

Master Thesis

Patterns in Domain Models
A Methodology and its Application in the

Healthcare Management Domain

Technische Universität Berlin

Institute of Database Systems and Information Management (DIMA)

In collaboration with

Universitat Politècnica de Catalunya

Faculty of Informatics of Barcelona (FIB)

Supervisors

Dr. Ralf-Detlef Kutsche

Dipl.-Inf. Henning Agt

Thesis by

Silvia Teresa Sandy-Martinez

Matr. Number: 341858

Head of Department

Prof. Dr. rer. nat. Volker Markl

Berlin, 22 July 2013

i

Declaration of authorship

Last name: Sandy-Martinez First name: Silvia Teresa

I declare that the work presented here is, to the best of my knowledge and belief, original and

the result of my own investigations, except as acknowledged, and has not been submitted, either

in part or whole, for a degree at this or any other University.

Formulations and ideas taken from other sources are cited as such. This work has not been

published.

Berlin, 22 July 2013 Silvia T. Sandy-Martinez

ii

Abstract

This master thesis was conceived in the context of domain analysis and reuse of domain

knowledge. The main objective of this project was to provide a methodology for building

domain patterns catalogs. With this motivation in mind, we developed a method for extracting

patterns from models that covered the healthcare management domain. The resulting artifact

enables software designers to obtain models of high quality through the reuse of abstracted

knowledge from the domain.

In the process of method development, a number of approaches from the literature were studied

and analyzed. The methodology proposed here was based on this study. In particular, the steps

of our methodology were adapted from one or more existing methodologies with our purposes

in mind. To make the developed methodology accessible, this work provides a step by step

explanation of the method as well as accompanying examples. Furthermore, a metamodel to

support the catalog elements representation and the classification schema was developed.

In order to validate the method presented here, we analyzed the healthcare management domain:

we discovered and gathered recurring patterns from domain models collected from a number of

sources ranging from research to industry. The resulting domain candidate patterns catalog is

provided as an output of this work as well as the Eclipse projects that implement the catalog.

iii

Abstract (in German)

Diese Masterarbeit wurde im Kontext von Domänenanalyse und der Wiederbenutzung von

Domänenwissen erarbeitet. Das vorrangige Ziel dieses Projektes war die Entwicklung einer

Vorgehensweise für die Ausarbeitung von Domain-Patterns Katalogen. Mit dieser Motivation

im Hinterkopf haben wir eine Methode zur Extraktion von Patterns aus Modellen des

Gesundheitsmanagementbereichs entwickelt.

Als Teil der Entwicklung der Methode wurden verschiedene Ansätze aus der Literatur

analysiert. Die hier vorgeschlagene Methode basiert auf dieser Analyse. Eine oder mehrere

existierende Methoden wurden, mit Hinblick auf das Ziel dieser Arbeit, angepasst und zu

Schritten unserer Vorgehensweise zusammengefasst. Diese Arbeit stellt eine schrittweise

Erklärung sowie unterstützende Beispiele zur Verfügung, um die Nutzung dieser Methode zu

erleichtern. Des Weiteren wurde ein Metamodell entwickelt, um die Repräsentation der

Elemente des Katalogs sowie das Klassifikationsschema zu unterstützen.

Um die hier vorgestellte Methode zu validieren, haben wir den Gesundheitsmanagementbereich

analysiert. Hierzu wurden wiederkehrende Patterns in Domänenmodellen entdeckt und

gesammelt. Die Modelle wurden aus einer Reihe von Quellen aus Wissenschaft und Industrie

zusammengetragen. Der resultierende Domain-Candidate-Patterns Katalog wird hier als

Ergebnis dieser Arbeit zusammen mit den Eclipse Projekten, die den Katalog implementieren,

bereitgestellt.

iv

Dedication

To my families, the ones that are far away and the ones that are closer, for being my

source of strength, courage and wisdom.

To my friends, for being my family and for not letting me abandon my dreams.

To my best half, for being my rock, for everything and more that he has given to me in

the past years.

To Valentina, my niece and my shortest best friend.

To the fear because without it, it wouldn’t be possible to learn to get up and go on.

v

Acknowledgments

A special thanks and dedication of this work to all the excellent people that I met

through my career that made a profound impact in the rest of my life:

To my thesis supervisors, Dr. Ralf-Detlef Kutsche and (soon to be Dr.) Henning Agt,

for their constant support, the advices and for making this experience such a nice

environment that we can share not only in the academic life.

To my coworkers from room EN702, for the funny moments, the lunches and for the

great family they turned up to become each of them in a singular way.

To the BIZWARE project for all the skills I earned by working there.

vi

Table of Contents

1 Introduction ... 1

1.1 Background ... 1

1.2 Motivation ... 2

1.3 Objectives .. 2

1.4 Structure of this work .. 3

2 Modeling Foundations... 4

2.1 Model .. 4

2.2 Modeling ... 6

2.3 The MOF Hierarchy .. 6

2.4 Model Driven Development .. 8

2.5 Domain .. 8

2.6 Prieto-Diaz’s Domain Analysis ... 9

2.7 Feature-Oriented Domain Analysis (FODA) .. 11

2.8 Domain Specific Languages .. 13

2.9 Eclipse EMF .. 15

3 Patterns Foundations ... 17

3.1 Pattern ... 17

3.2 Pattern collections ... 19

3.2.1 Pattern Language ... 19

3.2.2 Pattern Catalog .. 19

3.3 Patterns and Software Development ... 20

3.3.1 Background History .. 21

3.3.2 Patterns in software engineering ... 22

3.3.3 Patterns in domain engineering ... 23

3.4 Pattern catalogs used in this work ... 29

3.4.1 Data model Patterns conventions of thought ... 29

3.4.2 Analysis patterns – reusable object models ... 29

vii

3.4.3 The Data Model Resource Book ... 30

3.4.4 Object-Oriented modeling and design ... 31

3.4.5 Pattern Languages of Program Design .. 31

3.4.6 Other smaller pattern catalogs ... 31

3.5 Metadata standards .. 31

3.5.1 Health Level Seven, HL7 .. 32

3.5.2 Trial Item Manager, TIM .. 33

3.5.3 Street - Address Meta Data Standard .. 34

4 Methodology Framework .. 37

4.1 Building a catalog of Patterns ... 37

4.1.1 Definition and representation of a pattern ... 37

4.1.2 Patterns Classification ... 38

4.1.3 Method .. 40

4.2 Pattern Identification ... 43

4.2.1 Analysis Patterns ... 43

4.2.2 Patterns in Database Modeling .. 44

4.2.3 Patterns in object-oriented design ... 45

4.2.4 Composite patterns .. 46

4.2.5 Cross-Domain design .. 49

4.3 Classification of patterns ... 49

4.3.1 Criteria ... 50

4.3.2 Domain Patterns Classification Schema .. 52

4.4 Metamodel for a Domain Patterns Catalog ... 55

4.4.1 Elements representation .. 57

4.4.2 Pattern Representation ... 58

4.4.3 Classification Representation .. 60

4.4.4 Vocabulary .. 60

5 Implementation.. 61

5.1 Method .. 61

viii

5.2 Step 1 - Analysis of the Domain ... 63

5.2.1 Artifacts of Step 1 ... 63

5.2.2 Sources .. 63

5.2.3 Model Management ... 64

5.2.4 Results and conclusions .. 71

5.3 Step 2 - Extract elements present in the Models ... 73

5.3.1 Artifacts of Step 2 ... 73

5.3.2 What is an element? .. 73

5.3.3 Element Handling .. 74

5.3.4 Results and comments ... 76

5.4 Step 3 - Semantic analysis and refining the elements ... 79

5.4.1 Artifacts of Step 3 ... 79

5.4.2 Elements handling into Elements Union ... 80

5.4.3 Architecture of the Elements Union .. 82

5.4.4 Results and comments ... 82

5.5 Step 4 - Candidate patterns .. 84

5.5.1 Artifacts of Step 4 ... 84

5.5.2 Candidate patterns selection criteria .. 84

5.5.3 Candidate patterns in the patterns catalog ... 91

5.5.4 Results and Comments .. 95

5.6 Step 5 - Patterns catalog .. 98

5.6.1 Artifacts of Step 5 ... 98

5.6.2 Validation suggestions .. 98

5.6.3 Maintenance and expansion suggestions ... 99

6 Summary ... 100

6.1 Conclusions ... 100

6.2 Issues ... 101

6.3 Recommendations and Future Work ... 102

7 Literature ... 104

ix

Appendix A. Metamodel of the Domain Patterns Catalog ... 111

I. UML metamodel ... 111

II. Ecore metamodel ... 112

Appendix B. Elements Union ... 113

I. Entities ... 113

II. Relationships ... 135

Appendix C. Domain Candidate Patterns Catalog .. 149

I. Catalog Organization... 151

A. Catalog’s Classification Schema ... 151

B. Pattern template description .. 153

II. The Candidate Patterns .. 154

A. Domain-Specific Patterns .. 154

1. Healthcare Management Domain .. 154

a) Patterns for Early Design .. 154

b) Patterns for Intermediate Design ... 163

c) Patterns for Advanced Design ... 170

B. Cross-Domain Patterns .. 173

a) Patterns for Early Design .. 173

b) Patterns for Intermediate Design ... 174

x

Index of Figures

Illustration 1 - Original and Model criterion according to Stachowiak (1973) [5] 4

Illustration 2 Hospital Organization Domain Model – Patient, Hospital, Staff – Operations,

Administrative and Technical. [6] .. 5

Illustration 3: The MOF Hierarchy .. 7

Illustration 4 Context View of Domain Analysis [13] .. 9

Illustration 5 Top-down-Bottom-up Domain Analysis process [14] .. 10

Illustration 6: Participants in the domain analysis process [15] ... 12

Illustration 7: Relationship between DSL Components [18] .. 14

Illustration 8 Basic parts of a pattern [26] .. 18

Illustration 9 GoF Pattern Catalog [25] .. 20

Illustration 10: Software development based on domain engineering [34] ... 25

Illustration 11: Cross-domain reuse of problem solutions, analysis patterns [38] 27

Illustration 12: Method for analysis patterns abstraction [38] .. 28

Illustration 13: The elements and structure of the LOM conceptual data schema [53] 32

Illustration 14 HL7 Message Segments example .. 33

Illustration 15 Creatinine Trial Example [54] ... 34

Illustration 16 Basic Address Elements in the Street, Address Metadata Standard [56] 35

Illustration 17 Address information according to ANZLIC Metadata Profile [57] 36

Illustration 18 Wellington City Council's Address and contact info using ANZLIC Metadata 36

Illustration 19: Steps for the construction of a SRP Patterns Catalog [58] ... 42

Illustration 20: Semantic Analysis Pattern (SAPs) generation method [46] .. 43

Illustration 21: Example of EIP and RIP [60] ... 44

Illustration 22: Meta-model for EIP and RIP [60]... 45

Illustration 23: Design Clusters based on Keywords [61] ... 46

Illustration 24: Role diagram of the mediator pattern [62] ... 46

Illustration 25: Role diagram for the Observer Pattern [62] ... 47

Illustration 26: Role diagram of the Chain of Responsibility pattern [62] .. 47

Illustration 27: Role diagram of the Bureaucracy pattern [62] ... 47

Illustration 28: Prototype - Abstract Factory composite pattern [63] ... 48

Illustration 29: Cross-Domain Pattern example. Left: Solution to solve “Invoice” problem. Right:

Solution to “Balance end of year close” problem [38] .. 49

Ilustración 30: Metamodel for a Domain Patterns Catalog ... 56

Ilustración 31: Elements Representation ... 57

Illustration 32: Patterns Representation .. 59

Illustration 33: Classification Representation.. 60

Illustration 34: Vocabulary Representation ... 60

Illustration 35: Method for developing a Domain Patterns Catalog ... 62

Illustration 36: Naming Standard for Model Management .. 65

xi

Illustration 37: Storage Directory Standard for Model Management .. 65

Illustration 38: Example of Storage Directory Standard ... 65

Illustration 39: Model Management ER Diagram .. 67

Illustration 40: Steps to populate the Model Management Database .. 67

Illustration 41: Structure of the "Elements Listing" Artifact .. 74

Illustration 42: Example of data-types' heterogeneity .. 78

Illustration 43: Address according to D. Hay .. 81

Illustration 44: Example of entity design heterogeneity ... 83

Illustration 45: Clustering of attributes within an entity .. 86

Illustration 46: Contact Information Pattern Candidate .. 87

Illustration 47: Healthcare Party Pattern .. 88

Illustration 48: Test Pattern ... 89

Illustration 49: Patterns as views of a representation of the domain at a certain level of abstraction 90

Illustration 50: Sample Pattern in the Candidate Patterns Catalog .. 92

Illustration 51: The domain patterns catalog represented in the ecore metamodel 93

Illustration 52: Domain Patterns Catalog project ... 94

Illustration 53: Instantiation process 1 Left: insertion of the relevant terms. Right: instantiation of the

entities, attributes and associations relevant to form the Sample pattern. ... 95

Illustration 54: Instantiation process 2. Insertion of the Sample pattern ... 95

Illustration 55: Patient Allergy pattern .. 96

xii

Index of Tables

Table 1: Method for derivation of problem-context patterns by using general design patterns [39] 28

Table 2: Tabular Template corresponding to the Functional Patterns for ERP. [58] (translated) 38

Table 3: The ISO/IEC 9126-1 internal/external quality model [59] ... 39

Table 4 : A categorization of non-technical factors following the ISO/IEC 9126-1 style [59] 40

Table 5: GoF Classification Schema [25] .. 50

Table 6: Benefits of more specific and more generalized style of modeling [44] 54

Table 7: Domain Patterns Classification Schema .. 55

Table 8: Pattern Template .. 59

Table 9: Model Management Entities identification .. 66

Table 10: Model Management Relationships identification ... 66

Table 11: Store domain Hospital Management .. 68

Table 12: Store Sources (partial rows) .. 68

Table 13: Store Model (partial columns and partial rows) .. 70

Table 14: Results of Domain Analysis for the Hospital Management Domain .. 71

Table 15: Example of Entity element representation within the Element Listing document 75

Table 16: Example of Relationship element representation within the Element Listing document 76

Table 17: Results from the Element Extraction phase .. 77

Table 18: Example of Entity element representation within the Elements Union 82

Table 19: Example of Relationship element representation within the Elements Union 82

Table 20: Results from the Elements Refinement phase ... 83

Table 21: Relationships within the Patient Entity, from the Elements-Union .. 85

Table 22: Comparison between similar entities ... 87

Table 23: Candidate patterns classified ... 91

Table 24: Review of similar patterns found in other catalogs .. 97

xiii

Index of Candidate Patterns

Candidate Pattern 1: Patient’s Allergy .. 154

Candidate Pattern 2: Antecedent Types ... 155

Candidate Pattern 3: Clinical Antecedent .. 155

Candidate Pattern 4: Patient’s Habit ... 156

Candidate Pattern 5: Pediatric Environment Antecedent .. 156

Candidate Pattern 6: Familiar Antecedent .. 157

Candidate Pattern 7: Obstetric Antecedent .. 158

Candidate Pattern 8: Pediatric Birth Antecedent... 158

Candidate Pattern 9: Hospital Types ... 159

Candidate Pattern 10: Vital Signs .. 159

Candidate Pattern 11: Laboratory Employee .. 160

Candidate Pattern 12: Medical Facility ... 160

Candidate Pattern 13: Ultrasound Types ... 161

Candidate Pattern 14: Movement Disorder Physical Examination ... 161

Candidate Pattern 15: Perception Disorder Physical Examination .. 162

Candidate Pattern 16: Organ System Physical Examination ... 162

Candidate Pattern 17: Department Types .. 163

Candidate Pattern 18: Familiar History .. 163

Candidate Pattern 19: Healthcare Party ... 164

Candidate Pattern 20: Healthcare Role ... 165

Candidate Pattern 21: Observation States ... 165

Candidate Pattern 22: Observation ... 166

Candidate Pattern 23: Supporting Unit Types ... 167

Candidate Pattern 24: Sample ... 168

Candidate Pattern 25: Test .. 169

Candidate Pattern 26: Healthcare Physical Examination ... 170

Candidate Pattern 27: Hospital Organization ... 171

Candidate Pattern 28: Medical Record .. 172

Candidate Pattern 29: Address .. 173

Candidate Pattern 30: Quantity ... 173

Candidate Pattern 31: Contact Information... 174

Candidate Pattern 32: Party .. 174

Candidate Pattern 33: Employment ... 175

Candidate Pattern 34: Physical Observation ... 175

1

1 Introduction

This master thesis aims to propose a methodology for gathering domain knowledge in the form

of patterns. The method reflects the systematic process needed for the construction of a catalog

of domain patterns in the field of healthcare management systems.

The construction of this catalog is intended to help improve the design process of healthcare

management systems using patterns that facilitate reuse of knowledge within the domain.

In reaching this proposed procedure, we have analyzed the state of the art regarding the topic,

we also provide a pattern definition by means of a metamodel of domain patterns catalog, and

we made the extraction of patterns from a set of models of actual projects collected from several

sources described later.

1.1 Background

This work was conceived under the BIZWARE project [1], dedicated to the research of

Lifecycle Management for DSL development and to the development of knowledge-based

services to support domain-specific modeling [2], among others.

In the modeling domain, there is a large variety of ways to model and model file formats. This

heterogeneity along with the expertise gap of the modeler’s knowledge in such formats and/or

in the problem’s domain may lead to some quality and reuse problems. Also, reuse of resources

is a strategy for cost reduction and efficiency improvement within the software development

process.

Patterns have lately become a popular means for communicating knowledge about proven

solutions, and collections of patterns have been proposed for various fields. These collections

are patterns catalogues, where the patterns are organized according to a structure that facilitates

their identification for future application.

The most popular ways for making patterns available are physical books, digital media

containing SQL schemas, and websites.

In any case, the design of a pattern’s structure must be performed in order to make a consistent

patterns catalog. This purpose can be achieved by means of designing a meta-model.

A meta-model in software engineering specifies the language and processes from which to form

a model [3].

Domain-specific languages (DSLs) are languages tailored to describe a specific application

domain. They offer substantial gains in expressiveness and ease of use compared with general-

2

purpose programming/modeling languages as well as provide tools for easy manipulation of the

instances of the model in the domain of application.

1.2 Motivation

Due to the growing pressures for developing quality software in the shortest time, reuse

techniques have been introduced as a key concept of software design.

Reuse involves making use of abstracted knowledge from any artifact produced during software

design and construction. In our case we realize that models represent knowledge of a particular

domain that can be abstracted in the form of patterns in order to be reused.

Research on the topic of patterns has been made but no methodology has been proposed in order

to extract patterns from domain models such as the ones used as sources of knowledge in the

context of this work, those are UML diagrams, ER diagrams and SQL schemas.

1.3 Objectives

The goals of this thesis are:

 Literature review

Perform a review of the existent research in the area of modeling and domain analysis

and in the area of patterns and pattern catalogs; their methodologies for identification

and classification.

 Construction of the methodology

This work aims to develop a methodology for building a domain patterns catalog. The

approach should help getting quality conceptual data models based on reusable patterns.

 Construction of a metamodel for domain patterns catalog

Building a metamodel that is able to represent a domain patterns catalog that is general

enough that could represent patterns from a domain other than the one analyzed in this

thesis.

 Construction of a Domain Candidate Patterns catalog

In order to validate the method we aim to discover and gather recurring patterns from

domain models collected from sources of research and industry. The accuracy of these

patterns should be supported by patterns catalogs, whenever pertinent.

 Definition of the criteria for pattern classification

Extracted from several available domain model projects, such patterns should be

classified in order to be better identified and used.

3

1.4 Structure of this work

After this brief introduction we present the contents of our research divided in six chapters.

Chapter 2 contains the prior research in the area of modeling. This chapter includes concepts as

well as a summary of current research on the area.

Chapter 3 condenses the foundations about patterns and patterns catalogs that inspired our work

as well as guided our methodology and helped us support our findings.

Chapter 4 summarizes how the methods found in the literature and current research inspired us

and explains the adaptations we proposed to make over them in order to fulfill our purposes.

Chapter 5 introduces the implementation of the technique we developed: the method, the

artifacts and a step-by-step description of the issues and results of each of the steps of the

method.

Chapter 6 summarizes the conclusions, issues and aspiration for future work having this work as

a foundation.

Chapter 7 contains the literature references used in the implementation of this work.

In the appendix section we attach some additional documents as well as the candidate patterns

catalog produced in this work.

4

2 Modeling Foundations

This chapter introduces the terms that are important in the domain of the current work, most of

which belong to modeling in the area of software engineering and business process

management.

We start by describing the general concepts around modeling, domain as well as other relevant

terms in the context of this work.

2.1 Model

Model is a very widely used word in several disciplines to describe an abstract representation of

an aspect of a thing; May it be the structure, function, behavior, or others [4].

In order to distinguish models from other artifacts within the software development process,

Stachowiak [5] states that any candidate must fulfill three criteria for being considered a model.

These criteria are:

 Mapping criterion

There is an original object or phenomenon that is mapped to the model. This original object

or phenomenon is referred to as “the original”.

 Reduction criterion

Not all the properties of the original are mapped on to the model, but the model is somehow

reduced. On the other hand, the model must mirror at least some properties of the original.

 Pragmatic criterion

The model can replace the original for some purpose, i.e. the model is useful.

The representation of the resulting relations between an original and its associated model is

visualized in Illustration 1:

Illustration 1 - Original and Model criterion according to Stachowiak (1973) [5]

5

One should note that the mapping criterion does not imply the physical existence of the original;

it may be planned, suspected, or fictitious. For example, the cost estimation of a software

project is a speculative model of the future based on some known facts and calculations. Also, a

model may act as the original of another model. For instance, a program design is a model of

the code to be written, while the code is a model of the computation performed by the computer

when the code is executed.

The advantage of the reduction criterion is that it simplifies the original in a way that makes it

manageable and easier to understand. This is tightly coupled with the last criterion, the

pragmatic criterion, describing the applicability of the model being used instead of the original.

In the context of this work a model is a representation of the elements and the relationships

among these elements within the context of the healthcare management domain.

Some examples of models used are: UML diagrams, SQL Schema, .Net Code, Ontologies, and

others.

The most relevant models used in this work are information models, as the one seen in

Illustration 2. They describe how data is represented, either in a company, in an information

system or management system database. These characteristics make the model particularly

important to identify concepts and relationships within the domain.

Illustration 2 Hospital Organization Domain Model – Patient, Hospital,

Staff – Operations, Administrative and Technical. [6]

6

2.2 Modeling

Modeling is an important method of software engineering that gives the software specification

and improves the communication between counterparts involved in the software development

process; i.e.: between client and analyst, between software designer and developer, and so on

[7].

In model driven development, on the other hand, models are created to express the structure or

behavior of the software in an efficient and domain-specific way. The models are the base and

after subsequent model transformations on this base we get the executable code [8].

Some examples of models in this context are database schemes, process models, design

patterns, class diagrams, project plans, specifications and designs, metrics, and so on.

Consequently, modeling acts as a starting point for understanding the common basis for

developers and users. Modeling normally integrates domain experts, who are involved in a

business process, and their knowledge, into the software development.

2.3 The MOF Hierarchy

The Meta-Object Facility (MOF) is an Object Management Group (OMG) standard for model-

driven engineering, where models can be exported from one application, imported into another

transported across a network, stored in a repository and then retrieved, rendered into different

formats (including XMI, OMG's XML‐based standard format for model transmission and

storage), transformed, and used to generate application code [9].

The core concepts of this hierarchy are models, meta-models and meta-meta-model. Some

important characteristics [10] we should know about these concepts are:

 A model is an abstraction of a physical system (software, hardware or people) with a

certain purpose. In simple words models are representations of things that are (usually)

complex.

 A meta-model is a model that defines the language for expressing a model i.e., it

describes the structure of a model.

 A meta‐meta model is a model that defines the language for expressing a meta-model.

The relationship between a meta‐meta model and a meta-model is analogous to the

relationship between a meta-model and a model.

The MOF hierarchy is a four-layer modeling hierarchy defined by the OMG as: Layer 0:

Instance/Information, Layer 1: Model, Layer 2: Meta-model and Layer 3: Meta-meta-model.

For ease of designation, the layers are generally referred to as M0 to M3, being the level of

7

abstraction in ascent from bottom to top as seen in Illustration 3 and as explained subsequently

[9] [10].

Illustration 3: The MOF Hierarchy1

M0, Information Layer: provides an integral representation of reality. In connection with the

modeling of technical systems, it usually denotes the overall system or certain aspects of interest

at runtime. It has several names such as the Information Layer, Instance Layer, Original Layer

or Data Layer; mainly because that is what we find in this layer, real life entities. I.e. Measles,

the disease.

M1, Model Layer: The model layer abstracts different entities of the information layer M0. It

generalizes (classifies) thereby some aspects from reality to model. In other words, M0 layer

instantiates what is described by a model of M1 layer. I.e. the class Disease. Furthermore, a

model of the M1 layer forms an instance of a modeling language at level M2. Object orientated

software can for example be described by UML models.

M2, Metamodel Layer: this layer contains a metamodel, a model, that describes a specific

modeling language. It generally defines:

 The elements of which a model can be constructed.

1
 From http://protege.cim3.net/cgi-bin/wiki.pl?XMIBackendTechnicalBackground

2
From http://en.wikipedia.org/wiki/Model_Driven_Software_Development

3
 http://www.sei.cmu.edu/

8

 What characteristics these elements have.

 How these elements are related to each other.

The metamodel only describes a part of the modeling language, namely the abstract syntax of

the possible models, but not the used notation and the meaning (semantics) behind. A modeling

language, specified by a metamodel at the level M2, can be instantiated by models at level M1.

