
Securing BGP over Software Defined Networks

by Rubén Hervás Fernández
Supervisor: Marcelo Yannuzzi

Co-supervisor: René Serral Gracia

December 3, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41811249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgment I want to specially thank René Serral, Marcelo Yannuzzi, Geńıs Riera and
Manos for the help in developing this project.

Abstract A causa de a la mancança de seguretat en el protocol BGP al llarg dels anys hi
ha hagut diferents propostes per intentar millorar la seguretat al intercanviar paquets entre
sistemes autònoms. Aquestes solucions no han pogut ser portades a terme degut a l’alt́ıssim
cost d’introduir-les a la xarxa o a la limitació de capacitat de computació dels dispositius. Amb
l’aparició de les Software Defined Networks(SDN) han aparegut noves possibilitats de gestionar
els dispositius de xarxes i ha obert una possibilitat a interactuar amb aquests dispositius d’una
manera nova. En aquest document hem aprofitat aquest nou paradigma per crear una solució al
problema de seguretat de BGP tot utilitzant la plataforma SDN the Cisco, OnePK. La solució
proposada té la caracteŕıstica que no cal cap gran canvi a la xarxa ni canviar els dispositius. A
més s’ha creat un entorn de proves per demostrar que la solució era possible.

Abstract Due to the lack of security in the BGP protocol over the years there have been var-
ious proposals trying to improve security in exchanging packets between Autonomous Systems.
These solutions could not be carried out due to the high cost of deploying to the network or due
to the limited computing capacity of the devices. With the advent of Software Defined Networks
(SDN) new possibilities have emerged for managing networks and devices. This fact has created
the opportunity to interact with these devices in whole different way. In this paper use the
SDN paradigm to improve the security of BGP based on the Cisco SDN platform, OnePK. The
proposed solution has the characteristic that do not need big changes to the network or the
devices. A test environment has been created to prove that the feasibility of the solution.

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Goals . 2

1.3 Planification . 2

1.3.1 Gantt chart . 3

2 Background 5

2.1 BGP . 5

2.1.1 History . 5

2.1.2 How it Functions . 5

2.1.3 Vulnerabilities . 8

2.1.4 Decision Process Summary . 9

2.1.5 Packet Types . 10

2.1.6 Finite State Machine . 11

2.2 ROA and RPKI . 12

2.2.1 RPKI . 12

2.2.2 ROA . 13

2.3 Software Defined Networks . 14

2.3.1 OnePK . 14

3

3 Problem Definition and State of the Art 17

3.1 Problem Definition . 17

3.2 State of the Art . 20

3.2.1 Secure BGP . 20

3.2.2 Secure Origin BGP . 21

3.2.3 Pretty Secure BGP (psBGP) . 21

4 Architecture and Implementation 22

4.1 Proposed solution . 22

4.1.1 Comparison between State of the art solutions and our solution 25

4.2 System Architecture . 25

4.2.1 Device Component . 26

4.2.2 Server Component . 26

4.2.3 ROA Component . 27

4.3 Implementation . 27

4.3.1 Device Component . 28

4.3.2 Server Component . 29

4.3.3 ROA Component . 33

4.4 Limitation . 34

5 Experimental Results 35

5.1 Testbed . 35

5.1.1 Validation Tests . 36

5.2 Scalability of the solution . 38

6 Conclusion 41

4

6.1 Future work . 41

Acronyms 43

Bibliography 45

A Source Code, Requests Configurations 46

A.1 onep status t dpss tutorial create ip pmap Code 46

A.2 Parsing object Code . 58

A.3 Rib Information . 58

A.4 Topology discovery Request Example . 59

A.5 Evaluate Response Example . 59

A.6 Vmcloud topology configuration . 59

A.7 Routers configuration files . 65

A.8 Patch for dpkt . 69

A.9 Gunicorn Configuration file . 70

Chapter 1

Introduction

Nowadays the Internet main edge routing protocol is BGP, the main protocol responsible for
routing the traffic between the ASs. Although it performs such an important task, BGP was
designed to use a mutual trust mechanism when exchanging routes. For that reason many
solutions have been proposed in order to improve the security of BGP. Although there are
proposed very interesting ideas to solve this problem they are not viable due to vast expense in
changing the core network or high processing power needed in devices that is not available. With
the appearance of SDN networks a new way of managing network devices has been discovered.
Using this idea we propose an SDN architecture that places the necessary security actions on
a Server controller, thus not consuming resources of the network devices. Moreover, the only
assumption we make for the devices is that they are SDN-enabled.

We have implement this architecture using OnePK[1], the Cisco SDN platform, combined with
a Server application that is able to secure BGP without any need to change the network devices.
As the system is developed over OnePK, and with respect to the percentage of Cisco routers
in the core network1 we believe that our system can be a viable solution in the future as there
would be no need to apply changes to the devices.

The solution is based in taking out the decision process of BGP to a Server controller that
interacts with OnePK applications. This applications are interacting with the device and they
give the information needed by the Server. Besides the functionalities shown in this project
there is still a lot of work to do with this types of systems as they offer an interesting new way
of dealing with network devices and network management.

1http://www.cn-c114.net/577/a692668.html

1

http://www.cn-c114.net/577/a692668.html

1.1 Motivations

The main motivation of this project is to propose an extensible and efficient mechanism to
offload the security provisioning of the legacy Border Gateway Protocol (BGP) protocol that is
used widely in the Internet. One of the key factors of the solution is that it will neither modify
nor extend the legacy BGP protocol. To achieve this, we propose a Software Defined Network
(SDN) solution. Such solution intercepts the BGP packets and transparently assessing their
validity of the BGP packets and performing the necessary actions, i.e., drop them or accept
them.

This solution is implemented on top of One Platform Kit (OnePK), a Cisco platform that is
still under development. To complete the solution a web user interface has been created to
provide the user with an easy way to configure prefix rules and Autonomous System (AS) Path
rules to any node in a managed network. By now the solution has some limitations inherent to
the Application Programming Interface (API) provided by OnePK. Despite these limitations
a testbed has been deployed where the correctness of the system has been proved as well as
performance experiments have been performed.

1.2 Goals

The main idea of the solution is to add security to the BGP protocol but without modifying
the protocol itself. In order to achieve this goal we have used a SDN platform, OnePK. Using
a SDN platform we want to create a BGP route validation system without any interference
in the regular BGP functioning. Additionally, the validation process is intended to provide a
user friendly interface to provide a network administrator with a set of components for creating
prefix rules and AS path rules and attach them to a specific node of the network. Furthermore
the user interface will be able to give a clear view of the network and the user will be able to
access it in a comfortable way.

1.3 Planification

For the execution of this project there were many challenges but one of them has been the most
critical point of this project as without it the execution of the project was not possible. This
challenge is the inability of OnePK to intercept packets before they are processed by the Border
Gateway Protocol (BGP) process of a router or before they enter the Routing Information
Base (RIB) of the router.When this project started the tool used for testing this feature was
the All in One Virtual Machine (VM) that Cisco provides. The version of OnePK was 0.9, so at
very early stages and after many tests and study of the platform we concluded that it was not

2

possible to intercept BGP packets with the APIs that were provided in the 0.9 release. But as
the project was evolving new versions of OnePK were released and at the 1.3 version that was
released the 19th of September 2014. In that version, new OnePK APIs were provided that gave
the ability to manage the packets before they entered the BGP process. Nevertheless OnePK
still does not provide a BGP API. We faced this challenge implementing a workaround that is
explained in 4.4 section. Very recently it was announced that the next All in One VM release
will contain the OnePK BGP API, so it is possible that our workaround is no more necessary.

1.3.1 Gantt chart

Figure 1.1 presents the evolution of the project. As it can bee seen the Packet Interception task
was the blocker of all the project, without which the rest of the tasks could not be initiated
since it was unknown whether they were required.

3

F
ig

u
re

1.
1:

G
an

tt
C

h
ar

t

4

Chapter 2

Background

2.1 BGP

In this section an explanation of the BGP protocol is provided. To ensure better understanding
of the problem solved in this document, we also present a brief introduction to the protocol and
the way it functions.

2.1.1 History

BGP is one of the most important and most used protocols over the Internet. BGP is a path
vector protocol used in order to exchanges route between autonomous systems. BGP was first
standardized in 1989, originally defined in Request for Comments (RFC) 1105[2]. The current
version, BGPv4, was adopted in 1995 and is defined in RFC 4271[3]. From now on in this
document BGP will be referring to BGPv4.

BGP makes routing decisions using paths, policies and rules defined by the network adminis-
trator and the information that receives from the BGP neighbours. BGP has shown that is
scalable and robust enough to work in big networks.

2.1.2 How it Functions

In order to understand why BGP is broadly used in the Internet an overview of how the Internet
is organized needs to be presented.

Internet is an interconnected set of networks that exchange routes with each other so that every

5

network is reachable by the other networks. Because of the vast size of the Internet nowadays
this simple fact implies that there are thousands of networks interconnected with each other.
Networks are managed by different companies or governments which need to exchange the routes
they have, or know, in order for the Internet to work properly. To provide the Internet with
such capability there are different ways that the networks are interconnected. The first entities
created to achieve that were the Network Access Points (NAPs), which are public network
exchange facilities where Internet Service Providers (ISPs) connect to each other. The exchange
of routes between different countries or ISPs takes place in the NAPs, although it is not the
only place where this can be done. As the Internet has been growing some ISPs decided to
directly interconnect their networks, since NAPs were getting congested. ISPs usually create
direct interconnections in case where both ISPs are economically benefited.

Bearing this overview of how Internet works in mind there are two ways of route exchanges
necessary:

1. Intradomain Routing : This routing is done between the routers of the same ISP which
usually using the same routing protocol. This can be done using Interior Border Gateway
Protocol (iBGP), Open Shortest Path First (OSPF) or the protocol that the ISP chooses.

2. Interdomain Routing : This routing takes place between two different autonomous systems
from different organizations(ISP, Governments). The main Exterior Gateway Protocol
(EGP) used currently is BGP. In this type of routing more complex policies and interests
are taken into account as this can lead to some unpleasant situations for the ISP, which
as a company intents to provide their customers with the best service they can offer while
at the same time being profitable .

In figure 2.1 a graphical representation of how the Internet from a BGP perspective can be seen.

BGP neighbours, which are called peers, create a Transmission Control Protocol (TCP) connec-
tion using port number 179 in order to communicate with each other.TCP ensure features like
the reliability of the connection, retransmission of the packets, thus BGP does not need to take
care of such issues. As mentioned previously, in the exchange of routes between different ASs
there many interests of advertising or not certain routes to another AS. If route exchange is not
done carefully it may lead to a congestion of the network of some ISP as it may be routing traffic
which is supposed not to be routed trough this network. This has been a very controversial issue
as it can lead to failures in the ISP network or even more dramatical failures, making part of
the Internet unreachable for the ISP customers.

Another concept important for the understanding of the routes exchange complexity between
AS is the that of transit traffic. This traffic comes from other ASs and goes to other ASs. So
neither the source nor the destination is inside the AS is traversing. For an ISP this traffic can
incur in extra cost of infrastructure maintenance without any benefit in the transit traffic is not

6

Figure 2.1: Interconnected Autonomous Systems

controlled and previously accorded with the other ISPs. In figure 2.2 a non-transit AS scenario
is shown where the ASs does not advertise the networks learned from the BGP neighbours.

Figure 2.2: Nontransit Autonomous system

Figure 2.3 presents a transit AS scenario where the networks learned from the BGP neighbours
are advertised.

7

Figure 2.3: Transit Autonomous system

2.1.3 Vulnerabilities

In this section we provide a list of all the attacks that BGP is vulnerable to. This list is taken
from [4].

1. Confidentiality Violations: The routing data carried in BGP is carried in cleartext, so
eavesdropping is a possible attack against routing data confidentiality. (Routing data
confidentiality is not a common requirement.)

2. Replay: BGP does not provide replay protection of its messages.

3. Message Insertion: BGP does not provide protection against insertion of messages. How-
ever, because BGP uses TCP, when the connection is fully established, message insertion
by an outsider would require accurate sequence number prediction (not entirely out of
the question, but more difficult with mature TCP implementations) or session-stealing
attacks.

