critical cardinals
(

m
m

)

= 1 and
(

m+1
m

)

= m + 1, we need that
(t−m+1)·(t−m+2)

2 ≥ m − 1 for t = m + 1. It means, m ≤ 4. It means, we can draw exactly the

first interval between the critical cardinals for some values of m.

We can say more. For m = 3 the interval of the function that we know to the left of the critical

cardinals cover completely the distance to the previous critical cardinal. Given a cardinal
(

t+1
3

)

,

the number of vertices that we know how to take out is

(t−m+ 2) · (t−m+ 3)

2
=

(

t

2

)

and we have that
(

t+ 1

3

)

−

(

t

3

)

=

(

t

2

)

.

Let suppose now that we have a graph J(n, 4) and we try to add vertices to an optimal set of

cardinality
(

t
4

)

. The vertices that we have to add belong to J(t, 4)\J(t+1, 4). Thus this vertices

has to contain the element t+ 1. Suppose t large enough, we may assume that the first vertex

to add is

v1 = {1, 2, 3, t+ 1}.

The new vertices of the boundary, the adjacent to v1 but not to J(t, 4) have to have the element

t + 1, two elements of the subset 1, 2 or 3 and another element larger than t + 1. Then the

number of vertices that we are adding to the boundary is proportional to the number of pairs

that appear in the first part of the vertices added to the optimal set.

For example, if v1 = {1, 2, 3, t+ 1} and v2 = {1, 4, 5, t+ 1}, the pairs are

{1, 2}, {1, 3}, {2, 3}, {1, 4}, {1, 5}, {4, 5}.

Choosing the second vertex at this way, the number of pairs is 6. But we can do it in a better

way. We can use the pairs added with v1. Let define as

v2 = {1, 2, 4, t+ 1}.

At this way, v2 only add the pairs {1, 4} and {2, 4}. The choice of this second vertex can looks

evident, but for the third one, we can follow a lexicographic or colexicographic order. Let see

what happen adding as v3 the vertices {1, 2, 5, t+ 1} or {1, 3, 4, t+ 1}.

With {1, 2, 5, t+1} there appear the pairs {1, 5} and {2, 5}. Two new pairs. In fact, we can see

how if we keep adding vertices at this way, we always are going to add two new pairs.
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With {1, 3, 4, t + 1} there only appear the pair {3, 4}. And keeping with the colexicographic

order, the fourth vertex will be {2, 3, 4, t+ 1}, which doesn’t add any new pair.

This order is equivalent to say that we want to ”finish” all the possible vertices of J(t, 3) (m = 3

because we know that the element t+1 always belong to the vertices that we add and the vertices

that appear in the boundary) with the first three elements, then with the first four elements.

We want to keep low the number of elements that we use, for keep low the number of possible

pairs.

We can use the proof of the lemma 4.3 for justificate that. Given k = |S| such that
(

t
m

)

+
(

t′

m−1

)

≤

k ≤
(

t+1
m

)

for some m ≤ t′ < t, we know that S will contain
(

[t]
m

)

. Now for the vertices in

S1 = S \
(

[t]
m

)

we can apply the same process as in the proof of this theorem, and compact S1 as

much as possible into the set
(

[t′]∪{t}
m−1

)

, having that

(

[t− 1]

m

)

⋃

(

[t′] ∪ {t}

m− 1

)

⊆ S ⊆

(

[t]

m

)

.

For each value of t′ we obtain a second family of critical cardinals.

At this way we maybe can not know which vertex choose to add at each moment. But we

always know that after 1 vertex we have to have added the subgraph J(3, 3), after 4 vertices the

subgraph J(4, 3), after 10 vertices the subgraph J(5, 3), and this keep growing up with intervals

of size the triangular numbers. Let see why the size of the intervals are the triangular numbers.