The metamodel itself forms another instance of a modeling language at the overlying level M3.

M3, meta-metamodel Layer: A meta-metamodel provides a description of the meta-models of

the M2 layer. It represents therefore a modeling language for the abstract syntax of modeling

languages. This modeling language can be instantiated by models of the M2 layer. The elements

of a UML metamodel are, for example, referred to as meta-classes, meta-attributes and meta-

associations.

2.4 Model Driven Development

The Model-driven development (MDD) approach to software development allows people from

different expertise levels to work together on a project. This has gained popularity in the past

years since it allows companies to maximize effective work on a project by improving

communication, minimizing the overhead necessary to produce working software and to

minimize the efforts of validation by end users [11].

MDD is also known as model-driven software development (MDSD) and a particular approach

is model-driven architecture (MDA)
2
.

The idea of model-driven software development is to work at a higher abstraction level than

conventional programming, by describing the software as a model [12]. Thereby most of the

development happens at the model level and a major part of the source code is generated

automatically [10]. The changes in the models can be carried out also when new functions that

are not present in the model are added to the implementation.

2.5 Domain

A domain refers to the context or universe of discourse being discussed.

In the context of software engineering it is most often understood as an application area, a field

for which software systems are developed.

In their book Prieto-Diaz and Arango [13] discuss that domain analysis is the major factor of

reusability in software development.

2
From http://en.wikipedia.org/wiki/Model_Driven_Software_Development

9

For them domain analysis is a process by which information used in development of software

systems is identified, captured and organized with the purpose of making it reusable when

creating new systems.

The model of domain analysis presented by their work is summarized in Illustration 4.

Illustration 4 Context View of Domain Analysis [13]

 This model describes domain analysis as an activity that takes multiple sources of input,

produces many different kinds of output, and is heavily parameterized. Raw domain knowledge

from any relevant source is taken as input. Participants in the process can be, among others,

domain experts and analysts. Outputs are (semi)formalized concepts, domain processes,

standards, architectures, among others.

The scope of a domain investigation can vary widely.

In the context of this work the domain is healthcare management. We take the perspective of

software modeling, database modeling, and business process management modeling coming

from projects of real life and research projects and we use their terminology to describe the

problem space.

2.6 Prieto-Diaz’s Domain Analysis

The process for domain analysis that Prieto-Diaz proposes in [14] can be seen in Illustration 5.

This approach proposes a framework to integrate domain analysis in a software development

10

process. In this framework the products of domain analysis are continually reviewed and refined

as new systems in the domain are built.

The bottom-up approach describes the identification of objects and operations. The top-down

approach is the systematic analysis to identify domain models; where high level designs and

requirements of current and new systems are analyzed for commonality.

Illustration 5 Top-down-Bottom-up Domain Analysis process [14]

 Prepare domain information: is the first top-down activity in the domain analysis. It

consists of the domain definition as an informal statement and the domain architecture

as a high-level description of architectural properties shared by applications in the

domain.

 Classify domain entities: a bottom-up analysis activity following domain information

preparation. At this point the domain analysis examines low-level requirements, source

code and documentation from existing systems. The resulting artifacts contain a

preliminary vocabulary (glossary of terms), domain taxonomy, the classification

structure and the standard descriptors. The result of this stage provides a framework to

verify the basic domain architecture when deriving domain models or for defining

reusable components.

 Define domain models: uses the products of the second activity in order to generate a

generic functional model. This model is expressed as layers of groups of functions. It

11

supports design and development of new systems through composition of reusable

components.

 Expand and verify models and classification: uses the resulting model from the previous

activity, which helps domain analysts select the proper structural components and

integrate them for standardizing designs during this activity.

In the context of this work we attempt to follow the approach proposed by Prieto-Diaz in order

to develop a catalog of domain model patterns having as input domain models. That is to say,

we intend to prepare the domain information by studying relevant sources, then we intend to

discover elements of the domain by doing a bottom-up analysis then we will derive domain

patterns in a top-down manner to finally classify and expand the patterns.

The steps and artifacts produced by the method will be described later in section 4

Implementation.

2.7 Feature-Oriented Domain Analysis (FODA)

FODA (Feature-oriented domain analysis) is a domain analysis method, which was introduced

by the Software engineering institute
3
 (SEI) in 1990. The FODA method supports the reuse at

architectural and functional levels meaning that feature oriented domain analysis produces

domain products representing common functionality and architecture of applications in a

domain [15].

The feature-oriented concept is based on identifying those features a user commonly expects in

applications in a domain.

The method gathers and represents information on software systems that share a common set of

capabilities and data. It aims to support the development and reuse of abstractions by gathering

a set of the following modeling concepts:

 Aggregation/decomposition; aggregation being the abstraction of a collection of units

and decomposition the refinement of an aggregation in the units that constitute it.

 Generalization/specialization; generalization being the abstraction of the commonalities

among similar units and specialization the refinement containing the details of the

individual units.

 Parameterization; is a component development technique in which components are

adapted in many different ways by substituting the values of parameters which are

embedded in the component.

3
 http://www.sei.cmu.edu/

http://www.sei.cmu.edu/

12

The FODA method applies the aggregation and generalization primitives to capture the

commonalities of the applications in the domain in terms of abstractions. Differences between

applications are captured in the refinements [15]. The parameters are defined to uniquely

specify the context for each specific refinement. The result of this approach is a domain product

consisting of a collection of abstractions and a series of refinements of each abstraction with

parameterization.

The steps identified for the method are:

1. Context analysis: involves defining the extent (or bounds) of a domain for analysis.

2. Domain modeling: deals with describing the problems within the domain that are

addressed by software.

3. Architecture modeling: consists in creating the software architecture(s) that

implements a solution to the problems in the domain.

The three participant groups identified in the domain analysis process are sources, producers

and consumers as seen in Illustration 6.

Illustration 6: Participants in the domain analysis process [15]

During the context analysis stage the domain analyst interacts with users and domain experts to

establish the bounds of the domain and establish a proper scope for the analysis that is likely to

yield exploitable domain products. The analyst also gathers sources of information for

performing the analysis.

The results of this phase provide the context of the domain in a context model. This requires

representing the primary inputs and outputs of software in the domain as well as identifying

other software interfaces.

13

Within the domain modeling task, the domain analyst uses information sources and the other

products of the context analysis to support the creation of a domain model by identifying the

commonalities and differences of the problems that are addressed by the applications.

This model is reviewed by the system user, the domain expert, and the requirements analyst.

The products of this phase describe the problems addressed by software in the domain. They

provide: features of software in the domain, standard vocabulary of domain experts,

documentation of the entities embodied in software as well as generic software requirements via

control flow, data flow, and other specification techniques.

The three major activities this phase consists of are: feature analysis, entity-relationship

modeling, and functional analysis.

During the architecture modeling task the domain analyst uses the domain model to produce the

architecture model, a software "solution" to the problems defined in the domain modeling

phase. This model should be reviewed by the domain expert, the requirements analyst and the

software engineer. The requirements analyst and software designer will use the products of a

domain analysis to establish the structure of implementations of software in the domain. The

representations generated provide developers with a set of architectural models for constructing

applications and mappings from the domain model to the architectures. These architectures can

also guide the development of libraries of reusable components.

2.8 Domain Specific Languages

Fowler [16] defines DSLs as:

“Domain-specific language (noun): a computer programming language of limited

expressiveness focused on a particular domain”.

There are four key elements that lead to this definition:

 Computer programming language: A DSL is used by humans to instruct a computer

to do something. Such as with any modern programming language, it is designed to

make the task easy for humans and still it should result in an executable computer

application.

 Language nature: A DSL is a programming language, and as such should have a sense

of fluency where the expressiveness comes not just from individual expressions but also

from the composition of them.

 Limited expressiveness: While a general-purpose programming language provides lots

of capabilities and abstraction levels a DSL is more limited but is easier to learn and

14

use. Also, a DSL, being designed to describe a rather specific domain, it only needs to

support a minimum of features needed in such domain.

 Domain focus: A limited language is only useful if it has a clear focus on a small

domain. The domain focus is what makes a limited language meaningful.

Domain-specific languages (DSLs) can be graphical and textual and they offer significant gains

in expressiveness and ease of use compared with general-purpose programming languages for a

specific problem domain [17].

Domain-specific modeling languages (DSML) have been of great importance in the

development of model-based languages. Every DSML is based on a domain-specific language

(DSL). In the literature the terms DSML and DSL are used undifferentiated, especially because

both are languages, which address problems in a particular domain and provide built-in

abstractions and notations for that domain; with the difference that one provides programing

abstractions and the other modeling abstractions.

Some authors argue that DSLs are languages in which the domain experts themselves could

develop programs, without the help of computer science specialists [17] [18].

Programing language and modeling language development has been studied in order to improve

quality and low cost for development. As part of the language development process we have to

analyze some components of it. Such components are the metamodel or abstract syntax, the

concrete syntax and the semantics as seen in Illustration 7.

Illustration 7: Relationship between DSL Components [18]

15

The metamodel corresponds to a representation of the model, taking the relevant concepts of it.

The abstract syntax therefore describes the grammar of the language by defining the allowed

elements and the relationships among them within the language [19].

The concrete syntax is the actual representation of the language. The semantics give the

meaning to the models developed with the DSL. They are mostly defined partly in the

metamodel and partly by means of constraints.

Language constraints are used to guarantee the correctness of models designed using the DSL.

This is important because not everything can be expressed and described by meta-models. For

instance, values which can be only in a certain interval or names that can be only in character

letters, etc.

Finally, we mention that there is no clear algorithm to create new languages but Kleppe [17]

gives an understandable seven steps recipe to do so:

1) Create an abstract syntax model, taking into account references to other languages.

2) Generate a concrete syntax model, and experiment with some example programs.

3) Revise the abstract syntax model and reiterate.

4) Create semantics for the language, constraints and rules.

5) Revise the abstract syntax model and reiterate, possibly changing the concrete syntax

model(s) as well.

6) Create the tools that support the language for user usage.

7) Devise a way to handle different versions of the language, because users might demand

changes whereas some others would prefer to stick to older versions.

2.9 Eclipse EMF

The Eclipse Modeling Framework Project [20] (EMF) is an Eclipse‐based modeling framework

that offers not only modeling features, but also code generation for building tools and other

applications based on a structured data model. EMF allows creating the meta-model via

different means, e.g. XMI, Java annotations, UML or a XML Schema.

After creation of the model, Eclipse EMF gives the chance to generate instances from the model

specification described in XMI, for instance. EMF provides tools and runtime support to

produce the Java classes for the model, a set of adapter classes that enable viewing and

command‐based editing of the model, and a basic editor [21].

The EMF project is part of the modeling project of Eclipse [22]. The modeling project is

organized logically into projects that provide the following capabilities: abstract syntax

16

development, concrete syntax development, model-to-model transformation, and model-to-text

transformation.

Within the abstract syntax development EMF’s Ecore model serves as the metamodel for

defining DSLs. We can further refine the structure and semantics of our DSL using Object

Constraint Language (OCL), in addition to providing support for transactions, query, and

validation.

Concrete syntax development; the abstract syntax for a DSL usually must be presented for use

by humans, so one or more concrete syntaxes must be developed. EMF provides XMI

serialization of model instances, but within Eclipse also GMF, that provides a graphical

concrete syntax, and also TMF, for a textual concrete syntax, are available.

Model Transformation; arises from the need to produce some output from the instance models

created by our DSL. The Modeling project provides both model-to-model and model-to-text

transformation components. There are several components within the modeling project of

Eclipse that support both types of transformations. One of the most popular ones is JET - Java

Emitter Templates- component that is used by EMF.

17

3 Patterns Foundations

In this chapter we introduce the theory of patterns, the evolution of them in several areas of

implementation as well as specific theory and research important for the development of our

work.

3.1 Pattern

The usage of the term ‘pattern’ in software design was inspired by the conception of

architectural patterns introduced by Alexander [23].

Patterns for the architectural design phase and the analysis phase, and a language for the

implementation phase were developed and presented in the book “A Pattern Language: Towns,

Buildings, Construction”.

The definition that Alexander gives declares as follows:

“Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in

such a way that you can use this solution over and over again, without ever

doing it the same way twice.” [23]

In the architecture domain patterns include ways of building things from big to small, in a way

that has succeeded and has persisted providing accuracy, practicality and beauty.

Martin Fowler defines in reference to analysis patterns:

‘A pattern is an idea that has been useful in one practical context and will be

probably useful in others’. [24]

In the software design domain the most representative book is the Design Patterns from Gamma

et. al.; in their book they define patterns as follows:

“Patterns describe recurring solutions to common problems in software

design” [25]

As a conclusion extracted from reviewing [26,23,27,25,24] we collect a set of characteristics

that a pattern must have.

18

A pattern must:

 Solve a problem; presenting a core solution.

 Have a context; it must describe where the solution can be used.

 Recur; it must be relevant in other situations.

 Teach: it must provide sufficient understanding to tailor the solution.

 Have a name; it must be referred to consistently.

To sum up, patterns are core solutions for recurring problems; they are tested and accepted by

experts in the domain, they are in everyday life and they should be referred to in a consistent

manner.

In the software developing domain we can say that patterns represent best practice, proven

solutions, and lessons learned that aid in evolving software engineering into a mature

engineering discipline. Also, patterns support reuse of software architecture and design; they

capture the static and dynamic structures and collaborations of successful solutions to problems

that arise when building applications in a particular domain.

As a result we present in Illustration 8 Basic parts of a pattern taken from Tesanovic [26].

Illustration 8 Basic parts of a pattern [26]

Every pattern has these three essential elements, which are: a context, a problem, and a solution.

The context describes a recurring set of situations in which the pattern can be applied. The

problem refers to a set of forces, often describing when to apply the pattern i.e., goals and

constraints, which occur in the context. The solution refers to a design form or a design rule that

can be applied to resolve the forces. Solution describes the elements that constitute a pattern,

relationships among these elements, as well as responsibilities and collaboration.

For the context of our work, we take the recommendations of Tesanovic, although, since the

context for us is defined by the domain being modeled, we consider problem, solution and

consequences as well as a name and the reference to related patterns as described in section

4.4.2 of this thesis.

19

3.2 Pattern collections

The different types of pattern collections have been identified in [28]: pattern language, and

pattern catalog. These pattern collections have different degrees of structure and interaction

described as follows.

3.2.1 Pattern Language

One commonly used definition of a pattern language can be found in [23].

“A pattern language defines a collection of patterns and the rules to

combine them into an architectural style”.

In the software design domain, for instance, pattern languages describe software frameworks or

families of related systems.

According to Coplein a slightly different definition of the pattern language can be found in [29].

“A pattern language is a structured collection of patterns that build on each

other to transform needs and constraints into an architecture”.

It is important to note that a pattern language is not a programming language. It might be found

as a prose document created with the purpose to guide and inform the designer. A pattern

language should include rules and guidelines to explain in a way how and when to apply the

patterns.

A pattern language could also be viewed both as a lexicon of patterns and a grammar.

3.2.2 Pattern Catalog

Pattern catalog is a collection of related patterns, where patterns are organized according to a

structure of broad categories that facilitates their identification and application, which usually

include some amount of cross referencing between patterns [28].

As a way of exemplification the pattern catalog introduced by Gamma et al. [25], the Gang of

Four or GoF, is discussed in more detail as follows.

20

Illustration 9 GoF Pattern Catalog [25]

They classified patterns based on two criteria, as shown in Illustration 9: purpose and scope.

Purpose reflects what a pattern does. Patterns can have either creational, structural, or

behavioral purpose. Creational patterns are concerned with the process of object creation.

Structural patterns deal with the composition of classes or objects. Behavioral patterns

characterize the ways in which classes or objects interact and distribute responsibility.

Scope specifies whether the pattern applies primarily on classes or on objects. Class patterns

deal with relationships between classes and their sub-classes. These relationships are established

through inheritance. Object patterns deal with object relationships. Patterns labeled as class

patterns are those that focus on class relationships.

In the context of this work, we intend to give the baseline for the creation of a patterns catalog,

the candidate patterns catalog for domain patterns.

3.3 Patterns and Software Development

As previously stated, a pattern corresponds to a solution of a problem in a context. It helps

create a common language to communicate ideas and experiences about the problem and its

solution.

Patterns have been used in various areas of software engineering, they were created in the first

place to resolve problems identified during the design of software packages [25].

We will now describe some background history of the emergence of patterns, then we expose

patterns in software engineering and finally we refer to patterns in domain engineering.

21

3.3.1 Background History

In this section we present some representative authors that influenced the concept of patterns to

lead to the use and understanding of them as we know it today.

3.3.1.1 Christopher Alexander

The term pattern was first used by the architect Christopher Alexander in 1979, who in his book

The Timeless Way of Building [30] proposed the use of patterns to increase the quality in

construction of buildings.

Alexander aimed to create structures that were good for people across history. He thought that

those structures have a positive influence on society by improving their comfort and quality of

life. To this end architects should constantly strive to construct products that conform and adapt

to the needs of all its inhabitants. To do this, he described his ideas for achieving these goals, as

means of architectural patterns [23].

3.3.1.2 Ward and Kent

Later, in 1987, Ward and Kent, consultants at Tektronix's Semiconductor Test Systems Group,

decided to use some of the ideas of Alexander, by letting representatives of the users finish the

design. This exercise resulted in the development of a small language of five patterns that

helped the novice designers take advantage of the Smalltalk's language strengths [31].

3.3.1.3 Peter Coad

During the 1990s Coad co-authored several books on the analysis, design, and programming of

object-oriented software. Coad became renowned through his work on Object-oriented analysis

(OOA) as well for his exploration of patterns [32].

3.3.1.4 Jim Coplien

Jim Coplien began compiling a catalog of idioms C++ used to teach objects in this language

within AT&T [29], getting his work to be a source for the later work of Gamma et al [25].

Latter he was a conference organizer and a coauthor of the proceedings of the first PLoP -

Pattern Languages of Programming - conference compiled in the book Pattern Languages of

Program Design [33].

3.3.1.5 Erich Gamma et al

The term Gang of Four refers to the authors Erich Gamma, Richard Helm, Ralph Johnson and

John Vlissides.

On the one hand, Erich Gamma worked on object-oriented design in ET++ as part of his PhD

thesis. He had realized that recurring design structures or patterns were important but the task of

capturing and communicating them was not yet tackled. On the other hand, the other authors

22

were also discovering the importance of reusing and transmitting the pieces of solutions used by

experts to aid software designers produce better designs.

They got to know each other around 1990 and realized they shared common ideas about the key

ideas behind writing reusable Object Oriented software. That is how they joined forces to write

Design Patterns, where they identified many patterns of software OO design [25].

3.3.1.6 Other authors

Other important authors
4
 for the development of Patterns and patterns theory are:

 Ralph Johnson

 Bruce Anderson

 Ron Casselman

 Desmond De Souza

 Norm Kerth

 Doug Lea

 Wolfgang Pree

 Frank Buschmann

These authors were contemporaneous of the Gang of Four and influenced patterns theories in

conferences and workshops such as OOPSLA
5
, Thornwood Workshop

6
 and PLoP

7
.

3.3.2 Patterns in software engineering

Patterns in software engineering became popular especially with the acceptance of the book

Design Patterns: Elements of Reusable Object-Oriented Software [25]. Their definition of

design patterns focuses on patterns of object-oriented design; however small changes can be

adjusted to describe software design patterns in general [25], given that:

 A design pattern names, summarizes, and identifies the key aspects of a common design

structure and that fact makes it especially useful for creating reusable object-oriented

design.

 The design pattern identifies the participating classes and instances, their roles and

collaborations, and the distribution of responsibilities.

 Each design pattern focuses on a particular problem of object-oriented design.

4
 Taken from http://c2.com/cgi/wiki?HistoryOfPatterns

5
 Object-Oriented Programming, Systems, Languages and Applications -

http://en.wikipedia.org/wiki/OOPSLA and http://splashcon.org/
6
 http://c2.com/cgi/wiki?ThornwoodWorkshop

7
 http://hillside.net/conferences/plop

23

 A pattern describes when it may or may not be applied when considering design

constraints, and the consequences and trade-offs of its use.

 Usually gives examples of its application. For example, code that illustrates its

application. Although design patterns describe object-oriented designs, they rely on

practical solutions that have been implemented in major object-oriented programming

languages.

There are many other types of software patterns, and design patterns, such as those used for

organizational modeling, project planning, requirements engineering, and software

configuration management, to name a few.

Currently, the most used patterns in the software community are the architectural patterns,

design patterns and, more recently, organizational patterns:

Architectural patterns: An architectural pattern expresses a structure organization or scheme of

software systems. Provides a set of predefined subsystems, specifies their responsibilities, and

includes rules and guidelines for organizing the relationships between them.

 Design Patterns: provides a possible refinement of subsystems or components of a

software system, and the relationship between them. Within them is commonly

described the structure of components that can solve a general recurring design problem

in a particular context.

 Organizational Patterns: These patterns can be placed at the most abstract level of

requirements engineering. An organizational pattern presents a proposal for modeling

an organization. These standards are based on the theory of organizations.

Quite often we talk about design patterns referring to any kind of pattern.

3.3.3 Patterns in domain engineering

Domain engineering is the process of reusing domain knowledge in the production of new

software systems. It has been studied, being it a key concept in topics such as software reuse. A

key idea in systematic software reuse is the “application domain”, which can be seen as a

software area that analyzes various software systems sharing commonalities [34].

Most organizations work in only a few domains and since several organizations might work in

similar domains, the construction of similar systems is a recurrent task. Of course there are

variations within systems because the construction must meet different customer needs.

24

The discipline states that rather than building each new system variant from scratch, significant

savings may be achieved by reusing portions of previous systems in the domain to build new

ones.

The process of identifying domains, bounding them, and discovering commonalities and

variability among the systems in the domain is called domain analysis (as seen in section 2.6

and section 2.7).

As part of domain engineering we should note two types of domains [34]:

 Vertical domains; they represent the system domain; they define the structure of the

application areas, e.g. domain of medical record systems, domain of portfolio

management systems, logistics, etc.

 Horizontal domains; they represent domains of parts of systems; they outline the

structure of the software architecture used, e.g. Databases, GUI, Process scheduling, …

Domain engineering encompasses three main process components: domain analysis, domain

design and domain implementation.

 Domain Analysis; the purpose of this process is defining a set of reusable requirements

for the systems in the domain

 Domain Design; whose purpose is establishing a common architecture for the systems

in the domain

 Domain Implementation; that consist in implementing the reusable assets, e.g. reusable

components, domain-specific languages, generators, and a reuse infrastructure.

With this in mind we can conclude that while conventional software engineering concentrates

on satisfying the requirements for a single system, domain engineering concentrates on

providing reusable solutions for families of systems.

However by using both disciplines designers can guarantee improvement on product quality by

merging them and developing software based on domain engineering as seen in Illustration 10.

25

Illustration 10: Software development based on domain engineering [34]

By collecting domain knowledge and customer needs, we start with the development of our

product. Requirements analysis is enriched by the domain model product of the domain

analysis, which might lead to the generation of new requirements. Meanwhile we design the

architectures within domain analysis and design also software configurations enhanced with it.

As result of the domain engineering we obtain components or other reusable designs that will

aid in the development partially or totally of the product. At any point during the application

engineering process, new requirements coming from the environment, customer or development

constraints may arise and expand the domain engineering process.

Domain engineering can be applied to a variety of problems, such as development of domain-

specific frameworks, component libraries, domain-specific languages, and generators. Whereas

the main resulting products are components – or reusable pieces of software-, they are not the

only product of domain engineering. Some examples of such products include reusable

requirements, analysis and design models, architectures, patterns, generators, domain-specific

languages, frameworks, etc.

As we have previously stated, the purpose of domain design is to develop a “domain

architecture” for the systems in the domain. It has been proven that certain recurring

arrangements of elements have appeared and have been particularly useful in many designs,

these arrangements are architectural patterns.

26

Each architectural pattern aims at satisfying a different set of user requirements as explained by

Buschmann et al. [28]. He states that architectural patterns help us specify the fundamental

structure of an application. Every development activity that follows is governed by this

structure.

He describes some architectural and design patterns and their categorization, as well as the

idioms introduced by those patterns. Finally, he also discusses that patterns do not exist in

isolation, but that there are many interdependencies between them. Therefore he proposes some

ideas to reflect the relationships namely pattern systems. These systems describe how the

patterns are connected and how they complement each other [35].

He states there are two fundamental ways of integrating patterns:

 Refinement: One pattern refines the structure and behavior of another pattern to address

a specific sub-problem or implementation detail.

 Combination: Two or more patterns arranged to form a larger structure that addresses a

more complex problem.

Also, he discovered two main relationships regarding choice:

 Alternatives: Some patterns describe alternatives to one another. They address the same

or a similar problem, but each pattern considers a slightly different set of forces. Thus,

the patterns provide different solutions and have different consequences.

 Cooperation: Some patterns nicely complement one another, mutually reinforcing their

structural and behavioral properties.

A pattern system therefore supports the effective use of patterns in software development.

Rumbaugh et al. [36] identify domain classes by analyzing the problem’s domain, namely the

problem statement, and the context, namely the application domain. They analyze the three

upfront activities within object oriented development and design, to be precise, analysis, design

and implementation. They state that during analysis, a model of the application domain is

constructed without regard of eventual implementation. Later, during design, solution-domain

constructs are added to the model. Finally, at implementation, both application-domain and

solution domain constructs are made.

Fraser [37] analyses the separate approaches of domain analysis and pattern analysis. He takes a

similar approach to the one in this project, meaning, the process of identifying and evaluating

patterns of numerous solution variants and invariants is based on the induction through

27

exploration of solution instances, and he recognizes the importance of having experienced

domain experts.

