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Abstract

Out of thousands of names to choose from, picking the right one for your child

is a daunting task. In this thesis, our objective is to help parents make an in-

formed decision while choosing a name for their baby. To this end, we follow

a recommender system approach and explore different methods for given name

recommendation. Our final approach combines, in an ensemble, the individual

rankings produced by simple collaborative filtering algorithms in order to pro-

duce a personalized list of names that meets the individual parents’ taste.

Our experiments were conducted using real-world data collected from the

query logs of Nameling (www.nameling.net), an on-line portal for searching

and exploring names, which corresponds to the dataset released in the context

of the ECML PKDD Discovery Challenge 2013. Our approach is intuitive, easy

to implement, and features fast training and prediction steps.

This thesis explains all the research done by us. Unlike the publication of

this research published in the conference (that basically explains how do we

build our recommendation system for recommending given names), in this doc-

ument we extend our explanation, adding some background knowledge, and we

also explain other relevant information (such as those algorithm that did not

perform well, as well as some ideas that would improve our results that were

not implemented).

Additionally, we explain other approaches presented in the ECML PKDD

Discovery Challenge 2013. The reader of this thesis, with this document, will

have an extensive information of our work and, therefore, will have insightful

information to solve the task of recommending given names.
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1. INTRODUCTION

1. Introduction

There are many considerations when parents are deciding on a name for their child.
Many parents choose to name their babies after a grandparent, other relative, or a close
friend. Some others pick names from the actors or actresses of their favourite soap
opera. Cultural and societal rules, the meaning of the name, family’s traditions, or re-
ligious beliefs also play an important role in many countries at the time of choosing a
given name for a baby.

This is indeed a daunting task for the parents and their decision will mark the child
for the rest of his or her life. The given name should be unique, making the bearer stand
out from the crowd, but at the same time it should also avoid embarrassment of being
the source for nicknames,humiliating initials, or annoying email addresses1.

Maria

Michael

Tobias

JuliusJoan
Martha

Robert

Laura

عبد ال
Sara

Emma

Christian

Борис

张

明彦?
Fig. 1. The task of choosing a name can be com-
plicated for the parents.

From thousands of names to choose
from, how do parents pick the right one
for their baby? In this work, we present
an approach to help parents to deal with
this information overload problem. We
document all the studies done while do-
ing this thesis, the algorithms used and
our final implementation to recommend
names to the parents. At the end, we
take a recommender systems approach
and show how an ensemble of simple col-
laborative filtering algorithms can help
users to find given names that match their
needs from a big pool of names.

The task of recommending names
using recommender systems is new, so
practically there was no background
studies in this field. For this reason, an
extensive study in several aspects have
been done to detect the characteristics of
this problem (like the bests algorithms to
use, or the way the data needs to be treated to remove the unnecessary information
that can only introduce noise). All the conclusions of our research are explained in the
document.

1 such as the one of our friend H. Thomas Eatons, who has the (unfortunate) email address of
eatonsht@<anonymized>.com :) .
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1. INTRODUCTION

The main contribution of this work is an intuitive approach for the task of given
name prediction that is easy to implement, and that features fast training and prediction
steps. Our study shows that, in this particular task, our ensemble of simple collaborative
filtering building blocks performs significantly better than state-of-the-art latent factor
models.

1.1. The Challenge
We conducted this study in the context of the European Conference on Machine Learn-
ing and Principles of Knowledge Discovery in Databases Discovery Challenge 20132

(ECML PKDD 2013). This thesis documents all the work done and the final approach
of team “cadejo” on the off-line phase of the challenge. Our solution was on the top
5 in terms of performance, and our paper submitted was accepted for publication and
presentation at the workshop.

The dataset used, the assessment metric for the recommendations and the properties
of the evaluation data, as well as other restrictions that are imposed from the challenge
remain in the thesis work. All this information is explained below.

1.2. The Dataset
The dataset provided for the off-line challenge that we use in this thesis is based on
the query logs of nameling (www.nameling.net), an online portal for searching and
exploring names. The collection comprises the time period from March 6th, 2012 to
February 12th, 2013.

interactions 515,848
users 60,922
names 50,277

Table 1. Information of the number of interactions (i.e. activities), different names and dif-
ferent users in the dataset.

Figure 4a shows the frequency of names per user. We can observe that it corresponds
to a characteristic graph of a long-tail distribution, where few names tend to concentrate
a large number of users. The frequency of users per given name is shown in Figure 4b.

There are 5 different types of interactions within the dataset, which are described as
follows:

1. ENTER SEARCH: the user explicitly writes a name in the search field of Namel-
ing’s website in order to search for it.

2 http://www.kde.cs.uni-kassel.de/ws/dc13/offline/
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1. INTRODUCTION

Fig. 2. Main page of www.nameling.com.

2. LINK SEARCH: the user clicks on a name of showed at Nameling’s website, fol-
lowing a link to a search result page.

3. NAME DETAILS: the user requests more detailed information of a name.

4. LINK CATEGORY SEARCH: Wherever available, a name is categorized accord-
ing to the corresponding Wikipedia article. Users may click on such a category link
to obtain all names in the corresponding category.

5. ADD FAVORITE: the user saves the name in his list of favourite names.

In addition to these datasets, there is a list of valid or known names provided by
the organizers of the challenge which contains 36,436 given names, 3 files (one file for
the German names, another one for the English names and the last one for the French
names) containing a list of similar names for each name according to the Nameling’s

10
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1. INTRODUCTION

Fig. 3. When a name is searched (in our case ”Bernat”), a list of names that Nameling
consider similar to it are shown (”Pons”, ”Bruno”, etc.). If one of this names is clicked,
a LINK SEARCH is computed. In case we click the butterfly icon next to a name, the name
is added as a favourite name (ADD FAVORITE). If we click in one of the categories of
a name (for example, the category ”250 deaths” under the name Denis), we are doing a
LINK CATEGORY SEARCH. In case we click de information icon next to the search field,
we are doing a NAME DETAIL search of the searched name.

similarity metric, and a third document with an approximated geographic position for
some users.

11
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(b) Frequency of users per given name.

Fig. 4. Frequency of users and names.

1.3. The Task

Our goal in this thesis is to present how to recommend to a user names for a child based
on its preferences (in this case, names the user has already searched).

The recommender system’s quality is evaluated with respect to the set of names
that users have entered directly into Nameling’s search field. The rationale to restrict
the evaluation to ENTER SEARCH activities is that all other user activities are biased
towards the lists of names which were displayed to Nameling users.

The names we need to recommend are hidden by taking from the training data the
chronologically last two, which had directly been entered into Namelings search field
(i.e., ENTER SEARCH activity) and which are also contained in the list of known
names as detailed in the challenge description3. These names can not a favourite name
(ADD FAVORITE activity) for the user.

The assessment metric for the recommendations is Mean Average Precision at a
cut-off of 1000 (MAP@1000) [6]. That is, for each test user look up the left-out names
and take the precision at the respective position in the ordered list of recommended
names. These precision values are first averaged per test user and than in total to yield
the final score.

MAP :=

Q∑
q=1

AveP(q)

Q
. (1)

MAP@1000 means that only the first 1,000 positions of a list are considered. Thus it
might happen that for some test users one or both of the left out names do not occur in
the list of recommendations. These cases will be handled as if the missing names were
ranked at position 1001 and 1002 respectively.

3 http://www.kde.cs.uni-kassel.de/ws/dc13/faq/
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train data

train data

test data

validation 
data

test data

all the 
data from
nameling

all the 
data from
nameling

train data 
for the 
challenge

test data 
for the 
challenge

train data 
for the 
challenge

train data 
for the 
challenge

test data 
for the 
challenge

new train 
data for 
the thesis

Fig. 5. Visual example of a test user search before splitting the data. To train our methods,
the given training data was split again, creating a smaller training data and a validation
data, that is going to be our ”test data”.

1.4. The test and the validation data for the experiments
As said before, the test set is built by taking from the training data the chronologically
last two names which had directly been entered into Nameling’s search field. But this
process has several restrictions:

– Are only considered for the evaluation those names which had not previously been
added as a favourite name by the user.

– All the remaining user activity after the (chronologically) first evaluation are dis-
carded.

– Is required at least three activities per user to remain in the data set

An example to make it clear is seen in Figure 6. First of all, ”alromano” is not
a known name for Nameling, so this name can not be considered as a possible name
for the validation test. Also we can notice that the last user’s search using the activity

13
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ENTER SEARCH is ”max”, but is also included as an ADD FAVORITE name (the
first activity of the user), and for this reason the name can not be included in the set
name. Finally, the last two names searched using the ENTER SEARCH are ”andreas”
and ”robert” (these are going to be the test names). With the two test names selected,
the next step is to remove all the user activity after the first appearance of a test name
in users searches. In this case, all the data from the first appearance of ”andreas” is
removed. Finally, what we receive (what is going to be our training data) is Figure 7.

userId activity name POSIX_time

23 ADD_FAVORITE max 1361099013

23 ENTER_SEARCH carsten 1361099014

23 ENTER_SEARCH jan 1361099015

23 ENTER_SEARCH carsten 1361099016

23 ENTER_SEARCH stephen 1361099017

23 ENTER_SEARCH andreas 1361099018

23 ENTER_SEARCH alromano 1361099019

23 LINK_SEARCH carsten 1361099020

23 ENTER_SEARCH andreas 1361099021

23 ENTER_SEARCH robert 1361099022

23 ENTER_SEARCH max 1361099023

23 LINK_SEARCH oscar 1361099024

23 NAME_DETAILS oscar 1361099025

prohibited 
name

unknown 
name

set name

names after 
the first 

occurrence 
of a set 
name  

Fig. 6. Visual example of a test user search before splitting the data. We can see that ”alro-
mano” is not a known name for Nameling, and ”max” can not be a set name because of is
already added as a favourite name by the user. For this reason, ”andreas” and ”robert” are
going to be the hidden names.

1.5. Data Preprocessing and Validation Set

In our study we could not find a clear mechanism on how to exploit activities of
type LINK CATEGORY SEARCH, and therefore we drop such interactions from the
dataset. We also concentrate only on names which appear as part of at least one in-
teraction and that were also present in the known names list. In total our experiments
consider a total number of 260,236 user-name pair interactions, from |U| = 60, 922

14
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userId activity name POSIX_time

23 ADD_FAVORITE max 1361099013

23 ENTER_SEARCH carsten 1361099014

23 ENTER_SEARCH jan 1361099015

23 ENTER_SEARCH carsten 1361099016

23 ENTER_SEARCH stephen 1361099017

prohibited 
name

Fig. 7. Visual example of a user search after splitting the data. As seen in Figure 6, ”andreas”
and ”robert” are the test names, so all the searches after the first appearence of a hidden
name is removed. We receive for training only the first 5 activities.

different users and |I| = 17, 467 unique names. The mean of names per user is 4.35,
the median is 3 names per user, with a minimum 1 and a maximum of 1670 names per
user. All the names were converted to lower-case to avoid case-sensitive distinction.

