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Abstract 

Vanadium thin films are prepared by DC magnetron sputtering using the GLancing Angle 

Deposition (GLAD) method. This technique will allow the growth of porous nano-structures with 

inclined columns, as well as zig-zags and spirals. Also pulses of oxygen combined with GLAD will be 

used during sputtering to study the properties of the films. All films are oxidized after being heated for 

several temperature cycles, taking the forms of V2O5 and VOX compositions. The aim of this work is 

to characterize coatings containing primarily the VO2 phase; given this phase has a reversible semi-

conductor to metal transition close to room temperature (Approximately 68º). Due to this behaviour, 

VO2 becomes useful in sensor applications, especially with gases. The best operating conditions to 

favour the formation of VO2 and its most significant metal-to-semiconductor transition will be 

examined. The column angle β is measured by scanning electron microscopy (SEM) and the electrical 

conductivity of the films exhibiting inclined columns, zig-zags and spirals nano-structures as well as 

the films sputtered with oxygen pulses is investigated with DC-resistivity measurements. It is found 

that the column angle  must reach a threshold value to significantly reduce the electrical conductivity 

of the vanadium thin films close to one order of magnitude. The most suitable nano-structures for gas 

sensor applications found were: Inclined columns of incidence angle       annealed to 550ºC and 

inclined columns of incidence angle       with oxygen pulses during deposition with a period of 

16 seconds and duty cycles           and         , with annealing treatments to 550ºC and 

500ºC respectively. The film with dc=0,375 annealed to 550ºC was tested for ozone sensing. The 

optimum working temperature found was of 370ºC degrees, with a maximum variation of resistivity in 

front of time of 0,05534 Ω/s. 
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1. Introduction 

Concern about the high levels of pollution all around the world causes the regulations towards 

emissions to become each time stricter. Related to atmospheric gas emissions, innovative gas sensor 

nano-structures and materials are required to satisfy these new demands and are widely studied by 

scientists worldwide [1]. Solid state semiconducting gas sensors are one of the most popular research 

topics in the gas sensing science, since metal-insulator transitions have been investigated for many 

years [2]. This transition can occur due to variations in parameters such as the chemical composition, 

stress, electric field, magnetic field and temperature [3, 4]. It corresponds to a transformation of states 

from an insulator (or semiconductor) to a metallic type of conductivity and reversely [5, 6]. 

Materials exhibiting this behaviour include binary compounds of transition metal oxides [7] 

such as SnO2, TiO2, WO3, etc. [1]. Vanadium oxides are considered good new candidates for gas 

sensors and have already been studied to some extent [2]. Several vanadium pentoxide (V2O5) nano-

structures have demonstrated sensitivity towards NH3 [8, 9] and amines [10]. Polycrystalline 

vanadium oxide thin films have shown sensitivity towards NO [11] and NO2 [12, 13]. Also, Vanadium 

dioxide (VO2) nanowires are being investigated as H2 sensors by taking advantage of its metal-

insulator transition (MIT) [14, 15].  

These transitions are accompanied by huge resistivity changes, sometimes even over tens of 

orders of magnitude [16] and vanadium dioxide is of particular interest because its transition occurs 

near room temperature. The monoclinic (M1) VO2 phase has a bandgap of 0.6 eV at 25 °C and 

converts into metallic rutile (R) VO2 at 68 °C, resulting in a brusque change in bulk electrical 

resistivity of 2 to 6 orders of magnitude. The VO2 MIT is revealed in an abrupt interfacial transition of 

current across a VO2 barrier interface forming a tunnel junction. In a first tunnel junction form, a two 

orders of magnitude rough change in contact resistivity induced by the bulk MIT is shown in VO2-

metal contact nano-structures [17, 18]. The working zone of VO2 is 5.2eV (25 °C) −5.3eV (90 °C). The 

http://www.sciencedirect.com.gate6.inist.fr/science/article/pii/S0925400512013767#bib0005
http://www.sciencedirect.com.gate6.inist.fr/science/article/pii/S0925400512013767#bib0015
http://www.sciencedirect.com.gate6.inist.fr/science/article/pii/S0925400512013767#bib0030
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brusque change in current across the VO2 interface is due to the change in free carriers in bulk VO2 

across the MIT [19]. 

There are several methods for fabricating vanadium oxide thin films, e.g. Chemical vapour 

deposition [20], sol–gel method [21], pulsed laser deposition (PLD) [22-24], and sputtering 

methods [25, 26] with posterior annealing. The advantages of sputtering processes are film 

homogeneity, expandability to larger substrate sizes and efficiency of deposition when compared to 

the other methods [27]. 

Thin films with high transition resistivity ratios can be deposited at low temperatures by DC 

sputtering from a vanadium target in an Argon (Ar) working gas atmosphere using a planar magnetron 

source. This method enables depositing large surfaces area and a good temperature control [28]. 

The purpose of this paper is to investigate the electrical conductivity of vanadium oxide thin 

films exhibiting different nano-structures: Inclined columns, zig-zags and spirals. The operating 

conditions required for favouring the highest change of electrical resistivity and, therefore, the most 

significant metal – semiconductor transition are examined. DC magnetron sputtering deposition, 

implementing the GLancing Angle Deposition (GLAD) method [29, 30] is employed, followed by 

oxidation by annealing the films in a homemade device.  Also, reactive sputtering (RRSP) using 

oxygen during GLAD is employed in some of the films. The interest will be then to correlate and 

understand the possible relationships between the structural characteristics, optical and electronic 

behaviours of the films and their performance as gas sensors. 

  

http://www.sciencedirect.com.gate6.inist.fr/science/article/pii/S0925400512013767#bib0055
http://www.sciencedirect.com.gate6.inist.fr/science/article/pii/S0925400512013767#bib0060
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2. State of the art 

2.1 Vanadium, vanadium oxides and applications 

Vanadium is a grey coloured, ductile transition metal situated in the fifth column of the 

periodic table of the elements. Its atomic number is 23 and its electronic configuration is [Ar] 3d
3
 4s

2
. 

It is commonly known for its use in steel alloys or in titanium based alloys and for its resistance to 

acid corrosion (hydrochloric and hydrofluoric mostly). It is actually being studied in a new type of 

batteries called flow batteries, which recharge faster than standard batteries [1].  

Vanadium is also studied for applications in the nuclear industry to reduce the fuel in the 

reactor because of its weak capturing neutrons efficient section. In addition, it‟s been used as dopant in 

zirconia matrix due to its blue colour [2]. However, it is mostly employed in its oxides forms.  
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Figure 2.1: Vanadium–oxygen phase diagram showing VOx in the range 1 ≤ x ≤ 2.5, variation from Katzke et al. [3]. 

As shown in figure 2.1, vanadium oxides have a degree of oxidation from +II (phase VO for x 

< 1,15) to +V (phase V2O5 for x > 2.5). Vanadium pentoxide (V2O5) is the most chemically stable 

phase and presents a first order transition when the temperature surpasses 276ºC. First order transitions 

are characterised by a change of phase when the material surpasses a critical temperature value (Tc). In 

addition to vanadium pentoxide, vanadium dioxide (VO2) and vanadium sesquioxide (V2O3), there are 

nearly twenty other stable oxide phases. These have no interesting phase transitions compared to VO2 

their phase diagrams are similar to those of VO2 and V2O3 (Figure 2.2), creating a special difficulty in 

growing thin films of VO2. [4, 5]. Given the amount of intermediate compounds, producing films of a 

concrete oxygen composition has to be done with rigorous control to avoid polyphased films [6]. 

These other phases can be put in two groups. In one hand, the first group follows the following 

stoichiometric formula: VnO2n+1 and exists between V2O5 and VO2. The phases comprised in it are 

called Wadsley phases. On the other hand, the second group follows the formula: VnO2n-1, exists 

between VO2 and V2O3 and the phases in it are called Magnéli phases [5] (Figure 2.3). All of these 

VO2 

Magnéli phases 

VnO2n-1 
Wadsley phases 

VnO2n+1 
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phases (except one), both in the first and in the second group, exhibit a change from a metallic to a 

semiconductor behaviour. 

 

Figure 2.2: Vanadium-oxides phase diagram [7]. 

 

 Figure 2.3: Phase diagram [8] combined with KACHI and ROY’S data [9] and the present work. 

 

Magnéli phases 
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2.1.1 Magnéli phases 

The Magnéli phases, of generic formula MnO2n-1 (with M being: V, Ti…), have been largely 

studied to understand the first order phase transitions of the type metallic/semiconductor (MIT: Metal 

to Insulator Transition) [10]. The vanadium Magnéli phases VnO2n-1 are defined by U. 

Schwingenschlögl and V. Eyert [5] with the following formula: 

             (   )   , with        

Their MIT transition temperatures Tc are detailed in table 2.1. 

Table 2.1: Magnéli phases and their correspondent phase transition temperatures. 

