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1 Abstracts

1.1 Català

En aquest projecte hem desenvolupat un SAT solver per a problemes de pro-
gramació lineal entera, també anomenada programació entera. La programació
lineal entera (ILP) és un problema NP-dif́ıcil, a diferència de la versió racional,
problema que va ser provat estar a P en la dècada dels 70.

Tradicionalment, els solvers de problemes ILP utilitzen l’algorisme Simplex
com a un dels elements principals. Simplex, introdüıt per Dantzig el 1947,
resol problemes de programació lineal (racional). Segueix una interpretació
geomètrica del problema: les restriccions defineixen un poliedre convex a l’espai,
i la funció objectiu especifica una direcció en la qual es vol otpimitzar. Simplex
recorre els vèrtexos del poliedre fins a trobar-ne un d’òptim, que pot ser no enter.
Perquè Simplex pugui resoldre problemes de programació lineal entera, hem
d’aplicar tècniques addicionals, com afegir restriccions noves (cutting planes) o
utilitzar mètodes basats en branch and bound.

El nostre enfocament és diferent. El nostre solver, Intsat, és un SAT solver en
el qual les variables són enteres. Per a desenvolupar-lo hem adaptat l’algorisme
DPLL per a que suporti variables enteres. En aquesta memòria explicarem el
procediment, la implementació i mostrarem resultats, comparant intsat amb
altres programes com cutsat o cplex.

1.2 Castellano

En este proyecto hemos desarrollado un SAT solver para problemas de pro-
gramación lineal entera, también llamada programación entera. La progra-
mación lineal entera (ILP) es un problema NP-dif́ıcil, a diferencia de su versión
racional, cuya pertenencia a la clase P fue probada en la década de los 70.

Tradicionalmente, los solvers de problemas ILP utilizan el algoritmo Simplex
como uno de sus ingredientes principales. Simplex, introducido por Dantzig en
1947, resuelve instancias de programación lineal (racional). Funciona siguiendo
una interpretación geométrica del problema: las restricciones definen un poliedro
convexo en el espacio, y la función objetivo especifica una dirección en la cual
optimizar. El algoritmo recorre los vértices del poliedro hasta encontrar uno
óptimo, que puede no ser entero. Para que Simplex pueda resolver problemas
de programación lineal entera, hay que usar técnicas adicionales como añ adir
nuevas restricciones (cutting planes) o usar métodos basados en branch and
bound.

Nuestro enfoque es diferente. Nuestro solver, Intsat, es un SAT solver en el
cual las variables son enteras. Para desarrollarlo hemos extendido el algoritmo
DPLL para que soporte variables enteras. En esta memoria explicaremos el
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procedimiento e implementación, y presentaremos resultados de la comparación
entre intsat y otros programas como cutsat o cplex.

1.3 English

In this project we have developed a SAT solver for integer linear program-
ming problems (ILP), also called integer programming problems. Although the
rational version of Linear Programming belongs to P (this was proved in the
70s), the integer version is an NP-hard problem.

Traditionally, ILP solvers use the Simplex algorithm as a main ingredient.
Simplex, introduced by Dantzig in 1947, solves rational linear programming
problems. It works by following a geometrical interpretation of the problem:
constraints define a convex polyhedron in space, and the objective function
explicits a direction. The algorithm traverses vertices of the polyhedron until
an optimal one (which may be non-integer) is found. For Simplex to be able
to solve integer linear programming problems, one must apply some additional
techniques such as adding new constraints (cutting planes) or branch and bound
methods.

Our approach is different. Our solver, Intsat, is a SAT solver that uses integer
variables. To develop our solver, we have extended the DPLL algorithm to make
it support integer variables. In this document we will explain the procedure and
implementation, and we will compare it against other solvers such as cutsat and
CPLEX.
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2 Motivation

Many problems can be expressed as the maximization or minimization of
an objective function, given limited resources and constraints that relate these
resources. These constraints take the form of linear equalities or inequalities.
With all these elements we have a linear programming problem: which is the
assignment (a feasible value for each variable) that maximizes or minimizes an
objective function?

The first algorithm to solve these problems was developed during the World
War II to reduce costs to the army. However, this method was kept secret and
the field would have to wait until George Dantzig’s simplex method appeared. In
1979, the linear programming problem was proved to be solvable in polynomial
time. Not long after that, in 1984, Narenda Karmarkar developed a new method
for solving linear programming problems that could work as fast, or even faster,
than the simplex method. All of these advances have made possible for linear
programming to be used in a vast number of applications. Many of them can
be found in industry, which requires efficient planning to reduce costs or find
the most suitable solution to a problem.

However, these methods work with problems in which variables can take
values from the rational number set. This may work in some applications, but
many real-life problems cannot have rational solutions since the variables are
naturally integer. Linear programming problems were shown to be solvable in
polinomial time in 1979; however, integer linear programming (that is, a linear
programming problem in which some or all variables are restricted to be integers)
is much harder than its rational counterpart. The integer linear programming
problem is NP-hard.

Research on integer linear programming has also been done in parallel with
research on linear programming. In 1958, Gomory extended the simplex method
to deal with integer-restricted problems. His method consisted in deriving new
constraints once a non-integer solution was found; these constraints would keep
rendering non-integer solutions unfeasable until an integer based one was found.
Apart from this approach, there are other forms of solving integer programming
problems: for example, heuristic methods to find a “good enough” (but not the
best) solution, such as hill climbing, simulated annealing or more sophisticated
metaheuristics.

In our case, we are not interested in finding the most efficient solution, but
in finding wether a solution exists or not. In other words, we want to know if
an integer linear programming problem is satisfiable: does an assignment exist
such that all the constraints hold true? This is closely related to the boolean
satisfiablity problem and, not surprisingly, it is very easy to rewrite a SAT
problem in linear inequality form. The next example illustrates this fact:
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x1 ∨ x2 ∨ x3 ∧ x1 ∨ x2 ∨ x3

becomes

x1 + (1− x2) + x3 ≥ 1 ∧ x1 + x2 + (1− x3) ≥ 1 0 ≤ x1, x2, x3 ≤ 1

In other words, variables are restricted to be either 0 or 1 (false and true,
respectively). A boolean clause is true if at least one of its variables is true: this
is equal to say that if a true variable has a value of 1 and a false variable has a
value of 0, the value in the left side of the inequality must be at least 1.

SAT has been thoroughly studied and there have been many important ad-
vances in the last years, to the point that one can solve problems with millions
of variables using SAT solvers. The main reason of this success is the DPLL al-
gorithm, the first versions of which were introduced in 1962 by Davis, Putnam,
Logemann and Loveland. It is a method that runs by choosing an unassigned
variable and assigning a value to it; this can lead to a simpler formula which
is treated recursively. If that formula is satisfiable, then the original formula is
also satisfiable. However, if the simpler formula is not satisfiable, then DPLL
backtracks and continues the search. Nowadays, DPLL has been extended with
additional functionalities such as learning, backjumping and restarts, among
other enhancements.

As said, SAT solvers are commonly used to solve many real-life problems.
However, there is a quite important drawback: SAT is limited to boolean con-
straints. This makes trying to solve some problems really complicated, because
many problems are naturally non boolean; they can be encoded in boolean form,
but paying a high price reflected in a growth in the numbers of variables and
constraints.