In the challenge, we work with all the train data from Nameling, and the test names
are hidden from us. However, for the experiments for the challenge and also for the
thesis, the hidden names are needed to be known to be able to calculate the performance.
For this reason, we split again the train data to obtain a smaller train data and a validation
set to evaluate our results, using the same script used for the challenge (provided by
Nameling). A visual explication is shown in Figure 5.

The script to split the data gives us a validation with 13,008 users and two target
names. The first tests done with Bayesian Personalized Ranking Algorithm, were done
using this validation file. In general terms, our 13,008 user validation performed better
than the test of the challenge (around 20% better).

As is going to be explained in section 4, we changed our strategy to solve the prob-
lem, and we seized the moment to extend the validation adding the test users of the
challenge not included in the validation. With this small change, the test data of the
challenge was better represented in the validation data. After including the missing
users in the validation, the performance of the methods tested in our validation (for the
thesis) and the test set (for the challenge) were really similar (generally a difference
lower than 5%).

From these 13,008 users, 2,264 are not within the 4,140 users in the test set, which
are the ones we are required to give recommendations. In order to have a more repre-
sentative cross-validation dataset, for each of these 2,264 users we also selected, from
the remaining transactions in the training set, the last 2 names the user interacted with.
Note that in this case we ignored the additional constraints imposed by the script, e.g.,
the type of activity.

1.6. Preliminaries

Before we start explaining methods, some explanation of the nomenclature is needed.

15
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all users

validation users 

test users 

Fig. 8. From the training set, we extracted the 2 last names from the users in the train
validation that were not included in the validation set to make sure that all names of the test
were included in our training validation.

We consider the dataset as sparse matrix X = [xui], where we use through this paper
the letter u for users and i for names, which corresponds to the items in a recommender
system setting. We use bold letters for matrices and vectors, and non bold for scalars.
The set of users and names4 are denoted byU and I, respectively. Predictions for user-
item pairs are denoted as x̂ui. The set of names that the user has interacted with is written
as I(u). The set of users, who interacted with name i isU(i).

We use the notation Cu(i) to represent the set of names co-occurring with name i
within I(u), that is, Cu(i) := { j | i, j ∈ I(u) ∧ i , j}.

We denote the bag of co-occurring names for a give item i, as follows:

C(i) := ∀u ∈ U, {((i, j),m) | i ∈ I(u) ∧ j ∈ Cu(i)} ,

where m((i, j)) : I×I → N≥1 is a function from the set name pairs (i, j) ∈ I×I to the
set N≥1 of positive natural numbers. For each pair of names (i, j), m((i, j)) represents
the number of occurrences of such pair in the bag, i.e., its multiplicity. The aggregated
bag C over all items corresponds to C :=

⋃
i∈I(i) C(i).

We use S u to represent the user u’s sequence of interactions ordered according to
the corresponding time-stamp , e.g., if user u searches first for name i1, after that for i4
and finally for name i2, then his sequence S u is represented as:

4 In this work, we use the terms “names” and “items” interchangeably.

16
Collaborative Filtering Ensemble for Personalized Name Recommendation



1. INTRODUCTION

Su = i1 −→ i4 −→ i2.

In some cases, the kind of search in S u is needed for an example of a method. In
that case, the nomenclature for an item search in a S u using ENTER SEARCH is esi,
using LINK SEARCH is lsi, using ADD FAVORITE is a fi and NAME DETAILS is
represented as ndi.

Another nomenclature is used for the list of co-occurrence names. For example,
consider three users u1, u2 and u3, and their corresponding sequences S of search actions
in temporal order:

Su1 = i1 −→ i4 −→ i2 −→ i3

Su2 = i4 −→ i5 −→ i1 −→ i4 −→ i3

Su3 = i3 −→ i5 −→ i6 −→ i7 −→ i4

The bag of co-occurrences for item i4, C(i4), sorted in decreasing order of multiplic-
ity, is given by:

C(i4) = {((i4, i3), 3), ((i4, i1), 2), ((i4, i5), 2), ((i4, i2), 1), ((i4, i6), 1), ((i4, i7), 1)} .

Some examples of methods that use the bag of co-occurrences are explained in 4.
We use the notation CS i for the list of the most similar names according to the

Nameling’s similarity metric of i. The list is given in decreasing order, meaning that the
first item in the list is the most similar item. The list is represented as:

CSi1 = i3, i4, i8, i21, . . . , i32.

In this example, the most similar name to i1 would be i3, the second most similar
would be i4, and go on.

In some examples, we explain how works an algorithms giving its result (the list of
names the user would receive after using this algorithm). The nomenclature for these
recommended list would be R(u). For example, a recommended list for u1 where i1, i2
and i3 are recommended would be:

R(u1) = [i1, i2, i3] .

17
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2. BACKGROUND

2. Background

2.1. Recommender systems
For the last lustrums, the relation between internet and the users have change a lot. Orig-
inally, Internet was a tool for sending information between two distant points. Now, In-
ternet has become a system where the users can purchase products, share their interests
and opinions and consume culture thanks to the many services that are available.

The way the users interacts with Internet is influenced by the way they think, act and
their preferences in life. That means that with the information how a user use Internet,
we can create an accurate profile of him. These information is really valuable for the
companies that provide these services. With the proper analysis of their data, they can
understand their users, and offer something that fits everyone better.

The recommender systems is the engine that study that amount of data to be able
to predict the needs and preferences of the users. There are different approaches for
the recommender systems depending on several things. These systems can be classified
according to:

– The technique used to extract information (Collaborative filtering vs. Content-Based
filtering)

– The way a user and and item interacts (Implicit vs. Explicit data)
– How the system have to recommend the items to the users (N-items vs. Ranking)

2.1.1. Collaborative filtering vs. Content-Based filtering

The main idea in the recommender systems are to extract some pattern based on the
data obtained that suits the users we want to recommend.

With the collaborative filtering strategy, the system uses techniques to identify col-
laborations and common features between users and items.

Being u1, u2 and u3 three users, and i1, i2, i3 and i4 four items, and Int(u) the list of
interactions (purchases) user-item user u has done:

Intu1 = i1, i4, i2

Intu2 = i3

Intu3 = i1, i4

18
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Fig. 9. + represents an interaction between a user and an item, ? otherwise. In this case, we
can see that u1 and u3 are quiet similar

The collaborative filtering algorithm would detect that u1 and u3 are quiet similar
(see Figure 9). They have in common that they have purchased i1 and i4. In contrast, u2
purchased only i3. For this reason, if a recommendation to u3 is needed, it would not be
unreasonable to believe that the system would recommend to him i2, the item from u1
that u3 has not purchased yet.

On the other hand, the content based filtering uses explicit information about users
and items. For example, in a music streaming service, a content based recommendation
would be to recommend to every user the most popular (listened) songs from their
country.

2.1.2. implicit vs. explicit data

When a user rates the items he purchased, the data is explicit. On the other hand, when
we only have interactions between users and items without any kind of rating, the data
is implicit.

The explicit data is (by and large) easier to handle. The system knows what a user
purchased, but also if the user liked the item (and how much). With the implicit data,
the system only knows that an interaction between an user and an item exist, but no rate
is known.

As an example:
Intu1 = i1, i4, i2

Intu2 = i3

Intu3 = i1, i4

Intu4 = i1, i3, i4

As said before, Int(u) the list of interactions user-item user u has done. If we want to
recommend an item to u3, we would have to choose between i2 and i3 (the items from
the data that u3 has not purchased). As we can see (Figure 10), the users that are similar
to u3 are u1 and u4. Both have purchased the items purchased by u3, one of them have
purchased i2 and the other one i3. With these information, we can not choose properly
which one could fit u3 preferences better.
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i1 i2 i3 i4

u1 + + ? +

u2 ? ? + ?

u3 + ? ? +

u4 + ? + +

Fig. 10. With this information, we can see that because of their positive interactions (repre-
sented by a +), u1 and u4 are more similar to u3 than u2.

On the other hand, with explicit data (Figure 11), we have the additional information
of the scores. As said, we can know how much an item liked a user.

In our example, now we have extra information to choose between i2 and i3 (or what
is in this example the same thing, to choose which user u1 or u4 is more similar to u3).
We can see that the scores given by u3 and u4 to the items purchased in common (i1 and
i4) are more similar that the scores given by i1 and i3. For this reason, now we can say
that the system would recommend to u3 the item purchased by u3, i3.
As we have seen with the examples, the explicit data gives more information than the

i1 i2 i3 i4

u1 3 2 ? 5

u2 ? ? 4 ?

u3 5 ? ? 1

u4 4 ? 5 2

Fig. 11. The scores in the explicit data allows us to say that u4 is more similar than u1 to u3

implicit data. This handicap for implicit data can be palliate depending on the kind of
implicit interactions that we have. For example, if the data reflects how many times an
user has interacted with an item or there are more than one type of interaction (just like
in the Discovery Challenge, where we consider that one interaction is more important
than the others), depending on the case this fact can represent a penchant, that is not an
information as reliable as an score, but can determinate which item the system would
recommend in case of doubt. Figure 12 is an example of these concept, where we could
consider that u3 is more similar to u4 than u1 because the first two have interacted more
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than once with i1, when u1 have interacted only once with this item. Moreover, u1 has
interacted twice with i4, when both u3 and u4 have interacted with that item only once.

i1 i2 i3 i4

u1 + + ? ++

u2 ? ? + ?

u3 +++ ? ? +

u4 ++ ? ++ +

Fig. 12. In some cases, some information extracted from the data (for example, the kind of
interaction between users and items or in our example, the number of them) can give us
extra information that can improve our recommendations

2.1.3. N-items vs. ranking

The way the system recommends the items to a user may differ depending on the situa-
tion. In some cases, the system has to recommend an unordered amount N of items to a
user. Exist other cases where the system have to recommend a ranked N items to a user,
where some items are more recommended than others. The algorithm has to be adapted
to it.

In case the system recommends a ranked list of items, the algorithm needs to build
a structure of direct preferences between items to create a ranking, because the system
needs to set ordered priorities between items. On an unranked list, the system can use
other strategies to recommend N items (it is not necessary to know if one item is better
than another, only if it can be recommended to the user because fits its pereferences).

In our case of recommending names, we need to find a good solution for a collabo-
rative filtering, implicit data, ranking case.

2.2. The algorithms
In this work, several algorithms are tested. The methods used are all collaborative fil-
tering algorithms. These algorithms are detailed below, classified into different groups.

2.2.1. Matrix Factorization Collaborative Filtering
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n-items
Maria
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Tobias
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Christian

Борис

张

明彦 ranking

Sara

Emma

Laura

1- Laura
2- Sara
3- Emma

Fig. 13. The way we have to give the recommendations conditions the algorithm. In the first
case (n-items), there is no order, but in the ranking recommendation, Laura is considered a
better recommendation than Emma.

