
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41811104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improving the reliability of an offloading engine
for Android mobile devices and testing its
performance with interactive applications

Martí Griera
Berlin, 9th October 2013

Master's Thesis
Supervisor: Prof. Dr. Katinka Wolter

Assisting Supervisor: Prof. Dr. Mesut Günes

Freie Universität Berlin
Department of Mathematics and Computer Science

Institute of Computer Science
Working group of Dependable Systems

Statutory Declaration

I hereby declare to have written this thesis on my own. I have used no other
literature and resources than the ones referenced. All text passages that are literal
or logical copies from other publications have been marked accordingly. All figures
and pictures have been created by me or their sources are referenced accordingly.
This thesis has not been submitted in the same or a similar version to any other
examination board.

Berlin, 9th October 2013

Martí Griera Jorba

Acknowledgements

I especially would like to thank my collaborator Joan Martínez and my supervisor
Katinka Wolter. In addition, I can not express my gratitude to Milena Lütz for her
unconditional support. Many thanks too to Victòria Jorba, Miquel Jorba, Dagmar
Semder and Fabian Lütz for their support from the distance, and to Juliane
Schicketanz and Meritxell Gimenez for their encouragement from the proximity.

Martí Griera Jorba

Nothing worth having comes easy...

Abstract

The already ubiquitous though still growing market of mobile devices disposes of
an increasingly prolific offer of software applications, which makes them even
richer. However, the inherent resource constraints of these devices, such as
processing, memory, storage or battery capacity, are limiting the performance of
the more resource-hungry applications. Taking advantage of the relatively strong
network connection capabilities of the mobile devices, many approaches have
emerged in the last years proposing mobile cloud computing as a solution. Of
these, mobile computation offloading plays an important role. It is especially useful
for intensive processing applications, as it consists of sending a part of the
computation load of a mobile device to be processed in outside surrogates such as
the cloud infrastructure. Thanks to this technique, the performance of the
applications can be notably enhanced, while reducing the energy consumption of
the devices.

A study of the current computation offloading scene is conducted in this paper,
analyzing many of the systems developed recently. The trend of these systems is to
decide dynamically -on runtime- whether it is worth or not to offload a task. In
order to take the right decision, many conditioning aspects and parameters can be
considered.

This thesis offers a dynamic decision offloading approach that focuses on
improving the applications' performance. The system will consider that it is worth
to offload a task when its estimated execution time on the mobile device is greater
than the sum of its estimated execution time on the surrogate plus the predicted
costs of the data transfers.

Mobile computation offloading is commonly used in areas like multimedia
processing, vision, recognition, graphics, gaming or text processing. Concrete
examples are applications such as face detection, speech recognition or the artificial
intelligence of a game. Observing that the heavy computation tasks of these
applications have significantly variable execution times depending on its input
(how big is the image where faces must be detected, how long is the audio file
where the speech must be recognized, which is the difficulty level of the artificial
intelligence, etc.), a system to estimate the execution time of a task depending on
which are its input parameters is designed. This system computes the estimations
statistically from past observations, and is based upon a nonparametric regression
technique.

In order to evaluate the presented offloading system, an implementation of it is
carried out (extending a simple offloading engine for Android) and many tests are
run, checking the behavior of the system with some interactive applications, such
as a chess game. The results obtained from the experimentation indicate that most
of the taken offloading decisions are correct and it is verified that the overhead
produced by the decision making is small enough to affect only minimally the
overall performance.

As a conclusion, the mobile computation offloading approach proposed in this
thesis is valid to improve the performance of many applications, but further work
must be done in order to increase its ease of use and compatibility.

Table of Contents

1 Introduction...1

2 Theoretical Background..6

2.1 Taxonomy of the main aspects of an MCO system.......................................6

2.1.1 Motivation...7

2.1.2 Partitioning...7

2.1.3 Decision-making...9

2.1.3.1 Parameters...12

2.1.4 Offloadable entities..14

2.1.5 Serialization...15

2.1.6 Virtualization...15

2.1.7 Networking, mobility and fault tolerance...16

2.1.8 Infrastructures..17

2.1.9 Security, privacy and trust...18

2.1.10 Applicability...19

2.2 Related works..20

3 The proposed system..24

3.1 Theoretical approach...24

3.1.1 General description..24

3.1.2 Architecture...26

3.1.3 Decision-making...28

3.1.3.1 Parameters...30

3.1.4 Serialization, virtualization and fault tolerance....................................34

3.2 Automated estimation system of task execution times................................34

3.2.1 Overview..34

3.2.2 Database design...36

3.2.3 The nonparametric regression technique..36

3.3 Implementation...38

3.4 Evaluation...40

3.4.1 Experiments' setup..40

3.4.2 Results...41

3.4.3 Interpretation...46

3.5 Further work...47

4 Conclusions...49

List of abbreviations

2G Second Generation
3G Third Generation
4G Fourth Generation
A-GPS Assisted Global Positioning System
AESTET Automated Estimation System of Task Execution Times
AI Artificial Intelligence
AIDL Android Interface Definition Language
API Application Programming Interface
ARM Advanced RISC (Reduced Instruction Set Computer) Machine
B Byte(s)
CBIR Content-based image retrieval
CC Cloud Computing
CLR Common Language Runtime
CO Computation Offloading
CORBA Common Object Request Broker Architecture
GHz Gigahertz(es)
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile Communications
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a Service
iOS i (from Apple products) Operating System
ISA Instruction Set Architecture
JAR Java Archive
JNI Java Native Interface
JSON JavaScript Object Notation
JVM Java Virtual Machine
KB Kilobyte(s)
Kb/s Kilobit(s) per second
k-NN k-Nearest Neighbor(s)
KVM Kernel-based Virtual Machine
LTE Long Term Evolution
MB Megabyte(s)
Mb/s Megabit(s) per second
MCC Mobile Cloud Computing
MCO Mobile Computation Offloading

MDO Mobile Data Offloading
MHz Megahertz(es)
OS Operating System
OSGi Open Services Gateway initiative
PaaS Platform as a Service
PANDA Policy-based Model-driven Pervasive Service Creation and

Adaptation
PC Personal Computer
PDA Personal Digital Assistant
RMI Remote Method Invocation
RPC Remote Procedure Call
RTT Round-Trip Time
SaaS Software as a Service
SSL Secure Sockets Layer
UI User Interface
UMTS Universal Mobile Telecommunications System
VM Virtual Machine
WAP Wireless Access Point
WAR Web application ARchive
Wi-Fi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WMN Wireless Mobile Network
WUI Web-based User Interface
XML Extensible Markup Language

1 Introduction

Advancements in computer technology have expanded the presence of computers
and network access -the combination of which will be of special interest in this
thesis- in a wide variety of mobile devices, from laptops, PDAs, tablets or mobile
phones to A-GPS devices, sensors or autonomous robots (furthermore, according to
the concept of the Internet of Things [IoT13], this presence will keep expanding).
Of these devices, the mobile phones are the main computing wave, especially the
complex smartphones, gaining everyday more market and popularity over desktop
computers and laptops. In 2012, the smartphone shipments already exceeded the
shipments of normal phones [Jun12]. These mobile devices have many resource
constraints in comparison to a desktop computer, such as processing, memory,
storage or battery capacity. In addition, the users want them to be smaller and
thinner everyday and, at the same time, to be more powerful, two features that
play against each other.

Responding to this demand, the smartphones' resources have increased
considerably, considering that the speed of the top model smartphone processors
incremented during the last decade from less than 200 MHz to more than 1GHz
[Kem10]. However, when a processor's clock speed doubles, the power consumption
of the device nearly octuples [Kum10], and the battery capacity cannot follow a
growth rate big enough to provide this much power. This is identified as one of the
main bottlenecks on the mobile devices resources.

Furthermore, the applications for smartphones have also proliferated a lot recently.
The availability of applications increased largely thanks to the rise of application
stores, through which the process of finding and installing applications has become
much simpler for the end users. Another reason of the large offer of applications is
that now, not only software companies develop them, but also small developers
and hobbyists (the applications for the Apple App Store have incremented from
500 to more than 200,000 within two years [Kem10]). Many of these applications
put pressure on the manufacturers to keep expanding the capabilities of the mobile
devices.

On the other hand, the modern mobile devices support several types of network
interfaces, e.g. Ethernet, Bluetooth, Wi-Fi, GPRS or even WiMAX, but the
latency with the corresponding networks is not negligible and the bandwidth not
always as wide as it should. In each situation the most appropriate interface

1

should be selected according to their availability, but no network provider can
support such switches [CDA11]. However, this is partially compensated with the
fast networking technology evolution.

The cellular networking technology -the networking through cell towers-, has
grown rapidly, from the 14.4 Kb/s allowed by the GSM networks (known as 2G),
evolving to the UMTS networks (3G) and now coming to the LTE networks (4G),
that are expected to provide around 100 Mb/s [Kem10]. Moreover, the novel
Femtocell devices will help relieving the cellular networks' shortcomings [Din11].
Simultaneously, the local area wireless networks (WLAN), such as Wi-Fi, have
increased in bandwidth, too. The WLANs are becoming more and more used by
the smartphones' users; the Wi-Fi networks already drive about 65% of the total
mobile data traffic [Lee13]. As exchanging data with a nearby wireless access point
-of a Wi-Fi network- requires less energy than exchanging data with a potentially
far cell tower, the increasing use of the Wi-Fi networks already save around 55% of
battery power, but this is still not enough to solve the energy problem on the
mobile devices.

In this context, with a growing market of inherently resource-constrained mobile
devices that dispose of a gigantic offer of software applications, the concept of
mobile cloud computing (MCC) appears -enabled by a relatively strong network
technology- as an alternative to help reducing the increasing gap between the
actual resources of the devices and the demanded ones by many resource-hungry
applications.

MCC consists of enhancing the capabilities of mobile devices with the cloud
computing infrastructure, especially with the principle of delivering applications
and services for the mobile devices. In the last years, MCC has become very
successful, and market research predicts that by the end of 2014 mobile cloud
applications will deliver annual revenues of 20 billion dollars [Chu11]. Two main
groups of MCC can be identified, mobile data offloading (MDO) and mobile
computation offloading (MCO).

Given the reduced storage capacity of the mobile devices, the idea of MDO is to
upload to the cloud space-consuming data (typically multimedia data) or backups
of the device's data. When the data needs to be operated, it can be downloaded
again or managed through browser-based applications residing wholly in the cloud.
There exist many applications separated into a light weight client and a heavy
weight server hosted in the cloud, for example the music search service Shazam
[Sha13] or the image search service Goggles [Gog13].

2

On the other hand, MCO takes advantage of the richer computational resources of
the cloud infrastructure to process part of the computation load of a mobile device
there. A simple Google search or the use of the above mentioned browser-based
applications can be considered MCO, as the mobile device indeed does less
processing thanks to this services, but actually the mobile device could not perform
this activities unless a huge amount of data would be downloaded. In this thesis,
MCO is understood as having both the possibility of executing a part of the
computation -the intense part- of a native mobile application in the mobile device
or offloading it to a remote cloud infrastructure (or nearby idle computers). The
remote servers will be called surrogates.

The feasibility and utility of MCO have already been proved [Kum12]; thanks to
MCO the performance (hereafter, performance refers to the execution time
performance) of the applications can be notably enhanced, while reducing the
energy consumption of the devices. Therefore, MCO can help softening the above
mentioned bottleneck on the power supply for the increasingly demanding
processors. Energy is a primary constraint for mobile systems; however, this thesis
will focus on improving the performance of the applications rather than reducing
the energy consumption, since in most cases one thing entails the other one.
Nevertheless, it will be of interest to identify under which circumstances both
things are not equivalent.

Many offloading systems and frameworks appeared in the last years, but the
majority of application developers still have a lack of awareness of the advantages
that MCO provides. Moreover, the ease of use of these systems is still something to
be improved, and the programmers think it is not worth the burden that the use of
MCO supposes.

However, the scope in which MCO is more advantageous is well-known, and it
comprises intensive computation applications in areas like multimedia processing,
vision, recognition, graphics, gaming or text processing [Kum12]. Concrete
examples are applications such as face detection, speech recognition or the artificial
intelligence of a strategy game. Observe that the heavy computation tasks of these
applications have significantly variable execution times depending on its input
(how big is the image where faces must be detected, how long is the audio file
where the speech must be recognized, how many enemies controls the artificial
intelligence and how smart they are, etc.).

Thus, the main objective of this thesis is to conceive a system designed to improve

3

the applications' performance through MCO, and evaluate if it can be useful with
real life applications. At the same time, this thesis aims to provide a simple and
easily extensible offloading system usable for any kind of future experimental
purposes, hence an implicit goal will be to keep its modularity, adaptability and
availability [FUB13]. Research will be done about the main conditioning aspects
and parameters characteristic of an offloading system, and many systems
developed recently will be reviewed.

The system presented here will not partition applications identifying the
potentially offloadable parts; this will have to be done by the applications'
programmers at development time, and many other aspects out of the focus of this
thesis will be simplified, too. Rather, the fundamental goal of the system will be to
be able to decide at runtime whether a potentially offloadable task will be executed
locally or remotely. Offloading will be considered worth when the estimated
execution time of the task on the mobile device is greater than the sum of its
estimated execution time on the surrogate plus the predicted costs of transferring
the data.

