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Abstract

The already ubiquitous though still growing market of mobile devices disposes of 
an  increasingly  prolific  offer  of  software  applications,  which  makes  them even 
richer.  However,  the  inherent  resource  constraints  of  these  devices,  such  as 
processing, memory, storage or battery capacity, are limiting the performance of 
the  more resource-hungry applications. Taking advantage of the relatively strong 
network  connection  capabilities  of  the  mobile  devices,  many  approaches  have 
emerged in the  last  years  proposing mobile  cloud computing as  a  solution.  Of 
these, mobile computation offloading plays an important role. It is especially useful 
for  intensive  processing  applications,  as  it  consists  of  sending a  part  of  the 
computation load of a mobile device to be processed in outside surrogates such as 
the cloud  infrastructure.  Thanks  to  this  technique,  the  performance  of  the 
applications can be  notably enhanced, while reducing the energy  consumption of 
the devices.

A study of the current computation offloading scene is conducted in this paper, 
analyzing many of the systems developed recently. The trend of these systems is to 
decide dynamically -on runtime- whether it is worth or not to offload a task. In 
order to take the right decision, many conditioning aspects and parameters can be 
considered.

This  thesis  offers  a  dynamic  decision  offloading  approach  that  focuses  on 
improving the applications' performance. The system will consider that it is worth 
to offload a task when its estimated execution time on the mobile device is greater 
than the sum of its estimated execution time on the surrogate plus the predicted 
costs of the data transfers.

Mobile  computation  offloading  is  commonly  used  in areas  like  multimedia 
processing,  vision,  recognition,  graphics,  gaming  or  text  processing.  Concrete 
examples are applications such as face detection, speech recognition or the artificial 
intelligence  of  a  game.  Observing  that  the  heavy  computation  tasks  of  these 
applications  have  significantly  variable  execution  times  depending  on  its  input 
(how big is the image where faces must be detected, how long is the audio file 
where the speech must be recognized, which is the difficulty level of the artificial 
intelligence, etc.), a system to estimate the execution time of a task depending on 
which are its input parameters is designed. This system computes the estimations 
statistically from past observations, and is based upon a nonparametric regression 
technique.



In order to evaluate the presented offloading system, an implementation of it is 
carried out (extending a simple offloading engine for Android) and many tests are 
run, checking the behavior of the system with some interactive applications, such 
as a chess game. The results obtained from the experimentation indicate that most 
of the taken offloading decisions are correct and it is verified that the overhead 
produced by the decision making is small  enough to affect only minimally the 
overall performance.

As  a  conclusion,  the  mobile  computation  offloading  approach  proposed in  this 
thesis is valid to improve the performance of many applications, but further work 
must be done in order to increase its ease of use and compatibility.
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1 Introduction

Advancements in computer technology have expanded the presence of computers 
and network access -the combination of which will be of special interest in this 
thesis- in a wide variety of mobile devices, from laptops, PDAs, tablets or mobile 
phones to A-GPS devices, sensors or autonomous robots (furthermore, according to 
the concept of the Internet of Things [IoT13], this presence will keep expanding). 
Of these devices, the mobile phones are the main computing wave, especially the 
complex smartphones, gaining everyday more market and popularity over desktop 
computers and laptops. In 2012, the smartphone shipments already exceeded the 
shipments of normal phones [Jun12].  These mobile  devices have many resource 
constraints  in  comparison to a desktop computer,  such as processing,  memory, 
storage or battery capacity. In addition, the users want them to be smaller and 
thinner everyday and, at the same time, to be more powerful, two features that 
play against each other.

Responding  to  this  demand,  the  smartphones'  resources  have  increased 
considerably,  considering that the speed of the top model smartphone processors 
incremented during the last decade from less than 200 MHz to more than 1GHz 
[Kem10]. However, when a processor's clock speed doubles, the power consumption 
of the device nearly octuples [Kum10], and the battery capacity cannot follow a 
growth rate big enough to provide this much power. This is identified as one of the 
main bottlenecks on the mobile devices resources.

Furthermore, the applications for smartphones have also proliferated a lot recently. 
The availability of applications increased largely thanks to the rise of application 
stores, through which the process of finding and installing applications has become 
much simpler for the end users. Another reason of the large offer of applications is 
that now, not only software companies develop them, but also small developers 
and hobbyists (the applications for the Apple App Store have incremented from 
500 to more than 200,000 within two years [Kem10]). Many of these applications 
put pressure on the manufacturers to keep expanding the capabilities of the mobile 
devices.

On the other hand, the modern mobile devices support several types of network 
interfaces,  e.g.  Ethernet,  Bluetooth,  Wi-Fi,  GPRS  or  even  WiMAX,  but  the 
latency with the corresponding networks is not negligible and the bandwidth not 
always  as  wide  as  it  should.  In  each  situation  the  most  appropriate  interface 
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should be selected according to their availability, but no network provider can 
support such switches [CDA11]. However, this is partially compensated with the 
fast networking technology evolution.

The  cellular  networking  technology  -the  networking  through  cell  towers-,  has 
grown rapidly, from the 14.4 Kb/s allowed by the GSM networks (known as 2G), 
evolving to the UMTS networks (3G) and now coming to the LTE networks (4G), 
that  are  expected  to  provide  around 100  Mb/s  [Kem10].  Moreover,  the  novel 
Femtocell devices will help relieving the cellular networks' shortcomings [Din11]. 
Simultaneously, the local area wireless networks (WLAN), such as Wi-Fi,  have 
increased in bandwidth, too. The WLANs are becoming more and more used by 
the smartphones' users; the Wi-Fi networks already drive about 65% of the total 
mobile data traffic [Lee13]. As exchanging data with a nearby wireless access point 
-of a Wi-Fi network- requires less energy than exchanging data with a potentially 
far cell tower, the increasing use of the Wi-Fi networks already save around 55% of 
battery power, but this is still  not enough to solve the energy problem on the 
mobile devices.

In this context, with a growing market of inherently resource-constrained mobile 
devices that dispose of a gigantic offer of software applications, the concept of 
mobile cloud computing (MCC) appears -enabled by a relatively strong network 
technology-  as  an alternative  to  help reducing the  increasing gap between the 
actual resources of the devices and the demanded ones by many resource-hungry 
applications.

MCC consists  of  enhancing  the  capabilities  of  mobile  devices  with  the  cloud 
computing infrastructure, especially with the principle of delivering applications 
and services  for  the  mobile  devices.  In the  last  years,  MCC has  become very 
successful,  and market research predicts that by the end of  2014 mobile  cloud 
applications will deliver annual revenues of 20 billion dollars [Chu11]. Two main 
groups  of  MCC can  be  identified,  mobile  data  offloading  (MDO)  and  mobile 
computation offloading (MCO).

Given the reduced storage capacity of the mobile devices, the idea of MDO is to 
upload to the cloud space-consuming data (typically multimedia data) or backups 
of the device's data. When the data needs to be operated, it can be downloaded 
again or managed through browser-based applications residing wholly in the cloud. 
There exist many applications separated into a light weight client and a heavy 
weight server hosted in the cloud, for example the music search service Shazam 
[Sha13] or the image search service Goggles [Gog13].
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On the other hand, MCO takes advantage of the richer computational resources of 
the cloud infrastructure to process part of the computation load of a mobile device 
there. A simple Google search or the use of the above mentioned browser-based 
applications  can  be  considered  MCO,  as  the  mobile  device  indeed  does  less 
processing thanks to this services, but actually the mobile device could not perform 
this activities unless a huge amount of data would be downloaded. In this thesis, 
MCO is  understood as  having  both  the  possibility  of  executing  a  part  of  the 
computation -the intense part- of a native mobile application in the mobile device 
or offloading it to a remote cloud infrastructure (or nearby idle computers). The 
remote servers will be called surrogates.

The feasibility and utility of MCO have already been proved [Kum12]; thanks to 
MCO  the  performance  (hereafter,  performance  refers  to  the  execution  time 
performance)  of  the  applications  can  be  notably  enhanced,  while  reducing  the 
energy consumption of the devices. Therefore, MCO can help softening the above 
mentioned  bottleneck  on  the  power  supply  for  the  increasingly  demanding 
processors. Energy is a primary constraint for mobile systems; however, this thesis 
will focus on improving the performance of the applications rather than reducing 
the  energy  consumption,  since  in  most  cases  one  thing  entails  the  other  one. 
Nevertheless,  it  will  be  of  interest  to  identify  under  which circumstances  both 
things are not equivalent.

Many  offloading  systems  and  frameworks  appeared  in  the  last  years,  but  the 
majority of application developers still have a lack of awareness of the advantages 
that MCO provides. Moreover, the ease of use of these systems is still something to 
be improved, and the programmers think it is not worth the burden that the use of 
MCO supposes.

However, the scope  in which MCO is more advantageous is well-known, and it 
comprises intensive computation applications in areas like multimedia processing, 
vision,  recognition,  graphics,  gaming  or  text  processing  [Kum12].  Concrete 
examples are applications such as face detection, speech recognition or the artificial 
intelligence of a strategy game. Observe that the heavy computation tasks of these 
applications  have  significantly  variable  execution  times  depending  on  its  input 
(how big is the image where faces must be detected, how long is the audio file 
where the speech must be recognized, how many enemies controls the artificial 
intelligence and how smart they are, etc.).

Thus, the main objective of this thesis is to conceive a system designed to improve 
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the applications' performance through MCO, and evaluate if it can be useful with 
real life applications. At the same time, this thesis aims to provide a simple and 
easily  extensible  offloading  system usable  for  any  kind  of  future  experimental 
purposes, hence an implicit goal will be to keep its modularity, adaptability and 
availability [FUB13]. Research will be done about the main conditioning aspects 
and  parameters  characteristic  of  an  offloading  system,  and  many  systems 
developed recently will be reviewed.

The  system  presented  here  will  not  partition  applications  identifying  the 
potentially  offloadable  parts;  this  will  have  to  be  done  by  the  applications' 
programmers at development time, and many other aspects out of the focus of this 
thesis will be simplified, too. Rather, the fundamental goal of the system will be to 
be able to decide at runtime whether a potentially offloadable task will be executed 
locally  or  remotely.  Offloading  will  be  considered  worth  when  the  estimated 
execution time of the task on the mobile device is greater than the sum of its 
estimated execution time on the surrogate plus the predicted costs of transferring 
the data.

In order to solve the formulated inequality, it will be necessary to predict both the 
execution time of a task in the mobile device and the surrogate, and to predict the 
costs of sending the request and receiving the answer over the network. While the 
network costs will be roughly estimated, a derived objective of this thesis will be to 
accurately estimate the execution times of the tasks, and an automated system will 
be designed for that matter. The main point of the system will be to forecast the 
execution time of a task depending on which are its input parameters (a significant 
property,  as  described  above).  This  system  will  compute  the  estimations 
statistically  from  past  observations,  and  will  be  based  upon  a  nonparametric 
regression technique. This type of system is usually used to predict the execution 
time of large tasks in distributed systems or grid computing [Wol08], thus the 
overhead of calculating the estimated execution time is not relevant. However, it 
will be a challenge to see if  the overhead can be reduced enough to fit in the 
decision-making process of MCO.

To verify the proposed approach, a practical implementation will be built almost 
from scratch,  as a motivation of  this thesis is  to deal  closely  with the mobile 
computation offloading.  A simple offloading engine for Android [GM13] will  be 
extended, mainly improving its reliability through better forecasting capabilities. 
The automated estimation system of task execution times (hereafter: AESTET) 
will be added and the network data transferring time prediction mechanism will be 
improved,  reimplementing  much  of  the  original  engine.  The  resulting 
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implementation will  not  be  expected to be  as  competent  as  the  current  MCO 
systems,  but  it  will  be  enough  for  the  testing  purposes  of  this  work.  Its 
effectiveness  and  efficiency  will  be  evaluated  running  it  on  some  interactive 
applications, such as a real chess game or a testing application prepared for this 
matter.