He concludes that the approach of performing in parallel but in a disjoint manner both patterns

analysis and domain analysis provide an effective mechanism to develop context and domain

models which help achieve reusable and highly functional designs.

He also supports the idea that the techniques of FODA would facilitate the use of existing

design patterns, and would accelerate the discovery and evaluation of new design patterns,

leading to an approach of “pattern-by-intent”.

Fülleborn and Heisel [38] presented some methods to support cross-domain reuse of analysis

patterns. With the help of a case study, from the business domain, they illustrate their method.

They discover analysis patterns in analysis models that not only reflect the knowledge of the

domain, but also can be applied to other domains.

In Illustration 11 domain A is the solution-seeking domain and within it there is no solution for

requirement A1. However in domain B, a solution exists for the requirement B2 that is also

suitable to fulfill the requirement A1 of domain A. The challenge is to make this solution

available for A1 in despite the different vocabulary.

Illustration 11: Cross-domain reuse of problem solutions, analysis patterns [38]

Their method suggests first describing and modeling the domain-specific problems and their

solutions. They suggest going through the problem statement or requirements document

sentence by sentence and collecting sentences, classes identified and problem or context in an

aligned manner. He proceeds to model each problem using UML class diagrams, and then he

refines the model by abstracting in a way that it does not contain a problem statement anymore,

only the solution for its domain. In order to create the analysis patterns he abstracts from the

solutions for specific domains into a generalized model as seen in Illustration 12.

28

Illustration 12: Method for analysis patterns abstraction [38]

In a later paper and in collaboration with the technical university of Ilmenau, Fülleborn, Meffert

and Heisel [39] propose a method for selecting and applying general design patterns, in

particular they study the Gamma design patterns [25]. Also a key idea within the method is that

designers should complement the patterns with the knowledge of the problems they solved in

the context.

Table 1: Method for derivation of problem-context patterns by using general design patterns [39]

The method as seen in Table 1 takes as input domain-specific application examples an after

some analysis annotates motives of the problem which is the result of steps 1 and 2. Later

happens the application of design patterns and the respective annotation of the motives for the

solution. As part of the complementation task of the designer making use of these patterns, he

29

should create a UML model of a general- cross-domain pattern plus the motives stated earlier.

Later, the designer should also perform inverse design transformations in order to obtain the

problem-context pattern that fits to the chosen design pattern.

To summarize, the author presents two methods to discover domain patterns to improve reuse of

domain-specific knowledge at an abstract level.

In his work Tepandi et al [40] explore domain models and domain analysis methodologies

applied to projects of real life. The work is developed within the framework of Archetypes

Based Development and the domain of business. Their method bases on the use of archetypes

and archetypes patterns to development models to finally develop applications. They discuss

the importance to look for ways to minimize (better to completely avoid) changes in the domain

logic and in the data source layers as these changes are risky and time consuming. They proved

with a case study that the use of patterns improved the possibilities to fulfill user requirements

only by making changes in the presentation or in the communication layers. As an aspiration for

future work they propose that these changes could be made by end users or even at run-time.

For the purpose of this work we mention the authors above as a way of exemplification of the

vast study of patterns in domain engineering; it is important to note that the literature is not

limited to only them.

Not only they, but also other authors will be presented in other topics, such as representation of

patterns, classification of patterns and methods for building catalogs.

3.4 Pattern catalogs used in this work

In this section we describe the main pattern catalogs that we used in order to discover our

methodology, as well as the goals of our study.

3.4.1 Data model Patterns conventions of thought

In the book Data Model Patterns conventions of thought, Hay [41] implements a catalog for the

domain “enterprise” that he extracted from his years of experience in industry data modeling.

He argues that a resulting system using his patterns would produce a robust and flexible design.

It is important to note that the models of the book are expected to be produced during strategic

planning and requirements analysis phases of application development. Moreover, he uses a

relational approach to present the patterns proposed.

3.4.2 Analysis patterns – reusable object models

In his book Analysis Patterns, Fowler [24] emphasizes in the boundary between analysis and

design, saying that at analysis level the models produced are a reflection of our understanding of

30

the problem as well as “human artifacts”, whereas at design level it should reflect also the

constraints and advantages of the solution proposed.

He also argues that in order to build effective models the domain experts should be involved in

the process.

The patterns found in the book are groups of concepts that represent a common construction

within the business modeling stage. Some of them are relevant to only one domain, whereas

others can be abstracted to many domains. He also proposes supporting patterns that can be

used alone, but the main reason he gives for presenting them is that they describe how to apply

the analysis patterns in a real design.

3.4.3 The Data Model Resource Book

In the pattern catalogs of Silverston, namely “The data model resource book” volumes 1 to 3 we

found a great amount of patterns in the several domains, general as well as specific for the

healthcare domain.

We consider Volume 1 [42] since it includes specific patterns for the domains of products

management, shipments, accounting and budgeting, as well as universal patterns for all

enterprises.

Volume 2 [43], adds to the universal models from Volume 1, and shows industry-specific data

constructs.

The scope of domains studied in this book is in the range of manufacturing,

telecommunications, healthcare, insurance, financial services, travel, and eCommerce.

Volume 3 [44] on the other hand, focuses on the fundamental, underlying patterns that affect

over 50 percent of most data modeling designs
8
. The author argues that the patterns of this book

can be used to considerably reduce modeling time and cost, especially of designs where the

designer is novice in the domain. They can be considered as standards and guidelines to increase

data model consistency and quality.

We use these books to evaluate our source models as well as our pattern designs. The structure

of Vol 3 is particularly interesting for us, since he provides for each pattern various alternatives

ranging from very specific to very generalized ways of modeling.

8
 http://eu.wiley.com/WileyCDA/Section/id-352027.html

31

3.4.4 Object-Oriented modeling and design

This book of Rumbaugh [36] promotes a better understanding of requirements, cleaner designs

and more maintainable systems. It emphasizes that object-oriented technology is more than just

a way of programming by applying techniques to the entire software development cycle.

The book contains case studies of industrial object-oriented applications developed by the

authors, as well as examples and exercises that we use as patterns to our purpose.

3.4.5 Pattern Languages of Program Design

We use two volumes of the book Pattern Languages of Program Design. Volume 1 [33]

summarizes the first conference on Pattern Languages of Program Design (PLoP) and Volume 2

[45] corresponding to the second conference of 1996. The conference represents a turning-point

event that gave a public voice to the software design pattern movement.

These books comprise the work of several software professionals from around the world

working together to capture and refine software experience that exemplified "good design."

By capturing these expert practices as problem-solution pairs supported with a discussion of the

forces that shape alternative solution choices, and rationales that clarify the architects' intents,

these patterns convey the essence to guarantee good software designs.

3.4.6 Other smaller pattern catalogs

In this category we mention other smaller pattern catalogs that we found as part of the current

advances and studies in the area of patterns.

 Semantic Analysis Patterns [46]

 Analysis patterns for Patient Treatment Records [47]

 The SOAP Pattern for Medical Charts [48]

 A Pattern Language for Business Resource Management [49]

 A Confederation of Patterns for Resource Management [50]

 Service Provider: A Domain Pattern and its Business Framework Implementation [51]

3.5 Metadata standards

Metadata is often defined as “data about data” or as the Oxford English Dictionary [52] defines

it: “A set of data that describes and gives information about other data”.

The purpose of metadata is “to facilitate search, evaluation, acquisition, and use” of resources

[53]. Moreover, in the case of educational resources, the purpose is also “to facilitate the sharing

and exchange of learning objects, by enabling the development of catalogs and inventories

32

while taking into account the diversity of cultural and lingual contexts in which the learning

objects and their metadata will be exploited” [53].

Illustration 13: The elements and structure of the LOM conceptual data schema [53]

Illustration 13 presents a graphical illustration of the elements in the data schema, which shows

how the elements are divided into nine top level categories: General, Life Cycle, Meta-

Metadata, Technical, Educational, Rights, Relation, Annotation, and Classification. Each of

these branches comprises several elements, some of which are leaves; others are sub-branches

which lead to leaves.

In the context of healthcare Löbe et. al and HL7 International have developed metadata

standards for specifying metadata items in clinical research and life sciences [54] and for

electronic health information [55] respectively.

3.5.1 Health Level Seven, HL7

Health Level Seven International (HL7) is a non-profit organization involved in the

development of international healthcare informatics interoperability standards (e.g., HL7 v2.x,

v3.0, HL7 RIM).

HL7 and its members provide a framework (and related standards) for the exchange, integration,

sharing, and retrieval of electronic health information. It aims to enable the electronic

communication in healthcare facilities (especially in hospitals).

33

The 2.x versions of the standards, which support clinical practice and the management, delivery,

and evaluation of health services, are the most commonly used in the world.

As an example, we take the "Abstract Message Definition". We set the segments of a message

to transmit the record of a patient; the segments themselves with their fields are also described.

Putting them together correctly, a message "A01-recording of a patient" may consist of the

following segments, among others: MSH, EVN, PID, NK1, PV1, etc. The meaning of the

segments as well as the separation terms may be found in [55].

Illustration 14 HL7 Message Segments example9

In the complete example we find the segments of the message separated by the “|” character.

The red comments are the descriptions of the fields’ names and the contents expected to appear

in the positions.

3.5.2 Trial Item Manager, TIM

Presented in the paper of Löbe et. al [54], the vocabulary contains all statements about items and

other components of a trial. Their work was based on the research of the Cancer Bioinformatics

Infrastructure Objects (caBIO), the Gene Expression Data Portal (GEDP), the MAGE database,

the Cancers Models Database (caMOD), the Cancer Image database (caIMAGE), the Cancer

Molecular Analysis Project (CMAP) and the Cancer Genome Anatomy Project (CGAP).

Currently, the item repository contains 5 pre-existing clinical trials with about 2,500 genuine

items from domains like oncology, cardiology, and infectious diseases.

9
 Example taken from the Health Level 7 Germany’s Site: http://www.hl7.de/bilddaten/pidsegment.gif

34

Illustration 15 Creatinine Trial Example [54]

As a way of illustration we include a screenshot of the software application showing the applied

metadata standard. We find in Illustration 15: the right side corresponds to the search for items

labeled “creatinine” using a type (trial item) and a characteristic (measuring unit) restriction. In

the left side we find a detailed view of the first item of the result set including characteristics

and subcomponents as part of the metadata exemplified.

3.5.3 Street - Address Meta Data Standard

Street addresses are the location identifiers most widely used by state and local government and

the public. Street addresses are critical information for administrative, research, marketing,

mapping, GIS, routing and navigation, and many other purposes.

In the context of this work we consider important to analyze metadata standards referring to

addresses and make a comparison of the common terms within geographical regions. Therefore

we analyze: Street Address Data Standard, from USA and ANZLIC Metadata, from New

Zeeland.

35

3.5.3.1 Street Address Data Standard

This standard was established by the Federal Geographic Data Committee (FGDC) of the

United States of America, which promotes the coordinated development, use, sharing, and

dissemination of geographic data [56].

The Street Address Data Standard provides, in four separate parts, data content, classification,

quality, and exchange standards for street, landmark, and postal addresses:

 ƒ Data Content provides semantic definitions of a set of objects. This part specifies and

defines the data elements that may appear in or describe street, landmark, and postal

addresses.

 ƒ Data Classification provides groups or categories of data that serve an application.

Classification data are the attributes common to elements of a group. This part defines

classes of addresses according to their syntax, that is, their data elements and the order in

which the elements are arranged.

 ƒ Data Quality describes how to express the applicability or essence of a data set or data

element and include data quality, assessment, accuracy, and reporting or documentation

standards.

 ƒ Data Exchange describes how to produce or consume packages of data, independent of

technology and applications that will facilitate moving data between agencies and systems.

Among the contents of the Address elements this standard proposes we consider the ones seen

in Illustration 16:

Illustration 16 Basic Address Elements in the Street, Address Metadata Standard [56]

36

3.5.3.2 ANZLIC Metadata Profile

ANZLIC — the Spatial Information Council is the peak intergovernmental organization

providing leadership in the collection, management and use of spatial information in Australia

and New Zealand [57].

As an example we present the metadata for address (see Illustration 17) and concrete

instantiation of the metadata corresponding to the Wellington City Council (see Illustration 18).

Illustration 17 Address information according to ANZLIC

Metadata Profile [57]

 Illustration 18 Wellington City Council's

Address and contact info using ANZLIC

Metadata10

10

 Example taken from the Wellington’s City Council Contact information Site:

http://koordinates.com/layer/2222-wellington-city-parks-and-gardens-tracks-and-walkways/metadata/#

37

4 Methodology Framework

In this section we study and summarize the relevant methodologies within the context of this

work. We analyze some authors and we then explain how they motivated the decisions taken

within the development of our own methodologies. We explain our adaptations we produced as

well as our own methodology designs.

We first explain the core methodology that helped us design the patterns catalog, then we

analyze the methodology for pattern identification, later we explain the pattern classification

methodology and finally we describe the design of the metamodel that will be used as design for

the pattern catalog.

4.1 Building a catalog of Patterns

In this chapter we explore the method proposed by Carreon [58] for building a catalog of

patterns of functional requirements for ERP (Enterprise Resource Planning).

4.1.1 Definition and representation of a pattern

According to Carreon a pattern of functional requirements is a reusable artifact found during the

various activities of the requirements engineering process and represents in a structured and

abstract way one or more functional needs of an organization.

The notation used in his work for the construction of patterns is as follows:

“Pattern goal <must> property-to-fulfill {variables}”

where:

 The goal of the pattern describes the objective to be achieved by pattern.

 The property to fulfill describes what must be met to achieve the goal.

 The variables describe the part of the pattern will depend on the characteristics of each

project when used. They might not always appear in the patterns.

In Table 2 we can find the tabular structure, that the author uses as a template to represent

patterns.

The table illustrates the definition of a pattern of functional requirements for ERP, where the

fixed part corresponds to the example above.

38

Identifier: <pattern number> Name: <Name of the pattern>

ERP

Module

<ERP Module>

Keywords <List of keywords>

Version <Version number> (<Date>)

Author <Author of the version> (<Organization>)

Source <Source of the current version>

Purpose <General purpose of the pattern>

Description <Description of the pattern>

Fixed Part Purpose <must> property to fulfill {variables}

Parameter’s name Metric’s name Metric’s Type

{parameter} {metric} {Type of the metric}

Extension Identifier: < extension’s number> Name: <Name of the extension>

Purpose of the extension <must> property to fulfill {variables}

Parameter’s name Metric’s name Metric’s Type

{parameter} {metric} {Type of the metric}

…

Comment <comments>
Table 2: Tabular Template corresponding to the Functional Patterns for ERP. [58] (translated)

The pattern is composed of two main parts:

 Fixed part. Corresponds to the definition of the pattern itself, it's a phrase that expresses

the objective literally, in other words, the general purpose of the pattern and properties.

 Extension/s. One or more extensions of the general part. They are optional, especially in

cases where the general part is applied. They could also be included in the catalog as

multiple patterns.

The requirements templates help to express and identify the requirements easily. In this way and

in order to formalize functional requirements, they created the template that shows this

structure.

4.1.2 Patterns Classification

In order to classify the patterns, and thus have a catalog structure, the author proposes to use the

model quality characteristics of ISO / IEC 9126-1.

Since in this work we don’t aim to describe the whole quality standard nor the process to get the

final classification, we present below a partial summary of the classification established by the

ISO/IEC extracted from a document of Botella in [59], document in which the author analyzes

the quality standard defined by the International Organization for Standardization (ISO).

The main idea behind this standard is the definition of a quality model and its use as a

framework for software evaluation. An ISO/IEC 9126-1 quality model is defined by means of

general “characteristics” of software, which are further refined into sub characteristics, which in

turn are decomposed into attributes, yielding to a multilevel hierarchy; intermediate hierarchies

of sub characteristics and attributes may appear.

39

Also, at the bottom of the hierarchy appear the measurable software attributes, whose values are

computed by using some metric.

The quality model introduced in the standard is common for external and internal quality

aspects, whilst another model for quality in use is introduced. Table 3 enumerates the six quality

characteristics defined in the ISO/IEC 9126-1 internal/external quality model and their

decomposition into sub characteristics.

The attributes that can be measured during the development process are referred to as internal.

The external behavior can be measured during the testing process, and finally the user's view of

quality is shown measuring the quality-in-use attributes.

Table 3: The ISO/IEC 9126-1 internal/external quality model [59]

Botella mentions that the standard doesn’t consider non-technical factors (e.g. from

management, economics or politics). Considering the importance of them, the author

strengthens the classification of the ISO/IEC document by using a convenient and coherent way

to handle non-technical factors.

It consisted in structuring the non-technical factors in the same way as the technical ones, in

other words, by adding a set of high level characteristics – vendor vs. product characteristics -

and the respective sub characteristics. As a result, they produced an enlarged quality model

including both types of factors as shown in Table 4.

40

Table 4 : A categorization of non-technical factors following the ISO/IEC 9126-1 style [59]

The great advantage of using this classification is that the quality features expressed in the

document - features, attributes and sub-features – is that they are general for any enterprise

software application.

Carreon uses a subset of the classification above in his work.

The classification aims to facilitate search and identification and structuring patterns during

requirements definition within a particular project.

4.1.3 Method

This section outlines the steps followed by Carreon for creating the first catalog of requirements

for ERP.

First of all, the author proceeded to study the domain of ERP, ERP modules and dependencies,

and collecting the literature base for collecting the patterns: requirement books from real

projects.

Then he performed the pattern extraction process by following a bottom-up process. That is, he

used the requirements books of real projects for building the patterns.

The steps followed for the construction of the catalog of patterns of functional requirements for

ERP are the following:

1. An analysis of the ERP domain.

2. Extract the functional requirements of the books of requirements.

3. Perform semantic analysis and refine the functional requirements.

4. Insert in the catalog of “candidate patterns” those requirements that might become

patterns after coincidences search.

5. Create and / or refine the pattern and insert or update the catalog of patterns.

41

The tasks and the information flow that comprise the method can be found in detail in

Illustration 19. Note that the first step: Analysis of the Domain is not included in the diagram.

1. Extraction of functional requirements.

2. Semantic analysis and refinement.

3. Insertion in the catalog pattern candidates.

a. Matching candidates catalog.

b. Validation of coincidences and update or insert into the catalog of candidates.

4. Insertion in the pattern catalog.

a. Refinements of the pattern.

b. Formalization and storage in the pattern catalog.

42

Illustration 19: Steps for the construction of a SRP Patterns Catalog [58]

43

4.2 Pattern Identification

In order to discover patterns from the domain and extract them we analyzed the methods that

some authors successfully used to discover patterns in areas such as database design, object-

oriented design and domain design.

4.2.1 Analysis Patterns

In these area we take as main work the one of Fowler [24], where he discusses patterns as being

the main entities, as they are a key technique to discussing and capturing what makes good

design. The importance of his work is described in section 3.4.2 Analysis patterns – reusable

object models.

Another work is the one on Semantic Analysis Patterns from Fernandez [46], where he

describes Semantic Analysis patterns as a pattern that describes a small set of coherent Use

Cases that together describe a basic generic application.

The Use Cases used for his research are selected in such a way that the application can fit a

variety of situations.

Semantic Analysis Patterns (SAPs) focus on typical Design patterns are closer to

implementation, they focus on typical design aspects, i.e., user interfaces, creation of objects,

basic structural properties. They don’t necessarily apply to any application.

His method for producing instances of SAPs consists in selecting Use Cases to then generalize

the original pattern by abstracting its components and later deriving new patterns from the

abstract pattern by specializing it or by using analogy to directly apply the original pattern to a

different situation as seen in Illustration 20.

Illustration 20: Semantic Analysis Pattern (SAPs) generation method [46]

44

We use the idea of producing patterns by abstracting the solutions found in one application and

although we don’t produce solutions to prove that our patterns can be applicable, we compare

them to other solutions as well as to pattern catalogs available.

4.2.2 Patterns in Database Modeling

Thonggoom [60] worked on trying to reuse domain knowledge contained in data base schemas

to aid in database modeling within the information system development process.

His methodology includes database reverse engineering in order to discover reusable instance

patterns containing knowledge about application domain. The reusable elements proposed by

the results of his work are Entity Instance Patterns (EIP) and Relationship Instance Patterns

(RIP) which are stored in a repository.

As an example we show Illustration 21 where we can see that:

 An EIP is a pattern of a single entity and its properties. i.e. Order.

 A RIP is a binary relationship with cardinality constraints between two entities.

Illustration 21: Example of EIP and RIP [60]

Entity-Relationship (ER) model is a well-known conceptual modeling formalism, easy to

understand, powerful to model real-world problems and easy translation to a database schema.

Thonggoom considers these strengths of the ER model to make it the base meta-model to store

his patterns as seen in Illustration 22 and also for making easier the practical use of them.

45

Illustration 22: Meta-model for EIP and RIP [60]

The benefits encountered by the use of the patterns found after application of his method proved

to:

 Improve the process of conceptual modeling design.

 A novice designer can easily use the knowledge about application domain contained in

the patterns, therefore improving the quality of the model and the performance of the

designer.

 EIR and RIR simplify the work of experienced designers; they are domain-specific and

therefore easier to understand and reuse.

In the context of our work, we perform reverse engineering as well in order to extract and map

the information from database schemas. This approach is mainly used to discover patterns of

single elements as well as patterns of three elements, as is the case of patterns abstracted from a

binary relationship.

4.2.3 Patterns in object-oriented design

Han et al. [61] propose a methodology for building object-oriented design fragments. Design

fragments are a new kind of artifact that is composed of several element-clusters, is a whole

design that is developed and indexed based on common patterns.

Based on previous designs taken from the enterprise domain, the method arranges clusters of

elements based on combinations of keywords as seen in Illustration 23.

46

Illustration 23: Design Clusters based on Keywords [61]

These clusters are found in one or more source designs, and are then indexed according to

similarities to store them later in a repository that will aid efficient reuse.

Although the final implementation of the method is not yet available, we find the clustering of

keywords important and thus applicable to our work. We decided to use this approach in order

to discover structures and substructures, meaning groups of more than one element, appearing in

the models and across them in order to identify patterns and composite patterns.

4.2.4 Composite patterns

Another important work we analyzed to build our search method is the work of Riehle [62],

where he analyzes the issues while documenting how patterns work together.

He takes as input the Design Patterns book [25] and further refine the definition of the patterns

in there. He afterwards discovers small groups of patterns that often work together. He proposes

an analysis method for building the pattern compositions by means of grouping atomic or

composite patterns.

As an example, we analyze the following patterns described by Riehe as:

The Mediator pattern; it serves to decouple, manage and integrate several Colleague objects

by means of a coordinating Mediator.

Illustration 24: Role diagram of the mediator pattern [62]

The Observer pattern; it serves to decouple Observer objects from a Subject object while

maintaining state dependencies. The maintenance is achieved by using events for inter-object

communication.

47

Illustration 25: Role diagram for the Observer Pattern [62]

The Chain of Responsibility pattern; it serves to define an object chain along which requests

are passed until they are handled. Thus, by configuring the chain, the receiver of a request can

be defined dynamically.

Illustration 26: Role diagram of the Chain of Responsibility pattern [62]

He built a matrix of relationships based on the participant classes of each pattern. He then united

them in the Bureaucracy pattern as an example of a complex composite pattern as seen in

Illustration 27, where the structure of the roles applies the chain of responsibility pattern,

whereas the manager-subordinates relationship obeys the observer pattern and the mediator

pattern to manage the children of the manager role.

Illustration 27: Role diagram of the Bureaucracy pattern [62]

Vlissides published a report [63] about Riehle’s work citing some other composite patterns

extracted from the Design Patterns book [25] and, of course, his own experience.

48

Some examples of such composite patterns are:

Template Method – Factory Method; this pattern takes the capabilities of both patterns in order

to merge behavioral description and responsibility. Whereas the template method separates the

variant and invariant parts of an operation, it isn’t specific about the behavior, only about

responsibility. On the other hand, the pattern factory method concedes behavior to the

subclasses.

Factory method can therefore serve as primitive operations to template methods within this

composite pattern.

Prototype – Abstract Factory; normally, prototype can be used by abstract factory for the

creation of products. This can add flexibility to the design and moreover reducing the number of

classes that Abstract Factory introduces as seen in Illustration 28.

Illustration 28: Prototype - Abstract Factory composite pattern [63]

Some other composite patterns include: Composite-Decorator, Composite – Flyweight,

Composite – Iterator – Visitor, among others.

With these works we discovered the importance of being able to describe both atomic and

composite patterns within the context of our work. We used this idea as baseline to design the

metamodel to represent the patterns catalog as well as to guide the discovery of possible

complex patterns.

49

4.2.5 Cross-Domain design

Fülleborn presents in [38] a method for creating cross-domain analysis patterns with the purpose

of reuse as explained in section 3.3.3 Patterns in domain engineering.

He uses the method to discover domain patterns to improve reuse of domain-specific knowledge

by performing abstractions and forming domain-free or cross-domain patterns as shown in

Illustration 29.

Illustration 29: Cross-Domain Pattern example. Left: Solution to solve “Invoice” problem. Right: Solution to

“Balance end of year close” problem [38]

We consider important the fact that we can also identify structures or patterns that can be reused

in different domains. Therefore we use pattern catalogs not only of the healthcare domain, but

also of the business domain and of other domains in order to identify structures that are repeated

in those domains.

4.3 Classification of patterns

According to our study we discovered that domain designs and therefore domain patterns vary

in their granularity and level of abstraction.

Because there are many design patterns, we need to develop proper methodologies and

techniques how to organize them according to common properties.

