POLITECNICO DI TORINO

UNIVERSITAT POLITECNICA DE CATALUNYA

Master degree course in Computer Engineering
Facultat d’Informatica de Barcelona

Master Degree Thesis

Support for Network-based User
Mobility with LISP

Supervisors:
Albert CABELLOS APARICIO
Fulvio Giovanni Ottavio RISsSO
Candidate:

Andrea GALVANI

ACADEMIC YEAR 2012-2013

This work is subject to the Creative Commons Licence

11

If you always put limit
on everything you do,
physical or anything
else, it will spread into
your work and into
your life. There are no
limits. There are only
plateaus, and you must
not stay there, you must
go beyond them.

(B. L.)

POLITECNICO DI TORINO

UNIVERSITAT POLITECNICA DE CATALUNYA

Master degree course in Computer Engineering
Facultat d’Informatica de Barcelona

Master Degree Thesis

Support for Network-based User
Mobility with LISP

Supervisors:
Albert CABELLOS APARICIO
Fulvio Giovanni Ottavio RISsSO
Candidate:

Andrea GALVANI

ACADEMIC YEAR 2012-2013

This work is subject to the Creative Commons Licence

11

Summary

This work focuses on overcoming some of the typical limits imposed by the struc-
ture of the Internet in a mobility scenario. The increasingly need for continuous
connectivity is not corresponded by the development of supporting solutions, and
nowadays has become a critical matter. Besides user mobility, it’s mandatory to
take in account the different network infrastructures accessible to the users - for
example wired networks, Wi-Fi or cellular networks - and the continuous switching
of one to the other during the same operation (e.g. video streaming or file down-
loading). The goal to reach is developing the most possibly abstract solution for
making a user roam in different networks, without dropping his active connections.
Better, design a network architecture in charge of maintaining user’s connections
and being transparent to the user at the same time.
The research for this thesis has been done at Universitat Politecnica de Catalunya

(BarcelonaTech), in Barcelona, mainly collaborating with the LISPmob research
team. The work has been further followed and helped by Cisco Systems.

111

Acknowledgements

I would like to use this space to thank all the people that made this work possible.

First, a huge thank you to prof. Risso for giving me the opportunity to develop
my thesis at Universitat Politecnica de Catalunya in Barcelona, and mostly for
having followed me step by step even at a distance, and also for having continuously
motivated me during my work. Another big thank you to prof. Cabellos Aparicio,
for constantly keeping an eye on my project and for having been available to follow
and advise me every single day. I would like to especially thank Alberto Rodriguez
Natal, for having really supported me since the first times during my staying at
UPC and most of all for bearing me and my questions at - literally - any time
of the day. I want to thank Albert Lopez too, for having helped me a lot in the
implementation part of my thesis, easily solving problems that would have instead
taken me ages. Thanks a lot to Fabio Maino and Preethi Natarajan from Cisco
Systems, which followed the developing of my work from time to time giving me
great advice and a lot of interesting cues.

Above all the others, I want to deeply thank my parents, and all my family, for
providing me the possibility to study and build my future. Thank you for having
believed in me, I’'m lucky to have you. I want to reserve a special thank you to my
sisters who always supported me at a distance.

What really matters to me is to thank all of my friends that I met during all
these years of study, and that accompanied me during my adventure across Forli,
Bologna, Torino and Barcelona. I'm profoundly thankful to those people that I
consider part of my "home", which I always feel near me, no matter where I am.
I don’t want to make a list of names. You know who you are. I just hope that I
added a +1 to your life too.

In the end, a "thank you" is not enough to Sonia, my constant reference and
motivation in all I do.

v

Contents

Summary

Acknowledgements

I Introduction and scenario overview

1 Introduction
1.1 Scenario
1.2 Roaming
1.3 TCP/IP constraints
1.4 Objectives of thiswork

2 State of the art
2.1 MobileIP
2.2 Proxy Mobile IPv6 oL

3 Locator/ID Separation Protocol
3.1 Protocoloverview o
3.1.1 LISP components,
3.1.2 Messageflow L.
3.2 Mobility solutions Lo Lo
3.2.1 LISP-MN
3.2.2 LISP VM Mobility
323 Stateofart o

II Proposal design

4 Design choices
4.1 Overview e

111

S Ut W W W [l

NeliNe)

17
19
19
22
23
26
27
29

33

35

4.1.1 ISP topology

4.1.2 Home and foreign networks
4.1.3 DHCP behaviour
4.2 Procedural steps
4.2.1 Host identification
4.2.2 Retrieving host’s home Map-Server
4.2.3 Local interface
424 LISPupdate
5 Design proposals
5.1 LISP-MAC proposal
5.1.1 Basic identification with MAC address
5.1.2 Host’'shomexTR
5.1.3 MAC Mapping System
514 Actionflow
5.1.5 Previous xXTR behaviour
5.1.6 Drawbracks
5.2 LISP-RADIUS proposal
5.2.1 802.1X Authentication
5.2.2 Access-points configuration L.
5.2.3 Overview
5.2.4 Joined architecture
5.3 LISP-ROAM proposal
53.1 FixedEIDs
53.2 Fulltrust

IITI Implementation of a prototype

6 Prototype design

6.1 Components
6.2 Deployment of the architecture
6.2.1 RADIUS configuration
6.2.2 DHCP configuration
7 LISP-ROAM implementation
7.1 RADIUS outgoing and incoming traffic.
7.1.1 RADIUS Access-Request
7.1.2 RADIUS Access-Accept
7.2 User’s network configuration and location update
7.2.1 Local interfaceand DHCP
7.2.2 Retrieve user’s Map-Server

VI

7.2.3 User’s location update 91

7.3 Flow optimization oL 92
7.3.1 Known users 92

7.3.2 Homewusers 94

7.3.3 Different devices 95

7.4 Handover 95

8 Test bed 99
8.1 Experimental results L. 100
8.2 Wireshark captures oL 107
8.3 Measuring packet loss Lo oL 111

9 Future developments 115
10 Conclusions 119
Bibliography 121

VII

List of Tables

4.1 DHCP behaviours

4.2 Example of extended Map-Cache on the xTR

7.1 Steps performed based on type of user

VIII

List of Figures

1.1
2.1
2.2
3.1
3.2
3.3
3.4
4.1
5.1
5.2
5.3
5.4
9.5
5.6
6.1
7.1
7.2
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Intra-domain roaming scenario
Mobile IP architecture and routing
Proxy Mobile IPv6 architecture
LISP data packet example (ping)
LISP data-plane
Handover action flow oo,
Handover action flow proposed in HMM
ISP topology« . .
LISP-MAC action flow
RADIUS Proxy message flow
LISP-RADIUS (User authentication and Home xTR retrieval) . . .
ISP supporting both LISP-MAC and LISP-RADIUS
LISP-ROAM possible future extension
LISP-ROAM (user’s data retrieval and location update)
Prototype architecture oL
LISP-ROAM flow - Foreign unknown user case
LISP-ROAM flow - Foreign known user case
Test bed architecture 0oL

Capture - User connects to home network and starts pinging

Capture - xXTR queries Mapping System to start ping
Capture - User connects to foreign network and ping is resumed . .
Capture - User moves away from foreign network
Capture - xXTR queries Mapping System upon receiving SMR . . .
Capture - User reconnects to foreign network
Capture - User moves away from foreign network
Capture - User connects to home network
8.10 Capture - User connects to foreign network
8.11 Capture - User reconnects to home network
8.12 Packet loss - Foreign user sub-case
8.13 Packet loss - Home user sub-case

8.14 Latency - Worst and best case comparison

IX

Part 1

Introduction and scenario
overview

Chapter 1

Introduction

1.1 Scenario

Mobility in recent years has become an important issue to deal with, and a big
concern regarding user’s network experience. Users and devices are becoming less
tied to just one network, and are starting to move across multiple networks or
even on different supports. Smartphones and tablets represent the main actors of
the Internet scenario nowadays, and their behaviour is mandatory to be taken in
account, while deploying networks. The constant increase of the amount of these
devices is leading to problems in users’ connectivity: due to networks’ heteroge-
neous topologies and infrastructures, users are unable to keep their connections
alive while roaming across networks. This creates a conflict between the user ac-
tions’ flow and the support given by networks, which does not follow this paradigm;
better, it remarks a huge difference between the user’s and the network’s point of
view. It’s been more than a decade since IETF took this problem in account and,
consequently, working groups started to put big effort in deploying solutions for
supporting user’s mobility. This work will focus on proposing different solutions
able to guarantee continuity in user’s connection, using LISP, a protocol designed
by Cisco.

1.2 Roaming

The term "roaming" ensures that the wireless device is kept connected to the net-
work, without losing the connection. In wireless telecommunications scenario,
"roaming" refers to the capability of extending the connectivity service in a lo-
cation that is different from the "home" location, that is where the service was

3

1 — Introduction

first registered. Roaming services in wireless networks allow the user to seam-
lessly continue data transfer while changing networks. Usually roaming applies in
the case of connecting to the same network while changing Access Point: effec-
tively, only the physical route is updated but the IP address remains unchanged.
Nowadays, roaming services provide the user with transparent continuous network
connectivity while the network infrastructure provides seamless roaming services.
For example, a mobile phone call remains connected while the user is changing
location and hence changing the radio network. However, the existing roaming
solutions are still bound to their underlying infrastructure. This is mostly typical
of 3G networks, which provide seamless data roaming service while the device mi-
grates between cells. But it is unable to provide the same type of service when the
device disconnects from the 3G network and connects to a Wi-Fi access point, in
which case the existing connections are dropped and have to be reestablished.

It’s possible to distinguish two types of roaming

1. Seamless roaming

2. Nomadic roaming

Seamless roaming follows the scenario of a cellular phone call: a user is making
a phone call while walking, or driving. Above him there’s a cellular communication
system (i.e. GSM or TDMA) which provides a huge are of coverage, and the user
is roaming between different base stations of this system. The user can’t tell when
he’s switching base stations, since there’s no degradation or disturbance. This is
because roaming prevents network availability. Therefore, "seamless" roaming is
the required when the network application requires constant network connectivity
during the roaming process.

Nomadic roaming, instead, can be better pictured in a Wi-Fi scenario: a user
is using his laptop is his office, connected to his office Access Point, then puts his
laptop in standby for moving in another room, where it connects again, to another
Access Point. This implies the term "nomadic", because the user is not connected
to the network while roaming, but only before and after the move.

The case related to this work can be considered even wider than nomadic roam-
ing, since we also have to take in account what happens when the user roams
between different LANs, not only different Access Points. For example, when he
connects to his home network then, after a while, to the office one.

The latter case impacts more on applications, since there is an actual period of
network inactivity while roaming to an attaching point to another. Further more,
when a user connects to a completely different network (LAN), even without any
network unavailability time, he drops all of his active connections.

This big constraint is imposed by the nature of the Internet network stack.

4

1.3 — TCP/IP constraints

1.3 TCP/IP constraints

802.11 roaming is referred as "break before make" implying that a station interrupts
the communication associated with one AP before creating an association with a
new one. This paradigm was introduced, for example, to facilitate MAC protocol
management, even if leads to possible data losses during roaming. If we consider
a "make before break" approach, that is making a station able to associate to a
new AP before disassociating from the old AP, you would need to add security
checks on MAC addresses avoid conflicts. A station connected to the same Layer
2 broadcast domain via simultaneous network connections has the potential to
trigger broadcast storms. A "make before break" architecture would necessitate
additional algorithms to resolve any potential loops, hence adding overhead to the
MAC protocol. In addition, the client radio would have to be capable of listening
and communicating on more than one channel at a time, increasing the complexity
of the radio [24].

TCP was conceived for wired, fixed topologies which are clearly reliable. There-
fore it was assumed that data losses could only be caused by congestion, which can
happen in a reliable infrastructure. In a mobility scenario, data losses can be
due to the unmanaged bit error rate of wireless links or also temporary network
availability, which can come from link errors but also the moving of the host.

We can summarize the scenario we have in mind detailing the nomadic roaming
example presented above: A user is working in his office with his laptop and has
to move to another room, which has a different Access Point that corresponds to a
different network (therefore, different IP addresses). FTP and Telnet connections,
for example, can remain alive for the time required to move. The goal is make
these open connections being retrieved in the most seamless way possible despite
the change of the network. This scenario complies with the TCP paradigm since
it assumes that the loss was due to congestion and resizes the transmission by
bringing the congestion window down to the minimum size. Further more, the
TCP’s slow-start mechanism makes the sender unnecessarily hold back, and then
slowly grows the transmission rate [24].

A TCP connection is represented by a 4-tuple <source IP, source Port,
destination IP, destination port>. Connecting to different networks changes
the source IP address. For example, a mobile phone may have an IP address that
was assigned to it by the mobile operator network. Should the mobile phone
connect to a Wi-Fi Access Point it will acquire a new IP address, assigned by the
Access Point. When a device changes its source IP address, local TCP connections
need to be reestablished since the existing 4-tuple no longer identifies the current
connection. Broken connections can either be implicitly handled by the running
applications or explicitly handled by the user.

5

1 — Introduction

1.4 Objectives of this work

Given the scenario, the goal of this work is to find a way to overcome these limits,
adding further constraints.

First of all, we do not want to modify the network stack of the user’s host.
This means avoiding to install any additional software that modifies the behavior
of the network card. It’s assumed that we’re dealing with hosts using the standard
TCP/IP stack. This helps us for abstracting the type of host device that we're
considering: no distinctions will be made between PCs, tablets, smart phones, etc.
Consecutively, we will operate on the network components, such as access points,
routers, servers, etc.

Another objective is to try to limit at a minimum rate the amount of modifi-
cations that need to be made to the components involved: most of the effort will
be put in changing the behavior of Edge routers, while the other components just
need to be configured in the correct way.

In the end, the goals proposed to reach can be summarized as below:

1. Guarantee user mobility without dropping active connections
2. Do not modify host’s stack
3. Use the most standard possible network components

Figure 1.1 represents the real scenario and network architecture considered,
which is definitely similar to the examples of roaming we presented above. We will
refer to the case of the depicted scene as "Handover", which is a term mostly used
in cellular communications for the transferring of an ongoing call (or in general,
data session) from one channel to another without interruption.

The user connects his mobile device (laptop, tablet, etc.) to a network A, e.g.
the university network, then he decides to connect to another Wi-Fi, e.g. his of-
fice’s. His device won’t see any changes in the IP address (the handover process
is transparent to the host) and all the connections will be resumed normally. The
two networks considered can belong to different domains, for example two different
Internet service providers.

The type of mobility considered can be called "inter-domain", which is different
from "intra-domain" which is the case when a host changes only its attaching
point remaining in the same network (N.B. Inter-domain mobility is sometimes also
referred as "macromobility", instead intra-domain is referred as "micromobility").

The work will focus on delivering a solution oriented to roaming between Wi-Fi
networks. Assumptions will be made in order to clarify how this scenario can be
extended for cellular networks in the future.

1.4 — Objectives of this work

- 7 e N
y N
—\ A
Ve —
C Internet - D)
c N —
A J
S : .

Access Point ccess Point ccess Point

\

\

\

\

| A
| £ \ y: \
\

\

\

\

[

\
N , \

Y \ | \ ¥
| [] . A |
7 \ /| \ / \ / |

J < 4

N 4 N 4 N
~ _d - — ‘ o - —— |
Network A | Network B ‘
N / \

Figure 1.1. Intra-domain roaming scenario

Chapter 2

State of the art

At the time of writing, many solutions for overcoming this obstacles have been
proposed. Some of these have been implemented in different environments, but still
today there’s not a standard approach to user mobility. Before briefly explaining
the most notable solutions, we can make a distinction regarding the stack level at
which these solutions operate.

1. Application Layer: mobility provided by application layer protocols intends
to allow communication end systems to support mobility, heterogeneity, and
multihoming. Terminal mobility also allows a device to move between IP sub-
nets, while continuing to be reachable for incoming requests and maintaining
sessions across subnet changes.

2. Transport Layer: mobility is intended to maintain TCP’s end-to-end relia-
bility and correctness semantics while allowing redirecting the endpoints of
an existing transport session to arbitrary addresses.

3. Network Layer: All mobility management and signaling is carried out by L3
protocols.

4. Link Layer: This class includes mobility protocols that use link layer informa-
tion, when the point of attachment changes, to provide mobility management
while the node preserves its network-layer (L.3) address. This type is usually
involved in intra-domain scenarios.

2.1 Mobile IP

Mobile TP (MIP) [28] uses a stable IP address assigned to moving hosts (from now
on, mobile nodes or MN). This "home" address is used to allow the MN to be

9

2 — State of the art

reachable by having a stable entry in the DNS service, and to hide the IP layer
mobility from upper layers. A consequence of keeping a stable address indepen-
dently of the node’s location is that all correspondent nodes (which are the hosts
communicating with the mobile node) can reach the mobile node at that address,
without knowing its current location. Therefore, if there are packets forwarded
to the home address, and the mobile node is in another network, there will be
another node (called "home agent") which will be responsible for tunneling packets
to the mobile node’s new location. MIPv4 (Mobile IP for IPv4 networks) solves
the mobility problem by allowing the mobile node to use a second IP address: the
Care-of-Address (CoA). This address changes every time the mobile node moves
and changes its point of attachment. The CoA indicates the network prefix, iden-
tifying the MN’s point of attachment with respect to the network topology. The
CoA is composed of a valid prefix in a foreign network: the MN will have a home
address and one or more CoAs when moving between networks.
The two main components of Mobile IP are:

1. Home agent, which stores information about MNs whose permanent home
address is in the home agent’s network.

2. Foreign agent, that instead stores information about MNs visiting its net-
work. Foreign agents also advertise CoA. If there is no foreign agent in the
host network, the mobile device has to take care of getting an address and
advertising that address by its own means.

When the mobile node moves in a Foreign network, it has to discover the CoA
he’s assigned. After, this address has to be registered through MIP, in order to
update the host’s binding. In the end, the Home Agent will establish a tunnel with
the MN through the updated CoA.

Going deeper, the operations of Mobile IP can be summarized as following:

1. The mobility agents (Home Agent and Foreign Agent) announces their pres-
ence through messages called Agent Advertisement (optionally, these mes-
sages can be requested by mobile agents through messages called Agent So-
licitation)

2. A MN receives these messages and determines whether it is on its home
network or on a foreign network

3. When a MN detects it moved to a foreign network, it obtains a CoA in that
network. The CoA can be allocated by the foreign agent or some other ad-
dress configuration mechanism, such as DHCP (Dynamic Host Configuration
Protocol)

10

2.1 — Mobile IP

4. When the MN is operating in the new network, it needs to register its CoA
with its HA, through the exchange of Registration Request and Registration
Reply messages

5. Datagrams sent to the MN’s home address by a CN are intercepted by the
local HA and tunneled to the MN’s CoA. The datagram is received at the exit
of the tunnel, and finally delivered to the mobile node in the new network

6. Datagrams sent by the MN are generally delivered to the destination using
standard routing mechanisms, not necessarily through the HA.

Correspondent Node

Internet

‘ Home Agent | ‘ Foreign| Agent |
\ | \ |
\ \ | \
| \ | \
| \ \ \
| | | Mobile Node |
\ | \ |
Home Network ‘ Foreign Network

Figure 2.1. Mobile IP architecture and routing

The resulting interaction between MN, HA and CN is called triangular routing,
as you can see in figure 2.1, which summarizes the MIPv4 paradigm itself.

Triangular routing generates a processing overhead on HA, and in addition it
becomes a single point of failure in the network. This problem has been solved
with MIPv6, by optimizing the route.

11

2 — State of the art

Mobile IPv6 ([10]) was made for supporting mobility support in IPv6 networks.
Like in MIPv4 the MN has to establish a binding between home address and care-
of-address. This combination of CoA is made by the MN and the HA, and it’s
possible by a binding registration in which the MN sends Binding Updates (BU)
messages to the HA, which then answers with a Binding Acknowledgment (BA).
The correspondent nodes are able to store the bindings between the home address
of the MN they refer to and its care-of-address. The MN can send information
about its location to the Correspondent Nodes, with the Correspondent Binding
Procedure, which is a mechanism for authorizing the establishment of binding,
called the return routability procedure. If also CNs support MIPv6 they can use
the Route Optimization process, which is possible if the MN register with the CN.
In this case the CN, before sending a packet, look-ups its local cache to find a
binding between MN’s HA and CoA. If there is an association, the package will be
routed to the CoA of mobile node directly, avoiding the triangular routing seen in
MIPv4. Hence this is useful to lower the congestion at the home link and the HA.

One drawback (of both versions) of Mobile IP is that it only defines ways of
managing macromobility but doesn’t take in account micromobility separately.
This leads to use the same mechanism in both scenarios. Mobile IP is really not
suited for micromobility, since it introduces a high signaling load and considerable
delay required for handover. Indeed, the time usually required for the combination
of movement detection, new CoA configuration and Binding Update, can not ne
always considered acceptable and reliable for applications that require real-time
interaction.

2.2 Proxy Mobile IPv6

Proxy Mobile IPv6 (PMIPv6) proposes another approach for IP mobility ([27]).
Mobile IP already enables a host to change the point of attachment in an IP
network while keeping session continuity, but this ability is not sufficient for true
mobility. Enabling efficient handover is an additional and critical requirement. In
MIP, triangular routing is a clear bottleneck for performance. Latency is affected
by the time required to exchange signaling between the MN and the HA, and
there was no way to optimize micromobility. Therefore, newer solutions started
proposing the idea of having a "local" Home Agent to provide mobility in a local
domain; that is, to provide localized mobility support. This approach is useful also
because users typically move in localized environments (for example, they commute
between their living homes and their work places) that can be covered with localized
domains. Examples of these types of solutions are "Regional Registrations for IPv4"
or "Hierarchical Mobile IPv6 for IPv6". In general, the term "localized" refers to a
particular area from the point of view of the IP network topology, but depending
on the access technology, geographically the area can be large, as happens when

12

2.2 — Proxy Mobile IPv6

applying a localized mobility approach to cellular networks. PMIPv6 perfectly
applies to 3G scenario but it can also be considered for wide WLANSs, like campus
networks.

Another important change made with PMIP is the introduction of the pos-
sibility to support mobility for IPv6 nodes without modifying the host. Mobile
Nodes must signal themselves to the network when their location changes and
must update routing states in the Home Agent. Therefore, IETF decided to work
on a network-based solution, unifying the advantages of a network-based approach
with the benefits of localized mobility management strategies. The network will
provide mobility support, although the Mobile Node does not participate in 1P
mobility procedures. That is, network operators can provide mobility support
without requiring additional software and complex security configuration in the
Mobile Nodes.

PMIPv6 introduces a new architecture (figure 2.2) which resembles MIP in
some points:

1. Localized Mobility Domain (LMD): the localized area in which PMIPv6 pro-
vides mobility support.

2. Mobile Access Gateway (MAG): the network component that takes care of
all the signaling on behalf of the MN attached to its access links. Most of
the time it’s the access router for the MN, better, the first-hop router in the
LMM (Localized Mobility Management infrastructure). It is also responsible
for keeping track of the movements of the Mobile Node in the LMD. An LMD
has multiple MAGs.

3. Local Mobility Anchor (LMA): a component deployed in the core network,
that maintains mappings for every MN. The mapping contains a pointer to
the MAG which is managing the MN currently. Packets inside the LMD are
routed through tunnels established between the LMA and all the MAGs. The
LMA attracts the traffic directed to the addresses assigned to Mobile Nodes
in the LMD, meaning that packets with those addresses as destination are
routed to the LMA.

When a MN enters a PMIPv6 domain, it attaches to an access link provided by
a MAG. The MAG proceeds to identify /authenticate the Mobile Node, and checks
if it is authorized to use the mobility management service. If it is, the MAG starts
performing mobility signaling on behalf of the Mobile Node. The MAG sends to
the LMA a Proxy Binding Update (PBU) associating its own address with the
an information of the Mobile Node which represents its identity (it can be just
the MAC address or a more complex authentication). After receiving this, the
LMA allocates a prefix to the Mobile Node. Then the LMA sends to the MAG a
Proxy Binding Acknowledgment (PBA) including the prefix allocated to the Mobile

13

2 — State of the art

Node. It also creates a Binding Cache entry and establishes a bidirectional tunnel
to the MAG. The MAG sends Router Advertisement messages to the Mobile Node,
including the prefix allocated to the Mobile Node, so the Mobile Node can configure
an address (through stateless autoconfiguration). DHCP can be used instead of
host’s autoconfiguration if the MAG implements a DHCP relay.

So when a handover event occurs, the new MAG updates the location of the
Mobile Node in the LMA and gives the same prefix to the Mobile Node (using
Router Advertisement). In this way, IP mobility is made transparent to the Mobile
Node. Hence the Mobile Node keeps the same address configured when it first
enters the LMD, even after changing its point of attachment within the network,
and from the Mobile Node’s point of view the LMD appears as a single link. Further
more, all the MAGs have to configure the same link local address for the same MN.
So the MN won’t see any change in its default route configuration.

- MNID Prefix MAG
08:00:00:AB:CD:EF 101::/64 147.50.40.3

/

Edge;outer

Edge Router ,///\

: Internet
pd) ~

Figure 2.2. Proxy Mobile IPv6 architecture

It’s worthy to explain how the tunnel between LMA and MAG works:
The LMA establish a tunnel with every MAG, therefore every packet sent to or
from the Mobile Node is routed through the LMA. For example, packets arriving

14

2.2 — Proxy Mobile IPv6

from outside of the LMD are delivered to the LMA which will forward them in
the tunnel to the correspondent MAG. The MAG performs decapsulation of this
packet and then sends to the correct MN through direct access link. Packets going
in the opposite direction (from MN to outside the LMD) are routed to the MAG
which this time perform encapsulation, sent to the LMA, which will take care of
forwarding them to the destination.