Research in this field has been going on for the last decades, but there are
many extensions to SAT that have not been studied that much. In our case, we
will deal with generalizations of the boolean satisfiability problem. Particularly,
we will focus on integer linear programming [1]: the set of feasibility problems in
which all the variables are restricted to be integers and their values are restricted
to fall between two specified bounds. From now on, we will refer to this set of
problems as int-SAT problems.

Being a generalization of SAT, int-SAT problems are very useful in areas
such as theorem proving, circuit design, or operations research. Furthermore,
being an NP-complete problem, finding an algorithm that solves it efficiently
(to a certain degree) can be useful to solve other problems and, of course, boost
the level of research in this field.
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2.1 Context

We will now talk about a programming paradigm related to our project, the
kind of problems we want to solve and our project’s stakeholders.

2.1.1 Constraint programming

Many different programming paradigms exist: in our case, a quite interesting
one is called Constraint Programming. As Eugene C. Freuder once stated, “Con-
straint Programming represents one of the closest aproaches computer science
has yet made to the Holy Grail of programming: the user states the problem,
the computer solves it” [2]. This is a basic characteristic shared with other
languages (this is a form of declarative programming). In these cases, instead of
telling the computer what to do (that would be an imperative approach), the
user only declares the properties of a desired solution. From this, the computer
has the job to find such a solution, if it exists.

Constraint Programming presents a series of advantages with respect to
other paradigms when it comes to solving certain kind of problems. Firstly,
this ease of use is quite attractive, since once a good algorithm that solves
constraint programming problems is made, all the work is shifted from the user
to the computer. Thus, users only need to know how to express constraints to
be able to solve problems. Secondly, a huge number of interesting problems can
be expressed with a series of constraints. This universality means that having
a good algorithm can make the problem solving process much easier.

A typical constraint satisfaction problem consists of a group of variables,
each one with a domain (the set of possible values that variable can take) and
a set of constraints that restrict these domains. For example, consider the
Nurse Scheduling Problem: in this problem, a hospital wants to assign shifts
and holidays to a group of nurses, trying to get a fair schedule for everybody.
The constraints may take different forms:

• A nurse can not work three consecutive shifts.

• On certain days, the number of working nurses must be at least 10.

• There are time periods in which certain nurses will not come to work
because of holidays. These days are specified by the nurses as a list of
preferences.

One can see that there are many possible types of constraints, and that the
complexity may escalate very quickly as the number of nurses and constraints
grows.

7



The nurse scheduling problem is an example of classic constraint satisfaction.
However, problems can come in many ways depending on the domain specified
for each variable. For example, there may be boolean variables (the classic SAT
problem), but there also may be numerical variables [3].

2.1.2 Problems we want to solve

In our project we are dealing with integer domains and constraints expressed
as linear inequalities of polynomials. In this case, problems may be stated with
another added feature: an objective function the user wants to optimize. For
example, in the nurse scheduling problem, a possible objective function would
count the number of constraints that can not be satisfied. In that situation, the
solver would try to find a solution that minimizes that number. This means
that if there is no solution that satisfies everybody, at least the most “fair” one
will be found.

This optimization process belongs to linear programming, but we are not
going to deal with it in this project. The objective of our solver is to find a
solution that satisfies the whole set of constraints, assigning each variable a
value that belongs to its domain.

2.1.3 Stakeholders

As we have stated, our project is research oriented. It has no immediate
objective of being commercialized or used in real problems yet, since it still
needs polishing and work. However, once the solver is completed and ready
for deployment, it can solve many problems from many different fields such as
operations research, scheduling, or even life sciences such as medicine.

Any constraint programming problem that can be expressed with linear con-
straints and integer domains for the variables can, thus, be solved by our solver.
Classic SAT problems can be solved too, since boolean constraints can be ex-
pressed in form of equations.
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3 State of the art

Today, different strategies are used to solve this problems. The most com-
monly used approach are SAT Solvers for boolean domains. However, for other
types of domains there are other strategies such as Satisfiability Modulo Theories
solvers (SMT) or completely different algorithms such as the Simplex method.

3.1 SAT Solvers

SAT Solvers work on the boolean satisfiability problem. This was the first
problem proved to be NP-complete[4] and thus is a very important challenge
to solve. The input of the problem is a logical formula, usually in conjunctive
normal form (CNF), and a set of variables. By definition, the domains of the
variables are true/false, and the constraints are expressed as clauses.

The DPLL algorithm is a complete and correct algorithm that solves the SAT
problem [5]. Many SAT solvers use it as a base to start working on developing
faster algorithms to solve problems. In our case, we will have a basic DPLL
structure and we will start improving it with better data structures, better
heuristics and better conflict-resolution procedures.

SAT Solvers have been improved for years and can be quite efficient at
solving some problems. However, boolean formulas can be very tedious to work
with, especially if the problem is not “naturally boolean”, i.e., it is hard to
express it in form of boolean constraints. In this case, it is more adequate to
use generalizations of SAT or even different algorithms.
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3.2 Simplex-based methods

The Simplex method is an algorithm to solve linear problems (optimizating
an objective function subject to a set of constraints). It was first published by
George Dantzig in 1947 and has been key in our linear programming solving
techniques.

The algorithm works by having the constraint set define a convex polyhedron
in space and then travelling through its vertices until an optimal one is found.
This is, thus, a more geometrical approach than the ones done by the previous
methods we have stated. Simplex has proved to be a very efficient method in
practice; however, it has been shown that it has an exponential cost for the worst
case [6]. This can be mitigated by introducing certain variations and changes,
but we can not change the fact that there will always be some problems that
exponential time to solve.

3.3 Our proposal and Jovanović and De Moura’s cutsat

Our solver is not based on Simplex. Instead, it uses a DPLL-like algorithm
that works with integer variables at its core.

3.3.1 cutsat

Our work began in 2011 after reading Dejan Jovanović and Leonardo de
Moura’s paper in which they present an algorithm for solving linear integer pro-
gramming problems [7]. In this project, we first implemented this algorithm.
We then added our own methods and finally even changed some of its funda-
mentals, mostly in the way cut procedures are applied to learn new constraints
during the search.
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4 Scope description

In this project we will develop a solver for int-SAT problem instances from
a research-oriented perspective. Having an already working int-SAT solver to
begin with, we will use it to compare our results and test different strategies.
All these strategies come in form of algorithms, data structures and heuristics
to improve the search. By the end of the project we will have a working int-SAT
solver with the best methods we have found along the way.

Our solver will be based on the DPLL algorithm. From there we will im-
plement lemma learning and cleanup, backjumping after conflicts and efficient
propagation algorithms. After that we will be implementing data structures to
accelerate the process. Once the basic body is finished, we will implement heuris-
tics to try and achieve better search results (following fail-first and succeed-first
principles to make more powerful decisions). Once we have completed all this
parts we will think of new improvements to code.

5 Objectives

The project has, as a first objective, developing an SAT solver for int-SAT
problems to aid research on this field. The solver is desired to have the following
characteristics:

• A certain degree of efficiency. Not all instances can be solved effi-
ciently, but we expect our program to solve some instances in a reasonable
time. To have a clearer purpose, we will use cutsat: our goal is to make
our solver at least as good as the current implementation of cutsat.

• Analysis and debugging tools. Our solver has to have a way to tweak
parameters quickly and enable/disable certain modules to learn about
their behaviour.