As analyzed within the literature, we know that the type of properties is not fixed and may

include criteria such as structure, intent, or applicability.

Different classification schemas can have different dimensions. A two-dimensional schema, for

example, uses two criteria in the classification process as we see in the patterns catalog of GoF

[25]. Their design patterns catalogue is one of the most widely known pattern classification

schema, it is two dimensional and classify the patterns according to purpose and scope as seen

in Table 5.

50

Table 5: GoF Classification Schema [25]

Buschmann [28] the classification schema should be simple and easy to learn, in this manner,

the catalog complies with its purpose of helping the designer, it should be easy to use, to

classify and select patterns. The schema should also have only few classification criteria in

order to reduce complexity and ambiguity.

Finally the schema should reflect pattern properties, representing the main properties of the

patterns to be classified as well as becoming a roadmap to aid selection of the appropriate

pattern.

4.3.1 Criteria

A criterion should reflect a natural property of a pattern. It should divide patterns into different

categories each reflecting a specific property. We present in the following sections some of the

most common criteria found within our research.

4.3.1.1 Granularity

Patterns in a software system can also be found categorized depending on the level at which

they address the system or the system development process.

It is sometimes difficult to draw the border line between different pattern categories. Therefore

the same pattern could be classified in different granularity categories.

As an example we present the Buschmann [28] categorization according to granularity:

 Architectural patterns: refer to a software system at high level.

 Design patterns: focus on subsystems and components.

 Idioms (coding patterns): address the lowest level of a software system.

51

In the same manner, Silverstone [44] creates a categorization of data model patterns in levels 1

to 4, where:

 Specific pattern are the ones that illustrate and communicate information requirements,

show specific attributes within entities. Correspond to the L1 or L2 patterns.

 Generalized pattern are the ones that provide a sound foundation for database design,

incorporate flexibility and the application of patterns for a better design. Correspond to

the L3 or L4 patterns.

Also, within the Multi-View modeling of Kutsche [10], he describes the levels in which a UML

design, for us a UML Class diagram, can be classified. Those are the phases 1, 2 and 3.

 Phase 1: Gives a general overview to the modeling intention and contains only the most

important concepts and ideas.

 Phase 2: Displays much more detail, finally containing all analysis and design phase

refinements.

 Phase 3: Has all the detail to serve as a basis for implementation

We consider this criterion quite important, that is why we choose to implement it as part of our

catalog taking inspiration from the works of the cited authors.

4.3.1.2 Domain

A natural way to classify patterns is to categorize them according to the domain where they are

applied. For example, the oldest patterns were originated from the field of urban construction by

Alexander [23].

As an example from software engineering, patterns are mostly known for, but not restricted to,

solving problems of software design and architecture.

Different patterns have been proposed to solve design problems in various areas of software

engineering. Patterns have been applied in the domain of real-time systems, communications,

distributed systems, user interface, embedded systems, etc. [42] [29]

Thonggoom [60] uses the classification according to entity categories, that are domain

knowledge and used as a tip for identifying candidate entities, they are taken from the WordNet

hierarchy of terms.

It is unlikely that a pattern applied in one discipline becomes relevant to another, but for them to

do, normally an abstraction is necessary as we see within the universal patterns catalog [44].

For the stated above we may conclude that according to the domain a pattern can be:

52

 Domain-Specific pattern.

 Cross-domain, Universal, or general pattern.

4.3.1.3 Some other criteria

In this section we present other criteria that we discovered within our research, but that we are

not using directly in our design.

4.3.1.3.1 Purpose

The purpose represents the kind of problems the pattern solves. This criterion is the most useful

since it describes the concrete situation where the pattern applies [28] [25].

4.3.1.3.2 Paradigm

Patterns are a good practice within software development; therefore they were created not only

in object-oriented software systems design, but also in imperative programing.

We focus in object oriented paradigm patterns, which are described in terms of concepts like

objects, classes, object composition, and class inheritance [28] [32] [25].

In imperative programming, patterns are mainly expressed in terms of other concepts such as

functions and procedures.

4.3.1.3.3 Scope

Patterns can then be classified according to the features responsible of implementing them.

For example, in the object-oriented paradigm, design patterns can be implemented using either

object composition or class inheritance [25] [36].

4.3.2 Domain Patterns Classification Schema

Based on the findings above, we needed to define the characteristics of the criterion we would

later choose to represent the patterns classification.

In this section we first describe the criteria characteristics and then we proceed to describe the

criteria chosen to design the classification schema.

4.3.2.1 Criterion characteristics

Three main characteristics were ideal to perform the decision. Those are:

 Conceptual:

A conceptual criterion defines categories that are conceptual subsets of the criterion.

 Universal:

A universal criterion defines categories for all patterns. This enforces that it should not only

contain existing patterns but also unwritten ones.

53

 Specific:

A specific criterion defines specific categories. Specific categories provide more detailed

information to the user of the classification scheme.

4.3.2.2 Criterion Classifiers

In this section we describe the classification of domain patterns so that we can refer to families

of related patterns.

We identified the advantages of designing a two-dimensional classification schema, which

facilitates the finding and reusing of patterns.

The main criteria we use as classifiers within the schema are Level of Design and Domain as

described next.

4.3.2.2.1 Level of Design

Since the sources used for this work came from multiple stages of the software development

process we identified some patterns that correspond to Business modeling at early stage, as well

as advanced. Also some database design at design stage as well as full implementations. Finally,

we discovered class diagrams, some used to illustrate the advantages of the modeling technique

and some others to be used in real life developments.

This heterogeneity within sources has originated a need of classification of patterns according to

Level of Design.

The level of design of the patterns found within the sources can be organized according to:

 Early Design

Gives a general overview of the problem domain that is simple. Contains patterns that

illustrate and communicate information requirements, show specific entities and

attributes within entities.

 Intermediate Design

Gives an overview of the problem domain that is more advanced than the previous, the

application of abstraction of some concepts can be seen. It is a hybrid approach between

early and advanced design.

 Advanced Design

Gives a solution that can be found when the design is ready for implementation.

Containing patterns that are foundation for database design, they incorporate flexibility

and the application of design patterns, for example.

54

We guide the instantiation of patterns according to the analysis made by Silverston (see Table 6)

about the benefits of specific, early design, and generalized, implementation design, styles of

modeling.

Table 6: Benefits of more specific and more generalized style of modeling [44]

4.3.2.2.2 Domain

Domain is the area of application of the pattern, where it can be found an applied.

 Domain-Specific

Domain specific patterns are patterns that cannot be applied in more domains than the

one stated.

 Cross-Domain

Cross-domain patterns are the ones that are universally applicable; they can be found

and applied in multiple domains.

The visual representation of the classification schema proposed by this work can be summarized

in Table 7.

55

Level of Design

Early Design Intermediate Design Advanced Design
D

o
m

ai
n

D
o

m
ai

n
-S

p
ec

if
ic

 …..

Healthcare

C
ro

ss
-D

o
m

ai
n

Table 7: Domain Patterns Classification Schema

Note that the design of the schema includes the healthcare as domain-specific sub-classification

in order to facilitate other domain patterns to be attached in the future.

4.4 Metamodel for a Domain Patterns Catalog

In order to hold the patterns discovered in the process, we developed a meta-model represent the

structure and details of a Patterns Catalog, as well as the classification schema for the patterns.

For readability problems we omit the attributes in the design we present in Ilustración 30.

Therefore we offer the possibility to see the attributes in the next sections, where we explore the

parts we intended to represent within the metamodel including the attributes of their main

classes. A complete version of the schema can be found in Appendix A.

As a conclusion of our analysis of diverse pattern catalogs in the literature review, we

discovered that in a patterns catalog one can normally distinguish three independent but

interrelated parts:

 The core of the catalog representing the type of patterns that it holds. i.e. design

patterns, requirement patterns, data model patterns, etc. Within this part the elements

that compose a pattern solution are described.

 The vocabulary sometimes represented as a patterns language or some others as a

glossary of terms. For simplicity reasons, we chose the glossary type of representation.

 The classification schema is the way the patterns are grouped in families of patterns.

56

Ilustración 30: Metamodel for a Domain Patterns Catalog

57

4.4.1 Elements representation

For the purpose of our work, we decided to represent the domain elements in a way that was

homogeneous with the ones we found in our source models.

As main elements of our design we observe: classes, associations and attributes. As internal

representation we adopt a simplified version of the meta-models for ER Diagrams and UML

Class diagrams as seen in Ilustración 31. The description of the elements can be found later.

Ilustración 31: Elements Representation

58

4.4.1.1 Class

A class is an entity type from ER diagrams, a class from UML conceptual diagrams, a table

from SQL database schemas; these are elements that can be all mapped to a class in our

metamodel. A class can be abstract or concrete and is a named element.

4.4.1.2 Association

Associations represent the relationships between entities and associations between classes that

were found as part of the domain models. They can be simple associations, called “Association”

or can be an abstraction type form of association, called “Abstract Reference”.

Association represents both a binary association and an n-ary association, via the aClass

relationship to class with cardinality 2..*.

Abstract Reference represents Aggregations, composition and generalization/specialization or

IsA associations. Since our model aims to be simple, support to multiple inheritance was

discarded. Therefore, it is only possible to have only one parent class for multiple children

classes.

Associations, aggregations and compositions can define their cardinality via the lowerBound

and upperBound attributes.

4.4.1.3 Attributes

Attributes represent the characterization of class elements and associations. We consider as

important attributes for both elements are: the name that will identify the element and the

attributes with name and dataType. These attributes are part of the glossary of the catalog.

4.4.2 Pattern Representation

Each domain pattern systematically should name, explain, and evaluate an important and

recurring design in domain models.

One issue presented in the design of this part is that pattern elements are not isolated units of

knowledge, thus they are the core carriers of the recurring design.

In order to represent the patterns we needed the possibility to represent patterns as a

composition of elements as well as elements and other patterns. That’s why we took as

inspiration the “Composite” design pattern [25] that allows us to develop a flexible design as it

can be seen in Illustration 32.

59

Illustration 32: Patterns Representation

As parts of a pattern we identified (see Table 8) as important the following:

4.4.2.1 Pattern Name

The name of a pattern describes a design problem, its solutions, and consequences in a few

words. Naming a pattern makes it easier to think about design and improve communication with

the designers that will made use of it.

4.4.2.2 Problem

The problem describes when to apply the pattern by explaining the problem and its context. It

addresses the question: What particular design issue or problem does this pattern address?

4.4.2.3 Solution

The solution describes the elements that make up the design, their relationships, and attributes.

It includes the pattern arrangement per se.

4.4.2.4 Consequences

The consequences are the results of applying the pattern. It aims to aid the designer evaluate

design alternatives by understanding the benefits and trade-offs of using the pattern.

4.4.2.5 Related patterns

It is the relationship between patterns within the catalog. It aids the designer to know which

patterns are closely related or may be also used in combination with the one being observed.

Pattern Name

Problem

Solution

Consequences

Related Patterns

Table 8: Pattern Template

60

4.4.3 Classification Representation

The classification is a part that appears normally in catalogs that contain several patterns. It is a

way of grouping the patterns in order to help communicate with the designer as well as to aid

his/her search.

For this matter we decided to support a tree structure of classification that is flexible enough to

support one-dimensional as well as multi-dimensional classification schemas (see Illustration

33). A pattern belongs to the smallest sub classification within the schema.

Illustration 33: Classification Representation

4.4.4 Vocabulary

The vocabulary allowed within the context of the catalog is contained as a glossary of terms as

seen in Illustration 34.

The terms are bound to their synonyms to aid the use of the pattern at regional vs. universal

level.

Illustration 34: Vocabulary Representation

61

5 Implementation

In this chapter we will first describe the method used to perform the implementation as a result

of the methods analyzed in the literature and then we explain the artifacts related to the process

of the discovery and classification of patterns in domain models.

The detailed information of the steps that will guide the construction of a preliminary domain

patterns catalog will be described in detail in the remaining part of this section.

5.1 Method

First of all an initial documentation research about the thesis domain topic, Patterns in Domain

Models, was performed. As a result of this research, we decided to use the work of Carreon,

summarized in section 4.1 Building a catalog of Patterns, as baseline for the implementation

methodology for construction of a preliminary domain patterns catalog. We then refine the steps

and adapt them for our purpose, leading to the following steps:

1. Analyze and select relevant Models of the Domain.

2. Extract elements present in the Models.

3. Perform semantic analysis and refine the elements to form patterns.

4. Insert in the catalog of candidate patterns.

5. Create and/or refine the pattern and insert or update in the patterns catalogue

It is important to note that for the purpose of this work an “Element” is any of the following:

class, entity, attribute, relationship and other model elements.

We present in Illustration 35 a summary of the activities and artifacts used and produced during

the development of this work. Note that Step 5 is not included in our development, yet we

include it in the method for the sake of completeness.

The activities within the steps will be further detailed in the rest of the section, after a brief

explanation of the artifacts used and produced by this work.

62

Illustration 35: Method for developing a Domain Patterns Catalog

63

5.2 Step 1 - Analysis of the Domain

The task consisted in collecting and identifying documentation relevant to identify and classify

patterns as well as identifying sources for collecting models that are relevant to identify the

common elements – patterns - composing the domain.

In this section are described the artifacts used and produces in the step, later the description of

the sources used to get domain models are found. Later follows the introduction of the pattern

catalogs identified for verification and semantic analysis. Finally the illustration of the

implementation of the first phase of the method, the issues and results are described.

5.2.1 Artifacts of Step 1

The input artifacts of the step are:

 Domain analysis documents

They are a collection of papers and works of other authors that have worked in the topic

of model driven development, patterns, reuse and quality of software and pattern

catalogs construction. The more important works are listed in the literature chapter of

this work in section 7.

 Domain Models

Correspond to projects of the real world containing SQL schemas, UML Diagrams

among others. The information about the sources and the documents can be found in

section 5.2.2.

The output artifacts are:

 Source Domain Models

Due to some problems later described, a filtering of some models had to be performed

over the total of models found in the sources. The resulting models are the ones that

were the base for element extraction in Step 2.

5.2.2 Sources

The models used to build the proposed patterns where extracted from projects of industry and

research taken from the internet.

We were looking for repositories of models containing models of the domain of healthcare. The

models should contain model elements such as entities, relationships, attributes among others.

The criterion they had to fulfill in order to be considered a source is that they have to contain

valid and relevant models; that is, the element is not only a result of the search but can be

downloaded and open, the model has enough elements and they make sense within our domain.

64

We explain further the results of the elimination by using these criteria in the results section

(Section 5.2.4) explaining Table 14.

The main sources used in this work are the following:

a) www.uml-diagrams.org; Is a website containing several UML diagrams, such as

domain model, use case model and others by Kirill Fakhroutdinov.

The author is a Senior Software Engineer that has worked in the domain of healthcare

for the past ten years. His website aims to provide information and examples of UML

and UML diagrams of real world projects [64].

b) Kross, Knowledge Repository of Schemas and Semantics; is a repository that contains

classified and indexed schemas in several categories, as well as the search tool to use

them [65]. The project is developed and maintained by the iSchool at Drexel.

c) www.databaseanswers.org; Is a library of over 1,000 Data Models in several domains

resulting from the work as consultant and as Enterprise Data Manager of Barry

Williams. The library contains works of industry of the over 25 years’ experience,

starting with IBM, in Enterprise Data Management [66].

d) www.bvbsoft.com ; Is a repository of source code, of software development projects,

made available by a community of developers across the globe [67].

e) DIMA SVN repository; is the repository of all works of the Database and Information

Management department of the Technical University of Berlin. In this repository one

diploma thesis “Metamodelle und Ontologien für domänenspezifische Sprachen” – in

English: Metamodels and Ontologies for Domain Specific Languages – where the

author, Wandelt, presents a reference model for the domain Hospital as a result of a

case study [68].

f) SIIH System Technical Reference; is the document containing information about the

complete development of the “Sistema Integrado de Información Hospitalaria” – in

English Integrated System of Hospital Information – that was produced as part of a

bachelor’s theses. From this work we use the database schema and Class diagrams

produced [69].

5.2.3 Model Management

In order to record the initial set of models we decided to set some standards and then to design a

relational database to save and manage the information present in them.

5.2.3.1 Standards

We decided to use as naming standard the format starting with lowercase. In the case of

compound names all words after the first one should start with uppercase, but not separated by

any other symbol.

http://www.uml-diagrams.org/
http://www.databaseanswers.org/
http://www.bvbsoft.com/

65

As an example we present Illustration 36:

Illustration 36: Naming Standard for Model Management

On the other hand we decided to make a standard for the storage of the models. This standard is

based on the domain, source and model names as directory names as well as a root directory.

In other words the directory hierarchy is as seen in Illustration 37:

Illustration 37: Storage Directory Standard for Model Management

As we see in the example of Illustration 38, the model class-example-hospital-organization.png

is stored in the source directory uml-diagrams of the domain healthcare.

Illustration 38: Example of Storage Directory Standard

5.2.3.2 Database design

In order to design the database we analyzed the elements we wanted to store, namely Domains,

Sources, Models and their relationships. We also analyzed according to the structure that we

found in the models collected, the attributes that would sufficiently describe them.

66

A description of the entities, part of the Database design, and the attributes of each of them can

be found in Table 9. The relationships corresponding to these entities can be seen in Table 10.

EntityType Attributes Description

Domain domId; corresponds to the identifier of the domain. A domain is the context

or universe of discourse

being discussed in the

content of the models.

domName; is the name of the domain.

description; is a brief description of the domain.

Source srcId; corresponds to the identifier of the source. Is the origin where we

found the models. website; is the URL of the Website where the model

was found.

project; is a brief description of the project that

developed the model used.

Model mdlId; corresponds to the identifier of the model. Model is any file

containing elements and

their relationships that

describe the domain.

Some examples are:

Database Schemas,

Class diagrams, source

code.

modelUrl; is the exact URL where the model was

found.

modelName; is the name the author gave the model.

extension; is the filetype of the model.

status; is the status of the model. The value contained

can be valid, invalid, irrelevant and undownloadable.

keywords; is a list of the main elements found on the

model.

licence; is the name and version of the license if any.

nElements; is the number of elements found in the

model.

version; is the version of the model if any.

hashcode; is the hashcode of the model found.

observations; any other relevant information.

Table 9: Model Management Entities identification

EntityType RelationshipType EntityType Cardinality Description

Domain Has Model 1-n Every domain has several

models.

Model FoundIn Source n-1 A model can be found in a

Source.

Table 10: Model Management Relationships identification

67

As a result we designed the Entity Relationship diagram shown in Illustration 39 that was later

used in order to implement a Relational Database.

Illustration 39: Model Management ER Diagram

This model, thus the database, can be reused when studying further domains, sources and

models in future work.

5.2.3.3 Database population

Having the database ready the steps followed to populate it is described in Illustration 40 as

follows:

Illustration 40: Steps to populate the Model Management Database

Insert Domain Insert Source Insert Model

68

The population has to go in this direction to fulfill the cardinality constraints at the moment of

storing the models.

It is important to note that all identifiers are auto incremental integers.

5.2.3.3.1 Insert Domain

In this step we inserted the information related to the Hospital Management domain. The

description used was found in Wikipedia under the entry “Health Administration”
11

.

Table 11: Store domain Hospital Management

5.2.3.3.2 Insert Source

We then proceed to store the information about the identified sources.

Since the sources come either from projects the internet or from thesis documents we could

easily find the description of the project where the models belong to.

Table 12: Store Sources (partial rows)

11

 http://en.wikipedia.org/wiki/Health_administration

http://en.wikipedia.org/wiki/Health_administration

69

5.2.3.3.3 Insert Model

Table 13 shows only some of the columns due to space limitation and to aid readability.

Some of the design decisions that we had to consider while storing the models are the

following:

 Keywords; since in some occasions there are too many elements, we decided to include

up to the six more relevant entities encountered.

 Version; we could identify that, as general case, there was no information related to the

versioning of the models, therefore we decided to give a default of version 1 to each

model that didn’t explicitly had one.

 Hash code; at the moment of saving the hash code we decided to save the one

corresponding to the model file and not to the whole HTML in the case when they are

part of a Website.

 License; we discovered that, as general case, the information related to the license - that

we had considered important - is not available. We decided to allow leaving the

attribute empty.

 NumberOfElements; In order to store the number of elements we have to process first

the model. We decided to derive this attribute after the analysis of the model and to

consider all relevant elements in the count.

 Observations; We decided that this field would be mandatory in the cases where the

model was found invalid, to have a clear argument of why we declared it as such.

70

Table 13: Store Model (partial columns and partial rows)

71

5.2.4 Results and conclusions

First of all, we performed a search within the repositories of models in order to identify the

models that we could use for our work.

We decided to perform the search by using terms that we considered relevant for the domain.

Some examples are: Hospital, Doctor, Physician, Patient, Nurse, among others. It is important to

note that out of this search some models that contain more than one relevant term appear again

so we had to discard these duplicate results to obtain Total Individual Models (as seen in Table

14).

In order to illustrate the results generated by the search in the Domain Analysis step of our

method we produce Table 14 that exemplifies the search for the single terms Hospital, Doctor

and Patient.

DOMAIN 1 - HOSPITAL MANAGEMENT SYSTEM

SOURCE

SEARCH KEYWORD

u
m

l-
d

ia
gr

am
s.

o
rg

d
at

ab
as

e
an

sw
e

rs
.

o
rg

K
ro

ss
, K

n
o

w
le

d
ge

R
e

p
o

si
to

ry

b
vb

so
ft

.c
o

m

D
IM

A
 S

V
N

U
SF

X

Hospital 1 0 16 13 1 1

Doctor 2 1 25 1 1 1

Patient 3 2 32 4 1 1

Total Results Count 6 3 73 18 3 3

Repeated Models 3 1 18 3 2 2

Found at blog or forum 0 0 41 0 0 0

Undownloadable 0 0 10 11 0 0

Total individual Models 3 2 14 15 1 1

Valid models 3 2 2 1 1 1

Table 14: Results of Domain Analysis for the Hospital Management Domain

Then we further analyzed the contents of each model and in this process we discovered some

problems that made us believe that it was important to identify the models that are valid within

the previous result of Total individual Models.

The main problems that we discovered for filtering the results are:

 The model was already inserted (repeated models filter).

 The model is contained in a Blog as exemplification using very few attributes in an

inaccurate way (Found at blog or forum filter).

72

 The model File is not found on server (undownloadable filter).

As a result we discarded as input models the models that have status: Undownloadable,

Irrelevant and Invalid. Although, we decided to store them in our database so that in future

searches we won’t analyze them again, but ignore them.

Originally more sources were considered. Some examples are:

 Moogle; a metamodel based Search Engine. Were we found several projects for

technical domains [70].

 ReMoDD; a repository of models to aid model driven development. We found that they

offer several projects from research but mainly in a pdf format as part of papers or

conference proceedings. Also only other domains are available [71].

 Zoos; The Metamodel Zoos are a collaborative open source research effort intended to

produce experimental material that may be used by all in the domain of Model Driven

Engineering. Basically it is a repository of models and modeling standards for software

development [72].

Unfortunately we could only discover that they didn’t contain models for our domain while

crawling within the models.

73

5.3 Step 2 - Extract elements present in the Models

In this step we use the models identified in Step 1 and then perform the element extraction.

Then we group them according to similarity and align the common elements found across

models, being this listing the resulting artifact –Elements Listing - produced in this step.

We first described the artifacts used and produced in the step, to then start with the description

of it.

Before proceeding with the extraction of elements it is necessary to define what an element is.

We then proceed to explain about the extraction and alignment process. Finally we report the

results of the phase.

5.3.1 Artifacts of Step 2

The input artifact is:

 Source Domain Models, described in Step 1.

The output artifact is:

 Elements Listing

Elements listing; is a list of the elements found in the models ordered per project and

aligned in parallel according to similarity. It is the output Artifact from step 2 and the

input for step 3.

5.3.2 What is an element?

Alexander [23] tells us that the pieces that compose a pattern are “the lowest-level elements and

relationships between them, they form building blocks”.

Coad [32] tells us that “Classes and Objects correspond to Alexander’s lowest-level elements”.

Thonggoom [60] has identified that the elements for his work in Knowledge-Based Database

modeling were entities and relationships taken from database schemas.

With that in mind, and after analyzing our domain models, we discovered that our input domain

models are described as means of:

 Entities / classes and

 relationships / associations

both with their corresponding attributes as main lowest-level elements.

74

5.3.3 Element Handling

As previously mentioned, in this step we use the models identified in Step 1 - Analysis of the

Domain.

We used a Spreadsheet as tool to help us perform the alignment of common elements, and thus

obtain the artifact Elements Listing at the end of the Step.

First of all we took one model and systematically started to extract the elements one by one by

adding a row in the table and filling in all the characteristics for the element.

Once we finished with the model we took the next model and proceeded similarly, with the

difference that before adding a new row we checked whether or not we had the element already

in the table. If the element was already in the table, we aligned the coincidence in the same row,

if not we added a new row as in the previous case.

As a way to illustrate the structure of the “Elements Listing” document we present an

abbreviated example of it in Illustration 41.

modelName1 modelName2

ElementType Name ElementType Name

entity Patient

 Name

entity Doctor entity Doctor

Model 1

Model Characteristics

Entity 1

Attribute of Entity 1

Entity 2

Coincidence found in Model 1 and Model 2

Model 2

Illustration 41: Structure of the "Elements Listing" Artifact

It should be noted that we discovered the final representation in the process of analyzing the

models, having started only with a representation of: ElementType and Name and determining

the important attributes as we found them.

75

The characteristics that we identified important to describe the model and its elements, thus

being part of the final Element Listing Artifact, are:

 modelName; contains the name of the model where the element comes from as stored in

the database. We find it important because in this way we maintain a reference to the

origin of the element.