Vanadium Magnéli phase Tc 

V3O5 -156 

V4O7 -23 

V5O9 -138 

V6O11 -103 

V7O13 No MIT 

V8O15 -203 

V9O17 -198 

 

All of these transitions are reversible, changing from semi-conductors at low temperature to 

metallic at high temperature, accompanied by a change in the crystalline nano-structure. These phases 

experience, thus, a change in their magnetic [11], mechanical, optical and electrical properties with 

temperature. V7O13 is the only vanadium oxide which is always metallic [5, 12], although its magnetic 

properties do change with the transition. 

The different properties of Magnéli‟s phases have been studied and used in fields like 

tribology for applications as lubricants at high temperature, protecting the coatings from corrosion and 

limiting their friction [13]. 
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2.1.2 Wadsley phases 

Vanadium oxides of chemical composition VnO2n+1 are comprised in between VO2 and V2O5. 

Nowadays, only V6O13, V4O9 and V3O7 have been synthesised in the form of powder or crystals. Most 

of these phases, as the Magnéli ones, have a semi-conductor/metal transition and their properties 

change with it. 

2.2 Vanadium dioxide (VO2) 

Vanadium dioxide is of particular interest since F.J. Morin discovered its reversible phase 

transition near room temperature in 1959 [14] and is also attractive for its optical commutation in the 

infrared interval. The challenge relies in obtaining the exact compound, due to the need of a rigorous 

control of the oxygen content (VOx with            ), as can be observed in figure 2.3. 

2.2.1 Important nano-structures 

VO2 can crystallize in different stable phases: VO2(M1) for monoclinic one, VO2(M2) for the 

base centred monoclinic phase and metastable VO2(T) for the triclinic phase, in function of the method 

of growth and the experimental parameters. The high temperature phase VO2(R) and low temperature 

phase (M1) are described below. The VO2(M2) phase is not described because it can only be achieved 

enhancing doping, which is not studied in this work. 

a) The high temperature phase VO2 (R) 

At a temperature higher than Tc, VO2 is characterised by its rutile quadratic phase nano-

structure, noted VO2 (R) and represented in Figure 2.4.  Its mesh parameters are [15]: 

              nm 

           nm 

In this nano-structure, the vanadium atoms of valence +IV are surrounded by six oxygen 

atoms of valence –II, creating a VO6 octahedron. It should be noted that in this high temperature nano-

structure there is no metallic vanadium-vanadium bonding and there is only one interatomic distance 
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from the central vanadium atom to the mesh and the six oxygen atoms. In this phase, VO2 (R) dioxide 

of vanadium presents a metallic behaviour and rests opaque to infrared rays. 

 

Figure 2.4: Crystalline quadratic rutile nano-structure of VO2 at high temperature, noted VO2(R )[16]. 

b) The low temperature phase VO2 (M1) 

At a lower temperature than 68ºC, vanadium dioxide experiences a sudden structural transition 

and changes from its rutile quadratic phase to its monoclinic low temperature nano-structure, noted 

VO2 (M1) and represented in Figure 2.5. This phase can be seen as a lengthening in the cR axis of two 

superposed meshes of the quadratic rutile nano-structure, followed by torsion. The vanadium atoms 

shift slightly in relation to their original positions and are no longer aligned with each other along the 

cR axis (Figure 2.5). 

Metallic V-V bonds 0, 2619 nm long are formed in zig-zag, by pairs, modifying the mesh 

parameters from the original rutile nano-structure, according to J. M. Longo and P. Kierkegaard [17], 

with the following values: 

                nm 

            nm 

                  nm 
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Also, in this phase it is important to note that there are two different vanadium-oxygen 

interatomic distances: V-O1 and V-O2, of corresponding lengths 0,177 nm and 0,201 nm. 

Monoclinic VO2 presents semiconductor behaviour and rests transparent to infrared rays. 

 

Figure 2.5: Monoclinic nano-structure of VO2 at low temperature, noted VO2 (M1) [16]. 

2.2.2 Physical properties 

The phase transition in VO2 carries with it a change of the resistivity of the material [18, 19]. 

In the low temperature interval, the monoclinic VO2 (M1) phase has a bandgap of 0.6 eV at 25 °C and 

converts into metallic rutile in the high temperature phase VO2 (R) at 68 °C, resulting in a brusque 

change of the bulk electrical resistivity, from two to six orders of magnitude. The VO2 MIT is revealed 

in an abrupt interfacial transition of current across a VO2 barrier interface forming a tunnel junction. In 

a first tunnel junction form, a two orders of magnitude rough change in contact resistivity induced by 

the bulk MIT is shown in VO2-metal contact nano-structures [14, 20]. The working zone of VO2 is 

5.2eV (25 °C) −5.3eV (90 °C). The brusque change in current across the VO2 interface is due to the 

change in free carriers in bulk VO2 across the MIT [21]. 

The optical properties of VO2, such as reflectance [22], emission [23] or transmittance [24], are 

also modified with the phase transition. Being this transition reversible and of first order, there is a 

mixture of oxide phases that present a hysteresis loop. When VO2 is heated, the material goes from its 

metallic phase VO2(R) to its semi-conductor phase VO2 (M1). When cooling, the semiconductor phase 
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will germinate into the metallic phase but at a different temperature [25]. The change in the optical 

properties also brings a change in the optical index n (refraction index) and k (extinction index), 

mostly in the infrared domain, as shown in the work of F. Guinneton [25]. S. Mukherjee and A.K. Pal 

recently studied the magnetic properties of VO2 nano-crystals in a silicon matrix, demonstrating a 

magnetic transition, of the type superparamagnetic-ferromagnetic, at the temperature of -263 ºC. 

In this work we will focus on the change of resistivity in VO2 as our main interesting property. 

To understand why there is a change in all these properties, it is necessary to comprehend the 

electronic bands nano-structure of VO2 in function of temperature. 

2.2.3 Semiconductor-to-metal transition (MIT) 

Most of the metal oxides near to vanadium crystallise into a rutile nano-structure. However, in 

function of their electronic configuration, their phase transition occurs differently. Vanadium is 

situated in between titanium (Ti) and chromium (Cr) in the periodic table. Titanium oxide TiO2 (3d
0
) 

crystalizes into a rutile nano-structure with a big band gap of energy, becoming an insulator. Chrome 

oxide CrO2 (3d
2
) always stays metallic, although it has a paramagnetic-ferromagnetic transition when 

crystalizing into the rutile phase. As vanadium dioxide (3d
1
) is situated in between them both, it 

presents an intermediate behaviour in its semiconductor-metal transition [26]. 

As it has been said, the bands nano-structure of VO2 change in function of temperature [27]. In 

one hand, at low temperature the compound is in a semi-conductor state, so there is a gap in between 

the valence band (which is full of electrons) and the conduction band (empty of electrons). This gap is 

the consequence of the strong V-V metallic bond at low temperature, which does not permit the 

fulfilment of the band. On the other hand, at high temperature the formation of a rutile nano-structure 

erases the metallic bonds, making the energy gap disappear. The material then becomes metallic and 

the electrons in the valence band can easily move to the conduction band and form electron-hole pairs 

in both bands. The appearance of these pairs of charges explains the decrease of transmittance and the 

rise of reflectivity, given the compound is in its metallic state. 
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Figure 2.6: Scheme of the bands nano-structures of VO2, at high temperature rutile nano-structure (a) and at low 

temperature when distorting rutile to monoclinic nano-structure (b) [28]. 

After the description of the bands nano-structures, the different ways to synthesis VO2 thin 

films are detailed in the following part of this chapter.  

2.3 Vanadium dioxide thin films synthesis methods 

Many methods can be used to elaborate VO2 thin films. All of them have three principle steps 

in the formation of any deposit: 

1. Synthesis of the material to be deposited: 

a) Transition from a condensed phase (solid or liquid) to the vapour phase  

b) For deposition of compounds, a reaction between the components of the compound, some 

of which may be introduced into the chamber as a gas or vapour. 

2. Transport of the vapours between the source and substrate. 

3. Condensation of vapours and gases followed by film nucleation and growth. 

In this section, a brief review of all the methods used to synthesise thin films of VO2 till the 

present is given. In the end, the method chosen for this work is presented, along with the reasons why. 

Figure 2.7 shows a summary of all the soon to be described methods.  
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2.3.1 Sol-gel 

This chemical synthesising method [29] uses metallic vanadium powder and oxygenated water 

as precursor. The solution is heated up to 50 ºC to obtain gel at room temperature. Finally, the gel is 

heated up to 750 ºC for 2 hours inside a vacuum oven. VO2 thin films with a 200 nm thickness and 

grains sizes in between 100 nm and 500 nm are created. The surface morphology shows a powdery 

look, as can be observed in N. Wang‟s work [30]. 