Some of the algorithms tried in this work are Matrix Factorization algorithms. The idea
of these algorithms is to represent all the data (users, items and their interactions), that
can be represented by a large and sparse matrix, as a product of two low-rank matrices.

In Figure 15 there is a visual explanation of this concept. The first matrix (with all
the interactions between users and items) is large and sparse. For this reason, extracting
information from this source can be really slow, with a lot of unnecessary data. The idea
behind the Matrix Factorization is to represent all the interaction information with two
smaller matrices that represent the users and the items.

Thus the representation of the data user-item created by the algorithm is the matrix
M. Is obtained from the factorization of the information of the data into two matrices
W and H like

M = WHT

which represents abstract features of the users and the items correspondingly. To obtain
the recommendations, the dot product of the vector that represents the user in W and the
vector that represent an item in H gives a result. This prediction formula can be written
as

x̂ui = 〈wu, hi〉 =

k∑
f =1

wu f · hi f

For example, imagine that fi and fu are the vectors that represent an item and an
user in H and W.

fi1 = [0.2, 0.45,−1, 0]

fi2 = [1,−0.5, 0.2, 0]
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Fig. 14. The idea of the Matrix Factorization consists to factorize the matrix with the inter-
actions into smaller matrices.

fu = [0.75,−0.1, 0, 1]

i2 would be recommended before i1 to u1 because the dot product result of u1 and i2
is bigger than the dot product result of u1 and i1 (x̂11 < x̂12, that is 0.205 < 0.8).
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2.2.2. Neighbourhood-Based Collaborative Filtering

Neighbourhood-Based recommendation is a classic approach for Collaborative Filter-
ing that still ranks among the most popular methods for this kind of problem. These
approaches are quite simple to describe and implement featuring important advantages
such as the ability to explain a recommendation and to capture “local” relations in the
data, which are useful in making serendipitous recommendations.

The basic idea of this algorithm is to label an element (item or user) based on
their closest training samples in distance to it (see 15). The number of samples used
to determine the classification can be predefined (the most common algorithm is the
K-Neighbourhood) or based on the local density of the points (for example, the Radius-
Based Neighbourhood).

x
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x

x

x

x

xx
x

x
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x
x

x
x

x

x

Fig. 15. A typical visual representation of the Neighbourhood-Based CF strategy, where a
user/item gets a classification depending of the information of the closest users/items (the
neighbours).

The neighbourhood algorithms can be User-Based or Item-Based. User-Based algo-
rithms were the first neighbourhood algorithms used. These algorithms are made based
on user to user similarity (how similar are the items two users have purchased). On
the other hand, Item-Based algorithms, are based on the similarity between items (how
similar are the items a user purchased directly with other items). Broadly, there are less
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items than users in a system, and the relationship between items is quite static, allowing
the Item-Based algorithms to be more computational efficient and as powerful as the
User-Based algorithms.

2.2.3. Item-to-Item Collaborative Filtering

This approach for item recommendation is based on the classic Item-Based collabo-
rative filtering algorithm introduced by Amazon.com [20]. This kind of Collaborative
Filtering algorithms work really well, with a really good performance in cases with a
very large customer bases and large catalogues (like Amazon.com), being really scal-
able.

Rather than matching the user to similar customers, the item-to-item collaborative
filtering algorithm builds a relationship between items, that is finding items that users
tend to purchase together. With this approach, we avoid to compute a similarity metric
between item pairs that do not tend to be chosen together by an user.

For each item in product catalogue, I1
For each customer C who purchased I1

For each item I2 purchased by customer C
Record that a customer purchased I1 and I2

For each item I2
Compute the similarity between I1 and I2

Fig. 16. Pseudocode in [20] for the item-to-item algorithm

In our case, we adapt the algorithm. The algorithm matches each user’s interac-
tion with a name to a set of similar names, then combines those similar items into a
recommendation list.

2.2.4. Slope One predictor

The Slope One recommendation algorithm computes the differences of interaction in-
tensities between items. With this information, tries to predict the interaction intensity
between users and items without interactions. Having an interaction between a user u
and an item i, estimate the type of interaction between the same user u and another item
j based on the relationship of preference between i and j in the system. The simplest
example to explain the slope one recommendation is explained in the Figure 17

This algorithm has performed well in several recommendation challenge, being easy
to implement, efficient at query time, dynamically updateable and can compete against
Memory-Based schemes that needs lots of memory.
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item 1 item 2
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user B

Fig. 17. Basis of Slope One algorithm: The predicted rate of item 2 by user B would be 5/5
based on user A rates. The score difference of item 1 and item 2 for user A is 1, so we can
predict that user B will score item 2 like item 1 + 1.

2.2.5. Page Rank

The Page Rank algorithm was introduced in 1998 [10], and it is the algorithm behind
the search engine Google.

The idea behind this algorithm is to rate how important is an item in the system
based on the mentions of the other items in the system. In case of web pages, a web
page is going to be well-ranked when a lot of pages have a link to that page. Moreover,
these“votes” will be weighted based on the popularity. That means that a reference from
a popular item (an item referenced lots of times) is more important than a less popular
item.

A visual example to understand the basic idea is shown in Figure 18.
This algorithm is designed to scale easily, and is efficient in both space and time. As

is explained in [10], the algorithm was built to be used in the search engine, and its im-
plementation tries to avoid bottlenecks in CPU, memory access and memory capacity.

2.3. The metric: MAP

The metric used to calculate the performance is the Mean Average Precision. This met-
ric gives as a result the precision in a ranked list of recommendations. The equation to
calculate the performance is

MAP :=

Q∑
q=1

AveP(q)

Q
, (2)
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Fig. 18. Visual example of the idea behind Page Rank. An item is ranked depending on how
many items refer to it and the importance of them. For example, A is the most important
item (is the bigger one) because is one of the items with more votes (represented with arrows)
and those who have voted for A are quite important (both B and one C)

The precision P(q) of a recommended name is based on its position in the recom-
mended list. Q are the number of recommendation list (in our case users) we need to
recommend.

In our work, in case the names to recommend are not included in the 1000 names
list, they will be considered as if they were included in the 1001st and in the 1002nd
position. The best way to illustrate this metric is using an example:

Imagine we have to recommend 2 different names to two users (u1, u2). Our recom-
mendation list could be

R(u1) = [i3, i5, i436, . . . , i7, i200] .

R(u2) = [i1, i500, i6, . . . , i43, i21] .

Imagine that the names that have to be recommended for u1 are i436 and i7, that are
in position 3 and 999 respectively. In that case, the MAP would be (1/3 + 2/999)/2
= 0.167668. On the other hand, the names expected by u2 would be i1 and i543. The
first recommended name is i1, but the second name is not in the list. The performance
in that case would be 1/1 = 1, but it would be incongruous because only one name is
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1 i3

2 i5

3 i436
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999 i7

1000 i200

extra position
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the u1

1 i1

2 i500

3 i6

.
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.

999 i43

1000 i21

extra position

extra position

recommendations for 
the u2

(1/3) = 0.333333

(2/999) = 0.002002

(1/1) = 1

(2/1001) = 0.001998

(1/3 + 2/999)/2 = 0.167668

(1/1 +2/1001)/2 = 0.50099

(0.1677668 + 0.50099) =  
0.334343

Fig. 19. Representation of mean average precision in our work.

recommended. For this reason, the names that are not hit in the list are considered in
the 1001st and 1002nd position. In u2, the performance would be (1/1 +2/1001)/2 =

0.500999. Finally, the average performance would be 0.334343. In Figure 19 there is a
graphical representation of this process.
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3. Related Work

Although top-N recommender systems have been studied in depth, the particular task
of recommending given names is rather new. Lately, some papers have been published
trying to solve this problem, most of them from the researchers that are involved in the
Nameling website. In this chapter, we are going to check out that documents, especially
those papers accessible in the website of the ECML PKDD’13 Discovery Challenge
that have provided us a lot of information useful for the work. The two papers that we
are going talk about are written by Folke Mitzlaff and Gerd Stumme.

Not only the papers that are going to be explained in this section have been useful
for us. A lot of papers, investigations and documents have been read and used to com-
plete this thesis. However, we are going to explain here only the documentation related
directly to the given names recommendation task.

The other collaborative filtering algorithms and research applied in this thesis are
referenced in this document when is necessary.

3.1. Onomastics 2.0
This work ([22]) shows how basic approaches of social network analysis, information
retrieval and data mining can be applied for discovering relations among names.

This document has an extensive study of the co-occurrence networks, that is when
two names occurres at the same time in a document or a file. In this paper, they use
as a source to create the co-occurrence network the web page “Wikipedia”. The exper-
iments are done using two kind of co-occurrence networks, one for given names and
one for city names. The results show the importance of co-occurrence networks for the
recommendation task, and its importance to create relationships between names.

3.2. Recommending given names
This document ([23]) focuses on the recommending given names task. The research in
this paper is less theoretical than the other one, or at least it has practical purpose (the
name search engine “Nameling”, used in the Discovery Challenge, was built after this
research).

In this paper, several recommender systems approaches like User Based and Item
Based Collaborative Filtering, PageRank and some Matrix Factorization Methods are
tested.

One of the most interesting parts of this document is its approach of PageRank
used to recommend names. The NameRank algorithm introduced in this paper adapts
FolkRank [17] for name recommendation, showing promising results. The algorithm
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basically solves a personalized version of PageRank [10] per user in the system, over a
graph of names, which does not scale gracefully to large-scale data.
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4. Empirical evaluation

Collaborative Filtering (CF) algorithms are best known for their use on e-commerce
Web sites, On-line Social Networks, or Web 2.0 video sharing platforms, where they
use input about a user’s interests to generate a (ranked) list of recommended items. For
this reason, this is not strange that we are going to try to solve the task of recommend-
ing names using Collaborative Filtering algorithms. In this section, we describe all the
Collaborative Filtering models which are tried in our work.

Our strategy changed during our tests. For this reason, this section will be divided in
two groups. The first part will explain the tests using the Bayesian Personalized Ranking
(4.1). The second part will explain all the other methods tried to create a recommender
ensemble (4.2).

As explained in 1.5, the first tests are done using the validation with only 13008
users. As said before, we noticed that 2,264 test users in the challenge were not included
in the first validation. To obtain a better representation of the test data in the second part
of the experiments, we tried to add manually those missing users. Most of them are
included, but there are a few users (around 60) from the test data that are not included
in the extended validation data, because they do not have enough interactions to obtain
two hidden names (and the script provided by the challenge to obtain the performance
needs two recommendations per user).

4.1. Bayesian Personalized Ranking
Our first strategy to solve the challenge of recommending names was to use the Bayesian
Personalized Ranking. This algorithm, introduced by [25], is an optimization criterion
and learning algorithm for personalized ranking, which is derived from a Bayesian anal-
ysis of the problem. This learning algorithm can be applied to the two state-of-the-art
recommender models of Matrix Factorization and Adaptative-KNN. In our case, we
used the Matrix Factorization model.