Summarizing  the  above  exposed,  the  research  in  this  thesis  will  aim  to  give 
answers  to  the  following  questions  regarding  the  MCO  system  that  will  be 
presented:

• Can it improve the performance of mobile devices' applications?
• Does it decide correctly when is it worth to offload a task?

• Are the rough network data transferring time forecasts enough for 
the approached system?

• Is AESTET accurate enough?
• Does AESTET produce too much overhead?
• Is it helpful with real life applications?

• Can  it  be  affirmed  that  by  improving  the  performance  the  energy 
consumption is reduced, too?

• Is it usable for future experimentation?

In the following chapter,  a study of the current computation offloading scene is 
conducted,  reviewing  many  of  the  systems  developed recently  and  aiming  to 
identify  the  main  conditioning  aspects  and  parameters  characteristic  of  an 
offloading system. In chapter 3, the MCO system proposed in this thesis will be 
presented. First, in section 3.1, it will be decided which aspects the system is going 
to cover (besides the ones required for the main purposes of the system) and which 
are going to be simplified or ignored. In the same section, the system architecture, 
key components and design of the system will be explained, followed by the also 
theoretical description of AESTET in section 3.2. The next section will show the 
most relevant implementation details of the prototype of the system, which will be 
used for the evaluation of the work in the next section. Section 3.4 will include the 
results of the experiments and the difficulties found will be discussed. The future 
outlook will be commented in the last section of this chapter. Finally, chapter 4 
will synthesize the most important points of the thesis in the conclusions.

5



2 Theoretical Background

2.1 Taxonomy of the main aspects of an MCO system

The  term cloud  computing  (CC),  or  colloquially,  the  cloud,  does  not  have  a 
commonly accepted unequivocal scientific or technical definition, but it is used to 
describe  diverse  computing  concepts  involving  a  large  number  of  computers 
connected through a network. Its success and strong future outlook have already 
been widely recognized. The concept of CC usually involves having a data center, 
a hardware facility with many servers typically built in a low populated place, 
with high-speed networks and a high power supply stability.  This  offers many 
advantages, allowing to provide the users with different cloud services, mainly:

• Infrastructure as a service (IaaS): is the lowest model, provides the most 
basic  service  allowing  the  users  to  use  the  infrastructure  directly,  e.g. 
servers, virtual machines, load balancers, networks, storages, etc.

• Platform as a service (PaaS): abstracts from the IaaS model and offers a 
platform  to  work  on,  e.g.  middleware  services,  operating  systems, 
databases, web servers, development tools, etc.

• Software as a service (SaaS): abstracts from the PaaS model and provides 
concrete software services, e.g. application programs, email, games, etc.

These services are provided at low cost by cloud providers, e.g. Google, Amazon or 
Salesforce  [Din11].  The  users  can  elastically  utilize  cloud  resources  in  an  on-
demand  fashion,  thus  making  CC  very  suitable  for  rapidly  provisioning  and 
releasing the mobile devices' applications. With the boom of mobile devices and 
applications, the term MCC is introduced.

As  outlined  in  the  first  chapter,  MCC can be grouped into  MCO and MDO. 
Thanks to MCO, the battery lifetime of a mobile device can be extended and its 
processing power improved. MDO extends the storage capacity of a mobile device 
and also improves the reliability, as having the data backed up in the cloud is a 
guarantee for most users.

The concept of computation offloading (CO) already existed before MCO, but it 
was focused on offloading the computation in static  environments,  i.e.  a server 
connected to a stable network . In this case, the tasks to be offloaded are usually 
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huge  and  are  sent  to  various  computers,  e.g.  distributed  systems  or  grid 
computing.

The  following  subsections  will  point  out  the  main  aspects  affecting  the  MCO 
systems, mentioning many properties actually inherited from CC or CO.

2.1.1 Motivation

First, an MCO system can be oriented towards different goals:

• Improving performance
• Saving energy
• Reliability
• Context awareness

The main differentiation here is whether the system will focus on saving energy or 
improving performance, or both. As will be explained later, if a system focuses on 
improving one of this two goals, the other will be usually achieved as a collateral 
effect too, but there are some subtleties about this relation.

As  described  above,  improving  the  reliability  is  a  property  that  fits  better  to 
MDO, but it is also important in the context of MCO. Many MCO approaches 
propose executing in the surrogates not exactly the same that would have been 
executed in the mobile device, but rather having two versions of the potentially 
offloadable tasks, one for the mobile device and one for the surrogate. Thus, the 
task executed in the surrogate can be more complex and precise than the one in 
the client, e.g. a face detection application can have more exhaustive algorithms in 
the  server  side  than  in  the  client,  producing  a  better  recognition  when  the 
detection task is executed in the surrogate.

More recently, it has appeared the trend in the MCO systems to aim at context 
awareness [CDA11, Kum12, Din11]. This refers to perceive the user's state and 
surroundings (e.g. user's location, preferences, data types, network status, device 
environments, etc.) in order to infer context information from it, with adaptive 
mechanisms based on this information that are able to provide the appropriate 
services to each user and situation.

2.1.2 Partitioning

An important part of the job of an MCO system is to divide the applications into 
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the  parts  that  must  be  run  on  the  mobile  device  and  the  parts  that  can  be 
potentially offloaded. The handling of the peripherals -e.g. the camera- and the 
I/O interactions with the sensors of the device should not normally be offloaded, as 
well as the communication with the user interface (UI). As will be seen in 2.1.7, if 
an offloading action fails  due to network problems, a typical solution is to re-
execute  the  task  locally.  Considering  this,  it  is  also  a  good  practice  that  the 
potentially offloadable parts do not communicate with external elements or remote 
machines.  For  example,  a  task containing an e-commerce  transaction  could be 
offloaded and the transaction could be effectively executed in the surrogate, but 
then the connection could be lost  and the task re-executed again locally,  thus 
doing two times the same transaction. However, these omissions are not categorical 
and there are studies that address how to circumvent them [Sti10].

There are two possibilities on how to partition an application and identify the 
tasks suitable for offloading:

• Human-made: the MCO system does not partition the system, instead, the 
programmer of the application must separate during the development the 
not offloadable parts from the parts that may be offloaded. This requires an 
extra burden on the programmer and more involvement, but in contrast 
the partitions can be more optimal and the overall  efficiency should be 
better (more energy savings and performance).

• Automated: the MCO system auto-determines the partitioning scheme of 
the application automatically. It is desirable to perform it in development 
time too, to avoid the very high overhead for analyzing the program that it 
would produce during execution. This complex approach has been deeply 
studied [Til06, ZLi01]; it might require techniques such as static analysis 
and  dynamic  profiling  [Chu11].  In  scenarios  where  the  application 
information  is  unknown  [Xia07],  no  partitioning  may  be  done  and  the 
entire  program  is  either  offloaded  or  executed  locally.  An  MCO with 
automated  partitioning  might  be  used  more  easily  by  the  applications' 
developers, but at the same time is likely to be less efficient.

Another  important  aspect  of  the  partitioning  process  is  the  partitioning 
granularity. A fine-grained partition would identify as offloadable only the truly 
intensive computing parts of an application, while a coarse-grained partition would 
not  isolate  that  precisely.  Depending  on  the  partition  granularity,  diverse 
offloadable  entities  may result.  These  will  be  explained in  detail  in  subsection 
2.1.4.
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2.1.3 Decision-making

Deciding whether offloading a task is worth to be done or not is one of the main 
challenges  of  MCO.  Generally  speaking,  offloading  is  beneficial,  whenever  the 
gained efficiency outweighs the costs involved [CDA11]. The offloading decisions 
can be classified as:

• Static:  the  offloading  decisions  are  made  beforehand,  not  during  the 
application's runtime. The properties of the potentially offloadable tasks of 
the application are analyzed in order to decide the more convenient action, 
so the partitioning must have been done previously, in development time. 
This approach is valid only when the parameters needed to evaluate the 
offloading condition (explained in 2.1.3.1) can be accurately predicted in 
advance, and has the advantage of low overhead during execution. Static 
decisions can be human-made or automated.

• Dynamic:  the  offloading  decisions  are  made  at  runtime  by  the  MCO 
system,  just  before  starting  to  execute  any potentially  offloadable  task, 
being  able  to  adapt  to  many dynamic  conditions  such as  the  changing 
connection status or the fluctuating bandwidth. Dynamic decisions need to 
predict  even more variable parameters than the static  ones,  and this is 
done at runtime, so the efficiency of  the prediction mechanisms will  be 
essential in order to avoid producing too much overhead. 

In the recent years, there are fewer papers suggesting MCO with static decisions, 
and currently the majority are based on dynamic  decisions [Kum12].  However, 
selecting the appropriate decision-making type is heavily dependent on the nature 
of the offloadable functionalities on which the MCO system focuses (explained in 
subsection 2.1.10).

Much of the literature about MCO studies under which circumstances offloading 
computation from a mobile device is beneficial, by means of performance or energy 
saving. While the general equations that describe these two criteria can be easily 
stated (Eq. 1 and Eq. 4), evaluate them turns to be the real challenge of the MCO 
systems,  as  the  variables  represented  in  the  equations  cannot  be  effortlessly 
obtained due to the dynamic nature of the mobile devices' environment. Much of 
the research focuses on prediction mechanisms for these parameters.

For  performance  improving,  the  offloading  offloading  condition  can  be  simply 
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formalized in the following way:

(1)

where I is the number of instructions of the potentially offloadable task, S is the 
computing speed of the surrogate (instructions/second), D is the size of the data to 
be transferred (bytes), B is the bandwidth of the network (bytes/second) and M is 
the computing speed of the mobile device (instructions/second). Note that the left 
side of the inequality corresponds to the offloading time (cost of executing the task 
remotely  plus  cost  of  transferring  the  data)  and the  right  side  to  the  cost  of 
executing the task locally. This way it becomes evident, that the execution time 
saving criterion indicates to do offloading when this inequality evaluates to true. 
The surrogate's computing speed may vary but, in general, it can be assumed to be 
tens of  times superior  (F times,  below) to the  computing speed of  the  mobile 
device  (some  cloud  vendors  can  guarantee  a  minimum  level  of  performance). 
Considering this, and that transferring the data actually means sending a request 
and receiving a response, the inequality in Eq. 1 can be rewritten as:

(2)

Here Ds stands for the size of the data to be sent and Dr for the size of the data to 
be received. The bandwidth is also split in the respective cases:  Bu refers to the 
upload bandwidth and Bd to the download one.

Observe that according to Eq. 2, no time would be needed to send a very small 
request or receive a very small response. However,  there is a propagation time 
between the moment that the request leaves the mobile device and the moment 
when it reaches the surrogate, and vice versa. The sum of these two times is called 
the round-trip time (RTT). In addition to the RTT, transferring data through the 
network also requires an initial setup time that is often ignored [Kum12]. Let R be 
a single variable representing the sum of these two small times, then:

(3)

which is the expanded equation for the performance criterion.