In order to solve the formulated inequality, it will be necessary to predict both the
execution time of a task in the mobile device and the surrogate, and to predict the
costs of sending the request and receiving the answer over the network. While the
network costs will be roughly estimated, a derived objective of this thesis will be to
accurately estimate the execution times of the tasks, and an automated system will
be designed for that matter. The main point of the system will be to forecast the
execution time of a task depending on which are its input parameters (a significant
property, as described above). This system will compute the estimations
statistically from past observations, and will be based upon a nonparametric
regression technique. This type of system is usually used to predict the execution
time of large tasks in distributed systems or grid computing [Wol08], thus the
overhead of calculating the estimated execution time is not relevant. However, it
will be a challenge to see if the overhead can be reduced enough to fit in the
decision-making process of MCO.

To verify the proposed approach, a practical implementation will be built almost
from scratch, as a motivation of this thesis is to deal closely with the mobile
computation offloading. A simple offloading engine for Android [GM13] will be
extended, mainly improving its reliability through better forecasting capabilities.
The automated estimation system of task execution times (hereafter: AESTET)
will be added and the network data transferring time prediction mechanism will be
improved, reimplementing much of the original engine. The resulting

4

implementation will not be expected to be as competent as the current MCO
systems, but it will be enough for the testing purposes of this work. Its
effectiveness and efficiency will be evaluated running it on some interactive
applications, such as a real chess game or a testing application prepared for this
matter.

Summarizing the above exposed, the research in this thesis will aim to give
answers to the following questions regarding the MCO system that will be
presented:

• Can it improve the performance of mobile devices' applications?
• Does it decide correctly when is it worth to offload a task?

• Are the rough network data transferring time forecasts enough for
the approached system?

• Is AESTET accurate enough?
• Does AESTET produce too much overhead?
• Is it helpful with real life applications?

• Can it be affirmed that by improving the performance the energy
consumption is reduced, too?

• Is it usable for future experimentation?

In the following chapter, a study of the current computation offloading scene is
conducted, reviewing many of the systems developed recently and aiming to
identify the main conditioning aspects and parameters characteristic of an
offloading system. In chapter 3, the MCO system proposed in this thesis will be
presented. First, in section 3.1, it will be decided which aspects the system is going
to cover (besides the ones required for the main purposes of the system) and which
are going to be simplified or ignored. In the same section, the system architecture,
key components and design of the system will be explained, followed by the also
theoretical description of AESTET in section 3.2. The next section will show the
most relevant implementation details of the prototype of the system, which will be
used for the evaluation of the work in the next section. Section 3.4 will include the
results of the experiments and the difficulties found will be discussed. The future
outlook will be commented in the last section of this chapter. Finally, chapter 4
will synthesize the most important points of the thesis in the conclusions.

5

2 Theoretical Background

2.1 Taxonomy of the main aspects of an MCO system

The term cloud computing (CC), or colloquially, the cloud, does not have a
commonly accepted unequivocal scientific or technical definition, but it is used to
describe diverse computing concepts involving a large number of computers
connected through a network. Its success and strong future outlook have already
been widely recognized. The concept of CC usually involves having a data center,
a hardware facility with many servers typically built in a low populated place,
with high-speed networks and a high power supply stability. This offers many
advantages, allowing to provide the users with different cloud services, mainly:

• Infrastructure as a service (IaaS): is the lowest model, provides the most
basic service allowing the users to use the infrastructure directly, e.g.
servers, virtual machines, load balancers, networks, storages, etc.

• Platform as a service (PaaS): abstracts from the IaaS model and offers a
platform to work on, e.g. middleware services, operating systems,
databases, web servers, development tools, etc.

• Software as a service (SaaS): abstracts from the PaaS model and provides
concrete software services, e.g. application programs, email, games, etc.

These services are provided at low cost by cloud providers, e.g. Google, Amazon or
Salesforce [Din11]. The users can elastically utilize cloud resources in an on-
demand fashion, thus making CC very suitable for rapidly provisioning and
releasing the mobile devices' applications. With the boom of mobile devices and
applications, the term MCC is introduced.

As outlined in the first chapter, MCC can be grouped into MCO and MDO.
Thanks to MCO, the battery lifetime of a mobile device can be extended and its
processing power improved. MDO extends the storage capacity of a mobile device
and also improves the reliability, as having the data backed up in the cloud is a
guarantee for most users.

The concept of computation offloading (CO) already existed before MCO, but it
was focused on offloading the computation in static environments, i.e. a server
connected to a stable network . In this case, the tasks to be offloaded are usually

6

huge and are sent to various computers, e.g. distributed systems or grid
computing.

The following subsections will point out the main aspects affecting the MCO
systems, mentioning many properties actually inherited from CC or CO.

2.1.1 Motivation

First, an MCO system can be oriented towards different goals:

• Improving performance
• Saving energy
• Reliability
• Context awareness

The main differentiation here is whether the system will focus on saving energy or
improving performance, or both. As will be explained later, if a system focuses on
improving one of this two goals, the other will be usually achieved as a collateral
effect too, but there are some subtleties about this relation.

As described above, improving the reliability is a property that fits better to
MDO, but it is also important in the context of MCO. Many MCO approaches
propose executing in the surrogates not exactly the same that would have been
executed in the mobile device, but rather having two versions of the potentially
offloadable tasks, one for the mobile device and one for the surrogate. Thus, the
task executed in the surrogate can be more complex and precise than the one in
the client, e.g. a face detection application can have more exhaustive algorithms in
the server side than in the client, producing a better recognition when the
detection task is executed in the surrogate.

More recently, it has appeared the trend in the MCO systems to aim at context
awareness [CDA11, Kum12, Din11]. This refers to perceive the user's state and
surroundings (e.g. user's location, preferences, data types, network status, device
environments, etc.) in order to infer context information from it, with adaptive
mechanisms based on this information that are able to provide the appropriate
services to each user and situation.

2.1.2 Partitioning

An important part of the job of an MCO system is to divide the applications into

7

the parts that must be run on the mobile device and the parts that can be
potentially offloaded. The handling of the peripherals -e.g. the camera- and the
I/O interactions with the sensors of the device should not normally be offloaded, as
well as the communication with the user interface (UI). As will be seen in 2.1.7, if
an offloading action fails due to network problems, a typical solution is to re-
execute the task locally. Considering this, it is also a good practice that the
potentially offloadable parts do not communicate with external elements or remote
machines. For example, a task containing an e-commerce transaction could be
offloaded and the transaction could be effectively executed in the surrogate, but
then the connection could be lost and the task re-executed again locally, thus
doing two times the same transaction. However, these omissions are not categorical
and there are studies that address how to circumvent them [Sti10].

There are two possibilities on how to partition an application and identify the
tasks suitable for offloading:

• Human-made: the MCO system does not partition the system, instead, the
programmer of the application must separate during the development the
not offloadable parts from the parts that may be offloaded. This requires an
extra burden on the programmer and more involvement, but in contrast
the partitions can be more optimal and the overall efficiency should be
better (more energy savings and performance).

• Automated: the MCO system auto-determines the partitioning scheme of
the application automatically. It is desirable to perform it in development
time too, to avoid the very high overhead for analyzing the program that it
would produce during execution. This complex approach has been deeply
studied [Til06, ZLi01]; it might require techniques such as static analysis
and dynamic profiling [Chu11]. In scenarios where the application
information is unknown [Xia07], no partitioning may be done and the
entire program is either offloaded or executed locally. An MCO with
automated partitioning might be used more easily by the applications'
developers, but at the same time is likely to be less efficient.

Another important aspect of the partitioning process is the partitioning
granularity. A fine-grained partition would identify as offloadable only the truly
intensive computing parts of an application, while a coarse-grained partition would
not isolate that precisely. Depending on the partition granularity, diverse
offloadable entities may result. These will be explained in detail in subsection
2.1.4.

8

2.1.3 Decision-making

Deciding whether offloading a task is worth to be done or not is one of the main
challenges of MCO. Generally speaking, offloading is beneficial, whenever the
gained efficiency outweighs the costs involved [CDA11]. The offloading decisions
can be classified as:

• Static: the offloading decisions are made beforehand, not during the
application's runtime. The properties of the potentially offloadable tasks of
the application are analyzed in order to decide the more convenient action,
so the partitioning must have been done previously, in development time.
This approach is valid only when the parameters needed to evaluate the
offloading condition (explained in 2.1.3.1) can be accurately predicted in
advance, and has the advantage of low overhead during execution. Static
decisions can be human-made or automated.

• Dynamic: the offloading decisions are made at runtime by the MCO
system, just before starting to execute any potentially offloadable task,
being able to adapt to many dynamic conditions such as the changing
connection status or the fluctuating bandwidth. Dynamic decisions need to
predict even more variable parameters than the static ones, and this is
done at runtime, so the efficiency of the prediction mechanisms will be
essential in order to avoid producing too much overhead.

In the recent years, there are fewer papers suggesting MCO with static decisions,
and currently the majority are based on dynamic decisions [Kum12]. However,
selecting the appropriate decision-making type is heavily dependent on the nature
of the offloadable functionalities on which the MCO system focuses (explained in
subsection 2.1.10).

Much of the literature about MCO studies under which circumstances offloading
computation from a mobile device is beneficial, by means of performance or energy
saving. While the general equations that describe these two criteria can be easily
stated (Eq. 1 and Eq. 4), evaluate them turns to be the real challenge of the MCO
systems, as the variables represented in the equations cannot be effortlessly
obtained due to the dynamic nature of the mobile devices' environment. Much of
the research focuses on prediction mechanisms for these parameters.

For performance improving, the offloading offloading condition can be simply

9

formalized in the following way:

(1)

where I is the number of instructions of the potentially offloadable task, S is the
computing speed of the surrogate (instructions/second), D is the size of the data to
be transferred (bytes), B is the bandwidth of the network (bytes/second) and M is
the computing speed of the mobile device (instructions/second). Note that the left
side of the inequality corresponds to the offloading time (cost of executing the task
remotely plus cost of transferring the data) and the right side to the cost of
executing the task locally. This way it becomes evident, that the execution time
saving criterion indicates to do offloading when this inequality evaluates to true.
The surrogate's computing speed may vary but, in general, it can be assumed to be
tens of times superior (F times, below) to the computing speed of the mobile
device (some cloud vendors can guarantee a minimum level of performance).
Considering this, and that transferring the data actually means sending a request
and receiving a response, the inequality in Eq. 1 can be rewritten as:

(2)

Here Ds stands for the size of the data to be sent and Dr for the size of the data to
be received. The bandwidth is also split in the respective cases: Bu refers to the
upload bandwidth and Bd to the download one.

Observe that according to Eq. 2, no time would be needed to send a very small
request or receive a very small response. However, there is a propagation time
between the moment that the request leaves the mobile device and the moment
when it reaches the surrogate, and vice versa. The sum of these two times is called
the round-trip time (RTT). In addition to the RTT, transferring data through the
network also requires an initial setup time that is often ignored [Kum12]. Let R be
a single variable representing the sum of these two small times, then:

(3)

which is the expanded equation for the performance criterion.

On the other hand, when the aim is energy saving, the offloading condition can be
represented as follows:

10

(4)

This equation is identical as Eq. 1, except for being each addend multiplied by its
corresponding power consumption. Thus, the generic energy saving criterion
derives from the performance criterion. Each of the addends (I/S, D/B and I/M) is
expressed in seconds, which multiplied by watts (joules/second) give joules as a
result, the energy unit. Pi corresponds to the power consumed by the mobile
device's processor while being idle, as it is assumed to be idle while waiting for the
surrogate's response1 and Pc is the power consumed when the processor is
computing2. It can be said, without loss of generality, that for all the mobile
devices Pi < Pc is true. The power consumed when transferring data, Pt, totally
depends on the type of network, e.g. Wi-Fi consumes considerably lesser power
than 3G.

Now, breaking down the times like in Eq. 3, the inequality in Eq. 4 can be
rewritten as:

(5)

Observe that the power consumed by the processor while being idle, Pi, is
associated with the time R for simplicity. It is not exact though, as R is the sum of
the RTT and the network initial setup time. Similarly, there is a transferring
power Pt associated with both the data sending and receiving times, although there
might be small differences between the power for sending data and the power for
receiving data.

It can be deduced from the equations (Eq. 1 already shows it) that, even if the
surrogate's computation capabilities were infinitely faster (F=∞) than the mobile
device's ones, if D/B > I/M is true, then no offloading should be done. As a
conclusion, both criteria -performance improving and energy saving- are, above all,
dependent on the data D to be transferred, the bandwidth B and the amount of
computation I to be done. For both criteria, applications with light communication
(small D) and heavy computation (large I) are appropriate. Figure 1 illustrates the
relations between D, I and B:

1 There are approaches that aim to use the processor during that time.
2 Many mobile devices have the ability to run their processors at different frequencies depending

on the computation load of each moment, in order to save energy [CSR13]. In this thesis it will
be assumed that Pc is the power consumed by the processor at its maximum frequency (as it
should be when running supposedly intensive processing tasks).