4. Message Deletion: BGP does not provide protection against deletion of messages. Again,
this attack is more difficult against a mature TCP implementation, but is not entirely out
of the question.

5. Message Modification: BGP does not provide protection against modification of messages.
A modification that was syntactically correct and did not change the length of the TCP
payload would in general not be detectable.

6. Man-In-The-Middle: BGP does not provide protection against man- in-the-middle attacks.
As BGP does not perform peer entity authentication, a man-in-the-middle attack is a piece
of cake.

8

7. Denial Of Service: While bogus routing data can present a denial of service attack on the
end systems that are trying to transmit data through the network and on the network
infrastructure itself, certain bogus information can represent a denial of service on the
BGP routing protocol. For example, advertising large numbers of more specific routes
(i.e., longer prefixes) can cause BGP traffic and router table size to increase, even explode.

2.1.4 Decision Process Summary

As explained in [5] the BGP decision process consists of set of steps when choosing the best
route to send the traffic. This explanation is tied to the BGP Cisco implementation which may
differ from another BGP implementation:

1. If the next hop is inaccessible, the route is ignored. (This is why it is important to have
an Interior Gateway Protocol (IGP) route to the next hop.)

2. Prefer the path with the largest weight (weight is a Cisco proprietary parameter, local to
the router).

3. If the weights are the same, prefer the route with the largest local preference value.

4. If there are no locally originated routes and the local preference is the same, prefer the
route with the shortest AS PATH.

5. If the AS PATH length is the same, prefer the route with the lowest origin type (where
IGP is lower than EGP and EGP is lower than INCOMPLETE).

6. If the origin type is the same, prefer the route with the lowest MED value if the routes
were received from the same AS (or if BGP always-compare-med is enabled).

7. If the routes have the same MED value, prefer Exterior Border Gateway Protocol (EBGP)
paths to iBGP paths.

8. If all the preceding scenarios are identical, prefer the route that can be reached via the
closest IGP neighbour-that is, take the shortest internal path inside the AS to reach the
destination. (Follow the shortest path to the BGP NEXT HOP.)

9. If the internal path is the same, the BGP ROUTER ID will be a tiebreaker. Prefer the
route coming from the BGP router with the lowest RID. With Cisco IOS, the RID is the
loopback address if one is configured; otherwise, it’s the highest Internet Protocol (IP)
address on the router. RID determination is vendor-specific.

9

2.1.5 Packet Types

BGP has different types of packet that are used for different purposes. In this section the BGP
packet types of packet are explained. For further information the reader can refer to [6].

1. OPEN message : when the TCP connection is established this is the first message that
the BGP speaker sends to the BGP neighbors. In Figure 2.4 the format of an OPEN
message is shown.

Figure 2.4: Open packet format

2. UPDATE message: This type of messages are used for exchanging prefixes and routes
between BGP neighbors. UPDATE messages are used to advertise routes or to withdraw
routes. An UPDATE message could update and withdraw routes simultaneously. Figure
2.5 show the fields that an UPDATE message can have and its format.

Figure 2.5: Update packet format

The minimum length of an UPDATE message is 23 bytes, 19 bytes of header plus 2 byte
for the withdrawn routes length plus 2 bytes for the total path attribute length.

UPDATE messages can advertise one set of path attributes at most to multiple destina-
tions. All path attributes contained in a given UPDATE message apply to all destinations
carried in the Network Layer Reachability Information field of the UPDATE message.

An UPDATE message can list multiple routes to withdrawn from service. Each route is
identified by its destination(IP Prefix).

If the message only advertise routes to withdrawn the message will not include path
attributes or Network Layer Reachability Information. contrariwise, it may advertise only
a feasible route, in which case the WITHDRAWN ROUTES field need not be present.

An UPDATE message should not include the same address prefix in the withdrawn routes
and Network Layer Reachability Information fields. However, a BGP speaker must be able
to process UPDATE messages in this form. A BGP speaker should treat an UPDATE
message of this form as though the withdrawn routes do not contain the address prefix.

10

3. KEEPALIVE message : BGP does not use TCP keepalive messages. Instead of that
KEEPALIVE messages are exchanged often enough. The time interval of these messages
is negotiated between the two peers. The length of the message is 19 bytes and the format
is this, figure 2.6 shows the format of a KEEPALIVE message:

Figure 2.6: Keepalive packet format

In the case of the KEEPALIVE messages the data field is empty.

4. NOTIFICATION message : A NOTIFICATION message is sent when a error is produced
and the BGP session is closed immediately afterwards. Figure 2.7 shows the format of a
NOTIFICATION message:

Figure 2.7:

2.1.6 Finite State Machine

The establishment of a BGP session is done with a set of steps that are graphically illustrated
in 2.8. We now present a brief explanation of each step:

1. Idle : In this state when the BGP session initializes all resources and it is not accepting
BGP connections.

2. Connect : In this state the BGP process is waiting for a TCP connection to move on to
OpenSent state.

3. Active : This is a transition state. If the connection in the state Connect was unsuccessful
the Connect timeout will be reset and will go to the Connect state again.

11

4. OpenSent : This is the state of the state machine once the TCP connection has been
successful. The router sends an OPEN message and waits for one in return in order to
transition to the OpenConfirm state.

5. Established : Once the router receives the previous states has finished successfully and it
receives the confirmation of the OpenConfirm State the router goes to this state. In this
state the router can receive and send Keepalive, Update and Notifications from peer to
peer.

Figure 2.8: BGP state machine

2.2 ROA and RPKI

2.2.1 RPKI

As explained in [7], Resource Public Key Infrastructure (RPKI), also known as Resource Certi-
fication is a system that uses public key infrastructure designed to secure the Internet’s routing
infrastructure.

This system allows Local Internet Registries to request a a digital certificate listing the Internet
number resources they hold. RPKI allows to map resource information. In this document we
use the AS number and Prefix information RPKI can announce. With this system it is possible
to validate the origin of an announced prefix. In particular, RPKI is used to secure BGP
through BGP Secure (BGPSEC), as well as Network Discovery Protocol (NDP) for Internet

12

Protocol version 6 (IPv6) through the Secure Neighbour Discovery Protocol (SEND). Work
on standardizing RPKI is currently (late 2011) ongoing at the Internet Engineering Task Force
(IETF)1 in the Secure Inter-Domain Routing (SIDR) working group, based on a threat analysis
which was documented in RFC 4593[8]. The standards cover BGP origin validation, while work
on path validation is underway. Several implementations for the prefix origin validation already
exist.

2.2.2 ROA

A Route Origination Authorization (ROA) states which AS is authorised to publish certain IP
prefixes. In addition, it can also determine the maximum length of the prefix that the AS is
authorised to advertise.

Maximum Prefix Length The maximum prefix length is an optional ROA field. When not
defined, the AS is only authorised to advertise exactly the prefix specified. Any announcement
of different prefix (less or more specific) will be considered invalid. This is a way to enforce
aggregation and prevent hijacking through the announcement of a more specific prefix. When
present, this specifies the length of the most specific IP prefix that the AS is authorised to
advertise. For example, if the IP address prefix is 10.0/16 and the maximum length is 22, the
AS is authorised to advertise any prefix under 10.0/16, as long as it is no more specific than
/22. In this specific example, the AS would be authorised to advertise 10.0/16, 10.0.128/20 or
10.0.252/22, but not 10.0.255.0/24.

RPKI Route Announcement Validity When a ROA is created for a certain combination
of origin AS and prefix, this will have an effect on the RPKI validity of one or more route
announcements. An announcement can be:

1. Valid : The route announcement is covered by at least one ROA.

2. Invalid : The prefix is announced from an unauthorised AS. This means:

(a) there is a ROA for this prefix for another AS, but no ROA authorising this AS; or

(b) this could be a hijacking attempt; or

(c) the announcement is more specific than is allowed by the maximum length set in a
ROA that matches the prefix and AS

3. Unkown : The prefix in this announcement is not covered (or only partially covered) by
an existing ROA.

1https://www.ietf.org/

13

https://www.ietf.org/

2.3 Software Defined Networks

Software Defined Networking (SDN) is an approach to networking that aims to introduce ab-
stractions for Networking that were missing for a long time. The main idea is that a network
should be seen as a set of resources. SDN proposes that all network components should be
translated into a set of resources reachable by a defined API. That way, layers of abstraction
can be introduced, simplifying the life of network researchers and developers. This approach
tries to introduce in the Networking field the abstraction techniques used in many Computer
Science fields, like Computer Architecture or Operating Systems. The most prominent appli-
cation of SDN currently, is Network Virtualization, since virtualization is strongly connected
with the idea of abstraction. To this date, there exists only one main representative of the SDN
approach, the OpenFlow protocol but Cisco is building its approach which is called OnePK, this
platform has been used for the development of this project.

2.3.1 OnePK

One Platform Kit (OnePK) is a cross-platform API that gives the opportunity to create applica-
tions for Cisco devices. It provides several half-documented interfaces in order to communicate
with the device.

Cisco provides with the All in One VM that includes the OnePK SDK, sample apps, tutorials
and vmcloud which lets you virtualize routers. The VM has everything a developer may need
in order to start creating applications for Cisco devices. This is the environment that has been
used for doing the testbed and the experiments.

OnePK has 3 three SDKs, one written in C, which is the most advanced and has more func-
tionalities than the other ones, one written in Java and a newer one written in Python, OnePK
Service Sets provide APIs that are bound to a communications library that interacts with its
platform-specific counterpart on the network device by means of a secure Remote Procedure
Call (RPC) channel. In this project the C and the Python SDKs have been used.

In order to better understand the OnePK system an overview of the architecture is provided
in Figure 2.9. As it can be seen in the image this architecture provides a service implementa-
tion that the onePK client-server model makes available in a platform-independent and device-
independent way.

These are all the API that have been used in order to achieve the goal of this project:

1. Datapath Service Set (DPSS) : Enables an application developer to hook up to the packet
flow through a Cisco switch or router and extract packets from that flow of packets. These
packets may be either copied from the data path to an application or they may be punted

14

Figure 2.9: OnePK architecture

or diverted to the application. The key difference between diverting and copying is that
when a packet is diverted it does not continue on to its destination until the application
returns it to the data path, modified or unmodified.

2. Routing Service Set : Provides multiples sub-services. The current supported sub-services
are:

(a) RIB : Provides access to the content of the RIB. The application can:

i. read the content of RIB

ii. get notification when the route state changes (up/down) in the RIB

(b) Application Route Table (ART) : Keeps track of and provides high availability for
routes originated from the application. Handles registration with RIB and inserts
those routes to the RIB. The application can:

i. add and remove route from the application route table

ii. get notification when the application route is promoted or demoted in the RIB

15

Figure 2.10 diagram depicts the interactions of the application and the RIB and Appli-
cation Route Table sub-services.

Figure 2.10: Routing Service Set

3. Virtual Terminal Line (VTY) Service Set : Enables the application to open a VTY, execute
one or more commands, retrieve the results, query the parser state if the write failed, and
close the VTY.

Using OnePK or another similar tool it is possible to deploy innovative routing and switching
protocols or, as it is done in this project, secure BGP.

16

Chapter 3

Problem Definition and State of the
Art

In this chapter the problem tackled in this document will be presented and explained. Moreover,
we present and comment the existing implemented solutions.

3.1 Problem Definition

As we have explained above, BGP by its nature is based in a mutual trust mechanism between
the ASs. BGP, by default, does not validate neither the origin nor the content of the routes
announced. This has become a very important problem since the BGP is widely adopted as
main EGP for the Internet.

As a result of these vulnerabilities many attacks or attempts of attack are performed every
year. For example, it is possible for a malicious organization to announce routes that does
not belong to its AS and the routers that are at the border of a legal AS will not have any
mechanism to validate the announced routes. The fake routes will be accepted, hence the routers
could be routing the traffic of their AS to a malicious router or a network where the malicious
organization could, in the best case, drop the traffic. The malicious organization would also be
able to analyse the traffic. As is explained in [9], a malicious organization could be interested
in getting information of the network topologies and exploiting it for criminal operations and
waging cyberwar. These are only some examples of the possible damages of attacks on interAS
routing. More scenarios and explanations of the possible damages of interAS attacks can be
found in [4][9][10].