2.3.2 Spin-coating 

When mixing V2O5 powder with an organic solution, a gel is obtained. This gel is then rotated 

and annealed on a mica substrate, inside a tubular oven between 440-540ºC for 30 minutes and in a 

nitrogen atmosphere. The resulting surface and grains‟ size of the VO2 films depend mainly on the 

annealing temperature [31]. The phase transition temperature Tc increases to 75ºC, being higher than 

the one usually obtained with other methods (68ºC).  

2.3.3 Chemical vapour deposition (CVD) 

B. W. Mwakikunga‟s article presented the synthesis of VO2 by ultrasonic spray pyrolysis for 

the first time [32]. A precursor solution of ammonium meta-vanadate, enriched with vanadium tri-

chloride, was found to be one of the most suitable starting solutions from which droplets were 

VO2 Thin films synthesising methods 

Chemical 
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Figure 2.7: Scheme of VO2 thin films synthesising methods. 
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generated by an ultra-sonicator operated at 1.7 MHz. A powdery surface and a wide range of grains 

sizes can be observed in his work.  

2.3.4 Atomic layer deposition (ALD)  

ALD is a chemical gas phase thin film deposition method based on sequential, self-saturating 

surface reactions. The ALD method was developed for commercial use in Finland in the mid-1970s by 

Dr Tuomo Suntola and co-workers. [33-37]. Two or more precursor chemicals, each containing 

different elements of the materials being deposited, are introduced to the surface separately, one at a 

time. Each precursor saturates the surface forming a monolayer of material [38A]. 

Initially developed to produce thin film electroluminescent (TFEL) flat panel displays, it is 

now used for multiple other industrial applications such as semi-conductor devices manufacturing, due 

to its high control in surface precision and the ability of creating ultra-thin films. This technique has 

also been used to study VO2 thin films [39]. However, ALD processes with vanadium oxides mostly 

result in the growth of V2O5 [40]. 

2.3.5 Physical vapour deposition (PVD)  

Physical vapour deposition (PVD) gathers a variety of vacuum deposition methods which are 

based in the condensation of a vaporized form to deposit thin films of a desired material onto various 

substrate surfaces.  

a) Electron Beam Evaporation (EBPVD)  

A target anode is bombarded with an electron beam given off by a charged tungsten filament 

under high vacuum. The electron beam causes atoms from the target to transform into the gaseous 

phase. These atoms then precipitate into solid form, coating everything within line of sight in the 

vacuum chamber with a thin layer of the anode material.  

 Recent studies have found Electron Beam Evaporation to be a highly suitable method 

to create VO2 thin films [41, 42]. Active photonic devices incorporating VO2 deposited by this 

technique perform at least as well, if not better, than those produced by pulsed laser deposition [43]. In 

addition, the near-perfect stoichiometry of the deposited films as a result of the powder precursor 

http://en.wikipedia.org/wiki/Vacuum_deposition
http://en.wikipedia.org/wiki/Thin_film
http://en.wikipedia.org/wiki/Anode
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requires short annealing times and produces films with a smooth morphology. Converting these films 

to high-quality VO2 requires only a short time under the conditions at which VO2 is the preferred oxide 

[44]. 

In spite of the attractive laser evaporation approaches, for VO2  it suffers from the following 

limitations [38B]: 

 Complex transmitting and focusing systems need to be employed to direct the beam from the 

laser, located outside the vacuum system, onto the evaporator, placed inside the system. This 

involves special optical path designs and increases the cost of the set-up. Also, a window 

material which efficiently transmits the wave-length band of the laser must be found and 

mounted in such a way that it is not rapidly covered up by the evaporated material. 

 Energy conversion efficiency is very low, around 1-2%. 

 The size of the deposited film is small (10-20mm or 0.4-0.8 inches in diameter), due to the 

small size of the laser impact spot. 

 The „splashing effect‟ [45], which involves the production of micro-particles between 0,1 and 

10μm in size, diminishes the quality of the films. 

b) Pulsed laser deposition (PLD) 

There are many studies using PLD to create VO2 thin films [46, 47 and 48]. This 

PVD technique uses a high-power pulsed laser beam focused inside a vacuum chamber to hit the target 

of the material being deposited. This material is then vaporized in a plasma environment which 

deposits it as a thin film on the substrate. This process needs of ultra-high vacuum or the presence of a 

reactive gas, such as oxygen, commonly used when depositing oxides to fully oxygenate the deposited 

films.  

c) Sputtering methods  

Sputtering was first discussed in the literature by W.R. Grove, in 1854 [49], and is now widely 

used to deposit thin films on substrates [50, 51]. Sputtering describes the ejection of atoms by the 

bombardment of a target with energetic particles such as ions. The ejected atoms result in a vapour due 

to a purely physical process and impact on the substrate or vacuum chamber. The method and precise 
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details on the process parameters are described in Peter M. Martin‟s Handbook of Deposition 

Technologies for Films and Coatings [38C], also, the interactions between the ions and the target are 

largely studied in many review articles.  

Two approaches can be followed to produce ions and sputter the target materials. Ion guns are 

more often used in surface analytical techniques, such as secondary ion mass spectrometry (SIMS), or 

to bombard the substrate during thin films deposition [52]. Another source of ions is plasma. By 

applying a high negative voltage to the cathode, i.e. the target, positively charged ions are attracted 

from the plasma towards the target. The ions gain energy in the electric field and bombard the target 

with sufficient energy to initiate sputtering. For efficient momentum transfer, the atomic weight of the 

sputtering gas should be close to the atomic weight of the target. Therefore, neon is preferable for 

sputtering light elements, whilst krypton or xenon are used for heavy elements. Argon is very often 

used too.  

The advantages of sputter deposition are the low substrate temperature used and that even 

materials with very high melting point are easily sputtered. Also, the film and the target have a similar 

composition. Sputtered films tend to have a better adhesion on the substrate than evaporated films. In 

addition, the target contains a significant amount of material, reducing the maintenance and making 

this method suitable for ultra-high vacuum applications. The target is typically water cooled to avoid 

over-heating and the sputter is compatible with reactive gases such as oxygen or nitrogen. Sputtering 

can be performed top-down, while evaporation must be performed bottom-up. Moreover, complex 

processes like epitaxial growth are possible. 

Some disadvantages of sputtering are that the process is more difficult to combine with a lift-

off for structuring the film. This is because the diffuse transport, characteristic of sputtering, makes a 

full shadow impossible. Thus, one cannot fully restrict where the atoms go, which can lead to 

contamination problems. Also, active control for layer-by-layer growth is difficult compared to pulsed 

laser deposition. Finally, inert sputtering gases can be trapped in the film as impurities. 

The most common approach for growing thin films by sputter deposition is the use of a 

magnetron source. Enhancing a discharge, plasma is created and the positive ions in it bombard the 

http://en.wikipedia.org/wiki/Lift-off_(microtechnology)
http://en.wikipedia.org/wiki/Lift-off_(microtechnology)
http://en.wikipedia.org/wiki/Pulsed_laser_deposition
http://en.wikipedia.org/wiki/Pulsed_laser_deposition
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target. Magnetrons can be powered in several ways. Direct current (DC), pulsed DC and high-power 

impulse magnetron sputtering (HIPIMS) can be used for conductive targets. Otherwise, radio 

frequency (RF) can be used for non-conductive ones. Since sputtering is a purely physical process, to 

have chemical reactions a reactive gas is needed with the plasma. This method is then called reactive 

sputtering (RRSP) [38D]. 

In this work, DC Magnetron sputtering is used to deposit thin films of VO2 because of its film 

homogeneity, expandability to larger substrate sizes and efficiency of deposition when compared to 

the other methods [53]. It is also the simplest and least expensive way to operate the magnetron. 

Plasma will be ignited with argon gas and an external DC generator. Glass and silicon will be the 

materials used as substrates to allow the study of different properties of the films obtained. At the 

same time, the GLAD (GLancing Angle Deposition) technique will be used during the sputtering, 

allowing the growth of a large variety of morphologies. Finally, also reactive sputtering with oxygen 

will be carried out to study more porous vanadium oxides nano-structures. The nano-structure of 

magnetron sputter-deposited films is defined by the identity of the particles arriving at the substrate, 

their fluxes and the energy per particle [38D]. 

In the following section 2.4, the GLAD technique is fully described. 

2.4 The GLAD technique 

In 1997, Robbie and Brett [54] introduced for the first time the term GLAD (GLancing Angle 

Deposition). From then onwards, films made under inclined incidence and with either fixed or mobile 

substrate started to be widely studied. Firstly, the general principle of this technique is explained, 

along with some experimental schemes. After, the possible nano-structures to be achieved by GLAD 

are described. 

2.4.1 Principle 

The GLAD technique relies in the ability of changing the position of the substrate in relation 

to the vapour source. When the atoms impact on the substrate, they gather to form growth germs. At 
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the same time, as the germs increase their size, the shadowing effect makes its appearance. In figure 

2.8 this effect is schemed in a simple way. 