On the other hand, when the aim is energy saving, the offloading condition can be 
represented as follows:
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(4)

This equation is identical as Eq. 1, except for being each addend multiplied by its 
corresponding  power  consumption.  Thus,  the  generic  energy  saving  criterion 
derives from the performance criterion. Each of the addends (I/S, D/B and I/M) is 
expressed in seconds, which multiplied by watts (joules/second) give joules as a 
result,  the  energy  unit.  Pi corresponds  to  the  power  consumed by  the  mobile 
device's processor while being idle, as it is assumed to be idle while waiting for the 
surrogate's  response1 and  Pc is  the  power  consumed  when  the  processor  is 
computing2.  It  can  be  said,  without  loss  of  generality,  that  for  all  the  mobile 
devices  Pi < Pc is true. The power consumed when transferring data,  Pt, totally 
depends on the type of network, e.g. Wi-Fi consumes considerably lesser power 
than 3G.

Now,  breaking  down the  times  like  in  Eq.  3,  the  inequality  in  Eq.  4 can  be 
rewritten as:

(5)

Observe  that  the  power  consumed  by  the  processor  while  being  idle,  Pi,  is 
associated with the time R for simplicity. It is not exact though, as R is the sum of 
the RTT and the network initial  setup time.  Similarly,  there  is  a  transferring 
power Pt associated with both the data sending and receiving times, although there 
might be small differences between the power for sending data and the power for 
receiving data.

It can be deduced from the equations (Eq. 1 already shows it) that, even if the 
surrogate's computation capabilities were infinitely faster (F=∞) than the mobile 
device's ones,  if  D/B > I/M is  true, then no offloading should be done.  As a 
conclusion, both criteria -performance improving and energy saving- are, above all, 
dependent on the data D to be transferred, the bandwidth B and the amount of 
computation I to be done. For both criteria, applications with light communication 
(small D) and heavy computation (large I) are appropriate. Figure 1 illustrates the 
relations between D, I and B:

1 There are approaches that aim to use the processor during that time.
2 Many mobile devices have the ability to run their processors at different frequencies depending 

on the computation load of each moment, in order to save energy [CSR13]. In this thesis it will 
be assumed that  Pc is the power consumed by the processor at its maximum frequency (as it 
should be when running supposedly intensive processing tasks).
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Figure 1: Relations between the size of the transferred data (D), the bandwidth 
(B) and the amount of computation (I) in the context of MCO [Kum10].

Note that the previous equations present an important assumption: the number of 
instructions of the task is the same whether it is executed locally or in the cloud. 
While the concept of computation offloading primarily means to execute the same 
task in another machine in order to reduce the computation load, in MCO it is a 
common  approach  to  have  a  variation  of  the  task  in  the  surrogate,  typically 
running heavier and more accurate algorithms in the surrogate to take advantage 
of its richer resources. However, this is done when the computation speed of the 
server is big enough to compensate it, so the formalization model of the presented 
equation is still generic.

2.1.3.1 Parameters

In order to decide whether to start an offloading process or not, an MCO system 
must evaluate either Eq. 3 (for performance) or Eq. 5 (for energy saving), or both. 
A variety of prediction mechanisms are proposed to forecast the many parameters 
in the equations. If the MCO system uses static decisions, this can be partly done 
by humans, but prediction tools are still needed. In the case of a dynamic decision 
MCO system, the decision must be made at runtime, just before the execution of a 
potentially  offloadable  task,  thus  the  forecasting  mechanisms  will  have  to  be 
especially efficient.

The parameters affecting an offloading decision can be of different types: static 
information, hardware, network or other contextual information. The following list 
gathers the parameters seen in Eqs. 1 to 5, describing how to forecast their values:
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• Pi, Pc, Pt  : the power consumed when idle, computing or transferring data 
varies from one mobile device to another, thus an MCO system only needs 
to calculate them once3.  There are different  Pt for the different network 
interfaces:  P3G,  PWi-Fi,  etc.,  so  the  right  one  can  be  chosen  only 
dynamically, depending on the network used at that moment.

• I: the amount of instructions that a task requires could always be similar, 
so no forecasting would be needed. Otherwise, there are many techniques to 
estimate the amount of the computation of a task [Wol08], such as static 
code analyzing [Rei94] and statistical estimation [Ive96]. These techniques 
usually use the input parameters of a task (or the size of the input) to do 
the  forecasts.  Sometimes  the  input  is  known in  advance,  otherwise  the 
predictions will have to be done just before the execution of the task. This 
is especially challenging in the context of MCO, because a big overhead 
would be prohibitive.

• Ds, Dr  : the amount of data to be transferred depends on what is actually 
going to be transferred to the surrogate, and this will be seen in detail in 
subsection 2.1.4. Often, it can be assumed that it will not be necessary to 
send the task itself, as the surrogates will already have a copy of it. In any 
case, the input parameters of the task and the results of the execution must 
be sent and retrieved, respectively. The size of this input is very variable, 
while  a  chess  game  requires  only  a  few  bytes,  an  image  processing 
application  might  require  a  whole  picture  file.  However,  in  applications 
dealing with  multimedia  files,  it  is  common to work with  data already 
offloaded to the surrogates (thanks to MDO), so only pointers to this data 
are needed4.  In either way, no prediction is needed for  Ds as it  can be 
obtained directly before the execution of a task. The prediction of Dr varies 
radically depending on each task.

• S,  M: the computation speed of the surrogate S is a known value, usually 
considered  constant.  On the  other  hand,  the  computation  speed  of  the 
mobile device M depends on the device, thus the MCO system only needs 
to  calculate  it  once.  It  can  be  deduced  directly  from  the  hardware 

3 It is not easy to obtain these values though, as the mobile devices' OSs do not provide functions  
in their APIs to do so. This happens because this information is not directly readable from the 
mobile devices' hardware, and there are no sensors accurate enough to calculate them.

4 Nonetheless, applications dealing with real-time data (e.g. a face recognition application that uses 
as input a newly captured picture) have no other option than sending the whole input to the 
surrogate.
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properties or measured through small tests.

• Bu, Bd : the upload and download bandwidths can only be forecast through 
experiencing, as the network state is external. A possible approach is to 
monitor the bandwidth and predict it with a Bayesian scheme [Wol08].

• R:  as well as the bandwidth, only probabilistic schemes can predict the 
round-trip time.

In general, Wi-Fi networks offer more stable bandwidth and RTT than cellular 
networks (like 2G or 3G).

2.1.4 Offloadable entities

This subsection gives an answer to the question of which data is going to be sent 
to the surrogate. It is related with the properties of the potentially offloadable 
tasks identified when partitioning the application.

An  offloadable  entity  is  the  input  information  needed  to  do  the  offloaded 
computation in the surrogate. Depending on the type of offloadable entities that an 
MCO system uses, some traits about the general behavior of the MCO system can 
be extrapolated. Thus, many classifications  [Kum12, Jun12, CDA11]  extend the 
meaning of the term offloadable entity, but in this thesis it will be limited to the 
defined. The most remarkable types of offloadable entities are the following, listed 
from less to more amount of data:

• Feature:  only  the  dataset  strictly  needed  to  solve  the  computational 
problem in question.

• Method: method calls with the needed data.

• Image: an image of the program code or low-level code selected by the OS 
scheduler (the surrogate maintains a state corresponding to the one of the 
mobile device's process [Chu11]).

In the case of features, the application is partitioned typically by the application's 
programmer at development time, as the level of optimization required is complex 
for  an  automated  mechanism.  The  same  happens  with  the  identification  of 
potentially offloadable methods [Cue10].
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With methods, the execution of subroutines is transferred to the cloud. The ability 
of  most  of  the  programming  languages  to  offer  techniques  such  as  reflection, 
introspection  and  method wrapping  is  exploited.  As  the  MCO system will  be 
working at the object and class levels [Yan08], it can take advantage of the many 
distributed  object  frameworks  and  technologies,  such  as  Java  RMI,  CORBA, 
OSGi, .NET Remoting or RPC.

Working at the level of features involves more burden on the programmer, whereas 
methods and images reduce the effects of offloading in application development.

2.1.5 Serialization

Once having defined the data to be sent to the server, the next question to answer 
is how to send it. Serialization is the technique used to translate data structures or 
object states into a format that can be stored and retrieved again later. An MCO 
system can use a wide variety of already existing serialization formats, such JSON, 
XML or MessagePack [Msg13].  Depending on the implementation of  the MCO 
system, the programming language might offer support to serialization too, e.g. the 
Java Serializable interface.

2.1.6 Virtualization

Once the data reaches the surrogate, it is deserialized and the execution of the 
offloaded task is ready to start. Here comes virtualization into play. It means to 
create a virtualized environment -through a VM- in the surrogate to emulate the 
conditions of the mobile device. The VMs run as normal applications inside the 
surrogate's OS; this is an important feature as the different VMs corresponding to 
the  applications  of  different  users  run  separately,  providing  isolation  and 
protection.

Among the offloading entities in subsection 2.1.4, the level of features does not 
necessarily need a virtualized environment in the surrogate side, as there might be 
two different versions of the same offloadable task, one for the mobile device and 
one for the surrogate. On the other hand, when offloading methods or images, the 
task in the surrogate is likely to be a copy of the task in the mobile device, and 
considering that the instruction set architectures (ISAs) of the mobile devices are 
almost always different from the ones of the surrogates, virtualization is needed. 
Typically the architecture of the mobile devices' processors is ARM, whereas the 
processors of the surrogates are x86.
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There are two types of VMs:

• System VM: it emulates the ISA and functions of another machine, thus 
the provided ISA can be different from that of the real machine.

• Process  VM:  also  known  as  application-layer  VM,  it  supports  a  single 
process, being created when the process starts and being destroyed when 
the  process  exits.  It  provides  a  platform-independent  programming 
environment, that usually has an associated programming language that 
can be compiled into object code interpretable by the VM itself. Therefore, 
it  abstracts  away  the  details  of  the  underlying  hardware  or  operating 
system, allowing a program to execute in the same way on any platform. 
Two well-known examples are the JVM (Java VM) or the CLR (Common 
Language Runtime, the virtual  machine component of  Microsoft's  .NET 
framework).

System VMs are an acceptable approach in the context of MCO, but process VMs 
are  of  special  interest  as  much  of  today's  mobile  devices  run  process  VMs 
themselves. For example, the devices with an Android OS run the Dalvik VM, 
which  works  with  Java  and  is  very  similar  to  the  Java  VM.  An  important 
difference between the Java VM and the Dalvik VM is that the first compiles the 
Java code into .class files written in the so called Bytecode, whereas the second 
produces  .dex  files  written  in  an  optimized  object  code  for  systems  that  are 
constrained in terms of memory and processor speed. Another example are the 
devices with a Windows Mobile or Windows Phone OS, most of them being able to 
run variations of the CLR VM.

2.1.7 Networking, mobility and fault tolerance

The process of offloading relies on wireless networks. Nonetheless, the network is 
not  reliable  by  its  own  definition,  and wireless  networks  are  even  less  stable. 
Furthermore, the diversity of mobile networking environments and the effect of 
mobility increase the unreliability [Chu10]. Because of these issues, it is important 
to handle failures in order to provide reliable services [Clo12].

An offloading  process  can  fail  due  to  network  congestion  or  failure,  or  server 
failure. If only saving energy mattered and there were flexibility to have a delayed 
answer, a possible option would be to wait until recovery and then offload again. 
On the other hand, if  only improving performance were the goal,  whenever an 
offloading  process  started,  then  it  would  be  worth  to  instantaneously  start 

16



executing the task locally too, just in case a failure occurred. However, these are 
two extreme points of view, and while focusing on energy saving or improving 
performance, most MCO systems care about the overall benefits as well. Therefore, 
the most widely adopted strategy is to wait for a time until considering that a 
failure  occurred  and  then  re-execute  the  task  in  the  mobile  device.  Recent 
literature investigates how should this timeout be set in order to find the optimal 
moment for launching local re-execution [Wan13, Mar13].