M = WHT

Fig. 20. As already said in 2.2.1, the matrix M with all the interactions information into
smaller matrices that represents the users and the items.

The users and the items in this learning algorithm are represented by 2 matrices
(see 20). Every row of a matrix describes using k dimensionality the latent features of
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a user or item. The basic idea of the BPR learning process is to compare positive feed-
backs of item-users against negative feedbacks, and update the matrices. The learning
model is based on stochastic gradient descent with bootstrap sampling. The matrices
(Θ) that represents the users and the items are initialized randomly, and their updates
are performed with the equation

Θ←− Θ + α(
e−x̂ui j

1 + e−x̂ui j

δ

δλ
x̂ui j + λΘΘ) (3)

where x̂ui j is the estimator defined as x̂ui - x̂u j. The prediction of a pair user-item is

x̂ui = 〈wu, hi〉 =

k∑
1

wu f · hi f (4)

and λ is the regularization value for the users and the items and α is the regulariza-

tion rate. The possible values for
δ

δλ
x̂ui j in the matrix factorization case are defined in

Table 3.
The Bayesian Personalized Ranking allows to be configured changing the values of

α (regularization rate), λ (the normalization rate), k (the number of latent values that
represent a user and an item) and the epochs (times the loop is done). Depending on
the data that is wanted to be represented with matrices, the best configuration of the
values may differ in each case, so some test are always needed to be done to find the
best values that fit the problem.

method performance

Random names 0.001873
Most popular names 0.027843

Table 2. Performance of the Random and Most Popular names recommendations. Gener-
ally, the performance in the Random Names recommendation performs less than 0.002 in
MAP@1000. 0.001873 is the performance in one of the random solutions computed.

(hi f − h j f ) if θ = ωu f

ωu f if θ = hi f

ωu f if θ = h j f

0 else

Table 3. Possible values for the derivatives in the Matrix Factorization BPR.
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Algorithm 1 BPR Learning algorithm
Input:
1: procedure learnBPR(DS , Θ)
2: initialize Θ
3: repeat
4: draw (u, i, j) from DS

5: Θ←− Θ + α( e−x̂ui j

1+e−x̂ui j

δ

δλ
x̂ui j + λΘΘ)

6: until convergence
7: return Θ̂
8: end procedure

The tests done using the Bayesian Personalized Ranking learning method are di-
vided into two groups. The first one explains the results of the BPR approach using
only a Matrix Factorization recommender model, and the second one tries to boost the
performance of the algorithm using the Ranklib library.

To compare the results of the BPR algorithm, we consider as a baseline recommen-
dation the top 1000 most searched names. Its performance is 0.027843 (as a reminder,
our validation data has 13,008 users). In the test, the performance of the same baseline
approach is 0.0263. To keep it in perspective, the random recommendation performs
less than 0.002 (Table 2) in the validation set.

4.1.1. Matrix Factorization approach

Our first attempt with this algorithm was to recommend a list of names to the test users
using (only) the learning algorithm to create the model. With the learned model, with
two matrices that represents the users and the item, the recommendation list would be
created with the dot product of the vectors.

The first test using BPR were executed only to get a first impression of a general
performance of the algorithm. In these cases, the parameters were epochs = 5, k = 64,
α = [0.1, 0.01, 0.001], and λ = [0, 0.1, 0.01, 0.001]. The data used to train were not
always the same every time. We tried to train using all the known names (36,436), the
known names in the train data (17,467), and sometimes less names (such training the
model with only the top 10,000 names), because we wanted to know the behaviour of
the algorithm changing the number of items (for example, if a very popular name can
introduce noise, an unpopular name give valuable information, etc.). The results, in all
the cases, were bad (lower than recommending the top 1,000 names). For these reason,
we did some specific test using only the known names existing in the train data and
epochs = 15 to be sure of the low performance of this algorithm. Table 4 has all the
performances.

In these new tests, the performance of the BPR were still really low. This is not a
surprise, because this poor performance is also observed in at least another paper for
this kind of task ( [23]). However, more test were done to confirm this. In these test
we modified the k parameter and the epochs (the times the algorithm is repeated until
convergence).
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lr regU epochs k MAP@1000

0.001 0 15 64 0.001916
0.001 0.001 15 64 0.001789
0.001 0.01 15 64 0.001679
0.001 0.1 15 64 0.001614
0.01 0 15 64 0.014992
0.01 0.001 15 64 0.014572
0.01 0.01 15 64 0.012687
0.01 0.1 15 64 0.001589
0.1 0 15 64 0.015533
0.1 0.001 15 64 0.017394
0.1 0.01 15 64 0.012196
0.1 0.1 15 64 0.018090

Table 4. Recommendation performance for every Bayesian Personalized Recommender test
in terms of MAP@1000.

lr regU epochs k MAP@1000

0.1 0.1 15 64 0.018090
0.1 0.1 15 96 0.001789
0.1 0.1 30 96 0.022404
0.1 0.1 35 64 0.018627
0.1 0.1 20 64 0.021869
0.1 0.1 20 80 0.021380
0.1 0.1 15 160 0.019148
0.1 0.001 20 64 0.015154
0.1 0.001 15 96 0.016438
0.1 0.1 20 96 0.019905
0.1 0.001 20 96 0.014468

Table 5. Recommendation performance for every Bayesian Personalized Recommender test
in terms of MAP@1000.

In spite of some better performance (see Table 4.1.1), the performance were sub-
stantially worse than our baseline recommendation. For this reason, we consider that
the Bayesian Personalized Ranking learning algorithm is not appropriate for this kind
of challenge, but maybe it could be its learned model useful with the ranklib library.
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4.1.2. The ranklib approach

In spite of the results using BPR were worse than a simple top frequency recommenda-
tion list, we considered that we could take profit of the learned model using it with the
Ranklib library.

Ranklib is a Java library of learning to rank algorithms. Currently, eight different
algorithms have been implemented, and also several retrieval metric are available, but in
our work we are going to use only the non-derivative optimization algorithm Coordinate
Ascent and the metric MAP.

The reason why to use this library was to boost the performance of our recom-
mendation adjusting the recommendation list to the metric used in the challenge (mean
average precision) to increase the final performance. Giving to the library a file to train
with a list of interactions with the structure score−qid−data (where score is the weight
we give to the interaction, qid is the id of the user and data is the representation of the
interaction in a vector, for example the representation of the item), it creates an opti-
mized model from the data that if being used in the test data, it would boost (in theory)
the final performance of the recommendation done.

25 qid:1 1:0.1 2:-0.32 3:0.0 4:-0.54 5:0.454 6:1 7:-0.9 8:0.21

Fig. 21. Example of an interaction in a file for the ranklib. 25 would be the score, the id of
the user would be 1 and item searched is represented in a vector of 8 dimensions.

We did several test to detect the best way to improve the results. We tried to com-
pute the score as the kind of activity, giving the maximum value the ENTER SEARCH
activity, as well as using the score as the number of interactions between a user and an
item and also the total number of users searched a name. Also, we tried to represent in a
vector not only the item in the interaction, but the item and the user (concatenating both
vectors). In other words, different methods to represent the interactions of the users and
the items were tested in the library.

Although lots of test were done, none of them performed well. The performance
were just slightly better than the random performance in all the cases (around 0.002).
We also tried to improve the results adding negative interactions of popular names to the
file used to create the model (with the corresponding score of 0, trying to state not only
the names a user was interested, but the names the user did not show preference), but it
did not work neither. For this reason, none of the tests done are explained extensively
in this document.

In theory, the idea was promising, but we got terrible results. In principle, learning
the latent factors using this library was a good idea. We did various tests, trying to
represent the data from different points of view. We considered that the performance
we obtained was extremely low, so some research would be interesting to do to detect
the problem in our case. The performance was extremely low, so either the idea was
not as good as we thought or something wrong were done. Nevertheless, we knew that
the Bayesian Personalized Ranking was not the best algorithm to face this task, so we
changed our strategy.
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4.2. Methods to ensemble
After our bad results using BPR, we changed our strategy. We wanted to try other al-
gorithms. With those that would perform better, we would create an ensemble of the
methods to boost the final performance (in case it was possible). The idea would be that
with the ensemble we could boost the performance, and counteract bad recommenda-
tions of an algorithm. A better explanation of this process is explained in 4.3.

recommendation 1 recommendation 2 recommendation n

ensemble

final recommendation

Fig. 22. Graphical representation of the ensemble process.

Some of the methods used are extracted from other works, and some other are new
built after the valuable information from other sources. All this information is explained
in the corresponding section of the algorithm.

All the N2N* models, the PageRank and the Cosine method are implemented in
Python, using the numeric libraries of NumPy and SciPy5. For the User-Based models,
the Item-Based models and Slope One, we used the Java implementation provided by
Apache Mahout 6.

Here are the algorithm tested and their performance. The performance of the top
1000 names is, with the new validation set (explained before), slightly better (0.028138).
Remember that the top 1000 recommendation in the test data performs 0.0263.

4.2.1. PageRank

5 http://www.scipy.org/.
6 http://mahout.apache.org/ .
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Model Description MAP@1000

m11 Page Rank 0.026483

Table 6. Recommendation performance in terms of MAP@1000 for the individual model
m11.

The idea of using a version of the PageRank algorithm for recommending given
names is shown in [23] with good results. In that paper, an algorithm is introduced for
recommending names (what is called NameRank, PPR+), which in turn is an evolution
of the PPR (Preferential Page Rank), an algorithm based on the original PageRank [10].
Instead of creating a relationship structure between web pages (the basic idea behind
the PageRank), PPR+ creates a structure of relation between names.

This evolution of PageRank reduce the possible problems of the frequency effects,
subtracting the global PageRank score (called PR) from the preferential PageRank
score.

The problem that we had trying to obtain a result with this algorithm is that it is
really slow (or better said the time complexity is extremely high). We contacted the
authors of the paper that explains the algorithm ([23]) and they confirmed us that it can
take several days (at least) to compute all the relations between items. For this reason,
we changed our mind and we used the original PageRank algorithm (that is explained
in 2.2.5).

With this algorithm we obtain a ranked top 1000 names list. The difference between
this list and a simply frequency list is that PageRank adds the weight factor explained in
2.2.5. We consider this algorithm is more comprehensive that a typical top 1000 names
list. Despite all, the results of this algorithms are really similar with the baseline per-
formance from 4.1. For this reason, even performing slightly lower in our tests than the
top 1000 names, PageRank is going to be our new baseline algorithm for the ensemble.

tests and performance:

This algorithm has a moderate performance. As we can see in Table 6, the performance
is lower than most of the methods that are going to be used in the ensemble. In spite of
that, this algorithm is the only one that ensures a recommendation of 1000 names for
the user. For this reason, it will be included to the ensemble to make sure that the final
recommendation will have 1000 names.