We can, at this point, clearly mark the difference between the two approaches
seen in MIP and PMIP. Especially the need to modify the host involved in mobility.
We will refer to:

1. Host-based mobility, which requires the host to implement specific additional
parts (hardware or software) in order to take part in mobility (like MIP)

2. Network-based mobility, which expects to deal with a normal network stack
on the host, therefore moving all the workload on network components (like
PMIP)

Like stated before, this solution will consider normal hosts (provided with stan-
dard TCP/IP stack) as the actors, therefore it will be Network-based.

15

16

Chapter 3

Locator /ID Separation
Protocol

In recent times, the Internet architecture is beginning to present problems which
could not be foreseen in the past and which are strictly related to its nature. One
of the biggest regards routing scaling.

This is because of overloaded IP address semantic, which makes efficient routing
impossible: the addressing mechanism used in the Internet still follows a paradigm
which limits route aggregation compactness. Further more, this problems won’t
be solved with the introduction of IPv6. What’s happening is that routers require
bigger memory to store and keep the Internet Routing Table in the forwarding
plane, and the amount of memory needed will always be increasing in the future. As
a result, people will be replacing equipment to be able to hold the expanding routing
table instead of investing resources in implementing new features and satisfying
bandwidth requirements.

This problem has been addressed at the Routing and Addressing Workshop that
was held by the Internet Architecture Board (IAB) on October 18-19, 2006.The pri-
mary goal of the workshop was to develop a shared understanding of the problems
that the large backbone operators are facing regarding the scalability of today’s
Internet routing system. The content discussed has been wrapped up in a RFC
document ([11]).

The current Internet routing and addressing architecture uses a single names-
pace: the IP address, to simultaneously express two aspects of a device: its identity
and how it is attached to the network. One clear result of this single numbering
space is manifested in the rapid growth of the Internet’s default-free zone (DFZ) as
a consequence of multihoming, traffic engineering (TE), non-aggregatable address
allocations, and business events such as mergers and acquisitions.

17

3 — Locator/ID Separation Protocol

This problem has been further worsen by two additional conditions. The first
is IPv4 address space depletion which has led to a finer breakup of IPv4 addresses
with less aggregation potential, especially in the case of Provider Independent (PI)
addressing. The second is the increasing need of dual-stack routers supporting
both IPv4 and IPv6 protocols. IPv6 did not change anything about the use of IP
addresses, it still represents the location and the identity of the host at the same
time, with no logical separation, and so it still suffers from the same problems as
IPv4.

There a lot of challenges for managing and maintaining network nowadays. A
common case is that the complexity is increased when multi-homing is required
for increased bandwidth and availability and for resiliency. When a site has to be
re-numbered or services providers change there a lot of expenses related to this
operation, which led to inhibit the development of new services.

After [11] the need for avoiding the big effort required for changing the network
topology and all the related costs was clear. The idea that came up was to split
in two the logical address space normally used. In particular, mark a separation
between the location of a node and its identifier (Loc/ID split).

The basic idea behind the Loc/ID split is that the current Internet routing
and addressing architecture combines two functions: Routing Locators (RLOCs),
which describe how a device is attached to the network, and Endpoint Identifiers
(EIDs), which define "who" the device is, in a single numbering space, the IP
address. Proponents of the Loc/ID split argue that this overloading of functions
makes it virtually impossible to build an efficient routing system without forcing
unacceptable constraints on end-system use of addresses. Splitting these functions,
through the use of different numbering spaces for EIDs and RLOCs, will yield
several advantages, including improved scalability of the routing system via greater
aggregation of RLOCs. To achieve this aggregation, RLOCs must be allocated in
a way that is congruent with the topology of the network. Today’s "Provider
Allocated" IP address space is an example of such an allocation scheme. EIDs, on
the other hand, are typically allocated along organizational boundaries. Since the
network topology and organizational hierarchies are rarely congruent, it is difficult
(if not impossible) to make a single numbering space efficiently serve both purposes
without imposing unacceptable constraints (such as requiring renumbering upon
provider changes) on the use of that space.

Loc/ID split is already commonly used, both with address translations (e.g.
NAT) and tunnels (e.g. GRE, IPsec, MPLS), but these techniques are limited
to a local scope. For the goal proposed for this work a global scope for Loc/ID
separation is needed.

18

3.1 — Protocol overview

3.1 Protocol overview

LISP (Locator/ID Separation Protocol) is a specific instance of the Loc/ID split,
and so its goal it is to introduce decoupling of location and identity in a network
([9]). This separation will facilitate improved aggregation of the RLOC space,
implement persistent identity in the EID space, and increase efficiency of network
mobility.

LISP is designed to be a simple, incremental, network-based protocol which
implements separation of Internet addresses into EIDs and RLOCs. LISP requires
no changes to host stacks and no major changes to existing database infrastruc-
tures. This is because it is a map-n-encap protocol. In the map-and-encap scheme,
when a source sends a packet to the EID of a destination outside of the source do-
main, the packet traverses the domain infrastructure to a border router (or other
border element). The border router maps the destination EID to a RLOC which
corresponds to an entry point in destination domain (hence there is a need for a
EID-to-RLOC mapping system). This is the "map" phase of map-n-encap. The
border router then encapsulates the packet and sets the destination address to the
RLOC returned by the mapping infrastructure. This is the "encap" phase of the
map-n-encap model. Thus map-n-encap works by appending a new header to the
existing packet; the "inner header" source and destination addresses are EIDs, and
the "outer header" source and destination addresses are in most cases RLOCs, and
are the actual addresses used to route the packet to destination. When an encap-
sulated packet arrives at the destination border router, the router decapsulates the
packet and sends it on to its destination. By definition ([9]), EIDs are not glob-
ally routable addresses, unlike RLOCs and should just represent the identity of a
host. But we can say that when being the EID an IP address it can be considered
routable in a local scope, usually just in the domain where the network operates.

The IP encapsulation scheme adopted in LISP decouples host identity and lo-
cation, allows having dynamic identity-to-location mapping resolution and is also
address family agnostic because it allows all the possible EID-to-RLOC combina-
tions: IPv4-in-1Pv4, IPv4-in-1Pv6, IPv6-in-1Pv4, IPv6-in-IPv6.

LISP has minimal deployment impact: it does not require changes to end sys-
tems or core, just minimal changes to edge devices, and it’s incrementally deploy-
able day-one. Indeed LISP architecture allows not only LISP-to-LISP communica-
tion, but also LISP-to-non-LISP, as we’ll see.

3.1.1 LISP components

The LISP specification bases itself on a few fundamental network elements, listed
below. This list summarizes the definitions of these components, therefore the
descriptions are directly taken from [9)].

Egress Tunnel Router (ETR) is a router that receives LISP-encapsulated

19

3 — Locator/ID Separation Protocol

IP packets from the Internet on one side and sends decapsulated IP packets to site
end-systems on the other side. In particular, an ETR accepts an IP packet where
destination address in the outer IP header is one of its own RLOCs. The router
strips the outer header and forwards the packet based on the next IP header found.

Ingress Tunnel Router (ITR) is a router that accepts IP packets from
site end-systems on one side and sends LISP-encapsulated IP packets toward the
Internet on the other side. In particular, an ITR accepts an IP packet with a single
IP header (more precisely, an IP packet that does not contain a LISP header). The
router treats this inner IP destination address as an EID and performs an EID-to-
RLOC mapping lookup if necessary (i.e., it doesn’t already have an EID-to-RLOC
mapping for the EID). The router then prepends an outer IP header with one of its
globally-routable RLOCsSs in the source address field and the result of the mapping
lookup in the destination address field. Note that this destination RLOC may
be an intermediate, proxy device that has better knowledge of the EID-to-RLOC
mapping closest to the destination EID.

xTR is a reference to an ITR or ETR when direction of data flow is not part of
the context description. xTR refers to the router that is the tunnel endpoint. Used
synonymously with the term Tunnel Router. For example, an xTR can be located
at the Customer Edge (CE) router, meaning both ITR and ETR functionality is
at the CE router. A router that performs the actions described can be referred as
LISP Router.

LISP site is a set of routers in an edge network that are under a single technical
administration. LISP routers that reside in the edge network are the demarcation
points to separate the edge network from the core network.

Map Cache is a short-lived, on-demand table in an ITR that stores, tracks,
and is responsible for timing-out and otherwise validating EID-to-RLOC mappings.
This cache is distinct from the full "database' of EID-to-RLOC mappings, it is
dynamic, local to the ITR(s), and relatively small while the database is distributed,
relatively static, and much more global in scope.

EID-to-RLOC Database is a global distributed database that contains all
known EID-prefix to RLOC mappings. Each potential ETR typically contains
a small piece of the database: the EID-to-RLOC mappings for the EID prefixes
"behind" the router. These map to one of the router’s own, globally-visible, TP
addresses. The databased locally stored and globally announced by an ETR is
called Local Database.

Even if it is not the main matter of this work, it is mandatory to mention the
components needed in order to allow communication between LISP and non-LISP
sites.

Proxy Ingress Tunnel Routers (Proxy-ITRs) are used to provide con-
nectivity between sites that use LISP EIDs and those that do not. They act as
gateways between those parts of the Internet that are not using LISP (the legacy In-
ternet). A given Proxy-ITR advertises one or more highly aggregated EID-Prefixes

20

3.1 — Protocol overview

into the public Internet and acts as the ITR for traffic received from the public
Internet.

Proxy Egress Tunnel Router (Proxy-ETR) provide a LISP site’s ITRs
with the ability to send packets to non-LISP sites in cases where unencapsulated
packets (the default mechanism) would fail to be delivered. Proxy-ETRs function
by having an ITR encapsulate all non-LISP destined traffic to a pre-configured
Proxy-ETR.

LISP Mapping System

In LISP the network elements (LISP routers) are responsible for looking up the
mapping between end-point-identifiers (EID) and route locators (RLOC) and this
whole process is invisible to the Internet end-hosts. The mappings are stored in
a distributed database simply called "Mapping system", which responds to the
lookup queries. The Mapping System runs distributed since it’s composed by
multiple LISP Map-Servers and Map-Resolvers.

Map-Server is a network infrastructure component which learns EID-to-RLOC
mapping entries from an authoritative source (typically, an ETR, though static
configuration or another out-of-band mechanism may be used). A Map-Server
publishes these mappings in the distributed mapping database.

Map-Resolver is a network infrastructure component that accepts LISP En-
capsulated Map-Requests, typically from an ITR, and determines whether or not
the destination IP address is part of the EID namespace; if it is not, a Nega-
tive Map-Reply is returned. Otherwise, the Map-Resolver finds the appropriate
EID-to-RLOC mapping by consulting a mapping database system.

A world-wide testbed has been deployed for testing the functionality of LISP on
a large scale, called LISP Beta Network ([1]). The Beta Network contains elements
such as Map-Servers, Map-Resolvers, Proxy Routers and xTRs. Participants host
one or more of these components. It initially used a BGP-based mapping system
called LISP ALternative Topology (LISP+ALT) [7], but it has been later replaced
by a DNS-like indexing system called DDT inspired from LISP-TREE [31]. The
protocol design made it easy to plug in a new mapping system, when a different
design proved to have benefits. Some proposals have already emerged and have
been compared.

The goal of this work does not require going deeper in the explanation of the
deployment of the Mapping System, neither it is mandatory to make assumptions
about which type of Mapping System is considered. This solution focuses on the
interaction between a host device and the LISP router (or xTR), thus the only
assumption that needs to be made is that the xTR is able to communicate with a
LISP Map-Server in its domain, which is fair considering the scenario we have in
mind.

21

3 — Locator/ID Separation Protocol

3.1.2 Message flow

When a host in a LISP capable domain emits a packet, it puts its EID in packet’s
source address, and EID of the correspondent host in its destination address (note
that hosts will typically look up EIDs in the Domain Name System). If the packet’s
destination is in another domain, the packet traverses the source domain’s infras-
tructure to one of its ITRs. Then, the ITR maps destination EID to a RLOC which
corresponds to an ETR that is either in the destination domain or proxy’s for the
destination domain. The ITR then encapsulates the packet, setting the destination
address to the RLOC of the ETR returned by the mapping infrastructure or by
static configuration.

When the packet arrives at the destination ETR, it decapsulates the packet
and sends it on to its destination. As previously stated, this implies that EIDs
need to be routable in some scope (likely scoped to the domain).

There are four types of LISP packets that need to be beared in mind:

Map-Request: An ITR may query the mapping system by sending a Map-
Request message into the mapping system to request a particular EID-to-RLOC
mapping. In order to do this, the Map-Request message is encapsulated before
being sent to the Map-Server: the outer IP header containt the RLOC of the
requesting I'TR and of the Map-Server, in order to route the packet correctly to
the destination. As soon as the message is received by the Map-Server, it gets
decapsulated and read. The Map-Server will look for the EID prefix requested
in the Record field. If the Map-Server is not the authoritative one for the EID
requested, the Map-Request will be forwarded into the Mapping System.

Map-Reply: This message is used to reply to the requesting ITR, sending back
the EID-to-RLOC mapping requested (still, in the Record field). It is important
to notice that the Map-Reply is directly sent to the ITR, and therefore it is not
encapsulated. The Map-Reply can be sent by the Map-Server authoritative for
that EID-prefix. Otherwise, the Map-Server can forward the Map-Request to the
ETR, which will be the one to send the Map-Reply. This behaviour is decided by
the ETR, as soon as it registers its EID-to-RLOC mappings to the Map-Server, as
we will see now.

Map-Register: The LISP message sent by an ETR to a Map-Server to register
its associated EID-Prefixes. In addition to the set of EID-Prefixes to register,
the message includes one or more RLOCs to be used by the Map-Server when
forwarding Map-Requests (re-formatted as Encapsulated Map-Requests) received
through the database mapping system. An ETR may request that the Map-Server
answer Map-Requests on its behalf by setting the proxy Map-Reply flag (P-bit)
in the message.

Map-Notify: This message is sent by a Map-Server to an ETR to confirm that
a Map-Register has been received and processed. In [12] it is not clearly stated
that the Map-Notify is sent by the Map-Server also when something about ETR’s

22

3.2 — Mobility solutions

mapping has changed, e.g. a EID-prefix previously registered has different RLOCs.
This behaviour is described in [5] and deeply explained later.

LISP Tunnel

The most important feature of LISP, which makes it suitable for deploying real
mobility solutions, is that when two hosts in different LISP sites are communicating
with each other all of the traffic is routed through the ITR/ETR (like normally
happens). The difference with LISP is that this traffic gets LISP-encapsulated by
the ITR and LISP-decapsulated by the ETR. Due to this mechanism the xTRs
establish a so called "LISP Tunnel". The packets are routed in the Internet with
the outer IP header set with the xTR’s RLOCsSs, then in the local LISP sites the
packets are routed through the EIDs, which are in the inner IP header.

LISP is considered to be an instance of what is architecturally called a "jack-
up": the LISP header is put between the two network layers of the packet. The
existing network layer is "jacked up"' and a new network layer is inserted below it.
A LISP data packet is depicted in figure 3.1

The key concept is that when a host moves in a different LISP sites it can
theoretically maintain the same EID, changing only its RLOCs, which will be
updated (Map-Register) in the Map-Server. Considering the scenario we have in
mind:

o Hosta and Hostp in different LISP sites are communicating with each other
(e.g. through TCP or UDP)

e All the traffic gets encapsulated by the respective xXTRs in a LISP Tunnel

e The outer IP header contains the xTRs’ RLOCSs, while the inner one contains
EIDA and EIDR

e HostpA moves to another LISP site, e.g. changes its Wi-Fi attaching point
e Hostp will get its locators updated, maintaining the same EID A

e The connections between Hostp and Hostp are still running, because the
endpoints <Host A, Hostg> (and also the ports) have not changed.

Figure 3.2 represents the actions that take place when two hosts want to com-
municate using LISP.

3.2 Mobility solutions

LISP has some core use-cases, which can be briefly resumed:

23

3 — Locator/ID Separation Protocol

No. Time Source Destination Protocol | Length | Info
1470 1355.223714000 10, 10.1.2.121 134 Echo (ping) request id=0x1a37, seq=2/512, tt

» Frame 1470: 134 bytes on wire (1072 bits), 134 bytes captured (1072 bits) on interface 0
b Ethernet IT, Src: JuniperN 23:70:db (00:12:1e:23:70:db), Dst: Netgear_77:0b:20 (84:1b:Se:77:
b Internet Protocol Version 4, Src: 84.88.81.47 (84.88.81.47), Dst: 84.88.81.44 (84.88.81.44)
b User Datagram Protocol, Src Port: lisp-data (4341), Dst Port: lisp-data (4341) _
[~ Locator/ID Separation Protocol (Data) A

= Flags: 0Ox00

O... = N bit (Nonce present): Not set

L bit (Locator-Status-Bits field enabled): Not set P
E bit (Echo-Nonce-Request): Mot set < LISP header
V bit (Map-version present): Not set
I bit (Instance ID present): Not set
«... .000 = Reserved: 0x00

b Internet Protocol Version 4, Src: 10.1.3.165 (10.1.3.165), Dst: 10.1.2.121 (10.1.2.121) : E|D Space

b Internet Control Message Protocol

20)

<1 RLOC space
~—J LISP data port = 4341

Figure 3.1. LISP data packet example (ping)

o Low OpEx multihoming with ingress traffic engineering (TE) capabilities pro-
vides control and management of the utilization of the ingress bandwidth that
is being paid for. This is accomplished while eliminating the need for Border
Gateway Protocol (BGP) peering with upstream service providers. This case
also supports eliminating the need for site renumbering and the associated
complexities and costs when changing service providers by decoupling site
addressing from core addressing.

e IPv6 Transition support provides inherent, day-one Address-Family agnos-
tic flexibilities. Incorporating LISP into an IPv6 transition or coexistence
strategy can both speed and simplify the initial rollout of IPv6 by taking
advantage of the LISP mechanisms to encapsulate IPv6 host packets within
IPv4 headers (or IPv4 host packets within IPv6 headers). Incorporating
LISP into an IPv6 transition strategy has demonstrated quick deployment
times, low deployment and operational costs, little or no need for additional
equipment or modifications, and high user-satisfaction.

24

3.2 — Mobility solutions

-~ & 9 & &

MN xTR A Map-Server/ XTR C CN

Map-Resolver

Connects Registers o |

to network mapping o |

1 L Requests |

_ Data | CN's mapping | |
exchange

— |

Replies ! !

CN's mapping | |

J |

Data €« = = = =LISP -

exchange tunne¢l.

MN's mappin Data
exchange

Replies

.

T Requests —
|
|
|

MN's mapping -

|
|
|
|
|
|
|
|
|
|

| |

| L

Data - S N £ > Data
exchange = tunnel exchange

Figure 3.2. LISP data-plane

« Virtualization/Multi-tenancy support provides the capability to segment traf-
fic with minimal infrastructure impact, but with high scale and global scope.
Control plane and data plane traffic are segmented by mapping VRFs to LISP
"instance-id’s", making this overlay solution highly flexible, highly scalable,
and inherently low OpEx.

e Data Center VM-Mobility support provides location flexibility for IP end-
points within the data center network and across the Internet due to the
servers’ identifiers (EIDs) being separated from their location (RLOC). By
using Cisco LISP VM-Mobility, you can deploy IP endpoints such as virtual
machines anywhere regardless of their IP addresses and can freely move them
across data center racks and rows, to separate locations, and globally across
organizations.

« LISP Mobile-Node support provides a 'lightweight" version of LISP’s
ITR/ETR functionality can be used to provide seamless mobility to a mobile

25

3 — Locator/ID Separation Protocol

node. This allows TCP connections to stay alive while roaming, for exam-
ple, and allows mobile nodes to communicate with other mobile nodes, while
either or both are roaming - across the "shortest path" (no home agent).

3.2.1 LISP-MN

Quoting from [6]: The LISP Mobile Node implements a subset of the standard
Ingress Tunnel Router and Egress Tunnel Router functionality. Design goals for
the LISP mobility design include:

¢ Allowing TCP connections to stay alive while roaming.

¢ Allowing the mobile node to communicate with other mobile nodes while
either or both are roaming.

o Allowing the mobile node to multi-home (i.e., use multiple interfaces concur-
rently).

e Allowing the mobile node to be a server. That is, any mobile node or sta-
tionary node can find and connect to a mobile node as a server.

e Providing shortest path bidirectional data paths between a mobile node and
any other stationary or mobile node.

¢ Not requiring fine-grained routes in the core network to support mobility.

¢ Not requiring a home-agent, foreign agent or other data plane network ele-
ments to support mobility. Note since the LISP mobile node design does not
require these data plane elements, there is no triangle routing of data packets
as is found in Mobile IP.

o Not requiring new IPv6 extension headers to avoid triangle routing.

LISP-MN takes advantage of the LISP infrastructure in order to overcome the
limits imposed by Mobile IP. LISP-MN is a clear Host-based solution: all the
functions usually performed by an xTR are now done by the host itself. Logically
the host and the xTR are collapsed into the MN.

Even if the objective of this work is to deploy a Network-based solution there
are still some feature that can be abstracted from LISP-MN. The most interesting
aspect are the operations that need to be executed when a host (or in this case, a
MN) roams in an other network

A roaming event occurs when the LISP-MN receives a new RLOC. Because the
new address is a new RLOC from the LISP-MN’s perspective, it must update its
EID-to-RLOC mapping with its Map-Server; it does this using the Map-Register
mechanism.

26

3.2 — Mobility solutions

A LISP-MN may instruct its Map-Server to proxy respond to Map-Requests
by setting the Proxy-Map-Reply bit in the Map-Register message. In this case the
Map-Server responds with a non-authoritative Map-Reply so that an ITR or PITR
will know that the ETR didn’t directly respond.

Because the LISP-MN’s Map-Server is pre-configured to advertise an aggregate
covering the LISP-MN’s EID prefix, the database mapping change associated with
the roaming event is confined to the Map-Server and those ITRs and PITRs that
may have cached the previous mapping.

In order to update ITRs and PITRs mappings a MN/ETR can choose between
different techiniques (Map Versioning, Setting Small TTL on Map Replies, Piggy-
backing Mapping Data, Temporary PITR Caching) but the one in the interest of
this work is using Solicit-Map-Requests.

Soliticit-Map-Request

Soliciting a Map-Request is a selective way for ETRs, at the site where mappings
change, to control the rate they receive requests for Map-Reply messages. SMRs
are also used to tell remote ITRs to update the mappings they have cached. Since
the ETRs don’t keep track of remote ITRs that have cached their mappings, they
do not know which ITRs need to have their mappings updated. As a result, an
ETR will solicit Map-Requests (called an SMR message) from those sites to which
it has been sending encapsulated data for the last minute. In particular, an ETR
will send an SMR to an ITR to which it has recently sent encapsulated data.

An SMR message is simply a bit set in a Map-Request message. An ITR or
PITR will send a Map-Request when they receive an SMR message.

LISP-MN can use Data Driven SMRs: An ETR may elect to send SMRs to
those sites it has been receiving encapsulated packets from. This will occur when
an ITR is sending to an old RLOC (for which there is one-to-one mapping between
EID-to-RLOC) and the ETR may not have had a chance to send an SMR the ITR.

We can infer that every MN must know its authoritative Map-Server in order
to communicate with it to update its location. In a realistic scenario this can be
one of the Map-Servers of the ISP where the MN is subscribed.

3.2.2 LISP VM Mobility

LISP VM Mobility [5] is a solution focused on migrating virtual machines from
a LISP site to another, without dropping the running connections. The LISP
VM-Mobility solution addresses this issue seamlessly by enabling IP end-points to
change location while keeping their assigned IP addresses. A distinction is made
between roaming through different subnets or across different locations of a subnet
that has been extended with Overlay Transport Virtualization (OTV) or another

27

3 — Locator/ID Separation Protocol

LAN extension mechanism. Given the scenario of this work, our interest is focused
on seeing how the roaming between different subnets is treated.

The decoupling of Identity from the topology is the core principle on which the
LISP VM-Mobility solution is based. It allows the End-point Identifier space to
be mobile without impacting the routing that interconnects the Locator IP space.
In the LISP VM-Mobility solution, VM migration events are dynamically detected
by the LISP Tunnel Router (xTR) based on data plane events. When a move is
detected the mappings between EIDs and RLOCs are updated by the new xTR.
By updating the RLOC-to-EID mappings, traffic is redirected to the new locations
without causing any churn in the underlying routing.

The idea behind LISP VM Mobility is to "move" a virtual machine between
distant Data Centers, without changing of the VM. The VM has the role of the
"host" in this solution, and it does not have LISP embedded in its stack, unlike
LISP-MN. Hence, all the actions to maintain the connections up and running and
guarantee the VM to have the same EID are done by the xTRs. LISP VM Mobility
is inded a Network-based solution.

There are a lot of differences with the scenario of our work, since here the
hosts are virtual machines that are paused, copied to another location, and then
resumed. This implies that the moves are detected by comparing the source in
the TP header of traffic received from a host against a range of prefixes that are
allowed to roam. The xTR realizes a new host has arrived when he sees traffic
arriving from a source IP which is not part of its EID prefix (but it’s one allowed
EID). Obviously, this is not the common scenario of a user moving into a new
network: when this happens, the host device restarts the DHCP dialogue in order
to obtain an IP suitable for the new network, it does not continue sending traffic
maintaing the old IP, since it realizes that the attaching point has changed. The
virtual machine is resumed in a new location, and it is not aware of the move, so
the network card doesn’t see the difference and continues sending packets outside.

There a still a few interesting things related to LISP VM Mobility, which can
be taken for deploying a Network-based solution. When a mobile host roams, there
are four types of updates that need to take place as a result of the mobility event.

1. The new LISP-VM router needs to detect the newly moved-in VM. The "new"
LISP-VM router refers to the xXTR where the host lands. It needs to register
the /32 for the host’s EID using its locator(s).