The project also has, as a secondary objective, the analysis of new algo-
rithms and implementation techniques to solve int-SAT problems. This will
be accomplished testing our program under specific environments and disabling
specific modules of the solver.
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6 Methodology

During our project, we will use an iterative method consisting of various
phases. In each phase, we will define a series of improvements or new things
to add: this is the “theory” part, in which we will discuss ideas and methods.
After the theory comes the “implementation” period, in which we will code the
things we agreed upon previously. After this part, the current solver will be
tested against a set of randomly generated instances (our benchmarks) and any
bugs found will be debugged. This is the “debugging” part and marks the end
of a phase.

Each phase will correspond to one or two week periods, depending on the
complexity of the implementation and debugging parts. After each phase, a
meeting will be held to discuss next phase’s options and start again the process.

When we have a functional version we are confident with, we will test it on
special problems and compare it to cutsat and other public int-SAT solvers that
we can find. These tests will give us true insight about how our program works
since we will be able to compare results to other algorithms.

7 Acceptance criteria

Even if we can not manage to build a solver as good as cutsat, we can
still take advantage of our work. As we stated earlier, this project is research
oriented and its main goal is to find new ways to develop solvers for int-SAT
problems. In this case, the acceptance criteria for this project are the following:

• Develop a functional solver. The resulting program has to work with
a wide array of examples. It is highly desirable to do it in a reasonable
time, but not required.

• Compare algorithms and state-of-the-art techniques. Our program
needs to allow us to test different algorithms to be able to compare them,
running against sets of tests. If we can extract useful conclusions and gain
insight into this area, this criterion will be satisfied.
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8 Limitations and risks

8.1 Limitations

The most important limitations in this project are time and usefulness:

• Time. Once the developing stage finishes, no further improvements or
additions will be done to the solver. At that point, the version that is
currently working will be the final version. This means we must get the
best performace possible in the time we have.

• Usefulness. If the solver is not good enough for big problems, or the
performace is not the one we expected, we can still take advantage of it.
The solver’s design must be one that is simple to read and understand,
and leaves future work open to do. This constraint is not as hard as the
previous one, but it affects the design and developement of our program.

8.2 Risks

Many problems can arise during the developement of this project. Among
them, the most important are:

• Not general enough algorithms. In other words, coming up with
algorithms that do not work for all of the problems (due to a conceptual
error or some other factor).

• Unexpected errors. Even if the theory is correct, there are many errors
that can appear once we have started our implementation. These errors
can delay the implementation and debugging phases, or even bring us back
to the theory phase.

• Benchmarks. Our set of test problems has a limited size. This means
that there is a chance of them being not significative or big enough to find
errors on time, which would delay our developement.
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9 Definitions

In this section we will formalize the problem and explain the notation we
will be using throughout this document. Apart from this, we will include here
definitions for some terms used in the following pages.

9.1 Basic notation

We will use x, y, z to refer to variables in Z. We will also use a, b, c to denote
coefficients, elements in Z. A linear polynomial is a polynomial of the form
a1x1 + a2x2 + · · · + anxn + k, where the ai and k are coefficients and xi are
variables. A constraint is a linear inequality of the form p ≤ 0, where p is a
linear polynomial. We will use p, q, r... to denote linear polynomials, and we will
use the symbols C,D,E... to denote constraints.

Any linear inequality with a different form can be expressed in this form
using the following rules:

• p < 0 can be expressed as p+ 1 ≤ 0

• p ≤ k becomes p− k ≤ 0

• p > 0 becomes −p < 0

• p = 0 becomes p ≤ 0 ∧ −p ≤ 0

A lower bound of a variable x is an expression of the form x ≥ k, where
k is an integer. An upper bound of a variable x is an expression of the form
x ≤ k. We will use lower(x) and upper(x) to denote (respectively) the lower
and upper bounds of a given variable x. Finally, to denote a generic bound
(either lower or upper) for a variable x, we will use x ./ k. At some points we
will specify both bounds at the same time for a variable x, writing k ≤ x ≤ k′,
where lower(x) = k and upper(x) = k′, assuming that indeed always k ≤ k′.

Bounds can be expressed as constraints with one variable, and constraints
with one variable are equivalent to bounds. The negation of a lower bound
x ≥ k is an upper bound of the form x ≤ k − 1. The negation of an upper
bound x ≤ k is a lower bound of the form x ≥ k+ 1. We will write ¬b to denote
the negation of the bound b.

If X is a set of variables, an assignment is a function σ : X → Z. If p is a
polynomial a1x1+· · ·+anxn+k, we write pσ to denote a1σ(x1)+· · ·+anσ(xn)+k.
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9.2 Problems

In this document we define an ILP problem as a set of constraints S, a set
of variables X, and for each variable xi a lower bound and an upper bound,
ki ≤ xi ≤ k′i.

A solution for such an ILP problem is an assignment σ such that for every
constraint p ≤ 0, we have pσ ≤ 0 and ki ≤ σ(xi) ≤ k′i for every variable xi.

The aim of this work is to find solutions for ILP problems as efficiently as
possible, or to prove that no such solution exists.
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10 Main search procedure

In this section we will first explain the details about how the DPLL algorithm
works, and after that we will introduce our extensions to make it able to support
integer variables.

10.1 Basic DPLL procedure

Basic DPLL deals with propositional logic. Atoms are propositional symbols
from a finite set P . If p ∈ P , then p is a positive literal and ¬p is a negative
literal . The negation of a literal l, written ¬l, denotes ¬p if l is p, and p if l
is ¬p. A clause is a set of literals and a cnf (formula) is a set of clauses. A
(partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M for no
p. A literal l is true in M if l ∈ M , is false in M if ¬l ∈ M , and is undefined
otherwise. M is total if no literal of P is undefined in M . A clause C is true in
M if C∩M 6= ∅, is false in M, denoted M |= ¬C, if all its literals are false in M ,
and is undefined otherwise. A cnf F is true in M (or satisfied by M), denoted
M |= F , if all its clauses are true in M. In that case, M is called a model of F .
If F has no models then it is unsatisfiable. We write F |= C (F |= F ′) if the
clause C (cnf F ′) is true in all models of F . If F |= F ′ and F ′ |= F , we say that
F and F ′ are logically equivalent. We denote by C ∨ l the clause D such that
l ∈ D and C = D \ {l}.

Given a formula, DPLL works by incrementally building a satisfying truth
assignment for all variables in the formula. At each step, the assignment is
expanded either by deciding the truth value of an unassigned variable, or by
propagating truth values of variables using logical rules.

The procedure is described as a transition system between a set of states. A
state is either UNSAT or a pair M ‖ F , where M is a sequence of literals, and
F is a finite set of clauses. We will denote the empty sequence of literals by ∅,
unit sequences by their own literal, and the concatenation of two sequences by
simple juxtaposition. Some literals l will be annotated as being decision literals,
this fact will be denoted by writing ld.