4.2.2. Name-to-Name Collaborative Filtering

This approach for name recommendation using a Name-to-Name Collaborative Recom-
mendation algorithm is based on the classic Item-Based collaborative filtering algorithm
introduced by Amazon.com [20]. The idea is to extract points in common, relationship
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between names based on users’ searches. In our case, we try to identify those names
that have been searched together by (at least) one user.

To determine the most similar match for a given name, the algorithm constructs a
bag of co-occurring names across all user interactions in the collection. The rationale
behind this algorithm is that there are many names that do not co-occur in any of the
user’s name transactions (I(u)) (because they are names from different languages or
even alphabets), thus the approach is efficient in terms of processing time in memory,
since there is no need to compute similarities over all possible pairs of names in the
collection.

To compute the final recommendation list, the algorithm finds names similar to each
of the ones in the user’s set of names I(u), aggregates those co-occurring names, and
then recommends the most popular or correlated names. This computation is very quick,
depending only on the number of names the user has interacted with.

The Name-to-Name algorithm is summarized in Algorithm 2.
Different flavours of this approach are tested. Next, the explanation and the results

of them.

4.2.2.1. Name-to-Name Frequency algorithm

In this version of the algorithm, we randomly select a name i for a given test user u
via the getRandomName(·) procedure specified in Algorithm 2, where the chance for a
name to be chosen is proportional to how often user u has interacted with it, which adds
a positive bias towards those names that are more searched by the user. Furthermore, we
also bias the selection of the co-occurring name j (getRandomCoName(·) procedure in
Algorithm 2) towards the multiplicity of the pair (i, j).
Example. To illustrate this approach, consider the following example. Our dataset con-
sists of five users, u1 . . . u5, and our task is to predict a recommendation list of names
for user u1. The sequence of interactions for user u1 denoted as S u1 (cf. Section 1.6) is
given by

Su1 = i4 −→ i1 −→ i4.

and for the other four users, their corresponding sequences are:

Su2 = i1 −→ i4 −→ i3

Su3 = i4 −→ i5 −→ i1 −→ i4 −→ i3

Su4 = i3 −→ i6 −→ i7 −→ i4

Su5 = i1 −→ i5 −→ i2

then, the bags of co-occurrences for the names in Su1, i.e., i4 and i1, sorted in decreasing
order of multiplicity, are given by:

C(i4) = {((i4, i1), 3), ((i4, i3), 3), ((i4, i5), 1), ((i4, i6), 1), ((i4, i7), 1)}.

C(i1) = {((i1, i4), 3), ((i1, i3), 2), ((i1, i5), 2), ((i1, i2), 1)}.
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Using the N2N-Freq shown in Algorithm 2, we first chose one name from user
u1’s names (i.e., from I(u1)), and the name’s corresponding bag of co-occurrences.
Let us assume that i4 ∈ I(u1) and its respective bag C(i4) are chosen. The first item
to be included in the list of recommendations is i3 (i1 would not be chosen because
i1 ∈ I(u1)).

In the next iteration, consider that C(i4) is selected again, given that it has a higher
probability to be picked due to the frequency of item i4 in the sequence S u1. In this case,
i5 would be the item chosen to be included in the list of recommendations.

In the third iteration, the list selected is C(i1), then the first item to be selected is
i2. Note that there are no more items from C(i1) that can be included in the list. Then,
R(u1) is filled up using items from C(i4).

Finally, the list of recommendations for u1 corresponds to:

R(u1) = [i3, i5, i2, i6, i7] .

tests and performance:

Two different versions of the co-occurrence bag are tested with this approach.
The first test uses a bag of co-occurrence created using the activities ENTER SEARCH,

LINK SEARCH, ADD FAVORITE and NAME DETAILS. The second test uses a bag
of co-occurrence created using only ENTER SEARCH. To better understand this:
Example. Being S u1 the sequence of interactions of u1 and es, ls, a f and nd the inter-
actions ENTER SEARCH, LINK SEARCH, ADD FAVORITE and NAME DETAILS
respectively. If S u1 is

Su1 = esi1 −→ esi4 −→ a fi2 −→ lsi4 −→ esi3 −→ esi5 −→ ndi6

the bag of co-occurrences for the name i1, using only the interactions from u1 would be,
in case we use all 4 activities,

C(i1) = {((i1, i4), 2), ((i1, i2), 1), ((i1, i3), 1), ((i1, i5), 1), ((i1, i6), 1)},

but if we use only the ENTER SEARCH interactions, the bag of co occurrence
names for i1 would be

C(i1) = {((i1, i4), 1), ((i1, i3), 1), ((i1, i5), 1)}.

As we can see, some items in the first list are not included in the second one, or are
included fewer times. For example, i2 is only included in the first list (because it is added
using the ADD FAVORITE activity), and the i4 it is only included once in the second
list (it is searched using ENTER SEARCH and LINK SEARCH). The performance of
these two flavours are shown in Table 7.

The reason why a version of this algorithm using only ENTER SEARCH to create
the bag of co-occurrence is tested is that the hidden names in the test (see 1) are searched
using this activity. For this reason, it is not unreasonable to believe that this interactions
can give more valuable information than the others activities.
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Model Description MAP@1000

m0 N2N-Freq 0.033449
m1 N2N-Freq-ES 0.033430

Table 7. Recommendation performance in terms of MAP@1000 for the individual models
m0 and m1.

The name-to-name algorithm explained performs really well (in fact, the two ver-
sions are those that perform better in our tests). In spite of the performance does not
differ based on the co-occurrences list used (the bag created using ENTER SEARCH,
ADD FAVORITE, LINK SEARCH and NAME DETAILS performs only slightly bet-
ter than the bag of co-occurrences created only with ENTER SEARCH), both approach
are interesting to use further in our ensemble process. In our test, to avoid a possible
infinite recursion (or better said to avoid a extremely big time consumption), a maxi-
mum number of iterations is applied (max iterations in Algorithm 2). In our tests for
this algorithm, we only do 3 iterations of the algorithms.

4.2.2.2. Name-to-Name Time algorithm

In this case, the names I(u) are not selected biased towards frequency of user inter-
actions, but towards recency. That is, the firsts names included in the recommendation
list are those that co-occur with the last searches of the test user. The goal of this model
is to capture the latest user preferences as input to compute the recommendations (it is
not strange to believe that a search of a user is somehow conditioned on the last search).
Example. Using this algorithm, with Su1, Su2, Su3, Su4 Su5,C(i4) andC(i1) from the exam-
ple given for 4.2.2.1. Using this algorithm, biased towards recency, all selectable items
from C(i4) are going to be chosen first. The firsts items would correspond to i3, i5 and
i6. From C(i1) the selectable items are i7 and i2. The recommendation list corresponds
to:

R(u1) = [i3, i5, i6, i7, i2] .

tests and performance:

In this case, the two versions of the co-occurrence bag explained in 4.2.2.1 are tested
too. Moreover, two other versions are tried, one excluding the top 5 names (in terms
of frequency) to create the bag of co-occurrences and the other one excluding the top
10 names (both cases using the bag of co-occurrences that uses all 4 activities). This
rationale behind this model is to get a more specific list of names, avoiding the names
that are extremely popular. To clarify how it works, here is an example.
Example. Being S u1 the search in temporal order of u1, i1 the most popular name in the
system, i10 the second most popular name, and C(i) the bag of co-occurrences of item i,
the recommendations for u1 if

Su1 = i2 −→ i1 −→ i4
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and the bag of co-occurrences for i1, i2 and i4 are

C(i1) = {((i1, i4), 4), ((i1, i2), 3), ((i1, i6), 3), ((i1, i7), 3), ((i1, i5), 2), ((i1, i10), 1), ((i1, i12), 1)}.

C(i4) = {((i4, i1), 3), ((i4, i2), 2), ((i4, i8), 1), ((i1, i7), 1)}.

C(i2) = {((i2, i3), 3), ((i2, i1), 2), ((i1, i10), 1}.

We know that i1 is one of the top popular names that we discard, so its co-occurrences
names would not be considered. That means the list of recommendation would be for
u1

R(u1) = [i8, i7, i3, i10] .

As we see, C(i1) is not considered because it is one of the most popular names in
the data. That does not mean that a popular name can not be recommended, as we see
in R(u1) (we are recommending i10).

As we can see in Table 8, these approaches of Name-to-Name Collaborative Filter-
ing performs really well, but the results are slightly lower than the frequency versions.
We can see that N2N-Time performs slightly better than N2N-Time-ES (the same thing
happens between m0 and m1). We can also see that we reach the best performance when
the top 5 names are not included. The difference is really small, but provides informa-
tion that can be useful for future researches. In this case there is also an iteration limit
in the algorithm. In our tests for this method, if it is not possible to recommend all 1000
names with the names the user has search, we recommend the names from the bag of
co-occurrence of the names that are going to be recommended (so only 2 iterations are
done).

Model Description MAP@1000

m2 N2N-Time 0.032296
m3 N2N-Time-ES 0.032008
m4 N2N-Time-NoTop5 0.032526
m5 N2N-Time-NoTop10 0.032455

Table 8. Recommendation performance in terms of MAP@1000 for the individual models
m2, m3, m4 and m5.

4.2.3. Slope One

In spite of the fact that this approach could be interesting because of the singular way to
do the recommendation, its bad performance did not allow us to us it in the ensemble.
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Algorithm 2 Name-to-Name CF
Input:

Target user u ∈ U. Recommendations will be computed for this user;
I(u) ⊂ I: set of names that the user has interacted with;
C : bag of co-occurring names;
N ∈ N: size of the recommendation list;
max iterations: maximum number of iterations.

Output: Recs(u): ranked list of recommendations for user u.

1: procedure GetRecommendations(u, I(u), C, N, max iterations)
2: Recs(u)← ∅
3: Recs(u)← Name-to-Name(u, I(u), C, N, Recs(u), max iterations)
4: while |Recs(u)| < N do
5: Recs(u)← Name-to-Name(u, Recs(u), C, N, Recs(u), max iterations)
6: end while
7: return sort(Recs(u))
8: end procedure

9: procedure Name-to-Name(u, I′(u), C, N)
10: while |Recs(u)| < N and t < max iterations do
11: i←getRandomName(I′(u))
12: ((i, j),m)←getRandomCoName(C(i))
13: if j < Recs(u) and j < I′(u) then
14: Recs(u)← Recs(u) ∪ {( j,m)}
15: end if
16: t ← t + 1
17: end while
18: return Recs(u)
19: end procedure

As already explained in 2.2.4, this algorithm computes the differences of interac-
tions activities between items. With this information, tries to predict how much a user
would like an item that has not interacted yet.

In this case, we did use mahout to implement this algorithm. The Java code would be

DataModel model = new FileDataModel(new File(”data.txt”));
Recommender recommender = new SlopeOneRecommender(model);
Recommender cachingRecommender= new CachingRecommender(recommender); List¡RecommendedItem¿
recommendations = cachingRecommender.recommend(user, N);

where the file used to create the DataModel is a file of binary interactions between
users and items. User would be the user that we want to recommend, and N the number
of recommended items.
tests and performance:

This algorithm does not perform well, maybe because of the data used (binary data
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Model Description MAP@1000

m6 Slope One 0.020344

Table 9. Recommendation performance in terms of MAP@1000 for the individual model
m6.

without scores, that could be more difficult to find the patterns this algorithm needs),
but it can not be assured because it is just a simple supposition. As we see in Table
17, the performance is really low. This algorithm is not going to be included in the
ensemble.