2. The old LISP-VM router xTR that previously registered the EID needs to
be notified of the move.

3. The Map-Server needs to know the new locators for the EID.

4. The remote ITRs and PITRs that have the dynamic-EID cached with old
RLOC mapping need to be updated with a new mapping.

28

3.2 — Mobility solutions

This list can be kept as a high-level guideline also for our work.

e For what concerns Step 1, the new xTR will detect the new host as soon as he
receives a DHCP packet from it, or any other packets that are automatically
sent in order to gain access to the network. When the new xTR learns the
EID of the host it will update its location simply though a Map-Register.

o Step 2 is very important, since the new xTR wusually does not have any
knowledge of the host’s previous xTR. The previous xTR needs to be no-
tified because it must remove any information regarding the moved host,
most of all stop sending Map-Register for its EID. This notification is au-
tomatically sent by the Map-Server, as soon as it receives a Map-Register
message. Indeed, if the EID that’s being updated was mapped to different
RLOC:s before, the Map-Server will send a Map-Notify to the new xTR (the
one who sent the Map-Register) but also to the previous xTR, (which RLOCs
were previously mapped to the host’s EID). In this way, the previous xTR is
always automatically informed if some of its hosts moved somewhere else.

e Step 3 is inferred to be obvious after the Map-Register that took place in
Step 1.

e Step 4 is similar to the situation shown in the previous paragraph: the host
moved into a new network. The Map-Server is informed of the move, so is
the previous xTR. But we still need to take care of all the devices that are
communicating with our host (called Correspondent Nodes). The problem
can be solved with Solicit-Map-Requests messages, as stated for LISP-MN.
LISP VM Mobility suggests that the previous xTR should send a SMR to
every CN that tries to communicate with a moved host. Another way, which
doesn’t require the previous xTR to keep a list of the moved hosts, is to
automatically send SMRs to every CN (related to the moved host) when the
move is detected (see Step 2).

Figure 3.3 resumes the actions that follow a handover event. The actions de-
picted are the ones required to keep the connections up and running between a
MN and its CNs.

3.2.3 State of art

A lot of mobility solutions with LISP have been proposed so far. This paragraph
briefly presents the most insteresting features of some of these, which can suit my
work. The parameters that must be used to distinguish solutions are two:

e Macromobility vs micromobility

e Host-based vs Network-based

29

3 — Locator/ID Separation Protocol

~/ & & I & 57
XTR A XTR B M“’;%?'F{Seifgﬁre’r xTRC CN

| I Connects D\Reg\‘_h \
> isters ‘
to a new network Mappig

\ I \

<
P

\
\
i i
. Data Requests Data
F excr‘1ange “| | CN's mapping exchange
[] \
\
\

\

\
\) \

, Notifies

‘ previolis XTR [‘
\ \ Solitic-Map-Request | \
\ \] \ \
\ \ Updates | ‘
| mapping | |

4

| |
ARep%

\ \
| | .1 CN's mapping | |
\ \ \ \ \

I:I | m \ I:—I Ij
Data - LISP Data
exchange == Ume & =" exchange

Figure 3.3. Handover action flow

HMM

LISP Hierarchical Mobility Management (HMM) [17] proposes a model of archi-
tecture which suits for both macromobility and micromobility. It considers the
Internet divided into a number of mapping domains (MDs). An Agent Tunnel
Router (ATR) as an agent of each MD manages the Mobile Node’s EID-to-RLOC
mapping. For the movement within the MD, the ATR keeps the EID-to-RLOC
mapping invariable, so it avoids the mapping update in the mapping system and
the Tunnel Router (TR) of each correspondent node. For the handover between
different MDs, to support fast update and handover, a united mapping table is
proposed in the ATR. The goal is to unload the Map-Server trying to keep the
maximum load of information inside a local domain. An interesting feature pro-
posed in this draft is that the old xTR (in this case, ATR) should send the list of
Correspondent Nodes related to the moved host to the new xTR. This is done as
soon as the old xTR is notified of the host’s move. This unloads the new xTR, to
query the Mapping System for the Correspondent Nodes which are communicating

30

3.2 — Mobility solutions

with the host.

Figure 3.4 represents the shortcut introduced with this approach compared to
the normal flow previously represented in figure 3.3. When the host roams in a
new network the CNs are updated through SMRs, but then the new xTR has
to populate its Map-Cache with the mappings of these CNs. With the normal
approach, this happens gradually as every CN communicates with the host in its
new location. With the mechanism proposed here, the new xTR does not have to
query the Mapping System in order to obtain the mapping for every CN, which can
introduce considerable communication latency and overhead on the Map-Server.

5/ & & I

MN xTR A xTR B Map-Server/ \tpc CN

Map-Resolver
Con‘nects
to a new network
\
\
\
\
\
\
\
\

\ i

\
previolrus xTR

\
\ Solitic-Map-Request

T~
~—

| Sends ﬂ
FNs' mapping ‘

\ \ \

‘ g

Data N Data

exchange unnel exchange

\ \ \ \ \ \
\ \ \ \ \ \

Updates

mapping

Figure 3.4. Handover action flow proposed in HMM
This idea is also proposed in [26].

LISP-SMOS, LISP-DMC

LISP-SMOS [19] is a seamless mobility support scheme designed to work in Lo-
cator/Identifier Split networks. Its goal is to make handover events as seamless
as possible. It uses techniques including route optimization, dynamic mapping

31

3 — Locator/ID Separation Protocol

and updating based on the mobile node state. It focuses on lower handoff latency,
packet loss-free and lower packet transferring overhead. The whole handoff process
is transparent to users and completed in the network. The architecture proposed is
composed by different layers: Host layer, Edge layer and Core Layer. It decouples
the funcionalities of the attaching point (Access Router) and point of access to the
core network (xTR). It covers both micromobility and macromobility. The pro-
posal resembles in some way Mobile IP since the home xTR has to keep a state for
every host that belongs to its network. It follows the topology proposed in LISP-
MN; introducing a LLOC (Local LOCator) for the LISP-MN, which represents its
address in the network.

LISP-DMC [22] follows a similar design, but using a distributed mapping system
instead of centralized. The distributed mapping system (which works as the LISP
Mapping System) stores EID-to-RLOC mappings, instead the Access Routers are in
charge of maintaining EID-to-LLOC mappings, which makes micromobility faster.
These solutions are heavily host-based since they consider dealing with LISP-MN
with a fixed 128 bit EID and that is able to keep mappings in memory. Further
more, the MN performs a lot of actions by itself, like updating its mapping when
it moves.

If we consider dealing with hosts that are not LISP-MN and don’t have any
ad-hoc additional software installed in the TCP/IP stack, the scenario is much
more difficult. For example, the host can’t announce or even know its EID or send
a specific message to signal its move.

So far standard hosts have not been taken in account in any of the LISP mobility
solutions seen, which creates a big challenge for the work shown in this thesis.

32

Part 11

Proposal design

Chapter 4

Design choices

This list summarizes the main points of this work:

We would like to enable user terminals to change their network attaching
point without impacting their network experience and without dropping any
active transport-level session (e.g., TCP/UDP).

We do not want to install any additional software(e.g., LISP stack) on user
terminals. We assume that those devices are equipped with a standard
TCP/IP protocol stack.

As we do not want to modify the user terminals, we assume that the com-
ponents that may be needed to support the mobility of those devices are
provided by the network. In other words, the network will be in charge of
any action required to guarantee host mobility (e.g., setup of the appropriate
LISP tunnels,etc.).

We use standard network components in our architecture, keeping modifica-
tions needed at minimum, in order to make the proposal easy to implement.

We assume that the user terminal can move across multiple Wi-Fi networks
in different domains. Further more, we want to keep at minimum the re-
quirements needed to support our solution, abstracting from infrastructure
/ topology / configuration of the networks, in order to guarantee a future
extension including mobile operators.

The design has been done assuming the more realistic scenario possible. We're
dealing with users roaming in different networks, better in different domains. We
will consider users roaming between different Internet Service Provider domains,
which are taking part in the same "Mobility Service". We can assume theoretically

35

4 — Design choices

to deploy the designed solution in every participating ISP. It goes by itself that
there must be a trust agreement between ISPs. From the user point of view, we
assume that the user can subscribe to the mobility service as he can normally
subscribe to the ISP.

4.1 Overview

First of all, we may clarify the different aspects that must be faced in this work.

4.1.1 ISP topology

« myisp.com N
4 150.50.0.0/16 \
/ \
| , 150.50.50.1 7 |
N =< |
| EID-prefix u EID-prefix 150.50.73.2 |
|\ 1011024, 30.33.024 o I
: EID-prefix 4
[“ p ‘ i“ I
: | 2022024 LISP Map-Server :
| \‘ EID-prefix | RLOC
10.1.1.0/24
| 150.50.50.3 20.2.2.0/24 [150.50.50.1
! @ \ 30.3.3.0/24
i - 40.4.4.0/24
B EDerem g ED-prefix 5055024 1150.50.50.3
| 4044024 ~ | 6066024 | 5060024 |
| EID-prefix
\ “ |
\ . 50.5.5.0/24 y
N N y.)
- 7

—_ ==

Figure 4.1. ISP topology

The topology to deal with is the one depicted in figure 4.1. We consider adding
"LISP sites" to the current architecture of an ISP. A LISP site is composed by
one xXTR and one or more EID-prefixes below it. Like we said, every xTR has a
public address which will be part of the ISP’s address space. Every ISP is provided

36

4.1 — Overview

with (at least) one Map-Server, that maps the EID-prefixes with the xTR’s RLOC
they’re assigned to.

4.1.2 Home and foreign networks

There must be a clear difference between what is a "home" and a "foreign" network.
The concept is almost equal to the one used for Mobile IP, like in other mobility
solutions. In our solution, when the user subscribes to the mobility service he’s
registering at a specific ISP, which will become his home domain. When the user
roams in a different network, owned by a different ISP, he will be in a foreign
domain. For home network we refer to a network that belongs to the home domain
(and the same is for foreign network and domain). In general, the home domain
is the one in charge of taking care of user’s data, and foreign networks should just
notify the home domain of the incoming user. It’s good to keep at minimum the
amount of user’s data learned by a foreign domain.

EID-to-RLOC mappings of the users of a domain are maintained by one or
more Map-Servers which are also property of the domain. This means not neces-
sarily that the Map-Server is physically in the same network domain but that the
credentials to access the Map-Server are known by the domain components. In
particular, the components that need to know the secret to access the Map-Server
are the xTRs (Edge routers). We will refer to the Map-Server authoritative for a
specific user in his domain as "home" Map-Server.

4.1.3 DHCP behaviour

Dynamic Host Configuration Protocol gets involved when a host needs to obtain an
IP address in a network. When a host connects to a network it immediately starts
the DHCP dialogue, waiting for an answer from the authoritative DHCP Server of
that network. Going briefly into the details, the DHCP dialogue is composed by
these messages:

1. DHCP Discover: The host broadcasts this message on the physical subnet to
discover the DHCP server(s) of the LAN.

2. DHCP Offer: The DHCP Server reserves an IP address for the host and
extends an IP lease offer by back this message. This does not only contain
the reserved IP but also host’s MAC address, subnet mask, lease duration
and the IP of the DHCP Server itself.

3. DHCP Request: The host accepts one offer (at most), sending this message
to confirm its IP address. This message is broadcasted, to get all the DHCP
Servers of the LAN informed of the host’s choice.

37

4 — Design choices

4. DHCP ACK: This is the last message sent by the DHCP Server to the host.
It includes the lease duration and any other configuration information that
the client might have requested. At this point, the IP configuration process
is completed. Upon receiving this message, the DHCP client will configure
its network interface with the negotiated parameters.

There a few notable variants of this dialogue: Sometimes, when the host already
knows the network, the dialogue will begin directly with the DHCP Request. And,
most importantly, a DHCP client can also request its last-known IP address. If
the client remains connected to a network for which this IP is valid, the server may
grant the request.

It’s been possible to notice two distinguished behaviours regarding this feature.
The behavior depends on the type of device and OS installed . A PC device
tends to ask for the last IP address obtained in the network it’s connecting to.
If the network is unknown to it or the host’s local cache expired, no specific IP
is requested. Instead, most of tablets and smart phones tend to ask for the IP
address they obtained last time they were connected, no matter to which network.
It usually happens that a mobile device explicitly asks for an address which is not
part of the network’s address space. In this case, the DHCP Server answers with
a DHCP NAK message and the DHCP dialogue restarts from the beginning.

The table 4.1 represents the experimental results obtained studying the DHCP
behaviour of different kind of devices.

Table 4.1. DHCP behaviours

(01} Requests last IP
Android 4.2.2 yes
Android 4.2.1 yes
Android 4.1.2 no
Android 4.1.1 yes
Android 2.3.6 no
iO0S 6.1.3 yes
Windows Mobile 6.1 | yes
Windows 8 no
Kubuntu 12.10 no
Ubuntu 12.10 no

1t is necessary to say that the assumptions we’re making are just the results of experimental
tests

38

4.2 — Procedural steps

As we see, the behaviour is noted in most of the OS deployed on mobile devices.
In this case, we can say that the mobile host is "carrying" its old IP address. This
information, when present, can help in the design of the solution, or at least can
act as a shortcut.

4.2 Procedural steps

It’s possible, and necessary at this point, to give a structure to the problems that
must be faced while developing the solution.

4.2.1 Host identification

The host is moving in different networks and since it has a normal TCP/IP stack
it is not able to send any ad-hoc message to declare its identity or neither its home
domain. Hence, host identification (and also authentication, authorization, and
accounting) must be done using the information that a host normally brings. The
host in this scenario is playing a passive role, since it does not perform particular
actions in order to collaborate with other network components, and it’s not pro-
viding any specific additional data. So the information that we are able to use
are the few that are deductible from the network packets normally exchanged with
other network components (most of all, routers).

After having successfully attached to an access link, the host sends a DHCP
Request (or Discover) message to obtain an IP address. In this packet. the infor-
mation related to the host is quite little: the host name and the MAC address.
The host name represents the name assigned to the machine and it is not useful for
identifying the user. Therefore, we can use the MAC address as a primitive id for
the host, representing the physical address of the network which is indeed globally
unique. This idea resembles the one seen in [27], and it’s just a starting point for
the developing of the solution. As we proceed in the writing we will see additional
mechanism to identify the user instead of the host itself (5.2).

4.2.2 Retrieving host’s home Map-Server

In order to update host’s EID-to-RLOC binding we must know its home Map-
Server for sending him an update (Map-Register) message because, as we said, the
home Map-Server is the only one capable of storing host’s mapping. There can be
two ways to retrieve home Map-Server’s address, one using standard DNS and the
other which takes advantage of the LISP infrastructure.

39

4 — Design choices

DNS approach

It’s possible to make use of the well-known DNS service. We suppose that the DNS
service (which runs distributed, as each provider is responsible for its domain) can
be modified in order to support new DNS records. This should not be a problem
because the DNS service was engineered to be extremely extensible, hence we can
store additional records for additional purposes. We can think about storing a
normal A/AAAA record like:

map-server.myisp.com. IN A 170.60.5.4

Remember that, using DNS, we have to assume that every ISP has agreed
on the format of the name to store as DNS record (in the example above is
map-server. [domain]).

A cleaner way should be to use service (SRV) records, which are records that
explicitly announce how to reach a particular service of that domain. So, for finding
the Map-Server (or a general "LISP service') a DNS query may be issued to find
the host name that provides such on behalf of the domain - and which may or may
not be within the domain. In our case the DNS entry should be something like:

_http._udp.myisp.com. IN SRV O 5 80 map-server.myisp.com.

DNS architectural choices are up to the implementation.

LISP Mapping System approach

Since we’re deploying LISP in the solution, it’s clever to use its infrastructure
instead of relaying on additional components (such as DNS). For doing this, we
must assume that every domain has registered its EID-prefix(es) setting the Proxy
Map-Reply flag (P-bit) in the Map-Register message, leaving to the Map-Server the
responsibility of answering Map-Requests on its behalf. Therefore, we can learn
user’s Map-Server address sending a Map-Request to the current domain Map-
Resolver, asking for the EID of the incoming user (of course we must do this before
updating user’s EID-to-RLOC binding). As we receive the Map-Reply, we can just
read the outer source IP address, which will be the home Map-Server address.

4.2.3 Local interface

When the host arrives in a new network it must obtain the same IP address, better,
the same EID. The user will have an address that is not part of the address space of
the foreign network, so it does not logically belong to the same LAN with the other
users. The xTR must act as the default gateway for the host, and the handover
must be transparent from the host’s point of view. We thought about two possible
approaches to overcome this.

40

4.2 — Procedural steps

Point to point

The xTR can give the host a /30 netmask (255.255.255.252), which is the narrowest
possible. In this way, the xXTR creates a local subnet that has space only for two
hosts, which will be the moved host and the xTR itself. The xTR will set up an
additional address on this interface, which will be seen by the host as the default
gateway address. It goes by itself that the local subnet is built starting from the
EID of the host.

This technique is quite easy to implement but it has a big drawback. Indeed
it limits the EIDs that we can deal with to a restricted subset. The /30 netmask
forces the local interface to be created starting from addresses that are multiple of
four (e.g. X.X.X.120, X.X.X.124, etc.). Also keep in mind that the first and last
addresses of a network interface are used respectively for the network itself and
for broadcast. Hence we have two addresses out of four that can be used as EIDs.
This implies that we are forced to use half of a network’s EID-prefix for the EIDs
of our mobile hosts.

Proxy-ARP

For not wasting addresses, we can think about deploying Proxy-ARP behaviour on
the xTR, which is a technique commonly used in mobility (like in [28]). In this case,
the host will be assigned a netmask corresponding to the EID-prefix he belongs to
in its home network, not a /30, and every every address of the EID-prefix can be
used for mobile hosts.

The mechanism can be explained like this: when a mobile host leaves its home
network and moves to a foreign network, the last xXTR he was connected to will be
notified, as usual. When this happens, the previous xXTR uses gratuitous ARP to
update the ARP caches of nodes on the home network. This causes such nodes to
associate the link-layer address of the xXTR with the mobile node’s EID. Therefore
the nodes under the same prefix of the host will not notice the move of the host
because they automatically update their ARP cache with the physical address of
the xXTR. So all the traffic for the moved host will be directed to the previous xTR
which will take care of forwarding it.

The difficult matter is that the new xXTR always has to behave like the home
xTR for the host. This means that it has to intercept also the traffic that the
host is sending on Level 2, which is the traffic directed to the hosts under its home
prefix, which are not actually in that physical network. Further more, the new
xTR has to forward this traffic outside of its network, so it has to selectively sends
ARP replies for every home address request by the moved host.

This behaviour (based on [25]) can be abstracted for every network the mobile
host moves to, independently from being home or foreign networks: remember
that every time host’s LISP binding is updated, the previous xTR the host was

41

4 — Design choices

connected to gets notified.

4.2.4 LISP update

The host has been identified (or authenticated), and he maintained its EID. The
last step is to update the EID-to-RLOC binding in the Mapping System and notify
the Correspondent Nodes. Regarding the host’s mapping updates, we found two
suitable ways:

Complete trust

Updating is done with a Map-Register directed the host’s home Map-Server. The
Map-Register message must be authenticated in order to be read by the Map-
Server, hence the xXTR must know the secret to access the Map-Server. Since we
assumed complete trust between the ISP we can imagine having some key exchange
mechanism between the parts involved, which are up to the implementation. This
implies having ISP sharing keys to their Map-Server, which can result in being
quite heavy to manage.

Secret agnostic

Another way can be that the xTR never actually learns the host’s home Map-
Server key, and therefore it does not send the Map-Register directly to him, but
it establishes a dialogue with another xTR that belongs to host’s home network.
This procedure is explained in deep in 5.1.4.

Updating the correspondent nodes

A critical point of mobility is also to update the bindings of all the hosts that are
communicating with the mobile host (correspondent nodes). The previous xTR
has to be notified that the host moved away from its network, then it has to notify
all the CNs.

For achieving this, the xXTR has to add another logical level to the LISP Map-
Cache it already has. The latter one stores the learned EID-to-RLOC mappings.
There should another map, binding host’s EID with its CNs’ EIDs. The table 4.2
clarifies how this map cache could be deployed.

For what concerns the message that must be sent to the CNs, it’s possible to
take advantage of the LISP infrastructure already present in the solution, sending
a Solicit-Map-Request message to all the CNs for that host. The SMR will trigger
an automatic Map-Request which will update the bindings.

42

4.2 — Procedural steps

Table 4.2. Example of extended Map-Cache on the xTR

Example for Host with EID = 20.2.2.5
EIDHost | EIDoN | RLOCeN
20.2.2.5 30.3.3.1 | 160.6.6.1
20.2.2.5 30.3.3.1 | 160.6.6.2
20.2.2.5 40.4.4.1 | 170.7.7.5
20.2.2.5 40.4.4.1 | 170.7.7.6

43

44

Chapter 5

Design proposals

This chapter presents all the proposals we were able to develop in this work. All
of them have a distinguished scenario, and they’re optimized for the environment
they’re considered to work with. In particular the proposals made are three:

1. LISP-MAC, which introduces a simple but fast roaming mechanism based on
the physical address of the host

2. LISP-RADIUS, which introduces the AAA architecture in the solution
3. LISP-ROAM, which improves and simplifies some steps of the other proposals

Every one of these proposals presents different strong points and flaws, making
them suitable for different use cases.

5.1 LISP-MAC proposal

The mobile host is roaming between different networks, without any additional
software installed on his TCP/IP stack. When he arrives in a new network he does
not present any kind of information regarding his previous network (apart from
exceptions explained in 4.1.3). What happens in the most common scenario is that
the host obtains access to an attaching point of the network, like an Access Point
(AP). We can fairly approximate our scenario, considering a host communicating
with the xTR (which is the Edge router), even if not directly. This means that,
for now, we consider the AP doing nothing but relaying the packets between host
and xTR.

As can be seen in figure 4.1, we consider the xXTR to be on top of one or more
subnetworks which coincide logically with different EID-prefixes. Now it’s possible
to specify that the scenario considered is a host connecting to one of the xTR’s

45

5 — Design proposals

subnetworks, which means that the mobile host has moved in a EID-prefix which
is not its home prefix.

5.1.1 Basic identification with MAC address

The mobile host is connected to a new network, and it’s now part of an EID-prefix
which does not belong to its home domain (intra-domain mobility). The xTR. at
the top of the subnetwork does not know anything about the new host.

Like stated in 4.2.1, the first considerable message sent from the host is a DHCP
Request (or DHCP Discover). The most relevant information we can extract from
this message is the host’s MAC address, which acts like a global identifier. Better,
the physical address doesn’t change depending on the current network, so it can
be used for globally mapping the host.

We consider having the DHCP Server of each subnetwork located in the xTR,
or at least tied with it. This is an important assumption to make since the xTR
must alter the DHCP dialogue with the host and modify the normal behaviour of
the DHCP Server. Keep in mind that the home xTR is always keeping the DHCP
state of its hosts, no matter where they are.

5.1.2 Host’s home xTR

The first approach considered was to not share secrets/keys for LISP Map-Servers
between domains. So it was considered that the xXTRs of a domain were the only
ones able to update the mappings of the users of that domain. This assumption
led to consider having a "Home xTR" instead of a home domain/network for the
user.

A user subscribes to the mobility service and he’s assigned to a specific xTR,
which is the only one that can update users’ mappings. It’s mandatory to bind the
user to a specific XTR and not just to a domain, because when the user connects
to a foreign network, the foreign xTR has to talk with a specific XTR belonging to
user’s domain.

Therefore, the user that subscribes to the mobility service gets his specific host
(identified with its MAC address) registered to a specific xTR, which will be its
home xTR.

Why fixed home xTR?

One legit question at this point would be: why there must be a fized home xTR
for the host? Why can’t the host just be registered by the first xXTR it connects to?
The point is that we want the hosts to be managed by their own home domain.
Which basically means that only xTRs from its home domain can update that
host’s binding. So if a hosts boots up in a foreign domain, there must be a way

46

5.1 — LISP-MAC proposal

to recognize its home domain, in order to update its location. We could have put
more information in the MAC-MS, for example the home domain name, in order
to have dynamic home xTRs, but we preferred to keep the MAC-MS similar to the
LISP Mapping System.

In addition, having hosts with a fixed home xTR allows the ISP to have a more
granular security control: we can think of giving the key for a specific EID-prefix
only to the xTR that takes care of it. Therefore the keys are not even shared all
over the domain, but they are shared at xTR-level.

5.1.3 MAC Mapping System

The mappings linking host’s physical addresses to xXTR’s network addresses can be
grouped in a mapping system, which will run distributed like the LISP one. The
mapping system obtained can be simply called "MAC Mapping System" (MAC-
MS). It’s assumed that every ISP is provided with one (or more) MAC Map-Server
which is updated everytime a new host is registered to the service. The entry
stored in MAC-MS are like:

MACHost IPHome xTR
80:90:A0:AB:CD:EF | 110.10.2.3

0D:05:00:15:F8:AC 110.10.2.4

There are two options regarding which address of the xXTR should be stored.
Indeed, we can just store the RLOC of the xTR, which will be used by the foreign
xTR to communicate.

Another more interesting option would be to reserve a specific EID for the xTR,
taken from one of its EID-prefixes. So the foreign xTR has to query its domain
LISP Map-Resolver for finding not only the RLOC(s) of the xTR but also the
priorities and weights of its addresses. It’s obvious that the latter option is used
mostly in the case of a multi-homed xTR.

For the sake of simplicity, we can think about using a LISP Map-Server also
for the MAC-MS, since a LISP Map-Server can store also MAC address, besides
other data formats ([8]).