 

 

 

Figure 2.8: Growth of inclined columns under the Shadowing effect. 

Due to the shadowing effect, there is a decrease in the density of the films. Conventionally, the 

angles are measured with reference to the substrates normal. The target (vapour source) stays fix, 

whilst the substrate can be orientated in the space. The centre of the source is usually aligned with the 

substrate‟s centre, allowing orientating the latter easily. This way, there are two possible rotations 

(Figure 2.9). 

 

 

Figure 2.9: Possible substrate rotations in a GLAD deposition. 

The α rotation can oscillate between -90º and 90º, corresponding to the atoms‟ incidence angle 

(approximately). On the other hand, the rotation φ can vary 360º in both senses (clockwise or 

Incident 

vapour flux 

Column 

angle β 

Substrate 

β Shadowed 

area 

Substrate 

Target 

α 

α 

φ 



2. State of the art 

21 

 

anticlockwise). Φ corresponds to the azimuthal angle, which, allows controlling the nano-films‟ nano-

architecture without modifying the substrate‟s position towards the source. 

The shadowing effect, surface diffusion and atom‟s angular distribution in the flux contribute 

to the growth of the columns with an angle β different to α. It is known that there is a fixed 

relationship between these two angles for a given set of deposition conditions. This relationship is 

complex and poorly understood, but there have been some attempts at understanding and quantifying 

it [55]. The empirical tangent rule [56] (1) is a simple relationship based on aproximately normal 

deposition and gives very poor results for α greater than about 50°.  On the contrary, the relationship 

based on geometrical analysis proposed by Tait et al.[57] (2) gives much better results for highly 

oblique angles. 

       ( )  
 

 
    ( )    (1) Tangent rule 

              [  
    

 
]   (2) Tait‟s rule 

However, there are many other experimental parameters a part from the incidence angle that 

influence β and therefore disagree with the formulae: Work pressure, surface pollution, atom diffusion, 

deposition speed, temperature, nature of materials used and even the polarisation of the substrate 

during the deposition.  

This shows the complexity in determining the angle β of the columns in advance. In this work, 

this angle will be determined experimentally with measuring it after the depositions. 

2.4.2 Nano-architectures produced with GLAD 

The substrate‟s orientation in front of the target, as well as the procedures available within 

GLAD, allow the manufacture of a large number of nano-architectures. In this work we will work with 

the following three: Inclined columns, zig-zags and spirals. 

1) Inclined columns 

When the substrate is inclined so that the incident angle α is different than zero and stays in 

the said position during all the deposition, the nano-structure of the film is of inclined columns (Figure 

2.10 a)). These columns will grow with an angle β, which depends on several factors, already 
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described in section 2.4.1. The shadowing effect takes place in one unique direction. However, in the 

early first stages, it has been proven [58, 59 and 55] that the growth is perpendicular to the substrate‟s 

surface. This type of nano-structure has been applied to many materials before: 

-Pure elements such as: Iron [60, 61], germanium [62], chrome [39], silicium [63], nickel [64] 

and vanadium. 

-Oxides such as: WO3 [65], TiO2 [66] and ZrO2 [67]. 

2) Zig-zags 

To achieve zig-zag nano-structures (Figure 2.10 b)), there has to be a variation in the incidence 

angle α during the deposition. To obtain symmetrical zig-zags [68] there has to be a periodical 

variation of 180º (from +α to –α), depending on the number of zig-zags desired. The azimuthal angle φ 

relies constant. 

3) Spirals 

To obtain 3D nano-structures such as spirals, both the incidence angle α and the azimuthal 

angle φ have to vary (Figure 2.10 c)). These nano-structures can be done in plenty of different ways, 

but to create continuous spirals the angle variation has to be constant, as observed in K. Robbie‟s 

MgF2 films [55]. 

 

 

2.4.3 Properties of the films 

Films prepared with GLAD have particular structural, mechanical, optical and conductivity 

properties.  

  

Figure 2.10: Scheme of the three nano-architectures described: a) Inclined columns b) Zig-zags and c) Spirals 

a) c) b) 
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a) Structural properties 

i. Density 

Films prepared by PVD processes tend to have very high density, approximately 80 to 95% of 

the bulk. GLAD allows diminishing this density and, therefore, increase the porosity of the film. 

Furthermore, with incidence angles higher than 70º, the density decreases strongly. Robbie et al. [69] 

achieved density values of a 10% of the bulk in CaF2 films. 

A high rate of porosity is interesting because it increases the material‟s contact surface with 

the atmosphere, allowing the film‟s application in gas and humidity captors [70] and in photovoltaic 

solar cells [71, 72]. 

ii. Surface appearance 

Modifying the nano-architecture of the film, it is possible to control the morphology of the 

surface [73]. This way, we can change the roughness of the film in function of the incidence angle, 

control anisotropic roughness and create a periodic morphology. 

iii. Crystallography 

When we vary the angle of incidence, the mobility of the atoms on the substrate is highly 

affected. For incidence angles higher than 40º, Allouach et al. observed a variation of the crystalline 

nano-structure for epitaxial copper films [74]. Karabacak et al. even arrived to choose the growth 

orientation of tungsten phases α and β in function of the incidence angle [75]. 

b) Mechanical Properties 

Zig-zag and spiral nano-structures have great resemblances with springs and column nano-

architectures increase the elasticity in comparison to classical films [76]. Also, it is possible to change 

the Young modulus and hardness of zig-zag films by varying the number of periods or length of the 

segments [77]. However, this work will not focus on the mechanical properties of the films created. 

c) Optical properties 

Due to the anisotropy presented in GLAD films, these have been very interesting to the optical 

sector [78]. Filtering the light in reflexion and birefringence of inclined columns and zig-zag nano-

structures are the most important optical properties used, although these are not studied in this work. 
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d) Conductivity 

Apart from photo-catalytic and photonic conductivity, the most interesting property of 

vanadium dioxide films is their electric conductivity, which will be intensely studied in this work. This 

conductivity depends of the film‟s nano-structure, its porosity, anisotropy and temperature [79, 80 and 

81]. 
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3. Methodology 

In this work we will present a method to create thin films of vanadium dioxide by physical 

vapour deposition. These films will have inclined columns, zig-zags and spiral nano-structures. In this 

chapter we will start by describing the general method to create thin films by DC magnetron 

sputtering, then, we will describe separately the methods to create the three nano-architectures above 

mentioned. We will end with the films produced with reactive sputtering by using oxygen during the 

deposition. 

After the manufacturing of the films, these will be tested by running several experiments to 

discover which ones and with which parameters are better for obtaining vanadium dioxide. The 

methodology of these experiments is briefly explained. 

Finally, the most suitable films are evaluated as captors for ozone gas sensing. The method 

employed for this is also described. 

3.1  Film deposition 

Firstly, Vanadium thin films were deposited on glass and silicon substrates by DC magnetron 

sputtering from a vanadium metallic target (purity 99.5 %), after cleaning them in acetone and alcohol.  

The metallic target was sputtered with a constant current density JVa = 100 A.m
-2

 in argon 

atmosphere. The substrates were grounded and kept at room temperature and the chamber was pumped 

down to 10
-5

 Pa. The Argon mass flow rate was set constant in order to reach a sputtering pressure of 

0.3 Pa (pumping speed was maintained at S = 13 L.s
-1

). The deposition time was adjusted in order to 

deposit a constant thickness close to 400 nm for all films, later checked by profilometry.  

Films with different vanadium nano-structures were created. The oxidized phases were 

reached by a subsequent thermal annealing treatment. Several experiments were then carried out to 
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characterize the films be studying the crystallographic nano-structure, the phase appearance, the 

morphology of the nano-structures and electrical conductivity of the films deposited. Finally, the most 

suitable films for gas sensing were elected and tests were carried out for ozone.  

In the following subsections, each part of the methodology is explained in further detail. 

3.1.1 Preparing the substrates 

Keeping the substrate clean is very important for the quality of the film. Particles on it produce 

unwished roughness and a bad formation of the nano-architecture looked for. Specks make a 

shadowing effect on inclined columns much higher than the natural phenomena, sometimes even 

destroying the sample [1]. For this reason, the substrates employed in this work were carefully 

managed with forceps and special paper, never being touched with bare skin. They were then 

thoroughly cleaned with ethanol and acetone, polished with a high pressure air pistol and kept on 

boxes until needed. 

Two different materials for the substrates were used: Glass and silicon. Glass allowed 

measuring the thickness of the film on it and testing the electrical resistivity, as glass does not 

compromise the validity of these results. Silicon on the other hand, allows the realisation of SEM 

(Scanning Electron Microscopy), XRD (X-ray Diffraction) and XPS (X-ray Photoelectron 

Spectroscopy) analysis. 