Suppose that we have added all the subgraph J(t′, 3). The vertices that we have to add for

arrive to the J(t′ + 1, 3) have to have the element t′ + 1 and the other two elements have to be

less or equal to t′. This is the cause for there are
(

t′

2

)

= Tt′−1 possible vertices that we have to

add.

Now we can calculate the cardinality of the neighbourhood in each point that we have seen. Let

suppose that we have added the subgraph J(t′, 3). The possible neighbours to this vertices have

to have the element t+ 1 and two elements of the interval [1 : t′]. There are

(

t′

2

)

(n− t− 1)

new neighbours.

Lets complete the graphic with this second critical cardinals:
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From each one of this second critical cardinals we can use the process of the blocks explained

some pages before. Remember that we could draw the function
(

t−m+3
2

)

= Tt−m+2 points before

the cardinal
(

t+1
m

)

. In this case, if we want to take out the vertices before the cardinal
(

t
m

)

+
(

t′

m−1

)

we already know that we have to take out the vertices which contain the pair {t′, t+1} and the

vertices with the pairs {x, t + 1} are already taken out for any x > t′. In sense of the Johnson

graph J(t,m− 1) from which we have to chose the maximum clique, it means that we already

have taken some vertices from every clique.

Then, for t′ = t − 1 we can draw the function Tt−m+1 points, for t′ = t − 2 we can draw the

function Tt−m points,... (note that for t′ = t,
(

t
m

)

+
(

t′

m−1

)

=
(

t+1
m

)

). This decreasing sequence of

triangular numbers is exactly the sequence of size of the intervals in which this second cardinals

are spread.

And finally, complete the intervals with the process of the blocks:
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The function has slope −1 in the most part of the points. The only moments when if grows up

is when a block of vertices is taken out, when the function grows a step of size 7 in this case

(n − t − 1 in general); and when the complete clique is taken out, in whose case the jump has

double size. As we know, this double jumps match with the second critical cardinals.

Note Remember that every vertex that we add to an optimal set, is a vertex of its boundary.

This is the cause for the slope is −1 when there is no jump, and the jumps in the graphic has

size 6 and 13 and not n− t− 1 = 7 and 2 · (n− t− 1) = 14 respectively.



CHAPTER 6

Two particular cases

The results in the above chapter allow us to completely describe the isoperimetric function of

the Johnson graphs J(n,m) for m = 2, 3.

1. The case J(n, 2)

In this case we have
(

t
2

)

−
(

t−1
2

)

= t − 1. It follows from Proposition 5.2 that the values of

µ(k) are determined if
(

t
2

)

− k ≤ t− 1. Thus we know the complete values of the isoperimetric

function in this case.

Proposition 6.1. The isoperimetric function µ(k) of the Johnson graph J(n, 2) satisfies

µ

((

t

2

)

− i

)

= t(n− t) + i, i = 0, 1, . . . , t− 1.

Figure 1 displays the isoperimetric function of the complement of the Petersen graph J(5, 2)

displayed in Figure 2.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7

Figure 1. The isoperimetric function of J(5, 2).

2. Case J(n, 3)

Let consider a Johnson graph J(n, 3) and a set S of vertices, a vertex in the boundary has to

have two elements of [1 : n] in common with a vertex in the set S. There are two kind of vertices

27
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in the boundary. Let v ∈ ∂S. As we said, two elements of v are contained in a vertex of S.

The first kind of vertices, has the third element in ∪S; and the second one, has the last element

outside of ∪S.

For minimize the number of vertices of the first and the second kind, we have to get S inside of

a J(t, 3), for the smallest integer t that we can use. Let see.

Let call a pair to a pair of elements of [1 : n] such that both of them belong to a vertex of S.

Let consider P = {p1, p2, . . . , pk} the family of all the pairs in S. The number of vertices of the

second kind, is exactly

(n− t)|P|.

Looking only for this number, we should make as small as possible the number of pairs of S. For

do that, we should overlap the vertices as much as possible. It mean that the vertices should lie

in the smallest subset of [1 : n] as possible. Also, we have to note that the expression (n− t)|P|

grows when t gets small, but when we the t grows in 1 element, the number of possible pairs

grows up quadratically.