5.1.4 Action flow

Having explained all the components deployed and their behaviours, it’s possible
to proceed and show how the components interact in our scenario. The flow can
be listed like this:

1. The host connects to a new network. In our scenario it can be a user con-
necting to another Wi-Fi network on purpose or because the signal with the
previous one is lost.

47

5 — Design proposals

Updating h
host's mapping

Home xTR Foreign xTR
XxXTRtoxTR — — —
@ "d'u'aTééGé """""" .

Retrieving
" Home xTR address

|
|
MAC | |
MAC, 10.1.1.5 | \ DHCPAC%(
" DHCP table | ‘ IP=10.1.1.5
‘ DHCP Request |
‘ = MACH . |
‘ ‘ ‘ oS!
‘ %‘____JHandove_q___ !
|)" |
\ | \ :
“ Network A “ Network B %

Figure 5.1. LISP-MAC action flow

2. The host sends automatically a DHCP Request, in which it stores the MAC
address of the device

3. The message is relayed to the foreign xTR which uses the MAC-MS to find
the home xTR of that host, through a Map-Request to its MAC Map-Server
(and additionally to the LISP Map-Server, following the procedure explained
before)

4. The foreign xTR communicates with the home xTR with a sequence of ad-hoc
messages, in order to

o Obtain host’s EID (and other DHCP parameters if needed)
¢ Update host’s EID-to-RLOC mapping

5. The home xTR updates its host LISP mapping, with a Map-Register

6. At the same time, the foreign xTR is sending back a DHCP ACK message
to the host, setting the EID as the IP address assigned for it

48

5.1 — LISP-MAC proposal

7. The foreign xTR finally sets a local interface (as seen in 4.2.3) to isolate the
host.

Figure 5.1 represents the whole flow.

Dialogue between foreign and home xTR

This part involves the exchanging of four messages between the two xTRs, listed
below.

—

. Encrypted DHCP Request

[NV}

. Encrypted DHCP ACK
3. Authenticated Map-Register

4. Authenticated Map-Notify

These messages are sent inside of a LISP tunnel, which is normally established
between xTRs. Note that the DHCP messages should be encrypted in order to
not be sniffed, while the Map-Register and Map-Notify just need to be correctly
authenticated.

For what concerns the DHCP dialogue, the foreign xTR is simply relaying the
DHCP Request received from the host. The home xTR will refresh the binding (if
the host was already connected) and will send back a correctly configured DHCP
ACK for that host, including its EID. The same dialogue will occur when a host
is renewing its DHCP lease from a foreign network.

After this, the foreign xXTR sends an encapsulated Map-Register to the home
xTR. Since LISP is deployed on the home xTR, it will automatically relay the Map-
Register to its Map-Server, changing the authentication data with its own, that is,
authenticating the message with its key. The Map-Notify received as answer will
be relayed from the home xTR to the foreign xXTR. These two LISP messages are
authenticated with keys shared by the two xTRs. How these keys are shared it’s
up to the implementation. For example, they can use certificates, which is suitable
for the trust we assume between domains. The same assumption is made for the
encryption of DHCP messages.

The home xTR is always keeping the DHCP state of the hosts assigned to it.
And the Map-Server as well is the only one keeping the bindings. When a host
moves in a foreign network, the foreign xTR has to take care of retrieving host’s
information talking with the host’s home xTR. Given the trust between the ISPs
we can assume the dialogue between xTRs is safe, and that this part should not
present security architectural flaws.

49

5 — Design proposals

5.1.5 Previous xTR behaviour

There’s a further distinguish between the xTRs that needs to be made. Before
roaming into a new network, the host could be connected to another one (which,
of course, is not always the home network), that has to be in some way notified
of the moved host. The previous xXTR is the one that was taking care of the host
before its move. This means that every connection directed to the mobile host was
routed (with LISP) through the previous xXTR. When the host moves, the location
is updated in the Mapping System, but still the correspondent nodes need to get
notified of this change.

As it has been said before, Solicit-Map-Register (SMR) messages are made for
this purpose, and upon receiving it the CN triggers an automatic Map-Request in
order to update a specific binding. The problem is that the previous xTR is the only
one who knows who the CNs are, since it’s keeping the bindings in its Map Cache.
As we described in [5] the Map-Server, upon receiving a Map-Register, sends a
Map-Notify not only to the sender xTR but also to the xXTR that registered that
EID last time (i.e. the one currently in the Mapping System), which is actually
the previous xTR.

So when a xTR receives a Map-Notify message containing an EID corresponding
to one of its users and RLOCs that are different from its it understands that the
host has moved from its network (and, embedded in the Map-Notify, it also learns
where). Upon detecting the host’s move, he will send a SMR to all the CNs for
that host, in order to get them updated. Alternatively, as explained in [5], the
previous xTR will send a SMR only if the CN tries to reach the moved host, in
order to not waste bandwidth. We can take further advantage of this message.
For example, the previous xTR can perform an additional check, to see if the host
really moved away from its network, which can be done for example sending an
ARP Request.

5.1.6 Drawbracks

This solution presents two main drawbacks, regarding two different aspects.

The first one is about the MAC-MS and how it is deployed. One great advantage
in using a LISP Mapping System is that the EIDs can be aggregated in EID-
prefixes, which makes the EID-to-RLOC tables quite light and easy to manage.
Fragmentation in the entries is introduced only in the case of mobility, when the
foreign network has to register a mapping which is not part of the prefix. With
MAC-MS it’s impossible to count on addresses aggregation, since we are dealing
with MAC addresses, which don’t follow a topological schema like TP addresses. It
has to be said that there’s a part of the MAC address which is not random, instead
it’s related to the vendor of the network card, but it has nothing to do with our
case. So it’s clear that LISP-MAC proposal presents problems when deployed on

50

5.2 — LISP-RADIUS proposal

a large scale.

The main drawback regards security, and it’s due to the nature of MAC ad-
dresses. The physical address of the host can represent the identity of the user
using the device, but it’s quite hazardous to use it as an authentication factor.
MAC addresses are not secured, and they’re meant to be used for routing in local
LANs. Relying on these addresses for identifying the hosts outside of the scope of
a LAN can be unsafe. This is because MAC addresses can be very easily spoofed
(through just one command line using macchanger), so an attacker can rapidly
take the identity of another user and redirect all the traffic to its host.

We can say that LISP-MAC proposal introduces a basic but efficient architec-
ture for supporting user mobility. But, given the security considerations, we can
imagine using this kind of solution not on a wide scale and inside of networks that
implement additional security modules.

5.2 LISP-RADIUS proposal

This proposal has the goal to overcome the security limits of LISP-MAC and to
put an effort in deploying a safe architecture for user mobility. Like we stated
in 4.2.1, the MAC address can be used just as a primitive identification for the
user, so we have to see which authentication mechanism can be implemented in
our solution. Bare in mind that the mobile host has to be a standard host, so we
can not add any additional software to its TCP/IP stack. Using standard network
authentication mechanisms suits this case, since they use standard protocols which
are already implemented in the host.

5.2.1 802.1X Authentication

IEEE 802.1X is an IEEE Standard for Port-based Network Access Control. It
provides an authentication mechanism to devices wishing to attach to a LAN or
WLAN network.

There are three actors involved in 802.1X authentication: a supplicant, an
authenticator, and an authentication server.

o The supplicant represents the user’s device (laptop, tablet, phone, etc.) which
is trying to access the network, attaching to a LAN or WLAN

o The authenticator is the network component (usually an Access Point or
Switch) which listens to the supplicant’s requests

e The authentication server is usually a machine which is capable of under-
standing and communicating through RADIUS and EAP protocols

51

5 — Design proposals

Remote Authentication Dial In User Service (RADIUS) is a networking protocol
that provides centralized Authentication, Authorization, and Accounting (AAA)
management for users that connect and use a network service. Because of the
broad support and the ubiquitous nature of the RADIUS protocol, it is often used
by ISPs and enterprises to manage access to the Internet or internal networks,
wireless networks, or other services.

In the most common scenario, RADIUS is used in order to authenticate the
user when he’s trying to access a WLAN, which is the scenario we're considering.

RADIUS follows a Client/Server schema ([21]): Network Access Server (NAS)
operates as a client of RADIUS. The client is responsible for passing user infor-
mation to designated RADIUS servers, and then acting on the response which is
returned. RADIUS servers are responsible for receiving user connection requests,
authenticating the user, and then returning all configuration information necessary
for the client to deliver service to the user. A NAS is usually the Access Point itself,
which directly communicates with the RADIUS Server it’s been assigned to.

For what concerns security ([21]): Transactions between the client and RADIUS
server are authenticated through the use of a shared secret, which is never sent
over the network. In addition, any user passwords are sent encrypted between the
client and RADIUS server, to eliminate the possibility that someone snooping on
an unsecured network could determine a user’s password.

PPP Authentication Protocols

There are a number of PPP authentication protocols that are supported by the
RADIUS protocol.

Password Authentication Protocol (PAP) is the simplest one. It passes a pass-
word as a simple string from the user’s host to the NAS device. When the NAS
forwards the password, it gets encrypted using the RADIUS shared secret as an
encryption key. PAP is the most flexible protocol because passing a plain-text
password to the authentication server enables that server to compare the password
with nearly any storage format.

Challenge Handshake Authentication Protocol (CHAP) was designed to over-
come the danger of passing passwords in plain-text. By using CHAP, the NAS
sends a random number challenge to the user’s computer. The challenge and the
user’s password are then hashed by using MD5. The client computer then sends the
hash as a response to the NAS challenge and the NAS forwards both the challenge
and response in the RADIUS Access-Request packet. When the authenticating
server receives the RADIUS packet, it uses the challenge and the user’s password
to create its own version of the response. If the version of the server matches the
response supplied by the user’s computer, the access request is accepted.

Microsoft Challenge Handshake Authentication Protocol (MS-CHAP) is a vari-
ant of CHAP that does not require a plain-text version of the password on the

52

5.2 — LISP-RADIUS proposal

authenticating server. MS-CHAP passwords are stored more securely at the server
but have the same vulnerabilities to dictionary and brute force attacks as CHAP.
When using MS-CHAP, passwords have to be well chosen (to avoid a dictionary
attack) and long enough that they cannot be calculated readily (to avoid brute-
force).

Extensible Authentication Protocol (EAP) is an extension to the Point-to-Point
protocol (PPP) that works with dial-up, PPTP, and L2TP clients. EAP allows
the addition of new authentication methods known as EAP types. Both the client
and the remote access server must support the same EAP type for successful au-
thentication to occur.

Message Digest 5 Challenge Handshake Authentication Protocol (EAP-MD5
CHAP) is a required EAP type that uses the same challenge-handshake protocol
as PPP-based CHAP, but the challenges and responses are sent as EAP messages.
A typical use for EAP-MD5 CHAP is to authenticate the credentials of remote
access clients by using user name and password security systems. You can use
EAP-MD5 CHAP to test EAP interoperability.

EAP-Transport Level Security (EAP-TLS) is an EAP type that is used in
certificate-based security environments. If you are using smart cards for remote
access authentication, you must use the EAP-TLS authentication method. The
EAP-TLS exchange of messages provides mutual authentication, negotiation of the
encryption method, and secured private key exchange between the remote access
client and the authenticating server. EAP-TLS provides the strongest authentica-
tion and key exchange method.

In our solution we suggest using EAP for the dialogue between the supplicant
and the authenticator. Figure 5.2 depicts which messages are exchanged when a
user authenticates in a foreign network.

eduroam

Using 802.1x authentication we change the paradigm we used in LISP-MAC pro-
posal, which now resembles roaming services like eduroam ([30]).

Eduroam provides a world-wide roaming service between networks belonging to
school institutions. In our scenario, we consider a user moving between networks
belonging to different ISPs. Most of all, our main goal is not to give the user the
opportunity to connect to the same mobility service from different campuses, even
in different countries. The focus is put more on letting the user connect to different
networks that are provided in the same physical place. For example we want to
let the user transparently switch between a 2.4Ghz and a 5Ghz Wi-Fi when he’s
moving in a larger range inside a building, or better, connect to a different Wi-Fi
when he’s walking to a different floor. The possibility of having access to the same
service from different and remote places (like different countries) is not a matter
in our scenario, which regards guaranteeing connection continuity when roaming

53

5 — Design proposals

Lookup for
“myisp.com”

RADIUS
Server

4 RADIUS
Server
Access-Request

\ alice
|

| Access-Accept

Access-Request
alice@myisp.com

Access—AEcept
\

EAP Reply'
alice @ myisp.com

Kk

EAP
Request

Mobile host . e .
otherisp.it myisp.com

Figure 5.2. RADIUS Proxy message flow

inside a smaller range (e.g. a building) or when moving between close places with
a limited period of network inactivity (e.g. from the office to home).

5.2.2 Access-points configuration

When deploying this solution on a widespread scale, we can think about how to
ensure seamless roaming between nearby networks. Campus networks that provide
connection to eduroam usually deploy a network architecture composed by access
points distributed all over the area. When the user obtains access to eduroam for
the first time (through username and password) he can move inside the campus
without having to re-authenticate every time he changes the attaching point, that
is when he connects to a different Access Point. This is because all the access
points to the eduroam network have the same Service Set IDentification (SSID),
and share the same authentication mechanism. So what happens is that the host’s
network card has already stored the correspondent authentication data for that
wireless network name, better, for that network identified with its SSID. Therefore

54

5.2 — LISP-RADIUS proposal

the host will automatically try to connect to known wireless network with the
settings it has stored for that specific SSID. Once on the network, users stay with
the same Access Point as long as it is meeting their needs, that is as long as its
signal strength is above a sort of quality threshold. The user continuously check if a
better connection is provided by another AP on that network, so it will do periodic
scans of all channels looking for other APs publishing that same SSID. If a scan
turns up a candidate AP that is better than the AP it is currently connected to, it
will automatically roam to the other AP. It has to be said that this behaviour is not
verified for every host’s network card, since it depends on the roaming algorithms
and quality thresholds defined. What happens is that sometimes a host doesn’t
actually roam when it should, ending up being stuck with the first AP they joined
even if it can get better performance and reliability with another AP that it’s now
closer. Assuming both APs are configured similarly and are connected to the same
underlying network, roaming is seamless and invisible to the user. Roaming events
are invisible at application level, but they can be notified by the lower levels of
the network stack. For example, the event is noticed at Level 2, since the host is
now connected to a different physical AP. This can trigger a notification directed
to upper levels, like IP, e.g. the DHCP client of the network card will restart the
DHCP dialogue to check if the underlying network didn’t change and so the DHCP
lease already obtained is still valid and does not have to be changed.

We can think about make our attaching points provide wireless connectivity
sharing the same SSID, and type of authentication required in order to make the
roaming between nearby networks as seamless as possible.

The goal of having seamless roaming between wireless networks has been con-
sidered also by IEEE and has been standardized in IEEE 802.11F, which specifies
the Inter-Access Point Protocol (TAPP). 802.11F ([18]) depicts a possible extension
applicable to IEEE 802.11, which provides wireless access point communications
among multivendor systems. This extension has been made since, since the begin-
ning, the IEEE 802.11 standard doesn’t specify the communications between access
points in order to support users roaming from one access point to another and load
balancing. TAPP defines a communication protocol between APs beloning to the
same network. RADIUS is included is in the architecture and it’s used for mapping
the SSID of an AP to its IP address and distribution of keys to the APs to allow
the encryption of the communications between the APs. Briefly, APs cooperate to
provide seamless mobility at Level 2: when the user attaches to another AP of the
network, this information is broadcasted to all the other APs, though a message
that contains the MAC address of the roaming user and the one of his new location
(that is the MAC address of the new AP). Since we’re dealing with Level 2 scopes,
this type of mobility guarantees mobility only inside the domain of the subnetwork
that’s implementing it: it does not suits macromobility scenario natively.

What we’re trying to achieve is having an efficient intra-domain handover man-
agement, instead of the inter-domain case, which is the one usually covered. The

55

5 — Design proposals

subnetworks we’re considering are property of different ISPs, therefore they can
not be merged into the same physical network. Using 802.1x authentication as-
sures having a standard and almost ubiquitous authentication mechanism, which
is embedded in most of the network cards (at least, it’s spread quite enough to
satisfy the assumptions of this work). Roaming through different domains requires
the user to get authenticated each time. Even if transparently (that is, when the
network’s SSID is already known), this process may require a considerable amount
of time, which clearly forbids our solution to be classified as seamless. A future
extension could be implementing a Single-Sign-On (SSO) system as part of the
architecture. With an infrastructure like Kerberos, the user must authenticate
only at the beginning of his session, after this he obtains a token which guarantees
his identity. It has to be verified how much impact does implementing a system
like Kerberos have at application level and, most of all, if it allows a transparent
roaming at Level 3, allowing the user to keep the same IP address. Indeed, another
benefit of RADIUS is that the authentication part takes place between the host
and the access point, before the host obtains an IP address.

5.2.3 Overview

Using 802.1x authentication introduces a big change in the proposal: now it’s not
the host that gets identified, but it’s the user that get authenticated. There’s no
need to trust the physical address of the host, since the user gets authenticated
with personal credentials. It can be assumed that the user receives this credentials
as he subscribes to the mobility service.

As the user moves in a network which supports this service, he will prompted
to insert his credentials. After he gets authenticated he will gain access to the net-
work. RADIUS suits perfectly for user’s roaming, and for our scenario, since the
user declares his home domain while authenticating (username@domain). When a
RADIUS Server reads a request from a user outside of its domain it acts transpar-
ently as a RADIUS Proxy: it forwards the request directly to the RADIUS Server
in user’s domain and forwards the answer to the user. The RADIUS Server just
needs to be configured with the addresses of the other domains’ RADIUS Servers,
in order to reach them when it’s doing proxy. The transparent behaviour of RA-
DIUS eases the deployment of the network architecture, since this one component
natively provides authentication and support for user’s roaming.

Like in LISP-MAC, the foreign xTR has to learn the user’s home xTR address,
to start the action flow explained before. Since we’re not deploying a Mapping
System, like MAC-MS, home xTR’s retrieval must be done in other ways.

One possibility is to divide the ISP’s logical domain space in many subdomains,
which will correspond to the physical LISP-sites. In this way the user belongs to
a sub-domain, like alice@xtrl.myisp.it, so when it connects to a network he
explicitly tells which is the domain name of his home xTR. This introduces a more

56

5.2 — LISP-RADIUS proposal

granular logical architecture inside the ISP, which is not suitable for scalability in
big networks.

A better idea is to take advantage of the RADIUS architecture, better, of the
attributes that are possible to attach to RADIUS messages. RADIUS Attributes
carry the specific authentication, authorization, information and configuration de-
tails for the request and reply. In our case, one of the available attributes can be
used to provide the address of the home xTR: the Framed-IP-Address indicates
the address to be configured for the user. It’s possible to use it in Access-Accept
packets. Even if we are not really using it for telling the IP to assign to the user,
it is still used for carrying important information about the host domain (which
will bring us to the user’s EID in a second moment). For sending back the home
xTR’s address (whether it be RLOC or EID, like stated for MAC-MS) we need to
configure RADIUS with a storage facility (database or file system) which will keep
user’s additional data. This approach is very useful because we can think about
storing even more information about the user, or his domain, without any security
risk, since RADIUS takes care of it ([13]).

These RADIUS behaviour forces an additional change in the architecture. In-
deed the xTR must read the Access-Accept message, in order to learn user’s home
xTR address. What happens normally is that the Access Point takes care of the
RADIUS dialogue, and the xTR is only reached by the host when it starts the
DHCP dialogue, after being authenticated. It’s mandatory to force the RADIUS
packet flow to be routed through the xTR. This can be achieved setting the Ac-
cess Point to ask for RADIUS authentication to the xTR, instead of the domain’s
RADIUS Server. Upon receiving the RADIUS message from the Access Point, the
xTR will be the one who sends the messages to the domain RADIUS Server. In
this way, the xTR will be the one receiving the Access-Accept message with the ad-
ditional attributes, and will also send back the answer (stripped of the attributes)
to the Access Point, in order to let the user gain access to the network.

After the authentication part, the host will begin the DHCP process and the
dialogue between foreign and home xTR will start as seen for LISP-MAC, and after
it all the operations already described above will take place.

Figure 5.3 describes the operations that are followed in order to authenticate
the user and retrieve user’s home xTR address.

5.2.4 Joined architecture

The two proposals made (LISP-MAC and LISP-RADIUS) are not in conflict or
incompatible with each other, instead it is possible to think about deploying both
of them in the same domain (figure 5.4).

This combined architecture allows an ISP to guarantee user mobility at different
levels of security. For example it may be possible to use LISP-MAC for internal
and already secured networks and LISP-RADIUS for a wider scope. Better, we

57

5 — Design proposals

-

RADIUS ~ 4 ~ Access-Request RADIUS
Server | alice thSQ?rverj
i i dedek otherisp.com ~
myisp.com Access-Accept \ A_ccess Request
alice@myisp.com
Home xTR Fkk
Access-Accep
> /+IP
Home xTR
— — xTRtoxTR — — — — —
E@‘ """ @ dialoguie @
Home XTR ‘ \
| \
| \
| |)
| | Access Point
| \
\ \
\ \
Handover
|
L LA - [
| \ e
myisp.com ‘ otherisp.com

Figure 5.3. LISP-RADIUS (User authentication and Home xTR retrieval)

can think about using LISP-MAC for micromobility inside certain safe networks
and LISP-RADIUS for what concerns macromobility.

In the end, there is not one proposal that prevails on the other from all point
of views. They can be used alone in different scenarios or they can be joined in
the same architecture for taking advantage of both.

5.3 LISP-ROAM proposal

LISP-ROAM follows the proposal presented in LISP-RADIUS, this time introduc-
ing assumptions for having an architecture that is more feasible and realistic to
implement.

58

5.3 — LISP-ROAM proposal

myisp.com MAC EID
Host Home xTR
LA 150.1.1.1 66:55:44:33:22:11 20.2.2.254
N - 80:70:60:50:40:30 50.5.5.254
80:90:A0:AB:CD:EF 50.5.5.254

150.50.50.1 150.50.50.2 MAC Map-Server

username = password ED, . .-

EID-prefix @ EID-prefix alice ek 20.2.2.254

~ 150.1.1.2 bob o 50.5.5.254
‘ "I I o 50.5.5.254
1011020 o, 30.330124 ‘/ car
\ 20.2.2.0/24 RADIUS S EiD RLOC
erver
\ 10.1.1.0/24 130.50501
A1 150.50.50.2
‘ 150.1.1.3 150.50.50.1
o 20.2.2.0/24 '£0.50.
| 150.50.50.3 150.50.50.4 ——
.50.50. .50.50. - 150.50.50.1
| @ J\\ﬂ N 30.3.3.0/24 150.50.50.2
/ EID-prefix u EID-prefix LISP Map-Server ; 150.50.50.3
, 40.4.4.0/24
. 150.50.50.4
\ /)
40.4.4.0/2 EID-prefix 60.6.6.0/24 150.50.50.3
‘ 50.5.5.0/24 150.50.50.4
50.5.5.0/24
150.50.50.3
60.6.6.0/24 150.50.50.4

Figure 5.4. ISP supporting both LISP-MAC and LISP-RADIUS

5.3.1 Fixed EIDs

It hasn’t been specified until now how is an EID given to the user. Better, how is
the EID chosen from the network. The EID must be a globally unique identifier
for the user, even if it’s not a routable address. In LISP-MN, the EID is fixed and
the mobile node takes care of keeping it and registering it into the LISP Mapping
System.

In both LISP-MAC and LISP-RADIUS the EID does not have to be fixed. The
EID can represent the temporary address assigned by the user’s home domain,
which is basically what normally happens with standard DHCP. So when a user
boots up in his home network the xTR sees that the user is part of its network
(through MAC-MS or RADIUS) so it does not start looking for his home xTR.
Instead it dynamically assigns an IP address to new host, which will be its EID,
and registers the new EID in its domain Map-Server. If the user is booting in
a foreign network, the xTR will see that the user does not belong to its domain
(again, no matter if we are using MAC-MS or RADIUS) and so it will start the

59

5 — Design proposals

same operations it does in case of a handover. Indeed, upon receiving a DHCP
Request, the home xTR will allocate a dynamic IP (EID) for the mobile host. In
case of a handover the home xTR is sending back the EID that the host already
has, so what’s happening is that the mobile host is actually renewing its DHCP
lease. The home xTR just need to embed a DHCP Server to enable this behaviour,
which is standard DHCP.

When we talk about a user "booting up" it means that the user starts a new
session in a network: in our intention, a new network session occurs each time
the user terminal starts using the network after a period of inactivity, such as for
example when the user terminal is turned on. In this case, all the previous network
activity (e.g., any application-layer communication that occurred in the past) does
not affect the data that will be exchanged in the future, because no transport-layer
sessions are active. For this reason, when a new session starts, a new EID can be
allocated to that user terminal, which may be different from the previous address.
Obviously, this assumption should be revised in case the user terminal needs to
obtain always the same IP address over time.

In LISP-ROAM user’s EID must be fixed. We can imagine that when the user
subscribes to the mobility service he’s reserved a fixed address, which will always
identify him when using that service. Of course this choice is not optimal since
it forbids address reuse, and so it affects the availability of the addresses which
can’t be picked if already assigned, even if the related host is not currently using
it. Anyway, this choice allows the xTR to skip the dialogue regarding DHCP with
the home xTR, since the foreign xTR will be the one taking care of the mobile
host’s DHCP state.

Since the EID is now completely tied with the user’s identity, RADIUS will be
used to store this data. Also, the EID is requested by the foreign xTR in order
to take care of the DHCP part, therefore it must be returned as soon as user’s
authentication ended. In particular, user’s fixed EID will be returned embedded in
the Access-Accept message, in the Framed-IP-Address attribute, that was already
used in LISP-RADIUS for sending the address of the home xTR.