The pieces of substrates were neatly cut with a diamond pointed pen. The dimensions were as 

illustrated in figure 3.1. When set on the substrate holder, before introducing them inside the 

sputtering machine, two thin lines are marked with an OH pen on each short side of the film. After the 

deposition, these lines are easily removed with alcohol and will later allow us to measure the film‟s 

width easily with a profilometer. 
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Figure 3.1:  Dimensions of the substrates employed. 

As silicon‟s width is approximately half of the glasses, an additional piece of silicon was 

inserted under the silicon used as substrate, so that both widths were equal during the deposition. 

3.1.2 Deposition with the GLAD method 

The DC magnetron sputtering machine employed is a home-made device developed in 

FEMTO-ST (Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et 

Technologies) research institution, within the MN2S (Micro Nano Sciences and Systèmes) department 

and under the leadership of Nicolas Martin. This machine allows the technique GLAD to be employed 

successfully. Figure 3.2 is a picture of the device and its main parts. In figure 3.3 a scheme represents 

the machine for a better understanding of the system. 

 

 

2.6 cm 

Vacuum chamber 

Load-lock 

Water circuit 

GLAD cylinder 

Step-motor 

1.6 cm 

Figure 3.2: Picture of the home-made system used for GLAD deposition. 
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Figure 3.3: a) Scheme of the sputtering machine and b) detailed scheme on the sputtering principle.  

In figure 3.3 a) we can observe a basic scheme on the sputtering machine. In figure 3.3 b) the 

vacuum chamber, where the deposition takes place, is seen in detail. Working in vacuum is essential. 

The vacuum chamber allows a good control on the composition and growth of the films. For this 

reason, an important pumping system is installed (pumping speed was maintained at S = 13 L·s
-1

). The 

value of the pressure achieved depends on the pumping power and the unavoidable leaks. To work at a 

given pressure, inert or reactive gases are injected into the chamber. The residual pressure achieved in 

the vacuum chamber was of 10
-7

 mbar, situated in the secondary vacuum (10
-3

-10
-8

 mbar). 

  

a) 

b) 
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The correspondence between the most used pressure unities is: 

                                    

To create the plasma, we first introduce argon in the vacuum chamber by opening a valve that 

connects to an argon gas bottle, until the vacuum pressure is of the order of 10
-2

 mbar. This happens 

with approximately 55% of Argon flow (11 sccm). After, we open the worm drive system installed 

and introduce the substrate in the vacuum chamber. We then unscrew the substrate holder and remove 

it, closing the worm drive. When we have placed securely the substrate on its place inside the vacuum 

chamber, we can either leave it horizontal or rotate it α degrees (form 90 to -90) with a cylinder that 

allows us to incline it manually. Also, we can rotate it in the azimuthal direction enhancing the step 

motor attached to the device.  

Once the substrate is situated in the wished angle, enhancing the DC generator we produce a 

difference of voltage in the target by introducing a constant current density JVa = 100 A.m
-2

 and 

producing an electrical discharge. Given that argon is a neutral gas, it does not react with the other 

materials. The positive argon ions (Ar
+
) from plasma are attracted by the vanadium metallic target, 

which is negatively polarized, and the vanadium ions are displaced from the target and move towards 

the substrate. During deposition the pressure is increased to approximately 3·10
-3

 mbar by reducing the 

flow of Argon to 6-8% (1,2-1,6 sccm depending on the use of oxygen). There is also an oxygen bottle 

available in the device. The introduction of oxygen during deposition allows reactive sputtering, with 

the formation of vanadium oxides on the substrate during deposition. 

To increase the speed of the deposition, a magnetron device is used. It consists in adding to the 

electrical field a strong magnetic field (of the order of one hundred Gauss) created by permanent 

magnets. The electrons coil around the field lines and therefore increase meaningfully the electronic 

density in the proximity of the target‟s surface, attracting the Argon ions strongly. 

Even though it increases the deposition speed, the wear of the target becomes heterogeneous, 

as it follows the magnets field lines. We can observe a strongly worn out interior ring when we 

remove the target. This way, we can only use around a 30% of the target before it is useless [2,3]. 

There are studies made on new magnetrons that use rotary non-centred magnets, reducing this way the 
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wear of the target [4]. The DC magnetron sputtering machine employed also has an ion bombarding 

device installed, although it won‟t be used for this study. 

During the first five minutes of all the depositions made the shutter is always placed in 

between the substrate and the target. This is necessary due to the unavoidable formation of a thin oxide 

layer on the target‟s surface and possible impurities. Five minutes is enough for this layer to be 

removed. The substrate and the target were always kept at room temperature and a water cooling 

system was continually working during the depositions. 

Having been explained the general process used for all the depositions made during this work, 

the method to produce each type of the nano-structures will be detailed. 

a) Metallic and inclined columns 

The first sample was prepared by conventional sputtering with a normal incident angle α of the 

sputtered particles (α=0º), obtaining a metallic vanadium film. Then, the GLAD method was used to 

produce oriented columnar nano-structures. The home-made GLAD substrate holder allows an 

orientation change of the incident angle of the particles flux  from 0 to 90°. This incident angle was 

taken between the normal of the substrate and the normal of the target (i.e. the main direction of the 

sputtered atoms flux). The following angles were used: 20, 40, 60, 70, 80 and 85 degrees. The 

deposition time was adjusted in order to deposit a constant thickness close to 400 nm, later checked by 

profilometry after deposition. To do this, the first samples were done with short sputtering times 

(Table 3.1) and their thickness was measured. A mean was made between both sides of the films, as 

when the incidence angle is not zero, one of the sides grows faster than the other. 
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Table 3.1: Sputtering rate of the films for several incidence angles. 

Incidence angle(°) Sputtering 

Time(min) 

Height Side 1 

(nm/hour) 

Height Side 2 

(nm/hour) 

Mean (nm/hour) 

0 20 482 482 482 

20 30 370 415 392 

40 30 322 443 382 

60 30 202 356 279 

80 30 145 166 155 

 

The relation of the sputtering rate (nm/h) vs. the incidence angle α (º) was found (Figure 3.4), 

so that the next films were deposited during the necessary time to be 400nm thick. The deposition 

times are detailed in table 3.2. 

 

Figure 3.4: Sputtering rate dependence on the incidence angle α. 
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Table 3.2: Sputtering times needed to create 400nm thick films depending on the incidence angle. 

Incidence angle(º) Sputtering time for 400nm (min) 

0 50 

20 60 

40 63 

60 86 

70 110 

80 156 

85 218 

 

b) Zig-zags 

To obtain zig-zag nano-structures, α=80º was set fix. The same method as in inclined columns 

was used, except the substrate was rotated with φ = 180º each time a change of orientation was desired. 

This way, for one zig-zag, the substrate was rotated only once at half the time of the deposition. For 

two zig-zags, the substrate was rotated three times. Seven times for four zig-zags and, finally, fifteen 

rotations for eight zig-zags. 

c) Spirals 

To obtain spiral nano-structures, the incidence angle α was also set fix for 80º and the angle φ 

had to be continually in rotation. To this aim, the step-motor was used with the parameters detailed in 

table 3.3. The rotation speed was determined by dividing the revolutions desired by the deposition 

time for α=80º (156 minutes). The time for each step (T) was obtained from (3). Films with 

approximately one spiral, two spirals, four spirals and eight spirals were produced. 

Table 3.3: Step-motor parameters for each spiral nano-structure. 

Number of spirals 1 2 4 8 

Rotation speed (Rev.h-1) 0,3846 0,7692 1,538 3,077 

T (s) 8,13 3,32 1,35 0,553 

 

   (   )                    ( )               (3) 
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3.1.3 Reactive sputtering combined with GLAD 

It seems interesting to use oxygen during deposition, as the final aim is to obtain the phase 

VO2. Therefore, an oxygen flow was injected to the plasma for several samples. 

Films with a continuous flow of 1,3,5,8 and 10 % of oxygen were created. When measuring 

the resistivity on the films roughly, even the one with 1% was too resistive to measure with a common 

ohmmeter. The injection device used was unable to introduce a flow rate below 1%, so the solution 

was to insert pulses of oxygen instead, like the ones described in figure 3.5. 

 

Figure 3.5: Scheme of the oxygen pulses employed. 

Firstly, the pulses period had to be determined. A maximum flow rate of 2% was set and 

several periods were tried out. The maximum variation of voltage was measured and plotted for each 

period (Figure 3.6).  

 

Figure 3.6: Maximum variation of voltage for different periods of oxygen injected. 
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 It was concluded that a period of 16 seconds was the most appropriate. Once the 

period was determined, the injection time (TON) was shifted from 2 seconds to 12 seconds, 

obtaining the deposition rates illustrated in Figure 3.7. 

 

Figure 3.7: Deposition rate and resistivity in front of the oxygen pulses duty cycles tested. 

For          the films were too resistive and therefore not interesting for obtaining VO2. 