A very interesting and relatively new interAS attack is the route leak problem. Nevertheless,
in order to explain the route leak problem in BGP, a small introduction to the relationships

17

between ASs must be done. Although BGP is not aware of business relationships it provides
a complex set of rules and policies that can model this kind of business oriented relationships.
There are three possible kinds of business relationship between ASs:

1. Client - Provider : In this relationship one of the AS is provider of another AS, hence
the traffic routed by the Client AS towards the Provider AS is charged to the client. In
this type of relationship the provider usually announces all the known routes, since his
economical benefit is proportional to the amount of traffic routed by its AS.

2. Peer - Peer : In this relationship both ASs exchange routes but the traffic routed towards
each AS up to an agreed threshold is not charged by any of the peers. Usually, ASs in
this relationship do not announce all the known routes, as there might exist economical
reasons for not doing so.

3. Sibling Link : In this relationship both ASs provide connectivity to each other without
charges. This relationship is very rarely encountered, compared to the two other relation-
ships.

A correct route exporting policy an AS should follow the following three rules, also referred as
valley-free rules, according to [10]:

1. Rule R.1. :”Routes learned from Customers can be further advertised to other Customers,
Peers and Providers.”

2. Rule R.2. : ”Routes learned from Peers can be further advertised to Customers only.”

3. Rule R.3 : ”Routes learned from Providers can be further advertised to Customers only.”

The route leak problem is still very recent in the Internet community, thus the formal definition
of the problem has not been defined yet. In [11] the author defines the route leak problem as
the advertisement of a non-customer route over a peer or a provider link. A route leak does
not imply an announcement of an invalid AS path or route. A route leak is a violation of the
business policy agreement between two ASs. To facilitate the understanding of the problem we
depict a route leak situation in figure 3.1.

Situations similar to the ones described above have happened by accident recently. In 2008 a
Pakistan Telecom blocked Youtube for the entire world due to a BGP misconfiguration. The
company was trying to block Youtube locally and mistakenly announced the new routing in-
formation to an ISP at Hong Kong. This information was propagated throughout all the AS.
Another situation, this time relevant to the a route leak problem, happened in November 5,
2012. Google services experienced an outage for almost half an hour because of a route leak

18

Figure 3.1: Example of Route Leak problem

that happened between two ASs. This route leak in combination with economical reasons at-
tracted a lot of traffic in a specific AS that was not supposed to be routed throughout it. As a
result, the network of that AS could not cope with the amount of traffic and eventually started
dropping the traffic.

BGP attacks are very serious threat since they are very hard to detect and they can affect
massively the performance of the whole Internet. The attackers can be very tempted by the fact
in a few hours they can rerout the whole Internet traffic through their network while detecting
it may take even months [12] presents important evidence that this can be done in an easy and
hardly detectable way.

Many solutions have tried to address the presented BGP security problems, but up to now
none of them has been deployed in a real large scale environment. This is a result of the vast
expenses and changes in the infrastructure that these solutions entail. Moreover, the majority
of the available solutions do not address the route leak problem, which is becoming increasingly
important.

19

3.2 State of the Art

In this section we are going to present the most important works concerning BGP security
enhancements.

3.2.1 Secure BGP

Secure BGP (sBGP) was first presented in 1996 by BGP experts that intented to secure the
exchange of inter domains routes using BGP. sBGP is one of the major security contributions
to the BGP protocol as it offers a relatively complete implementation. sBGP architecture uses
three security mechanisms. First an RPKI infrastructure is used to validate the ownership of
the UPDATE messages that come from any AS. Second, a new, optional, BGP transitive path
attribute is employed to carry digital signatures (inside ”attestations”) covering the routing
information in a BGP UPDATE message. These signatures, along with certificates from the
sBGP RPKI enable the receiver of a BGP routing UPDATE to verify the address prefixes and
path information that it contains. Third, IPsec is used to provide data and partial sequence
integrity, as well as to enable BGP routers to authenticate each other for exchanges of BGP
control traffic. This solution, though not completely secure, makes it a lot more difficult to a
malicious organization to announce bad IPs.

The attestations of the routes increase the processing power and memory consumption consid-
erably. Noticing that routers not always have a very high computational power this can lead to
contention, leading to problems in traffic routing. This case is more obvious in the scenario of
a network that has a high exchange rate or when a when router is reset.

Another drawback of sBGP is the necessity for a centralized Public Key Infrastructure (PKI)
system. The verification process introduces also performance overheads since every time a route
is received the public key of the originator should be obtained in order to decode the packet and
verify that its validity.

In order to deploy this solution to the Internet the routers would need to be modified. Addi-
tionally, the ISPs of the core network would need to replace the routers with new routes able to
execute the sBGP protocol. Moreover, a PKI infrastructure between ISPs is necessary incurring
additional costs. As a results of all these, a transition to sBGP would be very expensive.

Many experts have said that despite the fact that sBGP solves the BGP security problem it is
too resource consuming to deploy it to a real carrier, or at least not right now.

20

3.2.2 Secure Origin BGP

Secure Origin BGP (soBGP) is another solution that tries to secure BGP, addressing the draw-
backs of sBGP, mostly the ones concerning performance. More specifically t is focused to relieve
the processing load needed when a route is validated and the overhead created by every adver-
tised UPDATE with a locally generated router attestation.

To improve performance, soBGP tries only to validate that the UPDATE messages received
come from a feasible inter AS path from the BGP speaker to the destination AS. Consequently,
the validation becomes weaker compoared to sBGP which uses the attestation mechanism to
validate that the UPDATE has traversed all the ASs.

soBGP was an intention to tackle the main disadvantages of sBGP and it successfully managed
to be more deployable. While sBGP verifies the route originator and its authorization, soBGP
uses A new BGP message is used to carry security information and it has fixed additional
scalability requirements. Nevertheless, the security guarantees provided by soBGP are very
limited and inaccurate.

3.2.3 Pretty Secure BGP (psBGP)

Pretty Secure BGP [13] introduces the idea that the proposals related to the authentication of
the use of an address in a routing context must either rely on the use of signed attestations
that need to be validated in the context of a PKI, or rely on the authenticity of information
contained in the Regional Internet Registrys (RIRs). The weakness of relying on RIRs is that
they lack accuracy for the current authenticity of the information that is represented in a route
registry objects. The information may have been accurate at the time the information it was
introduced into the registry, but this may no longer be the case at the time the information is
accessed by a relying party. Moreover, soBGP states that a PKI can not be constructed in a
hierarchical deterministic manner because of the indeterminate nature of some forms of address
allocations. This is much a contradiction lately when the very same protocol specification
proposes and assumes to use the same PKI infrastructure to map AS numbers hierarchically in
a PKI context, thus assuming AS numbers can have this hierarchical PKI design path but IP
prefixes do not.

21

Chapter 4

Architecture and Implementation

In order to solve the problem described in the previous chapter a validation system has been
implemented. During this process we faced several challenges. Most of them were related with
the features of OnePK SDK. The OnePK SDK framework is still under development, thus
bugs exist, documentation is still poor and some features are not yet implemented. In order
to understand if the solution was feasible using this framework we initially did a study of the
platform. At the beginning of this thesis we started with the OnePK SDK v0.9 which did not
provide the necessary tools to implement the solution that were needed in order to implement our
solution, like BGP packet interception. As presented later, a basic component of this solution
is based on intercepting route insertions in the RIB before the update of the RIB occurs. This
was the hardest step in the process of implementing this solution as it was unknown if a solution
could be done. Nevertheless, during this study of the platform we also performed some initial
tests and we elaborated more our architecture. Finally, the OnePK SDK v1.3 was released(9
September 2014) which included a service API which gives developers the ability to intercept
packets. From that point on, we were able to proceed normally with the implementation of the
proposed system. To implement our solution we used the All-In-One VM offered by Cisco, which
contains the OnePK SDK installed and vmcloud, a tool that is used for virtualized networks.

It needs to be mentioned that this solution contains a limitation, again related with Cisco’s
software lack of features, that is explained in the 4.4 section.

4.1 Proposed solution

The innovation of the solution proposed in this document is moving the decision process of the
BGP daemon out of the router. As a result, any validation taking place would be transparent to
the BGP daemon of the router, not affecting its performance. This approach is very powerful as
it is not necessary to change the BGP implementation, a problem that proved to be a huge barrier

22

for deploying in real networks the solutions described above. As OnePK is being developed by
Cisco, one of the major routers and switches producer of the core network devices, the solution
could be easily deployed in many parts of the core network without big expenses. Many Cisco
devices will be able to run OnePK and thus will be possible to deploy easily this solution in a
real network.

Figure 4.1 depicts the idea of the proposed solution. The idea can be applied to any SDN
enabled set of devices and using any available server technology. As shown, the decision process
of the BGP daemon is taken out of the router, making our solution generic enough to be
installed in any SDN-enabled device without any changes. In our solution we adopt OnePK as
our SDN technology. The OnePK applications communicate with the device using the OnePK
API explained in the 2.3.1 section. The information gathered by the applications is sent to
the Server application and are used to build the network representation. Using the Web User
Interface the user is able to set rules to the devices of the network and using this rules the
decision is taken. In our solution we adopted the Django framework as a Web server. There
is also another entity in this solution which is the ROA authority that helps in the decision
process.

Figure 4.1: Proposed Solution

23

The solution is achieved by a combination of various components that deal with different prob-
lems and all together they compose the entire system. These parts are:

1. Packet Interception

2. RIB Update

3. Topology Discovery

4. Route Validation

5. Network management

6. ROA System

In this section all the different parts are going to be described briefly. Our description takes
into account the environment of our specific implementation (OnePK), but the components and
their functionality would be similar no matter the technical decisions made.

Packet Interception This is the crucial feature of this solution as without it the validation
of the routes would have been impossible to be achieved. We achieve that using the Datapath
Service API of the OnePK platform. In 4.3 we provide a more detailed explanation of the calls
and code used in order to achieve this functionality.

RIB Update This feature is achieved by an application that uses the Python SDK of OnePK.
This application retrieves the RIB entries of the device every 5 seconds retrieving pushes the
information to the API of the Server application. For the implementation of this feature we
used the Routing Service API of the OnePK platform.

Topology Discovery This feature is achieved by an application in each device that uses the
Python SDK of OnePK and is running every 10 seconds. The application uses the VTY service
API provided by OnePK.

Route Validation This feature is achieved as a combination of many agents. Both the client
and the server side of our system are involved. The validation is done in the server side and the
decision is forwarded to the device. The application on the devices which processes decides the
action that should be applied to the packet.

24

Network Management This is a server side feature providing a graphical interface in a
browser. Through this component the user is able to monitor the nodes of the network, set
prefix and AS path rules to the nodes and see almost in real time the UPDATE messages and
if they are accepted or revoked by the nodes. The interfaces also shows the originator and the
destination node of the messages. To provide even more information to the user, we also present
statistics of the revoked and accepted packets of each node, thus users can identify which nodes
are receiving more often bad or invalid packets.

ROA System This component of the system is provided by an external implementation that
was done by the RIPE NCC [14]. As explained in [14], RIPE NCC provides a package so
everyone(although focused on RIPE NCC members) can run its own certificate authority. We
are using the ROA system for testing purposes in this thesis without syncing our authority with
the official authorities as we are not a RIPE NCC member.

4.1.1 Comparison between State of the art solutions and our solution

In this paragraph we compare the different existing solutions with our solution. As shown
in 4.1.1,the main advantage of our solution is easy deployablity. Although we do not provide
a specific system to prevent route leaks, the most common cause of route leaks are policy
misconfigurations of and our solution gives the network administrator a easier way to apply
policies and check them. Moreover, since the BGP packet is unpacked and stored in a well
structured database, making to more difficult to create misconfigured policies.