The constraint of having a fixed EID per user may not be considered optimal
for a realistic scenario. Indeed it forbids addresses to be reused by the ISP, unlike
what normally happens nowadays. One design choice can be having EIDs that
are dynamically generated and assigned to the user as he authenticates. LISP-
MAC and LISP-RADIUS propose having a DHCP Server, normally deployed in
the network, that generates and keeps the EID of a mobile user: but the DHCP
Server of the user’s home network is the only one aware of the user’s EID, therefore
it has to communicate this information to foreign networks as the user moves
(5.1.4). A way for dynamically generate EIDs as users authenticate would be to
put a global DHCP Server at domain level, which directly communicates to the
RADIUS Server. So when a user authenticates correctly, the RADIUS Server itself
will manage the DHCP dialogue with the global DHCP Server, obtaining an EID

60

5.3 — LISP-ROAM proposal

for the user, which will be attached in the Access-Accept message. The rest of the
architecture won’t change, so there will be a local DHCP Server related to every
xTR of the network, which will just keep the current DHCP state of the client
in that network. When the user disconnects his device (or after a fixed period
of network inactivity) a RADIUS Accounting-Request message is automatically
sent, with the attribute Status-Type set to Stop. This message can be leveraged
so that the RADIUS Server tells the global DHCP Server that the user’s EID is
now available again, and it can be reused for another user. The other RADIUS
Accounting-Request messages normally sent from the host to the RADIUS Server
can be used for keeping the global DHCP lease alive.

This proposal requires adding a global DHCP Server for every ISP and modify-
ing the RADIUS Server in order to be able to communicate with this new DHCP
Server. One of the goals of this work is to use standard components and maintain
the necessary modification at minimum, therefore this option can be considered a
hint for a feasible future extension (figure 5.5).

Global DHCP Server

MAC EID
MAC 1.1.1.121
Host A
MAC 1.1.2.165
Host B
MAC EID MAC EID
MAC . | 111121 MAC__ | 1.1.2.165

Local DHCP Server Local DHCP Server

RADIUS

\
\
\
\
\
\
\
\
‘ Server
\
\
\
\
\
\
|

Figure 5.5. LISP-ROAM possible future extension

61

5 — Design proposals

5.3.2 Full trust

Another important design change regards the supposed trust agreement between
the involved ISPs. In LISP-MAC and LISP-RADIUS this agreement implied trust-
ing Map-Servers and RADIUS Servers from other domains and establishing a secret
for encrypting the dialogue between home and foreign xTR.

LISP-ROAM goes beyond this and assumes having full trust between the in-
volved ISPs. In particular, what changes is that ISPs are directly sharing the
keys for their Map-Servers. This allows the users’ EID-to-RLOC bindings to be
updated by whichever xTR involved in the mobility solution. These keys can be
distributed with out-of-band mechanisms (which are not discussed in this work) or
taking advantage of the architecture already deployed for the previous solutions.

As we do with the fixed EID, we can return the secret for the user’s domain Map-
Server within the RADIUS Access-Accept message (e.g. in the Reply-Message
attribute). Indeed, the secret is related to the Map-Server but also to the specific
EID-prefix, therefore when the ISP is reserving an EID (which is always part of
a prefix) for a new user it will easily store also the secret that is necessary for
updating it.

Even better, the choice of storing the fixed EID for the user and the Map-Server
key together allows us to have a even more precise level of security, since now we
can theoretically have one key per user. That is, we can bind keys not to a EID-
prefix but also to one single EID, so that the xTR only learns the key necessary
for that user. Of course this will introduce storage and management overhead on
the Map-Sever, and on the RADIUS Server as well.

Another choice can be to don’t store the real key required by the user’s Map-
Server, but a temporary key. That is a key which is valid just for the current session
of the user. After the session expires the key can’t be used anymore, resembling a
One-Time-Password mechanism. The key related to this session has to be agreed
between the Map-Server (which will generate the one-time key) and the RADIUS
Server (which will store it). This introduces another additional security level,
making the solution more suitable for a realistic scenario. It has to be said that
this last proposal requires heavy modifications to the Map-Server, which now is
not configured to generate keys dynamically.

In general, the choice of storing the fixed EID with the correspondent key
creates a sort of "two-step" authentication: first user’s authentication and then, if
it’s been successful, user’s location update.

It goes by itself that the dialogue between foreign and home xTR showed in
LISP-MAC and LISP-RADIUS is not needed anymore, since the foreign xTR ob-
tains the EID as the user authenticates and it can directly send a LISP Map-
Register to the host’s Map-Server.

The whole new dialogue mechanism is depicted in figure 5.6.

62

5.3 — LISP-ROAM proposal

‘ RADIUS @ ~
<= = &
. Proxy . \ Access-Request

S Accept allce@domalnA com

+ El
fffffffffff -~ + Map-Serv

@ | User's location o
update

| Map-Reéister
| (+ Map-Notify)
| \

Map-Notify] (

RADIUS Dialogue
alice@domainA.com

‘ ‘ *kk
| \ A)

EAP Dialogue
| \ @ alice@domainA.com
‘ ‘ *kk
| Handov?r

LR

DomainA.com ‘ DomainB.com

Figure 5.6. LISP-ROAM (user’s data retrieval and location update)

63

64

Part 111

Implementation of a
prototype

Chapter 6

Prototype design

In order to gain proof that all the assumptions made are fair and realistic, it
has been mandatory to develop a prototype representing the case studied. The
proposal developed in the prototype is LISP-ROAM.

6.1 Components

The prototype should resemble a realistic world scenario in the smallest scale pos-
sible, using the minimum number of components. It is obvious that the architec-
ture to implement will be used also for making tests and see if everything works
smoothly. Therefore only the components necessary for representing a user roaming
through Wi-Fi networks will be used.

In particular, the architecture will be composed by

e Three xTRs
One represents user’s home network
One represents user’s foreign network

One is used by one (or more) correspondent node(s)
o LISP Map-Server(s)
« RADIUS Server(s)

For the sake of simplicity, the xXTR will be considered collapsed with the Access
Point, i.e. the user will connect directly to the xTR.

Due to practical issues, we consider having only one xTR/AP to represent a
domain. Also, every domain should have one RADIUS Server and one LISP Map-
Server.

67

6 — Prototype design

For keeping the prototype even more simple and putting more effort in the
"core" of the solution, we can consider having just one LISP Map-Server, shared
by the three domains. Figure 6.1 gives an idea of the topology implemented.

RADIUS Server LISP Map-Server RADIUS Server
(Domain A) | Map-Resolver (Domain B)
- '/-/-__l -
Mobile Host

;\ o

Domain A 2 g “ Domain B
EID-prefix A | EID-prefix B
Correspondent
Node

Domain C
EID-prefix C

Figure 6.1. Prototype architecture

OpenWRT

In order to be able to modify and manage the behaviour of the routers it’s manda-
tory to use specific firmwares. In the case of this prototype we used OpenWRT.
"OpenWrt is a highly extensible GNU/Linuz distribution for embedded devices.
Unlike many other distributions for these routers, OpenWrt is built from the ground
up to be a full-featured, easily modifiable operating system for your router. In prac-
tice, this means that you can have all the features you need with none of the bloat,
powered by a Linuz kernel that’s more recent than most other distributions."[23]
Basically OpenWRT lets us use a Linux distribution on a router, providing
complete open-source access to the system. As a consequence we are able to fully

68

6.1 — Components

configure and re-program the router, as we normally can do with any Linux distri-
bution.

LISPmob

For implementing LISP on the xXTRs we used an open-source implementation of
LISP, in particular of LISP-MN.

"The LISPmob project aims to deliver a full implementation of both LISP and
LISP-MN for Linux-like systems, but parts of the implementation may be reusable
on other Uniz-like operating systems." [3]

LISPmob provides support for both Data plane and Control plane (and addi-
tional tools). LISPmob is composed by a dameon which works by creating a virtual
interface for the EIDs, in which all packets are routed and LISP-encapsulated and
LISP-decapsulated, and also takes care of the Local DB and the Map-Cache of the
node (Data plane). Plus, it manages all the Control plane, that is all the LISP
messages necessary for establishing communications. The daemon takes care of
both Data and Control plane in user-space. It’s possible to avoid dealing with
the kernel-space using TUN/TAP, creating a TUN virtual interface to manage the
data-plane.

TUN/TAP interfaces are software-only interfaces, meaning that they exist only
in the kernel and, unlike regular network interfaces, they have no physical hardware
component (and so there’s no physical "wire" connected to them). When a program
attaches to the TUN/TAP interface, it gets a special file descriptor, reading from
which gives it the data that the interface is sending out. In the same way, a
program can write to this special descriptor, and the data will appear as input to
the tun/tap interface. From the kernel point of view, it would look like the tun/tap
interface is receiving data "from the wire". The difference between a TAP interface
and a TUN interface is that a TAP interface works with full Ethernet frames, while
a TUN interface outputs works with RAW IP packets (and no Ethernet headers
are added by the kernel).

LISPmob uses a transient TUN interface, meaning that it’s created, used and
destroyed by the daemon. When the daemon terminates the interfaces ceases to
exist,.

LISPmob is available for Linux PC/Servers, Android and OpenWRT. Given its
versatility, LISPmob on OpenWRT does not present any big differences with the
other versions (just few changes in the configuration file).

As it will be seen further in this work, we modified some parts of the LISPmob
code, and consequently its behaviour. The parts of LISPmob modified for our

purposes will be sometimes directly referred as "LISProam", because they follow
the action flow of the LISP-ROAM proposal.

69

6 — Prototype design

6.2 Deployment of the architecture

The first part of this chapter regards how to build the architecture used to imple-
ment what has been proposed in the design part of this thesis. Every sub-chapter
goes deep in the details on how to configure or reprogram the specific network
component, trying to be not too much technical when not required.

6.2.1 RADIUS configuration

For the RADIUS part, we had to deploy RADIUS on a server machine. We decided
to use FreeRADIUS on a Ubuntu Server machine.

"FreeRADIUS is a modular, high performance free RADIUS suite developed
and distributed under the GNU General Public License, version 2, and is free for
download and use. The FreeRADIUS Suite includes a RADIUS server, a BSD-
licensed RADIUS client library, a PAM library, an Apache module, and numerous
additional RADIUS related utilities and development libraries. FreeRADIUS is the
most popular open source RADIUS server and the most widely deployed RADIUS
server in the world. It supports all common authentication protocols, and the server
comes with a PHP-based web user administration tool called dialupadmin. It is
the basis for many commercial RADIUS products and services, such as embedded
systems, RADIUS appliances that support Network Access Control, and WiMAX.
[...] It is also widely used in the academic community, including eduroam. The
server is fast, feature-rich, modular, and scalable." [29]

FreeRADIUS can be easily found on the apt repository in order to be installed.
After this, few configuration files need to be modified. All the configuration files
are considered being in the installation directory: /etc/freeradius/.

EAP configuration

The file eap.conf has to be modified with the type of EAP that we need. For this
work we are using PEAP, with MSCHAPv2.

e Under the eap { } section we need to change default_eap_type = md5 to
default_eap_type = peap

e Under the tls { } section we need to se private_key_password to the
password we will use to authenticate incoming requests.

e Under the peap { } section it must be assured that default_eap_type =
mschapv2.

In a realistic scenario, it would be mandatory to add custom certificates to the
server, and don’t use the default ones provided with FreeRADIUS. For doing this,

70

6.2 — Deployment of the architecture

the fastest way is to follow the procedure described in the README file in the di-
rectory: /usr/share/doc/freeradius/examples/certs/. Before generating the
certificates, remember the write the string 01’ in the file serial and create an
empty file called index.txt. The procedure will create three files:

e ca.pem, which represents the certificate for the Certification Authority, which
we can consider having value in our local scope

o server.pem, which is the RADIUS Server certificate
« server.key, which is the private key used by the server side.

These files need to be copied in /etc/freeradius/certs/.

Clients configuration

RADIUS needs to be configured to answer only to authorized requests. There-
fore, the list of allowed clients has to be appended to the file clients.conf.
client 84.88.81.44 {

secret = x*xx**

shortname = xTR

In this work, the xXTR will directly query the RADIUS Server. So the entry for
the client has to contain the public IP of the xTR, which is the address that the
RADIUS Server will see, and the shared secret between the two parts. Also, the
shortname parameter should be the SSID of the xTR’s Wi-Fi network, but this
match is not always verified.

Users configuration

For a basic functioning of the RADIUS Server, the users and their authentication
data can be stored in a simple text file (users), which will store passwords in
clear text (Cleartext-Password). It’s clear that, in the case of this work, a more
complex and secure technique has to be used to save users’ data. The most obvious
choice, and the most common one, is to use a MySQL database. Like FreeRADIUS,
MySQL can be easily found on the repository and rapidly installed on the Ubuntu
Server machine.

There a few steps that need to be done for deploying a basic MySQL DB for
RADIUS.

1. Create a DB for RADIUS and grant privileges to work with it:
CREATE DATABASE radius;
GRANT ALL ON radius.* TO root@localhost IDENTIFIED BY "password";

71

6 — Prototype design

2. Edit /etc/raddb/sql.conf and enter the server, name and password details
to connect to your SQL server and the RADIUS database. The database and
table names should be left at the defaults.

3. In /etc/raddb/radiusd.conf ensure that the line $INCLUDE sql.conf is
uncommented.

4. Edit /etc/raddb/sql.conf, putting the name of the DB used in the line:
database = "radius"

5. It’s mandatory in /etc/freeradius/sites-available/inner-tunnel to un-
comment the line starting with #sql. If this step is ignored, RADIUS will
not read the data obtained from the DB, and will not give Access-Accept
even after a correct EAP Handshake.

The standard tables used by RADIUS are:

o radusergroup, that contains entries matching a user account name to a group
name

e radcheck, with an entry for each user account name with a Cleartext-Password
attribute with a value of their password

e radreply, where entries are stored for each user-specific RADIUS reply at-
tribute against their username

o radgroupreply, which is filled with attributes to be returned to all members
of a given group.

Here is shown the structure of the tables described above. The example below
is related to the RADIUS Server of domain B which is storing the credentials for
user "alice” (@domainb.com).

L]
mysql> select * from radusergroup ;
} } } } }
T T T T T
| id | UserName | GroupName | priority |
} } Il } }
T T T T T
| 1 | alice@domainb.com | static | 0 |
f f f f f

L]
mysql> select * from radcheck ;
} } } } } }
T T T T T T
| id | UserName | Attribute | Value | Op |
| } } } Il }
T T T T T T
| 1 | alice@domainb.com | Cleartext—Password | **% | := |
| | | | | |
T T T T T T

72

6.2 — Deployment of the architecture

mysql> select * from radreply ;

| id | UserName | Attribute | Value | Op

| 1 | alice@domainb.com | Framed—IP—Address | 10.1.2.121 | :=

| | | | |

T T T T T

mysql> select x from radgroupreply

T
id | GroupName | Attribute
|

Value | Op

)
|
T
|
T T
|
T

Framed—User
* ok ok ok ok Kok |

T
1 | static | Service—Type
2 | static | Reply—Message
Il }
T T

It can be seen that using RADIUS groups suits very well the scenario of this
work: it is indeed a feature that eases the managing of big quantity of data, like
what happens with users of an ISP. Specifically, we will configure a group for the
each EID-prefix, for sending back the same Map-Server’s key to every user of that
prefix. This is comfortable to be managed (e.g. if the ISP decides to change the
Map-Server’s key), since it is just one entry in the radgroupreply table.

Access Point configuration

As explained, in out small-scope architecture, the xXTR will also act as the Access
Point, meaning that hosts will directly connect to it. For every host that connects
through Wi-Fi the xXTR has to authenticate, authorize and account using RADIUS.
The file that must be modified is /etc/config/wireless, which contains in-
formation on how the wireless network is delivered. It should be edited to contain
additional information about the RADIUS Server (IP and shared secret):

config wifi-iface
option device ’radioO’
option mode ’ap’
option ssid ’LISP Wi-Fi’
option encryption ’wpa2’
IP of RADIUS server (default ports are OK)
option auth_server ’84.88.81.48°
option auth_secret ’sharedpsw’
option acct_server ’84.88.81.48°
option acct_secret ’sharedpsw’

73

6 — Prototype design

option nasid ’xTR’
option network ’lan’

It’s important to mention that we are using the same machine for both authen-
tication and accounting, because they’re both managed by RADIUS. We could also
use different servers, putting the addresses as in the snippet above.

Proxy configuration

One RADIUS Server per domain is going to be used. We consider having two
domains, for simulating the scenario of this work in a minimum scope. Therefore
we are deploying two different RADIUS Servers, which have to be able to do
RADIUS Proxy with each other. That is, when a user that belongs to domain B is
authenticating in a network of domain A, the RADIUS Server of domain A has to
communicate and relay all the RADIUS data to the RADIUS Server of domain B.

For doing these, few modifications to the file proxy.conf are needed on both
RADIUS Servers. For example, on RADIUS Server of domain A:

realm "domaina.com" {
local queries (username@domaina.com) are treated maintaining the
string "@domaina.com" in the username
nostrip

}

realm LOCAL {
local queries are not stripped of the domain
nostrip

¥
realm NULL {
}

realm DEFAULT {
}

configuration for RADIUS Server @ domain B
home server domainb {

type = auth+acct

ipaddr = 84.88.81.48

port = 1812

secret = s*x*xx*
require__message_authenticator = yes
response__window = 20

zombie__period = 40

revive interval = 120

status_check = status—server

check interval = 30

num_ answers_ to_ alive = 3

74

6.2 — Deployment of the architecture

we have to define a pool (in this case with just one server)
home_server__pool domainb__pool {

type = fail —over

home_server = domainb

only one radius server...

}

binding between domain string ("domainb.com") and server
realm "domainb.com" {

auth__pool = domainb_ pool
RADIUS requests are forwarded with "@domainb.com"
nostrip

}

}

The RADIUS Server must be configured also to accept requests incoming from
the other RADIUS Servers, apart from the authorized xTRs. So, as done before,
we have to add an entry to the clients.conf file. For example, for RADIUS
Server in domain A:

84.88.81.48

* %k 3k

ipaddr

client radiusb {
secret =

In this way RADIUS Server of domain A accepts RADIUS Access-Requests
from RADIUS Server of domain B, and they authenticate each other through a
shared secret.

Start RADIUS

Finally we can start the FreeRADIUS daemon with: freeradius -X, which also
prints the debug log on the output.

6.2.2 DHCP configuration

After being authenticated, the user gains access to the network, and the first thing
that the host device does is requesting an IP address, that is starting the DHCP
dialogue. It’s necessary first to distinguish the identity of the user against the
network, and then to configure the DHCP Server to automatically serve the right
configuration. It is required to not modify (reprogram) the DHCP daemon, so the
goal is to let the DHCP Server work normally, altering its behaviour dynamically
(for every incoming host).

75

6 — Prototype design

Home and foreign users

LISP-ROAM works by reserving and assigning a fixed EID to every user subscribed
to the service. Every xTR is assigned one (or more) EID-prefix(es) to manage in
its LISP site. Therefore, when a user is assigned a fixed EID he is also bound to a
specific xXTR of the domain. The users belonging to a given xTR are called "home
users'. The concept of "home" is relative to the scope of the xTR, and not to the
whole domain. On the other way round, the xXTR will be the "home xTR" for the
user. When a user roams into another xXTR’s domain he is a "foreign user", since
his EID does not belong to the EID prefix assigned to the xXTR. The xTR is a
"foreign xTR" for the user.

It is necessary to go deep and understand what this difference implies.

In paragraph 4.2.3 two different approaches have been presented, regarding how
to manage moving host with DHCP. The idea for the prototype is to use a sort of
mix of both solutions presented:

e When the user is in its "home network", that is the network of his home
xTR, his host is given a netmask which corresponds to the mask of the
EID-prefix of the network (e.g. a /24). In this way, the host can normally
communicate with devices under the same "home network", which is what
happens normally.

e When the user moves his device in a "foreign network", it won’t get the same
netmask of its home network, but a /30 interface (like explained in 4.2.3)
which will isolate the device guaranteeing a direct dialogue with the foreign
xTR.

o Like shown before in this thesis, the previous xXTR will always be notified if
a host moved away from its network. If the previous xTR is the home xTR,
it will have to perform additional actions apart from the ones shown in the
design part of this work:

The home xTR will broadcast a Gratuitous ARP Reply message (fol-
lowing the Proxy-ARP mechanism) to announce that the moved host will be
reachable through the physical address of the home xTR itself. In this way
all the hosts that were communicating with the mobile hosts will just redirect
the traffic to the home xTR, which will route the traffic (through LISP) to
the new location of the mobile host.

The routing table of the xXTR has to be modified, adding a specific /32
route for the moved host. The traffic for the moved host does not have to be
routed to the LAN side, but always trough the WAN interface which will be
managed with LISP.

o If two hosts, belonging to the same home network, move to the same foreign
network they won’t be able to reach each other directly at Level 2 (like

76

6.2 — Deployment of the architecture

what happens in their home network). This is because they will be both
assigned a /30 interface, so all the traffic they will send or receive will be
routed through the foreign xTR. Note that this mechanism is performed in
general for every foreign host under the same network: even if they are in
the same physical network, they won’t be able to communicate directly with
each other, because they are virtually in different /30 networks. So all the
traffic gets triangulated with the foreign xTR.

Virtual Network Interface

The hosts are roaming between Wi-Fi networks. The xTRs (which are also Access
Points, in this prototype) are receiving all the hosts on the interface that acts as
wireless link (WLAN interface). On the WLAN interface the xTR gets first the
EAP response from the host, then the DHCP dialogue, then all the traffic it sends.
The WLAN interface is the one to modify when the user is foreign, in order to
make the handover transparent to the host.

It is fair to assume that the WLAN interface is up and running, and that its
network configuration coincides with the EID-prefix of the network. This is in some
way mandatory, in order to let every user in the LAN send traffic to the outside
through LISP. It has to be said that the necessary condition is that the EID-prefix
is at least a subset of the network domain, if we want some users to be considered
in a LISP site. In the scenario considered for this work, the Wi-Fi network of
the xTR will be considered a whole LISP site, so the address and netmask of the
WLAN interface has to coincide with the EID-prefix configuration. For example:

e EID-prefix: 10.1.1.0/24

e wlanO Link encap:Ethernet HWaddr s :s:kk:skok:ikk:xx
inet addr:10.1.1.254 Bcast:10.1.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

This is the basic configuration, when no foreign users are in the network.

When a foreign user arrives, as explained above, a /30 interface has to be
reserved for him. The foreign user will be able to exchange traffic with the xTR,
which will get a new address on the new interface. This behaviour is achieved in
two steps: correct DHCP configuration (shown in the next sub-paragraph) and
virtual network interfaces.

The foreign user, like the home ones, will communicate through his WLAN
interface with the OpenWRT, which also will receive data on its WLAN interface.
The WLAN interface on the OpenWRT is already set to work on a /24 prefix. The
WLAN interface has to be able to communicate with a user which EID is not part
of the /24 prefix (e.g. 10.1.2.121). We create a virtual network interface, that is a

77

6 — Prototype design

interface that logically exists at Level 3 but it’s physically represented by the same
Level 2 interface (in this case, the WLAN interface). The concept is also known
as IP aliasing, because it actually adds an IP address to a physical interface.

For our purposes, for every foreign user authenticated in a network, the WLAN
interface will set up a virtual interface with a /30 netmask and a new IP address
which will be decided based on the user’s EID. This is due to what already explained
in 4.2.3, which leads to having a user with a fixed EID that is included in certain
ranges. In every /30 range, two addresses are actually available to be used: the
xTR will pick up the one that is not used by the user and set it as its own new
alias IP.

Setting up a virtual network interface is done just through one command:

ifconfig wlan0O:1 10.1.2.122
netmask 255.255.255.252
broadcast 10.1.2.123

In this example the foreign user’s EID is 10.1.2.121, so the prefix will be
10.1.2.120/30 (10.1.2.120-123):

e 10.1.2.120 is the network address

e 10.1.2.123 has to be the broadcast address

e 10.1.2.121 is the user’s EID

¢ The xTR must pick up 10.1.2.122 as alias on the new interface

As a result, the new interface created will be:

wlanO:1 Link encap:Ethernet HWaddr **same as the WLANx*x*
inet addr:10.1.2.122 Bcast:10.1.2.123 Mask:255.255.255.252
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

The next step will be giving the user a correct configuration, with DHCP, to
be able to communicate with the xXTR on its new interface.

DNSmasq configuration

OpenWRT comes with DNSmasq, which provides two services: a DNS service
and a DHCP service. In this work, the DNS service is not necessarly considered.
"Dnsmasq is a lightweight, easy to configure DNS forwarder and DHCP server. It
is designed to provide DNS and, optionally, DHCP, to a small network. [...] The
DHCP server integrates with the DNS server and allows machines with DHCP-
allocated addresses to appear in the DNS with names configured either in each host
or in a central configuration file. Dnsmasq supports static and dynamic DHCP
leases and BOOTP/TFTP/PXE for network booting of diskless machines." [20]

78

6.2 — Deployment of the architecture

DNSmasq works with a daemon running in background, so we can say that the
DHCP Server is embedded in the xTR.

The file that holds the configuration of DNSmasq is /etc/dnsmasq. conf.

This file must store the static bindings of the users (both home and foreign).
A static binding is established between the MAC address of the device and the
IP (in this case, EID) that has to be assigned. It’s mandatory to keep trace of
the MAC address of the user, and bind it to the EID learned through RADIUS
authentication. Once this information is gathered, it has to be checked if the EID
is part of the EID-prefix of the xTR:

o If it is (home user) the static MAC-to-EID binding will be added, and the
host will be given the DHCP parameters of the home network (e.g. /24
netmask)

o Else (foreign user) the static binding will be added, and a new configura-
tion has to be created specifically for the new user:

Router address will be the xTR’s IP on the new virtual interface
Broadcast address will be the one reserved on the new virtual interface

Netmask will be /30

One powerful feature of DNSmasq is the "tag" mechanism. We are able to define
DHCP configurations for a particular tag name, and assign this tag to multiple
users in the configuration file (it resembles how RADIUS group reply works).