 Id; the element identifier is a sequential code that we assign to one whole row. A

common element across models. Only entities and relationships are assigned a code, not

their attributes.

 modelType; refers to the type of model where the elements are extracted from. Some

examples are: class diagrams, database schemas (SQL), ER diagrams.

 elementType; describes whether it is an entity or a relationship.

 As; describes the physical characteristic of the element, its physical type. For instance,

if the element is an entity it can be abstract or concrete; if it is a relationship it can be

binary, isA (meaning a generalization/specialization relationship), aggregation or

composition.

 Name; contains the name of the element, of all entities, relationships and attributes. In

the case of relationships the name is the name of the classes involved.

 Type; contains the value of the primitive or complex type of the attributes.

 Cardinality; contains the value of the cardinality of the relationship, it can be: 1-1, 1-n

and n-n.

 Parent; in the case when the element is a child of another element, it contains the name

of the parent class.

Below we present a small illustrative example of the representation of both entities (see Table

15) and relationships (see Table 16) within the elements listing artifact.

modelName

Id modelType elementType as Value type Parent

E1 Class-diagram entity concrete Patient

 name String

 birthdate Date

 gender String

E2 Class-diagram entity concrete Doctor

 name String

Table 15: Example of Entity element representation within the Element Listing document

76

modelName

Id modelType elementType as Value cardinality

R1 Class-diagram relationship binary Doctor-Patient n-n

 date Date

Table 16: Example of Relationship element representation within the Element Listing document

We discovered that for a later automation of the process we should propose an initial

characterization of the elementType for both entities and relationships. Therefore we present our

findings as follows.

5.3.3.1 Entities elementType

The entities that can be identified within our source models are:

1. Entity

2. Class

3. Table

5.3.3.2 Relationships elementType

The binary relationships that can be identified across models are:

1. 1:N for relationships identified by Foreign Key.

2. 1:N for relationships identified by partial keys.

3. N:M for relationships identified by relationship relations.

4. IsA relationships.

5. Recursive relationships.

6. Aggregation relationships.

5.3.4 Results and comments

In this step the models were compared and the common elements present in them were aligned

and grouped according to similarity.

The result of this phase consists of a set of common elements, and groups of them, found in

models of the healthcare management domain as seen in Table 17 :

77

Element Amount

Entities 97

Relationship 121

Attributes 591

Primitive Types 5

Complex Types 4

Enumerations 3

Constraints 8

Table 17: Results from the Element Extraction phase

Since the patterns should contain the abstraction of a solution and not the instance of it we

decided to omit for the refinement stage the elements that could be specific from the design.

Such elements are the definitions of user defined types, enumerations and constraints.

The challenge in this step was to try to express all models in the same way. This was fairly

simple for entities, classes and tables of SQL schemas but a bit more complicated for the case of

relationships, especially with the SQL Schemas, since we had to perform reverse engineering in

order to map the Foreign Key references between tables and the relationship tables to

relationships, for instance.

We discovered a heterogeneous way of representing attributes. For example, some authors

preferred to use Enumerations when possible, while others preferred to use primitive types. i.e.

Gender: GenderEnum vs. Gender: String being GenderEnum{‘Masculine’, ‘Feminine’}

We also detected this heterogeneity in the use of composite attributes and simple attributes for

the same concepts. An example of it is the attribute Address sometimes modeled as Address:

Address and some other times as Address: String. Furthermore, this example also presented to

us the issue of having the use of single valued versus multivalued attributes: PatientAddresses:

Address [1..n].

As a way of exemplification we present Illustration 42, where we can see some representations

for the attribute ‘Address’ found in the models.

78

<<dataType>>
TypeName

FirstName
MiddleName
LastName

<<enumeration>>
Gender

Masculine = ‘M’
Feminine = ‘F’

Where address is:

 1) Primitive Type 2) Composite Attribute 3) Multivalued Attribute

Patient

name: String
gender: Char
address: String

 <<dataType>>
TypeAddress

Street
Number
PostCode
City

Patient

name: TypeName
gender: Gender
address: TypeAddress

Patient

name: String
gender: Char
addresses: TypeAddress[1..3]

Illustration 42: Example of data-types' heterogeneity

79

5.4 Step 3 - Semantic analysis and refining the elements

Once we have the elements listing, it is necessary to do a semantic analysis and refinement of

the elements found in it. These elements are originally expressed as found in their

corresponding models, so the first task for us to do was to find convention rules that will help us

unite them in order to produce the elements union. This union will, in a later step, be the basis

for the candidate patterns.

The same element may be expressed differently in each of the models or one element can be

expressed as several elements in another, which is the case of hierarchical structures involving

elements such as MedicalStaff, Doctor, and Nurse.

Because of this, it is necessary to study each element alone and the element across models, that

is to say elements of one same row, by performing a semantic analysis. This semantic analysis

was performed in a manual but systematical way, thus it can later be automated. This analysis

allows us to identify and understand the elements per se, as well as the relationships among

them.

Another reason is that it helps us identify the rules of building models and rules to validate the

relevance of certain concepts within models of the domain.

In the following sections we present as usual the elements used and produced in this step. Later

in this section we explain the rules identified as well as the books and catalogs used to validate

our decisions and we also explain how we use them in the creation of an Element Union artifact.

5.4.1 Artifacts of Step 3

The input artifacts for this step are:

 Elements Listing, described in Step 2.

 Pattern Catalogs

They are books or other formats of catalogs of patterns in the domain of healthcare and

of software design (i.e. online, paper publications, etc.)

An intermediate artifact is the refined listing, which is a list taken from the element-listing, all

elements are refined after semantic analysis with appropriate names, synonyms and attributes

coming from the analysis of pattern catalogs and dictionaries.

80

The output artifact is:

 Elements Union

It is the union of all refined elements from the refined listing. It is afterwards used as

input for the construction of the domain candidate patterns catalog. It is an output from

step 3 and an input for step 4.

5.4.2 Elements handling into Elements Union

Due to the heterogeneity of the source models and the diverse purposes of their authors at the

moment of designing them, we discovered that an intersection of the elements gave as a result

only few elements, not enough to form candidate patterns, that also as a whole did not represent

the domain as accurately as a union of elements did.

In the rest of the section we describe the main problems and opportunities discovered while

processing the elements listing that afterwards lead us to get the elements union as result of Step

3.

5.4.2.1 Names and synonyms

The first issue to tackle was the fact that one of the sources was in Spanish [69] and another in

German [68]. The first step was to translate these models and therefore their elements into

English, the language of convention for this thesis. For this matter we used different online

tools, such as translators
12

 and dictionaries
13

.

While working on this subject we detected the importance of synonyms, since one same concept

was named differently between models. We discovered as well the regional usage of some name

over another between English speaking countries, and decided to treat these terms as synonyms.

As examples we mention the use of the term “attending physician”, in USA, versus “consultant

doctor”, in UK; or the term “Hospital” over “Clinic” or over “Institution” across models.

As a result of these observations we decided to add a special characterization to the elements

union to collect possible synonyms of the terms. For this matter we made use not only of the

synonyms found within the models, but also of some tools such as an online thesaurus
14

, from

Lexico Publishing, LLC, and WordNet
15

, a glossary of Princeton University.

12

 Google translator : http://translate.google.com
13

 Spanish – English: Medical online dictionary - http://www.merriam-webster.com/medical

German – English: Medical online dictionary - http://www.tk.de/rochelexikon/

And for both: http://thesaurus.com/ , http://www.wordreference.com/ and http://www.dict.cc.
14

 Online Thesaurus: http://thesaurus.com/ , http://dictionary.reference.com/
15

 Wordnet Online Glossary: http://wordnet.princeton.edu/

http://translate.google.com/
http://www.merriam-webster.com/
http://www.tk.de/rochelexikon/
http://thesaurus.com/
http://www.wordreference.com/
http://www.dict.cc/
http://thesaurus.com/
http://dictionary.reference.com/
http://wordnet.princeton.edu/

81

5.4.2.2 Types

As mentioned in section 5.3.4, the results of Step 2, we discovered a heterogeneous way of

representing attribute types within the models. Among the problems described we found the use

of enumerations, primitive types, composite attributes, simple attributes and multivalued

attributes for the same element attribute.

For dealing with this matter, we used the aid of pattern catalogs [24] [33] [36] [41] [42] [43]

[44] [45] [46] [47] [48] [49] [50] [51] to help us know what the commonly employed ways of

describing attribute types are.

As an example we present Illustration 43, the ‘Address’ representation as found in [41], where

Address is the location of a party, a person or an organization.

Illustration 43: Address according to D. Hay

Attributes for Address include:

 the "text" of the address I.e. Einsteinufer 17,

 "city" i.e. Berlin,

 "postal (ZIP) code” i.e. 10587 and finally it should also include

 "type," that could be "billing address," "shipping address," "home address," and so

forth.

In the same manner we used the metadata standards presented in section 3.3 and after analyzing

the similarities and deciding to preserve the simplicity of the models; we refined the attributes

and their types.

ADDRESS

 Text

 City

 Postal (ZIP) Code

 Type

PARTY

 Name (Surename)

PERSON

 FirstName

ORGANIZATION

 Purpose

the location of

at

82

It is important to note that we use the pattern catalogues not only to perform the semantic

analysis, but also as support or validation for the patterns identification process explained later

in chapter 5.

Finally, as part of the semantic analysis we discovered some elements that were

incomprehensible for the author, that even after deep analysis of books, catalogs and thesaurus it

was impossible to identify their meaning within the context. The decision taken implied filtering

out such kind of attributes from the Elements Union. To mention an example, we excluded the

attribute “hospitalNumber” as part of the entity “Staff”.

5.4.2.3 Naming conventions

It is worthwhile mentioning that as a design decision and as a way to preserve consistency we

choose to use as syntax for naming the first word in lowercase and every next word starting with

uppercase with no spaces or hyphens or underscores in between. i.e. elementName.

5.4.3 Architecture of the Elements Union

Below we present a small illustrative example of the architecture of both entities (see Table 18)

and relationships (see Table 19) of the Elements Union artifact.

elementsUnion

Id elementType as Value Synonym type Parent

E1 Entity concrete patient person

 name TypeName person

 birthdate Date person

 gender Gender person

E2 entity concrete doctor physician, medic person

 name TypeName person

Table 18: Example of Entity element representation within the Elements Union

elementsUnion

Id elementType as Value - cardinality -

R1 relationship binary Doctor-Patient n-n

 Date Date

Table 19: Example of Relationship element representation within the Elements Union

A complete outline of this artifact can be found in Appendix B “Elements Union”.

5.4.4 Results and comments

As a result of this step we get the artifact Elements Union where we find a summary of the

elements that exposes (see 5.4.3 “Architecture of the Elements Union”):

83

 The separation of elements and their attributes

 The identification of Types

 The assignment of synonyms

The result of this phase consists of a set of refined elements, and groups of them, found in

models of the healthcare management domain as seen in Table 20:

Element Amount

Entities 231

Relationship 307

Attributes 615

Table 20: Results from the Elements Refinement phase

The challenge in this step was to try to abstract all elements as part of one same model. This

required the application of some abstraction methods in order to improve the design. The

heterogeneity within designs gave us the chance to choose between designs that represented the

same, but were designed with more or less attributes. An example of this fact is the way ward

and room were modeled, for which we choose to keep as main name Room and merge all

relevant attributes as seen in Illustration 44.

We merge 1, 2 and 3 into Room

Ward

name: String
patientsGender: Gender
capacity: Integer

Room

Identifier: roomId
patientsGender:Gender
capacity: Integer

 Room

roomId: Integer
dateStayFrom: Date
dateStayTo: date

Room

roomId: String
numberOfBeds: Integer

Illustration 44: Example of entity design heterogeneity

84

5.5 Step 4 - Candidate patterns

Taking as an input the elements union document and therefore the elements listing refined, we

identified structures that recurrently appeared within models as well as in other pattern catalogs

in order to select them as candidate patterns.

To form those clusters of elements we considered some selection criteria that are described in

the section 5.5.2. The inspiration for selecting those criteria is described in section 4.2 Methods

for pattern identification.

In the following sections are described the artifacts used and produced in the last step of our

implementation, then the selection criteria applied over the elements union in order to form

pattern candidates and examples of those. Later we present the process for inserting the patterns

into the patterns catalog and we present the metamodel used for the implementation of it.

Finally we summarize the results and comments of the step.

5.5.1 Artifacts of Step 4

The input artifacts are:

 Elements Union, described in Step 3.

 Patterns Metamodel is a model representing the architecture of a patterns catalog. It is

described in section 4.4.

The output artifact is:

 Domain Candidate Patterns; are the grouping of elements that appears in the models

with more frequency will be nominated as candidate patterns and then entered as

instances of the patterns catalog.

 Domain Candidate Patterns Catalog

Domain Candidate Patterns Catalog; is a collection of all Domain Candidate Patterns

identified in the step and classified according to certain criteria to aim understandability

and ease of use. It is the resulting artifact from step 4.

5.5.2 Candidate patterns selection criteria

In this section we describe the main relationships used for clustering the elements to form the

pattern candidates. Note that all of these criteria were accompanied with a further investigation

about the elements forming the patterns in order to make sure that we are actually representing

the domain and not only the result of random coincidences.

85

5.5.2.1 Relationships of attributes within an entity

First of all we went through the elements union artifact and we analyzed the relevant attributes

one by one and identified the relationships within them.

In order to illustrate the process of using this criterion we take as an example the entity patient,

as it looks in the Elements Union as seen in Table 21.

Id Element

Type

as Value Synonym type Parent

E5
Entity concrete Patient

inpatient, outpatient,

referral,sick person
 Person

patientId

Id, Patient_Id,

patientNo, String

 admissionDate inPatientDate Date

 sickness illness Text

 prescriptions drugs Text

 allergies Text

 name name Name Person

 gender Sex Gender Person

 birthdate Date Person

 homeAddress address Address Person

phone

telephone, landline,

homePhone Phone Person

 workPhone Phone

 cellPhone Phone

 Height Double

 Weight Double

Table 21: Relationships within the Patient Entity, from the Elements-Union

Taking a look at the attributes we can identify and then group the attributes according to the

relationships that we describe next and we show in Illustration 45.

 Attributes that are assigned / saved only once and at the moment the person is

admitted as patient in the healthcare institution.

 Attributes found in other entities, is the category that will help us discover hierarchies

of entities that are similar or abstractions of their similar attributes.

 Attributes found as entities; this category of attributes helps us know that there are

attributes that are not only characteristics of the entity, but also that they contain

important information on the matter they represent.

 Contact Information; this category was represented very differently among entities,

yet the idea of contact information was persistent. For some entities like medical

employees emergency contact information was relevant. On the other hand the

representation of patient within models differed in the amount of contact information

86

they required, for example some models had address and phone for home and address

and phone for work, sometimes even the cellphone as well.

 Measurements; we identify a type of attributes that are updated probably every time

the patient goes to visit the doctor, which means that the patient entity would be subject

to update when only some attributes are volatile.

Illustration 45: Clustering of attributes within an entity

For this particular example, we assign the first category as attributes to the patient entity. The

second category is part of the abstraction of this and other entities that have a name, a gender

and a birthdate, that is to say a “Person” entity, abstraction of employees, patients among others.

In the case of the attributes found as individual entities, we choose the entity representation,

although for this particular case it is important to note that the entities of the category mean two

different things. They represented both notes in the medical records and antecedents of the

patient. For this case, we abstract the entities in an “Antecedents” entity. Contact information is

considered to be important and can be extracted into a new entity that is more flexible for the

designer’s needs, as well as measurements.

The result of the application of this criterion over the complete Elements-Union artifact lead to

the creation of an intermediate model, from where we extracted candidate patterns that would be

later analyzed and further improved before inserting them in the candidate patterns catalog. An

example of candidate pattern resulting from this process is the Contact Information Pattern that

represents phone, address and electronicAddress. It can be related to people as well as to

organization; therefore in the example it is related to a “Party” entity as it is seen in Illustration

46.

Patient
Attribute
assigned/ saved
once (no
updatable)

•idPatient

•admissionDate

Attribute found
in other entities

•name

•gender

•birthdate

Attribute found
as entities

•sicknesses

•prescriptions

•allergies

Contact
information

•homeAddress

•phone

•workPhone

•cellPhone

•otherPatientDet
ails

Measurements
(constant
Update)

•Height

•Weight

87

Illustration 46: Contact Information Pattern Candidate

5.5.2.2 Similarity between entities

This criterion helped us discover taxonomical relationships within the domain by comparing

entities with one another and discovering similarities, attributes or relationships, between them.

As an example we present Table 22, where we summarize a view of some entities and the

alignment of some similar attributes encountered among them, at the right the possible

abstraction element that was later analyzed in order to form candidate patterns.

Entity Abstraction

Person Doctor Nurse Patient Hospital

name name name name name

Party address homeAddress homeAddress homeAddress address

phone phone phone phone phone

 purpose

Organization email

 website

gender gender gender gender
Person

birthdate birthdate birthdate birthdate

 education education
Employee

 certification certification

 … … … …

Table 22: Comparison between similar entities

88

After performing the analysis over the Elements Union artifact, candidate patterns such as the

Healthcare Party Pattern were discovered as seen in Illustration 47.

Illustration 47: Healthcare Party Pattern

5.5.2.3 Important entities and their relationships

In order to identify an entity as important we considered the appearances of the entities within

models as well as the number of relationships they have with other elements of the Elements

Union.

From this analysis we discovered that among other entities, the important entities are: Hospital,

employee, department, patient, doctor, medicalRecord, nurse, surgeon, test, diagnosis,

prescription, treatment, bed, bill, etc.

As part of the process of applying the criterion we took as core of the cluster each entity and

then selected their relationships as part of a pattern.

As an example we can cite the Test Pattern seen in Illustration 48 where we take the element

“Test” as center of the cluster and we analyze the relationships that give an insight of what the

element is and how it behaves within the domain.

89

Illustration 48: Test Pattern

This means, tests are of a defined type and are requested by a doctor at a date. In order to

perform a test a sample must be taken from a patient by either a doctor, a nurse or at the

laboratory.

Another way of seeing how this criterion works is to see the clusters that form patterns as

“views” of a more complete model that represents the domain at a certain level of abstraction.

This means, if we create complete models of the domain homogeneous according to the level of

abstraction, i.e. a hospital model, a private practice model, a laboratory model, etc., we could

identify the patterns as reusable blocks among them. An illustration of this can be found in

Illustration 49, where we take a piece of a model at an intermediate level of design to form two

patterns: Test Pattern and Sample Pattern. They contain some elements that are common, but

they are independent due to the possibility of adding particular constraints in an actual

implementation. For example: in a specialized laboratory, only some tests are performed over

specific samples.

90

Illustration 49: Patterns as views of a representation of the domain at a certain level of abstraction

91

5.5.3 Candidate patterns in the patterns catalog

Before proceeding with the insertion of patterns we need to complete the information related to

it. Among the information needed we consider name, problem, solution and consequences.

Later we perform the classification of the pattern within the classification schema found in

section 4.3.2, were we consider Domain and Level of Design as criteria for the classification.

Finally the insertion of patterns was performed in the DSL for patterns catalogs that we provide

as result of the development based on the metamodel explained in section 4.4. As a way of

documentation, we prepare a document containing the patterns in a format where the structure

of the patterns is explicit and therefore easier to read and understand.

5.5.3.1 Classify the pattern

The insertion of candidate patterns in the catalog depends on the type of candidate being

inserted; therefore it is necessary to assign the patterns to the correspondent classification within

the schema described in section 4.3.2 as seen in Table 23.

Level of Design

Early Design Intermediate

Design

Advanced Design

D
o
m

a
in

D
o
m

a
in

-S
p

ec
if

ic

H
ea

lt
h

ca
re

 M
a
n

a
g
em

en
t

Patient’s Allergy

Antecedent Types

Clinical Antecedent

Patient’s Habit

Pediatric Environment Anteced.

Familiar Antecedent

Obstetric Antecedent

Pediatric Birth Antecedent

Hospital Types

Vital Signs

Laboratory Employee

Medical Facility

Ultrasound Types

Movement Disorder Physical Ex.

Perception Disorder Physical Ex.

Organ System Physical Ex.

Department Types

Familiar History

Healthcare Party

Healthcare Role

Observation States

Observation

Supporting Unit Types

Sample

Test

Healthcare Physical

Examination

Hospital Organization

Medical Record

…

C
ro

ss
-D

o
m

a
in

Address

Quantity
Contact Information

Party

Employmen

Physical Observation

Table 23: Candidate patterns classified

As a reminder, we mention that the level of design of the patterns can be:

92

 Early Design; if it gives a general overview of the problem domain that is simple.

 Intermediate Design; when the model contains an overview of the problem domain

that is more advanced, presenting the application of abstraction of some concepts.

 Advanced Design; when advanced relationships and constraints are given in the

pattern.

Domain is the area of application of the pattern. For that reason we found in the category:

 Domain-Specific

Patterns that cannot be applied in more domains than the one stated in the sub-

classification. We analyzed only the healthcare domain.

 Cross-Domain

Patterns that are applicable in many domains.

5.5.3.2 Complete pattern information

Once a candidate pattern has been identified and improved by applying all identification criteria,

the candidate pattern has to be formalized following the pattern structure presented in Section

4.4.2 Pattern Representation as seen in Illustration 50.

Pattern Name Sample
Level of design

Intermediate

Problem This pattern addresses the problem of designing the management of

samples within the healthcare domain.

Solution Abstract the possible samples and the common attributes in a Sample class

and identify the interacting elements in the domain.

Consequences The model using Sample has a clear representation of the sample types and

the elements related to it within the domain.

Related

patterns

Test

Illustration 50: Sample Pattern in the Candidate Patterns Catalog

93

5.5.3.3 Prepare the patterns catalog

In order to implement the patterns catalog we used the Eclipse EMF framework for modeling

the metamodel of the domain patterns catalog described in section 4.4.

EMF provides with the tools to manipulate the metamodel, to make the storage of instances of

the models, in our case the patterns, easier. We use the default option that is XMI (XML

Metadata Interchange) to persist the model definition.

The Ecore metamodel contains the information about the defined classes. Due to space

constraints we show as an example the representation of only some of the classes defined for

our metamodel within the ecore metamodel as seen in Illustration 51. A complete view of the

ecore metamodel can be found in Appendix A, section II Ecore metamodel.

Illustration 51: The domain patterns catalog represented in the ecore metamodel

The ecore model shows the class “PatternCatalog” as root object, in the ecore metamodel, it

means that this class represents the whole model since the rest of the model can only be

instantiated through it.

94

This ecore model can be used then to create Java implementation of the Domain Patterns

Catalog. The generated code, which can be found on the CD attached to this thesis, consists of

the following:

 Model, containing the Interfaces and the Factory to create the Java classes.

 model.impl, containing the concrete implementation of the interfaces defined in the

metamodel.

 model.util, containing the AdapterFactory

After some adaptations to the generated code that were necessary to polish the presentation of

the pattern instances, we use the implementation to generate the plug-ins: the edit plug-in, that

provide a wizard for creating new model instances and the plug-in editor which allows us to

enter model information.

Finally the contents of the project’s development look as shown in Illustration 52, which makes

us ready to insert patterns in the catalog.

Illustration 52: Domain Patterns Catalog project

5.5.3.4 Insert domain patterns in the catalog

Following the example of the Sample pattern, we show next the process of instantiation of if

within the domain patterns catalog.

First of all we have to make sure that the classification schema is instantiated and ready to use,

next we add all relevant terminology in order to create the entities, attributes and associations.

Then we create the entities and attributes with their respective associations as seen in.

95

Illustration 53: Instantiation process 1 Left: insertion of the relevant terms. Right: instantiation of the entities,

attributes and associations relevant to form the Sample pattern.

Finally, we instantiate the Sample pattern as seen in Illustration 54.

Illustration 54: Instantiation process 2. Insertion of the Sample pattern

It is important to note that all entities, attributes and relationships are reusable across patterns.

Therefore, one could see the patterns as pieces of a complete model of the domain.

5.5.4 Results and Comments

As a result of this step we get the candidate patterns and the Candidate Patterns Catalog in two

formats: as implementation and as documentation.

The challenge in this step was to identify the boundaries between one pattern and the next, that

is to say how big or small a pattern should be. We realized that the size of the elements forming

a pattern is not relevant, as long as the pattern expresses some key aspect of the domain and is

able to transmit it to the designer for later reuse.

96

We discovered that the application of identification criteria helps extremely to speed up the

process and to preserve the discipline making the process systematical instead of chaotic or

random.

We learned that the use of Wikipedia [73] articles was particularly helpful in order to

understand the domain and its particularities. This has lead us to improve the level of design of

our models and therefore to get some patterns of advanced level.

The heterogeneity within designs gave us the chance to choose between designs that represented

the same, but were designed with more or less entities. In this respect we realized that the

entities transmit valuable information on the domain and that we should explore them further.

An example of this fact is the concept of allergy that after further exploration lead to the Patient

Allergies pattern seen in Illustration 55.

Pattern Name Patient Allergy
Level of design

Early

Problem This pattern addresses the problem of identifying the possible allergies of

a patient.

Solution Abstract the possible allergies in an Allergy class.

Consequences The model using Patient Allergy has a clear representation of the possible

allergy types within the domain.

Related patterns Antecedent

Illustration 55: Patient Allergy pattern

It is important to note that since the patterns identified in this section are only candidate

patterns, further discussion is welcome and should be considered, therefore refinements could

still be done.

With that in mind we performed a review comparing our resulting patterns to the pattern

catalogs described in section 3.4. The result of this review can be seen in Table 24.