The transition relation between sets in DPLL is defined by a set of transition
rules:

UnitPropagate:

M ‖ F ∪ {C ∨ l} ⇒ M l ‖ F ∪ {C ∨ l}, if

{
M |= ¬C
l is undefined in M

Decide:

M ‖ F ⇒ M ld ‖ F, if

{
l or ¬l occurs in a clause of F
l is undefined in M

Unsat:

M ‖ F ∪ {C} ⇒ UNSAT, if

{
M |= ¬C
M contains no decision literals
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Backjump:

M ld N ‖ F ⇒ M l′ ‖ F, if


there is some clause C ∨ l′ s.t.:
F |= C ∨ l′ and M |= ¬C
l′ is undefined in M
l or l′ occurs in a clause of F

These rules can be expanded with the learning and forgetting of lemmas. A
lemma is a clause learned after finding a false clause that, had it been present
before, would have prevented this clause to be false. This extension gives us
DPLL with clause learning:

Learn:

M ‖ F ⇒ M ‖ F ∪ {C}, if

{
all atoms of C occur in F
F |= C

Forget:
M ‖ F ∪ {C} ⇒ M ‖ F, if

{
F |= C

Termination and correctness has been proved for both basic DPLL and
DPLL with clause learning [8]. The algorithm can finish in two diferent ways:
the first one happens when a conflict arises and there are no decision literals,
which is the UNSAT state. The second one happens in absence of conflicts and
when both UnitPropagate and Decide can not be applied. In this case, M is a
model that satisfies F and thus, the problem is SAT, or satisfiable.

10.2 Basic Intsat procedure

In what follows, a partial assignment B is a sequence of bounds. If two
lower bounds for the same variable b1 = x ≥ k and b2 = x ≥ k′ are contained
in B, and b2 occurs later in B than b1, we say that b2 is stronger than b1 and it
must be true that k′ > k. Similarly, if two upper bounds for the same variable
b1 = x ≤ k and b2 = x ≤ k′ are contained in B and b2 occurs later in B than
b1, we say that b2 is stronger than b1 and it must be true that k′ < k. From
this one can infer that B is a sequence of increasingly stronger bounds for its
variables.

A partial assignment such as B induces a lower bound and an upper bound
for each variable: the lower bound of x in B is written as lower(x,B) and is the
strongest lower bound of x that is contained in B. Similarly, the upper bound of
x in B is written as upper(x,B) and is the strongest upper bound of x contained
in B. The concepts of lower bound and upper bound can also be extended to
constants, monomials and polynomials:
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• Constants. Given a constant k, lower(k,B) = upper(k,B) = k.

• Monomials. Given a monomial m = ax, its bounds depend on the sign
of a. If a > 0, then lower(m,B) = a lower(x,B) and upper(m,B) =
a upper(x,B). If a < 0, lower(m,B) = a upper(x,B), and upper(m,B) =
a lower(x,B).

• Polynomials. Given a polynomial p = m1 +m2 + · · ·+mn, lower(p,B) =
k+

∑
lower(mi, B). Likewise, upper(p,B) = k+

∑
upper(mi, B). This

is simply the sum of bounds of each element in the polynomial.

The Intsat algorithm is an extension of DPLL. It is also described as a
transition system between a set of states. A state is either UNSAT or a pair
B ‖ S, where B is a partial assignment, and S is a set of constraints. The initial
state contains the initial bounds in B and the set of constraints in S.

We say a variable x is assigned in B if lower(x,B) = upper(x,B). We say
a constraint C = p ≤ 0 is false in B if lower(p,B) > 0. An assignment B is
complete if one such that for every variable xi, xi is assigned in B. We say that
a complete assignment is a model of a set of constraints S if for every constraint
Cj ∈ S, Cj is not false in B. If such assignment exists, we say S is satisfiable,
and if it does not exist, we say S is unsatisfiable.

The Intsat algorithm works by trying to build a model for the set of con-
straints S, starting from a partial assignment B that contains the initial bounds
for variables. It either ends by reaching a UNSAT state, or by finding a model.

We say a set of constraints S entails a bound b under B if S ∪ {¬b} is
unsatisfiable, and we will write this as S |=B b. Extending the partial assignment
B can be done via the use of various transition rules such as deciding a bound
(arbitrarily adding a new bound to the assignment) or deriving bounds from S.
We say a bound of the form x ./ k is relevant in B if it is stronger than the best
bound of the same type for x in B. Again, we will denote the empty sequence
of literals by ∅, unit sequences by their own bound, and the concatenation of
two sequences by simple juxtaposition.

18



The set of Intsat’s transition rules is also similar to DPLL’s:

Propagate:

B ‖ S ∪ {C} ⇒ M x ./C k ‖ S ∪ {C}, if

{
{C} |=B x ./ k
x ./ k is relevant in B ‖ S

Decide:

B ‖ S ⇒ B x ./d k ‖ S, if

{
x occurs in a constraint of S
x ./ k is relevant in B ‖ S

Unsat:

B ‖ S ∪ {C} ⇒ UNSAT, if

{
C is false in B
B contains no decisions

Backjump:

B1 (x ./d k)B2 ‖ S ⇒ B1 x
′ ./ k′ ‖ S, if


there is some constraint C s.t.:
S ∪ C |=B1

x′ ./ k′

x′ ./ k′ is relevant in B1 ‖ S
x′ occurs in a constraint of S

Learn:

B ‖ S ⇒ B ‖ S ∪ {C}, if

{
all variables of C occur in S
S |= C

Forget:
B ‖ S ∪ {C} ⇒ B ‖ S, if

{
S |= C

Restart:

Bb0B
′ ‖ S ⇒ B ‖ S, if

{
b0 is the first decided bound
restart conditions are met

The way that we detect how does a constraint entail a bound (i.e. C |=B

x ./ k) will be explained in the next section. In the case of Intsat, a lemma is
defined similarly than the DPLL counterpart, but instead of being a boolean
clause it is a constraint.

A state of the form B0b1B1 · · · bnBn ‖ S, where b1 · · · bn are all the decided
bounds, is said to be in decision level n. Furthermore, the bounds biBi are said
to be in decision level i.

The proof of correctness and termination is similar to DPLL’s. We will show
that there exist no infinite sequences of the form B ‖ S ⇒ B′ ‖ S′ ⇒ · · · . To
do this, we will define a well-founded strict partial ordering � on states, and
show that each rule application B ‖ S ⇒ B′ ‖ S′ is decreasing with respect to
this ordering.

Given a state B ‖ S, let B be of the form B0b1B1b2B2 · · · bpBp, where
b1 · · · bp are all the decided bounds in B. Similarly, let B′ be B′0b

′
1 · · · b′p′B′p′ .

Define m(B) to be the sum of upper(xi, B)− lower(xi, B), for every variable xi.
In other words, m(B) is the sum of all the magnitudes of the bound intervals
for all variables in B0 · · ·B. Now define: B ‖ S � B′ ‖ S′ if:
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1. There is some i with 0 ≤ i ≤ p, p′ such that m(B0) = m(B′0),m(B1) =
m(B′1) · · ·m(Bi) > m(B′i), or

2. m(B0) = m(B′0), · · ·m(Bp) = m(B′p′) and m(B) > m(B′).

In other words, a state is more advanced than another if the magnitude of
the bounds of the unassigned variables is smaller, or if there is some decision
level in which this magnitude is smaller. It is easy to see that every transition
rule moves to a more advanced state, if we define Unsat as a minimal state:

• Propagate moves to a more advanced state because it adds a bound to
the sequence B. This reduces the magnitude of the bound interval of one
variable, and for that reason, m(B) is smaller (case (1) of the definition).

• Decide also adds a bound to the sequence. This bound is also stronger
by definition, and so the transition rule moves to a more advanced state
(case (2) of the definition).

• Unsat is defined as a minimal state, and thus moving to this state is always
moving to a more advanced state.