Samples with 2, 4, 6 and 8 seconds of oxygen injection were done, with a thickness of 400nm. In 

conclusion, the oxygen duty cycles dc (4) taken into account were: 0.125, 0.25, 0.375 and 0.5. 

   
   

 
    (4) 

3.2 Annealing treatment and resistivity measurements 

Both for the samples deposited by GLAD and for the ones deposited by GLAD and oxygen 

pulses, the oxidized phases were reached by a subsequent thermal annealing treatment of the vanadium 

films. These were heated in air using temperature 11 cycles from 30ºC up to 550ºC, starting at room 

temperature and going up to the desired temperature to then return to ambient temperature at 5 ºC min
-

1
, stabilising in each temperature for two minutes. In this way, a rigorous control of the vanadium 
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oxide phase‟s appearance in the films could be done. Each one of the cycles is described in table 3.4. 

The DC electrical conductivity of the films deposited on glass substrates was measured using a home-

made device in the Van Der Pauw geometry [5] whilst being annealed, recording the resistivity in 

function of the temperature. 

Table 3.4: Temperature cycles used to anneal the films. 

Cycle number Temperature cycle (ºC) 

1 30-50-30 

2 30-100-30 

3 30-150-30 

4 30-200-30 

5 30-250-30 

6 30-300-30 

7 30-350-30 

8 30-400-30 

9 30-450-30 

10 30-500-30 

A 30-100-30 

11 30-550-30 

B 30-100-30 

 

In addition, two more cycles (A and B) were done, before and after the eleventh cycle 

respectively. These two heating cycles allowed the study of the hysteresis loops observed at around 

68ºC for VO2.  
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3.3 Films characterization  

In order to find the best conditions to create VO2, the films were studied enhancing different 

techniques to evaluate the most significant properties to our work. 

3.3.1 Scanning Electron Microscopy (SEM) 

Firstly, the morphology was observed with SEM photographs to ensure the films created were 

achieving the nano-structures desired. Pictures of the 400nm thick films without oxygen pulses were 

made for: Inclined columns (0º, 70º, 80º and 85º), zig-zags (1, 2, 4 and 8 periods) and spirals (1, 2 and 

8 turns). 

3.3.2 DC-Resistivity  

The films resistivity to electric current in function of temperature is what allows observing the 

change of phases from semi-conductor to metallic when having VO2. Therefore, it is of extreme 

importance to control these parameters thoroughly. A home-made system (Figure 3.8) was used to this 

aim, consisting in four tips that measure the resistivity of a film in the Van der Pauw geometry at the 

same time that a heated cylinder anneals the film. The annealing cycles are controlled with LABVIEW 

software, which indicates the temperature and resistivity at every moment. 
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Figure 3.8: Pictures of the device used to anneal the vanadium films and record the DC-resistivity in function of the 

temperature. 

3.4 Ozone sensing  

Once all the significant studies were done, the most suitable films for sensor captors were 

tested. These were the films containing more VO2 and with considerable resistivity ranges for gas 

sensors.  

The used sensor was the Multi-Sensor-Platform MSP 632 by Heraeus (Figure 3.9).  The 

exterior legs are connected to a heater and the interior legs are connected to resistances to measure 

the resistivity. Vanadium was deposited on it with the parameters chosen, protecting the sensor‟s 

legs from the sputtering by covering them up with a piece of glass. After, the sensor was annealed 

on the DC-resistivity device.  

 

Figure 3.9: Scheme of the Multi-Sensor-Platform MSP 632 by Heraeus. 

With the help from the research institution Chrono-environnement attached to the 

University of Franche-Comté (UFC), the sensors were tested as ozone gas captors with the system 
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shown in figure 3.10. The scheme, also in figure 3.10, represents the operating method of the 

system. Dry air is injected to a UV generator lamp that produces ozone (O3). The film, deposited 

on the sensor cell, receives the ozone and reacts, experiencing a change in its resistivity. Ozone is 

an oxidizing gas, thus, it gathers electrons from the vanadium oxides film‟s surface. The films are 

n-type semi-conductors, so consequently the resistivity increases when injecting ozone.  

 

 

Figure  3.10: Picture and scheme of the ozone generator and sensor cell devices used at Chrono-environnement. 

Temperature was varied to obtain the resistivity changes at different temperatures and, 

therefore, find the optimal functional point of the sensor; the one representing a bigger variation of 

resistivity when injecting ozone. Also, after using only dry air, slight values of humidity were added. 
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4. Results and interpretation 

4.1 GLAD Results 

4.1.1 Inclined columns 

The first films created were the ones using GLAD with different angles of inclination. These 

films were studied carefully to find the one with better properties for gas sensing.  

a) Morphology 

The morphology of the nano-structures was verified by scanning electron microscopy (SEM) 

observations on the fractured cross-section of the films deposited on silicon substrates. 

 

Figure 4.1:  X10000 SEM images of the cross section of thin vanadium films with sputtering incidence angles α equal to 0º, 

60º, 80º and 85º respectively. 
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In Figure 4.1, the SEM images of the thin vanadium films show the morfology of the cross 

section according to the angle of incidence used during the sputtering process. An incident angle of       

α = 0º  showed a very dense and poorly defined column nano-structure (Figure 4.1 a)) , in agreement 

with Thornton [1], of dominating poorly oxidated V. When the incidence angle α increases, it leads to 

more defined and inclined columns (α = 60º, 80º and 85º, figure 4.1 b), c) and d), respectively). The 

black areas show a clear porous nano-structure that increases with α and leads to co-existing VOx 

phases, which is in agreement with previous investigations [2, 3a]. 

Porosity is related to the density of the film in function of the incidence angle. If a large 

columnar angle (more parallel to the substrate) is wanted, the incidence flux must be deposited at a 

large oblique angle, resulting in a very porous film. On the other hand, if a more vertical columnar film 

is desired, the flux must arrive more perpendicularly to the substrate. The resulting film will then have 

a tightly packed, dense nano-structure [4]. 

The scanning electron micro-graphs of vanadium films deposited at 0º, 60º, 80º and 85º shown 

in figure 4.1 were also used to roughly measure the column inclination angles β. The angles agree 

closely to Tait‟s relationship (Figure 4.2 a)), representing a much lower percentage of deviation than 

the tangent‟s rule towards the real measurements (Fig. 4.2 b)). The measured column inclination 

angles β are detailed in table 4.1, along with the column angles β predicted both by the tangents rule 

and Tait‟s rule.  

Table 4.1: Comparison of the column angle β in function of the incidence angle α for the experimental value, tangent’s rule 

and Tait’s rule. 

Incidence angle α (º) Column angle β (º) 

Column angle β (º) 

according to the 

tangents rule 

Column angle β (º) 

according to Tait’s 

rule 

0 0 ± 1 0 0 

60 44 ± 4 40,86 45,52 

80 54 ± 4 70,57 55,6 

85 46 ± 8 80,08 57,84 
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The column angle β increases with the incidence angle α, although a wrong tendency is 

observed in 85º, where β should increase respect 80º [4]. However, the accuracy of this last 

measurement is highly vague, having been estimated a deviation of ± 8º. 

In figure 4.2 a), the relationship between the incident flux angle α and the columnar growth 

angle β is described for a fixed set of deposition conditions (material, gas composition and pressure, 

temperature and vapor energetics), both by the tangent‟s rule and Tait‟s rule. The experimental data 

obtained is also plotted. In figure 4.2 b) it is observed that Tait‟s deviation respect the experimental 

data obtained is lower than the tangent‟s. Thus, we can conclude Tait‟s rule is more accurate.  
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Figure 4.2: (a) The black line represents the tangent rule and the red line Tait’s rule. The black dots are the experimental 

values obtained with SEM microscopy. (b) Percentage deviation (5) of each fixed relationship in front of the experimental 

values. 

           
                            

              
   (5) 

The discrepances between the experimental values of β and those proposed by the tangent rule 

are most certainly to be attributed to the shadowing effect [5,6]. Peaks of the surface undulation are 

exposed to incoming particles from all directions and thus grow faster than the average growth rate. At 

the same time, valleys of the surface undulation receive fewer particles since they are screened by 

peaks; therefore, their growth lags behind. This leads to inestability of the planar surface and results in 

the development of a columnar nano-structure [7]. It is also attributed to the mean free path of the 

b) 

a) 
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sputtered particles, which is lower than the target-to-substrate distance. This fact induces to a 

dispersion of the sputtered particles. 

In the SEM images we can also observe a perpendicular growth during the first growing 

stages, before the shadowing effect is noticeable, which is in agreement with previous research [3C, 4 

and 8]. 

b) DC-Resistivity 

The electrical resistivity (ρ) of the films, at a fixed temperature of 30ºC, increases with the 

incidence angle α (Figure 4.3). The increase of the potential barrier is due to the gain in porosity of the 

columns [9]. In the same figure it is also represented the Temperature Coefficient of Resistivity (TCR) 

(5) in front of the incidence angle at 30ºC.  