Trust Model Path Auth Origin Auth Deployed Route Leak Protection Deployability
sBGP Centralized Strong Strong No No Difficult
soBGP Web of Trust None Strong No No Difficult
psBGP Centralized Strong Weak No No Difficult

Prop. Solution Centralized Policy rules Strong No
Ease policy

configuration
Easy

4.2 System Architecture

In this chapter we describe in more detail the system architecture and the interaction between
the different components. In the solution proposed the system can be split as three categories:

1. Device component : In this category are all the processes that run in the router device.

2. Server component : In this category is the server application that interacts with the device
components.

25

3. ROA component : This category contains the application that runs the certificate author-
ity.

Figure 4.2: System Architecture

4.2.1 Device Component

This component is based in three applications that run in each router device.

The first and most important application is written in C and is listening for incoming packets.
After obtaining the payload of the BGP packet it pushes that information to the server appli-
cation. This application uses the Datapath API provided by OnePK. First it connects to the
device and then it registers a function for every new incoming packet. If the received packet is a
BGP packet it sends the payload to the server where it will be processed. The second application
that runs on the devices is a Python application which using the Routing Service API polls every
5 seconds for all the routes in the RIB. The information obtained is sent in JSON[15] format
to the server application where it is processed and attached to the right node. The third and
last device component is the BGP topology discovery application, a Python application that
using VTY Service API sends commands to the router and parses its output. Using the received
output it retrieves the necessary information concerning the router neighbours and sends it to
the server application in JSON format.

4.2.2 Server Component

This component is a Django[16] application. In order to provide communication between the
Device component and the Server component an API has been implemented. For this purpose

26

Figure 4.3: System Architecture

we used the Django RESTframework[17], although the most important calls of the interaction
with the Device component have been implemented using custom components. While Django
RESTframework plugin offers a good manner to create an API for the main Resources that may
exist in any application the main API calls have been done with custom templates and custom
view calls that will be explained in the implementation chapter.

4.2.3 ROA Component

This component is based in a RIPE NCC implementation that is provided in [14] and can be
installed in some systems. In order to use it for this thesis we had to add the routes to a whitelist
that is provided by a web interface that comes with the server implementation. The interaction
between the Server component and the ROA component is done using a REST API and the
response is provided in JSON format.

4.3 Implementation

In this chapter the implementation of our system will be explained in detail as well as the
challenges encountered and the technologies used. The solution is going to be explained using
the same categorization and structure as the previous section to facilitate the reader.

27

4.3.1 Device Component

As explained in the previous section, the Device component is implemented using three appli-
cations that run in each device.

Packet Interception Application This is a C application that is constantly running on
the devices. Using the Datapath Service API from OnePK a programmer is able to register a
function callback every time a package is received in the device. As explained in the OnePK
documentation[18] the function call is the following:

o n e p s t a t u s t d p s s t u t o r i a l c r e a t e i p p m a p (
onep network e lement t ∗elem ,
o n e p d p s s p a k c a l l b a c k t callback ,
o n e p d p s s p k t a c t i o n t y p e e act ion ,
onep po l i cy pmap handle t ∗pmap handle ,
onep po l i cy pmap op t ∗pmap op ,
o n e p p o l i c y o p l i s t t ∗pmap op l i s t ,
o n e p p o l i c y o p l i s t t ∗ cmap op l i s t ,
onep po l i cy cmap hand le t ∗cmap handle ,
onep po l i cy cmap op t ∗cmap op ,
o n e p a c l t ∗∗ a c l) ;

For this thesis we based our code in the DatapathTutorial.c that comes with the All in One VM
that is provided by Cisco. Below we present the callback function that is called every time a
packet is received by the device which is registered with the function.

void d p s s d i s p l a y p a k i n f o c a l l b a c k (
o n e p d p s s t r a f f i c r e g t ∗ reg ,
s t r u c t onep dpss paktype ∗pak ,
void ∗ c l i e n t c o n t e x t ,
bool ∗ r e tu rn packe t) ;

In this function we check for the protocol, ports and destination of the packet intercepted and
we push the packet to the server in case it is a BGP packet. This application uses libcurl to issue
http requests to the server and the cJSON[19] library is used to create and parse the responses
from the server. In the Appendix A we provide the code for these functions and the parse
response function.

RIB Update Application This is a Python application that runs on each device and is
querying the RIB of the device every 5 seconds as explained in section 4.2.1. The queries to the
RIB of the device are issued using the Routing Service API as described in [18]. The information
obtained is pushed to the server using httplib and urllib Python libraries.

28

The information of the RIB of the device is sent in JSON format to the /rib/ API endpoint of
the server who parses the information and attaches it to the proper node of the network. To
help the server associates the information received with the correct node, a router identifier is
sent together with the RIB data. An example of the format of the information sent to the API
is shown in section A.3.

BGP Topology Discovery Application This is a Python application that runs on each
device and uses the VTY Service API to obtain information about the BGP neighbours and
other device specific data. To achieve that the application is sending native router commands
that are executed through the VTY Service and parses the replies. To send this information
to the server we use the urllib and httplib Python libraries. This process is repeated every 10
seconds providing the user with a pseudo real-time representation of the state of the network.
The application provides information that allows the users to understand the originators of
bad route announcements and take the appropriate actions to mitigate any misconfiguration or
attempt of attack.

4.3.2 Server Component

In this chapter we describe the technologies used for the server, presenting more in depth the
most important parts of the implementation.

Django Application The Server component is mostly implemented by a Django application.
Django is an open-source project being developed since 2005 up to nowadays and serves as
a web framework which provides developers with a fast way of building elegant web applica-
tions quickly. For the implementation of the server Django v1.7 has been used deploying both
CBV(Class Based Views) and FBV(Functional Based Views). Django uses the MVC(Model-
View-Controller) pattern.

Server API This section provides a description of the API endpoints implemented for the
interaction with the device applications. For a more detailed example of the requests and
responses the user can refer to the Appendix A.

To facilitate the presentation of the API we adopt a generic example that includes all the main
resources of the server and then we will continue with a more detailed explanation of each
separate endpoint.

For the main resources of the server:

1. Node : This resource is the model is used by the server to represent a router in the network.

29

2. Packet : This resource is the model used by the server to represent a packet in the network.

3. Prefix Rule: This resource is the model used by the server to represent a prefix rule that
is attached to a router in the network.

4. AsPath Rule: This resource is the model used by the server to represent an AS path rule
that is attached to a router in the network.

5. Route : This resource is the model used by the server to represent a route in the RIB of
a router in the network.

6. Interface : This resource is the model used by the server to represent an interface of a
router in the network.

For this resources a uniform API is provided using the Django RESTframework. All of the
resources expose the following endpoints:

1. BASEURL/resource/new/ : This endpoint is used to create an object of the specific
resource. All the required fields of the specific resource should be sent in JSON format.

2. BASEURL/resource/{id}/ : This endpoint is used to retrieve the details of the resource
with this specific ID in JSON format.

3. BASEURL/resource/edit/{id} : This endpoint is used to edit the resource with this spe-
cific ID.

4. BASEURL/resource/delete/{id} : This endpoint is used to delete the resource with this
specific ID.

For every main resource in the Server, besides this generic API calls, our API provides more
specific API endpoints. Below we describe these endpoints. Examples of the requests and
responses to this API endpoints are provided in the Appendix A.

1. BASEURL/evaluate/RouterId/SourceIP/DestinationIP/SourcePort/DestinationPort/ : This
endpoint is used by the Packet Interception application. A request to this endpoint invokes
the process that starts the decision procedure, where the BGP packet is parsed, evaluated
and the response is in JSON Format.

2. BASEURL/statistics/RouterId/ : This endpoint can be used to retrieve the statistics of
a specific router, a functionality mostly utilized by the Web User Interface.

3. BASEURL/update/info/router/RouterId/ : This endpoint is used by the BGP Topol-
ogy Discovery application in order to maintain up-to-date the information of the BGP
neighbours and how they are connected with each other.

30

4. BASEURL/rib/ : This endpoint is used by the RIB Update application in order to update
the RIB information of a router in the network.

Packet Parsing In order to decode the packet we used the dpkt library[20]. Since the library
does not support decoding 32bit format updates we introduced the necessary modifications,
which are shown in the Appendix A.

User Interface The User Interface is implemented on top of the VisJS library[21], the Bootstrap[22]
framework, the jQuery[23] library and the Django template system in order to achieve the in-
teraction between the DOM elements of the web user interface. This components provides a
friendly User Interface for network management. Below we include screenshots of the different
features provided through this Web User Interface.

A notification system informs the user when a packet is sent from one node to another with
a pop-up window at the bottom right corner. The color of the pop-up window declares if the
packet is accepted, green, or rejected, red. Figure 4.4 depicts a notification when a packet is
intercepted and processed by the application. In this example the packet is accepted.

Figure 4.4: Packet notification

Figure 4.5 presents a sample of how the RIB entries shown in the application.

Figure 4.6 is a sample of the packet statistics available.

Figure 4.7 shows the user interface to create a prefix rule for a node.

Network graph In order to create the netgraph we used the VisJS library. This library pro-
vides a way to visualize data as a network of nodes. To facilitate visualization and management

31

Figure 4.5: RIB table

Figure 4.6: Packet Statistics

of the network nodes to the user we also introduced jQuery functionalities.

As shown in Figure 4.8, an interactive network topology is provided. The nodes have different
color depending on the AS they belong to. When the user selects a node, a new window appears
containing real-time information(RIB, interfaces) and statistics of the specific node, but also
allowing the user to insert prefix and AS path rules.

32

Figure 4.7: Prefix Rule UI

Figure 4.8: Network graph

4.3.3 ROA Component

This component, as explained above, is a RIPE NCC implementation of a certification entity.
We have installed the ROA package in the All in One VM. This component offers an API
in order to validate the origin of a route based comparing the information with its database.
Following we provide a description of the endpoint offered by this components:

33

• /BASEURL/api/v1/validity/ASN/IP/LENGTHPREFIX : Using this endpoint the sys-
tem is able to validate the origin of a received route. The response of this endpoint is in
JSON format and gives information about the validation of the route.

The Server component uses this endpoint every time it receives an UPDATE in order to validate
the origin of the route. In the next step of the process, the server checks the prefix and AS
rules associated with the destination Node. To summarize the validation process, we provide a
two-step validation:

1. The origin of the route is validated using the ROA component

2. The information is validated based on the stored rules associated to the node in question.

4.4 Limitation

OnePK SDK is still under development and currently there is no BGP API implementation,
though Cisco has announced that it will be included in the next version of the OnePK SDK. In
order to overcome this limitation, our system uses intermediate routers that intercept the packet
before it is received and processed by the BGP process. When a BGP packet is intercepted it
is sent to the server where it is processed. Figure 4.9 presents the described limitation and our
solution.

Figure 4.9: Limitation of the solution

In this point, we would also like to point out that due to lack of time and access to real Cisco
routers the implemented system has been tested and benchmarked inside the environment of
Cisco All-in-One VM.

34

Chapter 5

Experimental Results

In this chapter we introduce the experimental environment deployed as well as the validity and
scalability experiments performed. We also present the results obtained and we discuss them
briefly.

5.1 Testbed

In order to test the proposed solution in this document a testbed with the resources available has
been deployed. As explained in section 4.4, an intermediate router needs to be placed between
two BGP speakers in order to intercept the BGP packets. Thus, the testbed necessarily contains
an extra intermediate route for every link between BGP speakers. As also explained in section
4.4, all the testbed routers are simulated inside one All-in-One VM in one physical host.

The testbed consists of 6 BGP speakers and 4 intermediate routers for the interception of the
BGP packets. Figure 5.1 shows the testbed structure.

All the routers are virtualized, running inside the All-in-One VM provided by Cisco. The
network topology is simulated using the vmcloud tool. In the Appendix A all the configuration
for this testbed is provided, to facilitate the replicability of our experiments.

The Server application was executed in the Host OS. For a more realistic Server Application
set up we avoided using the development server provided by Django and adopted our own
web-server and application server solution. The web-server chosen is nginx [24]. Nginx is an
open source reverse proxy server for various protocols. It has been proved that nginx works
well in high concurrency environments and uses low memory. For the application server we
chose Gunicorn[25]. Gunicorn is a Python Web Server Gateway Interface HTTP Server for
Unix. Gunicorn has been proved to work well with Django and has an easy set up procedure.