97

Patterns Amount

Patterns identified 34

Patterns found in other catalogs 16

Table 24: Review of similar patterns found in other catalogs

We feel that this revision may be a sign that the set of candidate patterns is a good result for this

work and therefore a good starting point for further future work in the direction of validation

with experts, of reusing the patterns and later creating tools to automatically perform the

process.

It is important to note that we do not believe the candidate patterns result of this work is

definitive. Also we are convinced that with a larger set of source models nore patterns can be

identified.

The complete set of patterns developed can be found in Appendix C.

98

5.6 Step 5 - Patterns catalog

Although the scope of the project does not include this step, we consider appropriate to suggest

some guidelines in order to finalize the development of the catalog.

In the rest of this section we introduce the suggestion of the artifacts of the step, then a

suggestion of the activities that should be performed in this step.

5.6.1 Artifacts of Step 5

The input artifacts are:

 Domain Candidate Patterns, described in Step 4.

 Domain Candidate Patterns Catalog, described in Step 4.

The output artifact is:

 Domain Patterns Catalog

Domain Patterns Catalog; is a collection of all Domain Patterns, that is to say Domain

Candidate Patterns validated according to certain criteria and metrics. It is the resulting

artifact from step 5.

5.6.2 Validation suggestions

First of all a validation step has to be performed over the candidate patterns catalog in order to

know for sure which candidate patterns are valid patterns.

The validation could be performed by means of surveys to domain experts and domain

engineers.

Second of all a validation of the impact of the patterns in novice designers should be performed.

This validation could be performed by means of asking novice users to design sample problems

in the domain with and without the aid of the patterns catalog. The designers should later fill in

a survey to know how the use of patterns impacts the ease of design. From this experiment, the

quality of the resulting designs could be measured and compared.

As other alternative for validation we also suggest the automation of an algorithm that, taking as

input meta-models, should perform the following sub steps:

 Search for coincidences in the candidate patterns catalog by using a counter of elements

or counter of patterns (that a similar element is already in the catalog).

 Validation of coincidences and update in case the pattern needs changes (element or

pattern counter). It should support the insertion of new patterns in the candidate patterns

catalog.

99

Although this last suggestion would require the study of a substantial number of models that

should automatically check the occurrences of candidate patterns to either validate it or suggest

discarding it.

In any case the definition of the metrics and a method for validation should be further studied

and supported by current literature.

5.6.3 Maintenance and expansion suggestions

We suggest that a maintenance protocol should be defined for the patterns catalog.

We propose that the maintenance protocol contain a periodical validation of the state of the

catalog as well as a plan to expand the domains covered.

Moreover, those domains could include domain anti-patterns.

100

6 Summary

The project was conceived with the motivation of getting a product that aids designers to get

models of high quality by means of reuse of abstracted knowledge from a domain.

The main objective of the project was to develop a methodology for building a domain patterns

catalog. We studied other approaches in this topic and then adapted a methodology for our

purposes. For this end we analyzed the method step by step and studied the alternatives to

finally discover criteria to perform the steps systematically.

In order to validate the method we analyzed the healthcare management domain, where we

discovered and gathered recurring patterns from domain models collected from sources of

research and industry.

6.1 Conclusions

Domain analysis requires the participation of domain experts as well as domain engineers. The

knowledge produced in designs of the same domain can be abstracted and prepared for reuse.

In the context of this work we discuss domain analysis and model driven development as

current approaches that we use and that can take advantage of a method for collection of domain

knowledge. Also, we discuss patterns as outstanding means of knowledge packaging and

communicating for reuse.

With that in mind, we studied some authors that developed patterns in many areas of

engineering in order to understand their methods and create one appropriate for collecting

domain patterns from the sources available for us.

As a result a five-step methodology for building domain patterns has been created. Each step

has clear boundaries defined, that is to say the sub-steps, the artifacts produced and how the

results of the step should look like in preparation for the next step.

We illustrate a walk through the methodology with the purpose of validating it by developing a

Domain Patterns Catalog for the healthcare management domain.

For supporting the methodology a metamodel for storing domain patterns and the elements of a

catalog was developed, tested and implemented using the EMF framework of Eclipse.

Also an analysis of classification schemas has been performed and a general classification

schema was developed and attached to enrich the metamodel for domain pattern catalogs.

101

The notation of the metamodel’s design makes it easy to understand as well as to manipulate if

needed. Its flexibility makes it ideal for developing pattern catalogs of other domains of

expertise.

The use of Eclipse EMF in the implementation gives the catalog the portability necessary for

amplifying the accessibility to the information contained in the catalog.

By following the method proposed, we discover that the process of identification and

construction of patterns from models of the domain can be made in an efficient and systematical

way; therefore its automation could be a future research step.

The resulting candidate patterns will be available at the repository of works of the DIMA

department of the Technical University of Berlin and also at a CD attached to this thesis.

We are confident that the patterns can be useful for researchers interested in further developing

and maintaining the catalog as well as for designers, people coming from different backgrounds

of expertise, interested in modeling the domains in a uniform way.

Finally, we have made a pre validation of the accuracy of the patterns by comparing them to

pattern catalogs, coming to the conclusion that other authors have identified some of our

patterns as patterns themselves.

6.2 Issues

Originally the desired sources were XML based files, such as XSD, XMI, OWL among others;

but the search of such model files presented several problems, i.e. irrelevant results,

heterogeneity, etc. Hence, the start of the project was tremendously affected by this lack of

sources available on the internet and the search of sources had to be expanded to model files

such as UML diagrams, ER diagrams and SQL Schemas.

We faced a difficult decision point when we had to decide about the pattern representation,

whether to use a simpler and broadly used schema or a complex semantic net. Therefore an

analysis had to be made and even though knowledge representation models that offer more

explanatory power, they demand higher cognitive effort. That is why we explore the option that

offers simplicity, a well-known representation that does not need the effort of re-learning and

that will finally allow for better systematic reuse of domain knowledge.

As part of the issues concerning the Eclipse EMF framework we identify that after making

instances of the metamodel it is dangerous to go back and update the model because of loss of

instances. However, some techniques and tools are available to deal with this matter in the area

of model consistency.

102

There is a need to know if the patterns provided actually contribute to a better designing

performance, for that reason the implementation of a validation method is imperative. The main

issue of this matter is defining and testing clear acceptance levels and metrics.

6.3 Recommendations and Future Work

After the analysis of current literature and after the development of this work we identify

opportunities in many areas to enrich and further develop in the topic of this thesis.

First of all we discover the need of a tool for source models acquisition, a first approach to it

was the work of Thonggoom [60], although the theory is provided, no tool for models search is

available. Therefore a research area could merge the findings of this work and the theory of the

author mentioned in order to provide a tool that would retrieve model sources in all sorts of

domains. Some other ideas include the extraction of models using Web SCRAPE and Yahoo

BOSS API among others.

We recommend as future work to perform of experiments and case studies in order to perform

validation of the current state of the catalog. From this analysis the definition of the acceptance

levels and metrics should be well documented and tested for other developers to make use of it

in conjunction to our method. As some general ideas we cite: Development of a survey with

expert designers to evaluate the accuracy of the patterns and development of a survey with

novice designers that evaluate how helpful the patterns are in the new known domain.

Another area of future work may consist on the automation of our method. This would include a

sort of parser that is able to understand all source model files in order to perform the extraction

of elements.

This idea is also applicable to another area of research that would deal with the validation of the

candidate patterns. Meaning that having other models and a parser that can process them, one

could implement a validator able to set the coincidence rate and therefore validate automatically

the patterns in the catalog or even create/suggest new ones.

The Eclipse EMF API can be used as base to read and compare a set of models and a set of

patterns. This can not only be an opportunity for validation, but also could be used as base for

the implementation of a pattern retrieving mechanism within a graphical tool that may be

implemented to aid designers in using the patterns catalog. I.e. the tool could suggest the use of

patterns according to the set of domain concepts the designer introduces in the model. The work

of Agt [2], deals with this kind of suggestions, although at another level of knowledge reuse.

103

Finally we think that this thesis can be a further developed in direction of developing a

knowledge-based service to support domain-specific modeling under the context of the

BIZWARE project [1].

104

7 Literature

1. Agt, H., Kutsche, R.-D., Natho, N., Li, Y.: The BIZWARE Research Project. In : 15th

International Conference, MODELS 2012, Innsbruck, Austria (2012)

2. Agt, H., Kutsche, R.-D.: Supporting Software Language Engineering by Automated Domain

Knowledge Acquisition. In Springer, ed. : MODELS 2011, vol. 7167 (2011)

3. Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF, Fundamental Approaches to

Software Engineering. In : Lecture Notes in Computer Science, vol. 4961/2008, pp.377-391

(2008)

4. Ludewig, J.: Models in software engineering – an introduction. In Springer, ed. : Software

and Systems Modeling Vol. 2. Springer (March 2003) 5–14

5. Stachowiak, H.: General Model Theory. Springer (1973)

6. Fakhroutdinov, K. In: UML diagrams graphical notation overview, tutorials, examples, and

reference. (Accessed 10-04-2013 2010) Available at: http://www.uml-diagrams.org/

7. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process 1st edn.

Addison Wesley (1999)

8. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology,

Engineering, Management. John Wiley & Sons (2006)

9. Object Management Group: OMG. (Accessed December 2012) Available at:

http://www.omg.org/

10. Kutsche, R.-D.: Lecture notes Advanced Information Modeling. DIMA-TU Berlin, Berlin

(Summer Term 2013)

11. Kleppe, A.: Episode 120: MDD, DSL, UML, OCL with Anneke Kleppe. (Accessed

November 2008) Available at: http://www.se-radio.net/2008/12/episode-120-ocl-with-

anneke-kleppe/

12. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology,

Engineering, Management. John Wiley & Sons (2006)

13. Prieto-Díaz, R., Arango, G.: Domain Analysis. Press, IEEE Computer Society, USA (1991)

http://www.uml-diagrams.org/
http://www.omg.org/
http://www.se-radio.net/2008/12/episode-120-ocl-with-anneke-kleppe/
http://www.se-radio.net/2008/12/episode-120-ocl-with-anneke-kleppe/

105

14. Prieto-Diaz, R.: Domain Analysis for reusability. In : COMPSAC 87, pp.22-29 (1987)

15. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering

Institute (1990)

16. Fowler, M.: Domain-Specific Languages 1st edn. Addison-Wesley Professional (2010)

17. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages Using

Metamodels. Addison-Wesley Professional (2008)

18. Voelter, M.: DSL Engineering: Designing, Implementing and Using Domain-Specific

Languages. CreateSpace Independent Publishing Platform (2013)

19. Parr, T.: Language Implementation Patterns: Create Your Own Domain-Specific and

General Programming Languages. Pragmatic Programmers (2010)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF - Eclipse Modeling

Framework 2nd edn. Addison Wesley (2009)

21. Eclipse Foundation: Eclipse Modeling Framework Project (EMF). (Accessed March 20013)

Available at: http://www.eclipse.org/modeling/emf/

22. Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.

Addison-Wesley Professional (2009)

23. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. Oxford University

Press (1977)

24. Fowler, M.: Analysis patterns for reusable Object Models. Addison-Wesley (1997)

25. Gamma, E. .: Design Patterns: Elements of reusable software components 2nd edn.

Addison-Wesley (1997)

26. Tesanovic, A.: What is a pattern? Dr. ing. course DT8100 (prev. 78901/45942/DIF8901)

Object-oriented Systems, Linköping University (2005)

27. Alexander, C. In: Pattern Language. (Accessed April 2013) Available at:

http://www.patternlanguage.com

http://www.eclipse.org/modeling/emf/
http://www.patternlanguage.com/

106

28. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture: A System of Patterns. John Wiley & Sons (1996)

29. Coplien, J.: The Patterns Handbook: Techniques, Strategies, and Applications 1st edn.

Cambridge University Press (1998)

30. Alexander, C.: The Timeless Way of Building. Oxford University Press (1979)

31. Ward, C., Kent, B.: Using Pattern Languages for Object-Oriented Programs. In :

OOPSLA'87 workshop on the Specification and Design (1987)

32. Coad, P., Mayfield, M.: Object Model Patterns. Workshop Report l-512-795-0202, Portland

(1994)

33. Coplien, J., Schmidt, D.: Pattern Languages of Program Design. In Addison-Wesley, ed. :

Pattern Languages of Programming - PLoP (1995)

34. Czarnecki, K., Eisenecker, U.: Generative programming: methods, tools, and applications.

Addison Wesley (2000)

35. Buschmann, F., Henney, K.: Pattern-Oriented Software Architecture. (Accessed September

2012)

36. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented

Modeling and Design. Prentice-Hall (1991)

37. Fraser, S., Leishman, D., McLellan, R.: Patterns, Teams and Domain Engineering. In ACM,

ed. : SSR '95 - Symposium on Software reusability , New York, pp.222-224 (1995)

38. Fülleborn, A., Heisel, M.: Methods to Create and Use Cross-Domain Analysis Patterns. In :

EuroPLoP' 2006, Eleventh European Conference on Pattern Languages of Programs (2006)

39. Fülleborn, A., Meffert, K., Heisel, M.: Problem-Oriented Documentation of Design Patterns.

In Springer-Verlag, ed. : FASE '09 Proceedings of the 12th International Conference on

Fundamental Approaches to Software Engineering: Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2009, pp.294 - 308 (2009)

40. Tepandi, J., Piho, G., Puusep, V.: Archetypes Based Development from the Perspective of

Domain Engineering Research Topics. In : MIPRO 2012, pp.686-691 (2012)

107

41. Hay, D.: Data model patterns: Conventions of thought. Dorset House Pub (1996)

42. Silverston, L.: The Data Model Resource Book - A library of Universal Patterns for all

Enterprises 1. John Willey & Sons (2001)

43. Silverston, L.: The Data Model Resource Book - A library of Universal Data Models by

Industry Types 2. John Wiley & Sons (2001)

44. Silverston, L., Agnew, P.: The Data Model Resource Book - Universal Patterns for Data

Modeling 3. Wiley Publishing (2009)

45. Vlissides, J., Coplien, J., Kerth, N.: Pattern Languages of Program Design 2 2. Addison-

Wesley Professional (1996)

46. Fernandez, E., Yuan, X.: Semantic Analysis Patterns., Florida Atlantic University (2000)

47. Sorgente, T., Fernandez, E., Larrondo, M.: Analysis Patterns for Patient Treatment Records.

In : Proceedings of the 12th Pattern Languages of Programs Conference (PLoP2004), pp.8-

12 (2005)

48. Sorgente, T., Fernandez, E., Larrondo, M.: The SOAP Pattern for Medical Charts. In :

Proceedings of the 12th Pattern Languages of Programs Conference (PLoP2005), pp.7-10

(2005)

49. Vaccare, R., Germano, F., Masiero, P.: A Pattern Language for Business Resource

Management. In : In Proceedings of the 6th Pattern Languages of Programs Conference

(PLoP’99) (1999)

50. Vaccare, R., Germano, F., Masiero, P.: A Confederation of Patterns for Resource

Management. In : Proceedings of Pattern Language of Programs’ 98 (PLOP’98) (1998)

51. Arsanjani, A.: Service Provider: A Domain Pattern and its Business Framework

Implementation. In : Proceedings of Pattern Language of Programs’ 99 (PLOP’99) (1999)

52. Oxford University Press In: The Oxford English Dictionary - Online. (Accessed April 2013)

Available at: http://dictionary.oed.com/

53. IEEE In: Draft Standard for Learning Object Metadata. (Accessed April 2013) Available at:

http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf

http://dictionary.oed.com/
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf

108

54. Löbe, M., Knuth, M., Roland, M.: TIM: A Semantic Web Application for the Specification

of Metadata Items in Clinical Research. Workshop on Semantic Web Applications and

Tools for Life Sciences, University of Leipzig, Germany (2009)

55. Health Level Seven International (HL7) In: Health Level Seven. (Accessed April 2013)

Available at: http://www.hl7.org

56. Federal Geographic Data Committee: Street Address Data Standard. Standard, FGDC

(2005)

57. ANZLIC Metadata Profile 1.1. Standard 978-0-646-46940-9 , ANZLIC - The Spacial

Information Council, Australia-New Zeland (2007)

58. Carreon, C.: “Construcción de un catálogo de patrones de requisitos funcionales para ERP”

– English: Construction of a Functional-Requirements-Patterns Catalogue. Master Thesis,

Technical University of Catalunya, Barcelona, Spain (2008)

59. Botella, P., Burgués, X., Carvallo, J. P., Franch, X., Grau, G., Marco, J., Quer, C. In:

GESSI: Publications. (Accessed November 2012) Available at:

http://www.essi.upc.edu/~webgessi/publicacions/SMEF'04-ISO-QualityModels.pdf

60. Thonggoom, O., Song, I.-Y., An, Y.: Semi-automatic Conceptual Data Modeling Using

Entity and Relationship Instance Repositories. In Springer, ed. : Conceptual Modeling – ER

2011. (2011) 219-232

61. Han, T.-D., Purao, S., Storey, V.: A Methodology for building a Repository of Object-

Oriented Design Fragments. In Springer, ed. : ER, pp.203-217 (1999)

62. Riehle, D.: Composite Design Patterns. In Press, A., ed. : Object-Oriented Programming

Systems, Languages and Applications (OOPSLA), pp.218-228 (1997)

63. Vlissides, J.: Composite Design Patterns (They aren't what you think). In Report, C., ed. :

Pattern Hatching (1998)

64. Fakhroutdinov, K. In: UML Diagrams. (Accessed March 2013) Available at: www.uml-

diagrams.org

65. iSchool at Drexel In: Knowledge Repository of Schemas and Semantics. (Accessed March

2013) Available at: http://cluster.ischool.drexel.edu:8080/kross

http://www.hl7.org/
http://www.essi.upc.edu/~webgessi/publicacions/SMEF'04-ISO-QualityModels.pdf
www.uml-diagrams.org
www.uml-diagrams.org
http://cluster.ischool.drexel.edu:8080/kross

109

66. Williams, B. In: Database Answers. (Accessed February 2013) Available at:

http://www.databaseanswers.org

67. Bvbsoft Community In: BVBSoft. (Accessed December 2012) Available at:

www.bvbsoft.com

68. Wandelt, B. In: DIMA Repositories: project-bizware - Revision 2647. (Accessed March

2013) Available at: https://svn.dima.tu-berlin.de/svn/project-

bizware/public/trunk/theses/benedict_wandelt/

69. Sandy-Martinez, S., Laime, C.: SIIH - Sistema Integrado de Informacion Hospitalaria.

Bachelor's Theses, Universidad Mayor Real y Pontificia de San Francisco Xavier de

Chuquisaca, Sucre, Bolivia (2009)

70. Lucredio, D.: Models Repository. (Digital Resource) (2012)

71. Repository for Model Driven Development (ReMoDD). (Accessed January 2013) Available

at: http://www.cs.colostate.edu/remodd/v1/

72. OneTree Technologies S.A.: Metamodel Zoos. (Accessed November 2012) Available at:

http://www.emn.fr/z-info/atlanmod/index.php/Zoos

73. The Wikimedia Project: Wikipedia. (Accessed June 2013) Available at:

http://www.wikipedia.org/

http://www.databaseanswers.org/
www.bvbsoft.com
https://svn.dima.tu-berlin.de/svn/project-bizware/public/trunk/theses/benedict_wandelt/
https://svn.dima.tu-berlin.de/svn/project-bizware/public/trunk/theses/benedict_wandelt/
http://www.cs.colostate.edu/remodd/v1/
http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://www.wikipedia.org/

110

APPENDIX

111

Appendix A. Metamodel of the Domain Patterns Catalog

I. UML metamodel

112

II. Ecore metamodel

113

Appendix B. Elements Union

I. Entities

E

ID
Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

001

entity concrete Hospital clinic, infirmary

 name String

 address Address

 email String

 website String

 phone Phone

CN-

002
entity abstract Person

 name Name

 title String

 gender Gender

 birthdate Date

 address Address

 phone Phone

CN-

003
entity concrete Department area, branch

 idDepartment int

 type string

 name string

 description text

CN-

004
entity abstract Staff crew, employees,

personnel, workers
 staffId

 joined Date

 education String

 certification String

 languages String

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 emergencyPhone string

 phone Phone person

 otherStaffDetails

CN-

005
entity concrete Patient inpatient, outpatient,

referral,sick person,

deseased person
 patientId patientNo,

Social Security

numbers,

driver's license

number

String

 accepted inPatientDate Date

 sickness Illness History

114

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 prescriptions Drugs String

 allergies String

 special_reqs String

 name Name Name person

 title Occupation String person

 gender Sex Gender person

 birthdate Date person

 home_address Address Address person

 birthplace String

 phone telephone, landline,

homePhone

Phone person

 height double

 weight double

 workPhone String

 cellPhone String

 otherPatientDetails text

 maritalStatus string

 nextOfKin string

CN-

006
entity abstract OperationsEmployee

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 Pone Phone person

CN-

007

entity abstract AdministrativeEmployee

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

008

entity abstract TechnicalEmployee

 Joined Date employee

 education String employee

 certification String employee

115

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

009

entity concrete Doctor doctor, physician,

medic

 doctorID String

 specialty String

 locations String

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

019

entity concrete ConsultantDoctor attending physician,

staff physician

 specialty String doctor

 locations String doctor

 physician_id integer identifier

 name Name person

CN-

010

entity concrete Nurse

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

011

entity concrete Surgeon

 specialty String doctor

 locations String doctor

 joined Date employee

 education String employee

 certification String employee

116

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

012

entity concrete FrontDeskEmployee

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

013

entity concrete Receptionist

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 gender Gender person

 birthdate Date person

 home_address Address person

 Pone Phone person

CN-

014

entity abstract Technician

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

015

entity abstract Technologist

 joined Date employee

 education String employee

 certification String employee

117

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

016

entity abstract Surgical_Technologist

 joined Date employee

 education String employee

 certification String employee

 languages String employee

 name Name person

 title String person

 gender Gender person

 birthdate Date person

 home_address Address person

 phone Phone person

CN-

017
entity concrete Team firms

 Name String

CN-

018

entity concrete Room Facility

 roomId RoomId

 patientsGender Gender

 capacity Integer

CN-

031
entity concrete Facility

 facilityId String

 description Text

 squareFootage

CN-

020

entity concrete Junior_Doctor

 specialty String doctor

 locations String doctor

CN-

022

entity concrete Examination exam, test

 idExamination

 date

CN-

023

entity concrete Diagnosis

 idDiagnosis CIE10

 date

CN-

024

entity concrete Prescription

 idPrescription

 date

 Status

118

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

025

entity concrete Treatment patientDrugsTreatments,

intervention

 treatmentId String

 treatmentDate Date

 treatmentTime Time

CN-

026
entity concrete Therapy

CN-

027
entity concrete Surgery operation, surgery,

surgical operation,

surgical procedure

CN-

028
entity concrete Insurance

 cardholder integer

 company String

 type

 copay Numeric(5,2)

