
MASTER THESIS

Title : MAREA 2. Design and Optimization of a Distributed Com munications
Middleware

Master Degree: Master in Science in Telecommunication Engi neering &
Management

Author: Santiago Pérez Fernández

Director: Juan López Rubio

Date: October 26, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41810968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Title: MAREA 2. Design and Optimization of a Distributed Communications Middleware

Author: Santiago Pérez Fernández

Director: Juan López Rubio

Date: October 26, 2013

Overview

In recent years, the rapid growth of distributed embedded systems have been vigorously
pushing middleware systems and technologies in different areas like: telecommunications,
health care, automotive, defense, avionics, etc. The aim of this master thesis is to develop
a new optimized version of the middleware MAREA 1, a software specifically designed
to fulfill Unmanned Aircraft Systems (UAS) communications and their application to the
design of complex distributed UAS avionics.

This document presents the software architecture of MAREA 2 and discusses de-
sign decisions, as well as some of the techniques employed to develop the middleware.
MAREA 2 provides a more modular, flexible and reusable architecture and implements
some new functionalities and features proposed in Service Oriented Architecture for
Embedded (Avionics) Applications (López J., 2009). Another of the main contributions
of this master thesis is the performance evaluation and optimization of the middleware
through the analysis of some key performance parameters. The present document
provides a comparison between the new and previous version of the middleware both in
terms of design and performance.

Títol: MAREA 2. Design and Optimization of a Distributed Communications Middleware

Autor: Santiago Pérez Fernández

Director: Juan López Rubio

Data: 26 d’octubre de 2013

Resum

En els últims anys, el ràpid creixement dels sistemes distribuïts embeguts ha impulsat
amb determinació els sistemes i tecnologies middleware a diferents àrees com: teleco-
municacions, salut, automoció, defensa, aviònica, etc. L’objectiu d’aquest projecte de
fi de màster es desenvolupar una nova versió del middleware MAREA 1, un software
específicament dissenyat per complir amb les comunicacions dels Sistemes Aeris No
Tripulats i la seva aplicació en el disseny de sistemes aviònics distribuïts complexos per
Avions No Tripulats.

Aquest document presenta l’arquitectura de software de MAREA 2 i aborda les decisions
del seu disseny, així com algunes de les tècniques emprades pel seu desenvolupament.
MAREA 2 proporciona una arquitectura més modular, flexible i reusable i inclou algunes
de les noves funcionalitats i característiques presentades a Service Oriented Architecture
for Embedded (Avionics) Applications (López J., 2009). Una altra de les principals con-
tribucions d’aquest projecte de fi de màster es l’avaluació i optimització del middleware
a través de l’anàlisi d’alguns paràmetres clau de rendiment. El present document fa una
comparativa entre la nova i l’anterior versió del middleware tant en relació al disseny com
al rendiment.

Primer de tot vull agrair als meus pares i la meva germana tot el suport incondicional i els
esforços que han fet perquè pugi arribar fins aquí.

També vull expressar el meu agraïment més sincer i profund a Ramona Vidal per
ensenyar-me el valor de l’esforç, la constància i el treball.

Finalment, vull agrair especialment al meu director Juan López tota la seva paciència,
dedicació i temps. La seva ajuda, comentaris, suggeriments i correccions han contribuït

notablement a que aquest treball tirés endavant.