4.2.4. Neighborhood-Based Collaborative Filtering

In our work we have tried several Neighbourhood-Based Collaborative Filtering al-
gorithms.

On one side, we tried the User-Based algorithm approach of the Neighbourhood-
Based CF, and also the Item-Based algorithm approach. On the other side, we have tried
two different similarity metric, the Tanimoto coefficient for binary metric and likelihood
similarity. So we have tested four different combinations of neighbourhood solutions.

As already explained before in 2.2.2, the User-Based algorithm tries to identify sim-
ilarities between users based on their purchases. Item-Based algorithm tries to identify
similarities directly between items. For this reason, in this section we are not going to
repeat again the theory of the neighbourhood algorithm, and we are going to explain
only the different ways to compute the similarity.

T (A, B) =
A ∩ B
A ∪ B

Fig. 23. Tanimoto Coefficient. The similarity is computed like the division of items purchased in
common and all the different items purchased by the users (A and B)

The first one that is going to be explained is the Tanimoto coefficient. It uses a ratio
of the intersection set to the union set as a measure of similarity. That is the division
between the elements in common and all the elements of the two concepts that we are
trying to compare. An example to better understand this is explained below.
Example.Being u1, u2 and u3 three users of the data, and i1 . . . i5 all the items in the
system,

Su1 = i1 −→ i4 −→ i4 −→ i5.
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Su2 = i5 −→ i1 −→ i2 −→ i1 −→ i2 −→ i3.

Su3 = i3 −→ i4

This example is represented in Figure 24. In Figure 23 there is explanation of the
Tanimoto coefficient.

i1 i2 i3 i4 i5

u1 + ? ? + +

u2 + + + ? +

u3 ? ? + + ?

Fig. 24. Visual representation of the interaction to explain the Tanimoto coefficient example ex-
plained in 4.2.4

In our case, using the Tanimoto Coefficient, T (u1, u2) is 2/5, because u1 and u2 have
two items in common out of five items. On the other hand, T (u1, u3) is 1/5. For this
reason, we consider that u1 is more similar to u2 than u3.

The log-likelihood is more complicated to explain than the Tanimoto similarity. It
does not calculate the similarity based on if two events have been searched together,
For this reason, this similarity is going to be explained along with the mahout code
implementation.

Having two elements (called A and B), the main step is to compute the number of
times an event occurs to one element (or does not occur) when the other event occurs to
the other element (or does not occur). For example, if we want to know the similarity
between two users (A and B), the events would be the items searched by them, so we
need to count the items they both have searched, the items only one of them has searched
and the item that have not been searched neither by A nor B. A visual explication is
shown in Figure 25 where

– k11 is the number of times the two events occurred together
– k12 is the number of times the second event occurred without the first event
– k21 is the number of times the first event occurred without the second event
– k22 otherwise

After that, it is really simple to get the log-likelihood Ratio:

p u b l i c s t a t i c d ou b l e l o g L i k e l i h o o d R a t i o
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Event A Everything but A

Event B A and B together (k11) B but not A (k12)

Everything but B A but not B (k21) Neither A nor B (k22)

Fig. 25. Occurrency count of the events necessary to calculate the Log-Likelihood similarity

( l ong k11 , l ong k12 , l ong k21 , l ong k22 )
{

P r e c o n d i t i o n s . checkArgument
( k11 >= 0 and k12 >= and k21 >= 0 and k22 >= 0 ) ;

do ub l e rowEntropy = e n t r o p y ( k11 , k12 ) + e n t r o p y ( k21 , k22 ) ;
do ub l e co lumnEnt ropy = e n t r o p y ( k11 , k21 ) + e n t r o p y ( k12 , k22 ) ;
do ub l e m a t r i x E n t r o p y = e n t r o p y ( k11 , k12 , k21 , k22 ) ;
i f ( rowEntropy + columnEnt ropy $>$ m a t r i x E n t r o p y ) :

r e t u r n 0 . 0 ;
r e t u r n 2 . 0 ∗ ( m a t r i x E n t r o p y − rowEntropy − columnEnt ropy ) ;

}

where the entropy between two values is calculated like:

p r i v a t e s t a t i c dou b l e e n t r o p y ( long a , l ong b )
{

r e t u r n xLogX ( a + b ) − xLogX ( a ) − xLogX ( b ) ; \ \
}

where the entropy between four values is calculated like:

p r i v a t e s t a t i c dou b l e More . . . e n t r o p y ( long a , l ong b , l ong c , l ong d )
{

r e t u r n xLogX ( a + b + c + d )
− xLogX ( a ) − xLogX ( b ) − xLogX ( c ) − xLogX ( d ) ;

}

and the xLogX of a value is calculated like:

p r i v a t e s t a t i c dou b l e xLogX ( long x )
{

r e t u r n x == 0 ? 0 . 0 : x ∗ Math . l o g ( x ) ;
}

The Log-Likelihood tries to find associations between events that could show relation-
ships between items. The different between this similarity metric and others (like Tani-
moto) is that this one also uses the events that do not happen to compute the similarity.
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Model Description MAP@1000

m7 UB Tanimoto 0.023921
m8 UB logli 0.028365

Table 10. Recommendation performance in terms of MAP@1000 for the individual model
m7 and m8.

4.2.4.1. User-Based Collaborative Filtering

The User-Based Neighbourhood Collaborative Filtering have been tested in our re-
search using both Tanimoto Coefficient and Log-Likelihood similarity. The idea of the
User-Based Collaborative Filtering is to find the similarities between users based on
what they have searched.
We used the mahout library. Here the code for the Tanimoto case:

DataModel model = new Fi l eDa taMode l (New F i l e ( ” d a t a . t x t ” ) ) ;
U s e r S i m i l a r i t y u s e r S i m i l a r i t y = T a n i m o t o C o e f f i c i e n t S i m i l a r i t y ( model ) ;
UserNeighbourhood ne ighbou rhood = new

Neares tNUserNeighbourhood ( 1 0 0 , u s e r S i m i l a r i t y , model ) ;
Recommender recommender = new

Gener icBooleanPrefUserBasedRecommender
( model , ne ighborhood , u s e r S i m i l a r i t y ) ;

CachingRecommender cachingRecommender = new
CachingRecommender ( recommender ) ;

L i s t $ <$RecommendedItems$>$ recommenda t ions =

cachingRecommender . recommend ( use r ,N ) ;

In case of the Log-Likelihood, the second line must be

U s e r S i m i l a r i t y u s e r S i m i l a r i t y = new L o g L i k e l i h o o d S i m i l a r i t y ( da taModel )

tests and performance:

The User-Based CF algorithms tested do have a moderate performance , but they are
good enough to be considered for the ensemble. One of them (the one that uses Log-
Likelihood similarity) is good enough to be included in the ensemble by its own. Merg-
ing both of them we could boost the performance enough to obtain a recommendation
clearly better than the baseline.

4.2.4.2. Item-Based Collaborative Filtering

Also in the Item-Based case, we have used the Tanimoto Coefficient and Log-Likelihood
similarity. In this case (the Item-Based CF) we find similarities directly between items.
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Model Description MAP@1000

m9 IB Tanimoto 0.020638
m10 IB logli 0.019143

Table 11. Recommendation performance in terms of MAP@1000 for the individual model
m9 and m10.

Just like the User-Based case, we also used Mahout. Here is the code:

DataModel model = new Fi l eDa taMode l (New F i l e ( ” d a t a . t x t ” ) ) ;
I t e m S i m i l a r i t y i t e m S i m i l a r i t y = T a n i m o t o C o e f f i c i e n t S i m i l a r i t y ( model ) ;
Gener icBooleanPre f I t emBasedRecommender recommender = new

Gener icBooleanPre f I t emBasedRecommender ( model , u s e r S i m i l a r i t y ) ;
Recommender cachingRecommender = new CachingRecommender ( recommender ) ;
L i s t $ <$RecommendedItems$>$ recommenda t ions =

cachingRecommender . recommend ( use r ,N ) ;

In case of the Log-Likelihood, the second line must be

I t e m S i m i l a r i t y i t e m S i m i l a r i t y = new L o g L i k e l i h o o d S i m i l a r i t y ( da taModel )

tests and performance:

Both the Tanimoto and the log likelihood version of the Item-Based algorithms do not
perform well (Table 11). As we will see later, the Item Based approaches will not be
considered to create the recommendation.

In case of the User-Based algorithms, the log likelihood performs better than UB
algorithms using the Tanimoto coefficient.

DataModel model = new Fi l eDa taMode l (New F i l e ( ” d a t a . t x t ” ) ) ;
U s e r S i m i l a r i t y u s e r S i m i l a r i t y = T a n i m o t o C o e f f i c i e n t S i m i l a r i t y ( model ) ;
UserNeighbourhood ne ighbou rhood = new

Neares tNUserNeighbourhood ( 1 0 0 , u s e r S i m i l a r i t y , model ) ;
Recommender recommender = new

Gener icBooleanPrefUserBasedRecommender
( model , ne ighborhood , u s e r S i m i l a r i t y ) ;

CachingRecommender cachingRecommender = new CachingRecommender ( recommender ) ;
L i s t $ <$RecommendedItems$>$ recommenda t ions =

cachingRecommender . recommend ( use r ,N ) ;
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4.2.5. KNN based on Cosine Similarity

Part of the data given by nameling, as said in 1.2, were 3 files with some informa-
tion about similarity between names. For every name in English, German and French, a
list of the top 100 more similar names are given. This method recommends the names
that are more similar to those names searched by the user. The recommendation is or-
dered towards recency (like 4.2.2).
Example. Being S u the search in temporal order of u, and Coni the list of the most
similar names of i

S u1 = i2 −→ i1

Coni1 = ic10, ic11, . . . , ic1n

Coni2 = ic20, ic21, . . . , ic2m

where ic10 (as an example to clarify the explanation) is the first item most similar
to i1 in the cosine similarity list, ic11 the second one, etc., the recommendation for u1
would be

R(u1) = [ic10, ic11, . . . , ic1n, ic20, ic21, . . . , ic2m] .

Notice that the cosine files are divided by language, so the cosine similarity list
length of a name after merging these 3 files may differ. If a name only exist in one
language, we would have 100 similar names (just as said before), but in case a name
appears in two language, the list length would be something between 100 names and
200 names (depending on whether they have common names), and if a name appears
in all three lists, the list length of similar names would be maximum 300 names. For
example, if a name is both French and English (so it appears in the French list and in the
English one), and in both French and English lists they have a similar name in common
(that appears in both list), the name is not included twice. Instead of that, is only added
once with the bigger similarity value.