The number of vertices of the first kind, is exactly
(

t

3

)

− |S|.

We can see that the number of vertices of this kind, also decrease when t decrease.



CHAPTER 7

Spectral approach

In this chapter we use spectral techniques to obtain lower bounds for the isoperimetric function

of the Johnson graph.

1. Preliminaries

The isoperimetric number i(G) of a graph G is defined as (see e.g. [33])

i(G) := min
S

|e(S)|

|S|
,

where e(S) denotes the set of edges with exactly one end point in S and the minimum is taken

over all proper subsets of V (G). Since e(S) = e(V \ S), there is no loss of generality in taking

the minimum over all subsets S ⊂ V (G) with |S| ≤ |V (G)|/2.

Thus, the isoperimetric number of a graph determines the minimum ratio between the edges

going out of a subset of vertices and the cardinality of this subset.

Let us see some simple examples:

Example 7.1. (1) i(G) = 0 if and only if G is disconnected.

(2) i(G) ≤ δ, where δ denotes the minimal degree of G.

We are going to use the isoperimetric number to obtain lower bounds for the (vertex) isoperi-

metric function of the Johnson graph J(n,m). Using that J(n,m) is r-regular, we can write

r · |∂S| ≥ |e(S)|

and, by the definition of i(G),

|e(S)| ≥ i(G) · |S|

for any S ⊂ V (J(n,m)). Then, we have that

|∂S| ≥
i(G)

r
|S|. (7)

Either r and i(G) are fixed values on J(n,m). Then the cardinality of the vertex boundary of

a subset S is lower bounded by a linear function on its cardinality |S|.

29
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Let us define ik(G) as

ik(G) := min
|S|=k

|e(S)|

|S|

for each k with 1 ≤ k < n. In particular, we have that

i(G) = min
k

ik(G).

We next recall general bounds for the isoperimetric number in terms of the Laplacian eigenvalues

of the graph G = J(n,m), see e.g. [33].

Proposition 7.1. Let G a graph with N vertices and S ⊂ V = V (G). Then we have

µ2
|S|(N − |S|)

N
≤ e(S) ≤ µN

|S|(N − |S|)

N
,

where µ2 and µN are the second smaller and the largest eigenvalues of the Laplacian matrix of

G respectively.

Proof. Let S ⊂ V and v = (v1, . . . , vn) ∈ Rn the characteristic vector of S, it means vi = 1

if i ∈ S and vi = 0 otherwise. If we write
∑

i∈V

∑

j∈V

(vi − vj)
2

we are counting, twice the total number of pairs of vertices that one of them belongs to S and

not the other. Then we have
∑

i∈V

∑

j∈V

(vi − vj)
2 = 2|S|(n− |S|).

But if we want to obtain e(S, V \ S), we have to sum only the pairs of vertices which induces

an edge:
∑

i∈V

∑

j∈V

Aij(vi − vj)
2 = 2e(S, n− |S|)

where the matrix A is the adjacent matrix of G. And by the previous lemma and assuming that

S 6= ∅, V , we have that

µ2 ≤ 2n ·
e(S, V \ S)

2|S|(n− |S|)
≤ µn.

�

It follows from the above proposition and the fact that e(S) = e(V \S) that, for every 1 ≤ k < N ,

we have

ik(G) ≥
(N − k)µ2

N
,

and

i(G) ≥
µ2

2
.
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Combining with (7), we obtain

|∂S| ≥
µ2

2r
|S|. (8)

for every S ⊂ V (J(n,m)).

2. Eigenvalues of J(n,m)

The eigenvalues of the Johnson graph J(n,m) are known to be (see e.g. [18]):

(m− i)(n−m− i)− i,

with multiplicity
(

n

i

)

−

(

n

i− 1

)

for each i with 0 ≤ i ≤ m.