35

Figure 5.1: Testbed Structure

Furthermore, Gunicorn has also proved to be light resource consuming and fairly fast.

All the experiments have been executed in a personal laptop, with CPU Intel i5 2410M @
2.3GHz and 16GB RAM.

5.1.1 Validation Tests

After the testbed was set up a scenario was tested in order to validate the proper system
operation.

Prefix and BGP Path Hijacking Test

This scenario simulates an attempt of Prefix Hijacking. After the network enters a stable state
one of the routers starts to sends invalid Prefixes. The execution of the scenario proves that
the system is able to detect those UPDATES and treat them appropriately. We provide below
a step by step explanation of how the system is able to detect the malicious Prefix.

The first step in in order to execute the scenario we need to configure the ROA system. The

36

ROA system has a whitelist where valid prefixes for specific ASs can be configured. If we want
the system to evaluate as valid an announced prefix the first step is to create an entry to the
ROA whitelist. In Figure 5.2 some examples of entries in the whitelist are shown.

Figure 5.2: ROA whitelist

After creating the entry in the ROA system whitelist a BGP update is intercepted by the
interception packet application and then pushed to the Server. The Server decodes the packet
and forwards it to the ROA system API where it will be evaluated. In Figure 5.3 an example
of a valid evaluation of a BGP update is shown.

If the ROA validation was successful then the prefix rules of the node will evaluate the packet.
In Figure 5.4 an example of a set of rules assigned to a Node is shown.

Besides the prefix rules of the nodes also a BGP path validation is done. In Figure 5.5 an
example of a set of rules assigned to a Node is shown.

After all these processes are executed automatically upon a packet interception a pop up noti-
fication showing the user if the packet was accepted or rejected will be shown. The notification
provides also the information of the origin and destination of the packet. Moreover, the sys-
tem also keeps track of the received packets and shows a graph with the rejected and accepted
packets. An example of the packet notification is shown in figure 5.6.

As we can see in this example, AS1 is trying to announce an invalid prefix to AS2 and the
system is able to detect it. In this example the ROA system validates the route but due to a
prefix rule in the AS2 the packet is rejected.

37

Figure 5.3: Example of a response of the ROA system

Figure 5.4: List of Prefix Rules assigned to a Node

5.2 Scalability of the solution

Maintaning the set up and the tools explained above, we performed stress testing of the Server
app. All the experiments have been executed in a personal laptop, the characteristics of it are:

38

Figure 5.5: List of AS Path Rules assigned to a Node

Figure 5.6: Rejected Packet Notification Example

1. Laptop

(a) CPU : Interl i5 @ 2.3GHz

(b) RAM : 16Gb

The objective of this experiment was to test how many nodes could a single instance of Server
application serve without errors.

The stress testing tool we used is the Apache Benchmark (ab)[26]. The configuration of the
Gunicorn application server for this experiment is provided in Appendix A. In order to simulate
the scenario three instances of the ab were executed concurrently simulating the behaviour of
the three applications running in the devices and sending requests to the Server application with
a mock data generated for this purpose.

To obtain the representative response times we have run the ab benchmark three times for every
situation and used the arithmetic mean of the three values obtained. As can be seen in figure

39

5.7 all of the applications have very similar response time so none of them is the main bottleneck
of the system. After executing three instances of ab with level of concurrency fifty, the server
is failing and not responding to all the requests and causing also a a significant drop in the
response time.

Figure 5.7: Scalability analysis of the Server Application

The result we can obtain from the figure is that the Server application saturates when more
than 40 nodes are issuing concurrently requests from all their Device applications.

We have used ab which does not model a realistic scenario in our system. The reason of this
unrealistic scenario is how ab makes the request, ab does all the requests at the same time, in a
realistic scenario the device applications will be doing requests at different time intervals so it is
very unlikely that all the nodes will send the request at the same time. Besides the unrealistic
workload there is also the added burden that the ROA system is running in the same laptop
that is running the benchmark and the server application. Nevertheless, this can be considered
the worst case scenario. As a result we have proved that in the worst case scenario the Server
application can manage at least 40 connected nodes.

40

Chapter 6

Conclusion

In this project it has been proven that a solution to secure BGP transparently to the protocol
is possible. The solution presented in this document is a early stage of a very powerful tool for
SDN networks. The main idea of the solutions is to take out of the device the decision process of
the BGP protocol. To achieve this goal we have used OnePK that offers Service Sets API that
allow us to interact with the devices. The main competitive advantage between the solution
proposed here and the state of the art solutions presented is that is easily deployable as it can
be used in any network that have OnePK compatible devices, and Cisco is one of the biggest
core network device providers. We have made a solution using OnePK applications running in
Cisco devices that combined with a Server application. And we have done a experiment in order
to show that it works and a performance experiment to test the scalability of the solution.

In conclusion it has been shown that SDN platform can lead to very impressive an innovative
ways of dealing with network devices, both more comfortable and powerful for the management
of networks.

6.1 Future work

Because of the early stage of OnePK there is a lot of future work to be done. The most im-
portant one is after the BGP API is released and if it is possible adapt this solution without
the limitations explained in the document. Besides this very important improvement the Server
application could be done with a bidirectional communication mechanism so the Server could
trigger some actions proactively. And as Cisco is releasing new versions of OnePK other inter-
esting features could be adapted to this system. Besides this work a lot of optimization work is
still pending to be done so maybe the solution can be more scalable.

41

Acronyms

ab Apache Benchmark

API Application Programming Interface

ART Application Route Table

AS Autonomous System

BGP Border Gateway Protocol

BGPSEC BGP Secure

DPSS Datapath Service Set

EGP Exterior Gateway Protocol

EBGP Exterior Border Gateway Protocol

iBGP Interior Border Gateway Protocol

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IP Internet Protocol

IPv6 Internet Protocol version 6

ISP Internet Service Provider

NAP Network Access Point

NDP Network Discovery Protocol

OnePK One Platform Kit

OSPF Open Shortest Path First

42

PKI Public Key Infrastructure

RFC Request for Comments

RIB Routing Information Base

RIR Regional Internet Registry

ROA Route Origination Authorization

RPKI Resource Public Key Infrastructure

sBGP Secure BGP

soBGP Secure Origin BGP

SDN Software Defined Networking

SEND Secure Neighbour Discovery Protocol

SIDR Secure Inter-Domain Routing

TCP Transmission Control Protocol

VM Virtual Machine

VTY Virtual Terminal Line

43

Bibliography

[1] Cisco, “Onepk.” http://www.cisco.com/c/en/us/products/ios-nx-os-software/

onepk.html.

[2] K. Lougheed and Y. Rekhter, “Border Gateway Protocol (BGP).” RFC 1105 (Experimen-
tal), June 1989. Obsoleted by RFC 1163.

[3] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4).” RFC 4271
(Draft Standard), January 2006.

[4] S. Murphy, “BGP Security Vulnerabilities Analysis.” RFC 4272 (Informational), January
2006.

[5] B. Halabi, Internet Routing Architectures. Indianapolis, IN: Cisco Press, 1997.

[6] BGP Cisco report, “Border Gateway Protocol (BGP),” tech. rep., Cisco, 1999.

[7] Wikipedia, “RPKI.” http://en.wikipedia.org/wiki/Resource_Public_Key_

Infrastructure.

[8] A. Barbir, S. Murphy, and Y. Yang, “Generic Threats to Routing Protocols.” RFC 4593
(Informational), Oct. 2006.

[9] C. Meinel, “Attacking and Defending the Internet with Border Gateway Protocol (BGP).”
http://www.ciscopress.com/articles/article.asp?p=1237179, 2008.

[10] M. Siddiqui, D. Montero, R. Serral-Gràcia, and M. Yannuzzi, “Self-Reliant Route Leak
Identification in Inter-Domain Routing,” tech. rep., Advanced Network Architectures Lab,
2014.

[11] B. Dickson, “Route Leaks - Requirements for Detection and Prevention thereof. draft-
dickson-sidr-route-leak-reqts,” 2012.

[12] A. Pilosov and T. Kapela, “Stealing The Internet.” https://www.defcon.org/images/

defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf, 2008.

44

http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
http://en.wikipedia.org/wiki/Resource_Public_Key_Infrastructure
http://en.wikipedia.org/wiki/Resource_Public_Key_Infrastructure
http://www.ciscopress.com/articles/article.asp?p=1237179
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf

[13] T. Wan, E. Kranakis, and P. C. van Oorschot, “Pretty secure bgp, psbgp.,” in NDSS, The
Internet Society, 2005.

[14] Ripe NCC, “RIPE NCC RPKI Test Environment.” http://www.ripe.net/lir-services/
resource-management/certification/rpki-test-environment.

[15] G. Inc., “Json.” http://www.json.org/.

[16] D. community, “Django framework.” https://www.djangoproject.com/.

[17] T. Christie, “Django rest framework.” http://www.django-rest-framework.org/.

[18] Cisco, “OnePK API Reference.” https://developer.cisco.com/media/

onePKCAPI-v1-1-0.

[19] D. Gamble, “cjson.” http://sourceforge.net/projects/cjson/.

[20] dugsong@gmail.com, “Dpkt.” https://code.google.com/p/dpkt/.

[21] Community, “Visjs.” http://visjs.org/.

[22] Twitter, “Bootstrap.” http://getbootstrap.com/.

[23] jQuery Foundation, “jquery.” http://jquery.com/.

[24] I. Sysoev, “Nginx.” http://nginx.org/.

[25] B. Chesneau, “Gunicorn - python wsgi http server for unix.” http://gunicorn.org/.

[26] Community, “ab - Apache HTTP server benchmarking tool.” http://httpd.apache.org/

docs/2.2/programs/ab.html.

45

http://www.ripe.net/lir-services/resource-management/certification/rpki-test-environment
http://www.ripe.net/lir-services/resource-management/certification/rpki-test-environment
http://www.json.org/
https://www.djangoproject.com/
http://www.django-rest-framework.org/
https://developer.cisco.com/media/onePKCAPI-v1-1-0
https://developer.cisco.com/media/onePKCAPI-v1-1-0
http://sourceforge.net/projects/cjson/
https://code.google.com/p/dpkt/
http://visjs.org/
http://getbootstrap.com/
http://jquery.com/
http://nginx.org/
http://gunicorn.org/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html

Appendix A

Source Code, Requests Configurations

In this chapter all the code and extra information for the better understanding of the thesis is
provided.