CONTENTS

INTRODUCTION . 1

CHAPTER 1. MAREA . 3

1.1 Middleware Context . 3

1.1.1 Distributed Systems . 3

1.1.2 Middleware . 4

1.1.3 Types Of Middleware . 4

1.1.4 Adaptive and Reflective Techniques 7

1.1.5 Conclusions . 7

1.2 Description . 7

1.3 Communication Primitives . 8

1.4 System Architecture . 9

1.5 Naming Service . 10

1.5.1 Address Types . 10

1.6 Service . 11

1.6.1 Service Description . 12

1.6.2 Service Implementation . 13

1.7 Conclusions . 16

CHAPTER 2. NETWORK LAYER . 19

2.1 Architecture . 19

2.2 Router . 21

2.2.1 Network Lanes . 21

2.3 NetworkMessage Pool . 22

2.3.1 Results . 23

2.4 Encoding Layer . 24

2.4.1 Previous Work . 24

2.4.2 Drawbacks . 25

2.4.3 Improvements . 26

2.4.4 Results . 28

2.5 Transport Layer . 30

2.5.1 Drawbacks . 30

2.5.2 Improvements . 31

2.5.3 Results . 31

2.6 MAREA 1 Network Backport . 32

2.6.1 Results . 32

2.7 Comparison with MAREA 1 Network Architecture 33

2.8 Conclusions . 35

CHAPTER 3. SERVICE CONTAINER . 37

3.1 Architecture . 37

3.1.1 Relationship Between Service Container And Network Layer 38

3.1.2 Relationship Between Service Container And Protocol Layer 39

3.2 Service Manager . 39

3.2.1 Service Loading . 39

3.2.2 Service Start Up And Shutdown . 40

3.3 Proxy And Remote Consumer Services . 41

3.3.1 Proxy Services . 42

3.3.2 Remote Consumer Services . 44

3.4 Services . 45

3.4.1 Node Manager . 45

3.4.2 MAREA Console . 45

3.4.3 MAREA GUI . 46

3.5 Comparison with MAREA 1 Service Container Architecture 47

3.6 Conclusions . 48

CHAPTER 4. PROTOCOL LAYER . 49

4.1 Discovery Protocol . 49

4.1.1 Messages . 50

4.2 Publish-Subscribe Protocol . 51

4.2.1 Messages . 51

4.3 Remote Procedure Call Protocol . 52

4.3.1 Messages . 52

4.4 Improvements . 53

4.5 Conclusions . 54

CHAPTER 5. CONCLUSIONS . 55

5.1 Results . 55

5.1.1 Round-Trip Time . 55

5.1.2 Memory allocation . 56

5.2 Project Conclusions . 57

5.3 Personal Conclusions . 59

5.4 Future Work . 59

5.5 Environmental Impact . 60

REFERENCES . 61

APPENDIX A. TOOLS . 1

A.1 Package management system . 1

A.1.1 NuGet . 1

A.1.2 Package Management . 1

A.1.3 Package Creation . 2

A.1.4 Package Publication . 3

A.1.5 Package Managment Automation 3

A.1.6 Third Party Packages . 4

A.2 Source control tools . 9

A.2.1 Git . 9

A.2.2 GitHub . 9

A.2.3 Git Source Control Provider Extension 10

A.3 Cross platform tools . 10

A.3.1 Mono . 10

A.3.2 AlterNative . 10

A.3.3 IOSharp . 11

A.4 Continuous Integration tools . 11

A.4.1 Jenkins . 11

A.5 Material . 13

APPENDIX B. CLASS DIAGRAM . 15

LIST OF FIGURES

1.1 A high level view of MAREA core layers . 9
1.2 Services interacting with a query proxy in a multiple battery management sce-

nario . 16

2.1 MAREA 2 network layer architecture . 19
2.2 NetworkMessage entity . 20
2.3 Number of bytes allocated by MAREA 1, MAREA 1 network backport in an echo

test (requester side): 1000 Bytes, 10000 times, 100 Hz 23
2.4 Encoder layer implementations: Total serialization and deserialization time . . . 28
2.5 Encoder layer implementations: Total serialization and deserialization time for

new supported types . 29
2.6 Mean round-trip times for an echo test using isolated synchronous and syn-

chronous UDP transports: 1000 Bytes, 10000 times, 100 Hz 31
2.7 Round-trip time distribution for an echo test of MAREA 1 and MAREA 1 network

backport using variable primitives: 1000 Bytes, 10000 packets, 100 Hz 33
2.8 MAREA 1 network layer architecture . 33
2.9 Lane Manager class diagram . 34

3.1 A high level view of service container . 37
3.2 Interaction between communication primitives and services from Service Man-

ager’s point of view in a battery management system 41
3.3 Interaction between communication primitives and remote proxies in a battery

management system . 42
3.4 Interaction between communication primitives and a query proxy in a battery

management system . 43
3.5 MAREA Console service . 46
3.6 MAREA GUI service . 47

4.1 Discovery and subscription protocol message exchange bettwen a Battery and
two BatteryManager services into different service containers 49

4.2 Remote procedure protocol message exchange bettwen a Battery and a Bat-
teryManager services into different service containers 52

5.1 Mean round-trip times for an echo test using MAREA 1, MAREA 1 network
backport, MAREA 2: 1000 Bytes, 10000 times, 100 Hz 56

5.2 Number of bytes allocated by MAREA 1, MAREA 1 network backport, MAREA
2 in an echo test (requester side): 1000 Bytes, 10000 times, 100 Hz 57

A.1 Manage NuGet Package option in right click menu project 1
A.2 MAREA service package management in Manage NuGet Packages dialog box 2
A.3 Nuget specification (nuspec) file from a MAREA service project 2
A.4 Visual Studio Create and Publish package external tool 3
A.5 Create and Publish package external tool details 4
A.6 MAREA unit tests executed by NUnit GUI application 5
A.7 NuGet server application settings from Web.config file 7
A.8 Visual Studio package source configuration 7