 

Figure 4.3: Electrical resistivity and temperature coefficient of resistivity for every incidence angle at 30ºC. 

Bulk Vanadium has a fixed resistivity of 2,02·10-7 Ω·m at 27ºC [10], very similar to the one 

obtained experimentally for     . In the sputtering process the TCR (5) increases during the lowest 

incidence angles until it reaches a maximum value in between 20º and 30º. After this, it decreases 
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sharply and continually. This can be explained by the obtainance of a more porous nano-structure of 

the film with a higher incidence angle, being vanadium oxides less conductive that vanadium itself.  

    
 

 

  

  
   (5) 

In figure 4.4 the experimental curves of resistivity in front of temperature for every cycle were 

ploted for the following incidence angles: 0º,60º,70º and 85º. 11 heating cycles were employed in each 

film, previously described in table 3.3.  

 

Figure 4.4: Electrical resistivity in front of the eleven temperature cycles (table 3.3) for incidence angles: 0, 60, 70 and 85º. 

From the results, we can conclude that when we increase the incidence angle α we increase the 

resistivity of the film. This is in accordance with the increase of porosity and, therefore, oxygen 

content. Also, we observe how resistivity increases with temperature in every cycle for 0º and 60º, as it 

is expected due to the semi-conductor behaviour of the films being annealed. Nevertheless, after cycle 

seven (350ºC-400ºC), in 60º we start to notice how the resistivity slope changes tendency and becomes 

stable instead of increasing, even showing a slight drop. In 70º the tendency is confirmed; resistivity 

starts to fall clearly towards the seventh cycle. In the 85º film  the drop is dramatically observed: 
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during cycles eight and nine the resistivity decreases when the film is heated (figure 4.5).  In the tenth 

cycle we see the expected hysteresis cycle between 30ºC and 100ºC due to the formation of VO2 

phase. Finally, the film is annealed in the eleventh cycle and the resistivity increases in almost two 

orders of magnitude.  

 

Figure 4.5: Electrical resistivity in front of the eleven temperature cycles for the GLAD film with incidence angle         

In red, zoom of the drop of resistivity during cycles eight and nine. 

 

Figure 4.6: TCR in front of the heating cycles for the incidence angles 0, 60, 70 and 85º. 
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When plotting the TCR in front of the cycle number for these angles,  we state the fact that 

after 60º the TCR becomes clearly negative (figure 4.6). This phenomenon may be explained by 

studying the different vanadium oxides  produced within the annealing. As explained in section 2.1, in 

addition to vanadium dioxide (VO2), vanadium sesquioxide (V2O3) and vanadium pentoxide (V2O5) 

there are nearly twenty other stable oxide phases (figure 2.2) whose phase diagrams are similar to 

those of VO2 and V2O3 , creating a special difficulty in growing thin films of VO2. All of these phases, 

except one, exhibit a change from metallic to semi-conductor transition. V7O13 is the only vanadium 

oxide which is always metallic. This is why the resistance starts to fall with temperature, as the 

metallic behaviour of V7O13 makes its presence.  In figure 4.7, a brief scheme of the appearance of 

vanadium oxides during the heating cycles is represented. 

 

Figure 4.7: Proposal of vanadium oxides phase appearance during annealing. 

If after the eleventh cycle we heat the films to 100ºC (cycle B), we are able to observe the 

characteristic VO2 hysteresis loop in all of the angles, being more significant with the more oblique 

ones, specially 85º (figure 4.8.). The large change in resistivity during the semiconductor-to-metal 

transition for VO2 occurs at Tc close to 68ºC (figure 4.9) in agreement with many references [11,12 

and 13]. This will be useful for gas sensor applications, given the change in resistivity of the film. 
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Figure 4.8: Hysteresis curves showing the change in resistivity as a function of temperature during phase transition in VO2. 

By shifting the film‟s temperature close to the metal-insulator interval, the conductance of 

the film becomes remarkably responsive to slight changes in molecular composition, pressure, and 

temperature of the gas environment [51], which is why it is useful for gas captor‟s applications. 

 

Figure 4.9: Hysteresis loop of the film deposited at 85 degrees. dρ/dT exhibits two peaks; the distance between them is taken 

as the width of the loop ΔTc = 14ºC ; the midpoint between the peaks is Tc=69ºC. 

 

Tc 
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c) Chemical composition 

It can be deduced that the film containing more VO2 phase is the one with an incidence angle 

      due to its hysteresis loop from 30 to 100ºC. Nevertheless, to scientifically prove the existence 

of this phase other experiments are needed. XPS and Raman Spectroscopy should be used to 

determine the phase‟s occurrence in the films. Tests were carried out for incidence angles 0,60,70,80 

and 85º in different states. Firstly, in their metallic state (no annealing treatment), secondly, annealed 

to 350 ºC and finally, to 550ºC. 

However, the device employed in FEMTO-ST has a low sensibility for measurements and 

vanadium oxides distinguish themselves with around this same sensibility. Thus, it is impossible to 

distinguish the vanadium oxides present in the films. Instead, what can be measured is the percentage 

of oxygen and vanadium present. Due to lack of time, the results could not be analysed. For the future 

work, the results of XPS must be analysed and Raman Spectroscopy should be used to back-up these 

results. 

d) Crystallography 

The crystallographic nano-structure was investigated by XRD using monochromatic Co K 

radiation with a Bragg-Brentano configuration /2. The Debye-Scherrer method was used to 

calculate the crystallite grain size.  Unfortunately, due to lack of time these results could not be 

analysed.  

4.1.2 Zig-zags 

Zig-zag nano-structures were created with approximately one, two, four and eight orientation 

changes (zig-zags), with an incidence angle of 80º. Both the morphology studies and DC-resistivity 

measurements were done in the same way as the ones with inclined columns. 

a) Morphology 

The morphology of the nano-structures was also verified by scanning electron microscopy 

(SEM). In figure 4.10, the SEM images show the zig-zag nano-stractures obtained for an incident 
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angle of α = 80º  with different number of zig-zags. After four zig-zags, the nano-structure starts to 

create undefined nano-structures. 

  

Figure 4.10: X100.000 SEM images of the cross section of thin vanadium films with a sputtering incidence angle α equal to 

80º and approximately 1,2,4 and 8 zig zags respectively. 

b) DC-Resistivity 

When studying the resistivity in front of temperature for all the zig-zag nano-structures, the 

behaviour is the same than for inclined columns, except that in the last cycles the resistivity does not 

increase as much. The hysteresis loops obtained are vaguer and less meaningful than the one for an 

inclined column with α = 80º, as shown in figure 4.11. Also, a minimum resistivity is needed for gas 

sensing, and the resistivity measured for zig-zags is very low, meaning the films are more metallic. 

For these reasons, it is concluded that zig-zag nano-structures are not as good for gas sensing and no 

more experiments are needed for these films. 

𝑛 ≅    𝑛 ≅    

𝑛 ≅    𝑛 ≅    
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Figure 4.11: Hysteresis loops for all zig-zag nano-structures in comparison to inclined columns with α=80º. 

4.1.3 Spirals 

Spirals nano-structures were created with approximately one, two, four and eight periods, with 

an incidence angle of 80º. The morphology studies and DC-resistivity measurements were done in the 

same way as the ones with inclined columns and zig-zags. 

a) Morphology 

The morphology of the spirals nano-structures was also verified with SEM. In figure 4.12, the 

SEM images show the spirals obtained for an incident angle of α = 80º  and different periods. After 

four spirals, the azhimutal angle φ rotation is too fast to create defined spirals, giving place to a tubular 

nano-structure. 
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Figure 4.12: X100.000 SEM images of the cross section of thin vanadium films with a sputtering incidence angle α equal to 

80º and approximately two, four and eight spirals respectively. 

b) DC-Resistivity 

When studying the resistivity in front of temperature for the spiral nano-structures, the 

behaviour is the same that for zig-zags: The hysteresis loops obtained are vaguer and less meaningful 

than the one for an inclined column with α = 80º, as shown in figure 4.13. Also, as explained 

previously, a minimum resistivity is needed for gas sensing and the resistivity measured is too low. 

Therefore, it is concluded that spiral nano-structures are not as good as inclined columns for gas 

sensing and no more experiments are needed for these films. 

 

Figure 4.13: Hysteresis loops for all spirals nano-structures in comparison to inclined columns with α=80º. 



4. Results and interpretation 

58 

 

4.2 Conclusions on GLAD Results  

Having studied the three different GLAD deposited nano-structures; Inclined columns, zig- 

zags and spirals, it is concluded that inclined columns with incidence angle α = 85º are the most 

suitable films to obtain VO2. This conclusion is supported with the wide hysteresis loops obtained, 

both before and after annealing the film to 550ºC, for temperatures in between 30 and 100ºC. Also, the 

resistivity values are higher than for the other nano-structures due to a higher porosity, being this 

property crucial for gas sensing applications. In figure 4.14 the best hysteresis loop for GLAD is 

plotted and the higher and lowest resistivity values indicated. The film with the biggest width 

(resistivity variation) is the most suitable film for captors. 