A.1 onep status t dpss tutorial create ip pmap Code

/∗
∗ Example f u n c t i o n to c r e a t e a s imple ACL and P o l i c y Map
∗/

o n e p s t a t u s t d p s s t u t o r i a l c r e a t e i p p m a p (
onep network e lement t ∗elem ,
o n e p d p s s p a k c a l l b a c k t ca l lback ,
o n e p d p s s p k t a c t i o n t y p e e act ion ,
onep po l i cy pmap handle t ∗pmap handle ,
onep po l i cy pmap op t ∗pmap op ,
o n e p p o l i c y o p l i s t t ∗pmap op l i s t ,
o n e p p o l i c y o p l i s t t ∗ cmap op l i s t ,
onep po l i cy cmap hand le t ∗cmap handle ,
onep po l i cy cmap op t ∗cmap op ,
o n e p a c l t ∗∗ a c l)

{
onep ace t ∗ace40 = 0 ;
o n e p a c l t ∗ onep ac l = 0 ;
o n e p c o l l e c t i o n t ∗ r e s u l t l i s t = 0 ;
o n e p i t e r a t o r t ∗ i t e r = 0 ;
o n e p p o l i c y a c t i o n h o l d e r t ∗ah = 0 ;
o n e p p o l i c y a c t i o n t ∗ dp act ion = 0 ;

46

o n e p p o l i c y e n t r y o p t ∗ entry op ;
onep po l i cy match ho lde r t ∗mh = 0 ;
onep po l i cy match t ∗match = 0 ;
o n e p p o l i c y t a b l e c a p t ∗ t ab l e cap = 0 ;
o n e p s t a t u s t rc = ONEP OK;
o n e p s t a t u s t d e s t r o y r c = ONEP OK;

/∗ c r e a t e a s imple ACL, ip any any ∗/
rc = o n e p a c l c r e a t e l 3 a c l (AF INET , elem , &onep ac l) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p a c l c r e a t e l 3 a c l : %d , %s\n” ,
rc , o n e p s t r e r r o r (rc)) ;

goto cleanup ;
}

// Create ACE40(seq =40, permit)
rc = o n e p a c l c r e a t e l 3 a c e (40 , TRUE, &ace40) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p a c l c r e a t e l 3 a c e : %d , %s\n” ,
rc , o n e p s t r e r r o r (rc)) ;

goto cleanup ;
}

// Set ACE40 src p r e f i x
rc = o n e p a c l s e t l 3 a c e s r c p r e f i x (ace40 , NULL, 0) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p a c l s e t l 3 a c e s r c p r e f i x : %d
, %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}

// Set ACE40 d e s t p r e f i x
rc = o n e p a c l s e t l 3 a c e d s t p r e f i x (ace40 , NULL, 0) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p a c l s e t l 3 a c e d s t p r e f i x : %d ,
%s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}

// Set ACE40 d e s t por t

47

rc = o n e p a c l s e t l 3 a c e p r o t o c o l (ace40 , proto) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p a c l s e t l 3 a c e p r o t o c o l : %d , %
s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
// Set ACE40 src por t

rc = o n e p a c l s e t l 3 a c e s r c p o r t (ace40 , 0 , ONEP COMPARE ANY) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p a c l s e t l 3 a c e s r c p o r t : %d , %
s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
// Set ACE40 d e s t por t

u i n t 1 6 t bgp port = 179 ;
rc = o n e p a c l s e t l 3 a c e d s t p o r t (ace40 , 0 , ONEP COMPARE ANY) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p a c l s e t l 3 a c e d s t p o r t : %d , %
s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
//Add ACE40 to ACL
rc = onep ac l add ace (onep ac l , ace40) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep ac l add ace : %d , %s\n” ,
rc , o n e p s t r e r r o r (rc)) ;

goto cleanup ;
}
/∗
∗ Get t r a f f i c a c t i o n t a b l e
∗/
rc = d p s s t u t o r i a l f i n d d a t a p a t h t a b l e (elem , &tab l e cap) ;
i f (rc != ONEP OK) {

goto cleanup ;
}
/∗
∗ Create a p o l i c y us ing the c l a s s j u s t c r e a t e d .
∗/

48

/∗ 1 . Create the o p l i s t ∗/
rc = onep po l i cy pmap op l i s t new (&pmap op l i s t) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy pmap op l i s t new : %d , %
s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 2 . Add the network element ∗/
rc = onep po l i cy op add network e l ement (pmap op l i s t , elem) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy op add network e l ement :
%d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 3 . Add pmap c r e a t e opera t ion to l i s t ∗/
rc = onep po l i cy pmap op create (pmap op l i s t , tab l e cap , &pmap op

) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy pmap op create : %d , %s\
n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 4 . Add an entry ∗/
i f (o n e p p o l i c y t a b l e c a p s u p p o r t s s e q u e n c e i n s e r t i o n (tab l e cap)){

rc = onep po l i cy pmap op ent ry in s e r t s equence (pmap op , 200 ,
&entry op) ;

i f (rc != ONEP OK) {
f p r i n t f (s tde r r , ”\nError in

onep po l i cy pmap op ent ry in s e r t s equence : %d , %s\n” ,
rc , o n e p s t r e r r o r (rc)) ;

goto cleanup ;
}

} else {
rc = onep po l i cy pmap op ent ry in s e r t end (pmap op , &entry op)

;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
onep po l i cy pmap op ent ry in s e r t end : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;

49

goto cleanup ;
}

}
i f (o n e p p o l i c y t a b l e c a p s u p p o r t s p e r s i s t e n t (t ab l e cap)) {

rc = o n e p p o l i c y p m a p o p s e t p e r s i s t e n t (pmap op , ”onep−dp−
t u t o r i a l−pmap”) ;

i f (rc != ONEP OK) {
f p r i n t f (s tde r r , ”\nError in

o n e p p o l i c y p m a p o p s e t p e r s i s t e n t : %d , %s\n” ,
rc , o n e p s t r e r r o r (rc)) ;

goto cleanup ;
}

} else {
rc = o ne p po l i c y pm ap op s e t t r an s i en t (pmap op) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
on ep po l i c y pm ap op s e t t r an s i en t : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
}
i f (onep po l i cy tab l e cap suppor t s cmap (tab l e cap)) {

/∗
∗ Create a c l a s s based on the ACL.
∗/

/∗ 1 . Create the o p l i s t ∗/
rc = onep po l i cy cmap op l i s t new (& cmap op l i s t) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy cmap op l i s t new : %
d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 2 . Add the network element ∗/
rc = onep po l i cy op add network e l ement (cmap op l i s t , elem) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
onep po l i cy op add network e l ement : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}

50

/∗ 3 . Create a s p e c i f i c opera t ion on the l i s t ∗/
rc = onep po l i cy cmap op crea te (cmap op l i s t , tab l e cap , &

cmap op) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy cmap op crea te :
%d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
i f (o n e p p o l i c y t a b l e c a p s u p p o r t s p e r s i s t e n t (t ab l e cap)) {

rc = o n e p p o l i c y c m a p o p s e t p e r s i s t e n t (cmap op , ”onep−
dp−t u t o r i a l−cmap”) ;

i f (rc != ONEP OK) {
f p r i n t f (s tde r r , ”\nError in

o n e p p o l i c y c m a p o p s e t p e r s i s t e n t : %d , %s\n” ,
rc , o n e p s t r e r r o r (rc)) ;

goto cleanup ;
}

}
/∗ 4 . Get the match h o l d e r f o r the opera t ion i n s t a n c e ∗/
rc = onep po l i cy cmap op get match ho lder (cmap op , &mh) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
onep po l i cy cmap op get match ho lder : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 5 . Add an acces s l i s t match ∗/
rc = o n e p p o l i c y m a t c h a d d a c c e s s l i s t (mh, (

o n e p p o l i c y a c c e s s l i s t t ∗) onep ac l , &match) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
o n e p p o l i c y m a t c h a d d a c c e s s l i s t : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 6 . Submit the opera t ion . ∗/
rc = onep po l i cy op update (cmap op l i s t) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy op update 1 : %d , %s
\n” ,

rc , o n e p s t r e r r o r (rc)) ;

51

goto cleanup ;
}
/∗ 7 . Find the cmap handle we j u s t c r e a t e d ∗/
rc = o n e p p o l i c y o p l i s t g e t l i s t (cmap op l i s t , &r e s u l t l i s t)

;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p p o l i c y o p l i s t g e t l i s t
: %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
rc = o n e p c o l l e c t i o n g e t i t e r a t o r (r e s u l t l i s t , &i t e r) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p c o l l e c t i o n g e t i t e r a t o r
: %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
cmap op = (onep po l i cy cmap op t ∗) o n e p i t e r a t o r n e x t (i t e r) ;

i f (! cmap op) {
f p r i n t f (s tde r r , ”\nError in g e t t i n g p o l i c y op\n”) ;
goto cleanup ;

}
rc = onep po l i cy cmap op get hand le (cmap op , cmap handle) ;

i f (rc != ONEP OK) {
f p r i n t f (s tde r r , ”\nError in c r e a t i n g c l a s s map : %d , %s
\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 5 . Set the cmap on the entry ∗/
rc = onep po l i cy entry op add cmap (entry op , ∗cmap handle) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy entry op add cmap :
%d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
} else {

rc = onep po l i c y en t ry op ge t mat ch ho lde r (entry op , &mh) ;
i f (rc != ONEP OK) {

52

f p r i n t f (s tde r r , ”\nError in
onep po l i c y en t ry op ge t mat ch ho lde r : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ 5 . Add an acces s l i s t match ∗/
rc = o n e p p o l i c y m a t c h a d d a c c e s s l i s t (mh, (

o n e p p o l i c y a c c e s s l i s t t ∗) onep ac l , &match) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
o n e p p o l i c y m a t c h a d d a c c e s s l i s t : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
}
/∗ 6 . Try and add an a c t i o n ∗/
rc = o n e p p o l i c y e n t r y o p g e t a c t i o n h o l d e r (entry op , &ah) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
o n e p p o l i c y e n t r y o p g e t a c t i o n h o l d e r : %d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
i f (ac t i on==ONEP DPSS ACTION COPY) {

p r i n t f (”Adding ONEP DPSS Action Copy\n”) ;
rc = onep po l i cy ac t i on add copy (ah , ca l lback , NULL, &dp act ion

) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy ac t i on add copy : %d ,
%s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
}
i f (ac t i on==ONEP DPSS ACTION DIVERT) {

p r i n t f (”Adding ONEP DPSS Action Divert \n”) ;
rc = o n e p p o l i c y a c t i o n a d d d i v e r t (ah , ca l lback , NULL, &

dp act ion) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p p o l i c y a c t i o n a d d d i v e r t : %
d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;

53

goto cleanup ;
}

}
i f (ac t i on==ONEP DPSS ACTION PUNT) {

p r i n t f (”Adding ONEP DPSS Action Punt\n”) ;
rc = o n e p p o l i c y a c t i o n a d d d i v e r t (ah , ca l lback , NULL, &

dp act ion) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p p o l i c y a c t i o n a d d d i v e r t : %
d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
rc = o n e p p o l i c y a c t i o n s e t s t a t e f u l (dp act ion) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p p o l i c y a c t i o n s e t s t a t e f u l :
%d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
}
/∗ 7 . Submit the opera t ion . ∗/
rc = onep po l i cy op update (pmap op l i s t) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy op update : %d , %s\n” ,
rc , o n e p s t r e r r o r (rc)) ;

goto cleanup ;
}
/∗ 8 . Find the pmap handle we j u s t c r e a t e d ∗/
rc = o n e p p o l i c y o p l i s t g e t l i s t (pmap op l i s t , &r e s u l t l i s t) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p p o l i c y o p l i s t g e t l i s t : %d , %
s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
rc = o n e p c o l l e c t i o n g e t i t e r a t o r (r e s u l t l i s t , &i t e r) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in o n e p c o l l e c t i o n g e t i t e r a t o r : %d , %
s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

54

}
pmap op = (onep pol i cy pmap op t ∗) o n e p i t e r a t o r n e x t (i t e r) ;

i f (! pmap op) {
f p r i n t f (s tde r r , ” Error in g e t t i n g pmap op\n”) ;
rc = ONEP FAIL ;
goto cleanup ;
}

rc = onep po l i cy pmap op get hand le (pmap op , pmap handle) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in onep po l i cy pmap op get hand le :
%d , %s\n” ,

rc , o n e p s t r e r r o r (rc)) ;
goto cleanup ;

}
/∗ Return the a c l we c r e a t e d ∗/
∗ a c l = onep ac l ;
p r i n t f (” S u c c e s s f u l l y c r ea ted a c l .\n”) ;
p r i n t f (”Done c r e a t i n g p o l i c y handle .\n”) ;
c leanup :
i f (cmap op l i s t) {

d e s t r o y r c = o n e p p o l i c y o p l i s t d e s t r o y (& cmap op l i s t) ;
i f (d e s t r o y r c != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
o n e p p o l i c y o p l i s t d e s t r o y : %d , %s\n” ,

de s t roy r c , o n e p s t r e r r o r (d e s t r o y r c)) ;
}

}
i f (pmap op l i s t) {

d e s t r o y r c = o n e p p o l i c y o p l i s t d e s t r o y (&pmap op l i s t) ;
i f (d e s t r o y r c != ONEP OK) {

f p r i n t f (s tde r r , ”\nError in
o n e p p o l i c y o p l i s t d e s t r o y : %d , %s\n” ,

de s t roy r c , o n e p s t r e r r o r (d e s t r o y r c)) ;
}

}
return rc ;