2.1.8 Infrastructures

In MCO, cloud services, PCs, specialized processors, the local environment or even 
other nearby mobile devices [CDA11, Par11] are candidates to be the surrogates 
that will execute the offloaded task. This variety arises MCO approaches that even 
include surrogate discovery modules, searching for the type of surrogate that fits 
best to execute a task with determined resource needs [Yan08].

Nevertheless, the concept of computation offloading usually involves cloud or grid 
infrastructures. In both cases, the infrastructure can be thought as a distributed 
system,  sharing  the  resources  of  many  computers  in  different  locations.  The 
machines are synchronized with workload balancers, trying to avoid saturated and 
under-utilized computers. The main difference is that with a grid infrastructure, 
the customer pays to have available a set of resources, no matter if not harnessing 
them.  The  cloud  infrastructure  goes  one  step  further,  providing  on-demand 
resources as services, without the need of an advanced reservation of resources. 
Moreover, the cloud infrastructures offer the following desirable properties:

• Multi-tenancy: the users can share the applications in the infrastructure. 
Each user then runs a customized virtual application instance, but there is 
only  a  single  original  application.  Thus,  updating  or  maintaining  an 
application  has  to  be  done  only  once,  in  contrast  with  single-tenancy 
architectures, where the providers need to touch multiple applications.

• Scalability:  even  with  a  large  number  of  users,  the  infrastructure  can 
allocate on-demand the resources needed for each. Balancing the workload 
of  the  cloud  infrastructure  has  an  advantage  over  doing  it  in  a  grid 
infrastructure: as the resources are not reserved, all the available resources 
are shared across the large pool of users. Thus, the utilization and peak-
load capacity can be improved even more.

Since the amount of computation to be offloaded through MCO is not supposed to 
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be really large and will not always be parallelizable, the grid infrastructures are 
found more frequently in other works [Wol08]. On the other hand, the dynamic 
(on-demand) provisioning of cloud infrastructures fits with MCO like a hand in a 
glove.

An MCO system can adopt a public cloud infrastructure, being able to choose 
among  many  providers,  such  as Amazon  EC2  [AWS13]  or  Windows  Azure. 
Besides, there are softwares [Euc13] that help establishing an own private cloud 
infrastructure.  However,  the  operational  costs  of  a  cloud  infrastructure  are 
expensive: the total cost of ownership to support increasing numbers of users can 
grow rapidly,  the  proprietary  software  upgrades  and  updates  and  keeping  the 
machines on 24 hours are considerable costs. The security is also a necessary added 
cost; the next subsection will outline the main aspects that should be considered.

2.1.9 Security, privacy and trust

In order to keep the privacy of the users of the applications,  an MCO system 
requires security measures both on the client side (hereafter: client side refers to 
the mobile  device side) and on the surrogate side, as the application's data is 
transferred over the network from one to another.

As  the  network  is  not  secure,  the  data  must  be  encrypted  during  the 
communication  between  the  mobile  device  and  the  surrogate.  However,  using 
encrypted transmissions is  reflected in the  performance of  offloading as follows 
(extending Eq. 3):

(6)

where  enc(Ds) and  dec(Dr) are  the  amounts  of  computation  that  it  takes  to 
encrypt the data to be sent and decrypt the received data, respectively. As these 
jobs  are  done  in  the  mobile  device,  they  are  divided  by  M,  giving  the  total 
encryption-decryption time.  In terms of  energy,  Eq. 5 would  also  be  extended 
accordingly, multiplying this added time by  Pc.  The encryption and decryption 
must be done efficiently, otherwise the costs would make offloading useless.

On the other side, the data will be decrypted in the surrogate. It is considered that 
in  the case of  MCO the data is  needed to perform a computation with it,  so 
decryption is needed. If the data were to be stored -MDO-, it would not necessarily 
have to be decrypted.
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Another important security concern are the applications stored in the surrogates. 
The developers of the applications might not want to upload the source code of the 
applications to the surrogates, but rather only the compiled application ready to 
use. With the help of virtualization this is possible. However, either storing the 
source code or the applications' binaries, this data will have to be kept secure. 
Integrity,  authentication  and digital  rights'  management are  relevant  facets  to 
consider when storing data.

2.1.10 Applicability

The last relevant criterion for the design of an MCO system is its applicability, 
who is going to be able to use it and with which applications.

MCO has still not evolved enough to present a totally automated system capable 
to  improve  the  overall  performance  of  the  mobile  devices,  detecting  the 
applications suitable for MCO, partitioning them and later offloading them. Thus, 
mainstream  usage  is  not  yet  possible,  and  the  target  audience  for  the  MCO 
systems are still the developers of the applications (many MCO systems describe 
themselves as middleware systems). Typically, as the offloadable entities are larger 
(e.g. image offloading), the system efficiency is smaller but its ease of use increases 
(more  automation).  In  opposition,  when  they  are  more  selective  (e.g.  feature 
offloading) the system efficiency is better but the developers' effort increases, too 
(less  automation,  especially  in  partitioning).  However,  there  are  offloading 
approaches  using  compact  offloadable  entities  that  propose  a  relatively  simple 
framework for the developers [Kem10].

All  the  offloadable  applications  meet  an  unquestionable  property:  heaviness  of 
computation. However, if an MCO system is not aiming for universality, it can 
take advantage of other traits that also fit well with the nature of MCO [CDA11]:

• Parallelizability: with a parallelizable application, the value of F in Eqs. 2, 
3,  5 and  6 would  increase  even  more,  since  the  computation  could  be 
distributed between multiple surrogates.

• Strength  of  expression:  if  the  data  used  by  the  application  could  be 
translated to a more compressed format, the cost of sending data to the 
surrogate would reduce.

• Time  flexibility:  when  the  result  of  the  offloaded  computations  is  not 
urgent, many context-based optimizations can be done.
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• State  independency:  allows  avoiding  the  costly  synchronization  of  the 
internal state of the application.

On  the  other  hand,  the  applications  with  which  MCO is  approachable  -with 
intensive computation- are present in many areas: multimedia processing, vision, 
recognition, graphics, gaming, text processing, etc. Another possibility -again, if 
not aiming for generality- is to focus on improving the applications of a subset of 
these areas.

Furthermore,  the  range  of  mobile  devices  suitable  for  MCO  -with  different 
computation capabilities- is also wide:  laptops, PDAs, tablets, mobile phones, A-
GPS devices, sensors, autonomous robots, etc. When designing an MCO system, it 
is  desirable  to  aim for  interoperability  -device  and location  independence-  and 
compatibility,  but  with  this  extensive  offer  of  potential  clients  it  is  also 
recommendable to focus on a subset of target devices.

The  last  observation  about  the  applicability  of  an  MCO  system  might  look 
redundant, but it is important to consider whether there is an interest on a system 
applicable in practice. For example, there are very good MCO approaches that are 
still  only  theoretical  approaches  because  their  implantation  would  require  a 
network infrastructure different from the existing one, or because implementing 
them would require modifying a widely established mobile OS.

2.2 Related works

Although  the  literature  about  MCO is  extensive  and  there  are  many  papers 
proposing MCO systems, the MCO in practice is still in early stages and none of 
the proposed approaches has become of regular use.

This section presents an analysis of some of the recent MCO systems that are more 
referenced  in  the  literature:  CloneCloud  [Chu11],  Cloudlets  (understood as  the 
model in [Clo12], although it was first introduced in [Clo09] and there are other 
approaches based on the same concept [Gao12]), Cuckoo [Kem10], EAM (Elastic 
Application  Model  [Zha10]),  MACS  (Mobile  Augmentation  Cloud  Services 
[Kov12]),  MAUI  [Cue10]  and  PANDA  (Policy-based  Model-driven  Pervasive 
Service Creation and Adaptation [Yan08]).

Table  1  summarizes  the  most relevant  aspects  of  these  systems,  following  the 
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taxonomy described in section 2.1. Note that the table is  divided between the 
aspects described in the theoretical model of the systems and the actual details of 
the implementation (below the row labeled publication year). As all the systems 
are oriented towards the model of process VMs, only the concrete VMs used in the 
implementation are included in the table. Also, nor serialization neither the used 
infrastructure are included, as all the systems require serialization and are thought 
for a cloud infrastructure (except for Cloudlets, as the term Cloudlet itself refers to 
the type of infrastructure suggested in their model). The rows labeled as client

CloneCloud Cloudlets Cuckoo EAM MACS MAUI PANDA

Motivation 
focus

Both Energy 
saving

Performance 
improving

Energy 
saving

Both Energy 
saving

Performance 
improving

Automated 
partitioning

✓ ✓ ✗ ✗ ✗ ✗ ✓1

Fine-grained 
partitions

✓ ✗ ✓ ✓ ✓ ✓ ✓1

Dynamic 
decisions

✓ ✓ ✗2 ✗ ✓ ✓ ✓

Offloadable 
entities

Images Images Features Features Methods Methods Methods

Fault 
tolerance

✗ ✓ ✓ ✓ ✓ ✓ ✗

Security 
measures

✓ ✓ ✗ ✗ ✗ ✗ ✗

Publication 
year

2011 2012 2010 2010 2012 2010 2008

Client 
Platform

Android3 Android Android Any Android Windows 
Mobile

Windows 
Mobile

Surrogate's 
VM

Android x86 KVM JVM - JVM CLR JVM

Ease of use +++++ +++ ++ ++ ++ +++ ++

Available ✗ ✗ ✗ ✗ ✗ ✗ ✓

1  It  identifies  the  original  Java  classes  of  the  application  with  more  offloading  potential.  Although  this  
partitioning  procedure  is  done  automatically,  the  application must  be  carefully  designed  beforehand  to  take 
advantage of PANDA.
2 It is able to execute the application locally if there is no network connection, but otherwise it decides to always  
offload, regardless of the dynamic conditions.
3 With a modified Dalvik VM.

Table 1: Analysis of recent MCO systems.
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platform, ease  of  use  (for  the developers)  and availability gather facets  of  the 
applicability of the systems. Observe also that it is always desirable to save both 
energy and time, but the row labeled motivation focus refers to which of them the 
system emphasizes more.

In general, it is reprehensible that the majority of the systems (except Cloudlets) 
assume the network to be stable, and the local re-execution strategies that they 
adopt in case of failure are very simple. Similarly, security is not the object of 
attention  in  these  approaches.  The  systems  reviewed  take  advantage  of  the 
facilities that the process VMs provide, focusing on mobile OS like Android (with 
the Dalvik VM) or Windows Mobile (with CLR) that already include their own 
VM. However, it would be possible to implement virtualization at the level of a 
system VM, offering MCO to mobile operating systems like iOS. It is worth to 
mention  that  in  general,  as  a  system  becomes  more  automated  -reducing  the 
burden on the applications' developers that are going to use them- it becomes more 
sophisticated, too, like CloneCloud. The efficiency of a system is also reduced as 
the level of automation grows.

Interestingly, the automation of CloneCloud is possible due to an architectural 
design that differs from the others: the mobile device has a copy of its contents 
(the clone) in the cloud. This way, the heavy computational tasks that can be 
offloaded can include operations such as file searches, virus scans, image searches 
by content (CBIR), etc. In practice, this approach needs using MDO continuously 
to  have  the  clone  always  synchronized  with  the  original,  and even if  done in 
background, this consumes energy. On the other hand, MAUI focuses on saving 
energy, and their decision-making system (called MAUI Solver) is found in the 
surrogate instead of the mobile device. When a potentially offloadable task is to be 
executed, it is invoked asynchronously from the mobile device. Avoiding the waste 
of energy that would produce calculating the best decision is a good idea; however, 
waiting for it to be calculated in the surrogate can be a waste of time.