11

Figure 1: Relations between the size of the transferred data (D), the bandwidth
(B) and the amount of computation (I) in the context of MCO [Kum10].

Note that the previous equations present an important assumption: the number of
instructions of the task is the same whether it is executed locally or in the cloud.
While the concept of computation offloading primarily means to execute the same
task in another machine in order to reduce the computation load, in MCO it is a
common approach to have a variation of the task in the surrogate, typically
running heavier and more accurate algorithms in the surrogate to take advantage
of its richer resources. However, this is done when the computation speed of the
server is big enough to compensate it, so the formalization model of the presented
equation is still generic.

2.1.3.1 Parameters

In order to decide whether to start an offloading process or not, an MCO system
must evaluate either Eq. 3 (for performance) or Eq. 5 (for energy saving), or both.
A variety of prediction mechanisms are proposed to forecast the many parameters
in the equations. If the MCO system uses static decisions, this can be partly done
by humans, but prediction tools are still needed. In the case of a dynamic decision
MCO system, the decision must be made at runtime, just before the execution of a
potentially offloadable task, thus the forecasting mechanisms will have to be
especially efficient.

The parameters affecting an offloading decision can be of different types: static
information, hardware, network or other contextual information. The following list
gathers the parameters seen in Eqs. 1 to 5, describing how to forecast their values:

12

• Pi, Pc, Pt : the power consumed when idle, computing or transferring data
varies from one mobile device to another, thus an MCO system only needs
to calculate them once3. There are different Pt for the different network
interfaces: P3G, PWi-Fi, etc., so the right one can be chosen only
dynamically, depending on the network used at that moment.

• I: the amount of instructions that a task requires could always be similar,
so no forecasting would be needed. Otherwise, there are many techniques to
estimate the amount of the computation of a task [Wol08], such as static
code analyzing [Rei94] and statistical estimation [Ive96]. These techniques
usually use the input parameters of a task (or the size of the input) to do
the forecasts. Sometimes the input is known in advance, otherwise the
predictions will have to be done just before the execution of the task. This
is especially challenging in the context of MCO, because a big overhead
would be prohibitive.

• Ds, Dr : the amount of data to be transferred depends on what is actually
going to be transferred to the surrogate, and this will be seen in detail in
subsection 2.1.4. Often, it can be assumed that it will not be necessary to
send the task itself, as the surrogates will already have a copy of it. In any
case, the input parameters of the task and the results of the execution must
be sent and retrieved, respectively. The size of this input is very variable,
while a chess game requires only a few bytes, an image processing
application might require a whole picture file. However, in applications
dealing with multimedia files, it is common to work with data already
offloaded to the surrogates (thanks to MDO), so only pointers to this data
are needed4. In either way, no prediction is needed for Ds as it can be
obtained directly before the execution of a task. The prediction of Dr varies
radically depending on each task.

• S, M: the computation speed of the surrogate S is a known value, usually
considered constant. On the other hand, the computation speed of the
mobile device M depends on the device, thus the MCO system only needs
to calculate it once. It can be deduced directly from the hardware

3 It is not easy to obtain these values though, as the mobile devices' OSs do not provide functions
in their APIs to do so. This happens because this information is not directly readable from the
mobile devices' hardware, and there are no sensors accurate enough to calculate them.

4 Nonetheless, applications dealing with real-time data (e.g. a face recognition application that uses
as input a newly captured picture) have no other option than sending the whole input to the
surrogate.

13

properties or measured through small tests.

• Bu, Bd : the upload and download bandwidths can only be forecast through
experiencing, as the network state is external. A possible approach is to
monitor the bandwidth and predict it with a Bayesian scheme [Wol08].

• R: as well as the bandwidth, only probabilistic schemes can predict the
round-trip time.

In general, Wi-Fi networks offer more stable bandwidth and RTT than cellular
networks (like 2G or 3G).

2.1.4 Offloadable entities

This subsection gives an answer to the question of which data is going to be sent
to the surrogate. It is related with the properties of the potentially offloadable
tasks identified when partitioning the application.

An offloadable entity is the input information needed to do the offloaded
computation in the surrogate. Depending on the type of offloadable entities that an
MCO system uses, some traits about the general behavior of the MCO system can
be extrapolated. Thus, many classifications [Kum12, Jun12, CDA11] extend the
meaning of the term offloadable entity, but in this thesis it will be limited to the
defined. The most remarkable types of offloadable entities are the following, listed
from less to more amount of data:

• Feature: only the dataset strictly needed to solve the computational
problem in question.

• Method: method calls with the needed data.

• Image: an image of the program code or low-level code selected by the OS
scheduler (the surrogate maintains a state corresponding to the one of the
mobile device's process [Chu11]).

In the case of features, the application is partitioned typically by the application's
programmer at development time, as the level of optimization required is complex
for an automated mechanism. The same happens with the identification of
potentially offloadable methods [Cue10].

14

With methods, the execution of subroutines is transferred to the cloud. The ability
of most of the programming languages to offer techniques such as reflection,
introspection and method wrapping is exploited. As the MCO system will be
working at the object and class levels [Yan08], it can take advantage of the many
distributed object frameworks and technologies, such as Java RMI, CORBA,
OSGi, .NET Remoting or RPC.

Working at the level of features involves more burden on the programmer, whereas
methods and images reduce the effects of offloading in application development.

2.1.5 Serialization

Once having defined the data to be sent to the server, the next question to answer
is how to send it. Serialization is the technique used to translate data structures or
object states into a format that can be stored and retrieved again later. An MCO
system can use a wide variety of already existing serialization formats, such JSON,
XML or MessagePack [Msg13]. Depending on the implementation of the MCO
system, the programming language might offer support to serialization too, e.g. the
Java Serializable interface.

2.1.6 Virtualization

Once the data reaches the surrogate, it is deserialized and the execution of the
offloaded task is ready to start. Here comes virtualization into play. It means to
create a virtualized environment -through a VM- in the surrogate to emulate the
conditions of the mobile device. The VMs run as normal applications inside the
surrogate's OS; this is an important feature as the different VMs corresponding to
the applications of different users run separately, providing isolation and
protection.

Among the offloading entities in subsection 2.1.4, the level of features does not
necessarily need a virtualized environment in the surrogate side, as there might be
two different versions of the same offloadable task, one for the mobile device and
one for the surrogate. On the other hand, when offloading methods or images, the
task in the surrogate is likely to be a copy of the task in the mobile device, and
considering that the instruction set architectures (ISAs) of the mobile devices are
almost always different from the ones of the surrogates, virtualization is needed.
Typically the architecture of the mobile devices' processors is ARM, whereas the
processors of the surrogates are x86.

15

There are two types of VMs:

• System VM: it emulates the ISA and functions of another machine, thus
the provided ISA can be different from that of the real machine.

• Process VM: also known as application-layer VM, it supports a single
process, being created when the process starts and being destroyed when
the process exits. It provides a platform-independent programming
environment, that usually has an associated programming language that
can be compiled into object code interpretable by the VM itself. Therefore,
it abstracts away the details of the underlying hardware or operating
system, allowing a program to execute in the same way on any platform.
Two well-known examples are the JVM (Java VM) or the CLR (Common
Language Runtime, the virtual machine component of Microsoft's .NET
framework).

System VMs are an acceptable approach in the context of MCO, but process VMs
are of special interest as much of today's mobile devices run process VMs
themselves. For example, the devices with an Android OS run the Dalvik VM,
which works with Java and is very similar to the Java VM. An important
difference between the Java VM and the Dalvik VM is that the first compiles the
Java code into .class files written in the so called Bytecode, whereas the second
produces .dex files written in an optimized object code for systems that are
constrained in terms of memory and processor speed. Another example are the
devices with a Windows Mobile or Windows Phone OS, most of them being able to
run variations of the CLR VM.

2.1.7 Networking, mobility and fault tolerance

The process of offloading relies on wireless networks. Nonetheless, the network is
not reliable by its own definition, and wireless networks are even less stable.
Furthermore, the diversity of mobile networking environments and the effect of
mobility increase the unreliability [Chu10]. Because of these issues, it is important
to handle failures in order to provide reliable services [Clo12].

An offloading process can fail due to network congestion or failure, or server
failure. If only saving energy mattered and there were flexibility to have a delayed
answer, a possible option would be to wait until recovery and then offload again.
On the other hand, if only improving performance were the goal, whenever an
offloading process started, then it would be worth to instantaneously start

16

executing the task locally too, just in case a failure occurred. However, these are
two extreme points of view, and while focusing on energy saving or improving
performance, most MCO systems care about the overall benefits as well. Therefore,
the most widely adopted strategy is to wait for a time until considering that a
failure occurred and then re-execute the task in the mobile device. Recent
literature investigates how should this timeout be set in order to find the optimal
moment for launching local re-execution [Wan13, Mar13].

2.1.8 Infrastructures

In MCO, cloud services, PCs, specialized processors, the local environment or even
other nearby mobile devices [CDA11, Par11] are candidates to be the surrogates
that will execute the offloaded task. This variety arises MCO approaches that even
include surrogate discovery modules, searching for the type of surrogate that fits
best to execute a task with determined resource needs [Yan08].

Nevertheless, the concept of computation offloading usually involves cloud or grid
infrastructures. In both cases, the infrastructure can be thought as a distributed
system, sharing the resources of many computers in different locations. The
machines are synchronized with workload balancers, trying to avoid saturated and
under-utilized computers. The main difference is that with a grid infrastructure,
the customer pays to have available a set of resources, no matter if not harnessing
them. The cloud infrastructure goes one step further, providing on-demand
resources as services, without the need of an advanced reservation of resources.
Moreover, the cloud infrastructures offer the following desirable properties:

• Multi-tenancy: the users can share the applications in the infrastructure.
Each user then runs a customized virtual application instance, but there is
only a single original application. Thus, updating or maintaining an
application has to be done only once, in contrast with single-tenancy
architectures, where the providers need to touch multiple applications.

• Scalability: even with a large number of users, the infrastructure can
allocate on-demand the resources needed for each. Balancing the workload
of the cloud infrastructure has an advantage over doing it in a grid
infrastructure: as the resources are not reserved, all the available resources
are shared across the large pool of users. Thus, the utilization and peak-
load capacity can be improved even more.

Since the amount of computation to be offloaded through MCO is not supposed to

17

be really large and will not always be parallelizable, the grid infrastructures are
found more frequently in other works [Wol08]. On the other hand, the dynamic
(on-demand) provisioning of cloud infrastructures fits with MCO like a hand in a
glove.

An MCO system can adopt a public cloud infrastructure, being able to choose
among many providers, such as Amazon EC2 [AWS13] or Windows Azure.
Besides, there are softwares [Euc13] that help establishing an own private cloud
infrastructure. However, the operational costs of a cloud infrastructure are
expensive: the total cost of ownership to support increasing numbers of users can
grow rapidly, the proprietary software upgrades and updates and keeping the
machines on 24 hours are considerable costs. The security is also a necessary added
cost; the next subsection will outline the main aspects that should be considered.

2.1.9 Security, privacy and trust

In order to keep the privacy of the users of the applications, an MCO system
requires security measures both on the client side (hereafter: client side refers to
the mobile device side) and on the surrogate side, as the application's data is
transferred over the network from one to another.

As the network is not secure, the data must be encrypted during the
communication between the mobile device and the surrogate. However, using
encrypted transmissions is reflected in the performance of offloading as follows
(extending Eq. 3):

(6)

where enc(Ds) and dec(Dr) are the amounts of computation that it takes to
encrypt the data to be sent and decrypt the received data, respectively. As these
jobs are done in the mobile device, they are divided by M, giving the total
encryption-decryption time. In terms of energy, Eq. 5 would also be extended
accordingly, multiplying this added time by Pc. The encryption and decryption
must be done efficiently, otherwise the costs would make offloading useless.

On the other side, the data will be decrypted in the surrogate. It is considered that
in the case of MCO the data is needed to perform a computation with it, so
decryption is needed. If the data were to be stored -MDO-, it would not necessarily
have to be decrypted.

18

Another important security concern are the applications stored in the surrogates.
The developers of the applications might not want to upload the source code of the
applications to the surrogates, but rather only the compiled application ready to
use. With the help of virtualization this is possible. However, either storing the
source code or the applications' binaries, this data will have to be kept secure.
Integrity, authentication and digital rights' management are relevant facets to
consider when storing data.

2.1.10 Applicability

The last relevant criterion for the design of an MCO system is its applicability,
who is going to be able to use it and with which applications.

MCO has still not evolved enough to present a totally automated system capable
to improve the overall performance of the mobile devices, detecting the
applications suitable for MCO, partitioning them and later offloading them. Thus,
mainstream usage is not yet possible, and the target audience for the MCO
systems are still the developers of the applications (many MCO systems describe
themselves as middleware systems). Typically, as the offloadable entities are larger
(e.g. image offloading), the system efficiency is smaller but its ease of use increases
(more automation). In opposition, when they are more selective (e.g. feature
offloading) the system efficiency is better but the developers' effort increases, too
(less automation, especially in partitioning). However, there are offloading
approaches using compact offloadable entities that propose a relatively simple
framework for the developers [Kem10].