}

/∗
∗ Simple packe t c a l l b a c k t h a t w i l l j u s t d i s p l a y some in format ion per
∗ packe t . Can be used f o r d i v e r t e d or copied p a c k e t s and doesn ’ t t r y

to

55

∗ t ake any a c t i o n on the packe t .
∗/

void d p s s d i s p l a y p a k i n f o c a l l b a c k (o n e p d p s s t r a f f i c r e g t ∗ reg ,
struct onep dpss paktype ∗pak , void ∗ c l i e n t c o n t e x t , bool ∗

r e tu rn packe t) {
stat ic int count = 1 ; /∗ packe t counter ∗/

o n e p s t a t u s t rc ;
o n e p d p s s f i d t f i d ;
char ipv = 0 ;
u i n t 1 6 t s r c p o r t = 0 ;
u i n t 1 6 t d e s t p o r t = 0 ;
char ∗ s r c i p = NULL;
char ∗ d e s t i p = NULL;
char l 4 p r o t o c o l [5] ;
char l 4 s t a t e [3 0] ;
bool ∗ fragmented = f a l s e ;
u i n t 3 2 t s i z e p a y l o a d = 0 ;
u i n t 8 t ∗ s t a r t p a y l o a d ;
int i = 0 ;
s t r cpy (l 4 p r o t o c o l , ”ERR”) ;
s t r cpy (l 4 s t a t e , ”ERR”) ;
char ∗ content = NULL;
u i n t 8 t ∗payload ;
rc = onep dps s pk t g e t f l ow (pak , &f i d) ;
i f (rc == ONEP OK) {

rc = d p s s t u t o r i a l g e t i p v e r s i o n (pak , &ipv) ;
i f (rc != ONEP OK) {

f p r i n t f (s tde r r , ” Error in get ip ve r s i on : code [%d] , t ex t
[%s]\n” ,

rc , o n e p s t r e r r o r (rc)) ;
}
rc = d p s s t u t o r i a l g e t i p p o r t i n f o (pak , &s r c i p ,

&de s t i p ,
&s r c po r t ,
&des t por t ,
l 4 p r o t o c o l ,
ipv) ;

i f (rc != ONEP OK) {
f p r i n t f (s tde r r , ” Error in get ip port i n f o : code [%d] , t ex t

[%s]\n” ,
rc , o n e p s t r e r r o r (rc)) ;

56

}
d p s s t u t o r i a l g e t f l o w s t a t e (pak , f i d , l 4 s t a t e) ;

} else {
f p r i n t f (s tde r r , ” Error g e t t i n g f low ID . code [%d] , t ex t [%s]\n”

,
rc , o n e p s t r e r r o r (rc)) ;

}
count++;
f r e e (s r c i p) ;
f r e e (d e s t i p) ;

r c = onep dps s pkt i s f r agmented (pak , &fragmented) ;
i f (rc == ONEP OK){

i f (! fragmented) {
rc = onep dpss pkt ge t pay load (pak , &s t a r t p a y l o a d) ;

rc = o n e p d p s s p k t g e t p a y l o a d s i z e (pak , &s i z e p a y l o a d) ;
i f ((s r c p o r t == 179 | | d e s t p o r t == 179) && s i z e p a y l o a d

> 0){
char ∗ u r l = ” http :// l o c a l h o s t :8000/ eva luate /” ;
content = do web request (ur l , payload , s i z e p a y l o a d)

;
cJSON∗ r e q u e s t j s o n = NULL;
/∗ assuming the response i s a s t r i n g ∗/
r e q u e s t j s o n = cJSON Parse (content) ;
int b o o l r e t u r n = p a r s e o b j e c t (r eque s t j s on , &

return packet , &pak) ;
char ∗hex data = cJSON GetObjectItem (r eque s t j s on , ”

data ”)−>v a l u e s t r i n g ;
i f (b o o l r e t u r n == 1) {

∗ r e tu rn packe t = true ;
}
else {

∗ s t a r t p a y l o a d = ”” ;
}

}
}

} else {
f p r i n t f (s tde r r , ” Error knowing i f i t s fragmented . code [%d] ,

t ex t [%s]\n” ,
rc , o n e p s t r e r r o r (rc)) ;

57

}
return ;

}
// END SNIPPET: c a l l b a c k i n f o

A.2 Parsing object Code

int p a r s e o b j e c t (cJSON ∗ r eque s t j s on ,
bool ∗ re turn packet ,
struct onep dpss paktype ∗pak)
{

o n e p s t a t u s t rc ;
int b o o l r e t u r n = NULL;
cJSON∗ index = NULL;
cJSON∗ op t i ona l = NULL;
cJSON∗ hex data = NULL;
// r e q u e s t j s o n = cJSON Parse (roo t) ;
u i n t 8 t ∗ binary data = 0 ;
b o o l r e t u r n = cJSON GetObjectItem (r eque s t j s on , ” re turn ”)−>v a l u e i n t ;

return b o o l r e t u r n ;
}

A.3 Rib Information

{
” l o c a l b g p i d ” : ”1” ,
” p r e f i x e s ” : [

{
” address ” : ” 1 9 2 . 1 6 8 . 1 . 1 0 ” ,
”netmask ” : ”24”

}
]

}

58

A.4 Topology discovery Request Example

{
” Neighbors ” : [

{
” r o u t e r i d ” : ” 1 0 . 1 0 . 1 0 . 1 2 0 ” ,
” ip ” : ” 1 0 . 1 0 . 6 0 . 1 2 0 ” ,
” bgp s ta t e ” : ”BGP s t a t e = Estab l i shed ” ,
” a s i d ” : ”2”

}
] ,
”hostname ” : ”Router7”

}

A.5 Evaluate Response Example

{
” packet ” : {

” d s t p o r t ” : 27087 ,
” s r c p o r t ” : 179 ,
” type ” : 2 ,
”name ” : ”p1 ” ,
” p ro to co l ” : ”bgp”

} ,
” data ” : ”

f 0 0 3 b 0 2 0 0 0 0 0 0 1 c 4 0 0 1 0 1 0 0 4 0 0 2 0 e 0 2 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 4 4 0 0 3 0 4 0 a 0 a 1 e 6 e 1 8 c 0 a 8 1 1 1 8 c 0 a 8 1 5
” ,

” re turn ” : 1
}

A.6 Vmcloud topology configuration

<?xml version=” 1 .0 ” encoding=”UTF−8” standalone=” yes ”?>
<topology xmlns=” ht tp : //www. c i s c o . com/VIRL” xmlns :x s i=” ht tp : //www. w3 .

org /2001/XMLSchema−i n s t ance ” schemaVersion=” 0 .3 ”

59

xs i : s chemaLocat ion=” ht tp : //www. c i s c o . com/VIRL ht tp : // c ide . c i s c o .
com/vmmaestro/schema/ v i r l . xsd”>
<node name=” route r1 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”

188 ,263 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r1 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r1 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>
< i n t e r f a c e name=” GigabitEthernet0 /4”/>
< i n t e r f a c e name=” GigabitEthernet0 /5”/>

</node>
<node name=” route r2 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”

488 ,319 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r2 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r2 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>
< i n t e r f a c e name=” GigabitEthernet0 /4”/>

</node>
<node name=” route r3 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”

371 ,407 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r3 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r3 . p12</ entry>

</ ex t en s i on s>

60

< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>

</node>
<node name=” vmc lan 1 ” type=”SEGMENT” l o c a t i o n=” 374 ,520 ”/>
<node name=” eth1 ” type=”ASSET” l o c a t i o n=” 671 ,235 ”>

< i n t e r f a c e name=”none0”/>
< i n t e r f a c e name=”none1”/>

</node>
<node name=” lan ex ” type=”SEGMENT” l o c a t i o n=” 722 ,161 ”/>

<node name=” route r4 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”
250 ,360 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r4 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r4 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>
< i n t e r f a c e name=” GigabitEthernet0 /4”/>

</node>

<node name=” route r5 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”
250 ,360 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r5 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r5 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>

</node>

61

<node name=” route r6 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”
250 ,360 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r6 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r6 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>

</node>
<node name=” route r7 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”

250 ,360 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r7 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r7 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>

</node>
<node name=” route r8 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”

250 ,360 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r8 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r8 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>

</node>

62

<node name=” route r9 ” type=”SIMPLE” subtype=” v i o s ” l o c a t i o n=”
250 ,360 ” vmImage=”/ usr / share /vmcloud/ data / images / v i o s . ova”>
<ex t en s i on s>

<entry key=” boots t rap c o n f i g u r a t i o n ” type=” St r ing ”>/home/
c i s c o /vmcloud−example−networks /3node/ route r9 . con</
entry>

<entry key=” import f i l e s ” type=” St r ing ”>/home/ c i s c o /
vmcloud−example−networks /3node/ route r9 . p12</ entry>

</ ex t en s i on s>
< i n t e r f a c e name=” GigabitEthernet0 /0”/>
< i n t e r f a c e name=” GigabitEthernet0 /1”/>
< i n t e r f a c e name=” GigabitEthernet0 /2”/>
< i n t e r f a c e name=” GigabitEthernet0 /3”/>
< i n t e r f a c e name=” GigabitEthernet0 /4”/>

</node>

< !−−<connect ion s r c=”/ topology /node [1] / i n t e r f a c e [1] ” dst=”/
topology /node [2] / i n t e r f a c e [1] ”/>−−>

<connect ion s r c=”/ topology /node [1] / i n t e r f a c e [2] ” dst=”/ topology /
node [7] / i n t e r f a c e [1] ”/>

< !−− Router in termig en t re rou ter1 i r o u t e r 3 −−>
<connect ion s r c=”/ topology /node [7] / i n t e r f a c e [2] ” dst=”/ topology /

node [3] / i n t e r f a c e [1] ”/>
<connect ion s r c=”/ topology /node [7] / i n t e r f a c e [3] ” dst=”/ topology /

node [4] ”/>
<connect ion s r c=”/ topology /node [7] / i n t e r f a c e [4] ” dst=”/ topology /

node [6] ”/>
< !−− <connect ion s r c=”/ topology /node [1] / i n t e r f a c e [2] ” dst=”/

topology /node [3] / i n t e r f a c e [1] ”/> −−>
<connect ion s r c=”/ topology /node [1] / i n t e r f a c e [3] ” dst=”/ topology /

node [4] ”/>
<connect ion s r c=”/ topology /node [2] / i n t e r f a c e [2] ” dst=”/ topology /

node [4] ”/>
<connect ion s r c=”/ topology /node [3] / i n t e r f a c e [2] ” dst=”/ topology /

node [4] ”/>
<connect ion s r c=”/ topology /node [3] / i n t e r f a c e [3] ” dst=”/ topology /

node [6] ”/>
<connect ion s r c=”/ topology /node [5] / i n t e r f a c e [1] ” dst=”/ topology /

node [6] ”/>

63

<connect ion s r c=”/ topology /node [1] / i n t e r f a c e [4] ” dst=”/ topology /
node [6] ”/>

<connect ion s r c=”/ topology /node [2] / i n t e r f a c e [3] ” dst=”/ topology /
node [5] / i n t e r f a c e [2] ”/>

<connect ion s r c=”/ topology /node [2] / i n t e r f a c e [1] ” dst=”/ topology /
node [8] / i n t e r f a c e [1] ”/>

<connect ion s r c=”/ topology /node [1] / i n t e r f a c e [1] ” dst=”/ topology /
node [8] / i n t e r f a c e [2] ”/>

<connect ion s r c=”/ topology /node [8] / i n t e r f a c e [3] ” dst=”/ topology /
node [4] ”/>

<connect ion s r c=”/ topology /node [8] / i n t e r f a c e [4] ” dst=”/ topology /
node [6] ”/>

<connect ion s r c=”/ topology /node [2] / i n t e r f a c e [5] ” dst=”/ topology /
node [9] / i n t e r f a c e [1] ”/>

<connect ion s r c=”/ topology /node [1 0] / i n t e r f a c e [1] ” dst=”/ topology /
node [9] / i n t e r f a c e [2] ”/>

<connect ion s r c=”/ topology /node [9] / i n t e r f a c e [3] ” dst=”/ topology /
node [4] ”/>