• Backjump is used after finding a false constraint and always propagates
some bound at a previous decision level. Thus, the magnitude of the bound
intervals in that decision level is reduced (case (1) of the definition).

In the case of Learn, Forget and Restart, the condition still holds if we
apply them with increased periodicity. We will show now that if at some point
a constraint becomes false, then either Unsat or Backjump can apply.

Lemma 1. If ∅ ‖ S ⇒ · · · ⇒ B ‖ S, then ifB is of the formB0b1B1 · · · bnBn,
where b1, · · · , bn are the decided bounds, then S ∪ {b1 · · · bn} |=B′ Bi, for all i
in 0...n, and B′ = B0 ∪ · · · ∪Bi.

Suppose a constraint C becomes false under a certain partial assignment
B. If there are no decided bounds, then the Unsat rule is applied. If there
are decided bounds, then B has the form B0b1B1 · · · bnBn for some n > 0,
where bi are all the decided bounds. Since S ∪ B is unsatisfiable (remember
that any bound can be expressed as a one variable constraint), then due to
lemma 1 S ∪ {b1 · · · bj , bi} is unsatisfiable. Consider any i in 1 · · ·n such that
S ∪{b1 · · · bi} is unsatisfiable, and any j in 0 · · · i− 1 such that S ∪{b1 · · · bj , bi}
is also unsatisfiable. We will show that we can perform a backjump to decision
level j:
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Let K be the set {¬b1,¬b2, · · · ¬bj}, and note that B = B′bjB
′′. Then we

can apply backjump to B ‖ S as B′bjB
′′ ‖ S ⇒ B′¬bi ‖ S because the set

K ∪ ¬bi meets the conditions for the Backjump rule:

1. Since all b1 · · · bj are true except for bi, S ∪K ∪ ¬bi |=B bi.

2. Since bi was a decision, it was a relevant bound. It is easy to see that the
negation of a relevant bound is also relevant: suppose the bounds for a
variable x are a ≤ x ≤ b in a certain point. Then, the decision has the
form bd = x ≥ c, and since the decision is a relevant bound, c > a. Then,
¬bd = x ≤ c − 1, and then since c > a, ¬bd = x ≤ a (at most). Since
a < b because the variable was not yet assigned, the bound is relevant.
The same reasoning is applied to prove the case of a decision on an upper
bound.

3. The variable in bi occurs in some constraint in S because it was decided,
and to apply de Decide rule it must occur in a constraint of S.

10.3 Short problem example

B = {x ≥ 2, x ≤ 7, y ≥ −2, y ≤ 3, z ≥ 0, z ≤ 0}

S = {C = x+ y ≤ 0, D = 2x− z + 4 ≤ 0, E = 3x ≤ 0}

In this example we have 3 constraints, 3 variables and a set of initial bounds.
Note how all variables are bounded.
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10.4 Propagation of bound refinements

Any constraint of the form a1x1+· · ·+anxn+k ≤ 0 implies (entails) a bound
for each one of its variables xi. However, propagation only occurs if this bound
is stronger than the best bound in B. Given a variable xi with a coefficient
ai, we can calculate the implied bound using the following expressions. We
will differentiate two cases depending on the sign of ai. In what follows, let
q = p− (ai xi):

• ai > 0. Suppose we have C = a1x1 +a2x2 + · · ·+anxn +k ≤ 0 = p ≤ 0.
We will find the implied bound for the variable xi. To do this, consider
the lower bound of the rest of the polynomial and the upper bound of
aixi:

lower(q) + upper(ai xi) ≤ 0 =

lower(q) + ai upper(xi) ≤ 0 =

ai upper(xi) ≤ −lower(q) =

upper(xi) ≤
−lower(q)

ai
=

upper(xi) ≤
⌊−lower(q)

ai

⌋
=

Implied upper bound =
⌊−lower(q)

ai

⌋
• ai < 0. Same reasoning as before is applied:

lower(q) + upper(ai xi) ≤ 0 = 1

lower(q) + ai lower(xi) ≤ 0 =

lower(q) ≤ −ai lower(xi) =

lower(q)

−ai
≤ lower(xi) =

−lower(q)
ai

≤ lower(xi) =⌈−lower(q)
ai

⌉
≤ lower(xi) =

Implied lower bound =
⌈−lower(q)

ai

⌉
1(because ai < 0)
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As we can see, both expressions are almost the same. The only difference
is that we take the ceiling function for the lower bound (the next integer in
the direction of negative infinity), and the floor function for the upper bound
(the next integer in the direction of positive infinity). The idea behind these
expressions is that when every other monomial has its minimal value, we can
derive information about the maximal possible value a single variable needs to
have in order to satisfy the constraint. Regardless of the sign of the coefficient,
if the implied bound is stronger than the best bound in B, then this constraint
can propagate a new bound refinement, advancing the search procedure.

10.4.1 When does a constraint propagate?

We have seen how to compute implied bounds for variables. However, most
of the time the implied bounds will not be stronger than the ones we already
have. We will now find the condition for a constraint to propagate a stronger
bound on a variable. We will use our last result:

• ai > 0. In order for the implied bound −lower(q)
a to be stronger than the

current bound upper(x), this must be true:

upper(xi) >
−lower(q)

ai

This means that for the implied upper bound to be stronger, it must be
strictly lesser than the current upper bound. We will work from here to
get a condition in terms of the polynomial p and the monomial ai xi:

upper(x) >
−lower(q)

ai
=

ai upper(xi) > −lower(q) =

ai upper(xi) + lower(q) > 0 =

ai upper(xi) + lower(p− ai xi) > 0 =

ai upper(xi) + lower(p)− lower(ai xi) > 0 =

ai upper(xi) + lower(p)− ai lower(xi) > 0 =

lower(p) + ai (upper(xi)− lower(xi)) > 0 =

lower(p) + |ai| (upper(xi)− lower(xi)) > 0

23



• ai < 0. In order for the implied bound to be stronger, this must be true:

lower(xi) <
−lower(q)

ai

This means that for the implied lower bound −lower(q)
ai

to be stronger, it
must be strictly greater than the current lower bound lower(x). We will
again work from this point to get a condition in terms of the polynomial
p:

lower(x) <
−lower(q)

ai
=

lower(xi) <
lower(q)

−ai
=

−ai lower(xi) < lower(q) =

0 < lower(q) + ai lower(xi) =

0 < lower(p− ai xi) + ai lower(xi) =

0 < lower(p)− lower(ai xi) + ai lower(xi) =

0 < lower(p)− ai upper(xi) + ai lower(xi) =

0 < lower(p) + ai(lower(xi)− upper(xi)) =

0 < lower(p)− ai(−lower(xi) + upper(xi)) =

0 < lower(p) + |ai| (upper(xi) + lower(xi))

As we can see, both expressions are the same. Given a constraint A, if there
exists a variable x such that this expression is true, then A implies a stronger
bound on x, regardless of the sign of x. This expression will be useful later in
order to optimize the detection of possible propagations.
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10.5 A short satisfiable example

B = {x ≥ 3, x ≤ 7, y ≥ 2, y ≤ 5, z ≥ −10, z ≤ 10}

S = {C = 2x+ y − 8 ≤ 0, D = y − z + 2 ≤ 0}

We first check if any constraint can propagate. Lets take the first constraint,
A = 2x+ y− 8 ≤ 0. As we have seen, this constraint implies two upper bounds
on the variables x and y:

upper(x) =
−lower(p) + lower(2x)