Since all home users will have the same configuration (same router address, net-
mask, broadcast address and few more), we can tag this configuration as "home",
adding this snippet to the configuration file:

dhcp-option=tag:home,3,10.1.1.254 # Router
dhcp-option=tag:home,54,10.1.1.254 # DHCP Server Id
dhcp-option=tag:home,1,255.255.255.0 # Netmask
dhcp-option=tag:home,28,10.1.1.255 # Broadcast
dhcp-option=tag:home,6,10.1.1.254 # Domain Server
dhcp-option=tag:home,15,home # LAN domain name

When a user connects to the network, if he’s recognized as a home user (checking
the EID), the only action to do is to add a static lease for him:

home user 10.1.1.5
dhcp-host=00:aa:bb:cc:dd:ee,set:home,10.1.1.5

In the case of a foreign user, we add a piece a configuration for him, along with
the static lease. For example, user ’alice@domainb.com’ (RADIUS authenticated)

79

6 — Prototype design

with EID 10.1.2.121:

alicedomainb.com START (10.1.2.120/30
dhcp-host=00:0D:88:65:5A:5D,set:alicedomainb.com,10.1.2.121
dhcp-option=tag:alicedomainb.com,3,10.1.2.122
dhcp-option=tag:alicedomainb.com,54,10.1.2.122
dhcp-option=tag:alicedomainb.com,1,255.255.255.252
dhcp-option=tag:alicedomainb.com,28,10.1.2.123
dhcp-option=tag:alicedomainb.com,6,10.1.2.122
dhcp-option=tag:alicedomainb.com,15,alicedomainb.com

alicedomainb.com END (10.1.2.120/30)

The user will be correctly identified by DNSmasq through the MAC address of
the host device. The configuration related to the new /30 WLAN interface will be
automatically sent back in the DHCP ACK message, and the host will normally
set up its connection.

The last step is to enable the WLAN interface to receive DHCP Requests:

dhcp-range=wlan0,10.0.0.1,10.255.255.254,255.0.0.0,5m

The entry contains the name of the interface, the starting and ending address
of the TP address pool, and the expire time of the DHCP lease. Every static IP
address is checked before being given to the user: if it is not part of the address
pool of the interface it is ignored. So it is obligatory to assign the "widest" IP range
possible to the WLAN interface, further more an EID can be any IP address since
it is routable only in a local scope. What should be done is tell DNSmasq to serve
every IP address possible on the WLAN interface.

Unfortunately it is not possible to obtain this behaviour with DNSmasq. If
we try to assign the range [0.0.0.0 - 255.255.255.255] to the WLAN interface, this
range gets ignored as no IP address will be server on the WLAN.

The widest range to work with is a /8 1, so the WLAN has been assigned the
range 10.0.0.0/8, as can be seen in the above snippet.

We can still assume that a /8 range approximates quite well a realistic scenario,
and it is not a hazardous assumption for testing.

11t is important to state that this is just an experimental result, and further studies should be
addressed to understand if this behaviour is just a constraint of the DNSmasq sofware or if there
are additional constraints in the DHCP mechanism that have to be considered.

80

Chapter 7

LISP-ROAM

implementation

The core of the work consists in modifying the LISPmob distribution for the pur-
poses of this work, making the xTR able to correctly handle mobile hosts. As we
deeply explained, the flow of the user’s interactions with the xXTR can be summed
up in these parts:
1. RADIUS authentication

The xTR learns user’s EID

The xTR learns user’s Map-Server key

The xTR learns user’s MAC address (needed for DHCP configuration)

2. DHCP configuration
The xTR creates a local virtual interface for the new EID
DHCP Server sets a static IP (user’s EID) bound to user’s MAC, and
DHCP configuration for the new interface
3. LISP
The xTR discovers user’s Map-Server address

The xTR registers user’s new binding

These actions are considered to take place in case of a foreign user.
If the user connects to its home network, the steps are simplified:

1. RADIUS authentication
The xTR learns user’s EID
The xTR learns user’s MAC address (needed for DHCP configuration)

81

7 — LISP-ROAM implementation

2. DHCP configuration

DHCP Server sets a static IP (user’s EID) bound to user’s MAC and
tags it as home user

3. LISP

The xTR registers user’s new binding

All of the user data will be stored in a structure representing the important
information about the user:

typedef struct user_info {
char xusername;
char eid [INET_ADDRSTRLEN];
char mac[18];

char ms address [INET ADDRSTRLEN];
char *ms_key;
uint64_t ms_ nonce;

int wlan_id;

int foreign; // 0 = HOME user, 1 = FORFIGN user
} user_info;

All the fields will be gradually explained in this chapter. We also use a vector
(which code will not be reported here) to store the data of all the users connected
to the network.

Keep figure 7.1 as a guideline while going in deep in every single steps in each
of the following paragraphs. Figure 7.1 depicts the sequence of steps that need to
be performed when dealing with a foreign user that connects to the network for
the first time.

82

———————

Cutgoing Create new user
RADIUS Store user->username
Access-Request Store user->mac

Incoming -
RADIUS Store user->eid

IRaaE s eant .‘ Store user->ms_key
/ \
[| Add /30 virtual interface H Send Map-Request for user->eid
] Store user->nonce

Reload DNSmasq

l Add static DHCP entry

Received Check If nonce
Map-Reply corresponds to a
user

(D)

T

Resel user->nonce

l

Add user->eid to Local DB
Send Map-Registers

[Store user->ms_address]

If EID of Map-Register
belongs to a foreign
user

N Send Map-Register to
L home Map-Server

Yes

Send Map-Register 10
user->ms_address
authenticated with
user->ms_key

Figure 7.1. LISP-ROAM flow - Foreign unknown user case

83

7 — LISP-ROAM implementation

7.1 RADIUS outgoing and incoming traffic

After setting correctly the xXTR and the RADIUS Server, every time a host is
trying to access the network (communicating through EAP with the xTR’s WLAN
interface), the xXTR will exchange RADIUS packets with the RADIUS Server in
order to verify and authenticate the supplicant. These packets contain important
information about the user, which the xTR has to learn. In our particular interest,
the messages are: RADIUS Access-Request (sent from the xTR to the RADIUS
Server) and RADIUS Access-Accept (viceversa).

We take advantage of what’s already deployed in LISPmob, most of all the TUN
interface. The TUN interface uses RAW sockets, and it is mapped to every address.
When LISPmob starts the routing table looks like this:

root@andrea: # ip route

0.0.0.0/1 dev 1lispTunO proto static

default via 192.168.0.1 dev ethO metric 100

128.0.0.0/1 dev lispTunO proto static

192.168.0.0/24 dev ethO proto kernel scope link src 192.168.0.151

As it can be seen, 1ispTunO (the TUN interface used by the daemon 1ispd)
is mapped on every address possible, and therefore intercepts every packet that
sent or received by the xTR. LISPmob adds two entries to the routing system
(0.0.0.0/1 and 128.0.0.0/1). These two cover the whole address space, and
are automatically removed when LISPmob terminates (as the TUN interface is
deleted). This is has been considered an easier approach than re-configuring the
default route, which is still there (default via 192.168.0.1), as can be clearly
seen above.

Better, all the outgoing traffic (the traffic generated from the LAN) will be
processed by the TUN interface. The incoming traffic (from the WAN) will be
received on the LISP ports. Normal LISPmob only writes the incoming traffic into
the TUN interface in order to introduce it to the internal routing system (since
the inner packet has a more specific address, it would be routed to the appropriate
LAN interface, and would not return to the TUN interface).

So it is already possible to intercept all outgoing and incoming traffic, before it
is filtered and modified by LISPmob: it is possible to intercept RADIUS traffic as
it takes place, without impacting on the dialogue itself. Like said before, we need
to intercept Access-Request and Access-Accept packets, and read the data we care
about.

Below are reported the modifications applied to the original LISPmob code.
We try not to go too much in the detail, limiting the lines of code shown to the
minimum, only to understand what has been done.

84

7.1 — RADIUS outgoing and incoming traffic

7.1.1 RADIUS Access-Request

The user tries to access to the network, and the xTR checks if the authentication
data is correct communicating with the RADIUS Server. Hence, the first sensitive
information that needs to be obtained is contained in the packets sent from the
xTR to the RADIUS Server.

For reading the outgoing traffic, we modify the content of the function send_packet(. ..

in the file 1ispd_sockets.c. These function is called everytime a packet needs to
be sent on the WAN side, both LISP or non-LISP.

Every packet received in the RAW socket is stripped of the Level 2 header,
therefore it points to the IP header. We have to move the pointer to read the UDP
header:

struct iphdr iph = (struct iphdr =) packet;
struct udphdr =*udph;

if (iph—>protocol = 17) // nezt header is UDP

if (iph—>version =— 4){
/* With input RAW UDP sockets in IPv4, we get the whole external
IPv4 packet x/
udph = (struct udphdr =) (((uint8_t %) packet + sizeof(struct
iphdr)));

We have to check if the transport layer is UDP and if the destination port is
the RADIUS one (1812):

/* RADIUS outgoing packet — START x/
if (iph—>protocol = 17 && htons(udph—>dest) == RADIUS PORT)

Then we can parse the RADIUS packet, to check if it is an Access-Request:

struct radius_ packet xrpacket = (struct radius_packet =) (((uint8_t =)
udph + sizeof(struct udphdr)));

if (rpacket—>code == RADIUS CODE_ ACCESS_REQUEST)
{

At this point, we have to read the attributes of the packet, which are holding
the user data. It is necessary to read:

o The username (attribute User-Name)

o The MAC address (attribute Calling-Station-Id)

85

7 — LISP-ROAM implementation

char susername;
char mac[18];

struct radius__attribute xrattribute = rpacket—>attrs;
while(rattribute != NULL && rattribute—>type != 0)
{

switch(rattribute —>type) {
// User—Name (type=1) in rattribute

case 1: ;
strncpy (username, rattribute —>value, rattribute—>length —2);
username [rattribute —>length —2] = ’"\0’;
break;

// Calling—Station—Id (type=31) in rattribute

case 31: ;
strncpy (mac, rattribute—>value, rattribute—>length —2);
mac|[rattribute —>length —2] = "\0’;
break;

default: break;

}

// if we read username and MAC address

if (strlen (username) != 0 && strlen (mac) != 0)
break;

else // go on reading...
rattribute = (struct radius_attribute %) CO(rattribute, rattribute
—>length);

The username and MAC address of the supplicant user have to be stored in-

side a new user_info structure, which will be added to the users vector (called
USERS__INFO):

user__info *ui = (user_infox) malloc(sizeof(user_info));
ui—>username = (char %) malloc(sizeof(username));
strcpy (ui—>username, username) ;

strcpy (ui—>mac, mac) ;

vector__add(&USERS_INFO, ui);

7.1.2 RADIUS Access-Accept

The next packet to be intercepted is the Access-Accept sent back (if the authen-
tication is correct) by the RADIUS Server. Since this is an incoming packet, the
function process_input_packet(...) inside the lispd_input.c file is modified.
There are few steps in common with the procedure followed for the Access-Request:

86

7.1 — RADIUS outgoing and incoming traffic

parsing the TP header, then the UDP header, checking if the packet is RADIUS,
and if it is an Access-Accept. After this, the list of attributes is read, to find:

o The username (attribute User-Name)
o The EID (attribute Framed-IP-Address)

o The key of the Map-Server (attribute Reply-Message)

uint8_t xeid;

char eid_str[20];

char lisp key [50];

char username [50];

struct radius_attribute xrattribute = rpacket—>attrs;
while(rattribute != NULL && rattribute —>type != 0)

//lispd_log_msg (LISP_LOG_INFO, "RADIUS attribute type = %d",
rattribute—>type);

switch(rattribute —>type) {
// User—Name (type=1) in rattribute
case 1: ;

// Framed—IP—Address (type=8) in rattribute

case 8: ;
eid = (uint8_t *)ntohl(rattribute—>value);
sprintf(eid_str, "%u.%u.%u.%u", eid[0], eid[1], eid[2], eid[3]);
break;

// Reply—Message (type=18) in rattribute

case 18: ;
strncpy (lisp_key, rattribute—>value, rattribute—>length —2);
lisp_key[rattribute—>length —2] = ’\0’;
break;

default: break;
}

// if we read everything
if (strlen (username) != 0 && strlen (lisp key) != 0 && strlen(eid_str
) 1= 0)
break;
else // go on reading...
rattribute = (struct radius_attribute %) CO(rattribute, rattribute

—>length);

The username is used for matching the Access-Request against the Access-
Accept. Therefore we add the information obtained to the user already stored in
the vector:

87

7 — LISP-ROAM implementation

user__info suser = vector_search_ username(&USERS _INFO, username);
user—>ms_key = (char %) malloc(sizeof(lisp_ key));

strcpy (user—>ms_key, lisp_ key);

strcpy (user—>eid , eid_str);

7.2 User’s network configuration and location up-
date

7.2.1 Local interface and DHCP

The function andrea_add_wlan(user_info *user) performs the steps explained
in paragraph 6.2.2 for what concerns the creation of the virtual local interface and
the configuration of DNSmasq.

1. Add new WLAN virtual interface (ifconfig wlan0:X ...)
2. Add DHCP entry in /etc/dnsmasq.conf
3. Reload DNSmasq daemon, to apply the changes

At the end of the procedure the attribute wlan_id for the user is filled with
the number of the virtual interface wlanO: [wlan_id].

It is important to declare that we made use of the system(...) function, using
direct system calls to the kernel. A cleaner way would have been using NETLINK
to communicate with the kernel ([16]), but since LISP-ROAM is working embedded
in the OpenWRT is quite fair to consider the code written just for this type of
device, excluding portability.

7.2.2 Retrieve user’s Map-Server

If the user is foreign, it will belong to a different network, which means that his
bindings are kept by another Map-Server. In order to update user’s EID-to-RLOC
mapping, the xXTR has to learn the address of the foreign Map-Server, and then
send him a Map-Register message. In this prototype we take advantage of the
LISP infrastructure to do this:

1. xTR sends a Map-Request for the foreign user’s EID
2. xTR receives a Map-Reply from the foreign Map-Server

3. xTR reads the outer IP address of the packet, which is the address of the
Map-Server

88

7.2 — User’s network configuration and location update

The Map-Server replies to Map-Requests only if the mappings is registered with
the Proxy bit active, which has to be done by every xTR of the solution. In LISP-
mob, we have to declare which is the Map-Server the xXTR refers to in the configura-
tion file /etc/config/lispd. In the same part of the configuration it is possible to

set the Proxy-Reply behaviour.
config ’map-server’

option ’address’ ’84.88.81.2°

option ’key_type’ ’1°

option ’key’ T kokok?

option ’proxy_reply’ ’on’

When LISPmob boots up, a Map-Register for each EID-prefix declared in the
file is sent to the Map-Server with the P bit on.

In this prototype, after a correct user authentication and the completion of the
local interface and DHCP setup. The xTR will spontaneously send a Map-Request,
correctly filled. This is done with the function andrea_send_map_request (user_info
*user):

// retrieve ITR’s EID

lisp_addr_t xhome_eid = &(get__head_interface_list ()—>iface —>
head__mappings_ list—>mapping—>eid_prefix);

// build foreign wuser’s EID

lisp_addr_t xdest_eid = malloc(sizeof(lisp_addr_t));;

get_lisp_addr_from_ char(user—>eid, dest_eid);

// monce returned by the Map—Request

uint64__t nonce;

// build the mapping to insert in the Map—Request
lispd_mapping_elt smapping = (lispd_mapping elt *)malloc(sizeof(
lispd_mapping_elt));

mapping—>eid_ prefix = =xdest_eid;
mapping—>eid__prefix__length = 32;
mapping—>iid = —1;
mapping—>locator__count = 0;

mapping—>head_ v4_locators_list = NULL;
mapping—>head__ v6__locators__list = NULL;

// send Map—Request
build__and_send_map_ request__msg(
mapping,
home_ eid,
get_map_resolver (),

89

7 — LISP-ROAM implementation

// assign monce to user
user —>ms_nonce = nonce;

ITR’s EID, that is the address of the xXTR on the internal LAN (the EID, indeed)
is retrieved as the first element of the local EID-to-RLOC mappings assigned to
the WAN interface. The user’s mapping requested is a normal /32 EID bound to
no locators.

After the Map-Request is sent, the nonce of the message is stored in the user
structure. This is because the xTR will receive the Map-Reply (from the Map-
Server), and will use the nonce to retrieve the user that has to be assigned to that
Map-Server. The Map-Reply packet is normally received and processed by LISP,
so it is to be intercepted in the process_input_packet(...) in lispd_input.c
function:

if (ntohs (udph—>dest) == LISP_ CONTROL PORT)

lispd_pkt_ map_reply t spkt = (struct lispd pkt map request_t *) CO
(udph, sizeof (struct udphdr));
// check if it a Map—Reply
if (pkt—>type == LISP_ MAP REPLY)

// check if the monce corresponds to a user

user__info #user = (user_info *) vector_search_nonce(&USERS_INFO,
pkt—>nonce) ;

if (user != NULL)

strcpy (user—>ms_ address, get_char_from_lisp_addr_t(
extract_src_addr_from_ packet(packet)));
user—>ms_nonce = —1; // Reset after use

andrea_send__map_ register (user);

}
}

A function arranged for the vector is used to retrieve the user related to the
nonce. It is fair to assume that the nonce is unique in the vector, since it is a
random number, and because it is resetted after the procedure. The Map-Server’s
address is extracted from the source IP header of the packet and stored in the user
structure.

Now the user structure is completed, all the fields are filled with correct data.
As it can be seen, the function for updating the location of the user is automatically
called.

90

7.2 — User’s network configuration and location update

7.2.3 User’s location update

The function andrea_send_map_register (user_info *user) includes the actions
needed for correctly updating the foreign user’s EID. The steps are just two:

1. Add the new EID to the local DB. In this way the EID is really considered
to be part of the network.

This is done with the LISPmob function add_database_mapping(...)

2. Immediately send a Map-Register for the new /32 EID

// we send a Map—Register ONLY for the new EID
lisp_addr_t user_ eid;
get_lisp__addr_ from_ char (user—>eid , &user_eid);

lispd mapping elt *mapping = new_local mapping(user eid, 32,
-1);
lispd__locator__elt xlocator = new_local_locator (

get__head_interface_list ()—>iface —>ipv4_address ,&(
get _head interface list()—>iface—>status),
1, 100, 255, 0, get_ head interface_list()—>iface—>
out__socket_v4);

add_locator_to_mapping (mapping,locator);

calculate balancing vectors (mapping,&((
lcl_mapping extended info *)mapping—>extended info)—>
outgoing__balancing_locators_vecs);

build__and_send__map_ register_msg (mapping) ;

3. After this, the EID (as included in the local DB) will be periodically registered
to the Map-Server (LISPmob function map_register(...))

This function has been slightly modified in order to not send every Map-
Register to the home Map-Server: the Map-Registers for foreign users will be
sent at the address contained in the related user structure (user_info->ms_address):

// Look for specific Map—Server (foreign wuser)
lispd_map_server_list_t *ms = vector_get_map_server(&USERS_INFO,
get__char_ from_ lisp__addr__t (mapping—>eid__prefix));

/* Send the map register x*/
send__udp_ ctrl packet (ms—>address ,LISP. CONTROL_ PORT,
LISP_ CONTROL_PORT, (void *)map_register_ pkt ,packet_len);

91

7 — LISP-ROAM implementation

7.3 Flow optimization

All the actions described above are considered to take place in the case of a foreign
user that connects to the network for the first time. We can say this is the worst-
case scenario, that is the one that introduces more latency due to the actions that
need to be executed.

7.3.1 Known users

Once a foreign user is authenticated, configured for the network, and updated in
the LISP Mapping System he is ready for communicating with other LISP sites.
His data are kept stored in memory inside a user_info structure organized in a
vector.

When this user disconnects - or changes network, or in general leaves the net-
work - and comes back after a period of inactivity he does not have to go through
the same steps as the first time. His data are still in memory, as long as LISProam
is running.

As depicted in figure 7.2 few steps are skipped (compared to figure 7.1).

This is a critical point for what concerns latency and packet loss. When the
mobile host is exchanging data with a correspondent node and performing an han-
dover at the time, packets gets dropped before the mobile host regains connection.
If the user is already known by the network this accidental loss is sensibly reduced.

The most important missing step is that it is not necessary to retrieve the
Map-Server’s address anymore: the Map-Register for updating the user’s location
is automatically sent after receiving a correct RADIUS Access-Accept.

Even the DHCP configuration part does not have to take place: indeed, DNS-
masq configuration file is cleaned only when LISProam process is shut down, there-
fore the static lease for the foreign user is still available.

92

7.3 — Flow optimization

Outgoing
RADIUS
Access-Request

Check if user
already in vector

LD

Yes

Incoming

RADIUS Store user->eid

Store user->ms_key

Access-Accept

Add /30 virtual interface ”

Add user->eid to Local DB
Send Map-Registers

If EID of Map-Register
belongs to a foreign
user

Send Map-Register to
home Map-Server

Yes

Send Map-Register to
user->ms_address
authenticated with
user->ms_key

Figure 7.2. LISP-ROAM flow - Foreign known user case

93

7 — LISP-ROAM implementation

7.3.2 Home users

In the case of home users some steps can be ignored, too. Since the users don’t
have to be hosted in the network, it is needless to know the address of the user’s
Map-Server and its key, because they will obviously be the same as the home Map-
Server. So there’s no more the need the retrieve the address the address of the
Map-Server through the Mapping System.

For what concerns the DHCP part, the static lease has always to be added (if
not already present). This means reloading DNSmasq, which can introduce latency.
Anyway, the configuration to add to the configuration file is just the static lease,
and no "tag" section since the user will belong to the "home" tag.

Also no /30 virtual interface will be created, since the user will be part of the
home EID-prefix (usually a /24), assigned to the WLAN interface of the xTR.

Since the home user’s address is part of the /24 home EID-prefix, his EID (/32)
does not have to be specifically added to the local DB. Also, it does not have to be
specifically registered in the Mapping System, since it will be reached as part of the
/24 EID-prefix. But the xTR does not know if the user was connected to another
network before, because it is not sending any Map-Request to the Map-Server (also
for optimizing the bandwidth usage). An idea for not introducing latency (as it
would be with a Map-Request) is sending a specific Map-Register for the /32 EID
of the incoming user, without adding the /32 EID to the local DB. In this way, the
specific Map-Register is sent only once the user arrives and then not anymore. So
if the user was connected to another network before, the Map-Server will directly
send a Map-Notify to the previous xTR that registered the /32 EID of the home
user (if there is one).

This does not happen if the home xTR registers just the /24 EID-prefix, since
it is wider than a /32 one, so the Map-Server will keep the old binding for the
home user.

All of the cases depicted are grouped in table 7.1, that shows which steps can
be skipped depending on the type of user: home or foreign, known or unknown.

Table 7.1. Steps performed based on type of user

Type of user

Unknown Known
Foreign All steps performed No Map-Server retrieval
No DHCP update
Home No Map-Server retrieval | No Map-Server retrieval
No virtual interface No virtual interface
No DHCP update

94

7.4 — Handover

7.3.3 Different devices

LISP-ROAM works with fixed EIDs. This creates a static and dynamically un-
changeable binding between the user and its EID, which introduces a big con-
straint. In a fairly realistic scenario a user uses his credentials to connect to the
same network with multiple devices, which is usually allowed (e.g. eduroam). This
is not possible in LISP-ROAM. A future development, with dynamic EIDs, has
already been proposed in the design part of this thesis, but it is not deployed in
this prototype.

So we are considering a user connecting with one device at a time, which will
be assigned the reserved EID.

In order to make this possible there is a little modification that needs to be
made, regarding the filling of the fields of the user structure: when the user con-
nects, and he is already known by the network, it is mandatory to check if the MAC
address is the same - that is, if the connection is requested by the same device. If
not (e.g. the user was connected with the PC and, after shutting down the PC, it
is connecting with his smartphone) the MAC of the user structure will be updated
with the new one, so all the previous info already stored in memory won’t get lost
and the user will be automatically recognized by the xTR.

This implies that the old static DHCP entry has to be removed, and a new one
will be added with the EID bound to the new MAC.

This feature is a constraint but can also lead to future studies aimed to guaran-
tee seamless mobility through devices. Being sure of having the same EID assigned
to different hosts can be exploited to support cross-device session continuity. For
example, a video call (TCP flow) started on the PC may be moved to the mobile
phone that will be given the same EID.

7.4 Handover

The core feature of the LISP-ROAM proposal, and also of this whole work, is being
able to maintain user connectivity on a host roaming across networks. In the last
paragraph, it has been clearly explained which are the actions (and the sub-cases)
when a user connects to a network. But it has not been shown what happens when
a user, connected to a network, changes his attaching point.

Like deeply explained in paragraph 5.1.5, what happens when the Map-Server
receives a Map-Register for a /32 EID-prefix that was already registered. What has
to be done is to intercept the Map-Notify spontaneously sent by the Map-Server,
check if it is about a moved host and then start the Correspondent Nodes update
part.

Like other messages, the Map-Notify can be intercepted through the function

95

7 — LISP-ROAM implementation

process_input_packet(...). The code representing how the handover is de-
tected is not reported. The mechanism is quite simple: we have to check if the
Map-Notify mappings contain an EID which is one of the users in the network and
the locators are different the local xXTR ones.