 

Figure 4.14: Hysteresis loop for α=85º heating from room temperature to 100ºC, after having annealed the film to 550ºC. 

The maximum and minimum resistivity measurements are indicated, as well as the resistivity variation. 

4.3 GLAD + Oxygen pulses results 

After depositing films with GLAD, it seems only logical to introduce oxygen into the vacuum 

chamber to study films oxidized during deposition. However, the flow of oxygen that can be 

introduced is limited, as if it is too high the resulting films will oxidize out of control and the VO2 

          

          

𝛥𝜌   º𝐶   º𝐶

𝜌  º𝐶
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phase will not be achieved. An incidence angle of α = 85º was used and rectangular oxygen pulses 

were introduced during deposition. The maximum flow was of 0,4 sccm, the period used was of 16 

seconds and the duty cycles were the following: 0.125, 0.25 and 0.375. 

The films obtained were studied in the same way as the GLAD films.  The behaviour was very 

similar to inclined columns, specially the one with α = 85º. It was observed that for different amounts 

of oxygen the hysteresis loop before and after annealing to 550ºC was significantly different, being 

sometimes better before 550ºC (which never happened for inclined columns). The phase transition 

loops are detailed in figure 4.15, before and after annealing to 550ºC. 
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Figure 4.15: Hysteresis loops for the MIT transition of the films obtained by GLAD and oxygen pulse for each duty cycle 

used. Figure a) shows the loops for the films annealed to 500ºC and figure b) for the films annealed to 550ºC. 

In figure 4.15 b), the loop for dc=0.25 is not taken into account due to the illogical values 

measured, probably for an error during the annealing treatment (the glass where the sample lied on 

broke during the heating process). 

b) 

a) 
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4.4 Conclusions on GLAD + Oxygen pulses results  

When annealing to 500ºC, the film with a better hysteresis amplitude is the one with a 

dc=0,375, as can be seen in figure 4.16. 

 

Figure 4.16: Hysteresis loops for dc=0,375 (in red) and for dc=0,125 (in black) after being annealed to 500ºC. 

The amplitudes can be calculated with the (6) for each film. The film with dc=0,375 has an 

amplitude of 37.26; Much higher than the amplitude of dc=0,125, of only 1,37. 

        

   
 (6) 

On the other hand, when the films are annealed to 550ºC, the layers with dc=0,125 have a 

higher amplitude respect dc=0,375, as shown in figure 4.17.  

𝛥𝜌      

𝜌  
       

𝛥𝜌      

𝜌  
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Figure 4.17: Hysteresis loops for dc=0,375 (in red) and for dc=0,125 (in black) after being annealed to 550ºC. 

4.5 Gas sensing 

After studying all the vanadium oxide films deposited, the most interesting ones for gas sensing 

applications were tested for ozone detection. Therefore, the films with larger hysteresis loop amplitude 

and with high resistivity were chosen. The most suitable layers are listed in table 4.2. 

Table 4.2: The four most suitable films for gas sensing. 

Sample 

Number 

Incidence 

Angle α (º) 

Duty  

cycle 

Annealing 

temperature 

(ºC) 

Hysteresis 

loop 

amplitude 

1 85 - 550 5,15 

2 85 0,375 500 37,26 

3 85 0,375 550 3,05 

4 85 0,125 550 52,53 

          

         

          

        4 
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4.5.1 Reactivity test  

Firstly, a rough test at room temperature was done to verify that ozone had an impact on the 

films resistivity. An ozone flow of 1 ppm of concentration was injected on the film during five 

minutes. An almost immediate reaction could be observed; the resistivity increased with an 

approximately linear slope (figure 4.18). When the sample was again in dry air, the resistivity took 

time to stabilize for a value, not necessarily the same as before. Therefore, it is concluded that the 

vanadium oxide film created does react to ozone but needs a long time to stabilise. It was observed 

that the films had high sensibility towards humidity too. 

 

Figure 4.18: Resistance vs. time for a five minutes ozone injection on the vanadium oxide thin film with a dc=0,375 and 

annealed to 500ºC (sample number two). 

4.5.2 Repeatability test  

After having verified the reactivity of the film, we proceeded to verify if the reactions to ozone 

were repeatedly equal or followed a pattern. For this reason, ozone was injected during five minutes 

and then left in dry air for another fifteen minutes (figure 4.19).  

5 minutes Ozone injection 
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Figure 4.19: Scheme of the cycles of ozone injected. 

  

Figure 4.20: Resistivity in front of time for eighteen equal cycles of ozone injection and posterior stabilization. 

This operation was repeated for eighteen cycles, obtaining the reactions plotted in figure 4.20. 

From these results we can conclude that the reaction to ozone becomes each time less meaningful, 

having a lower slope and, therefore, reactivity (figure 4.21).   Heating the sample might make it return 

to its original values by expulsing the ozone particles attached to the sensor‟s surface. 

Time (min) 

 5 min. O
3
  

15 min. 

Dry air  

Ozone 
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Figure 4.21: Variation of resistivity in front of time for each cycle tested. 

4.5.3 Optimal working temperature 

It has been proven the reactivity of the film and its capability of being used repeatedly. It is 

now of great importance to determine correctly the optimal working temperature for our specific 

sensors. Due to the lack of time to continue with the experiments, a sample had to be chosen to be 

tested, being it number three; the film with dc=0,375 annealed to 550ºC. It was exposed to two and a 

half minutes of ozone at a given temperature and then was left to stabilise. Later, it was heated to the 

next temperature and the process was repeated. Figure 4.22 summarizes the results found. 
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Figure 4.22: Variation of resistivity and slope when injecting ozone for the film with dc=0,375 annealed to 550ºC in function 

of temperature. The optimal working temperature for this sensor is of approximately 370ºC. 

Both the slope of the increase of resistivity when the ozone was injected and the variation of 

resistivity in front of the initial resistivity are plotted for every temperature studied. The behaviour of 

these two parameters is alike. It is found that the reactivity increases slightly from room temperature to 

300ºC. From 300ºC to approximately 370ºC the reactivity increases sharply, and afterwards decreases. 

From these results it can be concluded that the optimal working temperature for the sensor 

number three is approximately 370ºC. At this temperature the sensor has its strongest reactivity 

towards ozone and, thus, acts as a better captor. 

In comparison to other gas sensors, the optimal temperature found is similar to others such as 

tin dioxide SnO2 (380ºC) when detecting hydrogen fluoride [14]. 

  

Optimal working 

temperature ≈ 370ºC 
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5. Conclusions and future work 

The ultimate goal of this work was to determine the best parameters to create the phase VO2 in 

DC magnetron sputtering deposited vanadium films. For the films obtained by the GLAD method, an 

incidence angle of       and an annealing treatment to 550ºC gave the best MIT transition and, 

thus, had the highest quantity of vanadium dioxide phase. 

For the films obtained by GLAD and oxygen pulses, the film with      , a period of 16 

seconds, duty cycle          and annealing treatment to 550ºC revealed the best conditions for 

VO2 formation. 

The aim of creating VO2 is because of its MIT at around room temperature can be useful for 

gas captors. Some tests were carried out which verified the reactivity of vanadium dioxide to ozone 

gas, humidity and temperature. Only one film was able to be tested, being this one the one with 

dc=0,375annealed to 550ºC. It registered an optimal working temperature of 370 ºC, with a maximum 

variation of resistivity in front of time of 0,05534 Ω/s. 

In conclusion, interesting results never seen before have been carried out for vanadium oxide 

thin films. For the future, much work can be done to continue this study.  

Firstly, the crystallography study enhancing X-ray diffraction (XRD) has to be completed in 

order to comprehend correctly the MIT transition in VO2. Secondly, also X-ray photoelectron 

spectroscopy (XPS) and Raman spectroscopy are needed to verify the chemical composition of the 

films, in order to state the apparition of vanadium dioxide and its percentage in front of the other 

vanadium oxides. 

Regarding the gas sensing applications, many more tests have to be carried out. Firstly, 

determine the optimal working temperature for all the other suitable films. Once being determined, 

vary the exposition to ozone, stabilisation time and humidity to observe the reactions. Also, the 
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sensors can be tested for other gases such as ammoniac to observe the difference of reaction between 

exposition to oxidizing or reducing gases. 

Finally, plenty of other nano-structures can be created other than inclined columns, zig-zags 

and spirals. For example, intercalated layers of inclined columns and inclined columns with oxygen 

pulses can be tested, as in this way we can increase the resistivity of our films, which was found 

slightly low for gas captors. 



  

 

 

 

 