All the offloadable applications meet an unquestionable property: heaviness of
computation. However, if an MCO system is not aiming for universality, it can
take advantage of other traits that also fit well with the nature of MCO [CDA11]:

• Parallelizability: with a parallelizable application, the value of F in Eqs. 2,
3, 5 and 6 would increase even more, since the computation could be
distributed between multiple surrogates.

• Strength of expression: if the data used by the application could be
translated to a more compressed format, the cost of sending data to the
surrogate would reduce.

• Time flexibility: when the result of the offloaded computations is not
urgent, many context-based optimizations can be done.

19

• State independency: allows avoiding the costly synchronization of the
internal state of the application.

On the other hand, the applications with which MCO is approachable -with
intensive computation- are present in many areas: multimedia processing, vision,
recognition, graphics, gaming, text processing, etc. Another possibility -again, if
not aiming for generality- is to focus on improving the applications of a subset of
these areas.

Furthermore, the range of mobile devices suitable for MCO -with different
computation capabilities- is also wide: laptops, PDAs, tablets, mobile phones, A-
GPS devices, sensors, autonomous robots, etc. When designing an MCO system, it
is desirable to aim for interoperability -device and location independence- and
compatibility, but with this extensive offer of potential clients it is also
recommendable to focus on a subset of target devices.

The last observation about the applicability of an MCO system might look
redundant, but it is important to consider whether there is an interest on a system
applicable in practice. For example, there are very good MCO approaches that are
still only theoretical approaches because their implantation would require a
network infrastructure different from the existing one, or because implementing
them would require modifying a widely established mobile OS.

2.2 Related works

Although the literature about MCO is extensive and there are many papers
proposing MCO systems, the MCO in practice is still in early stages and none of
the proposed approaches has become of regular use.

This section presents an analysis of some of the recent MCO systems that are more
referenced in the literature: CloneCloud [Chu11], Cloudlets (understood as the
model in [Clo12], although it was first introduced in [Clo09] and there are other
approaches based on the same concept [Gao12]), Cuckoo [Kem10], EAM (Elastic
Application Model [Zha10]), MACS (Mobile Augmentation Cloud Services
[Kov12]), MAUI [Cue10] and PANDA (Policy-based Model-driven Pervasive
Service Creation and Adaptation [Yan08]).

Table 1 summarizes the most relevant aspects of these systems, following the

20

taxonomy described in section 2.1. Note that the table is divided between the
aspects described in the theoretical model of the systems and the actual details of
the implementation (below the row labeled publication year). As all the systems
are oriented towards the model of process VMs, only the concrete VMs used in the
implementation are included in the table. Also, nor serialization neither the used
infrastructure are included, as all the systems require serialization and are thought
for a cloud infrastructure (except for Cloudlets, as the term Cloudlet itself refers to
the type of infrastructure suggested in their model). The rows labeled as client

CloneCloud Cloudlets Cuckoo EAM MACS MAUI PANDA

Motivation
focus

Both Energy
saving

Performance
improving

Energy
saving

Both Energy
saving

Performance
improving

Automated
partitioning

✓ ✓ ✗ ✗ ✗ ✗ ✓1

Fine-grained
partitions

✓ ✗ ✓ ✓ ✓ ✓ ✓1

Dynamic
decisions

✓ ✓ ✗2 ✗ ✓ ✓ ✓

Offloadable
entities

Images Images Features Features Methods Methods Methods

Fault
tolerance

✗ ✓ ✓ ✓ ✓ ✓ ✗

Security
measures

✓ ✓ ✗ ✗ ✗ ✗ ✗

Publication
year

2011 2012 2010 2010 2012 2010 2008

Client
Platform

Android3 Android Android Any Android Windows
Mobile

Windows
Mobile

Surrogate's
VM

Android x86 KVM JVM - JVM CLR JVM

Ease of use +++++ +++ ++ ++ ++ +++ ++

Available ✗ ✗ ✗ ✗ ✗ ✗ ✓

1 It identifies the original Java classes of the application with more offloading potential. Although this
partitioning procedure is done automatically, the application must be carefully designed beforehand to take
advantage of PANDA.
2 It is able to execute the application locally if there is no network connection, but otherwise it decides to always
offload, regardless of the dynamic conditions.
3 With a modified Dalvik VM.

Table 1: Analysis of recent MCO systems.

21

platform, ease of use (for the developers) and availability gather facets of the
applicability of the systems. Observe also that it is always desirable to save both
energy and time, but the row labeled motivation focus refers to which of them the
system emphasizes more.

In general, it is reprehensible that the majority of the systems (except Cloudlets)
assume the network to be stable, and the local re-execution strategies that they
adopt in case of failure are very simple. Similarly, security is not the object of
attention in these approaches. The systems reviewed take advantage of the
facilities that the process VMs provide, focusing on mobile OS like Android (with
the Dalvik VM) or Windows Mobile (with CLR) that already include their own
VM. However, it would be possible to implement virtualization at the level of a
system VM, offering MCO to mobile operating systems like iOS. It is worth to
mention that in general, as a system becomes more automated -reducing the
burden on the applications' developers that are going to use them- it becomes more
sophisticated, too, like CloneCloud. The efficiency of a system is also reduced as
the level of automation grows.

Interestingly, the automation of CloneCloud is possible due to an architectural
design that differs from the others: the mobile device has a copy of its contents
(the clone) in the cloud. This way, the heavy computational tasks that can be
offloaded can include operations such as file searches, virus scans, image searches
by content (CBIR), etc. In practice, this approach needs using MDO continuously
to have the clone always synchronized with the original, and even if done in
background, this consumes energy. On the other hand, MAUI focuses on saving
energy, and their decision-making system (called MAUI Solver) is found in the
surrogate instead of the mobile device. When a potentially offloadable task is to be
executed, it is invoked asynchronously from the mobile device. Avoiding the waste
of energy that would produce calculating the best decision is a good idea; however,
waiting for it to be calculated in the surrogate can be a waste of time.

In contrast with CloneCloud, systems like Cuckoo, EAM, MACS, MAUI or
PANDA involve more adaptation by the developers of applications. Their
approaches differ a lot though. Cuckoo, EAM and MACS require the developer to
specifically design the application following certain patterns. Cuckoo proposes a
framework where the potentially offloadable tasks must be implementations of a
Java interface defined through the Android Interface Definition Language (AIDL),
allowing for two different versions of the same task, one to be executed locally and
the other remotely (MACS also allows two different versions). Similarly, with
EAM the potentially offloadable tasks must be encapsulated in independently

22

runnable parts of software called weblets. On the other hand, MAUI and PANDA
bet for more simplicity of use. Both MAUI and PANDA work with the original
application, the first working with methods and the second with classes. MAUI
decides dynamically whether to offload a method or not (actually, among a subset
of methods marked as remoteable by the developer) and PANDA takes the
decisions at class level. However, both systems will not be useful if the original
design of the application does not place the heavy computation parts separately.
The systems working with features or methods are usually stateless, every
computation request to the surrogate is independent from previous or later
requests.

Some results presented by these systems are a computation speed-up by a factor of
60 and reduction of battery consumption by a factor of 40 with an object
recognition application thanks to Cuckoo, energy savings of 27% for a video game
and 47% for a chess game thanks to MAUI or factors up to 20 both in energy
saving and performance improving by CloneCloud. The authors of MAUI also
report that they doubled the frame refresh rate of the video game with their
system; however, this is only possible if the application has flexibility, meaning
that it does not need to have the result of the offloaded computations
instantaneously (the application can keep the execution and the result of the
offloaded computations will be asynchronously processed, when it arrives).

Apart from the analyzed systems, there are a number of other systems related with
partitioning, migration, and with MCO in general: AIDE [XGu04], AlfredO
[Giu09], Amoeba, [Mul90], ASIMS [CAi11], Chroma [Bal03] (based on
Spectra[Fli02]), Dessy [Lag11], Hydra [Wei08], MCM [Flo13], Odyssey [Nob97],
OLIE [XGu03], Potrium [You01], Scavenger [Kri10], Slingshot [YSu05], Sprite
[Dou91], Wishbone [New09] among many others.

23

3 The proposed system

This chapter presents the main work of this thesis: a proposal of an MCO system.
First, the theoretical approach of the system will be presented. AESTET is a
subpart of the MCO system, but has its own section in 3.2. The next section
reveals the most remarkable implementation details of the system. Section 3.4
presents many results as well as an evaluation of the system, discussing its
limitations. Finally, the last section points out some directions for future research.

3.1 Theoretical approach

To describe the chosen design of the system, the next sections will go through the
main aspects reviewed in the taxonomy presented in section 2.1. However, the
motivation (2.1.1) and the applicability (2.1.10) considerations of the system will
be included in the general description (3.1.1), since these aspects are important to
understand the decisions taken. The partitioning (2.1.2), infrastructure (2.1.8) and
security measures (2.1.9) will be included in the second subsection (3.1.2).

3.1.1 General description

The general behavior of the system will be outlined in this section. First, it is
worth to clarify that the system is designed (in collaboration with [Mar13])
according to the questions that this thesis wants to answer. Thus, some of the
aspects of an MCO system reviewed in 2.1 will not be considered or simplified
here, as they are not necessary for the scope of this approach. Given that the
reviewed MCO systems are either not available or their objectives differ from the
ones in this thesis, the system presented in this thesis is not based on any previous
approach. This is another reason of the limited scope of the system, as due to time
constraints, this thesis does not allow the unfolding of a new and complete system.
This is acceptable, since another aim of this thesis is experimenting and providing
a base system able to be extended in the future.

The system focuses on improving the performance of the mobile devices'
applications, although aiming to save as much energy as possible at the same time.
This choice will be explained in detail in 3.1.3. The system is mainly thought for
mobile phones, more concretely, for smartphones. Furthermore, the concept of the
system will be similar to the majority of the MCO systems, it is designed to act as
a middleware between the applications' developers and the functionalities of MCO.

24

It has been explained that MCO appears mainly in areas like multimedia
processing, vision, recognition, graphics, gaming, or text processing, where heavy
computation tasks are performed. It can be observed that the heavy computation
tasks of these applications have significantly variable execution times depending on
its input (how big is the image where faces must be detected, how long is the audio
file where the speech must be recognized, which is the difficulty level of the
artificial intelligence, etc.). Furthermore, these tasks often behave similarly to
deterministic algorithms. A deterministic algorithm is an algorithm that, given a
particular input, will produce always the same output passing through the same
sequence of states (on a given computer, taking approximately the same amount of
execution time). In this thesis, it is assumed that the computationally intensive
tasks suitable for MCO will not necessarily produce the same output given the
same input, but it will be assumed -and this is the main basis of the system
presented here- that they will take the same execution time given the same input.
Thus, it is possible to predict the execution time of these tasks given a particular
input.

In section 3.1.3, it will be seen that the main feature of the system is its ability to
take dynamic offloading decisions. The system will consider that it is worth to
offload a task when its estimated execution time on the mobile device is greater
than the sum of its estimated execution time on the surrogate plus the predicted
costs of the data transfers. These estimations will be possible assuming the
behavior described above. AESTET will take care of that job. Although this
system is intended to be an automated system, it will be seen that it expects the
developer of the application to provide a particular function on development time.
This consideration is important now because it influences the design of the system.

The offloading decisions of the system will be taken at runtime, just before the
execution of a potentially offloadable task. This ability is distinctive because it
permits the system to handle tasks dealing with real-time data (e.g. a face
recognition application that uses as input a newly captured picture), in contrast
with other MCO systems that assume the data already offloaded in the cloud.
Besides, the type of tasks suitable for this system must be a module, independent
from the rest of the application, as the system will not keep a state between the
mobile device and the surrogate. The rest of properties explained in 2.1.10
(parallelizability, strength of expression, time flexibility) are not considered.

The system offers interoperability through an abstraction layer from the network.
It is dynamically taken into account the type of connection used by the mobile

25

device, e.g. 3G, Wi-Fi, LTE, etc. predicting more delay in the corresponding cases.

3.1.2 Architecture

The system will not be able to partition an application automatically. First,
because AESTET requires the developer to provide a particular function for each
potentially offloadable task on development time -as mentioned above-. Second,
because it is out of the scope of the thesis. Instead, it is expected that the
developer of the application does the partitioning beforehand. The system is
oriented towards applications written in the Java programming language, and the
way to partition the application will be packing the computationally intensive
parts inside a JAR (Java ARchive) file with a few peculiarities (further details can
be found in [Mar13]). Thus, the offloadable entities of the system are considered
features.

The potentially offloadable tasks will have to be uploaded to the surrogate in
advance, too. The system provides a web interface tool that facilitates this task
[Mar13]. The developer also has the option to implement two different versions of
the task, one for the mobile device and one for the surrogate. This tool allows to
upload a copy of the original task5 of the mobile device as well as an alternative
implementation. Having the tasks already uploaded to the surrogates when the
applications start to execute avoids having to upload them during runtime, which
is a very costly approach. On the other hand, the procedure requires more burden
on the developer.