Model Description MAP@1000

m6 UB-T 0.023921
m7 UB-LL 0.028365

Table 12. Recommendation performance in terms of MAP@1000 for the individual model
m6 and m7.

tests and performance:

This method did not perform well at all due to its characteristics. In so many cases
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there where not enough names to fill up all the 1000 recommendations for every user
(not even close).

Despite all, this files, with the proper processing, could have given a lot of useful
information. The lack of time did not allow us to investigate a proper way of using these
similarities.

4.3. Ensemble and Results
Our solution to the challenge consists of an ensemble of individual rank estimates of a
set of collaborative filtering algorithms, a method that has shown to improve the quality
of the recommendations like in [9].

The rationale behind this idea is to use all the good predictions from the recom-
mendation list, and try to compensate the bad recommendations. That is that with the
proper ensemble, a name recommended in one list from one algorithm would be penal-
ized when it is not recommended in any other list, but a name that different approaches
detect as a good candidate would be included also in the ensemble recommendation.

Since the estimate values of our models, x̂, can be in different scales, we do not com-
bine their values directly, but rather we use their rank estimates. Formally, the ensemble
of the rank estimates of l models is given by:

x̂rank
ui :=

∑
l

αl ·
1

rank(x̂l
ui)

, (5)

where αl is a weight associated to the predictors of model l and rank(x̂l
ui) is the rank

position within the lth ranked list corresponding to the estimate value x̂l
ui. That is, the

combined estimate x̂rank
ui corresponds to the weighted reciprocal rank of the individual

models.
An example is shown in Figure 26.
In this section, we detail the collaborative filtering models used to do the ensemble,

the procedure done to join the results of the different models and the performance boost
achieved by our ensemble.

The ensemble of our solution consists of 9 of the collaborative models that we have
tried. The models that are going to be used (explained in 4.2) are resumed as follows.

[N2N-Freq] is the Name-to-Name Collaborative filtering with the bias to those names
more searched.

[N2N-Freq-ES] is the Name-to-Name Collaborative filtering with the bias to those
names more searched (just like N2N-Freq) that uses only the ENTER SEARCH
activities to create the bag of co-occurrences.

[N2N-Time] is the Name-to-Name Collaborative filtering with the bias towards re-
cency.

[m3 – N2N-Time-ES] is the Name-to-Name Collaborative filtering with the bias to-
wards recency (just like N2N-Time) that uses only the ENTER SEARCH activities

49
Collaborative Filtering Ensemble for Personalized Name Recommendation



4. EMPIRICAL EVALUATION

1 i3

2 i500

3 i436

.

.

.

999 i1

1000 i200

recommendations 
model 1

1 i1

2 i500

3 i6

.

.

.

999 i43

1000 i21

recommendations 
model 2

(1/999)= 0.00100

(1/1) = 1

1 i3 >0.7003

2 i500 >0.7003

3 i1 0.7003

.

.

.

999 i32 <0.7003

1000 i200 <0.7003

recommendations enseble

0.3

0.7

Fig. 26. A visual example of an ensemble of 2 models with weight 0.3-0.7.

to create the bag of co-occurrences.

[N2N-Time-NoTop5] is the Name-to-Name Collaborative filtering with the bias to-
wards recency (just like N2N-Time). However, the top 5 most searched names are
not considered to create the bag of co-occurrences.

[N2N-Time-NoTop10] is the Name-to-Name Collaborative filtering with the bias to-
wards recency (just like N2N-Time). However, the top 10 most searched names are
not considered to create the bag of co-occurrences.

[UB-T] is a user-based collaborative filtering algorithm [13] using Tanimoto coeffi-
cient for binary feedback as similarity metric [29]. We used a neighborhood of size
1007.

[UB-LL] is a user-based model that uses likelihood as similarity metric. As in the pre-
vious model, we also used a neighbourhood of size 100 in this case.

[PR] This model corresponds to PageRank [10] computed on the graph of co-occurring
names. This is a non-personalized recommendation algorithm biased to the most

7 Observe that we did not optimize for this parameter.
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Model description

m0 N2N-Freq
m1 N2N-Freq-ES
m2 N2N-Time
m3 N2N-Time-ES
m4 N2N-Time-NoTop5
m5 N2N-Time-NoTop10
m6 UB-T
m7 UB-LL
m8 PR

Table 13. Reference names of the used methods for the ensemble

popular items. We used this algorithm to “fill up” recommendation lists with less
than 1000 names per user.

The models that are not used in the ensemble (also explained in 4.2) are:

[Slope one] is the recommendation algorithm that computes the differences of interac-
tion activities to predict the intensity between users and items without interaction.

[IB-Tanimoto] is the item-based model that uses Tanimoto coefficient to compute the
similarity between items.

[IB-LL] is the item-based model that uses Log-Likelihood to compute the similarity
between items.

[Cosine] is the algorithm that recommends names based on the list of similar names
provided by Nameling.

As said in 4.2, all the N2N* models, the PageRank and the Cosine method were
implemented in Python, using the numeric libraries of NumPy and SciPy8. For the
User-Based models, the Item-Based models and Slope One, we used the Java imple-
mentation provided by Apache Mahout 9.

Table 13 summarizes the individual performance of these models. The reference
names of the models where added. From now on, the reference names of the used meth-
ods will be from m0 to m8, and the not used methods for the ensemble will be the
methods from m9 to m12 (Table 13 and 14).

8 http://www.scipy.org/ .
9 http://mahout.apache.org/ .
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Model description

m9 Slope one
m10 IB-Tanimoto
m12 IB-LL
m12 Cosine

Table 14. Reference names of the not used methods for the ensemble

Model Description MAP@1000

m0 N2N-Freq 0.033449
m1 N2N-Freq-ES 0.033430
m2 N2N-Time 0.032296
m3 N2N-Time-ES 0.032008
m4 N2N-Time-NoTop5 0.032526
m5 N2N-Time-NoTop10 0.032455
m6 UB-T 0.023921
m7 UB-LL 0.028365
m8 PR 0.026483

Final ensemble 0.036766

Table 15. Recommendation performance in terms of MAP@1000 for the individual models
and the final ensemble.

Engineering the Final Ensemble
We compute the final ensemble by first combining different flavours of the same ap-
proach, and then combining the resulting ranked lists as explained before. Figure 33
illustrates the assembling process.

All weights (the α’s in Equation 5) were determined experimentally based on the
performance achieved by the (sub-)ensembles in our cross validation set. First, we com-
bined them without weight (the same weight for all the algorithms), and then some other
test were done with slightly modifications of the weights, to determine how to determine
the best configurations of weights (see 28 for a visual explanation of this process).

The following are the explanation of the combinations.

combination of the N2N-Freq* algorithms:
The models m0 and m1 (the N2N-Freq models) have a very similar performance. For
this reason, is not strange that the best way to combine them is using the same weight
for both recommender.

The improvement is really small because of their similarity.

combination of the N2N-Time* algorithms:
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Fig. 27. A visual example how we proceed to find the best way to weight the ensemble. In
that case, is easy to see that recommendation 2 will get more weight, and the process shows
the proper weight (in that case, 0.8 to the recommendation 2 and 0.2 to the recommendation
1)

Model Description MAP@1000

m0 N2N-Freq 0.033449
m1 N2N-Freq-ES 0.033430

Result of the ensemble 0.034134

Table 16. Recommendation performance in terms of MAP@1000 for the models m0 and m1
and the ensemble.

The models m2, m3, m4 and m5 (the N2N-Time models) have a very similar perfor-
mance too. For this reason, the combination will be again with the same weight every
model.

The improvement is small because of their similarity, but bigger than the m0-m1
ensemble improvement. This is because (in our opinion) the files are more different be-
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Model Description MAP@1000

m2 N2N-Time 0.032296
m3 N2N-Time-ES 0.032008
m4 N2N-Time-NoTop5 0.032526
m5 N2N-Time-NoTop10 0.032455

Result of the ensemble 0.036078

Table 17. Recommendation performance in terms of MAP@1000 for the models m2, m3,
m4 and m5 and the ensemble.

tween them and moreover we have more files to combine.

combination of the UB* algorithms:

The models m6 and m7 (the UB models) are quite different. Using different similarity,
the performance of the log-likelihood version of the User-Based algorithm performs
remarkably better than the User-Based version using Tanimoto coefficient. For this rea-
son, the log-likelihood will receive a bigger weight.

weight UB-T (m6) weight UB-LL (m7) Performance

0.5 0.5 0.028222

0.2 0.8 0.028880

Fig. 28. The best combination of weights for maximize the performance is giving a 0.8 the
User-Based algorithm using Log-likelihood and a 0.2 for the User-Based algorithm using
Tanimoto coefficient.

Model Description MAP@1000

m6 UB-T 0.023921
m7 UB-LL 0.028365

Result of the ensemble 0.028880

Table 18. Recommendation performance in terms of MAP@1000 for the models m6 and m7
and the ensemble.
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In this case, we combined the two methods with different weights (0.8 for the m6
and 0.2 for the m7).

combination of the 2 N2N ensembles:

Having the ensembles for the N2N-Freq* and the N2N-Time* models, the next step
was to combine them.

weight m0+m1 weight m2+m3+m4+m5 Performance

0.5 0.5 0.035673

0.3 0.7 0.036133

Fig. 29. The best combination of weights for maximize the performance is to give a 0.7 the
N2N-Time ensemble and a 0.3 for the N2N-Freq ensemble.

Model Description MAP@1000

m0+m1 N2N-Freq* ensemble 0.034134
m2+m3+m4+m5 N2N-Time* ensemble 0.036079

Result of the ensemble 0.036133

Table 19. Recommendation performance in terms of MAP@1000 for the models m0+m1
and m2+m3+m4+m5 and the ensemble.

The result of the ensamble is just slightly better than the N2N-Time* ensamble. But
as we can see, there is still an improvement in the performance.

combination of the UB ensemble with the PageRank model:
As said before, the PageRank has a moderate performance, but it is really useful for the
ensemble because is the only one that has for sure 1000 recommended names for all
the users. Adding this model in the combination, we can ensure that all the users will
receive in the final ensemble 1000 names. In Figure 30, we can see that the best way to
combine the UB ensemble and the PR algorithm is giving to the first one a weight of
0.6 and the second one a weight of 0.4.

final ensemble. Combination of the N2N ensemble with the UB-PR ensemble:
In that case, the best way to mix the ensemble methods were giving to N2N method

a weight of 0.8 and the UB-PR method a weight of 0.2. This is because the better per-
formance of the N2N methods, that outperforms the others methods.
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weight m6+m7 weight PR (m8) Performance

0.5 0.5 0.031126

0.3 0.7 0.031127

Fig. 30. As we can see, the PageRank recommendation is not improving our performance,
but it is useful for us because we ensure that the final ensemble will have 1000 names.