CN-

029
entity concrete Medical_Procedure

 Procedure_id

 name

 risk

 Price

CN-

030
entity concrete MedicalRecord

 RedordId

 PatientId

 DoctorId

 physicalExam

 tests

 diagnosis

 recordComponents

 Date

 medicalCondition

 UserName String(20)

 otherRecordDetails referredTo

CN-

032
entity concrete Bed

 idBed bedNumber IdBed

 status BedStatus

CN-

033

entity concrete Bill

 RecordID record

 PatientId

 Quantity

 patientBillId

 dateBillPaid

 totalAmountDue

 PaymentType

 otherBillDetails

 Items

119

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

034
 entity concrete Item

 itemSequenceNr identifier

 ItemName String[50] record

 Total int

 UnitId int

 BuyPrice float

 SalePrice float

CN-

035
entity concrete cleaningEmployee

CN-

036
entity concrete driver

CN-

037
entity concrete kitchenEmployee

CN-

038
entity concrete laboratoryEmployee

CN-

039
entity concrete childPatient patient

 legalGuardian

CN-

040
entity concrete service

 idService

 type

 name string

 price float

 valid? bool

CN-

042
entity concrete vaccine

 idVaccine int

 name string

 description text

CN-

043
entity concrete relative

 idRelative int

 name string

 birthdate date

 relation string

 maritalStatus string

 occupation string

 address string

 telephone string

CN-

044
entity concrete epicrisis

 idEpicrisis int

 testResults text

 evolution text

 treatment text

 complications text

 recommendations text

CN-

045
entity concrete habit

 name string

120

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

046
entity concrete clinicalBackground

 idClinicalBackground

 infections

 behaviorProblems

 surgeries

 hospitalizations

 other

 updateDate

CN-

047
entity concrete allergy

 idAllergy

 type

CN-

048

entity concrete order

 date

 service

 patient

 bill

 personnel

 price

CN-

049

entity concrete request

 idRequest

 date

 doctorRequesting

 diagnosis

 patient

 type

 status {emited, in process,

done}
CN-

050
entity concrete emergencyConsult

 broughtBy text

 conditionOfAdmission

 contactPerson

 ContactAddress

 contactPhone

 legalNotification

 typeOfAcccident

CN-

051
entity concrete circulatoryEmergency

 periferalPulse

 pulseComment

 cyanosis

 capillaryRefillTime

 cardiacSounds

 thoracalgia

 locationOfThoracalgia

 characteristicsThorocalgia

121

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 edema oedema

 locationOfEdemas

CN-

052
entity concrete digestiveEmergency

 abdomen

 abdominalPain

 vesicalHabits

 hydroaerialNoises

 symptoms

 observations

 vaginalBleeding

 observationsBleeding

CN-

053

entity concrete vitalSignsEmergency

 heartRate [bpm]

 respiratoryRate

 bloodPressure [mmHg]

 temperature [°]

 oralMucous

 observations

 skin

 injuries

CN-

054

entity concrete respiratoryEmergency

 toraxicExpansion

 respiratoryNoises

 bronchialSecretions

 auscultation

 observations

CN-

055

entity concrete movementDisorderEmergency

 limitation

 partialLimitation

 membersMovility

 characteristicsOfMobility

 walkingAbility

 deformities

CN-

056

entity concrete perceptionEmergency

 discomfort

 pain

 duration

 alterations

 characteristicsOfAlteration

 intensityOfCephalea

 observationsCephalea

 nausea

 fobias

 emotionalState

122

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 personalConflicts

 alcoholism

 familiarViolence

 suicideIntent

CN-

057

entity concrete neurologicalEmergency

 glasgowResult

 glasgowAO

 glasgowRV

 glasgowRM

 consciousness

 pupils

 seizures convulsions

 psychomotorRestlessness

 motorDeficit

CN-

058

entity

concrete ICD10 International Classification of Diseases,

International Statistical Classification of

Diseases and Related Health Problems
Code

descriptor

 version

CN-

059

entity concrete familiarBackground

 anemia

 autism

 asthma

 ADHD

 birthDefects

 bleedingDisorders

 cancer

 cerebralPalsy

 depression

 diabetes

 downSyndrome

 drugAbuse

 geneticDisease

 headaches

 hearingLoss

 heartDisease

 highCholesterol

 highBloodPressure

 kidneyDisease

 liverDisease

 seizures

 skinDisease

 stroke

 thyroidDisease

 tuberculosis

123

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 ulcers

 other

CN-

060

entity concrete pediatricFamilyBackground

 smokingExposure

 dayCare

 numberOfSiblings

 pets

CN-

061

entity concrete pediatricBirthBackground

 fullTerm

 birthWeight

 delivery

 deliveryComplications

 pregnancyIssues

 brestfeed

 brestfeedingDuration

CN-

062

entity concrete dentalConsult

 dentalHealth

 currentDisease

 bleeding

 hospitalized

 headaches

 pregnancy

 metalallergies

 currentDiscomforts

 mainDiscomfort

 durationOfDoscomfort

 lastXRay

 treatment

 observations

CN-

063

entity concrete dentalTreatmentPlan

 treatmentPlan

 observations

CN-

064

entity concrete endodonticsFile

 organ

 symptoms

 diagnosis

 treatment

 pain

 discomfort

 conductometry

 observations

CN-

065

entity concrete dentalExamination

 missingTeeth

 caries

124

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 restaurations

 diastemas

 cervicalErosion

 surfaceLoss

 sensibility

CN-

066
entity concrete periodontalExam

 pockets

 gingivalRecession

 furcations

 mobility

 redness

 bleeding

 sweling

 frenulumInsertion

 gumLoss

 plaque

CN-

065

entity concrete pediatricConsult

 height

 weight

 guardian

CN-

066

entity concrete obstetricFamilyBackground

 tbc

 diabetes

 hipertension

 preclampsia

 others

CN-

067

entity concrete obstetricPersonalBackground

 tbc

 diabetes

 hipertension

 preclampsia

 previousPregnancies

 abortions

 deliveries

 vaginalDeliveries

 caesareanDeliveries

 bornAlive

 bornDead

 others

CN-

068

entity concrete obstetricConsult

 prenatalControls

 previousGenitalTractSurgery

 infertility

 hiv

125

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 cardiacConditions

 otherAcuteMedicalCondition

CN-

069

entity concrete obstetricCurrentPregnancy

 weightPreviousPregnancy

 abdomenSize

 lastPeriodDate date

 predictedDueDate date

 fetalMovement

 cigarretesPerDay

 alcohol

 drugs

 antitetanicImmunization

 antimeaslesImmunization

 normalOdontologicalExam

 normalMamalExamination

 normalCervixExamination

 bodyMassIndex

 bloodType

 rhFactor

 papanicolaou

 proteinInUrin

 sifilis

 hemoglobin

 anemic

 folates

 streptococcus

 pelvicExamination

CN-

070

entity concrete obstetricCheckup

 idCheckup

 dateCurrentCheckup

 gestationalAge

 weight

 bloodPressure

 fundalHeight

 presentation

 fetalHeartbeat

 AmountFerrousSulphateSuplement

 obstetricExams

 dateNextCheckup

CN-

071

entity concrete obstetricPartogram

 time

 company

 position

 dilatation

126

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

 fcfDips

 observations

CN-

072

entity concrete obstetricNewborn

 gender

 weight

 height

 headCircumference

 gestationalAge

 physicalExamination

 apgarFirstMinute

 apgarFifthtMinute

 resuscitation

 diesInDeliveryRoom

 congenitalDefects

 congenitalIllnesses

 vdrlScreening

 tshScreening

 chagasScreening

 bilirubinScreening

 meconiumFirstDayScreening

 Observations

CN-

073
entity concrete obstetricDischarge ,

 dateOfNewbornDischarge date

 statusOfNewbornDischarge string

 ageOfNewborn

 Lactation

 weightOfNewbornDischarge

 dateOfMotherDischarge

 statusOfMotherDischarge

 ageOfNewborn

 Lactation

 weightOfNewbornDischarge

 antiMeaslesPostPartumImmunization

 contraception

CN-

078
entity concrete obstetricPuerperium

 Time

 Temperatura

 Pulse

 bloodPressure

 Lochia

127

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

079

entity concrete obstetricBirthOrMiscarriage

 admissionDate

 antenatalCorticoidsAdministration

 dateStartOfDiscomfort

 ruptureOfAmnioticMembrane

 weekOfGestationalAge

 Presentation

 Delivery

 dateTimeOfDelivery

 Multiple

 Termination

 indicationsForDelivery

 codeInducingMiscarriage

 codeOperation

 birthPosition

 Episiotomy

 tearDegree

 oxytocinDelivery

 retainedPlacenta

 cordLigature

CN-

080

entity concrete obstetricBirthOrMiscarriageIllnesses

 previousHighbloodPressure

 inductedHighBloodPressure

 preEclampsia

 eclampsia

 cardioVascular

 diabetes

 chorioamnionitis

 urinaryInfection

 threatenPretermLabour

 fetalGrowthRestriction

 prelaborRuptureOfMembranes

 anemia

 hemorrhage

 postPartumHemorrhage

 postPartumInfections

 otherSevereCondition

CN-

081

entity concrete obstetricBirthOrMiscarriageAdministeredMedicine

 magnesiumSulfate

 oxytocin

 antibiotics

 analgesics

 anesthesia

 transfusions

128

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

082
entity concrete examLaboratory

 date date

CN-

083

entity concrete examRadiology

 name String

 resultsDate date

 description text

CN-

084

entity concrete examUltrasonography

 date Date

 requestingDoctor Doctor

 conclusion text

CN-

085
entity concrete uroAnalysis

CN-

086
entity concrete chemicalAnalysis

CN-

087
entity concrete immunology

CN-

088
entity concrete stoolTest

CN-

089
entity concrete bacilloscopy

CN-

090
entity concrete hematology

CN-

091
entity concrete pregnancyTest

CN-

092
entity concrete gynecologicalUltrasound

CN-

093
entity concrete pregnancyObstetricUltrasound

CN-

094
entity concrete obstetricUltrasound

CN-

095
entity concrete earlyPregnancyUltrasound

CN-

096
entity concrete urologicalUltrasound

CN-

097
entity concrete abdominalUltrasound

CN-

098

entity concrete consult visit

 id string

 date date

CN-

099 entity concrete medicalOffice

CN-

100 entity concrete medicalBuilding

CN-

101

entity concrete Clinic

CN-

102

entity concrete Floor

CN-

103

entity concrete operationRoom

CN-

104

entity concrete emergencyRoom

CN-

105

entity concrete laboratory

CN-

106

entity abstract party

129

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

107

entity concrete organization

CN-

108
entity concrete guardian

CN-

109
entity concrete medicalEmployee

CN-

110
entity concrete intern

CN-

111
entity concrete imagineryTechnologist

CN-

112
entity concrete surgicalTechnologist

CN-

113
entity concrete employer

CN-

114
entity concrete insuranceProvider

CN-

115
entity concrete healthcareProvider

CN-

116
entity concrete privatePractice

CN-

117
entity concrete role

 description

CN-

118
entity concrete personRole

CN-

119
entity concrete insuredPartyRole

CN-

120
entity concrete OrganizationRole

CN-

121
entity concrete individualPractitioner

 specialty

CN-

122
entity concrete insuredIndividual

CN-

123
entity concrete insuredOrganization

CN-

124
entity concrete insuredContractHolder

CN-

125
entity concrete insuredDependent

CN-

126
entity concrete teamOfPractitioners

CN-

127
entity concrete institution

CN-

128
entity concrete thirdPartyAdministrator

CN-

129
entity concrete infections

CN-

130
entity concrete surgeries

CN-

131
entity concrete hospitalizations

CN-

132
entity concrete behaviorProblems

CN-

133
entity concrete personalAntecedents

CN-

134
entity concrete foodAllergy

CN-

135
entity concrete petAllergy

CN-

136
entity concrete seasonalAllergy

CN-

137
entity concrete chemicalAllergy

130

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

138
entity concrete metalAllergy

CN-

139
entity concrete otherAllergy

CN-

140
entity concrete sample

 amount

 natureOftheSample

 dateTimeWhenProduced

CN-

141

entity concrete sputum

CN-

142

entity concrete swabs

CN-

143

entity concrete cerebroSpinalFluid

CN-

144

entity concrete feces

CN-

145

entity concrete synovialFluid

CN-

146

entity concrete urine

CN-

147

entity concrete infectedTissue

CN-

148

entity concrete blood

CN-

149

entity concrete cultures

CN-

150

entity concrete fullBloodCounts

CN-

151

entity concrete biopsy

CN-

152

entity concrete bloodFilms

CN-

153

entity concrete dna

CN-

154

entity concrete sensibilityTesting

 medicine

CN-

155

entity concrete specializedTest

CN-

156

entity concrete observation

 date

 time

 description

 value

131

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

157

entity concrete variable

CN-

158

entity concrete unitOfMeasure

CN-

159

entity concrete testObservation

CN-

160

entity concrete physicalObservation

CN-

161

entity concrete pathologist

CN-

162

entity concrete medicalLaboratoryAssist

ant (MLA)

CN-

163

entity concrete biomedicalScientist

(BMS)

CN-

164

entity concrete clinicalBioChemist

CN-

165

entity concrete pathologistsAssistant

(PA)

CN-

166

entity concrete medicalLaboratoryTech

nician (MLT)

CN-

167

entity concrete specimenProcessor

CN-

168

entity concrete plebotomist (PBT)