Using that J(n,m) is a regular graph, of order m(n −m), we can deduce that the eigenvalues

of the Laplacian matrix of the graph, are

m(n−m)− (m− i)(n−m− i)− i, 0 ≤ i ≤ m.

In particular, for i = 0, we can check that the first Laplacian eigenvalue is 0. Taking i = 1, we

have that

µ2 = m(n−m)− (m− 1)(n−m− 1)− 1 = n− 2.

We are going to use this value to complete the lower bound of the isoperimetric number and

then that of |∂S|.

Plugging in this value of µ2 in the inequality (8) we obtain

|∂S| ≥
n− 2

r
|S|.

We can significantly improve this lower bound by using Lemma 4.3. According to this Lemma,

if
(

t−1
m

)

< k ≤
(

t
m

)

we can find an optimal set S of cardinality k such that
(

[t− 1]

m

)

⊂ S ⊆

(

[t]

m

)

.

It follows that every vertex in ∂S is adjacent from at most t −m + 1 vertices in S. Therefore,

we can replace r in the lower bound (7) with the much smaller value t−m+ 1. This gives, for
(

t−1
m

)

< k ≤
(

t
m

)

and |S| = k,

|∂S| ≥
n− 2

t−m+ 1
|S|. (9)

We know from Proposition 5.1 that, if
(

t−1
m

)

< k <
(

t
m

)

then

µ(k) ≥

(

t− 1

m− 1

)

(n− t) +

(

t

m

)

− k.
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Our goal is to use spectral bounds for i(G) which improve this lower bound for µ(k) for some

values of k where the exact value of µ is not known.

Figure 1 shows the plots of the lower bounds for the isoperimetric function given by Proposition

5.1 and the spectral bound (9). As it is illustrated in this figure, the spectral bound gives better

estimations of the isoperimetric function for values of k close to half the total number of vertices.

Figure 1. Comparing the lower bounds for the isoperimetric function, from
Proposition 5.1 on the left and from the spectral inequality (9) on the right.



CHAPTER 8

Connectivity in Johnson graph

Let define the k-connectivity of a graph as:

Definition 8.1. Let G a graph and let k a positive integer. The k-connectivity of G is the

minimum number of vertices that we have to remove of G for break the graph in two connected

components with at least k vertices in each one of this two connected components.

It means, let consider all the sets X of vertices such that G \ X has at least two different

connected components with at least k vertices in each one.

We will denote it by κk(G).

If there exist a set of vertices U of a graph G such that G \ U has at least two connected

components with at least k vertices in each one, we will say that G is k-separable, for any value

of k. Otherwise, we say that G is not k-separable.

Clearly, if k ≥
|V |

2
, G is not k-separable.

For use the properties and results studied in the other sections, we write this lemma:

Lemma 8.1. Given S an optimal set of vertices in the Johnson graph J(n,m), the subgraph

J(n,m) \ (S ∪ ∂S)

is a connected subgraph.

This is an important lemma, because we are going to use the boundary of optimal subsets of

vertices as cut sets; and we want that in each connected component has at least k vertices. But

if we break one of the connected components, it may has not satisfy this property.

Proof. Let consider a Johnson graph and an optimal set S. And let be u, v ∈ V (J(n,m))

two different vertices such that u, v /∈ S∪∂S. If |S| ≤
(

t+1
m

)

, we may suppose that u, v∩ [1 : t+1]

is at most m− 2; because S ∪ ∂S ⊆ J(t+ 1,m) ∪ ∂J(t+ 1,m).

Let Cu = u∩ [1 : t+1] and Cv = v∩ [1 : t+1]. If |Cu| 6= |Cv|, suppose without lose of generality

|Cu| + k = |Cv| ≤ m − 2 for some positive integer k. Take {y1, . . . , yk} subset of Cv \ Cu and

33
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apply the transformations T ∗
xy to the vertex u with

x ∈ u \ [1 : t+ 1]

and

y ∈ {y1, . . . , yk}

Each one of this transformations give us a new vertex at distance 1 of the previous vertex. And

each vertex has at most m−2 elements of [1 : t+1], so every vertex belong to J(n,m)\(S ∪ ∂S).