The system would ideally be used with a cloud infrastructure, but for scope
limitations the surrogate will be considered a single server. Note that with a single
server, it makes sense that the developer uploads in advance the potentially
offloadable tasks, as it would not be a good approach to do it automatically from
the clients. If this were the case, all the users using the same application would
check its existence in the surrogate, and if the application were not there, it would
be automatically uploaded. The problem of this approach is that only the first user
doing this check would actually upload the task, as the rest would already find it.
In contrast, this approach would be more acceptable in the context of a cloud
infrastructure, where there would be multiple servers and doing this checks from
the client side would not be useless. Regarding this possibility, it could be argued
that without the need of the developer uploading the tasks to the surrogate
beforehand, the system could gain even more automation -eliminating all the
interaction with the developer- with auto-partitioning. However, automatic

5 Sometimes an exact copy will not be possible, as explained in 3.1.4.

26

partitioning is not possible because of the features of AESTET.

The system is basically divided into two parts. The client side and the surrogate
side. On the client side, the system is just a small software library that can be
added to the applications. After adapting the application appropriately to make
use of the MCO functionalities offered by the system, it will automatically improve
the application's performance deciding dynamically the best option – execute a
task locally or offload it. It will take care of the communication with the server,
sending the request and handling the response.

On the surrogate, the system is built on top of a web server. This choice is initially
taken as a simplification decision. It provides many commodities, the virtualization
-as will be seen in 3.1.4-, communication -listening and handling the requests- and
security are much simpler taking advantage of it. However, the facilities of object
serialization and transmission that provide technologies such as Java RMI or
CORBA are not exploited. Thus, the client and the surrogate will communicate

Figure 2: Architecture of the proposed MCO system. The mobile phone can access
the surrogate through cellular towers (for cellular networks like 3G or LTE),

through WAPs (Wireless Access Points, for Wi-Fi networks) or by other means.

through the HTTP protocol. More concretely, the HTTPS protocol is used to
provide a minimum grade of security, encrypting the exchanged data through SSL.
The resources in the surrogate are not protected against untrusted users with an
user identification system. However, the execution of a task can only be queried
using the identifying name of the task, which cannot be known by untrusted users
unless reading the contents of a request (which cannot be done thanks to the

27

encryption). The small overhead produced by the encryption will be considered
part of the data transmission costs in this thesis. Figure 2 illustrates the
architecture of the system.

3.1.3 Decision-making

The system was originally designed to take into account both the energy saving
and time saving criteria. The idea was to put together the Eqs. 1 and 4 (seen in
2.1.3) into one single criterion. Basically, the two criteria indicate almost always
the same decision. For the few cases where they differ, there were two possible
approaches. First, give more weight to one criterion or the other depending on the
remaining battery of the mobile phone, as with low battery it might be preferable
to save energy and with more battery it might be preferable to give more emphasis
to performance. However, this is not objective for all the cases. A user might prefer
to improve performance even if the battery level is very low, as he is home and can
load the phone whenever needed. If another user is traveling, she might want to
save battery even when the mobile device is fully charged, as it could be difficult
to find a place to reload it. Considering this, the second approach was to take into
account the user preferences to decide which criterion should be given more
weight.

As seen in 2.1.3.1, to evaluate the energy saving criterion, the values of Pi, Pc, and
Pt must be obtained from the phone. However, it was pointed out that the mobile
phones of nowadays cannot provide this information, and the idea was discarded.

Thus, the dynamic decision algorithm of this system is based on the time saving
criterion (Eqs. 1, 2 and 3). Nevertheless, this thesis also wants to prove that by
improving performance energy is saved. A trivial case that shows that, is when the
data to be offloaded is almost negligible. Then, referencing again the Eqs. 1 and 4
(seen in 2.1.3), it would be considered that D=0. The resulting inequalities would
be as follows:

(7)

(8)

It is easy to see that when the first is true, the second is also true, as Pi < Pc.
However, these equations only prove the case when D is negligible (in addition,
here the RTT is not considered). Hence, in the section of evaluation other cases
will be studied practically: although the sensors of the mobile devices are not

28

precise enough for fine power consumption measures, there are some external
devices [PMo13] and software applications [Yoo12, PTu13] able to measure the
power accurately.

The decision-making procedure of the system is done at runtime, just before a
potentially offloadable task is to be executed. The execution of this decision-
making procedure is done in the mobile device, in contrast with other systems
[Cue10] that do it in the surrogate. The advantage of doing it outside, is that the

Figure 3: Two executions of an application with a potentially offloadable task that
uses the MCO system presented in this thesis. On the left, the task is executed

locally; on the right, it is executed remotely.

overhead (both in terms of time and energy) of the calculations is much lesser, as
the surrogate has a computing capacity far superior than the mobile device has.
The disadvantage is that the RTT needed to transfer and retrieve data from the

29

surrogate might take longer than the calculations themselves. If the focus is saving
energy, computing the decision-making procedure outside the mobile device might
be feasible, but when aiming at performance improving, the delay of the RTT
might be too much.

Thus, it will be very important to design an efficient decision-making system,
otherwise the approach of calculating the decision in the surrogate would have
been better. Furthermore, too much overhead would not compensate the benefits
of the system. Figure 3 shows two cases of the execution of an application using
the system.

In line with what has been said above, the dynamic offloading decisions of the
system are taken following Eq. 3 of 2.1.3. However, the system is not designed to
make predictions over the size of the responses (Dr). Instead, it will be assumed
that the returned data is always a small set of data, thus negligible. Considering
this, the inequality in Eq. 3 can be rewritten as follows, in order to represent the
dynamic offloading decision criterion of this system:

(9)

3.1.3.1 Parameters

This subsection describes how the system gets the necessary parameters to make
an offloading decision, i.e. how the system evaluates the inequality shown in Eq. 9.
Observe that the problem of evaluating Eq. 9 is equivalent to forecasting the
following:

• Data transferring time: it is the sum of the time R -which mainly
represents the RTT- plus the division Ds / Bu. Many papers combine these
two parameters into a single one. However, the focus of this thesis is to be
able to take the correct offloading decision for heavy computation tasks
with significantly variable execution times depending on the properties of
their inputs. If the size of the inputs were always relatively big, a very
precise prediction of these times would not be necessary. However, as the
system will deal with inputs of different sizes, it might encounter cases with
small inputs, thus needing more accuracy of prediction. Other works
suggest the importance of separating the RTT and the bandwidth, too
[Cue10].

30

• Estimation of the task execution time on the mobile device: corresponding
to the right side of Eq. 9: I/M.

• Estimation of the task execution time on the surrogate: corresponding to
the addend in Eq.9.: I/(F·M).

The randomness of the network state makes the forecasting of the network
parameters especially complicated. Bayesian probabilistic approaches are suggested
[Wol08], but this produces too much overhead for the purposes of this thesis and a
rough estimation method will be used instead.

The estimation of the task execution time must be predicted both in the mobile
device and in the surrogate. Two methods are proposed:

• Direct cost function: initially, the system expected the developer of the
application to provide a cost function of his potentially offloadable tasks.
This means, a function capable to estimate the amount of computation I of
a task, given an input.

• AESTET: This system will be explained in detail in section 3.2.

In both cases though, the computation speed relation F between the mobile device
and the server is needed. In the first case, the cost function provided the value of I
in the equation, therefore F was still needed. The need of F in the second case will
be explained later in 3.2.

Having directly a cost function is of course more efficient than AESTET, but this
option was too unusable (many developers would not be able to find such a
function), and AESTET was designed.

Considering that the value of the computation speed of the surrogate S is a known
value, and that M = S/F, calculating F is enough to know M. Then, the
parameters that the system needs to calculate for the evaluation of the decision
criterion are: F, I, R, Bu. and Ds. The system will make the following
categorization for these parameters:

• Persistent parameters: F.
• Parameters depending on the execution environment: R and Bu.
• Parameters depending on the input of the task: I and Ds

31

The persistent parameters only need to be calculated once, as they will stay the
same always (the mobile device is always F times slower than the server). F is
calculated in the first execution of an application using the system, and then is
stored persistently. It can be retrieved then in the future, avoiding the need of
recalculating it.

The parameters depending on the execution environment are actually the network
dependent parameters. Different strategies were tried in order to calculate these
parameters. A complex probabilistic prediction system of the state of the network
would produce too much overhead, so the approach was simplified. The parameters
could be readjusted continuously during the execution of the application measuring
background queries to the server, but this would affect the performance and would
consume energy. Considering the case of cellular networks like 3G, the randomness
of these parameters is high, so it would be still not reliable to recalculate them
continuously. When using a Wi-Fi network, while staying under the coverage zone,
the network state is quite stable, so again, there would be no point in recalculating
the parameters continuously. Hence, it was decided to calculate these parameters
only once, at the beginning of the execution of the application.

The parameters depending on the input of the task can only be evaluated
immediately before the execution of the task.

The system is designed to calculate all the parameters from practical observations.
The following list reveals the details for each one:

• F: a simple algorithm (which mainly does some empty loops) with a known
execution time cost on the surrogate is executed on the mobile device
during the first execution of the application, and its execution time is
measured. Comparing its execution time in the mobile device and the one
in the surrogate, F is obtained. It is very important to note, that the
moment when this algorithm is executed is very relevant. The OS of a
mobile device might assign more computation resources to a process at
different moments of its execution. This is studied in [Mar13], and
summarizing, the best approach is to calculate F just when the potentially
offloadable task were to be executed. Besides, observe that the iterating
test algorithm proposed to obtain the speed relation might be able to give a
relatively accurate value to F. However, another important note is that the
behavior of the mobile device might be different for different tasks. This
means that comparing the execution times in the mobile device and in the
surrogate of another unknown computationally intensive task, the value of

32

F could vary slightly. As the accuracy is crucial for the purposes of this
thesis, the solution offered by this system is to maintain different
computation speed relations (a set of F's) for each potentially offloadable
task of an application. These computation speed relations are also stored
persistently. Furthermore, as the application will keep being executed by
the user, each time that a potentially offloadable task is executed, the value
of the computation speed relation for that task will be updated (the
updated value will be an average of the past values and the newly obtained
one).

• R: at the beginning of the execution of the application, the surrogate is
queried a few times (currently 10) and the RTTs are measured and
averaged. If the connection is lost or changes to another network (e.g. from
3G to Wi-Fi), R is going to be recalculated.

• Bu: inspired by [Cue10], at the beginning of the execution of the application
a small file is sent to the surrogate to get the data transferring speed. If the
connection is lost or changes to another network (e.g. from 3G to Wi-Fi),
Bu is going to be recalculated.

• Ds: this variable can be immediately evaluated. Once the input of the task
is known, its size can be obtained directly. The system is working at the
level of features, but the way to handle the tasks is actually through
method calls. Thus, just before the execution of the task, the system has all
its its input parameters and can easily calculate the sum of their sizes.

• I: as mentioned above, a first approach was to calculate this variable using
a cost function provided by the developer of the application. When using
AESTET, I is not needed.

The practical way in that the system calculates the different variables is vulnerable
to some unfortunate circumstances. For example, if many applications are being
executed in parallel while F is being calculated, the obtained value might be not
accurate. However, as F will keep being updated, this is not a big problem.
Another example would be that other applications could be using the network
while R or Bu are being calculated. This could affect the behavior of the system
during one single execution, but as R and Bu are going to be recalculated for each
execution, this is also not unacceptable.

33

3.1.4 Serialization, virtualization and fault tolerance

The serialization step is not provided by the system, due to scope limitations. The
system transfers already serialized parameters to the surrogate, and the developer
is expected to implement this serialization. The virtualization of the system is
implicit thanks to the JVM. Both the client and the surrogate use a JVM. The
system handles fault tolerance in the same simple way that other systems do: if the
offloaded execution of a task fails, the system re-executes the task locally [Mar13].

3.2 Automated estimation system of task execution times

This section presents AESTET, the statistical estimation system used to
automatically forecast the execution times of the potentially offloadable tasks of an
application.

3.2.1 Overview

The statistical scheme of AESTET (inspired by [Ive96]) is based upon a
nonparametric regression technique. With it, the execution times of the tasks are
forecast from past observations. This follows the philosophy of the MCO system in
3.1: to obtain the parameters of the system from practical samples. Furthermore,
this approach avoids having to understand the computational complexity of the
tasks, in contrast with other techniques such as static code analysis [Rei94].

The technique used by AESTET is able to compensate for different parameters
upon which the execution time depends, which is important for a dynamic decision
MCO system. Moreover, it does not require any knowledge of the architecture of
the target machine, making it suitable for any platform. Another important feature
is that AESTET is almost not affected by the presence of outliers -erroneous data-
in the set of observations.

However, this type of system fits better for the case of distributed computing. In
this case, huge tasks must be executed and a scheduler must estimate their
execution times in order to decide where to execute them. As the tasks are large,
the overhead produced by computing the estimations is not relevant. Furthermore,
in many cases it is not urgent to produce the estimations, but when using this
system for MCO the results must be immediate. Because of this, when using this
estimation system in contexts other than MCO, it is not an obstacle to deal with
tasks with multiple input parameters. The nonparametric regression technique
described in 3.2.3 requires finding “similar cases” among the previous stored

34

observations, and the cost of this operation increments dramatically as the input of
a task is more complex (e.g. more parameters). As said, this is acceptable in the
context of distributed or grid computing, because the overhead does not matter too
much. But in the case of MCO, this is not acceptable. The estimations must be
done efficiently, with a low overhead. Thus, AESTET requires the developer of the
application to provide translation functions that summarize the input of his
potentially offloadable tasks into a single numeric value. Hereafter this will be
referred as input representation. This input representation mainly needs to satisfy
one condition, inputs that lead to similar execution times should have similar
representative numeric values. The nonparametric technique can still produce
acceptable results if the input representation is good, for example, the authors of
[Ive96] use the size of the input as the input representation, and affirm an error
rate smaller than 20% in the estimations produced.