CN-

169

entity concrete transcriptionist

CN-

170

entity concrete leadTechnicalPersonnel

CN-

171

entity concrete laboratoryMedicalDirect

CN-

172

entity concrete secretary

CN-

173

entity concrete hypothesis

CN-

174

entity concrete projection

CN-

175

entity concrete activeObservation

CN-

176

entity concrete rejectedObservation

CN-

177

entity concrete deceasedRelative

CN-

178

entity concrete causeOfDeath

132

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

179

entity concrete tobaccoUse

CN-

180

entity concrete alcoholIntake

CN-

181

entity concrete exercise

CN-

182

entity concrete diet

CN-

183

entity abstract physicalExamination

CN-

184

entity concrete symptom

CN-

185

entity concrete movementDisorder

CN-

186

entity concrete neural

CN-

187

entity concrete circularory

CN-

188

entity concrete digestive

CN-

189

entity abstract organSystem

CN-

190

entity concrete perceptionDisorder

CN-

191

entity concrete vitalSigns

CN-

192

entity concrete respiratory

CN-

193

entity concrete inPatient

CN-

194

entity concrete outPatient

CN-

195

entity concrete note

 dateEntered

CN-

196

entity concrete medicalHystoryNote

CN-

197

entity abstract antecedent

CN-

198

entity concrete familiarHistory

CN-

199

entity concrete immunizationHistory

CN-

200

entity concrete immunizationTest

CN-

201

entity concrete medicalEncounterNote

133

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

202

entity concrete inPatientNote

CN-

203

entity concrete complaint

 nature

 duration

CN-

204

entity concrete historyOfPresentIllness

CN-

205

entity concrete assessment

CN-

206

entity concrete plan

CN-

207

entity concrete drugAdministration

CN-

208

entity concrete testResult

CN-

209

entity concrete admissionNote

CN-

210

entity concrete SOAPNote

CN-

211

entity concrete onServiceNote

CN-

212

entity concrete preOperativeNote

CN-

213

entity concrete operativeNote

CN-

214

entity concrete postOperativeNote

CN-

215

entity concrete procedureNotes

CN-

216

entity concrete dischargeNote

CN-

217

entity abstract obstetricInPatientNote

CN-

218

entity concrete deliveryNote

CN-

219

entity concrete postPartumNote

CN-

220

entity concrete address

CN-

221

entity abstract contactInformation

 type

CN-

222

entity concrete phoneNumber

CN-

223

entity concrete electronicAddress

134

E
ID

Element

Type

as Value Synonims type -

cardinalit

y

Parent

CN-

224

entity concrete postalAddress

CN-

225

entity concrete employment

 type

CN-

226

entity concrete position

 name

 description

CN-

227

entity concrete filledPosition

 startDate

 endDate

CN-

228

entity concrete quantity

 amount

 unit

CN-

229

entity concrete phenomenonType

CN-

230

entity concrete measurement

 category

CN-

231

entity abstract Object

135

II. Relationships

ID elemen

tType

as Value cardina

lity

Na

me

RN-

001

relations

hip

binary-

association

person-hospital n-n

RN-

002

relations

hip

aggregation hospital-department 1-n

RN-

003

relations

hip

aggregation department-staff 1-n

RN-

004

relations

hip

isA staff-person

RN-

005

relations

hip

isA patient-person

RN-

006

relations

hip

isA operationsEmployee-employee

RN-

007

relations

hip

isA administrativeEmployee-employee

RN-

008

relations

hip

isA technicalEmployee-employee

RN-

009

relations

hip

binary-

association

patient-operationEmployee n-n

RN-

010

relations

hip

isA doctor-operationsEmployee

RN-

011

relations

hip

isA nurse-operationsEmployee

RN-

012

relations

hip

isA surgeon-doctor

RN-

013

relations

hip

isA frontdesk_staff-administrativeEmployee

RN-

014

relations

hip

isA receptionist-administrativeEmployee

RN-

015

relations

hip

isA technician-technicalEmployee

RN-

016

relations

hip

isA technologist-technicalEmployee

RN-

017

relations

hip

isA surgical_technologist-technicalEmployee

RN-

018

relations

hip

aggregation hospital-team 1-1..n

RN-

019

relations

hip

aggregation hospital-room 1-n

RN-

020

relations

hip

isA consultant_doctor-doctor

RN-

021

relations

hip

isA junior_doctor-doctor

RN-

022

relations

hip

composition team-doctor 0..1-0..n

RN-

023

relations

hip

binary-

association

team-consultant_doctor 0..1-1 lead

er

136

ID elemen

tType

as Value cardina

lity

Na

me

RN-

024

relations

hip

binary-

association

team-patient 1-n

RN-

025

relations

hip

binary-

association

doctor-patient n-n treat

s

RN-

026

relations

hip

binary-

association

consultant_doctor-patient 1-n

RN-

027

relations

hip

binary-

association

room-patient 1-n

admissionDate

dischargeDate

RN-

028

relations

hip

binary-

association

patient-examination 1-n

RN-

029

relations

hip

binary-

association

patient-diagnosis 1-n

RN-

030

relations

hip

binary-

association

patient-prescription 1-n

RN-

031

relations

hip

binary-

association

patient-treatment 1-n

RN-

032

relations

hip

binary-

association

examination-diagnosis n-n

RN-

033

relations

hip

binary-

association

diagnosis-prescription n-n resul

tsIn

RN-

034

relations

hip

binary-

association

prescription-therapy 1-n

RN-

035

relations

hip

binary-

association

diagnosis-treatment resul

ts_in

RN-

036

relations

hip

isA therapy-treatment

RN-

037

relations

hip

isA surgery-treatment

RN-

038

relations

hip

binary-

association

doctor-examination 1-n

RN-

039

relations

hip

binary-

association

doctor-diagnosis n-n mak

e

RN-

040

relations

hip

binary-

association

doctor-prescription n-n writ

e

RN-

041

relations

hip

binary-

association

doctor-treatment n-n

RN-

042

relations

hip

binary-

association

patient-insurance 1-1

 insuranceNumber

RN-

043

relations

hip

binary-

association

physician-patient n-n visit

s

 visit_date Date

RN-

044

relations

hip

terciary-

association

patient-physician-medical_procedure cond

ucts

 visit_date

 Date

137

ID elemen

tType

as Value cardina

lity

Na

me

RN-

045

relations

hip

binary-

association

Medical_Procedure-Medical_Procedure 1-n follo

ws_

up
RN-

046

relations

hip

binary-

association

record-patient 1-1

RN-

047

relations

hip

binary-

association

record-staff n-n

RN-

048

relations

hip

binary-

association

patient-bill 1-n

RN-

049

relations

hip

binary-

association

room-bed 1-n has

RN-

050

relations

hip

binary-

association

patient-bed 1-n

RN-

051

relations

hip

binary-

association

department-staff 1-n boss

Of

RN-

052

relations

hip

isA cleaningStaff-staff

RN-

053

relations

hip

isA driver-staff

RN-

054

relations

hip

isA kitchenStaff-staff

RN-

055

relations

hip

isA laboratoryStaff-staff

RN-

056

relations

hip

isA childPatient-patient

RN-

057

relations

hip

binary-

association

surgeon-surgery

RN-

058

relations

hip

binary-

association

diagnosis-medicalRecord

RN-

059

relations

hip

binary-

association

treatment-medicalRecord

RN-

060

relations

hip

binary-

association

patient-vaccine

RN-

061

relations

hip

binary-

association

patient-relative

RN-

062

relations

hip

binary-

association

patient-epicrisis 1-n

 admissionDate date

 admissionDiagnosis text

 treatingDoctor

RN-

063

relations

hip

binary-

association

doctor-epicrisis n-n

 dischargeDate date

 dischargeCondition text

 dischargeDiagnosis

RN-

064

relations

hip

binary-

association

habit-patient n-n

138

ID elemen

tType

as Value cardina

lity

Na

me

RN-

065

relations

hip

binary-

association

clinicalBackground-patient n-n

RN-

066

relations

hip

binary-

association

patient-allergy n-n

 description

RN-

067

relations

hip

binary-

association

patient-order n-n

RN-

068

relations

hip

binary-

association

patient-request n-n

RN-

069

relations

hip

binary-

association

doctor-request n-n

RN-

070

relations

hip

binary-

association

service-request n-n

RN-

071

relations

hip

binary-

association

bill-request 1-n

RN-

072

relations

hip

isA emergency-consult

RN-

073

relations

hip

isA circulatoryEmergency-emergency

RN-

074

relations

hip

isA digestiveEmergency-emergency

RN-

075

relations

hip

binary-

association

vitalSignsEmergency-emergency

RN-

076

relations

hip

isA respiratoryEmergency-emergency

RN-

077

relations

hip

isA movementDisorderEmergency-emergency

RN-

078

relations

hip

isA perceptionEmergency-emergency

RN-

079

relations

hip

isA neurologicalEmergency-emergency

RN-

080

relations

hip

binary-

association

diagnosis-ICD10

RN-

081

relations

hip

binary-

association

familiarBackground-patient

RN-

082

relations

hip

isA dentalConsult-consult

RN-

083

relations

hip

aggregation dentalTreatmentPlan-dentalConsult

RN-

084

relations

hip

aggregation endodonticsFile-dentalConsult

RN-

085

relations

hip

aggregation dentalExamination-dentalConsult

RN-

086

relations

hip

aggregation periodontalExam-dentalConsult

RN-

087

relations

hip

isA pediatricConsult-consult

139

ID elemen

tType

as Value cardina

lity

Na

me

RN-

088

relations

hip

binary-

association

obstetricFamilyBackground-patient

RN-

089

relations

hip

binary-

association

obstetricPersonalBackground-patient

RN-

090

relations

hip

isA obstetricConsult-consult

RN-

091

relations

hip

aggregation obstetricCurrentPregnancy-obstetricConsult

RN-

092

relations

hip

aggregation obstetricCheckup-obstetricConsult

RN-

093

relations

hip

aggregation obstetricCheckup-doctor

RN-

094

relations

hip

aggregation obstetricPartogram-obstetricConsult

RN-

095

relations

hip

aggregation obstetricNewborn-obstetricConsult

RN-

096

relations

hip

binary-

association

obstetricNewborn-doctor

RN-

097

relations

hip

binary-

association

obstetricPartogram-doctor

RN-

098

relations

hip

aggregation obstetricDischarge-obstetricConsult

RN-

099

relations

hip

aggregation obstetricPuerperium-obstetricConsult

RN-

100

relations

hip

binary-

association

obstetricPuerperium-obstetricNewborn

RN-

101

relations

hip

aggregation obstetricBirthOrMiscarriage-obstetricConsult

 timeToDueDate

RN-

102

relations

hip

aggregation obstetricBirthOrMiscarriageIllnesses-

obstetricBirthOrMiscarriage

RN-

103

relations

hip

aggregation obstetricBirthOrMiscarriageAdministeredMedicine-

obstetricBirthOrMiscarriage

RN-

104

relations

hip

isA pediatricBirthBackground-familiarBackground

RN-

105

relations

hip

isA pediatricFamiliarBackground-familiarBackground

RN-

106

relations

hip

isA examLaboratory-examination

RN-

107

relations

hip

isA examRadiology-examination

RN-

108

relations

hip

isA examUltrasonography-examination

RN-

109

relations

hip

isA uroAnalysis-examLaboratory

RN-

110

relations

hip

isA chemicalAnalysis-examLaboratory

140

ID elemen

tType

as Value cardina

lity

Na

me

RN-

111

relations

hip

isA immunology-examLaboratory

RN-

112

relations

hip

isA stoolTest-examLaboratory

RN-

113

relations

hip

isA bacilloscopy-examLaboratory

RN-

114

relations

hip

isA hematology-examLaboratory

RN-

115

relations

hip

isA pregnancyTest-examLaboratory

RN-

116

relations

hip

isA gynecologicalUltrasound-examUltrasonography

RN-

117

relations

hip

isA pregnancyObstetricUltrasound-examUltrasonography

RN-

118

relations

hip

isA obstetricUltrasound-examUltrasonography

RN-

119

relations

hip

isA earlyPregnancyUltrasound-examUltrasonography

RN-

120

relations

hip

isA urologicalUltrasound-examUltrasonography

RN-

121

relations

hip

isA abdominalUltrasound-examUltrasonography

RN-

122

relations

hip

IsA Ward-facility

RN-

123

relations

hip

IsA Laboratory-facility

RN-

123

relations

hip

IsA Laboratory-facility

RN-

124

relations

hip

IsA hospital-medicalFacility

RN-

125

relations

hip

IsA medicalOffice-medicalFacility

RN-

126

relations

hip

IsA medicalBuilding-medicalFacility

RN-

127

relations

hip

IsA clinic-medicalFacility

RN-

128

relations

hip

IsA floor-medicalFacility

RN-

129

relations

hip

IsA room-medicalFacility

RN-

130

relations

hip

isA operationRoom-medicalFacility

RN-

131
relations

hip

isA emergencyRoom-medicalFacility

RN-

132

relations

hip

isA laboratory-medicalFacility

RN-

133
relations

hip

isA person-party

RN-

134
relations

hip

isA organization-party

141

ID elemen

tType

as Value cardina

lity

Na

me

RN-

135
relations

hip

isA guardian-person

RN-

136
relations

hip

isA employee-person

RN-

137
relations

hip

isA nurse-medicalEmployee

RN-

138

relations

hip

isA doctor-medicalEmployee

RN-

139
relations

hip

isA surgeon-doctor

RN-

140
relations

hip

isA consultantDoctor-doctor

RN-

141
relations

hip

isA intern-doctor

RN-

142
relations

hip

isA laboratoryPersonnel-medicalEmployee

RN-

143
relations

hip

isA imagineryTechnologist-technologist

RN-

144
relations

hip

isA employer-organization

RN-

145

relations

hip

isA insuranceProvider-organization

RN-

146
relations

hip

isA healthcareProvider-organization

RN-

147
relations

hip

isA hospital-healthcareProvider

RN-

148
relations

hip

isA privatePractice-healthcareProvider

RN-

149
relations

hip

binary-

association

party-role actingAs

RN-

150
relations

hip

isA personRole-role

RN-

151
relations

hip

isA insuredPartyRole-role

RN-

152
relations

hip

isA organizationRole-role

RN-

153
relations

hip

isA individualPractitioner-personRole

RN-

154

relations

hip

isA guardian-personRole

RN-

155
relations

hip

isA patient-personRole

RN-

156
relations

hip

isA employee-personRole

RN-

157
relations

hip

isA insuredIndividual-insuredPartyRole

RN-

158
relations

hip

isA insuredOrganization-insuredPartyRole

RN-

159
relations isA insuranceContractHolder-insuredIndividual

142

ID elemen

tType

as Value cardina

lity

Na

me

hip

RN-

160
relations

hip

isA insuranceDependant-insuredIndividual

RN-

161

relations

hip

isA healthcareProvider-organizationRole

RN-

162
relations

hip

isA thirdPartyAdministrator-organizationRole

RN-

163
relations

hip

isA insuranceProvider-organizationRole

RN-

164
relations

hip

isA employer-organizationRole

RN-

165
relations

hip

isA healthcarePractice-healthcareProvider

RN-

166
relations

hip

isA teamOfPractitioners-healthcareProvider

RN-

167
relations

hip

isA institution-healthcareProvider

RN-

168

relations

hip

isA other-healthcareProvider

RN-

169
relations

hip

isA familiarAntecedent-Antecedent

RN-

170
relations

hip

isA obstetricFamiliarAntecedent-Antecedent

RN-

171
relations

hip

isA obstetricPersonalAntecedent-Antecedent

RN-

172
relations

hip

isA pediatricFamiliarAntecedent-Antecedent

RN-

173
relations

hip

isA personalAntecedent-Antecedent

RN-

174
relations

hip

isA clinicalAntecedent-Antecedent

RN-

175

relations

hip

isA pediatricBirthAntecedent-Antecedent

RN-

176
relations

hip

isA infection-clinicalAntecedent

RN-

177

relations

hip

isA surgery-clinicalAntecedent

RN-

178
relations

hip

isA hospitalization-clinicalAntecedent

RN-

179
relations

hip

isA behaviourProblem-clinicalAntecedent

RN-

180
relations

hip

isA other-clinicalAntecedent

RN-

181
relations

hip

isA foodAllergy-Allergy

RN-

182
relations

hip

isA petAllergy-Allergy

RN-

183
relations

hip

isA seasonalAllergy-Allergy

143

ID elemen

tType

as Value cardina

lity

Na

me

RN-

184
relations

hip

isA chemicalAllergy-Allergy

RN-

185
relations

hip

isA otherAllergy-Allergy

RN-

186
relations

hip

binary-

association

sample-medicalEmployee

RN-

187

relations

hip

binary-

association

sample-patient

RN-

188
relations

hip

binary-

association

sample-test

RN-

189
relations

hip

isA sputum-sample

RN-

190
relations

hip

isA swabs-sample

RN-

191
relations

hip

isA cerebrospinalFluid-sample

RN-

192
relations

hip

isA feces-sample

RN-

193
relations

hip

isA synovialFluid-sample

RN-

194

relations

hip

isA urine-sample

RN-

195
relations

hip

isA infectedTissue-sample

RN-

196
relations

hip

isA blood-sample

RN-

197
relations

hip

isA cultures-test

RN-

198
relations

hip

isA fullBloodCount-test

RN-

199
relations

hip

isA biopsy-test

RN-

200
relations

hip

isA bloodFilms-test

RN-

201
relations

hip

isA dna-test

RN-

202
relations

hip

isA sensibilityTest-test

RN-

203

relations

hip

isA specializedTest-test

RN-

204
relations

hip

binary-

association

test-doctor requestedBy

RN-

205
relations

hip

isA testObservation-Observation

RN-

206
relations

hip

isA physicalObservation-Observation

RN-

207
relations

hip

binary-

association

observation-medicalEmployee

144

ID elemen

tType

as Value cardina

lity

Na

me

RN-

208
relations

hip

binary-

association

observation-variable

RN-

209
relations

hip

binary-

association

observation-unitOfMeasure

RN-

210
relations

hip

binary-

association

variable-unitOfMeasure

RN-

211

relations

hip

binary-

association

medicalEmployee-test

RN-

212
relations

hip

binary-

association

physicalObservation-Sample

RN-

213
relations

hip

binary-

association

physicalObservation-Patient

RN-

214
relations

hip

binary-

association

test-testObservation

RN-

215
relations

hip

isA pathologist-laboratoryPersonnel

RN-

216
relations

hip

isA medicalLaboratoryAssistant (MLA)-laboratoryPersonnel

RN-

217
relations

hip

isA biomedicalScientist (BMS)-laboratoryPersonnel

RN-

218

relations

hip

isA clinicalBioChemist-laboratoryPersonnel

RN-

219
relations

hip

isA pathologistsAssistant (PA)-laboratoryPersonnel

RN-

220
relations

hip

isA medicalLaboratoryTechnician (MLT)-technicalEmployee

RN-

221
relations

hip

isA specimenProcessor-technicalEmployee

RN-

222
relations

hip

isA plebotomist (PBT)-technicalEmployee

RN-

223
relations

hip

isA transcriptionist-administrativeEmployee

RN-

224
relations

hip

isA leadTechnicalPersonnel-administrativeEmployee

RN-

225
relations

hip

isA laboratoryMedicalDirector-administrativeEmployee

RN-

226
relations

hip

isA secretary-administrativeEmployee

RN-

227

relations

hip

isA hypothesis-observation

RN-

228
relations

hip

isA projection-observation

RN-

229
relations

hip

isA activeObservation-observation

RN-

230
relations

hip

isA rejectedObservation-observation

RN-

231
relations

hip

binary-

association

observation-observation

145

ID elemen

tType

as Value cardina

lity

Na

me

RN-

232
relations

hip

binary-

association

relative-familiarAntecedents

RN-

233
relations

hip

isA deceasedRelative-relative

RN-

234
relations

hip

binary-

association

deceasedRelative-causeOfDeath

RN-

235

relations

hip

isA familiarAntecedent-diagnosis

RN-

236
relations

hip

isA causeOfDeath-diagnosis

RN-

237

relations

hip

isA tobaccoUse-habit

RN-

238

relations

hip

isA alcoholIntake-habit

RN-

239

relations

hip

isA exercise-habit

RN-

240

relations

hip

isA diet-habit

RN-

241

relations

hip

aggregation vitalSigns-PhysicalExamination

RN-

242

relations

hip

aggregation organSystem-PhysicalExamination

RN-

243

relations

hip

aggregation movementDisorder-PhysicalExamination

RN-

244

relations

hip

aggregation perceptionDisorder-PhysicalExamination

RN-

245

relations

hip

isA Neural-organSystem

RN-

246

relations

hip

isA circulatory-organSystem

RN-

247

relations

hip

isA digestive-organSystem

RN-

248

relations

hip

isA respiratory-organSystem

RN-

249

relations

hip

aggregation Note-medicalRecord

RN-

250

relations

hip

isA inPatient-patient

RN-

251

relations

hip

isA outPatient-patient

146

ID elemen

tType

as Value cardina

lity

Na

me

RN-

252

relations

hip

binary-

association

medicalRecord-patient belo

ngsT

RN-

253

relations

hip

binary-

association

healthcareProvider-medicalRecord juris

dicti

onO

RN-

254

relations

hip

binary-

association

note-medicalEmployee writt

enB

y

RN-

255

relations

hip

isA medicalHistoryNote-note

RN-

256

relations

hip

isA medicalEncounterNote-note

RN-

257

relations

hip

isA testResult-note

RN-

258

relations

hip

isA order-note

RN-

259

relations

hip

isA allergy- medicalHistoryNote

RN-

260

relations

hip

isA antecedent- medicalHistoryNote

RN-

261

relations

hip

isA habit- medicalHistoryNote

RN-

262

relations

hip

isA familiarHistory- medicalHistoryNote

RN-

263

relations

hip

isA immunizationHistory- medicalHistoryNote

RN-

264

relations

hip

isA immunizationTest-immunizationHistory

RN-

265

relations

hip

isA vaccine-immunizationHistory

RN-

266

relations

hip

isA inPatientNote-medicalEncounterNote

RN-

267

relations

hip

isA complaint-medicalEncounterNote

RN-

268

relations

hip

isA historyOfPresentIllness-

medicalEncounterNote

RN-

269

relations

hip

isA physicalExamination-medicalEncounterNote

RN-

270

relations

hip

isA admissionNote-inPatientNote

147

ID elemen

tType

as Value cardina

lity

Na

me

RN-

271

relations

hip

isA SOAPNote-inPatientNote

RN-

272

relations

hip

isA onServiceNote-inPatientNote

RN-

273

relations

hip

isA preOperativeNote-inPatientNote

RN-

274

relations

hip

isA operativeNote-inPatientNote

RN-

275

relations

hip

isA postOperativeNote-inPatientNote

RN-

276

relations

hip

isA procedureNote-inPatientNote

RN-

277

relations

hip

isA dischargeNote-inPatientNote

RN-

278

relations

hip

isA obstetricInPatientNote-inPatientNote

RN-

279

relations

hip

isA deliveryNote-obstetricInPatientNote

RN-

280

relations

hip

isA postpartumNote-obstetricInPatientNote

RN-

281

relations

hip

aggregation symptom- historyOfPresentIllness

RN-

282

relations

hip

aggregation observation-assessment

RN-

283

relations

hip

binary-

association

medicalEncounterNote-assessment lead

sTo

RN-

284

relations

hip

binary-

association

assessment -plan lead

sTo

RN-

285

relations

hip

binary-

association

assessment-diagnosis lead

sTo

RN-

286

relations

hip

aggregation order-plan

RN-

287

relations

hip

binary-

association

order-medicalEmployee give

nTo

RN-

288

relations

hip

binary-

association

order-therapy of

RN-

289

relations

hip

binary-

association

order-drugAdministration of

148

ID elemen

tType

as Value cardina

lity

Na

me

RN-

290

relations

hip

binary-

association

order-test of

RN-

291

relations

hip

binary-

association

test-testResults of

RN-

292

relations

hip

binary-

association

address-party locat

ionO

RN-

293

relations

hip

isA person-party

RN-

294

relations

hip

isA organization-party

RN-

295

relations

hip

isA phoneNumber-contactInformation

RN-

296

relations

hip

isA postalAddress-contactInformation

RN-

297

relations

hip

isA electronicAddress-contactInformation

RN-

298

relations

hip

binary-

association

organization-position offer

s

RN-

299

relations

hip

isA filledPosition-position

RN-

300

relations

hip

binary-

association

filledPosition-employment fille

dBy

RN-

301

relations

hip

binary-

association

employment-organization empl

oyer

RN-

302

relations

hip

binary-

association

employment-person empl

oyee

RN-

303

relations

hip

binary-

association

physicalObservation-phenomenonType mea

sure

RN-

304

relations

hip

binary-

association

physicalObservation-measurement in

RN-

305

relations

hip

binary-

association

measurement-quantity

RN-

306

relations

hip

binary-

association

physicalObservation-object over

RN-

307

relations

hip

isA party-object

149

Appendix C. Domain Candidate Patterns Catalog

150

Domain Patterns Catalog

The Candidate Patterns

151

I. Catalog Organization

In this section we explain how to understand the catalog and how to understand the patterns by

describing the parts they consist of.

A. Catalog’s Classification Schema

The classifiers Level of Design and Domain are described next in the section.

152

Domain

Domain is the area of application of the pattern, where it can be found an applied.

 Domain-Specific

Domain specific patterns are patterns that cannot be applied in more domains than the

one stated.

 Cross-Domain

Cross-domain patterns are the ones that are universally applicable; they can be found

and applied in multiple domains.

Level of Design

The level of design is the kind of models the patterns could be part of.

 Early Design

Gives a general overview of the problem domain that is simple. Contains patterns that

illustrate and communicate information requirements, show specific entities and

attributes within entities.

 Intermediate Design

Gives an overview of the problem domain that is more advanced than the previous, the

application of abstraction of some concepts can be seen. It is a hybrid approach between

early and advanced design.

 Advanced Design

Gives a solution that can be found when the design is ready for implementation.

Containing patterns that are foundation for database design, they incorporate flexibility

and the application of design patterns, for example.

153

B. Pattern template description

Here you find a description of how the pattern should be understood

Pattern Name

The name of a pattern describes a design problem, its

solution, and consequences in a few words. Naming

a pattern makes it easier to think about design and

improve communication with the designers who will

make use of it.

Level of design

The

classification the

pattern belongs

to according to

the Level of

design classifier

Problem The problem describes when to apply the pattern by explaining the

problem and its context. It addresses the question: What particular design

issue or problem does this pattern address?

Solution The solution describes the elements that make up the design, their

relationships, and attributes. It includes the pattern in its graphical form.

Consequences The consequences are the results of applying the pattern. The section

aims to aid the designer evaluate design alternatives by understanding the

benefits and trade-offs of using the pattern.

Related patterns It is the relationship between patterns within the catalog. The section aids

the designer know which patterns are closely related or may be also used

in combination to the one being observed.

154

II. The Candidate Patterns

In this section you find the candidate patterns identified.

A. Domain-Specific Patterns

1. Healthcare Management Domain

The patterns in this category are patterns for enterprises that provide treatment of illness and or

injuries. Such enterprises include hospitals, emergency rooms, private practices, etc.

a) Patterns for Early Design

Pattern Name Patient’s Allergy
Level of design

Early

Problem This pattern addresses the problem of identifying the allergies of a

patient.

Solution Abstract the allergy types.

Consequences The model using Patient’s Allergy has a clear representation of the

possible allergy types within the domain.

Related patterns

Candidate Pattern 1: Patient’s Allergy

155

Pattern Name Antecedent Types
Level of design

Early

Problem This pattern addresses the problem of identifying the antecedent of a

patient.

Solution Abstract the important information necesary to identify patient

antecedents.

Consequences The model using Antecedent Types has a clear representation of the

antecedents of the patient.

Related patterns Medical Record

Candidate Pattern 2: Antecedent Types

Pattern Name Clinical Antecedent
Level of design

Early

Problem This pattern addresses the problem of identifying the clinical antecedent

of a patient.

Solution Identify the important information necesary to identify patient

antecedents.

Consequences The model using Clinical Antecedents has a clear representation of the

possible clinical antecedents of a patient.

Related patterns Antecedent Types

Candidate Pattern 3: Clinical Antecedent

156

Pattern Name Patient’s Habit
Level of design

Early

Problem This pattern addresses the problem of identifying the habits of a patient.

Solution Abstract the habit types.

Consequences The model using Patient’s Habit has a clear representation of the possible

allergy types within the domain.

Related patterns

Candidate Pattern 4: Patient’s Habit

Pattern Name Pediatric Environment Antecedent
Level of design

Early

Problem This pattern addresses the problem of identifying the relevant

environmental antecedents of a pediatric patient.

Solution Abstract the important information necesary to identify patient

antecedents.

Consequences The model using Pediatric Environment Antecedent takes into account

the relevant information of antecedents for a pediatrics patient.

Related patterns Antecedent Types

Candidate Pattern 5: Pediatric Environment Antecedent

157

Pattern Name Familiar Antecedent
Level of design

Early

Problem This pattern addresses the problem of identifying the familiar antecedent

of a patient.

Solution Abstract the important information necesary to identify patient

antecedents.

Consequences The model using Familiar Antecedents has a clear representation of the

possible familiar antecedents of a patient.

Related patterns Antecedent Types

Candidate Pattern 6: Familiar Antecedent

158

Pattern Name Obstetric Antecedent
Level of design

Early

Problem This pattern addresses the problem of identifying the relevant antecedent

of an obstetrics patient.

Solution Abstract the important information necesary to identify patient

antecedents.

Consequences The model using Obstetric Antecedents has a clear representation of the

possible obstetric antecedents of a patient.

Related patterns Antecedent Types

Candidate Pattern 7: Obstetric Antecedent

Pattern Name Pediatric Birth Antecedent
Level of design

Early

Problem This pattern addresses the problem of identifying the relevant information

of birth antecedents of a pediatric patient.

Solution Abstract the important information necesary to identify patient

antecedents.

Consequences The model using Pediatric Birth Antecedent takes into account the

relevant information of antecedents for a pediatrics patient.

Related patterns Antecedent Types

Candidate Pattern 8: Pediatric Birth Antecedent

159

Pattern Name Hospital Types
Level of design

Early

Problem This pattern addresses the problem of identifying the hospital types

within the healthcare domain.

Solution Abstract in Hospital the possible types and subtypes of hospitals.

Consequences The model using Hospital Types has a clear representation of the

taxonomical relationship of Hospital.

Related patterns

Candidate Pattern 9: Hospital Types

Pattern Name Vital Signs
Level of design

Early

Problem This pattern addresses the problem of identifying the relevant information

of vital signs in a patient.

Solution Abstract the important information necesary to identify patient’s vital

signs.

Consequences The model using Vital Signs takes into account the relevant information

of vital signs for a patient.

Related patterns Physical Examination

Candidate Pattern 10: Vital Signs

160

Pattern Name Laboratory Employee
Level of design

Early

Problem This pattern addresses the problem of designing all employee types

hierarchy within the healthcare domain.

Solution Abstract in employee the commonalities to laboratory employees and

their organization.

Consequences The model using Laboratory Employee identifies the location of

laboratory employees within the organizational structure of employees of

a healthcare providing institution.

Related patterns Healthcare Party

Candidate Pattern 11: Laboratory Employee

Pattern Name Medical Facility
Level of design

Early

Problem The pattern addresses the problem of designing a medical facility used by

the healthcare service provider.

Solution Medical facility helps abstract the healthcare providing institucion and it‘s

facilities.

Consequences The model using Medical Facility eases the design for covering

requirements such as scheduling and accountig of the facilities.

Related patterns Hospital Organization

Candidate Pattern 12: Medical Facility

161

Pattern Name Ultrasound Types
Level of design

Early

Problem This pattern addresses the problem of identifying the types of ultrasound

exams.

Solution Abstract the important information necesary to identify ultrasound exams.

Consequences The model using Ultrasound Types takes into account the types of

ultrasonography exams.

Related

patterns

Candidate Pattern 13: Ultrasound Types

Pattern Name Movement Disorder Physical Examination
Level of design

Early

Problem This pattern addresses the problem of identifying the relevant information

of a movement disorder physical examination.

Solution Abstract the important information necesary to identify movement

disorder.

Consequences The model using Movement Disorder Physical Examination takes into

account the relevant information of movement disorders of a patient.

Related patterns Physical Examination

Candidate Pattern 14: Movement Disorder Physical Examination

162

Pattern Name Perception Disorder Physical Examination
Level of design

Early

Problem This pattern addresses the problem of identifying the relevant information

of perception disorders in a patient.

Solution Abstract the important information necesary to identify patient’s

perception disorders.

Consequences The model using Perception Disorder Physical Examination takes into

account the relevant information of perception disorders for a patient.

Related patterns Physical Examination

Candidate Pattern 15: Perception Disorder Physical Examination

Pattern Name Organ System Physical Examination
Level of design

Early

Problem This pattern addresses the problem of identifying the relevant information

of organ system physical examination to a patient.

Solution Abstract the important information necesary to identify patient’s organ

systems that are subject to physical examination.

Consequences The model using Organ System Physical Examination takes into account

the types of organ systems and the relevant information of each during a

physical examination.

Related patterns Physical Examination

Candidate Pattern 16: Organ System Physical Examination

163

b) Patterns for Intermediate Design

Pattern Name Department Types (H. Organization)
Level of design

Intermediate

Problem This pattern addresses the problem of identifying the department types

within the healthcare domain.

Solution Abstract all possible type of departments and the organization of them.

Consequences The model using Department Types contains an abstraction of the

taxonomy of departments in the healthcare domain.

Related patterns Hospital Organization

Candidate Pattern 17: Department Types

Pattern Name Familiar History
Level of design

Intermediate

Problem This pattern addresses the problem of designing the relevance of the

familiar history in relation to a patient within the healthcare domain.

Solution The familiar history lists the health status of immediate family members

as well as their causes of death (if known)

Consequences The model using Familiar History considers a representation of the family

history of the patient.

Related patterns Antecedent Types

Candidate Pattern 18: Familiar History

164

Pattern Name Healthcare Party
Level of design

Intermediate

Problem This pattern addresses the problem of identifying the people and

organizations within the domain.

Solution Abstract in party the parties present within the domain of healthcare.

Consequences The model using Healthcare Party has a clear representation of the

taxonomical relationships within the domain.

Related patterns Healthcare Role

Candidate Pattern 19: Healthcare Party

165

Pattern Name Healthcare Role
Level of design

Intermediate

Problem This pattern addresses the problem of identifying the roles of a party

within the domain.

Solution Abstract in Role the interacting roles of parties within the domain of

healthcare.

Consequences The model using Healthcare Role has a clear representation of the

taxonomical relationships of roles played by parties within the domain.

Related patterns

Candidate Pattern 20: Healthcare Role

Pattern Name Observation States
Level of design

Intermediate

Problem This pattern addresses the problem of understanding the states that an

observation can be in as well as the relationship between observations.

Solution Abstract the types of an observation and the relationship between

observations.

Consequences The model using Observation States has a clear representation of the

states observations are in.

Related patterns Observation, Physical Observation

Candidate Pattern 21: Observation States

166

Pattern Name Observation
Level of design

Intermediate

Problem This pattern addresses the problem of managing observations within the

healthcare domain.

Solution Abstract the types of observations and identify the personnel involved in

the management of them.

Consequences The model using Observation has a clear representation of the types of

observations and the interacting parties that are involved in the

management of them.

Related patterns Observation States

Candidate Pattern 22: Observation

167

Pattern Name Supporting Unit Types (H. Organization)
Level of design

Intermediate

Problem This pattern addresses the problem of identifying the supporting unit types

that are components of a healthcare institution within the healthcare domain.

Solution Abstract all possible type of supporting units and the organization of them.

Consequences The model using Supporting Unit Types contains an abstraction of the

taxonomy of supporting units in the healthcare domain.

Related patterns Hospital Organization

Candidate Pattern 23: Supporting Unit Types

168

Pattern Name Sample
Level of design

Intermediate

Problem This pattern addresses the problem of designing the management of

samples within the healthcare domain.

Solution Abstract the possible samples and the common attributes in a Sample class

and identify the interacting elements in the domain.

Consequences The model using Sample has a clear representation of the sample types

and the elements related to it within the domain.

A combination of Sample and Test would require the design of constraints

over the “subjectTo” association in order to allow only some tests over

certain sample.

Related patterns Test

Candidate Pattern 24: Sample

169

Pattern Name Test
Level of design

Intermediate

Problem This pattern addresses the problem of designing the management of tests

within the healthcare domain.

Solution Abstract the possible tests and the common attributes in a Test class and

identify the interacting elements in the domain.

Consequences The model using test has a clear representation of the test types and the

elements related to it within the domain.

A combination of Sample and Test would require the design of

constraints over the “subjectTo” association in order to allow only some

tests over certain sample.

Related patterns Sample

Candidate Pattern 25: Test

170

c) Patterns for Advanced Design

Pattern Name Healthcare Physical Examination
Level of design

Intermediate

Problem This pattern addresses the problem of identifying the components of a

physical examination.

Solution Abstract physical examination and identify the relevant information

extracted in its process.

Consequences The model using Healthcare Physical Examination gives a clear of the

components of a physical examination within in the healthcare domain.

Related patterns Organ System Physical Examination, Movement Disorder Physical

Examination, Perception Disorder Physical Examination, Vital Signs

Candidate Pattern 26: Healthcare Physical Examination

171

Pattern Name Hospital Organization
Level of design

Advanced

Problem This pattern addresses the problem of identifying the organization of a

hospital in departments and supporting units

Solution Identify the components of the organization of a hospital and the

responsible personnel.

Consequences The model using Hospital Organization gives a view of the components

of a hospital’s organization and the employees and responsibles.

Related patterns Healthcare Party, Department Type, Supporting Unit Type

Candidate Pattern 27: Hospital Organization

172

Pattern Name Medical Record
Level of design

Advanced

Problem This pattern addresses the problem of identifying the relevant information

of a medical record document and the relationships between the pieces of

information.

Solution Identify the components of a medical record document.

Consequences The model using Medical Record

Related patterns Healthcare Party, Observation, Antecedent Types, Family History

Candidate Pattern 28: Medical Record

173

B. Cross-Domain Patterns

Cross-domain patterns are the ones that are universally applicable; they can be found and

applied in multiple domains.

a) Patterns for Early Design

Pattern Name Address
Level of design

Early

Problem This pattern addresses the problem of expressing one or multiple

addresses for a party.

Solution Separate the attributes of address in a class related to the parties that need

a location

Consequences The model using Address fulfills the need of expressing that a party may

not have, have one or multiple addresses.

Related patterns Contact Information

Candidate Pattern 29: Address

Pattern Name Quantity
Level of design

Early

Problem This pattern addresses the problem of storing measurements and their

units of measure.

Solution Abstract the important information necesary to identify a quantity.

Consequences The model using Quantity considers storing results not only as values

because they are difficult to interpret and prone to conversion errors.

Related patterns

Candidate Pattern 30: Quantity

174

b) Patterns for Intermediate Design

Pattern Name Contact Information
Level of design

Intermediate

Problem This pattern addresses the problem of having the need of being able to

express one or multiple contact information for a party. i.e. workAddress,

deliveryAddress, emergencyPhone, etc.

Solution Identify the possible contact information types and abstract them to relate

them to a party.

Consequences The model using Contact Information expresses in a flexible manner the

means for contacting a party.

Related patterns

Candidate Pattern 31: Contact Information

Pattern Name Party
Level of design

Intermediate

Problem This pattern addresses the problem of relating information (phone

number, address) to many parties (people or organizations) similar to

each other.

Solution Abstract the similar information in an abstract entity that reflects the

parties of the domain.

Consequences The model using Party fulfills the need of abstracting the commonalities

of parties, people or organizations.

Related patterns Employment

Candidate Pattern 32: Party

175

Pattern Name Employment
Level of design

Intermediate

Problem This pattern addresses the problem of having to deal with contractual

relationship of employment between organization and person.

Solution Abstract the interacting concepts of employmen and their relationships.

Consequences The model using Employment represents in a simple manner the

contractual relationship of employment.

Related patterns

Candidate Pattern 33: Employment

Pattern Name Physical Observation
Level of design

Intermediate

Problem This pattern addresses the problem of having the need to make

observation over a physical object, i.e. physical exam to a patient or

sample.

Solution Abstract the interacting concepts of making observatios over a physical

object.

Consequences The model using Physical Observation represents in a simple manner the

interacting concepts during an observation of a physical object.

Related patterns

Candidate Pattern 34: Physical Observation