Model Description MAP@1000

m6+m7 UB ensemble 0.028880
m8 PR 0.026483

Result of the ensemble 0.031127

Table 20. Recommendation performance in terms of MAP@1000 for the models m6+m7,
m8 and the ensemble.

weight N2N weight UB+PR Performance

0.5 0.5 0.035812

0.8 0.2 0.036766

Fig. 31. The final ensemble gives a bigger weight to the N2N ensemble because of its better
performance.

Model Description MAP@1000

m0+m1+m2+m3+m4+m5 N2N ensemble 0.036133
m6+m7+m8 UB-PR ensemble 0.031127

Result of the ensemble 0.036766

Table 21. Recommendation performance in terms of MAP@1000 for the models m0 and m1
and the ensemble.

Resume:

The way we decided to combine the methods were joining those methods that were
more similar.

We found out that the best way to combine the N2N-Freq* (m0 and m1) methods
were giving the same weight because of their similar performance. The same happened
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m0 m1

m0 + m1

m2 m5m3 m4

m2 + m3 + m4 +m5

m6 m7

m8m6 + m7

(m0 + m1) + (m2 + m3 + m4 +m5) 

((m0 + m1) + (m2 + m3 + m4 +m5)) + ((m6 + m7) + m8)

0.80.2

0.6 0.4

0.8 0.2

(m6 + m7) + m8

0.5 0.5
0.25

0.25 0.25

0.25

0.3 0.7

       N2N-Freq*        N2N-Time*       UB*

      PR

0.034134 0.036079 0.028880

0.0311270.036133

0.036766

Fig. 32. Final ensemble. The α weights for the partial model ensembles are indicated next
to the corresponding arrow. The symbol ‘+’ indicates the assembling of the models. The
MAP@1000 for the corresponding sub-ensembles are shown below the respective boxes.

Model Performance

Baseline method (PageRank) 0.026483

Ensemble method 0.036766

Improvement ~40%

Fig. 33. Final ensemble. Compared with the baseline algorithm (PageRank), our ensemble
method improve the results a 40%

with the N2N-Time* methods. In this ensemble, we saw that the ensemble performance
were really better in comparison of the performance of every single N2N-Time* meth-
ods.

The best way to combine the UB methods were with a weight of 0.8 to the Log-
Likelihood method and a 0.2 to the Tanimoto coefficient User-Based algorithm. It is not
strange because the UB-LL outperforms the UB-T method. The ensemble result was
combined with the PageRank method. The UB model had a weight of 0.6 and the PR
model a weight of 0.4.

In this point of the ensemble process, the next step was to combine the N2N-Time
and the N2N-Freq method. In spite of the fact is that the single N2N-Freq* methods
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(m0 and m1) were better than the single N2N-Time* methods (m2, m3, m4 and m5),
the ensemble method for the N2N-Time methods (m2+m3+m4+m5) were better than
the ensemble N2N-Freq method (m0+m1), so the weights were set in 0.7-0.3.

Finally, we combined the N2N method (m0+m1+m2+m3+m4+m5) with the UB-
PR method (m6+m7+m8) giving to the first one a weight of 0.8, and to the second one a
weight of 0.2 because of the better performance of the first method. The final ensemble
outperforms all the single method performance.

The Item-Based Collaborative Filtering methods (both the log-likelihood and the
Tanimoto coefficient versions), the cosine method and the Slope One method were not
included (Table 14) due to their low performance.
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5. Discussion and Future Work

5.1. Summary
As we can see in our work, the low values of MAP@1000 obtained by our approach on
this dataset give an idea of how difficult the problem of recommending given names is.

Given the evaluation design of hiding the last two names the user interacted with,
models that capture the latest user preferences, e.g., from the session information, tend
to work well for us.

Neighbourhood-based algorithms perform worse than item-to-item co-occurrences.
Within the item-based and user-based variants, we observed that results from item-
based collaborative filtering were inferior to the ones achieved by the user-based mod-
els, and therefore we did not consider them in the ensemble.

One of CF’s most successful techniques are low dimensional linear factor models,
that assume that user preferences can be modelled by only a small number of latent
factors. One of such methods is matrix factorization, which has been effectively used
for the rating and item prediction task [18].

We conducted extensive experiments using state-of-the-art CF algorithms based
on matrix factorization. In particular, we evaluated the performance of BPR [25] and
RMFX [14] for the challenge’s task, but we found that the performance achieved was
only at the level of a baseline predictor that recommends the most popular names. This
poor performance of matrix factorization models has been also observed by Folke et
al. [23]. For this reason, the Bayesian Personalized Ranking was not included in the
final ensemble.

We also learned a name-to-name similarity matrix from the co-occurring names
adjacency via optimizing a ranking criteria, as suggested in [25], the results were also
discouraging. In spite of that, the name-to-name algorithms that we introduce (N2N-
Freq and N2N-Time) are those that perform better.

Furthermore, we also tried to optimize directly for MAP following a Learning to
Rank framework suggested in [15] and [7]. This approach learns the latent factors for
users and items, and then applies standard Learning to Rank to optimize for a desired
metric. Our results did not reach the level of the baseline predictor of most popular
names.

Given this performance, we did not include any latent factor model in our ensemble.
Why the results achieved using latent factor models, for this particular task of name
prediction, are inferior to the ones obtained with simple methods? In our future research,
we plan to explore this question more in detail.

In spite of the moderate performance of all the classic Collaborative Filtering al-
gorithms, the name-to-name algorithm performs substantially better than our baseline
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algorithm (PageRank). Moreover, with a proper combination of several algorithm we
can get a fairly good recommender system.

5.2. Thoughts not applied and possible improvements

In spite of a lot of algorithms are tested in our work, we had several ideas that were not
included because of different reasons. One of the ideas that we wanted to implement in
our solution was to take advantage of explicit information of the users and the names,
and apply some kind of Content-based filtering. This data would allow us to apply some
bias to the results based on this information, or work only with those names that in the-
ory were candidates to be chosen by the user, removing all the extra names that would
give only noise.
In our opinion, the language and the genre of a name was the key to boost even more

our results. Our intention was to apply some bias based on this information. If the sys-
tem was able to detect the genre and the language of the names a user was interested
on based on their searches, the recommendation would be done according to that in-
formation. The problem for us was that we needed some gazetteers (list of names per
language and names per genre) that we did not have. To solve this problem we created
our own data with some sources founded in internet, but were not really useful due to
the information source were not extremely reliable. Technically, the results with a good
gazetteer would be promising, but to create a good gazetteer, we needed some time that
we did not have in that moment.

Another way to improve our results would have been using the geological position
of the user. In case of a user is from Germany, we would consider a bias to names in
German (or popular names in Germany, like Turkish name because of the immigration).
The problem for us was that Nameling gives partial information of their users (we only
know the geographic position of some of them), and most the users were from Germany
and Austria, so we were not able to apply a good bias for several countries.

So we consider that with these gazetteers the performance would have increased.
Having information about the country where the user is doing the search, the idiom of
the names a user was searching and the genre, lots of names would be automatically
discarded.

Moreover, one of the biggest problems that we had was to give a recommendation
list to those users that did not have any search yet (or just a few). If we had known
the nationality (or at least the place where the user is doing the search) of all the users
without enough information we could adapt our first recommendation with a content-
based recommendation (like giving the list of the most popular names in its country).
That would be really interesting for us because it would allow us to apply a specific
recommend list for every user (instead of a general one) even if he has not done any
search yet (having a good solution for the cold recommendation).
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Fig. 34. Having gazetteers of names by language would have allowed us to apply some bias
to the results that would allow us to improve even more the ensemble.

5.3. Conclusion and Future Work

5.3.1. Outlook

Some interesting approaches were used in the challenge to recommend given names.
Here there is a small resume of what the participants presented in the workshop.

The paper presented in [5] bases its recommendation on exploiting the contextual
information available (e.g., time and location). They use two state-of-the-art recom-
mender systems (item-based Collaborative Filtering and Association Rules Based), and
they weight the result obtained adding the contextual information. It is also interesting
how they pre-processed the data available. Instead of removing those names that were
not valid, they replaced them with the closest valid name (the idea of this process is to
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Fig. 35. Having gazetteers of names by genre would have allowed us to apply some bias to
the results that would allow us to improve even more the ensemble.

correct a mistyped name by the user). Moreover, they removed the singleton sessions
(“users only access only one item on a website and then leave it”) that can not be used
in the item-based Collaborative Filtering technique.

Another approach presented in [24] creates an hybrid recommendation that mix the
results obtained from a collaborative filtering recommendation, a content-based rec-
ommendation and a popularity-based one. The popularity recommendation list is cre-
ated using the most frequent searched names list (following the restrictions of the chal-
lenge). The collaborative filtering approach calculates de similarity between users using
a neighbourhood algorithm. The content-based algorithm uses the Soundex algorithm
to find names that have phonetic similarity.
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The approach from [27] combines multiple recommendation list, that is they intro-
duced an approach based on dyadic factors, which several information from the names
(like the length or the gender). Also information from the users (the demographic factor)
are considered to create the final recommendation.

The paper presented by I.Bayes and S.Rendle ([8]) differs from the others because
no meta data (neither word similarity nor geographic information) is used to create the
recommendation. Instead of that, they use Factorization Machines, which are a model
class that combines the advantages of support Vector Machines (SVM) with factoriza-
tion models. This partial recommendation is complemented with syntactical similarity
information to create the final recommendation list.

The last approach presented in [19] was an approach based on association rules.
Moreover, a similarity-weighted adjust is applied to boost the performance.

As we can see, in most of the cases the approaches are created combining algo-
rithms for recommending systems that are already known and some kind of bias to the
result based on content-based information of the data of the challenge (for example
information of the names or geographic information of the users).

One of the most interesting ideas presented in these papers was the phonetic simi-
larity factor used in one paper to find names that sounded similar. As we can see, most
of the users used somehow the content-based information related to the language of the
name or the country of the user. But it is not strange to believe that if you like a name,
you would like those names that sound similar to the first one. It is a very simple yet
also very powerful idea.

Finally, just to mention that all the papers gave the final recommender result com-
bining several algorithms. This make us to believe that problem is really difficult to
solve and that an ensemble approach is really promising.

5.3.2. Conclusions

In this work, we used an ensemble of several algorithm for personalized ranked rec-
ommendation of given names. Because of the low performance that the Collaborative
Filtering algorithms performed, our solution tries to boost it trying to obtain informa-
tion from all the algorithms that we tried that seemed that could find some patterns
between the names the user search. As we can see, the ensemble worked improving the
performance as expected.

We also found that the co-occurring name information was a key component for
the Name-to-Name algorithms used in our ensemble. The approaches using the co-
occurring name information were those that performed better.

Our method used to do our final recommendation is intuitive and simple to imple-
ment, and does not suffer from the scalability issues as previous methods introduced
for this task. This fact allow us to believe that our method to recommend names can be
improved increasing the complexity of the algorithms, or creating a specific version of
our recommendation system for a specific case.

We plan to further explore this interesting challenge in order to help parents deciding
what is the best name for their baby.
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