In  contrast  with  CloneCloud,  systems  like  Cuckoo,  EAM,  MACS,  MAUI  or 
PANDA  involve  more  adaptation  by  the  developers  of  applications.  Their 
approaches differ a lot though. Cuckoo, EAM and MACS require the developer to 
specifically design the application following certain patterns. Cuckoo proposes a 
framework where the potentially offloadable tasks must be implementations of a 
Java interface defined through the Android Interface Definition Language (AIDL), 
allowing for two different versions of the same task, one to be executed locally and 
the  other  remotely  (MACS also  allows  two different  versions).  Similarly,  with 
EAM the  potentially  offloadable  tasks  must  be  encapsulated  in  independently 
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runnable parts of software called weblets. On the other hand, MAUI and PANDA 
bet for more  simplicity of use. Both MAUI and PANDA work with the original 
application, the first working with methods and the second with classes. MAUI 
decides dynamically whether to offload a method or not (actually, among a subset 
of  methods  marked  as  remoteable  by  the  developer)  and  PANDA  takes  the 
decisions at class level. However, both systems will not be useful if the original 
design of the application does not place the heavy computation parts separately. 
The  systems  working  with  features  or  methods  are  usually  stateless,  every 
computation  request  to  the  surrogate  is  independent  from  previous  or  later 
requests.

Some results presented by these systems are a computation speed-up by a factor of 
60  and  reduction  of  battery  consumption  by  a  factor  of  40  with  an  object 
recognition application thanks to Cuckoo, energy savings of 27% for a video game 
and 47% for a chess game thanks to MAUI or factors up to 20 both in energy 
saving  and performance improving  by CloneCloud.  The  authors  of  MAUI also 
report  that  they  doubled  the frame refresh  rate  of  the  video  game with  their 
system; however, this is only possible if the application has flexibility, meaning 
that  it  does  not  need  to  have  the  result  of  the  offloaded  computations 
instantaneously  (the  application  can keep  the  execution  and the  result  of  the 
offloaded computations will be asynchronously processed, when it arrives).

Apart from the analyzed systems, there are a number of other systems related with 
partitioning,  migration,  and  with  MCO  in  general:  AIDE  [XGu04],  AlfredO 
[Giu09],  Amoeba,  [Mul90],  ASIMS  [CAi11],  Chroma  [Bal03]  (based  on 
Spectra[Fli02]),  Dessy [Lag11],  Hydra [Wei08],  MCM [Flo13],  Odyssey [Nob97], 
OLIE  [XGu03],  Potrium  [You01],  Scavenger  [Kri10],  Slingshot  [YSu05],  Sprite 
[Dou91], Wishbone [New09] among many others.
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3 The proposed system

This chapter presents the main work of this thesis: a proposal of an MCO system. 
First,  the theoretical  approach of  the system will  be presented.  AESTET is a 
subpart of the MCO system, but has its own section in 3.2.  The next section 
reveals  the  most  remarkable  implementation  details  of  the  system.  Section 3.4 
presents  many  results  as  well  as  an  evaluation  of  the  system,  discussing  its 
limitations. Finally, the last section points out some directions for future research.

3.1 Theoretical approach

To describe the chosen design of the system, the next sections will go through the 
main aspects reviewed in the taxonomy presented in section 2.1. However,  the 
motivation (2.1.1) and the applicability (2.1.10) considerations of the system will 
be included in the general description (3.1.1), since these aspects are important to 
understand the decisions taken. The partitioning (2.1.2), infrastructure (2.1.8) and 
security measures (2.1.9) will be included in the second subsection (3.1.2).

3.1.1 General description

The general behavior of the system will be outlined in this section. First, it  is 
worth  to  clarify  that  the  system  is  designed  (in  collaboration  with  [Mar13]) 
according to the questions that this thesis wants to answer. Thus, some of the 
aspects of an MCO system reviewed in 2.1 will not be considered or simplified 
here, as they are not necessary for the scope of this approach. Given that the 
reviewed MCO systems are either not available or their objectives differ from the 
ones in this thesis, the system presented in this thesis is not based on any previous 
approach. This is another reason of the limited scope of the system, as due to time 
constraints, this thesis does not allow the unfolding of a new and complete system. 
This is acceptable, since another aim of this thesis is experimenting and providing 
a base system able to be extended in the future.

The  system  focuses  on  improving  the  performance  of  the  mobile  devices' 
applications, although aiming to save as much energy as possible at the same time. 
This choice will be explained in detail in 3.1.3. The system is mainly thought for 
mobile phones, more concretely, for smartphones. Furthermore, the concept of the 
system will be similar to the majority of the MCO systems, it is designed to act as 
a middleware between the applications' developers and the functionalities of MCO.
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It  has  been  explained  that  MCO  appears  mainly  in  areas  like  multimedia 
processing, vision, recognition, graphics, gaming, or text processing, where heavy 
computation tasks are performed. It can be observed that the heavy computation 
tasks of these applications have significantly variable execution times depending on 
its input (how big is the image where faces must be detected, how long is the audio 
file  where  the  speech  must  be  recognized,  which  is  the  difficulty  level  of  the 
artificial  intelligence,  etc.).  Furthermore,  these  tasks  often behave  similarly  to 
deterministic algorithms. A deterministic algorithm is an algorithm that, given a 
particular input, will produce always the same output passing through the same 
sequence of states (on a given computer, taking approximately the same amount of 
execution time). In this thesis, it is assumed that the computationally intensive 
tasks suitable for MCO will not necessarily produce the same output given the 
same input,  but  it  will  be  assumed -and this  is  the main basis  of  the  system 
presented here- that they will take the same execution time given the same input. 
Thus, it is possible to predict the execution time of these tasks given a particular 
input.

In section 3.1.3, it will be seen that the main feature of the system is its ability to 
take dynamic offloading decisions. The system will consider that it is worth to 
offload a task when its estimated execution time on the mobile device is greater 
than the sum of its estimated execution time on the surrogate plus the predicted 
costs  of  the  data  transfers.  These  estimations  will  be  possible  assuming  the 
behavior  described  above.  AESTET will  take  care  of  that  job.  Although  this 
system is intended to be an automated system, it will be seen that it expects the 
developer of the application to provide a particular function on development time. 
This consideration is important now because it influences the design of the system.

The offloading decisions of the system will be taken  at runtime, just before the 
execution of a potentially offloadable task. This ability is distinctive because it 
permits  the  system  to  handle  tasks  dealing  with  real-time  data  (e.g.  a  face 
recognition application that uses as input a newly captured picture), in contrast 
with other MCO systems that assume the data already offloaded in the cloud. 
Besides, the type of tasks suitable for this system must be a module, independent 
from the rest of the application, as the system will not keep a state between the 
mobile  device  and  the  surrogate.  The  rest  of  properties  explained  in  2.1.10 
(parallelizability, strength of expression, time flexibility) are not considered.

The system offers interoperability through an abstraction layer from the network. 
It is dynamically taken into account the type of connection used by the mobile 
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device, e.g. 3G, Wi-Fi, LTE, etc. predicting more delay in the corresponding cases.

3.1.2 Architecture

The  system  will  not  be  able  to  partition  an  application  automatically.  First, 
because AESTET requires the developer to provide a particular function for each 
potentially offloadable task on development time -as mentioned above-. Second, 
because  it  is  out  of  the  scope  of  the  thesis.  Instead,  it  is  expected  that  the 
developer  of  the  application  does  the  partitioning  beforehand.  The  system  is 
oriented towards applications written in the Java programming language, and the 
way to partition the  application will  be  packing  the computationally  intensive 
parts inside a JAR (Java ARchive) file with a few peculiarities (further details can 
be found in [Mar13]). Thus, the offloadable entities of the system are considered 
features.

The potentially  offloadable tasks will  have to be  uploaded to the surrogate in 
advance, too. The system provides a web interface tool that facilitates this task 
[Mar13]. The developer also has the option to implement two different versions of 
the task, one for the mobile device and one for the surrogate. This tool allows to 
upload a copy of the original task5 of the mobile device as well as an alternative 
implementation. Having the tasks already uploaded to the surrogates when the 
applications start to execute avoids having to upload them during runtime, which 
is a very costly approach. On the other hand, the procedure requires more burden 
on the developer.

The  system would  ideally  be  used  with  a  cloud  infrastructure,  but  for  scope 
limitations the surrogate will be considered a single server. Note that with a single 
server,  it  makes  sense  that  the  developer  uploads  in  advance  the  potentially 
offloadable tasks, as it would not be a good approach to do it automatically from 
the clients. If this were the case, all the users using the same application would 
check its existence in the surrogate, and if the application were not there, it would 
be automatically uploaded. The problem of this approach is that only the first user 
doing this check would actually upload the task, as the rest would already find it. 
In contrast, this approach would be more acceptable in the context of a cloud 
infrastructure, where there would be multiple servers and doing this checks from 
the client side would not be useless. Regarding this possibility, it could be argued 
that  without  the  need  of  the  developer  uploading  the  tasks  to  the  surrogate 
beforehand,  the  system  could  gain  even  more  automation  -eliminating  all  the 
interaction  with  the  developer-  with  auto-partitioning.  However,  automatic 

5 Sometimes an exact copy will not be possible, as explained in 3.1.4.
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partitioning is not possible because of the features of AESTET.

The system is basically divided into two parts. The client side and the surrogate 
side.  On the client side, the system is just a small software library that can be 
added to the applications. After adapting the application appropriately to make 
use of the MCO functionalities offered by the system, it will automatically improve 
the application's performance deciding dynamically the best option – execute a 
task locally or offload it. It will take care of the communication with the server, 
sending the request and handling the response.

On the surrogate, the system is built on top of a web server. This choice is initially 
taken as a simplification decision. It provides many commodities, the virtualization 
-as will be seen in 3.1.4-, communication -listening and handling the requests- and 
security are much simpler taking advantage of it. However, the facilities of object 
serialization  and  transmission  that  provide  technologies  such  as  Java  RMI  or 
CORBA are not exploited.  Thus, the client and the surrogate will communicate

Figure 2: Architecture of the proposed MCO system. The mobile phone can access 
the surrogate through cellular towers (for cellular networks like 3G or LTE), 

through WAPs (Wireless Access Points, for Wi-Fi networks) or by other means.

through the HTTP protocol.  More  concretely,  the  HTTPS protocol  is  used to 
provide a minimum grade of security, encrypting the exchanged data through SSL. 
The resources in the surrogate are not protected against untrusted users with an 
user identification system. However, the execution of a task can only be queried 
using the identifying name of the task, which cannot be known by untrusted users 
unless reading the contents of  a request (which cannot be done thanks to the 
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encryption). The small overhead produced by the encryption will be considered 
part  of  the  data  transmission  costs  in  this  thesis.  Figure  2  illustrates  the 
architecture of the system.

3.1.3 Decision-making

The system was originally designed to take into account both the energy saving 
and time saving criteria. The idea was to put together the Eqs. 1 and 4 (seen in 
2.1.3) into one single criterion. Basically, the two criteria indicate almost always 
the same decision. For the few cases where they differ, there were two possible 
approaches. First, give more weight to one criterion or the other depending on the 
remaining battery of the mobile phone, as with low battery it might be preferable 
to save energy and with more battery it might be preferable to give more emphasis 
to performance. However, this is not objective for all the cases. A user might prefer 
to improve performance even if the battery level is very low, as he is home and can 
load the phone whenever needed. If another user is traveling, she might want to 
save battery even when the mobile device is fully charged, as it could be difficult 
to find a place to reload it. Considering this, the second approach was to take into 
account  the  user  preferences  to  decide  which  criterion  should  be  given  more 
weight.