When this condition is verified:

// user corresponding to the moved EID
user__info *ui = vector_search_eid(&USERS_INFO, eid_str);

// we must "mark" the interface in order to send SMRs
lispd_iface_list_elt xiface_ list = get_ head interface list();
iface_list —>iface —>status_ changed = TRUE;

// send SMRs to all CNs
init _smr (NULL, NULL);

// remove moved__host’s_mapping from local DB
lisp__addr_t moved_eid;
get_lisp_addr_from_ char (ui—>eid , &moved_eid);
del mapping entry from db(moved eid, 32);

// we must add new moved__host_mapping to Map—Cache —> send a Map—
Request

lispd_mapping__elt *moved__host__mapping = (lispd_mapping_elt =)malloc(
sizeof (lispd_mapping_elt));

lisp__addr_t host_eid;

get_lisp_addr_from_char(eid str, &host_eid);

moved__host_ mapping—>eid__prefix = host_eid;
moved__host_ mapping—>eid__prefix_length = 32;
moved__host__mapping—>iid = —1;
moved__host__mapping—>locator__count = 0;

moved__host__mapping—>head__v4_locators_ list = NULL;
moved__host__mapping—>head__v6__locators__list = NULL;
int nonce;
build__and_send__map_ request_ msg (
moved__host__mapping,
home_ eid,
get_map_resolver (),

&nonce) ;

// Remove wvirtual WLAN

char command[100];

sprintf (command, "ifconfig %s:%d down", WLAN_INTERFACE, ui—>wlan_id);
system (command) ;

It’s obvious that this code refers to the case when a foreign user moves in
another network. Few steps are simplified in the case of home users (no virtual

96

7.4 — Handover

interface removal, no deletion from local DB).

When the correspondent node receives a Solicit-Map-Request, it automatically
sends a Map-Request, to update the binding. After this, the connections with the
moved host are normally restored and running through LISP.

97

98

Chapter 8

Test bed

The test bed deployed follows the one depicted for the prototype. Figure 8.1
represents in the detail the real architecture used. xXTR A and xTR B represents
one domain each (domain A and domain B, respectively). LISProam is running
on both the xTRs. The user will move back and forth in these two networks. xTR
C is not running LISProam, but normal lispmob (0.3.3), and has just one user in
his network, which will be used as correspondent node. Tests are made in order to
check if the connection between the mobile host and the correspondent node (which
does not move) is maintained after handover between network A and B. The mobile
host is "alice@domainb.com", which implies that domain B is considered to be the
home network in the test scenario, and domain A will be the foreign.

Like explained previously, we provide one RADIUS Server for every domain
and one LISP Map-Server/Map-Resolver shared between domains.

As can be seen in the figure, all the components are placed under the same
network (the public IP addresses are part of the same pool) which simplifies a little
the realistic scenario considered. In theory, having different domains should imply
also having different IP address blocks. We can say that the latency experimented
in this tests will be considered lower than the one that would actually be using two
physically distinguished domains.

The steps of the test are summarized like this:

1. User (alice@domainb.com) connects to the home Wi-Fi network (LISP-B)

2. User is assigned the fixed EID (10.1.2.121) and the home DHCP configuration
(/24 netmask)

3. User initializes a connection (on whichever transport protocol) with the cor-
respondent node (10.1.3.165)

99

8 — Test bed

RADIUS Server A LISP Map-Server RADIUS Server B
I Map-Rg§_qlver
84.88.81.49 ” by p 84.88.81.48
7 ~N
~
P RN A
- ~
w S
84.88.81.44
XTR Al XTR Bl 84.88.81.43
84.88.81.47
leR c y
alice@domainb.com I
10.1.2.121 E
Mobile Host
EID-prefix ‘ 10.1.3.165 AN EID-prefix
10.1.1.0/24 . | 10.1.2.0/24
Correspondent
Node
EID-prefix
10.1.3.024

Figure 8.1. Test bed architecture

4. At a certain point, the user decides to connect to the foreign Wi-Fi network
(LISP-A), obtaining a new DHCP configuration (/30 netmask, new router
address, ...)

5. After a short period of inactivity, the connection with the correspondent node
is resumed

8.1 Experimental results

In order to understand deeper what really happens in the case we are studying,
the output logs of LISProam are shown in this section. In particular, there are the
logs taken from xTR A, B and C.

100

8.1 — Experimental results

The case tested is user ’alice@domainb.com’ connecting to LISP-B (home net-
work) and then switching to LISP-A.

xTR B (LISP-B)
LISProam starting screen.

INFO: LISPmob (0.3.2): ’lispd’ started...

INFO:

3k 3k >k 3k ok >k ok ok ok >k ok ok

#% LISProam s

ok K K o oK K KKK K K

INFO: Waiting for connections on interface: wlan0

User’s authentication start.

DEBUG: LISProam: Outgoing RADIUS Access—Request packet
DEBUG: LISProam: Outgoing RADIUS packet —> User—Name: alice@domainb.

com

DEBUG: LISProam: Outgoing RADIUS packet —> Calling—Station—Id: 00:0D
:88:65:5A:5D

INFO: LISProam: !! Authentication started for user ’alice@domainb.
com’ !!

User’s authentication completed.

DEBUG: LISProam: Incoming RADIUS Access—Accept packet

DEBUG: LISProam: Incoming RADIUS packet —> Framed—IP—Address:
10.1.2.121

DEBUG: LISProam: Incoming RADIUS packet —> Reply—Message: xxx

DEBUG: LISProam: Incoming RADIUS packet —> User—Name: alice@domainb.
com

INFO: LISProam: !! Authentication completed for user ’alice@domainb.

)

com’ !!

DHCP update for new user.

INFO: LISProam: Adding DHCP entry for home user ’alice@domainb.com’
INFO: LISProam: Reloading DHCP Server

Nov 25 11:56:58 dnsmasq[20608]: started , version 2.62 cachesize 150
Nov 25 11:56:58 dnsmasq[20608]: compile time options: IPv6 GNU-getopt
no—DBus no—il8n no—IDN DHCP no—DHCPv6 no—Lua TFTP no—conntrack

Nov 25 11:56:58 dnsmasq—dhcp[20608]: DHCP, IP range 10.0.0.1 —
10.255.255.254, lease time 5m

Nov 25 11:56:58 dnsmasq[20608]: using local addresses only for domain
lan

Nov 25 11:56:58 dnsmasq[20608]: reading /tmp/resolv.conf.auto

Nov 25 11:56:58 dnsmasq[20608]: using nameserver 8.8.8.8#53

Nov 25 11:56:58 dnsmasq[20608]: using local addresses only for domain
lan

101

8 — Test bed

‘Nov 25 11:56:58 dnsmasq[20608]: read /etc/hosts — 1 addresses

User is a home user, so there’s no need to retrieve the Map-Server.

INFO: LISProam: Map—Server already known for user ’alice@domainb.com
> (home user)

—— User info ——

> username: alice@domainb .com
> eid: 10.1.2.121

S INAC: kkikkIkokIkokIkokDkok

> HOME user

—— end ——

User’s location update. Even if the user is booting up in his home network, his
/32 EID has to be registered once in the Mapping Sysem.

INFO: LISProam: Sending Map—Register for new EID (10.1.2.121)

DEBUG: Sent Map—Register message for 10.1.2.121/32 to Map Server
84.88.81.2

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Notify message

DEBUG: Map—Notify message confirms correct registration

DEBUG—2: Completed processing of LISP control message

DHCP dialogue (DNSmasq log).

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 available DHCP range:
10.0.0.1 — 10.255.255.254

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 DHCPDISCOVER (wlan0)
10.1.2.121 skok:skoskrskok:skokoskok: ko

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 tags: home, known,
wlan0

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 DHCPOFFER(wlan0)
10.1.2.1271 skkrskosrrskok:skokskok:kx

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 next server: 10.1.2.254

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 1 option:
53 message—type 2

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:
54 server—identifier 10.1.2.254

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:
51 lease—time 300

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:

58 T1 150
Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:
59 T2 262

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 7 option:
15 domain—name domainB

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:
6 dns—server 10.1.2.254

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:
28 broadcast 10.1.2.255

102

8.1 — Experimental results

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:
1 netmask 255.255.255.0

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 sent size: 4 option:
3 router 10.1.2.254

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 DHCPREQUEST(wlanO)
10.1.2.121 00:0d:88:65:5a:5d

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 tags: home, known,
wlan0

Nov 25 11:57:00 dnsmasq—dhcp[20608]: 751685703 DHCPACK(wlan0)

T1O.1.2. 121 sksk:skok:skok:skok:skok:kok

As the connection with correspondent node starts, a Map-Request is sent in
order to obtain correspondent node’s mapping and then redirect traffic on LISP.

DEBUG: No map cache retrieved for eid 10.1.3.165

DEBUG—2: Added map cache entry for EID: 10.1.3.165/32

DEBUG: Sent Map—Request packet for 10.1.3.165/32: Encap: Y, Probe: N,
SMR: N, SMR-inv: N

DEBUG—2: get_rloc_from__balancing_locator_vec: Source and destination
RLOCs have differnet afi

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Reply message

DEBUG—2: Activating map cache entry 10.1.3.165/32

DEBUG—2: add_locator_to_mapping: The locator 84.88.81.47 has been
added to the EID 10.1.3.165/32.

DEBUG: Balancing locator vector for 10.1.3.165/32:

DEBUG: IPv4 locators vector (1 locators): 84.88.81.47

DEBUG: IPv6 locators vector (0 locators):

DEBUG: IPv4 & IPv6 locators vector (0 locators):

Handover: User moves to LISP-A. Solicit-Map-Requests are sent (correspon-
dent node is notified).

DEBUG—2: Completed processing of LISP control message
INFO:
LISProam: !!! User ’alice@domainb.com’ moved to a new locator:
84.88.81.44 !'!!

DEBUG—2: EID prefix 10.1.2.121/32 inserted in the database

DEBUG—2: The EID 10.1.2.121/32 has been assigned to the RLOCs of the
interface br—wan

DEBUG—2: add_locator__to_mapping: The locator 84.88.81.43 has been
added to the EID 10.1.2.121/32.

DEBUG—2: The EID 10.1.2.121/32 has already been assigned to the RLOCs
of the interface br—wan

DEBUG: Balancing locator vector for 10.1.2.121/32:

DEBUG: IPv4 locators vector (1 locators): 84.88.81.43

DEBUG: IPv6 locators vector (0 locators):

DEBUG: IPv4 & IPv6 locators vector (0 locators):

DEBUG—2: *x% Init SMR notification %

DEBUG: Start SMR for local EID 10.1.2.0/24

DEBUG: Sent Map—Request packet for 10.1.3.165/32: Encap: N, Probe: N,
SMR: Y, SMR-inv: N

103

8 — Test bed

DEBUG: SMR’ing RLOC 84.88.81.47 from EID 10.1.3.165/32

DEBUG: Start SMR for local EID 10.1.2.121/32

DEBUG: Sent Map—Request packet for 10.1.3.165/32: Encap: N, Probe: N,
SMR: Y, SMR-inv: N

DEBUG: SMR’ ing RLOC 84.88.81.47 from EID 10.1.3.165/32

DEBUG—2: x*x Finish SMR notification %

DEBUG—2: Deleting EID entry 10.1.2.121/32

Handover: After sending SMRs, the xXTR sends a Map-Request to learn the
new user’s binding.

DEBUG: Sent Map—Request packet for 10.1.2.121/32: Encap: Y, Probe: N,
SMR: N, SMR-inv: N

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Notify message

DEBUG: Map—Notify message confirms correct registration

DEBUG—2: Completed processing of LISP control message

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Reply message

DEBUG—2: process_map_reply record: No map cache entry found for
10.1.2.121/32

DEBUG—2: Completed processing of LISP control message

xTR A (LISP-A)
Here are shown only the difference with the logs of xTR B.

After user authentication, a new virtual WLAN interface must be created, and
then new static DHCP entry.

INFO: LISProam: !! Authentication completed for user ’alice@domainb.
com’ !!

INFO: LISProam: Adding wlan configuration for user ’alice@Qdomainb.

com’ (kok otk skok koK koK Dk k)

INFO: LISProam: Added interface wlan0:6

INFO: LISProam: Adding DHCP entry for foreign user ’alice@domainb.

com’

INFO: LISProam: Reloading DHCP Server

Since the user is foreign, the Map-Server of this user needs to be found.

INFO: LISProam: Map—Server unknown for user ’alice@Qdomainb.com’.
Retrieving Map—Server.

INFO: LISProam: Requesting Map—Server for user ’alice@domainb.com’
(10.1.2.121)

104

8.1 — Experimental results

DEBUG: Sent Map—Request packet for 10.1.2.121/32: Encap: Y, Probe: N,
SMR: N, SMR-inv: N
INFO: LISProam: Map—Server address received for user ’alice@Qdomainb.

com’

—— User info —

> username: alice@domainb.com

> eid: 10.1.2.121

> mac: 00:0D:88:65:5A:5D

> FOREIGN user
> wlan id: 6
> MS address: 84.88.81.2
> MS key: (assigned)

The EID is added to the local DB, before sending the Map-Register to update
user’s location.

INFO: LISProam: Adding new user’s EID 10.1.2.121/32 to Local DB

DEBUG—2: EID prefix 10.1.2.121/32 inserted in the database

DEBUG—2: The EID 10.1.2.121/32 has been assigned to the RLOCs of the
interface ethl

DEBUG—2: add_locator_to_mapping: The locator 84.88.81.44 has been
added to the EID 10.1.2.121/32.

DEBUG—2: The EID 10.1.2.121/32 has already been assigned to the RLOCs
of the interface ethl

DEBUG: Balancing locator vector for 10.1.2.121/32:

DEBUG: IPv4 locators vector (1 locators): 84.88.81.44

DEBUG: IPv6 locators vector (0 locators):

When periodic Map-Registers are sent (for every EID of the local DB), the
EID are check in order to see if they correspond to a foreign user. In this case, the
Map-Register is sent to the foreign user’s Map-Server with the correct key (in our
case the Map-Server is always the same).

INFO: LISProam: Map—Server found for foreign user’s EID 10.1.2.121
(84.88.81.2)

DEBUG: Sent Map—Register message for 10.1.2.121/32 to Map Server
84.88.81.2

DEBUG—2: Completed processing of LISP control message

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Notify message

DEBUG: Map—Notify message confirms correct registration

DEBUG—-2: Completed processing of LISP control message

After the user moved in this network, the connection with the correspondent
node has to be resumed. So xTR A has to learn the correspondent node’s mapping,
sending a Map-Request.

105

8 — Test bed

DEBUG: No map cache retrieved for eid 10.1.3.165

DEBUG—2: Added map cache entry for EID: 10.1.3.165/32

DEBUG: Sent Map—Request packet for 10.1.3.165/32: Encap: Y, Probe: N,
SMR: N, SMR-inv: N

DEBUG—2: get_rloc_ from_ balancing_ locator_vec: Source and destination
RLOCs have differnet afi

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Reply message

DEBUG—2: Activating map cache entry 10.1.3.165/32

DEBUG—2: add_ locator_to_mapping: The locator 84.88.81.47 has been
added to the EID 10.1.3.165/32.

DEBUG: Balancing locator vector for 10.1.3.165/32:

DEBUG: IPv4 locators vector (1 locators): 84.88.81.47

DEBUG: IPv6 locators vector (0 locators):

DEBUG: IPv4 & IPv6 locators vector (0 locators):

When LISProam is terminated, the virtual WLAN created are removed.

DEBUG: Terminal interrupt. Cleaning up...
INFO: LISProam: Deleted interface wlan0:6

xTR C
xTR C looks for mapping of EID 10.1.2.121.

DEBUG: No map cache retrieved for eid 10.1.2.121

DEBUG—2: Added map cache entry for EID: 10.1.2.121/32

DEBUG: Sent Map-Request packet for 10.1.2.121/32 to 84.88.81.2: Encap:
Y, Probe: N, SMR: N, SMR-inv: N . Nonce: 0x3cbea9a3—0xafbff35b

DEBUG—2: get_rloc_ from_ balancing_locator_vec: Source and destination
RLOCs have differnet afi

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Reply message

DEBUG—2: process__map_reply: Nonce of the Map Reply is: 0x3c5ea9a3—0
xafbff35b

DEBUG—2: Activating map cache entry 10.1.2.121/32

DEBUG—2: add_locator_to_mapping: The locator 84.88.81.43 has been
added to the EID 10.1.2.121/32.

DEBUG: Balancing locator vector for 10.1.2.121/32:

DEBUG: IPv4 locators vector (1 locators): 84.88.81.43

DEBUG: IPv6 locators vector (0 locators):

DEBUG: IPv4 & IPv6 locators vector (0 locators):

DEBUG: The map cache entry 10.1.2.121/32 will expire in 10 minutes.

xTR C is notified of the mobile host’s move (through SMR) and updates its
location.

DEBUG—2: Completed processing of LISP control message
DEBUG—-2: Received a LISP control message
DEBUG: Received a LISP Map—Request message

106

8.2 — Wireshark captures

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Request message

DEBUG: Sent Map—Request packet for 10.1.2.121/32 to 84.88.81.2: Encap:
Y, Probe: N, SMR: N, SMR-inv: Y . Nonce: 0x7363b874—-0x74bfdf77

DEBUG—-2: Completed processing of LISP control message

DEBUG—2: Received a LISP control message

DEBUG: Received a LISP Map—Reply message

DEBUG—2: process_map_reply: Nonce of the Map Reply is: 0x7363b874—0
x74bfdf77

DEBUG—2: A map cache entry already exists for 10.1.2.121/32,
replacing locators list of this entry

DEBUG—2: add_locator_to_mapping: The locator 84.88.81.44 has been
added to the EID 10.1.2.121/32.

DEBUG: Balancing locator vector for 10.1.2.121/32:

DEBUG: IPv4 locators vector (1 locators): 84.88.81.44

DEBUG: IPv6 locators vector (0 locators):

DEBUG: IPv4 & IPv6 locators vector (0 locators):

DEBUG: The map cache entry 10.1.2.121/32 will expire in 10 minutes.

8.2 Wireshark captures

Aside from the behaviour and output of LISProam it is in the interest of everyone
to see the actual packets exchanged in the case depicted above, captured with
Wireshark.

In this case, the user (alice@domainb.com) connects to LISP-A, then moves to
LISP-B, then again to LISP-A. The first handover is to user’s home network. and
the second one is the return to the foreign network where the user is now known.

Booting up in foreign network

The user connects to LISP-A, then he gets authenticated. The RADIUS dialogue is
skipped, since it has been clarified in previous chapters. Since the user is foreign, an
Encapsulated Map-Request is sent to retrieve user’s Map-Server. Upon receiving
Map-Reply, the Map-Register for the user is sent to the learned Map-Server (figure
8.2).

Communication with correspondent node

Correspondent node (10.1.3.165) in xTR C network starts pinging 10.1.2.121 (figure
8.3). As aresult, xTR C automatically queries the Mapping System for user’s EID.
It can be seen that some Ping requests don’t get replied: this is because of the time
needed for retrieving user’s EID, and also for retrieving correspondent node’s EID
on xXTR A. These requests get lost. It has been experimented that the amount of
lost packets in this initial phase of the communication is around 2.

107

8 — Test bed

5 63.958198000 10.1.1.0 10.1.2.121 LIsP 134 Encapsulated Map-Request for 10.1.2.121/32

6 63.959829000 84.88.81.2 84.88.81.44 LIsP 82 Map-Reply for 10.1.2.0/24

7 63.961537000 84.88.81.44 84.88.81.2 LISP 106 Map-Register for 10.1.2.121/32

8 63.965259000 84.88.81.2 84.88.81.44 LISP 106 Map-Notify for 18.1.2.121/32

9 78.352492000 10.1.3.165 10.1.2.121 IcMP 134 Echo (ping) request 1id=0x5f56, seq=2/512, ttl=63
10 78. 404326000 10.1.2.121 10.1.3.165 IcMP 98 Echo (ping) reply id=0x5f56, seq=2/512, ttl=63
11 78.405236000 10.1.2.121 10.1.3.165 LISP 134 Encapsulated Map-Request for 10.1.3.165/32

12 78. 406931000 84.88.81.2 84.88.81.44 LISP 82 Map-Reply for 10.1.3.165/32

13 79.352498000 10.1.3.165 10.1.2.121 IcMP 134 Echo (ping) request 1id=0x5f56, seq=3/768, ttl=63
14 79. 403698000 10.1.2.121 10.1.3.165 IcMP 134 Echo (ping) reply 1d=0x5f56, seq=3/768, ttl=63
15 80.394996000 10.1.3.165 10.1.2.121 ICMP 134 Echo (ping) request 1d=0x5f56, seq=4/1024, ttl=63
16 80. 400503000 10.1.2.121 10.1.3.165 ICMP 134 Echo (ping) reply 1d=0x5f56, seq=4/1024, ttl=63

Figure 8.2. Capture - User connects to home network and starts pinging

7 73.448678000 10.1.3.165 10.1.2.121 LISP 134 Encapsulated Map-Request for 10.1.2.121/32

8 73.449326000 10.1.3.165 10.1.2.121 ICMP 98 Echo (ping) request id=8x5f56, seq=1/256, ttl=63

9 73.450515000 84.88.81.2 84.88.81.47 LISP 82 Map-Reply for 10.1.2.121/32
10 74.446959000 10.1.3.165 10.1.2.121 ICMP 134 Echo (ping) request 1d=0x5f56, seq=2/512, ttl=63
11 75.446603000 10.1.3.165 10.1.2.121 ICMP 134 Echo (ping) request 1d=0x5f56, seq=3/768, ttl=63
12 75.458597000 10.1.2.121 10.1.3.165 ICMP 134 Echo (ping) reply 1d=0x5f56, seq=3/768, ttl=63
13 76.449108000 10.1.3.165 10.1.2.121 ICMP 134 Echo (ping) request 1d=0x5f56, seq=4/1824, ttl=63
14 76.458166000 10.1.2.121 10.1.3.165 ICMP 134 Echo (ping) reply 1d=0x5f56, seq=4/1024, ttl=63

Figure 8.3. Capture - xXTR queries Mapping System to start ping

In previous figure 8.2 we can see that the xTR receives a ping request from
10.1.3.165. After this, the xTR automatically looks for that EID in the Mapping
System (Map-Request, Map-Reply). When the mapping is saved in the Map-Cache
the ping starts working correctly between 10.1.2.121 and 10.1.3.165.

Handover to home network

The user, previously connected to LISP-A, connects to his home network (LISP-
B). As seen in figure 8.4, there are no Map-Requests sent in order to learn the
Map-Server, since it’s the home one. Hence, the first thing that happens is that
user’s mapping gets updated with a Map-Register for his /32 EID. As shown, xTR
B receives few Ping request, to which can answer only after having queried the
Mapping System, looking for the correspondent node’s mapping.

6 85.223394000 84.88.81.43 84.88.81.2 LIsP 106 Map-Register for 10.1.2.121/32

7 86.226860000 84.88.81.2 84.88.81.43 LIsP 106 Map-Notify for 10.1.2.121/32

8 86.307915000 10.1.3.165 10.1.2.121 ICHP 134 Echo (ping) request id=0xSfS6, seq=15/3840, ttl=63
9 87.307513000 10.1.3.165 10.1.2.121 ICHP 134 Echo (ping) request id=0xSfS6, seq=16/4096, ttl=63
10 88.307534000 10.1.3.165 10.1.2.121 1CMP 134 Echo (ping) request id=0xSfS6, seq=17/4352, ttl=63
11 88.320131008 10.1.2.0 10.1.3.165 LIsP 134 Encapsulated Map-Request for 10.1.3.165/32

12 88.321953000 84.88.81.2 84.88.81.43 LIsP 82 Map-Reply for 18.1.3.165/32

13 89.315831000 10.1.2.121 10.1.3.165 ICHP 134 Echo (ping) reply id=0xSfSe, seg=18/4608, ttl=63
14 90.309381000 10.1.3.165 10.1.2.121 ICcHP 134 Echo (ping) request id=0xSfS6, seq=19/4864, ttl=63
15 60.313256000 10.1.2.121 10.1.3.165 1CMP 134 Echo (ping) reply id=0x5fS6, seq=19/4864, ttl=63
16 91.310594000 10.1.3.165 18.1.2.121 1cMP 134 Echo (ping) request 1d=0x5fS6, seq=20/5120, ttl=63

Figure 8.4. Capture - User connects to foreign network and ping is resumed

108

8.2 — Wireshark captures

At this point, xXTR A receives a Map-Notify for 10.1.2.121/32, which contains
different RLOCs (84.88.81.43). As explained, an SMR is sent to the correspondent
node saved in the Map-Cache (Map-Request for 10.1.3.165, with S bit set), and
the binding in the Map-Cache is updated (querying the Mapping System) (figure
8.5).

33 91.320103000 84.88.81.2 84.88.81.44 LISP 106 Map-Notify for 10.1.2.121/32

34 91.322661000 84.88.81.44 84.88.81.47 LISP 102 Map-Reguest for 10.1.3.165/32

35 91.324500000 84.88.81.44 84.88.81.47 LISP 102 Map-Reguest for 10.1.3.165/32

36 91.957501000 10.1.1.0 10.1.2.121 LISP 134 Encapsulated Map-Request for 10.1.2.121/32
37 91.959119000 84.88.81.2 84.88.81.44 LISP 82 Map-Reply for 10.1.2.121/32

Figure 8.5. Capture - User moves away from foreign network

xTR C receives a Solicit-Map-Request, that is a Map-Request with the S bit
set, containing the EID of the moved user in the "Map-Reply record" part of the
message. As a consequence, xXTR C updates the mapping with an Encapsulated
Map-Request for 10.1.2.121/32. We can already see that some packets are lost,
since the xTR is sending Ping requests that are not actually answered.