A.9 View of OData over ATOM feed of MAREA packages 8
A.10Jenkins project configuration . 12
A.11Jenkins project general view . 12

B.1 MAREA core class diagram . 15

LIST OF TABLES

1.1 MAREA naming special characters . 11

2.1 Output and input network lanes . 22
2.2 Number of bytes allocated by MAREA 1, MAREA 1 network backport in an echo

test (requester side): 1000 Bytes, 10000 times, 100 Hz 24
2.3 Serialization engine comparison between .NET BinaryFormatter and XMLSerializer

[8] . 24
2.4 MAREAGen identifier distribution . 27
2.5 Encoder layer implementations: Total serialization and deserialization time . . . 29
2.6 Encoder layer implementations: Total serialization and deserialization time for

new supported types . 30
2.7 Mean round-trip times for an echo test using isolated synchronous and synchronous

UDP transports: 1000 Bytes, 10000 times, 100 Hz 32

5.1 Mean round-trip times for an echo test using MAREA 1, MAREA 1 network
backport, MAREA 2: 1000 Bytes, 10000 times, 100 Hz 55

5.2 Number of bytes allocated by MAREA 1, MAREA 1 network backport, MAREA
2 in an echo test (requester side): 1000 Bytes, 10000 times, 100 Hz 56

1

INTRODUCTION

The main objective of this master thesis is to design and implement a new version of
the middleware MAREA 1, a software specifically designed to fulfill Unmanned Aircraft
Systems (UAS) communications and their application to the design of complex distributed
UAS avionics.

Middleware is a system software that resides between the applications and the underly-
ing operating systems, network protocol stacks, and hardware, which provides facilities in
order to build and use distributed systems [1].

The time and cost of the deployment of middleware solutions across heterogeneous en-
vironments continues to grow as technology evolves and becomes more complex. The
objective of this master to address this issue regarding the design and deployment of
services, is to implement a new service approach based on the deployment unit concept
(López J., 2009).

An important work-line inside the middleware solutions is the support of naming services,
where redundant services must be targeted with load balancing and fault tolerance. In
relation to this topic, the objective of this master thesis is to implement a naming service
that allows to find, share and access services and its communication primitives hiding the
network complexity, and providing location transparency.

Actual middleware solutions have a hard time to build and deploy distributed real-time and
embedded systems. In recent years, the development of efficient middleware architectures
has become one of the big challenges of distributed real-time and embedded systems.
One of the objectives regarding this, is to study and use software optimization techniques
to improve the performance of the new design of MAREA middleware.

The document is structured in five different chapters. In addition to the chapters, the
document includes some appendices with further information. A brief overview of each of
the chapters follows:

• Chapter 1: presents a brief introduction to MAREA 2, and provides a high-level
overview of the system architecture from an end user programmer’s point of view.

• Chapter 2: is the first of three chapters that exclusively deals with the internal im-
plementation details of MAREA 2. This chapter describes the design of the network
system architecture and compares it with the one from MAREA 1 by contrasting
results.

• Chapter 3: tackles the new design and implementation of the service container and
provides a comparison with service container from MAREA 1.

• Chapter 4: introduces the design of the protocol layer and describes it interactions
with all the other components of the architecture.

• Chapter 5: provides a summary of the conclusions reached and points out some
future work.

2 MAREA 2. Design and Optimization of a Distributed Communications Middleware

MAREA 3

CHAPTER 1. MAREA

The first part of this chapter introduces basic concepts about embedded systems and
middleware technologies required for understanding the content of the present document.

The second part introduces MAREA middleware architecture, the communication mech-
anisms available to communicate services and the MAREA naming scheme. The last
section of this chapter tackles the design and implementation of MAREA services from an
end user programmer’s point of view.

1.1 Middleware Context

This section sketches out briefly middleware systems and technologies. The first part
introduces and describes distributed systems. Next, middleware is formally defined and
the different types of middleware are analyzed. The section comes to an end some of the
techniques applied in the development of next-generation middleware systems.

1.1.1 Distributed Systems

Distributed computing and distributed systems have gained popularity and importance over
past years. The main purpose of this type of systems is to interact and exchange data
between its set of components in order to share resources. This sort of systems could be
perceived as a single integrated computing facility.

The common characteristics of this type of systems are: resource sharing, fault tolerance,
concurrency, scalability, transparency and openness.