As AESTET needs past observations to produce estimations, it needs some
samples before starting to work. In the tests shown in [Ive96], it is said that
around 10 initial samples are enough. However, this is only enough if the tasks
have an execution time strongly correlated with the input representation. As the
system cannot totally rely on the accuracy of the translation function provided by
the developer, a bigger initial sample set is needed.

Two options were considered regarding the creation of this initial database. First,
the application could go through a training phase, where AESTET would be only
gathering samples. Once the database would reach an enough big size, AESTET
would be able to start producing estimations. The second option is that the
developer generates this database beforehand (in development time) and includes it
within the application. The first option would make the things easier for the
developer, and AESTET would gain usability, but all the users using an
application with that system would have to go through this training phase. In
contrast, with the second approach the generation of the initial database has to be
done only once by the developer. Thus, the second approach is chosen, and an
online database generation tool [FUB13] is provided to give facilities to the
developers.

In order to generate the initial database through the web tool, the developer must
provide a set of sample inputs of his potentially offloadable tasks. Although this is
again more burden on the developer, it is much more precise than using random
input generators [Chu11].

35

3.2.2 Database design

Once an execution is done, an estimation is computed from the previous values
stored in the database that was added to the application. After the execution, the
real execution time is saved to the database, either if the task has been executed
locally or in the surrogate. Thus, in the database will coexist execution times
produced in the mobile device and execution times produced in the surrogate.
Using the parameter F described in 3.1.3.1 it will be possible to convert from
execution times produced in the surrogate to local execution times, and vice versa.
Because of this, the database needs an extra attribute for each entry indicating
whether it was produced in the mobile device or in the server. Then, the entries of
the database will have the following attributes: <inputRepresentation,
executionTime, isLocal>, being inputRepresentation an integer number,
executionTime a real number and isLocal a boolean attribute.

Each different task will have its own table in the database. An index will be
created for each table, to keep them sorted by inputRepresentation. This way,
querying the database will be faster thanks to the index and the system will be
able to produce the estimations more efficiently. However, once the execution of a
potentially offloadable task is done and the newly obtained real execution time is
to be added to the database, the insert statement will take longer because the
index will have to be updated at the same time. As this can be done in background
after the execution of the intensive task, it will be not considered a problem.

3.2.3 The nonparametric regression technique

The regression technique used for the execution time estimation problem in this
thesis is based upon a technique known as k-Nearest Neighbor (k-NN) smoothing.
AESTET adapts this technique and follows the steps of this algorithm:

1. Once a potentially offloadable task T is to be executed, its input is known.
The system obtains the input representation through the translation
function provided by the programmer.

2. The system searches in the table of the database corresponding to the k
nearest entries of T by inputRepresentation.

3. The k elements found are retrieved. For each of them, the attributes
executionTime and isLocal are obtained. If isLocal is true for an entry, the
executionTime is divided by the current F (the computation speed relation

36

between the mobile device and the surrogate, explained in 3.1.3.1) of the
task. This way, the set of k elements is normalized to exclusively
surrogate's execution times.

4. This set is smoothed: the execution times are averaged, and the execution
times too distant to the average (outliers) are eliminated from the set. If
there are one or more elements with an inputRepresentation equal to the
input representation of T, a new average execution time AvgSurrogate is
calculated among these and the algorithm jumps to step 6.

5. Among the resulting set, a new average execution time AvgSurrogate is
calculated, giving more weight to the execution time of the elements with
an inputRepresentation closer to the input representation of T. The weights
are given through a weighting function (also called a kernel function)
known as Epanechnikov Kernel [Ive96], which has certain optimality
properties. This technique also permits to calculate the execution time of
cases such that the input representation of T is out of the boundaries of the
existing input representations of the database -i.e. it is not between any
two other existing input representations-.

6. The average execution time AvgSurrogate will be the execution time
estimation for the surrogate predicted by AESTET. Multiplying
AvgSurrogate by F the value of AvgLocal is obtained, which will be the
predicted execution time estimation for the mobile device.

7. Once the execution of T is completed, the real execution time (either in the
surrogate or in the mobile device) is added to the database. If there were
already 20 entries with the same inputRepresentation that T has, one of
them would deleted randomly before adding the new execution time. This
was decided to keep the size of the database not too large.

The secret of this technique resides in deciding which is the appropriate number of
nearest neighbors -k- to initially search for in the database. If k were too big, the
average would include too much values and would not be precise. On the other
hand, if k were too small, only a few elements would be considered to calculate the
average, which would increase its randomness, considering that there might be
outliers in the database.

Given a total number of entries n in the database, studies have shown that k
should increase in proportion to n4/5. In the case of this thesis, testing has shown

37

that an appropriate assignation is k = n4/5 / 5. Thus, the computational
complexity of the algorithm is O(n4/5). The complexity helps getting an idea of
the overhead that the estimations of AESTET will produce, but testing must be
done to check it precisely (evaluation of the overhead is done in section 3.4).

The effect of this technique when calculating weighted averages is similar to doing
linear interpolation. This means, if a task has an execution time cost that grows
approximately linearly as its input representations grow, the estimations produced
will be good. With higher polynomial growths (quadratically, cubicly, etc.) or
exponential growths, the estimations will be worse but still acceptable for the
purposes of this thesis.

3.3 Implementation

The MCO system proposed in this thesis is built extending a basic offloading
engine [GM13]. The implementation of the engine in the client side is carried out
for the Android platform, which fits very well with the approach of this thesis, as
it works with Java. The same applies for the surrogate side, which will be running
a Tomcat Server, that also works with Java. At the moment, there is only one
server [FUB13] working as the surrogate.

Although Android uses Java, it is not running exactly a JVM. Instead, Android
has its own Dalvik VM. It shares a lot of core functionalities and libraries with the
JVM, but it is designed to cope efficiently with constrained resources and has its
particularities. This will carry some compatibility problems, as will be seen in the
next section.

As explained when describing the proposed system, the communication between
the client and the surrogate will be done through HTTPS queries. More concretely,
the query strings will follow this format:

https://www.mi.fu-berlin.de/offload/run?algName=nameOfTheTask¶m1=
valueOfParam1¶m2=valueOfParam2&...

where nameOfTheTask is the identifying name of the computationally intensive
task to be executed. The tasks are launched through a single method call that
needs all the input parameters; the rest of the query string are these parameters.
The server can be queried either via GET requests, as shown, or with the
equivalent POST requests. The client uses POST requests to query the server

38

because the input parameters can be of any size, and a GET request would be
restrictive. The server will answer with XML formatted data that the client will be
able to parse and interpret.

In the case of the client, the software is a small set of Java classes that a developer
can add to his application in order to enjoy the MCO functionalities proposed in
this thesis. The functionalities of the classes are the following:

• Engine: the core class of the system. The applications only interact with
this class, requesting the execution of their potentially offloadable parts
whenever needed. This class will take the offloading decision, and will be
the responsible to proceed with a local or remote execution. In case of a
remote execution, it will handle as well the communication with the
surrogate.

• Algorithms: called from Engine, it is a wrapper to the potentially
offloadable parts of the application. The developer needs to adapt it.

• DataBaseHelper: in case the developer does not provide a cost function of
the execution time for the potentially offloadable parts of the application
and therefore AESTET is being used, this class manages the database from
which AESTET takes the past observations in order to make the forecasts.

In the case of the surrogate, the software is designed to run in the Tomcat Server
as a web application in the WAR format (Web application Archive). Mainly, the
software serves the queries of the clients, executing the requested computationally
intense task in each case and answering the client with the results of the
computations. Moreover, the web application offers a WUI [FUB13] (Web-based
User Interface) with two tools for the developers of the applications:

• JAR uploading: as described in 3.1.2, the developer must partition the
application manually, packaging the computationally intensive parts of the
application into JAR files. This tasks must be placed in the surrogate side
before the distribution of the application is started. This tool provides a
simple way to do so, and updates the system in the surrogate side to be
aware of the newly uploaded task.

• AESTET database generation: as described in 3.2.1, AESET requires the
developer to generate an initial sample database beforehand. This can be
done through this tool. After the generation process, the database can be

39

downloaded and must be added to the application's resources. The system
generates a SQLite database, since this is the format that the Android
systems can handle best.

The WUI provides the necessary instructions for the use of these tools. There is a
user authentication system to access the management area where the tools are
located. However, right now it is limited to one user, as the software does not
implement the necessary isolation and different users could modify the
computationally intensive tasks uploaded by others.

There can be found also in the WUI the source code of the client and the surrogate
sides, and the source code of two example applications (used next in the section of
evaluation) that show the capabilities of the system.

3.4 Evaluation

In order to evaluate the MCO system, the described implementation has been used
for the experiments. This section shows the results of these experiments and their
interpretation.

3.4.1 Experiments' setup

Many real applications have been considered to test the MCO system. However,
the implementation of the system only allows for computationally intensive
applications written in pure Java. Many of the applications that were tried, had
either native code calls (architecture dependent) through the Java Native Interface
(JNI) -e.g. [Sph13]-, or code using some Dalvik libraries that are not present in the
JVM, -e.g. [Jav13a]-.

Thus, an example application called EngineTesting was prepared. The application
includes many computationally intensive algorithms, and uses the MCO system to
decide whether to execute them locally or remotely. A chess game [PCA13] is
adapted to the system as well in the work of [Mar13]. Here, the most relevant
results are analyzed.

Although the system presented in this thesis allows for different versions of a task
in the mobile device and the surrogate, all the tests have been done using an exact
copy, as for throughput comparison this was the best option.

40

All the tests have been done using a Wi-Fi network, as none of the devices used for
the tests had a cellular network (like 3G) connection available. In order to test the
forecasting capacity of the network parameters, the high instability of 3G would
have been interesting though (studied in [Mar13]). Fortunately, for the testing of
the prediction capacity of task execution times, the type of network used is not
relevant.

At the surrogate side, a server of the Freie Universität Berlin is used. The server
processes with 4 cores of the type Intel Xeon CPU E5649 2.53 GHz, with a main
memory of 7786 MB. The server runs Apache Tomcat 6 and uses Java 1.6. At the
moment of the tests, the distance to the server was always the same (medium
distance, about 100 milliseconds of RTT).

At the client side, the mobile device was a Samsung Galaxy Nexus, with a
processor of 1.2 GHz, Dual Core. The server is about 30 times faster than this
device (F = 30, according to the notation of 3.1.3.1).

3.4.2 Results

This subsection presents the results of the tests, which will be discussed in 3.4.3.
The figures from 4 to 7 show the forecasting capabilities of the network parameters
(RTT and bandwidth) of the system. In these tests, the client executes a task with
inputs of different sizes: 100B in Figure 4, 10KB in Figure 5, 250KB in Figure 6
and 1MB in Figure 7. The task to be executed is a simple iteration algorithm with
empty loops, that can be adjusted to do as many iterations as desired. This way,
the task is executed many times, each producing different amounts of computation.
The X axis of the charts corresponds to this amount of computation (in millions of
iterations), and the Y axis to the time that it took the execution (in milliseconds).
These figures show the relation between the data to be sent Ds and the amount of
computation to be done I, and how the system can predict the most beneficial
decision for different cases. In these tests, the amount of computation I is not
predicted using the AESTET system, as the purpose of these figures is to show the
network forecasting capabilities of the system rather than the execution time
prediction accuracy.

On the other hand, figures from 8 to 10 show the execution time prediction
capabilities of AESTET and the overhead that calculating the predictions
produces. In Figure 8, the meaning of the axes is the same as the figures 4 to 7.
The X axis of the figures 9 and 10 also corresponds to different inputs, like the
previous figures. However, they are not ordered by computation amount like in the

41

previous figures. Instead, as the computationally intensive task represented in
these figures is the artificial intelligence of a chess game, the inputs (the situation
of the board) are ordered temporarily in the same way as they were produced
while playing the chess game (the first 20 moves are shown).

No results of energy consumption are presented, as external power measurement
devices like Power Monitor [PMo13] were not available during the testing. Instead,
energy consumption software solutions were tried: App Scope [Yoo12] and Power
Tutor [PTu13]. These applications use previously created models to predict the
energy consumption and are still in alpha stages. App Scope only supports the
Galaxy One mobile device and Power Tutor cannot estimate the energy
consumption of the Wi-Fi adapter of the device used for the tests (Galaxy Nexus).
In order to study the energy consumption, [Mar13] presents an analysis based on
common values of Pi, Pc, Pt.

All the figures are produced averaging 5 execution times for each value. The
execution times (its improvement) are used as the metric for evaluation of the
proposed MCO system.

Figure 4: Behavior of the system with different amounts of computation, with
100B of input data of the task.

42

Figure 5: Behavior of the system with different amounts of computation, with
10KB of input data of the task.

Figure 6: Behavior of the system with different amounts of computation, with
250KB of input data of the task.