2
=
−(6 + 2− 8) + 6

2
= 3

upper(y) =
−lower(p) + lower(y)

1
=
−(6 + 2− 8) + 2

1
= 2

Since both of the implied bounds are stronger than the best ones in B, we
can add them to the set:

B = {x ≥ 3, x ≤ 7, y ≥ 2, y ≤ 5, z ≥ −10, z ≤ 10, x ≤C 3, y ≤C 2}

We continue checking for propagations in the rest of constraints. The con-
straint D = y − z + 2 ≤ 0 implies upper(y) ≤ 8, but this bound is weaker than
the one we had, so we discard it. This constraint also implies a lower bound for
z lower(z) ≥ −4. This bound is stronger than the one we had before, advancing
the search. The new set of bound refinements is the following:

B = {x ≥ 3, x ≤ 7, y ≥ 2, y ≤ 5, z ≥ −10, z ≤ 10, x ≤C 3, y ≤C

2, z ≥D −4}

Since nothing else can be propagated, we have to make a decision. Both x
and y are assigned, since their upper and lower bounds are the same. The only
variable we can decide on is z, and we will decide its upper bound to be the
same as its lower bound:

B = {x ≥ 3, x ≤ 7, y ≥ 2, y ≤ 5, z ≥ −10, z ≤ 10, x ≤C 3, y ≤C

2, z ≥D −4, z ≤d −4}

This decision does not propagate anything, nor makes any constraint false.
Since every variable is assigned, we can say this problem is satisfiable and the
model is the following:

x = 3, y = 2, z = −4
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10.6 Non-termination with unbounded variables

We have imposed the restriction that all variables must be bounded, but we
have not shown why. Bounds are needed to stop potentially infinite chains of
propagations. For example, consider this problem:

S = {C = −x+ y + 1 ≤ 0, D = −y + x ≤ 0, E = −y ≤ 0}

Starting with the initial bound propagated by E, y ≥ 0, C propagates x ≥ 1,
but D propagates y ≥ 1. We can now start an infinite chain of propagations:

B = {y ≥E 0, x ≥C 1, y ≥D 1, x ≥C 2, y ≥D 2, x ≥C 3, y ≥D 3, · · · }

Informally, x must be at least one more than y, due to C. However, y must be
at least as big as x. This two constraints keep propagating bigger and bigger
bounds at every step. The fact that variables are unbounded makes this an
infinite loop of propagations. Because of this we have imposed the restriction
of having bounded variables to guarantee termination.
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11 Implementation

We have seen that our method works: it is correct and the algorithm fin-
ishes if all the variables are bounded. Implementing the algorithm is pretty
straightforward; in this section we will explain how we have implemented it,
and additional optimizations we made to improve performance.

11.1 Constraints

Constraints are very easy to implement: using STL containers, we can im-
plement a constraint as a vector of Monomials. A Monomial is just a pair
<coefficient, variable>. Monomials are sorted in a constraint by variable IDs to
make efficient many queries and operations (finding and removing monomials,
or adding two constraints).

11.1.1 Potential overflows

Doing successive operations on a constraint can end up causing overflows.
To prevent this we have limited the absolute value of coefficients to 31 bits.
When performing operations on constraints, we do the calculations treating the
numbers as 64-bit integers. After this process, if the final coefficients can fit in
31 bits we continue the process; if they can not, we have detected an overflow
and we can take convenient measures.

11.2 Constraint database and occur lists

The constraint database stores all the information related to constraints and
the mechanisms to detect propagations efficiently.

11.2.1 Constraint storage

We know that most of the runtime is spent during propagation and, during
this period, constraints are visited sequentially. For this reason, we need to store
constraints in a way that reduces caché faults as much as possible. We decided
to store all constraints as a contiguous memory block: when a constraint is read,
the following ones can be loaded onto the caché, thus reducing caché fault time
considerably.

Constraints are stored as an array of integers like this:

activity - lemma mark - numMonomials - a1 - x1 - · · · - an - xn

This method reduces caché fault time as much as possible and avoids copying
full constraints when we are interested in only a few fields (for example, the ith
monomial of a constraint).
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11.2.2 Occur lists

We can greatly improve the propagation using occur lists; when a bound is
refined, new propagations can only occur in constraints that contain the variable
its bound was refined. The occur list of a variable is a list that contains all the
constraints that contain it.

In our case, occur lists contain pairs of the form < constraintID, c >, where
constraintID is the position of a small header that stores useful information
about the constraint, and c is the coefficient that appears with the variable in
the constraint. For example, the next constraint gives us the following occurList:

C = 3x− 2y + z − 4 ≤ 0

occList(x) =< 1, 3 >

occList(y) =< 1,−2 >

occList(z) =< 1, 1 >

The c field is used to detect more efficiently if a constraint propagates.
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11.3 The Model

The model is one of the most important elements in Intsat. It contains the
current variable bounds at all times and the sequence of bounds (the model
stack), among others.

11.3.1 Model stack

The model stack is the direct implementation of the sequence of bounds
B. As the name hints, we have implemented it as a stack of StackElements.
A StackElement is an abstract representation of a bound. A StackElement
contains a variable and a new value for its bound (this is the information related
to the bound refinement). It also contains the following fields:

• Pointer to last refinement of the same type. This is useful to find all
bounds for a variable, or check what the best bound of a variable was in a
certian decision level. It is also used to restore values during backjumps.

• Current decision level. Every element has an integer that holds the
decision level it can be found. This information is redundant, but it sim-
plifies some algorithms.

11.4 Cleanups

A conflict arises when a constraint becomes false. As we said in the main
procedure, this results in a backjump. Intsat can learn lemmas after a conflict.
Remember that a lemma is a constraint that results from a conflict and, had the
lemma been present earlier, the conflict would have been completely avoided.

This means that a lemma is generated after every conflict: lemma learning
results in a large number of stored lemmas that may not be useful during the
rest of the search. Cleanups try to solve this problem: when some conditions
are met, the least used lemmas are deleted to save space. To be able to do this,
Intsat saves an activity factor for each lemma. During a cleanup, all lemmas
that have 0 activity get deleted, and llemas that survive have their activity
divided by 2. During the search, a lemma’s activity is increased by 1 if it takes
part in a conflict. New lemmas have their activity initialized to 7, making them
“survive” 3 cleanups if they do not take part in conflicts.

There is one more thing done during cleanups: variables that are assigned
can be removed from the constraints, in the spirit of classic SAT (when a variable
is set to false at decision level 0, it can be removed from all the clauses since it
will not affect their truth value). In our case, variables that are already assigned
can be eliminated adding their value to the constant part of the constraint:

C = 3x+ 4y − 2z + 13 ≤ 0 , x = 2 ⇒

C = 4y − 2z + 19 ≤ 0
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The conditions for a cleanup are met when the number of lemmas exceeds a
certain threshold (that can be set as a parameter), and when the decision level
of B is 0.

11.5 Heuristics and strategy

There are certain points in the search process in which we need to take some
decisions that can greatly affect the whole process. For example, how do we find
which variable should we decide? How do we compute the value of the bound
refinement of a decision?