As seen in 2.1.3.1, to evaluate the energy saving criterion, the values of Pi, Pc, and 
Pt must be obtained from the phone. However, it was pointed out that the mobile 
phones of nowadays cannot provide this information, and the idea was discarded.

Thus, the dynamic decision algorithm of this system is based on the time saving 
criterion (Eqs.  1,  2 and 3). Nevertheless, this thesis also wants to prove that by 
improving performance energy is saved. A trivial case that shows that, is when the 
data to be offloaded is almost negligible. Then, referencing again the Eqs. 1 and 4 
(seen in 2.1.3), it would be considered that D=0. The resulting inequalities would 
be as follows:

(7)

(8)

It is easy to see that when the first is true, the second is also true, as  Pi < Pc. 
However, these equations only prove the case when  D is negligible (in addition, 
here the  RTT is not considered). Hence, in the section of evaluation other cases 
will  be  studied practically:  although the sensors  of  the  mobile  devices  are  not 
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precise  enough  for  fine  power  consumption  measures,  there  are  some  external 
devices [PMo13] and software applications [Yoo12, PTu13] able to measure the 
power accurately.

The decision-making procedure of the system is done  at  runtime, just before a 
potentially  offloadable  task  is  to  be  executed.  The  execution  of  this  decision-
making procedure is done in the mobile device, in contrast with other systems 
[Cue10] that do it in the surrogate. The advantage of doing it outside, is that the

Figure 3: Two executions of an application with a potentially offloadable task that 
uses the MCO system presented in this thesis. On the left, the task is executed 

locally; on the right, it is executed remotely.

overhead (both in terms of time and energy) of the calculations is much lesser, as 
the surrogate has a computing capacity far superior than the mobile device has. 
The disadvantage is that the RTT needed to transfer and retrieve data from the 
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surrogate might take longer than the calculations themselves. If the focus is saving 
energy, computing the decision-making procedure outside the mobile device might 
be feasible, but when aiming at performance improving, the delay of the RTT 
might be too much.

Thus,  it  will  be  very important  to  design  an efficient  decision-making  system, 
otherwise the approach of calculating the decision in the surrogate would have 
been better. Furthermore, too much overhead would not compensate the benefits 
of the system. Figure 3 shows two cases of the execution of an application using 
the system.

In line with what has been said above, the dynamic offloading decisions of the 
system are taken following Eq. 3 of 2.1.3. However, the system is not designed to 
make predictions over the size of the responses (Dr). Instead, it will be assumed 
that the returned data is always a small set of data, thus negligible. Considering 
this, the inequality in Eq. 3 can be rewritten as follows, in order to represent the 
dynamic offloading decision criterion of this system:

(9)

3.1.3.1 Parameters

This subsection describes how the system gets the necessary parameters to make 
an offloading decision, i.e. how the system evaluates the inequality shown in Eq. 9. 
Observe  that  the  problem of  evaluating  Eq. 9 is  equivalent  to  forecasting  the 
following:

• Data  transferring  time:  it  is  the  sum  of  the  time  R  -which  mainly 
represents the RTT- plus the division Ds / Bu. Many papers combine these 
two parameters into a single one. However, the focus of this thesis is to be 
able to take the correct offloading decision for heavy computation tasks 
with significantly variable execution times depending on the properties of 
their inputs.  If the size of the inputs were always relatively big, a very 
precise prediction of these times would not be necessary. However, as the 
system will deal with inputs of different sizes, it might encounter cases with 
small  inputs,  thus  needing  more  accuracy  of  prediction.  Other  works 
suggest  the  importance  of  separating  the  RTT and the bandwidth,  too 
[Cue10].

30



• Estimation of the task execution time on the mobile device: corresponding 
to the right side of Eq. 9: I/M.

• Estimation of the task execution time on the surrogate: corresponding to 
the addend in Eq.9.: I/(F·M).

The  randomness  of  the  network  state  makes  the  forecasting  of  the  network 
parameters especially complicated. Bayesian probabilistic approaches are suggested 
[Wol08], but this produces too much overhead for the purposes of this thesis and a 
rough estimation method will be used instead.

The estimation of the task execution time must be predicted both in the mobile 
device and in the surrogate. Two methods are proposed:

• Direct cost  function:  initially,  the system expected the developer  of  the 
application to provide a cost function of his potentially offloadable tasks. 
This means, a function capable to estimate the amount of computation I of 
a task, given an input.

• AESTET: This system will be explained in detail in section 3.2.

In both cases though, the computation speed relation F between the mobile device 
and the server is needed. In the first case, the cost function provided the value of I 
in the equation, therefore F was still needed. The need of F in the second case will 
be explained later in 3.2.

Having directly a cost function is of course more efficient than AESTET, but this 
option  was  too  unusable  (many  developers  would  not  be  able  to  find  such  a 
function), and AESTET was designed.

Considering that the value of the computation speed of the surrogate S is a known 
value,  and  that  M =  S/F,  calculating  F is  enough  to  know  M.  Then,  the 
parameters that the system needs to calculate for the evaluation of the decision 
criterion  are:  F,  I,  R, Bu.  and  Ds.  The  system  will  make  the  following 
categorization for these parameters:

• Persistent parameters: F.
• Parameters depending on the execution environment: R and Bu.
• Parameters depending on the input of the task: I and Ds
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The persistent parameters only need to be calculated once, as they will stay the 
same always (the mobile device is always  F times slower than the server).  F is 
calculated in the first execution of an application using the system, and then is 
stored persistently. It can be retrieved then in the future, avoiding the need of 
recalculating it.

The parameters depending on the execution environment are actually the network 
dependent parameters. Different strategies were tried in order to calculate these 
parameters. A complex probabilistic prediction system of the state of the network 
would produce too much overhead, so the approach was simplified. The parameters 
could be readjusted continuously during the execution of the application measuring 
background queries to the server, but this would affect the performance and would 
consume energy. Considering the case of cellular networks like 3G, the randomness 
of these parameters is high, so it would be still not reliable to recalculate them 
continuously. When using a Wi-Fi network, while staying under the coverage zone, 
the network state is quite stable, so again, there would be no point in recalculating 
the parameters continuously. Hence, it was decided to calculate these parameters 
only once, at the beginning of the execution of the application.

The  parameters  depending  on  the  input  of  the  task  can  only  be  evaluated 
immediately before the execution of the task.

The system is designed to calculate all the parameters from practical observations. 
The following list reveals the details for each one:

• F: a simple algorithm (which mainly does some empty loops) with a known 
execution  time  cost  on  the  surrogate  is  executed  on  the  mobile  device 
during  the  first  execution  of  the  application,  and its  execution  time  is 
measured. Comparing its execution time in the mobile device and the one 
in  the  surrogate,  F is  obtained.  It  is  very important  to  note,  that  the 
moment when this algorithm is executed is very relevant.  The OS of a 
mobile  device  might  assign more  computation resources  to a  process  at 
different  moments  of  its  execution.  This  is  studied  in  [Mar13],  and 
summarizing, the best approach is to calculate F just when the potentially 
offloadable task were to be executed. Besides, observe that the iterating 
test algorithm proposed to obtain the speed relation might be able to give a 
relatively accurate value to F. However, another important note is that the 
behavior of the mobile device might be different for different tasks. This 
means that comparing the execution times in the mobile device and in the 
surrogate of another unknown computationally intensive task, the value of 
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F could vary slightly. As the accuracy is crucial for the purposes of this 
thesis,  the  solution  offered  by  this  system  is  to  maintain  different 
computation speed relations (a set of  F's) for each potentially offloadable 
task of an application. These computation speed relations are also stored 
persistently. Furthermore, as the application will keep being executed by 
the user, each time that a potentially offloadable task is executed, the value 
of  the  computation  speed  relation  for  that  task  will  be  updated  (the 
updated value will be an average of the past values and the newly obtained 
one).

• R: at the beginning of the execution of the application, the surrogate is 
queried  a  few  times  (currently  10)  and  the  RTTs  are  measured  and 
averaged. If the connection is lost or changes to another network (e.g. from 
3G to Wi-Fi), R is going to be recalculated.

• Bu: inspired by [Cue10], at the beginning of the execution of the application 
a small file is sent to the surrogate to get the data transferring speed. If the 
connection is lost or changes to another network (e.g. from 3G to Wi-Fi), 
Bu is going to be recalculated.

• Ds: this variable can be immediately evaluated. Once the input of the task 
is known, its size can be obtained directly. The system is working at the 
level  of  features,  but  the  way  to  handle  the  tasks  is  actually  through 
method calls. Thus, just before the execution of the task, the system has all 
its its input parameters and can easily calculate the sum of their sizes.

• I: as mentioned above, a first approach was to calculate this variable using 
a cost function provided by the developer of the application. When using 
AESTET, I is not needed.

The practical way in that the system calculates the different variables is vulnerable 
to some unfortunate circumstances. For example, if many applications are being 
executed in parallel while  F is being calculated, the obtained value might be not 
accurate.  However,  as  F will  keep  being  updated,  this  is  not  a  big  problem. 
Another example would be that other applications could be using the network 
while  R or  Bu are being calculated. This could affect the behavior of the system 
during one single execution, but as R and Bu are going to be recalculated for each 
execution, this is also not unacceptable.
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3.1.4 Serialization, virtualization and fault tolerance

The serialization step is not provided by the system, due to scope limitations. The 
system transfers already serialized parameters to the surrogate, and the developer 
is  expected to implement this serialization.  The virtualization of  the system is 
implicit thanks to the JVM. Both the client and the surrogate use a JVM. The 
system handles fault tolerance in the same simple way that other systems do: if the 
offloaded execution of a task fails, the system re-executes the task locally [Mar13].

3.2 Automated estimation system of task execution times

This  section  presents  AESTET,  the  statistical  estimation  system  used  to 
automatically forecast the execution times of the potentially offloadable tasks of an 
application.

3.2.1 Overview

The  statistical  scheme  of  AESTET  (inspired  by  [Ive96])  is  based  upon  a 
nonparametric regression technique. With it, the execution times of the tasks are 
forecast from past observations. This follows the philosophy of the MCO system in 
3.1: to obtain the parameters of the system from practical samples. Furthermore, 
this approach avoids having to understand the computational complexity of the 
tasks, in contrast with other techniques such as static code analysis [Rei94].

The technique used by AESTET is able to compensate for different parameters 
upon which the execution time depends, which is important for a dynamic decision 
MCO system. Moreover, it does not require any knowledge of the architecture of 
the target machine, making it suitable for any platform. Another important feature 
is that AESTET is almost not affected by the presence of outliers -erroneous data- 
in the set of observations.

However, this type of system fits better for the case of distributed computing. In 
this  case,  huge  tasks  must  be  executed  and  a  scheduler  must  estimate  their 
execution times in order to decide where to execute them. As the tasks are large, 
the overhead produced by computing the estimations is not relevant. Furthermore, 
in many cases it is not urgent to produce the estimations, but when using this 
system for MCO the results must be immediate. Because of this, when using this 
estimation system in contexts other than MCO, it is not an obstacle to deal with 
tasks  with  multiple  input  parameters.  The  nonparametric  regression  technique 
described  in  3.2.3  requires  finding  “similar  cases”  among  the  previous  stored 

34



observations, and the cost of this operation increments dramatically as the input of 
a task is more complex (e.g. more parameters). As said, this is acceptable in the 
context of distributed or grid computing, because the overhead does not matter too 
much. But in the case of MCO, this is not acceptable. The estimations must be 
done efficiently, with a low overhead. Thus, AESTET requires the developer of the 
application  to  provide  translation  functions  that  summarize  the  input  of  his 
potentially offloadable tasks into a single numeric value.  Hereafter this  will  be 
referred as input representation. This input representation mainly needs to satisfy 
one  condition,  inputs  that  lead  to  similar  execution  times  should  have similar 
representative  numeric  values.  The  nonparametric  technique  can  still  produce 
acceptable results if the input representation is good, for example, the authors of 
[Ive96] use the size of the input as the input representation, and affirm an error 
rate smaller than 20% in the estimations produced.