<connect ion s r c=”/ topology /node [9] / i n t e r f a c e [4] ” dst=”/ topology /
node [6] ”/>

<connect ion s r c=”/ topology /node [1 0] / i n t e r f a c e [2] ” dst=”/ topology /
node [4] ”/>

<connect ion s r c=”/ topology /node [1 0] / i n t e r f a c e [3] ” dst=”/ topology /
node [6] ”/>

<connect ion s r c=”/ topology /node [1] / i n t e r f a c e [6] ” dst=”/ topology /
node [1 1] / i n t e r f a c e [1] ”/>

<connect ion s r c=”/ topology /node [1 1] / i n t e r f a c e [2] ” dst=”/ topology /
node [1 2] / i n t e r f a c e [1] ”/>

<connect ion s r c=”/ topology /node [1 1] / i n t e r f a c e [3] ” dst=”/ topology /
node [4] ”/>

<connect ion s r c=”/ topology /node [1 1] / i n t e r f a c e [4] ” dst=”/ topology /
node [6] ”/>

<connect ion s r c=”/ topology /node [1 2] / i n t e r f a c e [2] ” dst=”/ topology /
node [4] ”/>

<connect ion s r c=”/ topology /node [1 2] / i n t e r f a c e [3] ” dst=”/ topology /
node [6] ”/>

<connect ion s r c=”/ topology /node [1 2] / i n t e r f a c e [5] ” dst=”/ topology /
node [7] / i n t e r f a c e [5] ”/>

64

</ topology>

A.7 Routers configuration files

Router1

ve r s i on 15 .3
s e r v i c e timestamps debug datet ime msec
s e r v i c e timestamps log datet ime msec
no s e r v i c e password−encrypt ion
!
hostname Router1
!
boot−s t a r t−marker
boot−end−marker
!
!
!
no aaa new−model
mmi p o l l i ng−i n t e r v a l 60
no mmi auto−c o n f i g u r e
no mmi pvc
mmi snmp−t imeout 180
!
!
!
!
!
!
ip c e f
no ipv6 c e f
ipv6 mu l t i ca s t rp f use−bgp
!
m u l t i l i n k bundle−name authent i ca ted
!
!
!
username c i s c o p r i v i l e g e 15 password 0 c i s c o
!
redundancy

65

!
!
!
!
!
!
!
i n t e r f a c e GigabitEthernet0 /0

ip address 1 0 . 1 0 . 2 0 . 1 1 0 2 5 5 . 2 5 5 . 2 5 5 . 0
duplex auto
speed auto
no shutdown

!
i n t e r f a c e GigabitEthernet0 /1

ip address 1 0 . 1 0 . 3 0 . 1 1 0 2 5 5 . 2 5 5 . 2 5 5 . 0
no shutdown
duplex auto
speed auto

!
i n t e r f a c e GigabitEthernet0 /2

ip address 1 0 . 1 0 . 1 0 . 1 1 0 2 5 5 . 2 5 5 . 2 5 5 . 0
no shutdown
duplex auto
speed auto

!
i n t e r f a c e GigabitEthernet0 /3

ip address dhcp
no shutdown
duplex auto
speed auto

!
i n t e r f a c e GigabitEthernet0 /4

ip address 1 . 2 . 3 . 4 2 5 5 . 2 5 5 . 2 5 5 . 0
duplex auto
speed auto
no shutdown

!
!
i n t e r f a c e GigabitEthernet0 /5

ip address 1 0 . 1 0 . 8 0 . 1 1 0 2 5 5 . 2 5 5 . 2 5 5 . 0
duplex auto
speed auto

66

no shutdown
!
ip route 1 0 . 1 0 . 4 0 . 1 3 0 255 . 255 . 255 . 255 1 0 . 1 0 . 3 0 . 1 4 0
!
ip route 1 0 . 1 0 . 5 0 . 1 2 0 255 . 255 . 255 . 255 1 0 . 1 0 . 2 0 . 1 5 0
!
ip route 1 0 . 1 0 . 9 0 . 1 9 0 255 . 255 . 255 . 255 1 0 . 1 0 . 8 0 . 1 8 0
!
r ou te r bgp 1
bgp router−id 1 0 . 1 0 . 1 0 . 1 1 0
bgp log−neighbor−changes
ne ighbor 1 0 . 1 0 . 5 0 . 1 2 0 remote−as 2
neighbor 1 0 . 1 0 . 4 0 . 1 3 0 remote−as 3
neighbor 1 0 . 1 0 . 9 0 . 1 9 0 remote−as 6
!
address−f ami ly ipv4

network 1 . 2 . 3 . 0 mask 2 5 5 . 2 5 5 . 2 5 5 . 0
ne ighbor 1 0 . 1 0 . 5 0 . 1 2 0 a c t i v a t e
ne ighbor 1 0 . 1 0 . 5 0 . 1 2 0 ebgp−multihop 2
neighbor 1 0 . 1 0 . 5 0 . 1 2 0 next−hop−unchanged
neighbor 1 0 . 1 0 . 4 0 . 1 3 0 a c t i v a t e
ne ighbor 1 0 . 1 0 . 4 0 . 1 3 0 ebgp−multihop 2
neighbor 1 0 . 1 0 . 4 0 . 1 3 0 next−hop−unchanged
neighbor 1 0 . 1 0 . 9 0 . 1 9 0 a c t i v a t e
ne ighbor 1 0 . 1 0 . 9 0 . 1 9 0 ebgp−multihop 2
neighbor 1 0 . 1 0 . 9 0 . 1 9 0 next−hop−unchanged

ex i t−address−f ami ly
!
ip forward−pro to co l nd
!
!
no ip http s e r v e r
no ip http secure−s e r v e r
!
!
!
!
cont ro l−plane
!
banner exec ˆC
∗∗

67

∗ vIOS − Cisco Systems C o n f i d e n t i a l
∗

∗ Unauthorized use or d i s t r i b u t i o n o f t h i s so f tware i s e x p r e s s l y
∗

∗ Proh ib i t ed .
∗

∗∗ˆ
C

banner incoming ˆC
∗∗

∗ vIOS − Cisco Systems C o n f i d e n t i a l
∗

∗ Unauthorized use or d i s t r i b u t i o n o f t h i s so f tware i s e x p r e s s l y
∗

∗ Proh ib i t ed .
∗

∗∗ˆ
C

banner l o g i n ˆC
∗∗

∗ vIOS − Cisco Systems C o n f i d e n t i a l
∗

∗ Unauthorized use or d i s t r i b u t i o n o f t h i s so f tware i s e x p r e s s l y
∗

∗ Proh ib i t ed .
∗

∗∗ˆ
C

!
l i n e con 0
password c i s c o
l o g i n

l i n e aux 0
l i n e vty 0 4
password c i s c o
l o g i n
t ranspo r t input a l l

!
onep
! Added by g r i e r a in order to run DataPathTutorial

68

! datapath t ranspo r t gre sender−id 2 i n t e r f a c e GigabitEthernet0 /2
s e r v i c e s e t vty

!
t r anspo r t type t l s l o c a l c e r t demoTP di sab l e−remotecert−v a l i d a t i o n
s t a r t

!
!
! IOS PKI w i l l f a i l to import the t f t p f i l e i f we attempt t h i s be f o r e
! the c o n f i g has been f u l l y app l i ed . So i f we j u s t do :
! crypto pki import demoTP pkcs12 [l o c a t i o n] [e t c . . .]
! We would see something s i m i l a r to t h i s in the boot l og :
! ∗Nov 29 1 9 : 2 7 : 3 2 . 4 1 5 : CRYPTO PKI: Copying pkcs12 from f l a s h 1 ://

bootstrap admin . con
! ∗Nov 29 1 9 : 2 7 : 3 2 . 4 9 2 : %PKI−6−PKCS12IMPORT FAIL : PKCS #12 Import

Fa i l ed .
! There fore we use a shor t de lay be f o r e l oad ing the pkcs12 f i l e :
!
event manager app le t l o a d i d e n t i t y

event t imer countdown name Delay time 20
ac t i on 0 .0 c l i command ” enable ”
ac t i on 1 .0 c l i command ” c o n f i g te rmina l ”
ac t i on 2 .0 c l i command ” f i l e prompt qu i e t ”
ac t i on 3 .0 c l i command ” crypto pki import demoTP pkcs12 f l a s h 2 ://

route r1 . p12 password c i s c o ”
ac t i on 4 .0 s y s l o g msg ”Loaded boots t rap i d e n t i t y c e r t i f i c a t e ”

!
end

A.8 Patch for dpkt

class ASPathSegment32bit (dpkt . Packet) :
h d r = (

(’ type ’ , ’B ’ , 0) ,
(’ l en ’ , ’B ’ , 0)
)

def unpack (s e l f , buf) :
dpkt . Packet . unpack (s e l f , buf)
l = []
for i in range (s e l f . len) :

69

AS = s t r u c t . unpack (’>I ’ , s e l f . data [: 4]) [0]
s e l f . data = s e l f . data [4 :]
l . append (AS)

s e l f . data = s e l f . path = l
def l e n (s e l f) :

return s e l f . h d r l e n + \
4 ∗ len (s e l f . path)

def s t r (s e l f) :
a s s t r = ’ ’
for AS in s e l f . path :

a s s t r += s t r u c t . pack (’>I ’ , AS)
return s e l f . pack hdr () + \

a s s t r

A.9 Gunicorn Configuration file

#!/ bin /bash

NAME=”bgp−s e r v e r ” # Name o f the a p p l i c a t i o n
DJANGODIR=/path/ to /app # Django p r o j e c t d i r e c t o r y
SOCKFILE=/path/ to /app/run/ gunicorn . sock # we w i l l communicte us ing t h i s unix socke t
USER=user # the user to run
GROUP=group # the group to run as
NUMWORKERS=9 # how many worker p r o c e s s e s should Gunicorn spawn
DJANGO SETTINGS MODULE=name app . s e t t i n g s # which s e t t i n g s f i l e should Django use
DJANGO WSGI MODULE=name app . wsgi # WSGI module name

echo ” S ta r t i ng $NAME as ‘whoami ‘ ”

Act ivate the v i r t u a l environment
cd $DJANGODIR
source . . / bin / a c t i v a t e
export DJANGO SETTINGS MODULE=$DJANGO SETTINGS MODULE
export PYTHONPATH=$DJANGODIR:$PYTHONPATH

Create the run d i r e c t o r y i f i t doesn ’ t e x i s t
RUNDIR=$ (dirname $SOCKFILE)
t e s t −d $RUNDIR | | mkdir −p $RUNDIR

Star t your Django Unicorn
Programs meant to be run under s u p e r v i s o r should not daemonize themse lves (do not use −−daemon)

70

exec gunicorn ${DJANGO WSGI MODULE} : a p p l i c a t i o n \
−−name $NAME \
−−workers $NUM WORKERS \
−−user=$USER −−group=$GROUP \
−−bind=unix : $SOCKFILE \
−−log−l e v e l=debug \
−−log− f i l e=−

71

	Introduction
	Motivations
	Goals
	Planification
	Gantt chart

	Background
	BGP
	History
	How it Functions
	Vulnerabilities
	Decision Process Summary
	Packet Types
	Finite State Machine

	ROA and RPKI
	RPKI
	ROA

	Software Defined Networks
	OnePK

	Problem Definition and State of the Art
	Problem Definition
	State of the Art
	Secure BGP
	Secure Origin BGP
	Pretty Secure BGP (psBGP)

	Architecture and Implementation
	Proposed solution
	Comparison between State of the art solutions and our solution

	System Architecture
	Device Component
	Server Component
	ROA Component

	Implementation
	Device Component
	Server Component
	ROA Component

	Limitation

	Experimental Results
	Testbed
	Validation Tests

	Scalability of the solution

	Conclusion
	Future work

	Acronyms
	Bibliography
	Source Code, Requests Configurations
	onep_status_t dpss_tutorial_create_ip_pmap Code
	Parsing object Code
	Rib Information
	Topology discovery Request Example
	Evaluate Response Example
	Vmcloud topology configuration
	Routers configuration files
	Patch for dpkt
	Gunicorn Configuration file