43

Figure 7: Behavior of the system with different amounts of computation, with 1MB
of input data of the task.

Figure 8: Breakdown of many executions of a simple looping algorithm managed
by the proposed MCO system. In the X axis, the millions of iterations that the

algorithm have looped. In the Y axis, the execution time that it has taken.

44

Figure 9: Executions of the AI (in a hard difficulty level) of a chess game managed
by the proposed MCO system.

Figure 10: Breakdown of many executions of the AI (in a hard difficulty level) of a
chess game managed by the proposed MCO system. In the X axis, the moves

ordered as the game evolved. In the Y axis, the execution times.

45

3.4.3 Interpretation

In the figures from 4 to 7 it can be observed that the estimations produced by the
system are quite accurate, thanks to the feature of forecasting the data transferring
times taking into account both the bandwidth and RTT. For applications sending
an almost negligible amount of data, like a chess game or like the case shown in
Figure 4, only the RTT matters. But as the data size grows, the RTT loses
relevancy and the bandwidth plays the main role.

Although the figures are produced after averaging many tests, the randomness of
the network is still noticeable. In figures 6 and 7 it can be observed that the real
offloading times are not following a linear growth.

It is also of interest to observe the point where offloading starts being worth it. In
Figure 4, only about 4 millions of iterations are needed to reach this point. But in
the next 3 figures, the point arrives around 10, 170 and 850 millions, respectively.
When a task needs a large input, offloading makes sense only if the amount of
computation that it is going to perform is as well really large.

Note that in Figure 6 and Figure 7, these limit points correspond to approximately
3.75 seconds and 14 seconds of execution, respectively. Only the really
computationally intensive applications will benefit from offloading if they need a
big input. This could be the case of a face recognition application, that requires an
image file as input -which may be big- and then uses many complex detection
algorithms on it.

The MCO system proposed in this thesis can adapt to tasks of this nature, as well
as it can adapt to tasks that require only an almost negligible input. These are the
cases shown in the figures 8, 9 and 10.

In Figure 8, the prediction power of AESTET is tested with the same simple
looping algorithm used in Figure 4, with a negligible input. The figure shows the
breakdown of the real execution times. After 4 millions of iterations, the task is not
executed locally anymore, managed by the predictions of AESTET. This option is
correct, as it can be seen in Figure 4. The most interesting of Figure 8 are the
overheads produced by the estimations of AESTET. It can be observed that the
overhead of each execution is always between 1 and 10 milliseconds, which is
acceptable.

In figures 9 and 10, AESTET starts with an initial database of 20 samples. In the

46

case of the AI of the chess game, the input representation is defined as a number
that identifies uniquely each input, and at the same time, the inputs with similar
difficulty levels have similar input representation values.

Thus, when managing the task corresponding to the AI of the chess game shown in
Figure 9, the MCO system will always decide that it is beneficial to offload it, as
the difficulty level is hard, and the previously generated database indicates huge
execution times for this difficulty level. Figure 10 corresponds to the breakdown of
the real executions (all offloaded) of Figure 9. Figure 10 shows that the overhead
produced by the estimations of AESTET is also very reduced. In [Mar13] other
easier difficulty levels of the chess game with lesser amounts of computation are
tested.

Note that for the generation of the figures 9 and 10, the initial database was
reseted for each new execution, as it was important to start from the same state
(when an execution is done, new entries are added to the database, and the
prediction power of AESTET grows, so with no reset the starting state would have
changed).

When using a not reseted database, AESTET is generally able to predict very well
the first moves of the game, as these are similar in all the games and have been
done many times before. As the game evolves, situations of the board that never
occurred before are approached, and the predictions of AESTET are less accurate.
However, even for one of these cases, AESTET will make a good prediction, as it
will find in the database k-NN with the same difficulty level. The only critical
point would be a difficulty level with random execution times, for which sometimes
it would be worth it to offload and sometimes not. Fortunately, this is not the case
(for more details refer to [Mar13]).

3.5 Further work

In the first place, it was emphasized that the MCO system presented in this paper
includes many simplifications, as many features of the real MCO systems were not
needed for the purposes of the thesis. The system could be extended adding the
missing features: automatic partitioning, virtualization at a better level than a
JVM, serialization, multiple users and a more complex surrogates' infrastructure.
This would notably increase the usability and compatibility of the system.

The usability of the implementation of the system for the client side could also be

47

improved using the programming technique of reflection. Right now the software is
distributed with the original Java source files, and the developer must make a few
modifications on one of them. Reflection could avoid this, and then the system
could be distributed as a compiled JAR library.

At the moment, the system does not allow the possibility to maintain an state
between the surrogate and the client. Adding this feature would be useful for
application like real time games.

The design of AESTET is acceptable but its implementation could be optimized.
The way in which the database is queried to obtain the k-NN described in section
3.2.3 is not optimal, and the later processing of the obtained set of entries can as
well be improved. However, as the system works only with input representations
(single numeric values), it is already quite efficient as is, and it has been shown
that the overhead produced is minimal.

48

4 Conclusions

As a general conclusion, the MCO system presented in this thesis is able to
improve the performance of mobile devices' applications but requires their
developers to do many adaptations, since in comparison with real MCO systems, it
has many simplifications. It has been shown that in most of the cases, improving
the performance can be translated into saving energy, especially when the input
parameters of the offloadable task have a small size.

In order to take an offloading decision, the MCO system needs to forecast both the
execution time of a task and the network state. For the first, the prediction
mechanism AESTET is used. For the later, the system simply obtains the
properties of the network at the beginning of the execution of an application, and
assumes them to be similar during the whole execution of the application, if not
changing to another network. This has been proved to be an acceptable approach
for the purposes of this thesis.

Although not being very accurate, the results show that the estimations of
AESTET are precise enough to take the correct offloading decision in most of the
cases. AESTET follows a scheme originally designed for estimating the execution
times of large tasks (e.g. for grid computing), where the overhead produced by
computing the estimations is negligible. It was a challenge to see if this scheme
could fit in the context of MCO. It was realized that estimating the execution
times of complex tasks with multiple input parameters produced too much
overhead, following the original scheme. Considering this, the scheme was
redesigned so that the inputs would have to be translated into a single numeric
representation. This would have to be done by the applications' developers,
decreasing the usability of the system. Furthermore, the translation functions
might be difficult to define in some cases, and there might even be tasks with
complex inputs untranslatable to a single numeric representation. The accuracy of
AESTET depends on the reliability of these translation functions.

The MCO system proposed in this thesis can be useful for any real application
suitable for MCO. However, the system is currently only implemented for Android,
and the virtualization is limited to a JVM. More open source Android applications
with pure Java computationally intensive tasks were expected to be found .

Most of the tasks suitable for MCO have significantly variable execution times

49

depending on their inputs, and AESTET takes advantage of this to make the
predictions. If the scope of the MCO system would only comprise the applications
with significantly variable execution times depending on the size of the input, then
AESTET could gain a lot of usability. The developer would no longer need to
provide to the system translation functions capable to summarize the input of his
tasks into a single numeric representations. Furthermore, in this case it could be a
better approach that the applications using the system would follow a training
phase to generate the initial samples database needed for AESTET. Going further,
automatic partitioning of the applications could be considered then, as no
developer-provided information would be needed for the tasks. Finally, the
identified tasks could be automatically uploaded from the mobile devices to the
surrogates in case of not being already there, instead of requiring the developer to
do it beforehand. If all of these changes were to be carried out, the developer
interaction would be reduced to none, and the tools of the web interface would not
be needed anymore. The usability of the MCO system would hence be radically
improved.

Taking into account the different exposed points, it can be affirmed that the
system can be used as is for future experimentation, and thereby fulfills the
parallel aim of this thesis.

50

References
[ADT13] ADT Eclipse plugin. http://developer.android.com/sdk/eclipse-adt.html, May
2013.

[AID13] AIDL. http://developer.android.com/guide/topics/fundamentals.html, May 2013.

[AMa13] Android Market. http://www.android.com/market/, April 2013.

[And13] Android Developers. http://developer.android.com, April 2013.

[AOS04] X. Gu "Adaptive Offloading for Pervasive Computing", IEEE Pervasive Comp.,
vol. 3, no. 3, pp.66 -73 2004.

[APS13] Android Play Store https://play.google.com/, April 2013.

[ATT13] AT&T Labs Research - Leading Invention, Driving Innovation:
http://www.research.att.com/articles/featured_stories/2011_03/201102_Energy_efficient,
June 2013.

[AWS13] Amazon Elastic Computing. http://aws.amazon.com/ec2/, May 2013.

[Bal03] R. K. Balan, M. Satyanarayanan, S. Park, and T. Okoshi. Tactics-Based Remote
Execution for Mobile Computing. In Proceedings of the 3rd International Conference on
Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA, 2003.

[Bar13] Barbera, M.V.; Kosta, S.; Mei, A.; Stefa, J., "To offload or not to offload? The
bandwidth and energy costs of mobile cloud computing", INFOCOM, 2013 Proceedings
IEEE , vol., no., pp.1285,1293, 14-19 April 2013.

[CAi11] C. Ai, J. Liu, C. Fan, X. Zhang, and J. Zou, “Enhancing personal information
security on android with a new synchronization scheme”, in Proc. of WiCOM 2011, 2011.

[CDA11] Kemppainen, M. (2011). Mobile computation offloading: A context-driven
approach. Aalto University. T-110.5190 Seminar on Internetworking.

[Chi93] Philip F. Chimento and K. S . Trivedi. The Completion Time of Programs on
Processors Subject to Failure and Repair. IEEE Transactions on computers, Vol. 42, No.
10, October 1993.

[Chu10] B.-G. Chun and P. Maniatis. Dynamically partitioning applications between weak
devices and clouds. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond, MCS ’10, pages 7:1–7:5, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0155-8.

[Chu11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik and Ashwin
Patti. CloneCloud: Elastic Execution between Mobile Device and Cloud. In proceedings of
the sixth conference on Computer systems, April 10–13, 2011, Salzburg, Austria.

[Clo09] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, "The Case for VM-Based
Cloudlets in Mobile Computing", IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-23, Oct.
2009.

http://developer.android.com/sdk/eclipse-adt.html
http://aws.amazon.com/ec2/
http://www.research.att.com/articles/featured_stories/2011_03/201102_Energy_efficient
https://play.google.com/
http://developer.android.com/
http://www.android.com/market/
http://developer.android.com/guide/topics/fundamentals.html

[Clo12] S. Simanta, K. Ha, G. Lewis, E. Morris, and M. Satyanarayanan, "A Reference
Architecture for Mobile Code Offload in Hostile Environments", in Fourth International
Conference on Mobile Computing, Applications and Services, Seattle, WA, October 2012.

[Clo13] Class Cloudlet.
http://www.cloudbus.org/cloudsim/doc/api/org/cloudbus/cloudsim/Cloudlet.html, May
2013.

[CMU13] CMU Sphinx. http://cmusphinx.sourceforge.net/, May 2013.

[Cpl13] Cplusplus. http://www.cplusplus.com/, May 2013.

[CSR13] Cpu Spy Reborn. http://mirko-ddd.xda-developers.com/cpu-spy-reborn, June
2013.

[Cue10] Cuervo, E. et al. (2010). MAUI: making smartphones last longer with code offload.
In Proceedings of the 8th international conference on Mobile systems, applications and
services, San Francisco, CA.

[Din11] Hoang T. Dinh, Chonho Lee, Dusit Niyato and Ping Wang. “A survey of mobile
cloud computing: architecture, applications, and approaches”, School of Computer
Engineering, Nanyang Technological University (NTU), Singapore, Published online in
Wiley Online Library, 2011.

[Dou91] F. Douglis and J. Ousterhout. Transparent Process Migration: Design Alternatives
and the Sprite Implementation. Software - Practice and Experience, 21(8):757–785, August
1991.

[Ecl13] Eclipse. http://www.eclipse.org/, April 2013.

[Erc13] Automatic Offloading of Mobile Applications Using Evolutionary Algorithms. In
ERCIM NEWS online edition. http://ercim-news.ercim.eu/en93/special/automatic-
offloading-of-mobile-applications-using-evolutionary-algorithms, May 2013.

[Euc13] Eucalyptus. http://www.eucalyptus.com/, June 2013.

[Eye13] eyes-free Speech Enabled Eyes-Free Android Applications.
http://code.google.com/p/eyes-free/, June 2013.

[FGo13] Free Go Programs. http://www.gnu.org/software/gnugo/free_go_software.html,
June 2013.

[Fli02] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing Performance, Energy, and
Quality in Pervasive Computing”, Proc. 22nd Int’l Conf. Distributed Computing Systems
(ICDCS 02), IEEE CS Press, 2002, pp. 217–226.

[Flo13] H. Flores, S. N. Srirama: Adaptive Code Offloading and Resource-intensive Task
Delegation for Mobile Cloud Applications, The 11th International Conference on Mobile
Systems, Applications and Services (MobiSys 2013), June 25-28, 2013. ACM.

[FUB13] The proposed offloading system. https://www.mi.fu-berlin.de/offload/, April 2013.