As  AESTET  needs  past  observations  to  produce  estimations,  it  needs  some 
samples  before  starting  to work.  In the  tests  shown in [Ive96],  it  is  said  that 
around 10 initial samples are enough. However, this is only enough if the tasks 
have an execution time strongly correlated with the input representation. As the 
system cannot totally rely on the accuracy of the translation function provided by 
the developer, a bigger initial sample set is needed.

Two options were considered regarding the creation of this initial database. First, 
the application could go through a training phase, where AESTET would be only 
gathering samples. Once the database would reach an enough big size, AESTET 
would  be  able  to  start  producing  estimations.  The  second  option  is  that  the 
developer generates this database beforehand (in development time) and includes it 
within  the  application.  The  first  option  would  make  the  things  easier  for  the 
developer,  and  AESTET  would  gain  usability,  but  all  the  users  using  an 
application with that system would have to go through this training phase. In 
contrast, with the second approach the generation of the initial database has to be 
done only once by the developer. Thus, the second approach is chosen, and an 
online  database  generation  tool  [FUB13]  is  provided  to  give  facilities  to  the 
developers.

In order to generate the initial database through the web tool, the developer must 
provide a set of sample inputs of his potentially offloadable tasks. Although this is 
again more burden on the developer, it is much more precise than using random 
input generators [Chu11].
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3.2.2 Database design

Once an execution is done, an estimation is computed from the previous values 
stored in the database that was added to the application. After the execution, the 
real execution time is saved to the database, either if the task has been executed 
locally  or  in  the  surrogate.  Thus,  in  the  database  will  coexist  execution times 
produced in the mobile  device and execution times produced in the surrogate. 
Using the parameter  F described in 3.1.3.1 it  will  be possible  to convert from 
execution times produced in the surrogate to local execution times, and vice versa. 
Because of this, the database needs an extra attribute for each entry indicating 
whether it was produced in the mobile device or in the server. Then, the entries of 
the  database  will  have  the  following  attributes:  <inputRepresentation, 
executionTime,  isLocal>,  being  inputRepresentation an  integer  number, 
executionTime a real number and isLocal a boolean attribute.

Each different task will  have its  own table  in  the  database.  An index will  be 
created for each table,  to keep them sorted by  inputRepresentation.  This way, 
querying the database will be faster thanks to the index and the system will be 
able to produce the estimations more efficiently. However, once the execution of a 
potentially offloadable task is done and the newly obtained real execution time is 
to be added to the database, the insert statement will take longer because the 
index will have to be updated at the same time. As this can be done in background 
after the execution of the intensive task, it will be not considered a problem.

3.2.3 The nonparametric regression technique

The regression technique used for the execution time estimation problem in this 
thesis is based upon a technique known as k-Nearest Neighbor (k-NN) smoothing. 
AESTET adapts this technique and follows the steps of this algorithm:

1. Once a potentially offloadable task T is to be executed, its input is known. 
The  system  obtains  the  input  representation  through  the  translation 
function provided by the programmer.

2. The system searches in the table of the database corresponding to the  k 
nearest entries of T by inputRepresentation.

3. The  k elements  found  are  retrieved.  For  each  of  them,  the  attributes 
executionTime and isLocal are obtained. If isLocal is true for an entry, the 
executionTime is divided by the current F (the computation speed relation 
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between the mobile device and the surrogate, explained in 3.1.3.1) of the 
task.  This  way,  the  set  of  k elements  is  normalized  to  exclusively 
surrogate's execution times.

4. This set is smoothed: the execution times are averaged, and the execution 
times too distant to the average (outliers) are eliminated from the set. If 
there are one or more elements with an  inputRepresentation equal to the 
input representation of  T, a new average execution time  AvgSurrogate is 
calculated among these and the algorithm jumps to step 6.

5. Among the resulting set,  a new average execution time  AvgSurrogate is 
calculated, giving more weight to the execution time of the elements with 
an inputRepresentation closer to the input representation of T. The weights 
are  given  through  a  weighting  function  (also  called  a  kernel  function) 
known  as  Epanechnikov  Kernel  [Ive96],  which  has  certain  optimality 
properties. This technique also permits to calculate the execution time of 
cases such that the input representation of T is out of the boundaries of the 
existing input representations of the database -i.e. it is not between any 
two other existing input representations-.

6. The  average  execution  time  AvgSurrogate  will  be  the  execution  time 
estimation  for  the  surrogate  predicted  by  AESTET.  Multiplying 
AvgSurrogate  by  F the value of  AvgLocal is obtained, which will be the 
predicted execution time estimation for the mobile device.

7. Once the execution of T is completed, the real execution time (either in the 
surrogate or in the mobile device) is added to the database. If there were 
already 20 entries with the same  inputRepresentation  that  T has, one of 
them would deleted randomly before adding the new execution time. This 
was decided to keep the size of the database not too large.

The secret of this technique resides in deciding which is the appropriate number of 
nearest neighbors -k- to initially search for in the database. If k were too big, the 
average would include too much values and would not be precise. On the other 
hand, if k were too small, only a few elements would be considered to calculate the 
average, which would increase its randomness,  considering that there might be 
outliers in the database.

Given a total number of entries  n in the database, studies have shown that  k 
should increase in proportion to n4/5. In the case of this thesis, testing has shown 
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that  an  appropriate  assignation  is  k  =  n4/5 /  5.  Thus,  the  computational 
complexity of the algorithm is  O(n4/5  ). The complexity helps getting an idea of 
the overhead that the estimations of AESTET will produce, but testing must be 
done to check it precisely (evaluation of the overhead is done in section 3.4).

The effect of this technique when calculating weighted averages is similar to doing 
linear interpolation. This means, if a task has an execution time cost that grows 
approximately linearly as its input representations grow, the estimations produced 
will  be  good.  With  higher  polynomial  growths  (quadratically,  cubicly,  etc.)  or 
exponential  growths,  the  estimations  will  be  worse  but  still  acceptable  for  the 
purposes of this thesis.

3.3 Implementation

The MCO system proposed in this  thesis  is  built  extending a basic  offloading 
engine [GM13]. The implementation of the engine in the client side is carried out 
for the Android platform, which fits very well with the approach of this thesis, as 
it works with Java. The same applies for the surrogate side, which will be running 
a Tomcat Server, that also works with Java. At the moment, there is only one 
server [FUB13] working as the surrogate. 

Although Android uses Java, it is not running exactly a JVM. Instead, Android 
has its own Dalvik VM. It shares a lot of core functionalities and libraries with the 
JVM, but it is designed to cope efficiently with constrained resources and has its 
particularities. This will carry some compatibility problems, as will be seen in the 
next section.

As explained when describing the proposed system, the communication between 
the client and the surrogate will be done through HTTPS queries. More concretely, 
the query strings will follow this format:

https://www.mi.fu-berlin.de/offload/run?algName=nameOfTheTask&param1= 
valueOfParam1&param2=valueOfParam2&...

where  nameOfTheTask is the identifying name of the computationally intensive 
task to be executed. The tasks are launched through a single method call that 
needs all the input parameters; the rest of the query string are these parameters. 
The  server  can  be  queried  either  via  GET  requests,  as  shown,  or  with  the 
equivalent POST requests.  The client uses POST requests  to query the server 
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because the input parameters can be of any size, and a GET request would be 
restrictive. The server will answer with XML formatted data that the client will be 
able to parse and interpret.

In the case of the client, the software is a small set of Java classes that a developer 
can add to his application in order to enjoy the MCO functionalities proposed in 
this thesis. The functionalities of the classes are the following:

• Engine: the core class of the system. The applications only interact with 
this  class,  requesting the execution of  their  potentially offloadable parts 
whenever needed. This class will take the offloading decision, and will be 
the responsible to proceed with a local or remote execution. In case of a 
remote  execution,  it  will  handle  as  well  the  communication  with  the 
surrogate.

• Algorithms:  called  from  Engine,  it  is  a  wrapper  to  the  potentially 
offloadable parts of the application. The developer needs to adapt it.

• DataBaseHelper: in case the developer does not provide a cost function of 
the execution time for the potentially offloadable parts of the application 
and therefore AESTET is being used, this class manages the database from 
which AESTET takes the past observations in order to make the forecasts.

In the case of the surrogate, the software is designed to run in the Tomcat Server 
as a web application in the WAR format (Web application Archive). Mainly, the 
software serves the queries of the clients, executing the requested computationally 
intense  task  in  each  case  and  answering  the  client  with  the  results  of  the 
computations. Moreover, the web application offers a WUI [FUB13] (Web-based 
User Interface) with two tools for the developers of the applications:

• JAR uploading:  as  described in  3.1.2,  the  developer  must  partition  the 
application manually, packaging the computationally intensive parts of the 
application into JAR files. This tasks must be placed in the surrogate side 
before the distribution of the application is started. This tool provides a 
simple way to do so, and updates the system in the surrogate side to be 
aware of the newly uploaded task.

• AESTET database generation: as described in 3.2.1, AESET requires the 
developer to generate an initial sample database beforehand. This can be 
done through this tool. After the generation process, the database can be 
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downloaded and must be added to the application's resources. The system 
generates a SQLite database, since this  is  the format that the Android 
systems can handle best.

The WUI provides the necessary instructions for the use of these tools. There is a 
user authentication system to access the management area where the tools are 
located. However, right now it is limited to one user, as the software does not 
implement  the  necessary  isolation  and  different  users  could  modify  the 
computationally intensive tasks uploaded by others.

There can be found also in the WUI the source code of the client and the surrogate 
sides, and the source code of two example applications (used next in the section of 
evaluation) that show the capabilities of the system.

3.4 Evaluation

In order to evaluate the MCO system, the described implementation has been used 
for the experiments. This section shows the results of these experiments and their 
interpretation.

3.4.1 Experiments' setup

Many real applications have been considered to test the MCO system. However, 
the  implementation  of  the  system  only  allows  for  computationally  intensive 
applications written in pure Java. Many of the applications that were tried, had 
either native code calls (architecture dependent) through the Java Native Interface 
(JNI) -e.g. [Sph13]-, or code using some Dalvik libraries that are not present in the 
JVM, -e.g. [Jav13a]-.

Thus, an example application called EngineTesting was prepared. The application 
includes many computationally intensive algorithms, and uses the MCO system to 
decide whether to execute them locally  or remotely.  A chess game [PCA13]  is 
adapted to the system as well in the work of [Mar13]. Here, the most relevant 
results are analyzed.

Although the system presented in this thesis allows for different versions of a task 
in the mobile device and the surrogate, all the tests have been done using an exact 
copy, as for throughput comparison this was the best option.
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All the tests have been done using a Wi-Fi network, as none of the devices used for 
the tests had a cellular network (like 3G) connection available. In order to test the 
forecasting capacity of the network parameters, the high instability of 3G would 
have been interesting though (studied in [Mar13]). Fortunately, for the testing of 
the prediction capacity of task execution times, the type of network used is not 
relevant.