11.5.1 Next decision variable

We use a simple priority queue to store variables. As their key, we use an
activity value (similar to lemma activity). This activity is increased when a
variable takes part in a conflict, and the activity value is increased following a
geometric progression. The speed of this activity increase can be also adjusted
as a parameter. When a certain activity threshold is reached, all activities
are normalized to avoid overflows. This activity heuristic translates to giving
variables which appear in many conflicts a lot of importance; furthermore, it
also gives more importance to variables which appear in later conflicts during
the search.

11.5.2 Value of decided bounds

Once we know which variable are we making a decision on, we need to decide
its new bound. We have chosen to do this arbitrarily and decide the lower bound
to be equal to the mid point between lower and upper bound (thus removing
half of the possible values with a single decision).

11.5.3 Restarts

There are different ways to do restarts: Intsat can do restarts using a nested
strategy, or a luby number based strategy. Each of them can be easily selected.

Nested restarts work using two thresholds: the innerBoundRestart and the
outerBoundRestart. A restart occurs when the number of conflicts since last
restart is larger than the innerBoundRestart. After this restart, the innerBound-
Restart is increased following a geometric progression. This event is repeated
until the innerBoundRestart gets larger than the outerBoundRestart. At this
point, outerBoundRestart is increased, and innerBoundRestart is set to its ini-
tial value.

Luby number based restarts work by using a sequence defined the following
way:

luby(x) =

{
2log2(n+1)−1 if x is a power of 2
luby(n+ 1− 2log2(n)) otherwise
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This definition translates to a sequence of the form 1, 1, 2, 1, 1, 2, 4, 1, 1,
2, 1, 1, 2, 4, 8... Once we have this sequence, we can compute the luby number
associated to the number of restarts we have done, and we multiply it by a
certain constant (which can be tweaked) to have the number of conflicts needed
for the next restart.
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Figure 1: Conflicts needed for each method to do a restart vs the total number
of conflicts.
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12 Experimental results

We have tested our solver against other programs that solve integer linear
arithmetic: cutsat and CPLEX.

In order to evaluate Intsat’s performance, we have used random problems
and real problems taken from the MIPLIB 2003 library. These benchmarks can
be accessed from cutsat’s website [7]. There are several sets of problems:

• Pigeon hole principle problems. These are a series of unsatisfiable
problems that encode the pigeon hole principle.

• Primes. These problems encode a tight cone around an n-dimensional
point of the first n prime numbers.

• MIPLIB2003. These problems are taken from the miplib2003 library.

• Slacks. These problems were used in the “Cuts from proofs” paper by
Isil Dillig, Thomas Dillig and Alex Aiken[9].

• Random problems. This is a set of randomly generated problems.

All the problems have been tested on a Intel Core i5 (2.67GHz) with 8GB
of RAM memory and executions have been limited to 600 seconds. To measure
time, instead of using the time reported by each program, we have used the
UNIX command time to do our measurements. This command gives us several
times; we have used the sum of CPU time in seconds for both user and kernel
mode. This is so because there may be other processes running at the same
time in the machine, and having a single measurement method and read only
the CPU time for our own process will give us the best results.

However, since we are invoking CPLEX using a script and some previous
work, CPLEX times are expected to be a bit higher than their true value. In
some cases we sill also add the time reported by CPLEX itself, but in bigger
sets we will not be including it for convenience.

As a final note, we are solving instances taken from the web. Many of these
instances do not meet our requirements: they have unbounded variables. To
be able to compare solvers, we have set arbitrary bounds (−1024...1024) for
any unbounded variables. This may hurt Intsat’s performance a little, but it is
worth it because it lets us compare our solver with the other two.
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12.1 Pigeon hole problems

Our first test will deal with problems that encode the pigeon hole principle.
The pigeon hole principle states that if n items are put in m holes and n > m,
then at least one of the holes must contain more than one item. This principle is
translated into a series of pseudo boolean (unsatisfiable) problems. The resulting
times (in milliseconds) are the following:

Problem Intsat cutsat CPLEX CPLEX (reported)
pigeon-hole-2 10 10 30 0
pigeon-hole-3 10 10 30 0
pigeon-hole-4 10 10 20 0
pigeon-hole-5 10 20 40 0
pigeon-hole-6 10 10 40 10
pigeon-hole-7 10 10 40 10
pigeon-hole-8 20 10 40 10
pigeon-hole-9 20 10 40 10
pigeon-hole-10 20 10 40 10
pigeon-hole-11 30 10 40 10
pigeon-hole-12 30 10 40 10
pigeon-hole-13 40 10 40 10
pigeon-hole-14 40 30 20 10
pigeon-hole-15 50 20 40 10
pigeon-hole-16 80 20 40 10
pigeon-hole-17 100 20 40 10
pigeon-hole-18 110 20 40 10
pigeon-hole-19 140 20 50 10
pigeon-hole-20 180 30 40 10

total time 920 290 710 160

Table 1: Times (in ms) for the pigeon-hole set of problems.

As we can see, Intsat has the worst performance of them all in this set.
Its times are similar to CPLEX’s, but when we look at the real time spent by
CPLEX we will see that Intsat is actually far away from the other two solvers.
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12.2 Prime cones

Our second set of problems corresponds to problems that encode a tight cone
around an n-dimensional point of the first n prime numbers. They consist in
around 20 SAT and 20 UNSAT problems. The results have been the following:

Problem Intsat cutsat CPLEX CPLEX (reported)
prime cone sat 2 10 10 30 0
prime cone sat 3 10 10 40 10
prime cone sat 4 20 10 40 10
prime cone sat 5 10 10 40 10
prime cone sat 6 10 20 40 10
prime cone sat 7 10 20 40 10
prime cone sat 8 10 20 40 10
prime cone sat 9 10 30 50 10
prime cone sat 10 10 30 40 10
prime cone sat 11 10 40 40 10
prime cone sat 12 20 40 40 10
prime cone sat 13 20 60 50 10
prime cone sat 14 20 60 50 10
prime cone sat 15 20 80 50 10
prime cone sat 16 30 100 40 10
prime cone sat 17 30 130 40 10
prime cone sat 18 20 170 40 10
prime cone sat 19 30 210 40 10
prime cone sat 20 20 250 50 10

total time 320 1300 800 180

Table 2: Times in ms for the SAT prime-cone set of problems.
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Problem Intsat cutsat CPLEX CPLEX (reported)
prime cone unsat 3 10 10 40 10
prime cone unsat 4 10 10 50 10
prime cone unsat 5 10 10 50 10
prime cone unsat 6 10 20 60 10
prime cone unsat 7 10 20 70 20
prime cone unsat 8 10 20 60 10
prime cone unsat 9 10 30 50 20
prime cone unsat 10 10 30 60 10
prime cone unsat 11 30 40 60 20
prime cone unsat 12 20 40 70 20
prime cone unsat 13 20 50 60 20
prime cone unsat 14 20 70 50 20
prime cone unsat 15 20 70 50 20
prime cone unsat 16 30 110 50 20
prime cone unsat 17 30 130 50 20
prime cone unsat 18 30 170 50 20
prime cone unsat 19 30 210 50 20
prime cone unsat 20 40 250 60 30

total time 350 1290 990 310

Table 3: Times in ms for the UNSAT prime-cone set of problems.