Let call û the last vertex of this sequence of transformations.

Now, we have û and v with |û∩ [1 : t+1]| = |v ∩ [1 : t+1]|. We need to transform now only the

elements of

(û \ v) ∩ [1 : t+ 1]

on the elements of

(v \ û) ∩ [1 : t+ 1].

And the elements in

(û \ v) ∩ [t+ 2 : n]

on the elements of

(v \ û) ∩ [t+ 2 : n].

We have a path

u ∼ . . . ∼ û ∼ . . . ∼ v

with all the vertices at most m − 2 elements of [1 : t + 1]. Finally, if any of the vertex u or v

belong to J(t + 1,m) ∪ ∂J(t + 1,m), then for sure exist a vertex adjacent to each one of them

out of J(t + 1,m) ∪ ∂J(t + 1,m). Let call ū and v̄ respectively. There exist, in this case the

following path:

u ∼ ū ∼ . . . ∼ ˆ̄u ∼ . . . ∼ v̄ ∼ v

with all the vertices but the first and the last at most m− 2 elements of [1 : t+1]. And the first

and the last one, we know that don’t belong to S ∪ ∂S. �

Using the results studied in the past sections, we can write some easy properties.

Property 8.2. Given a positive integer k, and S an optimal subset of vertices of a graph J(n,m)

with |S| = k. Then, the k connectivity is at most |∂S|.

Proof. Let k and S an optimal subset of vertices such that |S| = k satisfying that

2k + |∂S| ≤ |V |.

Thus, if we remove the set ∂S we have two connected components with at least k vertices in

each one. �
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As we saw in the previous sections, the boundary of a set of vertices in a Johnson (and in general

in the most of the graphs) graph don’t grow monotonically with the cardinality of the set. This

implies that sometimes, the optimal cut set is not just the boundary of an optimal set of length

k.

Example 8.1. Let the graph J(15, 4), and k = 14. We can check that
(

5

4

)

< k <

(

6

4

)

.

Then, an optimal set S of length k will satisfy

J(5, 4) * S * J(6, 4).

We know that |∂J(6, 4)| =
(

6
3

)

(15 − 6) = 180. Given a vertex in ∂J(6, 4), it has t −m + 2 = 3

neighbours in J(6, 4) If we remember the results of section 6.3, we have to delete 3 vertices for

delete the block of J(, ) associated to the vertex in the boundary and
(

6
4

)

− 14 = 1. It means

that there is not decreasing of the boundary. Then

|∂S| = |∂J(6, 4)|+ 1.

The boundary of S is just the boundary of J(6, 4) and the vertex which is in J(6, 4) but not in

S. Even if k = 13, as t −m + 2 = 3 which is larger than the difference between
(

6
4

)

and k, we

have

|∂S| = |∂J(6, 4)|+ 2.

If we keep going down in k and we fix k = 12, the distance between
(

6
4

)

and k is already 3 which

is equal to the value t−m+ 2. It means that there exist a vertex in ∂J(6, 4) which is not any

more in ∂S (in fact, there are 15 − 6 = 9 vertices which share neighbour in J(6, 4) that have

been removed), but there are 3 vertices in J(6, 4) which are not in S, then

|∂S| = |∂J(6, 4)| − 6.

Obviously, the set
(

[6]
4

)

of cardinality 15 has a better boundary than the sets of cardinality 14

and 13, but not than the set of 12 vertices. The 13-connectivity, the 14-connectivity and the

15-connectivity has the same value: 180. The 12-connectivity of J(15, 4) is 174.

The graph J(15, 4) has 1365 vertices. And for break it in to parts of only 13 vertices in each

one (parts of the order of less of the 1% of the total graph), we have to remove 180 vertices, 15

times the length of each part.
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