[Gao12] B. Gao, L. He, L. Liu, K. Li, and S.A. Jarvis, "From Mobiles to Clouds:

https://www.mi.fu-berlin.de/offload/
http://www.gnu.org/software/gnugo/free_go_software.html
http://code.google.com/p/eyes-free/
http://www.eucalyptus.com/
http://ercim-news.ercim.eu/en93/special/automatic-offloading-of-mobile-applications-using-evolutionary-algorithms
http://ercim-news.ercim.eu/en93/special/automatic-offloading-of-mobile-applications-using-evolutionary-algorithms
http://www.eclipse.org/
http://mirko-ddd.xda-developers.com/cpu-spy-reborn
http://www.cplusplus.com/
http://cmusphinx.sourceforge.net/

Developing Energy-Aware Offloading Strategies for Workflows", in Proc. GRID, 2012,
pp.139-146.

[Giu09] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso.
Calling the cloud: Enabling mobile phones as interfaces to cloud applications. In
Middleware ’09: Proceedings of the 10th ACM/IFIP/USENIX International Conference on
Middleware, pages 1–20, New York, NY, USA, 2009. Springer-Verlag New York, Inc.

[GM13] Griera, M. and Martínez, J. “Mobile devices computation offloading”,
Softwareprojekt Mobilkommunikation, Institute of Computer Science, Department of
Mathematics and Computer Science, Freie Universität Berlin, 2013.

[Gog13] Google Goggles. http://www.google.com/mobile/goggles/, April 2013.

[GoL13] Tesuji Software Go Library. http://sourceforge.net/projects/tesujigolibrary/, June
2013.

[Goo13] Google Scholar. http://scholar.google.com/, May 2013.

[IEE13] IEEE Xplore Digital Library. http://ieeexplore.ieee.org/, May 2013.

[Ini13] Inimesed. http://kaljurand.github.io/Inimesed/, April 2013.

[IoT13] The Internet of Things. http://standards.ieee.org/innovate/iot/, April 2013.

[Ive96] M. Iverson, F. Ozguner and G. Follen "Run-Time Statistical Estimation of Task
Execution Times for Heterogeneous Distributed Computing", Proc. High Performance
Distributed Computing Conf., pp.263 -270 1996.

[Jav13a] Java OCR. http://sourceforge.net/projects/javaocr/ , May 2013.

[Jav13b] Java Speech API. http://jsapi.sourceforge.net/, May 2013.

[Jav13c] Javabeat. http://www.javabeat.net/2007/04/the-java-6-0-compiler-api/, May
2013.

[Jun12] Juntunen, A.; Kemppainen, M.; and Luukkainen, S. "MOBILE COMPUTATION
OFFLOADING - FACTORS AFFECTING TECHNOLOGY EVOLUTION". 2012
International Conference on Mobile Business. Paper 9.

[Kem10] Kemp, R., Palmer, N., Kielmann, T. and Bal, H. (2010). Cuckoo: a Computation
Offloading Framework for Smartphones. In Proceedings of The Second International
Conference on Mobile Computing, Applications and Services, Santa Clara, CA.

[Kov12] D. Kovachev, Tian Yu, R. Klamma, "Adaptive Computation Offloading from
Mobile Devices into the Cloud", in proc. of the IEEE 10th intl. Symposium on Parallel and
Distributed Processing with Applications (ISPA), pp. 784-791, Jul. 2012.

[Kri10] Kristensen and Niels Olof Bouvin. 2010. Scheduling and development support in the
Scavenger cyber foraging system. Pervasive Mob. Comput. 6, 6 (December 2010), 677-692.

[Kul87] V. G. Kulkarni; V. F. Nicola; K. S. Trivedi . The Completion Time of a Job on
Multimode Systems. Advances in Applied Probability, Vol. 19, No. 4. (Dec., 1987), pp. 932-
954.

http://www.javabeat.net/2007/04/the-java-6-0-compiler-api/
http://jsapi.sourceforge.net/
http://sourceforge.net/projects/javaocr/
http://standards.ieee.org/innovate/iot/
http://kaljurand.github.io/Inimesed/
http://ieeexplore.ieee.org/
http://scholar.google.com/
http://sourceforge.net/projects/tesujigolibrary/
http://www.google.com/mobile/goggles/

[Kum10] K. Kumar and Y. Lu, "Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?", IEEE Computer, vol. 43, no. 4, pp. 51-56, 2010.

[Kum12] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava, "A Survey
of Computation Offloading for Mobile Systems", Mobile Networks and Applications, April
2012.

[Lag11] Lagerspetz, E.; Tarkoma, S., "Mobile search and the cloud: The benefits of
offloading," Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2011 IEEE International Conference on , vol., no., pp.117,122, 21-25 March
2011.

[Lee13] Kyunghan Lee; Joohyun Lee; Yung Yi; Injong Rhee; Song Chong, "Mobile Data
Offloading: How Much Can WiFi Deliver?," Networking, IEEE/ACM Transactions, vol.21,
no.2, pp.536,550, April 2013.

[Mar13] Martínez, J. “Improving the performance and usability of an offloading engine for
Android mobile devices with application to a chess game”, Master's Thesis, Institute of
Computer Science, Department of Mathematics and Computer Science, Freie Universität
Berlin, 2013.

[MMP95] Y A Li, J K Antonio, H J Siegel, M Tan and D K Watson. “Estimating the
Distribution of Execution Times for SIMD/SPMD Mixed-Mode Programs”, In Proc. of the
Heterogeneous Computing Workshop, 1995.

[Msg13] Message Pack. http://msgpack.org/, June 2013.

[Mul90] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse, and H. van
Staveren. Amoeba - A Distributed Operating System for the 1990s. IEEE Computer, 23:44–
53, 1990.

[New09] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden. Wishbone:
Profile-based Partitioning for Sensornet Applications. In Proceedings of the 6th USENIX
symposium on Networked systems design and implementation (NSDI), Boston, MA, April
2009.

[Nob97] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker.
Agile Application-Aware Adaptation for Mobility. In Proc. of the ACM Symposium on
Operating System Principles (SOSP), 1997.

[OCR13a] Android OCR. https://github.com/rmtheis/android-ocr, June 2013.

[OCR13b] Online OCR API. http://ocrapiservice.com/documentation/, May 2013.

[Ora13] Oracle Documentation. http://docs.oracle.com/, May 2013.

[PAN13a] PANDA Software - User Manual.
http://privatewww.essex.ac.uk/~kunyang/Projects/EPSRC/PANDA-software.html, May
2013.

[PAN13b] Policy-based Model-driven Pervasive Service Creation and Adaptation: PANDA.
http://privatewww.essex.ac.uk/~kunyang/Projects/EPSRC/PANDA.html, May 2013.

http://privatewww.essex.ac.uk/~kunyang/Projects/EPSRC/PANDA.html
http://privatewww.essex.ac.uk/~kunyang/Projects/EPSRC/PANDA-software.html
http://docs.oracle.com/
http://ocrapiservice.com/documentation/
https://github.com/rmtheis/android-ocr
http://msgpack.org/

[Par11] JiSu Park; HeonChang Yu; KwangSik Chung; Eunyoung Lee, "Markov Chain
Based Monitoring Service for Fault Tolerance in Mobile Cloud Computing," Advanced
Information Networking and Applications (WAINA), 2011 IEEE Workshops of
International Conference on , vol., no., pp.520,525, 22-25 March 2011. doi:
10.1109/WAINA.2011.10

[PCA13] Pocket Chess for Android. http://code.google.com/p/pocket-chess-for-android/,
April 2013.

[PMo13] Mobile Device Power Monitor.
http://www.msoon.com/LabEquipment/PowerMonitor/, May 2013.

[PTu13] Power Tutor. http://powertutor.org/, May 2013.

[Rei13] Reign Design Blog. http://www.reigndesign.com/blog/using-your-own-sqlite-
database-in-android-applications/, May 2013.

[Rei94] Brian Reistad, David K. Gifford. Static dependent costs for estimating execution
time. ACM SIGPLAN Lisp Pointers, v.VII n.3, p.65-78, July-Sept. 1994.

[Sat96] M. Satyanarayanan "Fundamental Challenges in Mobile Computing", Proc. ACM
Symp. Principles of Distributed Computing, pp.1 -7 1996.

[Sha13] Shazam. http://www.shazam.com, May 2013.

[Son13] Sony Add-on SDK. http://developer.sonymobile.com/knowledge-base/sony-add-on-
sdk/install-the-sony-add-on-sdk/, May 2013.

[Sph13] Sphinx-4 speech recognizer. http://cmusphinx.sourceforge.net/sphinx4/, May 2013.

[SQL13] SQ Lite. http://www.sqlite.org/, April 2013.

[SQL13] SQLite JDBC library. http://code.google.com/p/sqlite-jdbc/, May 2013.

[Sql13] sqlite-jdbc. https://bitbucket.org/xerial/sqlite-jdbc, September 2013.

[Sta13] Stackoverflow. http://stackoverflow.com, April 2013.

[Sti10] V. Stirbu. A RESTful architecture for adaptive and multi-device application
sharing. In Proceedings of the First International Workshop on RESTful Design, WS-
REST ’10, pages 62–65, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-959-6.

[Tes13] Tesseract OCR engine. https://code.google.com/p/tesseract-ocr/, May 2013.

[Til06] Tilevich E, Smaragdakis Y (2006) J-orchestra: automatic Java application
partitioning. In: European conference on object- oriented programming, pp 1–3.

[Tom13] Apache Tomcat. http://tomcat.apache.org/, May 2013.

[TTS13] FreeTTS 1.2 speech synthesizer. http://freetts.sourceforge.net/, May 2013.

[Wan13] Wang, Q., Griera, M., Martínez, J. and Wolter, K. “Analysis of Local Re-
execution in Mobile Offloading System”, Institute of Computer Science, Department of
Mathematics and Computer Science, Freie Universität Berlin, 2013.

http://freetts.sourceforge.net/
http://tomcat.apache.org/
https://code.google.com/p/tesseract-ocr/
http://stackoverflow.com/
https://bitbucket.org/xerial/sqlite-jdbc
http://code.google.com/p/sqlite-jdbc/
http://www.sqlite.org/
http://cmusphinx.sourceforge.net/sphinx4/
http://developer.sonymobile.com/knowledge-base/sony-add-on-sdk/install-the-sony-add-on-sdk/
http://developer.sonymobile.com/knowledge-base/sony-add-on-sdk/install-the-sony-add-on-sdk/
http://www.shazam.com/
http://www.reigndesign.com/blog/using-your-own-sqlite-database-in-android-applications/
http://www.reigndesign.com/blog/using-your-own-sqlite-database-in-android-applications/
http://powertutor.org/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://code.google.com/p/pocket-chess-for-android/

[Wei08] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and P. Wyckoff. Tapping into
the Fountain of CPUs – On Operating System Support for Programmable Devices. In Proc.
of the 13th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2008.

[Wol08] R. Wolski, S. Gurun, R. Krintz, and D. Nurmi, “Using bandwidth data to make
computation offloading decisions”, in in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS 2008), High-Performance Grid Computing
Workshop, 2008.

[Xda13] XDA Developers. http://forum.xda-developers.com/, May 2013.

[XGu03] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adaptive
Offloading Inference for Delivering Applications in Pervasive Computing Environments. In
Proceedings of the First IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2003.

[XGu04] X. Gu, A. Messer, I. Greenberg, D. Milojicic, and K. Nahrstedt, “Adaptive
Offloading for Pervasive Computing”, IEEE Pervasive Computing, vol. 3, pp. 66–73, July
2004.

[Xia07] Xian C, Lu Y-H, Li Z (2007) Adaptive computation offloading for energy
conservation on battery-powered systems. In: International conference on parallel and
distributed systems, pp 1–8.

[Yan08] Kun Yang and Shumao Ou (University of Essex), Hsiao-Hwa Chen (National Sun
Yat-Sen University). “On Effective Offloading Services for Resource-Constrained Mobile
Devices Running Heavier Mobile Internet Applications”. IEEE Communications Magazine,
pp.53-63, January 2008.

[Yoo12] C. Yoon, D. Kim, W. Jung, and C. Kang, “Appscope: Application energy metering
framework for android smartphone using kernel activity monitoring,” in Proc. of USENIX
ATC 12, 2012.

[You01] C. Young and Y. N. Lakshman. Protium, an Infrastructure for Partitioned
Applications. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems
(HotOS), Schloss Elmau, Germany, May 2001.

[YSu05] Y.-Y. Su and J. Flinn. Slingshot: Deploying Stateful Services in Wireless Hotspots.
In Proc. of the 3rd International Conference on Mobile Systems, Applications, and Services
(MobiSys), Seattle, WA, June 2005.

[Zha10] Xinwen Zhang, Sangoh Jeong, Simon Gibbs, and Anugeetha Kunjithapatham.
Towards an Elastic Application Model for Augmenting Computing Capabilities of Mobile
Platforms. In the 3rd International ICST Conference on Mobile Wireless Middleware,
Operating Systems, and Applications (MobilWare), 2010.

[ZLi01] Li Z, Wang C, Xu R (2001) Computation offloading to save energy on handheld
devices: a partition scheme. In: International conference on compilers, architecture, and
synthesis for embedded systems, pp 238–246 .

http://forum.xda-developers.com/