28 84. 458957000 10.1.3.165 16.1.2.121 1CMP 134 Echo (ping) request 1d=0x5f56, seq=12/3072, ttl=63
29 85. 460795000 10.1.3.165 16.1.2.121 1CMP 134 Echo (ping) request 1d=0x5f56, seq=13/3328, ttl=63
30 86. 458813080 10.1.3.165 10.1.2.121 1CMP 134 Echo (ping) request 1d=0x5f56, seq=14/3584, ttl=63
31 87.381609000 £4.88.81.44 84.88.81.47 LISP 102 Map-Request for 10.1.3.165/32

32 87.383727000 £4.88.81.44 84.88.81.47 LISP 102 Map-Request for 10.1.3.165/32

33 87.384B06000 10.1.3.165 10.1.2.121 LISP 102 Encapsulatad Map-Request for 10.1.2.121/32

34 87.386648000 84.88.81.2 84.688.81.47 LISP 82 Map-Reply for 10.1.2,121/32

35 87. 459261000 10.1.3.165 19.1.2.121 ICMP 134 Echo (ping) request 1d=0x5756, seg=15/3840, ttl=63
36 88. 458621000 10.1.3.165 10.1.2.121 ICMP 134 Echo (ping) request 1d=0x5f56, seq=16/4096, ttl=63
37 89, 458423000 10.1.3.165 10.1.2.121 ICMP 134 Echo (ping) request 1d=0x5f56, seq=17/4352, ttl=63
38 0. 458689000 10.1.3.165 10.1.2.121 ICMP 134 Echo (ping) request 1d=0x5f56, seq=18/4608, ttl=63
39 90. 467583000 10.1.2.121 10.1.3.165 ICMP 134 Echo (ping) reply 1d=0x5f56, seq=18/4608, ttl=63

Figure 8.6. Capture - xXTR queries Mapping System upon receiving SMR

Handover to (same) foreign network

After a while, we reconnect the user to LISP-A. Now the user is recognized by xTR
A, so it does not have to go through the steps depicted in figure 8.2. This time, the
only thing to do is to update the location of the user, with a Map-Register (figure
8.7). Further more, the mapping of the correspondent node in the Map-Cache
has not expired yet, so the ping is resumed instantly without having to query the
Mapping System.

The xTR B is notified of the move, therefore sends a SMR to xTR C, and
updates the Map-Cache. The interesting fact shown in figure 8.8 is that few Ping
requests are still received, even if the user moved. This is because the correspondent
node’s xXTR (xTR C) didn’t refresh the binding yet. Packets received during the
gap between user’s move and correspondent node’s update get irreparably lost.

109

8 — Test bed

38 116.957618000 84.88.81.44 84.88.81.2 LISP 106 Map-Register for 10.1.2.121/32

39 116.961003000 84.88.81.2 84.88.81.44 LISP 106 Map-Notify for 10.1.2.121/32

40 117.434501000 10.1.3.165 10.1.2.121 IcMP 134 Echo (ping) request 1d=0x5fS6, seq=41/10496, ttl=63
41 117.438829000 10.1.2.121 10.1.3.165 CMP 134 Echo (ping) reply id=0x5f56, seq=41/10496, ttl=63
42 118.436981000 10.1.3.165 18.1.2.121 ICcMP 134 Echo (ping) request 1d=6x5f56, seq=42/10752, ttl=63
43 118.438706000 10.1.2.121 10.1.3.165 IcMP 134 Echo (ping) reply 1d=0x5f56, seq=42/10752, ttl=63

Figure 8.7. Capture - User reconnects to foreign network

46 109.329691000 10.1.3.165 10.1.2.121 cMP 134 Echo (ping) request 1d=0x5fS6, seq=38/9728, ttl=63
47 110.329683000 10.1.3.165 10.1.2.121 P 134 Echo (ping) request id=0x5fS6, seq=39/9984, ttl=63
48 111.334639000 10.1.3.165 10.1.2.121 cMP 134 Echo (ping) request id=0x5fS6, seq=40/10240, ttl=63
49 111.867991000 84.88.81.2 84.88.81.43 LISP 106 Map-Notify for 10.1.2.121/32

S0 111.876275000 84.88.81.43 84.88.81.47 LISP 102 Map-Request for 10.1.3.165/32

51 111.877203000 84.88.81.43 84.88.81.47 LISP 102 Map-Request for 10.1.3.165/32

52 111.878518000 10.1.2.0 10.1.2.121 LISP 134 Encapsulated Map-Request for 10.1.2.121/32

53 111.880853000 84.88.81.2 24.88.81.43 LISP 82 Map-Reply for 10.1.2.121/32

S4 118.313230000 84.88.81.2 84.88.81.43 LISP 106 Map-Notify for 10.1.2.0/24

S5 121.355206000 10.1.3.165 10.1.2.121 cMP 96 Echo (ping) request 1d=0x5fS6, seq=35/8968, ttl=63

Figure 8.8. Capture - User moves away from foreign network

User’s point of view

The packet flows on the xTRs are useful to understand what happens on the
network side, and for verifying what is the actual cause of the packet loss, but it
is even more important to report how is the whole test case seen from the point of
view of the mobile host itself.

1. Figure 8.9 depicts the first connection to LISP-A

70 15.043974000 ©.0.0.0 255.255. 255,255 DHCP 342 DHCP Discover - Transaction ID Oxfgeofd74
71 15.055589000 10.1.2.122 10.1.2.121 DHCP 353 DHCP Of fer - Transaction ID Oxfgeofd74
72 15.055865000 ©.0.0.0 255.255.255. 255 DHCP 342 DHCP Request - Transaction ID OxfSeofd74
73 15.068951000 10.1.2.122 10.1.2.121 DHCP 365 DHCP ACK - Transaction ID Oxfgeofd74
82 19.059435000 10.1.3.185 10.1.2.121 ICMP 98 Echo (ping) request 1d=0x5f56, seg=2/512, ttl=62
83 19.059475000 10.1.2.121 10.1.3.165 IcMP 98 Echo (ping) reply 1d=0x5f56, seq=2/512, ttl=64
84 20.058795000 10.1.3.165 10.1.2.121 1CMP 98 Echo (ping) request 1d=0x5fS6, seq=3/768, ttl=62
85 20.058832000 10.1.2.121 10.1.3.165 ICMP 98 Echo (ping) reply 1d=0x5f56, seq=3/768, ttl=64

Figure 8.9. Capture - User connects to home network

2. Figure 8.10 depicts the connection to LISP-B

3. Figure 8.11 depicts the second connection to LISP-A.

It is clear that the packet flow is quite usual, and there are no trace of un-
common behaviour from this point of view. It is now really evident that the solu-
tion deployed is really network-based. The DHCP dialogues are standard. What
changes between the two is just the server’s IP address: which is xTR B’s EID
(10.1.2.254) when connecting to the home network (LISP-B) and it is the virtual

110

8.3 — Measuring packet loss

14@ 33.020797000 0.0.0.0 255.255.255.255 DHCP 342 DHCP Discover - Transaction 1D Ox1bdf477g
141 33.033735000 10.1.3.165 10.1.2.121 IcMp o8 Echo (ping) request 1d=0x5fS6, seq=15/3840, ttl=62
142 33.034350000 10.1.2.254 10.1.2.121 DHCP 343 DHCP Offer - Transaction ID Ox1bdf477s
143 33.034525000 0.0.0.0 255.255.255.255 DHCP 342 DHCP Request - Transaction 1D Ox1bdf477g
144 33.051185000 10.1.2.254 10.1.2.121 DHCP 355 DHCP ACK - Transaction ID Ox1lbdf477g
145 33.071109000 10.1.3.165 10.1.2.121 ICHP o8 Echo (ping) request id=0x5fS6, seq=16/4096, ttl=62
156 34.078709000 16.1.3.165 10.1.2.121 1CHMP 98 Echo (ping) request 1d=0x5f56, seq=17/4352, ttl=62
159 34.079970800 16.1.2.121 10.1.3.165 1CMP 98 Echo (ping) reply 1d=0x5fs6, seq=17/4352, ttl=564

Figure 8.10. Capture - User connects to foreign network

252 57. 360793000 0.0.0.0 255.255.255.255 DHCP 342 DHCP Request - Transaction ID 0x98df9773
253 57. 389608000 10.1.2.122 10.1.2.121 DHCP 365 DHCP ACK - Transaction ID 0xS8df9773
260 58. 103628000 10.1.3.165 10.1.2.121 IcMp 98 Echo (ping) request 1d=0x5f56, seq=41/10496, ttl=62
263 58. 104352000 10.1.2.121 10.1.3.165 ICMP 98 Echo (ping) reply 1d=0x5756, seq=41/104956, ttl=64
270 59.165993000 10.1.3.165 10.1.2.121 IcMP 98 Echo (ping) request 1d=0x5fS6, seq=42/10752, ttl=62
271 59.106034000 10.1.2.121 10.1.3.165 IcMP 98 Echo (ping) reply 1d=0x5f56, seq=42/10752, ttl=64

Figure 8.11. Capture - User reconnects to home network

one (10.1.2.122) added to xTR A in the case of connection to the foreign network
(LISP-A). It must be noticed that when reconnecting to LISP-A the DHCP Dis-
cover and Offer messages are skipped (figure 8.11), and this has to be taken in
account as another factor that speeds up connection between known network and
known users.

8.3 Measuring packet loss

We verified the data loss during the handover. What differentiates each handover
is how the user is treated in the network he attaches to. The time needed for hav-
ing the user correctly connected and able to communicate depends on the origin
of the user (home or foreign) and on the knowledge the xTR has (known or un-
known). Experimental tests brought us to the expected conclusion that the worst
case scenario is a foreign unknown user, which introduces a packet loss around 5
packets. If the foreign user is known this loss is already reduced to a mean value
of 2 (figure 8.12).

In the case of home users, there is just a slight difference if the user is known
or unknown, as seen in figure 8.13.

Further more, it is interesting to verify the amount of time actually needed for
the user to perform an handover. We compared the worst case (foreign unknown
user), and the best case (home known user) in figure 8.14. We can see that even in
the best case the latency introduced by the handover is up to more than 3 seconds.
Unfortunately it is difficult to lower this threshold, since it is average the time
needed for RADIUS authentication.

111

8 — Test bed

Packet loss during handover

Handover to Foreign Network, user unknown

I I M Loss frequency
3 4 5 6

Amount of lost packets

Packet loss during handover

Handover to Foreign Network, user known

M Loss frequency

2 3 4

Amount of lost packets

Figure 8.12. Packet loss - Foreign user sub-case

112

8.3 — Measuring packet loss

Packet loss during handover
Handover to Home Network, user unknown

20

15

M Lost packets

10

5 -

o N

1 2 3 4

Amount of lost packets

Packet loss during handover

Handover to Home Network, user known

30
25

20
M Lost packets
15

10

1 2 3 4

Amount of lost packets

Figure 8.13. Packet loss - Home user sub-case

113

8 — Test bed

Seconds

Seconds

Time needed to connect

Worst case: to Foreign network, user unknown

8
7
6
5
4
3
2
1
0
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15
Experiment number
Time needed to connect
Best case: to Home network, user known

45

4
3.5
25
1.5

1
0.5 I

0

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

Experiment number

Figure 8.14. Latency - Worst and best case comparison

114

m Time
—— Mean (Time)

m Time
—— Mean (Time)

Chapter 9

Future developments

The results shown in this work can definitely lead to further discussions and ideas
on how and where to deploy the solution in a real world scenario, aside from how
it can be further extended.

It has to be reminded that since the beginning of the research done in this work
the scenario considered was the most realistic as possible. Indeed, the solution
has been thought to be implemented by Internet Service Providers and the goal
imagined was to build a new mobility service. In this way we first assumed - then
proved - that an inter-domain mobility solution is feasible. We did our best to
keep the assumptions as generic as possible, never going too much in the details.
This has been chosen to not create any kind of constraints that could make the
solution possible to work only in a specific scenario. We did not add hazardous
assumptions to the scenario not even while implementing the prototype. This let
us consider a possible future extensions, including mobile operators.

3G /4G scenario is clearly the most interesting one, since today the Internet
is mostly populated by smart phones which continuously switch between Wi-Fi
networks (home or office) and mobile networks (when moving from a place to
another). In recent times a lot of effort has been put in researching interoperability
solutions between the two parties. Without going into the details of how a mobile
network is deployed, it has to be reminded that its nature is purely IP, so it is fair
to think about creating a way to let the two types of networks cooperate.

Further more, the increasingly need for the user to manage both Internet and
mobile connections led to the creation of solutions to support multiple IP flows on
a single device. Mobile networks support Mobile IP and Proxy Mobile IP, so a lot
of additional specifications to these two protocols has been added in recent times
(for example [4]). Other solutions that are gaining ground recently do not work at
IP level but for example at Level 4, like Multipath TCP [2], which has been lately
implemented in iOS 7.

115

9 — Future developments

LISP has given a contribute in this scenario, mostly with LISP-MN. Indeed,
installing LISP-MN on a mobile device lets it switch between Wi-Fi and 3G seam-
lessly, without dropping connections. Our solution achieved the same goal following
a network-based paradigm, considering "clean" hosts roaming into networks.

The point of view is completely different. Deploying a host-based solution allows
to directly manipulate the traffic in the device and, in the case of mobile devices,
the multiple flows that are generated (Wi-Fi and 3G). A network-based solution
implies that the other components (routers) have to manage these connections for
the client, and in the case of multiple flows is far more difficult.

Considering the architecture we deployed for our work, we can imagine how
it can be embedded in a mobile network. The idea is first to make the part of
the LISP infrastructure needed for our solution be accessible to mobile networks,
e.g. adding Map-Servers/Map-Resolvers to every mobile network provider. Apart
from LISP, we use few hardware and software components. Basically they can be
summed saying that we need a RADIUS Server and a particular DHCP Server
(which has to be embedded in the Edge Router), properly configured in every
network.

Mobile networks already use the RADIUS infrastructure. The mobile device
authenticates to the cell it is currently attached to using its SIM card. The mecha-
nism simply uses EAP, in particular EAP-SIM ([15]) and EAP-AKA ([14]). These
two EAP types use data extracted from the SIM card as credentials, differently
from the other types of EAP seen that use user credentials of certificates. In mo-
bile networks a Home Location Register (HLR) is used for gathering data of users
belonging to that domain, and it is queried by the RADIUS Server to obtain au-
thentication for users. Therefore, what has to be changed of the authentication
part is that we must synchronize user’s data (the one relative to our mobility solu-
tion) with the data of his SIM card (contained in the HLR). This means that the
user has to be recognized both through his credentials and his SIM card, and has
to be given the related data (EID, Map-Server key) properly.

It is not clear, at the time of writing, how an IP address is allocated for the
user in mobile networks, neither is clear if there is a standard procedure adopted
by providers. Still, we can assume that a mechanism DHCP-like is used in mobile
networks, mostly considering that solutions like MIP and PMIP are effectively
used. Therefore it can be fairly assumed that the DHCP Server (or whichever
similar component is used) needs to be configured like we explained in our solution.

Putting this parts together we should have an idea on how to obtain interop-
erability between Wi-Fi and 3G/4G networks, and also user mobility with session
continuity.

Another interesting development for this work (and the most natural one) would
be making the solution designed be implemented by Internet Service Providers.
Some considerations has to be made, considering this scenario. The solution de-
signed and implemented in this thesis operates in between the Edge layer and the

116

Access layer of the network. Hence, some modifications are required in these two
parts to make the solution adoptable by ISPs. First of all, it has to be clarified
how an ISP can actually implement the LISP infrastructure. One of the main ad-
vantages of LISP is that is deployable "day-one", which means it does not require
any modification to the Core layer of the network. All the effort has to be put in
modifying the behaviour of the Edge Routers.

What should happen is that ISPs adopt RLOCs for the Edge Router and use
EIDs for the users, which follows the idea of this work. This means that an ISP
has to reserve EID-prefixes for its users, just like it reserves public IP addresses
(RLOCs) for the routers. It is hazardous to think about switching to this paradigm
from a day to another, mostly because it would need address renumbering and part
of the functionality available today (NAT, most of all) will be lost. That’s why
in this thesis we always referred to the solution deployed as a new mobile service,
meaning a new infrastructure to be built beside the current one.

It is possible to go briefly in the details of how this could actually work. Today,
Internet connection is made accessible to users through Access Points (at home,
workplace, etc.) which use NAT most of time to mask the local network to the
outside.

NAT can not be considered for our solution, mainly because users’ EIDs are
fixed, unique and have a global value while an IP under NAT is just used for the
LAN and has a local scope. So what should be done is making the Edge Router an
actual xXTR, with an embedded DHCP Server which is used to give reserved EIDs
to users.

This modifications to an ISP can be done for creating a global mobility service.
Also establishing agreements with other ISPs, a user could effectively be able to do
Wi-Fi roaming without dropping connections. It has to be said that this scenario
can be considered realistic when thinking about deploying very wide networks, like
WiIiMAX] letting a user be able to literally move wherever remaining connected,
which can be considered possible in a near future.

Another idea is to decrease the scope considered for an actual scenario, and
imagine the solution implemented only in Access Routers instead of Edge Routers.
That is, deploying LISProam only in the boxes (Access Routers) while ignoring
what is behind, that is how we reach the Internet. This is actually possible, and
is indeed the case depicted for the prototype and the tests. Of course this will not
lead to a wide spread mobility service, but the range of the service will actually be
the area covered by the Access Routers’ Wi-Fi ranges. We can take eduroam as an
example of a network service distributed in quite considerably big area, e.g. uni-
versity campuses, and think about doing something similar with LISProam. This
idea would allow users moving into a certain space (campuses, buildings, different
offices) to maintain connections up and running, which is not what happens today.

The latter idea seems more feasible that the other ones, since it does not require
modifications to ISPs and represents a more practical use case.

117

9 — Future developments

All of the ideas exposed in this chapter seem valid for some scenarios and should
be taken in account for further studies and research. It has to be reminded that
other extensions regarding design or implementation have already been discussed
in the related parts of this thesis and are not reported in this chapter.

118

Chapter 10

Conclusions

The big constraint of the Internet scenario faced in this work led to a great chal-
lenge in finding possible ways to overcome this limit. The problems studied gave
the opportunity to deepen the research about which are the main concerns about
user mobility in the networks, and a considerable effort has been put in showing
the nature of these limits in the detail. A big part of the work focused on proposing
theoretical solutions to satisfy the goals proposed, keeping a high level of abstrac-
tion in order to allow future developments. In the end, a prototype has been
deployed for showing that the solution designed is actually feasible even without
making hazardous assumptions. Although the case considered for testing has quite
a small scope (for practical reasons) it is fair to assume that the solution designed
can really work in a wide spread scenario, even at ISP level. The core of the work,
indeed, has been kept as simple as possible, and all the network components used
were never heavily modified - at most just configured - making the solution easy
to implement and scale in every environment.

LISP can be considered a very powerful network protocol, which will lead to
further interesting developments in network research, and its application in the
mobility field should be taken in account also from a commercial point of view.
The case studied here is just a small use case, but it is enough to prove that
user mobility is indeed possible at IP level. We can imagine potentially using
the ideas shown in this work in different future scenarios. Having interoperability
between ISP networks and connections continuity we can imagine deploying wide
spread networks (e.g. city-wide). Or, on the other side, we can imagine using the
solution implemented for this work in smaller places (e.g. campuses, buildings),
guaranteeing a continuous connectivity taking advantage of the network attaching
points that are already present nowadays.

We can fairly say that the goal reached in this work can be considered an
important starting point for working on network-based user mobility with LISP.

119

120

Bibliography

1]
2]

[3]

[14]

[15]

(online) LISP Beta Network: lisp4.net.

M. Handley O. Bonaventure A. Ford, C. Raiciu. RFC 6824: TCP Extensions
for Multipath Operation with Multiple Addresses, 01 2013.

Albert Lopez Alberto Rodriguez Natal. (online) LISPmob Documentation:
lispmob.org.

CJ. Bernardos. draft-ietf-netext-pmipv6-flowmob-08: Proxy Mobile IPv6 Ez-
tensions to Support Flow Mobility. UC3M, 10 2013.

Cisco Systems. Locator ID Separation Protocol (LISP) VM Mobility Solution
- White Paper, 2011.

C. White D. Farinacci, D. Meyer. draft-meyer-lisp-mn-09: LISP Mobile Node.
Cisco Systems, 7 2013.

D. Meyer D Lewis D. Farinacci, V. Fuller. RFC 6836: Locator/ID Separation
Protocol Alternative Logical Topology (LISP+ALT). Cisco Systems, 01 2013.
J. Snijders D. Farinacci, D. Meyer. draft-farinacci-lisp-lcaf-10: LISP Canoni-
cal Address Format (LCAF). Cisco Systems, InTouch N.V., 7 2012.

D Lewis D. Farinacci V. Fuller, D. Meyer. RFC 6830: The Locator/ID Sepa-
ration Protocol (LISP). Cisco Systems, 01 2013.

J. Arkko D. Johnson, C. Perkins. RFC 3775: Mobility Support in IPv6. Rice
University, Nokia Research Center, Ericsson, 6 2004.

L. Zhang D. Meyer, L. Zhang. RFC 498/: Report from the IAB Workshop on
Routing and Addressing. Internet Architecture Board, 09 2007.

D. Farinacci V. Fuller. RFC 6833: Locator/ID Separation Protocol (LISP)
Map-Server Interface. Cisco Systems, 01 2013.

RADIUS Extensions Working Group. draft-ietf-radext-radsec-12: Transport
Layer Security (TLS) encryption for RADIUS. RESTENA, Cisco Systems,
08 2012.

J. Arkko H. Haverinen. RFC /187:Extensible Authentication Protocol Method
for 3rd Generation Authentication and Key Agreement (EAP-AKA). Nokia,
Ericsson, 01 2006.

J. Salowey H. Haverinen. RFC 4186: Fuxtensible Authentication Protocol

121

Bibliography

Method for Global System for Mobile Communications (GSM) Subscriber Iden-
tity Modules (EAP-SIM). Cisco Systems, Nokia, 01 2006.

Juergen Haas. (online) Linux / Unix Command: netlink.

Huachun Zhou Hongke Zhang, Feng Qiu. draft-zhang-lisp-hmm-01: A Hier-
archical Mobility Management in LISP network, 12 2012.

IEEE. 802.11F, IEEFE Trial-Use Recommended Practice for Multi- Vendor Ac-
cess Point Interoperability via an Inter-AccessPoint Protocol Across Distribu-
tion Systems Supporting IEEE 802.11TM Operation, 2006.

Zhenghu Gong Jie Hou, Yaping Liu. Support Mobility for Future Internet.
Conference of International Telecommunications Network Strategy and Plan-
ning Symposium, pages 1 — 6, 2010.

Simon Kelley. (online) DNSmasq documentation: thekelleys.org.uk.
Livingston Enterprises, Inc. RFC 2138: Remote Authentication Dial In User
Service (RADIUS), 04 1997.

Seok-Joo Koh Moneeb Gohar. A distributed mobility control scheme in LISP
networks. Wireless Networks.

OpenWRT. (online) OpenWRT Documentation: wiki.openwrt.org,.
Jonathan Leary Pejman Roshan. 802.11 Wireless LAN Fundamentals. Cisco
Press, December 2003.

C. Perkins. RF'C 2002: IP Mobility Support. IBM, 10 1996.

Chi Secci Cianfrani Gallard Pujolle Raad, Colombo. Achieving sub-second
downtimes in internet-wide virtual machine live migrations in LISP networks.
Integrated Network Management (IM 2013), 2013 IFIP/IEEE, pages 286 —
293, 2013.

Ignacio Soto, Carlos J. Bernardos, and MarAa Calderon. PMIPv6: A
Network-Based Localized Mobility Management Solution. The Internet Pro-
tocol Journal, 13(3):1-32, 2010.

William Stallings. Mobile IP. The Internet Protocol Journal, 4(2):2-14, 2001.
FreeRADIUS Development Team. FreeRADIUS website: freeradius.org.
TERENA. (online) eduroam Documentation,.

D. Meyer D Lewis A. Jain V. Ermagan, V. Fuller. draft-ietf-lisp-ddt-01: LISP
Delegated Database Tree. Cisco Systems, Juniper Networks, 04 2013.

122

	Summary
	Acknowledgements
	I Introduction and scenario overview
	Introduction
	Scenario
	Roaming
	TCP/IP constraints
	Objectives of this work

	State of the art
	Mobile IP
	Proxy Mobile IPv6

	Locator/ID Separation Protocol
	Protocol overview
	LISP components
	Message flow

	Mobility solutions
	LISP-MN
	LISP VM Mobility
	State of art

	II Proposal design
	Design choices
	Overview
	ISP topology
	Home and foreign networks
	DHCP behaviour

	Procedural steps
	Host identification
	Retrieving host's home Map-Server
	Local interface
	LISP update

	Design proposals
	LISP-MAC proposal
	Basic identification with MAC address
	Host's home xTR
	MAC Mapping System
	Action flow
	Previous xTR behaviour
	Drawbracks

	LISP-RADIUS proposal
	802.1X Authentication
	Access-points configuration
	Overview
	Joined architecture

	LISP-ROAM proposal
	Fixed EIDs
	Full trust

	III Implementation of a prototype
	Prototype design
	Components
	Deployment of the architecture
	RADIUS configuration
	DHCP configuration

	LISP-ROAM implementation
	RADIUS outgoing and incoming traffic
	RADIUS Access-Request
	RADIUS Access-Accept

	User's network configuration and location update
	Local interface and DHCP
	Retrieve user's Map-Server
	User's location update

	Flow optimization
	Known users
	Home users
	Different devices

	Handover

	Test bed
	Experimental results
	Wireshark captures
	Measuring packet loss

	Future developments
	Conclusions
	Bibliography