At the surrogate side, a server of the Freie Universität Berlin is used. The server 
processes with 4 cores of the type Intel Xeon CPU E5649 2.53 GHz, with a main 
memory of 7786 MB. The server runs Apache Tomcat 6 and uses Java 1.6. At the 
moment of the tests, the distance to the server was always the same (medium 
distance, about 100 milliseconds of RTT).

At  the  client  side,  the  mobile  device  was  a  Samsung  Galaxy  Nexus,  with  a 
processor of 1.2 GHz, Dual Core. The server is about 30 times faster than this 
device (F = 30, according to the notation of 3.1.3.1).

3.4.2 Results

This subsection presents the results of the tests, which will be discussed in 3.4.3. 
The figures from 4 to 7 show the forecasting capabilities of the network parameters 
(RTT and bandwidth) of the system. In these tests, the client executes a task with 
inputs of different sizes: 100B in Figure 4, 10KB in Figure 5, 250KB in Figure 6 
and 1MB in Figure 7. The task to be executed is a simple iteration algorithm with 
empty loops, that can be adjusted to do as many iterations as desired. This way, 
the task is executed many times, each producing different amounts of computation. 
The X axis of the charts corresponds to this amount of computation (in millions of 
iterations), and the Y axis to the time that it took the execution (in milliseconds). 
These figures show the relation between the data to be sent Ds and the amount of 
computation to be done  I, and how the system can predict the most beneficial 
decision for different cases.  In these tests, the amount of computation  I is  not 
predicted using the AESTET system, as the purpose of these figures is to show the 
network  forecasting  capabilities  of  the  system rather  than  the  execution  time 
prediction accuracy.

On  the  other  hand,  figures  from 8  to  10  show  the  execution  time  prediction 
capabilities  of  AESTET  and  the  overhead  that  calculating  the  predictions 
produces. In Figure 8, the meaning of the axes is the same as the figures 4 to 7. 
The X axis of the figures 9 and 10 also corresponds to different inputs, like the 
previous figures. However, they are not ordered by computation amount like in the 
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previous  figures.  Instead,  as  the  computationally  intensive  task  represented  in 
these figures is the artificial intelligence of a chess game, the inputs (the situation 
of the board) are ordered temporarily in the same way as they were produced 
while playing the chess game (the first 20 moves are shown).

No results of energy consumption are presented, as external power measurement 
devices like Power Monitor [PMo13] were not available during the testing. Instead, 
energy consumption software solutions were tried: App Scope [Yoo12] and Power 
Tutor [PTu13]. These applications use previously created models to predict the 
energy consumption and are still  in alpha stages. App Scope only supports the 
Galaxy  One  mobile  device  and  Power  Tutor  cannot  estimate  the  energy 
consumption of the Wi-Fi adapter of the device used for the tests (Galaxy Nexus). 
In order to study the energy consumption, [Mar13] presents an analysis based on 
common values of Pi, Pc, Pt.

All  the  figures  are  produced averaging  5  execution  times  for  each  value.  The 
execution times (its improvement) are used as the metric for evaluation of the 
proposed MCO system.

Figure 4: Behavior of the system with different amounts of computation, with 
100B of input data of the task.
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Figure 5: Behavior of the system with different amounts of computation, with 
10KB of input data of the task.

Figure 6: Behavior of the system with different amounts of computation, with 
250KB of input data of the task.
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Figure 7: Behavior of the system with different amounts of computation, with 1MB 
of input data of the task.

Figure 8: Breakdown of many executions of a simple looping algorithm managed 
by the proposed MCO system. In the X axis, the millions of iterations that the 

algorithm have looped. In the Y axis, the execution time that it has taken.
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Figure 9: Executions of the AI (in a hard difficulty level) of a chess game managed 
by the proposed MCO system.

Figure 10: Breakdown of many executions of the AI (in a hard difficulty level) of a 
chess game managed by the proposed MCO system. In the X axis, the moves 

ordered as the game evolved. In the Y axis, the execution times.
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3.4.3 Interpretation

In the figures from 4 to 7 it can be observed that the estimations produced by the 
system are quite accurate, thanks to the feature of forecasting the data transferring 
times taking into account both the bandwidth and RTT. For applications sending 
an almost negligible amount of data, like a chess game or like the case shown in 
Figure  4,  only  the  RTT matters.  But  as  the  data size  grows,  the  RTT loses 
relevancy and the bandwidth plays the main role.

Although the figures are produced after averaging many tests, the randomness of 
the network is still noticeable. In figures 6 and 7 it can be observed that the real 
offloading times are not following a linear growth.

It is also of interest to observe the point where offloading starts being worth it. In 
Figure 4, only about 4 millions of iterations are needed to reach this point. But in 
the next 3 figures, the point arrives around 10, 170 and 850 millions, respectively. 
When a task needs a large input, offloading makes sense only if the amount of 
computation that it is going to perform is as well really large.

Note that in Figure 6 and Figure 7, these limit points correspond to approximately 
3.75  seconds  and  14  seconds  of  execution,  respectively.  Only  the  really 
computationally intensive applications will benefit from offloading if they need a 
big input. This could be the case of a face recognition application, that requires an 
image file as input -which may be big- and then uses many complex detection 
algorithms on it.

The MCO system proposed in this thesis can adapt to tasks of this nature, as well 
as it can adapt to tasks that require only an almost negligible input. These are the 
cases shown in the figures 8, 9 and 10.

In Figure 8, the prediction power of  AESTET is tested with the same simple 
looping algorithm used in Figure 4, with a negligible input. The figure shows the 
breakdown of the real execution times. After 4 millions of iterations, the task is not 
executed locally anymore, managed by the predictions of AESTET. This option is 
correct, as it can be seen in Figure 4. The most interesting of Figure 8 are the 
overheads produced by the estimations of AESTET. It can be observed that the 
overhead of  each execution is  always  between 1 and 10 milliseconds,  which is 
acceptable.

In figures 9 and 10, AESTET starts with an initial database of 20 samples. In the 
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case of the AI of the chess game, the input representation is defined as a number 
that identifies uniquely each input, and at the same time, the inputs with similar 
difficulty levels have similar input representation values.

Thus, when managing the task corresponding to the AI of the chess game shown in 
Figure 9, the MCO system will always decide that it is beneficial to offload it, as 
the difficulty level is hard, and the previously generated database indicates huge 
execution times for this difficulty level. Figure 10 corresponds to the breakdown of 
the real executions (all offloaded) of Figure 9. Figure 10 shows that the overhead 
produced by the estimations of AESTET is also very reduced. In [Mar13] other 
easier difficulty levels of the chess game with lesser amounts of computation are 
tested.

Note that for the generation of  the figures 9 and 10,  the initial  database was 
reseted for each new execution, as it was important to start from the same state 
(when  an execution  is  done,  new entries  are  added  to  the  database,  and  the 
prediction power of AESTET grows, so with no reset the starting state would have 
changed).

When using a not reseted database, AESTET is generally able to predict very well 
the first moves of the game, as these are similar in all the games and have been 
done many times before. As the game evolves, situations of the board that never 
occurred before are approached, and the predictions of AESTET are less accurate. 
However, even for one of these cases, AESTET will make a good prediction, as it 
will find in the database k-NN with the same difficulty level. The only critical 
point would be a difficulty level with random execution times, for which sometimes 
it would be worth it to offload and sometimes not. Fortunately, this is not the case 
(for more details refer to [Mar13]).

3.5 Further work

In the first place, it was emphasized that the MCO system presented in this paper 
includes many simplifications, as many features of the real MCO systems were not 
needed for the purposes of the thesis. The system could be extended adding the 
missing features:  automatic partitioning, virtualization at a better level  than a 
JVM, serialization, multiple users and a more complex surrogates' infrastructure. 
This would notably increase the usability and compatibility of the system.

The usability of the implementation of the system for the client side could also be 
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improved using the programming technique of reflection. Right now the software is 
distributed with the original Java source files, and the developer must make a few 
modifications on one of them. Reflection could avoid this, and then the system 
could be distributed as a compiled JAR library.

At the moment, the system does not allow the possibility to maintain an state 
between the surrogate and the client.  Adding this  feature  would be useful  for 
application like real time games.

The design of AESTET is acceptable but its implementation could be optimized. 
The way in which the database is queried to obtain the k-NN described in section 
3.2.3 is not optimal, and the later processing of the obtained set of entries can as 
well be improved. However, as the system works only with input representations 
(single numeric values), it is already quite efficient as is, and it has been shown 
that the overhead produced is minimal.
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4 Conclusions

As a  general  conclusion,  the  MCO system presented  in  this  thesis  is  able to 
improve  the  performance  of  mobile  devices'  applications  but  requires  their 
developers to do many adaptations, since in comparison with real MCO systems, it 
has many simplifications. It has been shown that in most of the cases, improving 
the performance can be translated into saving energy, especially when the input 
parameters of the offloadable task have a small size.

In order to take an offloading decision, the MCO system needs to forecast both the 
execution  time  of  a  task  and the  network  state.  For  the  first,  the  prediction 
mechanism  AESTET  is  used.  For  the  later,  the  system  simply  obtains  the 
properties of the network at the beginning of the execution of an application, and 
assumes them to be similar during the whole execution of the application, if not 
changing to another network. This has been proved to be an acceptable approach 
for the purposes of this thesis.

Although  not  being  very  accurate,  the  results  show  that  the  estimations  of 
AESTET are precise enough to take the correct offloading decision in most of the 
cases. AESTET follows a scheme originally designed for estimating the execution 
times of large tasks (e.g. for grid computing), where the overhead produced by 
computing the estimations is negligible. It was a challenge to see if this scheme 
could fit in the context of MCO. It was realized that estimating the execution 
times  of  complex  tasks  with  multiple  input  parameters  produced  too  much 
overhead,  following  the  original  scheme.  Considering  this,  the  scheme  was 
redesigned so that the inputs would have to be translated into a single numeric 
representation.  This  would  have  to  be  done  by  the  applications'  developers, 
decreasing  the  usability  of  the  system.  Furthermore,  the  translation  functions 
might be difficult to define in some cases, and there might even be tasks with 
complex inputs untranslatable to a single numeric representation. The accuracy of 
AESTET depends on the reliability of these translation functions.

The MCO system proposed in this thesis can be useful for any real application 
suitable for MCO. However, the system is currently only implemented for Android, 
and the virtualization is limited to a JVM. More open source Android applications 
with pure Java computationally intensive tasks were expected to be found .

Most of the tasks suitable for MCO have significantly variable execution times 
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depending on their  inputs,  and AESTET takes advantage of  this to make the 
predictions. If the scope of the MCO system would only comprise the applications 
with significantly variable execution times depending on the size of the input, then 
AESTET could gain a lot of usability. The developer would no longer need to 
provide to the system translation functions capable to summarize the input of his 
tasks into a single numeric representations. Furthermore, in this case it could be a 
better approach that the applications using the system would follow a training 
phase to generate the initial samples database needed for AESTET. Going further, 
automatic  partitioning  of  the  applications  could  be  considered  then,  as  no 
developer-provided  information  would  be  needed  for  the  tasks.  Finally,  the 
identified tasks could be automatically uploaded from the mobile devices to the 
surrogates in case of not being already there, instead of requiring the developer to 
do it beforehand. If  all  of these changes were to be  carried out, the developer 
interaction would be reduced to none, and the tools of the web interface would not 
be needed anymore. The usability of the MCO system would hence be radically 
improved.

Taking  into  account  the  different  exposed  points,  it  can  be  affirmed that  the 
system  can  be  used  as  is  for  future  experimentation,  and  thereby  fulfills  the 
parallel aim of this thesis.
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