Results have been more positive in this set of problems. We can see that
cutsat starts to struggle with the bigger problems, but Intsat and CPLEX in-
crease their times at a much slower rate. Particularly, in the UNSAT problem
set, Intsat’s performance is quite similar to CPLEX’s.
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12.3 MIPLIB2003’s problems

These problems have been taken from the Mixed Integer Problem Library
(MIPLIB) which was last updated in 2003. The set we are using can be down-
loaded from cutsat’s website, and has the optimization constraints removed.
Here are the results:

Problem Intsat cutsat CPLEX
air04.sat 0.26 6.46
air05.sat 15.51 0.19 0.30

cap6000.sat 30.71 7.18 0.06
disctom.sat 30.66 0.74

ds.sat 5.71 2.28
fast0507.sat 3.42 1.43 0.23
harp2.sat 0.08 2.67 0.05

manna81.sat 0.14 0.07 0.05
mzzv11.sat 2.22 0.29 1.34
mzzv42z.sat 5.05 0.58 1.80

nw04.sat 1.38
p2756.sat 0.10 0.22 0.12

protfold.sat 0.21 1.28 10.10
seymour.sat 0.22 0.05 0.05
sp97ar.sat 2.24 14.89 0.42
stp3d.sat

solved 12 13 15
total time 90.56 34.82 25.38

Table 4: Times in s of the MIPLIB2003 problem set.
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12.4 Slacks

These problems have been used in the “Cuts from proofs” paper, and they
are available for download from cutsat’s website. There are 251 problems in
total, and we have tested as many as we have been able to. Both Intsat and
CPLEX have been able to solve most of the problems, but cutsat has been
struggling with many problems:

solver instances solved total time (in s)
Intsat 216 2055.07
cutsat 172 3004.00

CPLEX 250 13.19

Table 5: Time results for the “Slacks” set of problems.

The performance of CPLEX is again quite remarkable. Our solver, Intsat,
has had some trouble solving a small subset of the instances. However, cutsat
has been the one who has had the worst performance.
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Figure 2: Performance comparison in Slacks problem set.
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12.5 Random problems

We have used a random problem generator to create several random prob-
lems. As input, the generator asks for the number of variables, the number of
constraints and a random seed. Parameters such as minimum and maximum
bounds, or the number of variables per constraint can also be adjusted. The
first set of 100 problems has 50 variables and 100 constraints:

solver instances solved total time (in s)
Intsat 100 2.54
cutsat 93 1435.29

CPLEX 100 11.18

Table 6: Time results for random problems.

The performance of cutsat with random problems is very poor, compared to
the other solvers. The reason of this is because cutsat calculates “tight reasons”
for each bound refinement. These reasons are used when a conflict arises to
calculate where to backjump. However, when a solver learns a lemma from a
conflict, this lemma is useful to avoid similar conflicts to the one that produced
it. Random problems do not have this property: learning is almost next to
useless in a random problem.
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12.6 Restart method comparison

In this last section we will compare Intsat against Intsat itself. We want
to see how Intsat behaves with different restart schemes. Our tests will be
performed on the Slacks problem set, because it is a fairly big problem set with
some hard problems. We already have an execution of insat working with Luby
restarts on it and it took around 2000 seconds. We will now solve the same
batch of problems with Intsat working with nested restarts:

solver instances solved total time (in s) average time (in s)
luby restarts 216 2055.07 9.51

nested restarts 217 1475.03 6.80

Table 7: Time results for Intsat with luby or nested restarts

Nested restarts have proved to work better than luby restarts, at least in
this problem set. With nested restarts, Intsat has been able to solve one more
problem and it has been able to solve the whole batch in less total time. Here
is a graphical comparison of both versions performance:
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Figure 3: Performance comparison between different restart schemes.
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13 Future work

Our solver, Intsat, is already working and it is giving positive results. How-
ever, there are a few things we have not done and would be interesting to
investigate in a future:

• Bug fixes. We have found some execution errors while we were testing
Intsat and comparing it to the other solvers. These errors are probably
related to the problem parsing stage, but it is a problem that needs to be
solved as soon as possible.

• New heuristics. There are many things left to try: new restart strate-
gies, different decision procedures... We have tried a few, but there are
many more things to test and evaluate.

• Parallelization. This is something we have completely ignored in this
project. We have worked being concious of the architecture underneath,
but we have not thought about parallelizing Intsat. This means examining
the whole process to find suitable parallelization points, and adapting the
most we can to be able to use more than one processor.

• Unbounded variables. Intsat only works with problems that have cor-
rectly bounded variables. This is temporarily addressed setting an ar-
bitrary bound to variables, if they are missing it. However, there are
different strategies such as adding “control variables” that refer to maxi-
mum and minimum bounds of unbounded variables, and have the process
work automatically.
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14 Planning and budget

Arrived to this point, we must ask ourselves: was the project successful?
Did we accomplish the objectives and did we follow our planning? The answer
to those questions is yes.

Our planning consisted in two week developement phases in which each one
of them we would develop a core element of our solver. This has been the case:
we started with the basics, and we kept adding things or improving the already
existing code. We have reached the end of this project and we have a working
SAT solver for integer linear programming problems. Furthermore, as we have
seen in the results section, Intsat’s performance has been generally better than
cutsat’s. There are, of course, some exceptions, but the experiments have given
us some positive results. With all of this, we can safely state that we have
accomplish our first objective: build a working solver at least as good as cutsat.
Our second objective has been accomplished along the way: our solver is quite
modifiable and easy to experiment on.

The project has also been successful regarding to the budget. The hours
spent in this project have been roughly the ones we predicted, and since the
planning has been met, our budget requirements have also been met.

15 Sustainability and social responsability

The developement of Intsat is not only theory oriented. Of course research is
the main goal, but this software has many applications. Many critical problems
are in fact integer linear programming problems which could be solvable by
Intsat. We have seen that cplex is a powerful alternative, and actually works
better than Intsat. However, Intsat is only the beginning. It has been a start
point to explore new ways to solve integer linear programming problems. In a
future, Intsat could achieve cplex’s performance, or even surpass it.

With this potential, Intsat could solve many industrial, business and engi-
neering problems. It could solve complicated logistics problems, reducing pro-
duction costs, or risks for workers. In conclusion, Intsat is a small piece of
software, but capable of many things yet to see.
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16 Conclusion

In this project we have built a fully functional SAT solver for integer linear
problems from scratch. Our idea was to start with the DPLL algorithm, which
we know it works, and extend it to support integer variables.

We started with a simple planning: we would began with a basic solver and
we would extend it. Every two weeks we would implement a new optimization,
or a core module. This planning, as well as the budget requirements, have been
met. In this sense, the project has been successful. We have also met our two
main objectives: we have built a solver with a certain degree of efficiency which
is at least as good as cutsat, and this solver can be tweaked and played with to
experiment different behaviours and learn from them.

We have gone through all the details in how our algorithm works, and we
have explained how we have implemented every single one of them. Furthermore,
we have shown possible optimizations to reduce runtime and save work. These
optimizations include both data structures and algorithms.

We have tested Intsat and compared it against two more solvers: cutsat
and CPLEX. We have seen that Intsat’s performance is not bad at all: it has
surpassed cutsat’s performance in some problem sets, and the overall results
have been quite positive. We have also included a test comparing two different
restart schemes for Intsat.

In conclusion, this project has been a success. It represents the end of many
months of work, and although this project ends here, there are many things left
to do. Proof of this is the full “Future work” section, which gives a list of things
that I want to keep working on. I have learned a lot with this project, and I
sincerely hope other people can benefit from all the work we have done here.
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