Distributed systems offer facilities to increase the performance, availability and reliability
of applications. In general, this type of systems are cheaper than a centralized single
system, because a large number of small, low-power systems tend to be cheaper than
single computer.

This type of systems is more complex to build and maintain than an equivalent centralized
system. One example of this is the software developing complexity introduced to ensure a
proper coordination and communication between the distributed components. This com-
plexity would be a major unwanted problem for application developers.

Another problem is the effect of heterogeneity in distributed systems. Distributed systems
may contain many different types of components (software and hardware) working together
in cooperative way to solve problems.

4 MAREA 2. Design and Optimization of a Distributed Communications Middleware

1.1.2 Middleware

Complexity and heterogeneity drawbacks of distributed systems could be solved or relived
using a middleware. Middleware is a system software that resides between the applica-
tions and the underlying operating systems, network protocol stacks, and hardware, which
provides facilities in order to build and use distributed systems [1].

This type of software provides a transparent and abstract vision of the low-level details
(e.g. network communication, encoding, concurrency, protocol handling, etc.) facilitating
end user programming. Middleware typically provides two different types of transparency
to distributed systems:

• Access transparency: Hides differences between remote and local operations like
data representation and invocation mechanisms.

• Location transparency: Hides the location of components. The different compo-
nents could be redistributed (e.g. moved between computers) without changing any
of the other components.

1.1.3 Types Of Middleware

The following subsection presents the main types of middleware and describe the most im-
portant requirements (scalability, reliability, heterogeneity, transparency, etc.) addressed
by each alternative. The most widely known middleware implementations are also men-
tioned for each type of middleware.

1.1.3.1 Message Oriented Middleware (MOM)

Message oriented middleware (MOM), is a middleware that allows the communication be-
tween the components through messages. In this type of middleware, the coordination
between the components could be achieved synchronously or asynchronously depending
on the communication model of the MOM.

• Message queuing: This asynchronous indirect communication model uses a queue
in order to exchange messages. The messages from the producer are stored into the
consumer’s queue after being sent. In this type of communication model, persistent
queues are used when the reliability is required in front of performance. Quality of
service (QoS) policies are also a good solution to provide reliability.

• Message Passing: In this direct communication model, the messages are sent
directly to the interested parts through publish-subscribe pattern. First, the different
parts register interest in receiving messages on a particular message topic. Then,
consumers will receive any message corresponding to the subscribed topic.

MAREA 5

MOM has a limited support for data heterogeneity because marshalling has to be imple-
mented by the programmers. This type of middleware offers location transparency, inher-
ent from publish-subscribe model, but has a limited support for access transparency. This
lack of access transparency limits replication and migration transparency, complicating the
scalability.

MOMs are build around a reliability paradigm that is suitable for applications where the
availability of a network or all components is not warranted [2]. The most common imple-
mentation of this type of middleware are Sun’s Java Message Queue and IBM’s MQSeries.

1.1.3.2 Procedural Middleware (PM)

Procedural middleware (PM) is based on the concept of Remote Procedure Calls (RPC).
RPC is an interprocess communication (IPC) mechanism which is designed to exchange
data and invoke functions between client and server processes.

In this type of middleware, RPC servers contain procedures which could be invoked by
remote clients across the network. PM provides location transparency because clients
can invoke remote procedures as if it were local. RPC communications are synchronous,
because clients remains blocked until the remote procedures have been executed.

RPC presents good heterogeneity because the relationships between servers an clients
is defined through common interface with IDL (Interface Definition Language). Client does
not need to know the language that server supports because the IDL compilers can trans-
late the clients request. IDL compilers also marshalls and interprocess data automatically.

PM has a limited scalability due to the absence of replication and load balancing mecha-
nisms. As opposite of MOM, PM does not support group communications.

This type of middleware is specially useful for simple point-to-point applications. The most
widely known implementations of PM are Microsoft RPC Facility and Open Software Foun-
dation’s Distributed Computing Environment DCE.

1.1.3.3 Transactional Middleware (TM)

Transactional middleware (TM) supports the development of distributed systems through
asynchronous transactions using a client/server model. A transaction is an atomic and
logical sequence of events or operations. This implies that all set of operations are either
executed or not at all.

TM use a request message to ask the system to execute a transaction. The transaction
processing (TP) monitor is the responsible to coordinate the requests between clients and
servers.

Regarding reliability, TP monitors manage the transactions with the two phase commit
protocol (2PC), which is commonly used by relational database management systems
(DBMS) to provide fault tolerance. Once "prepare to commit phase" have finished, the TP
monitor asks the TM to commit the transactions and make it final to all servers ("commit

6 MAREA 2. Design and Optimization of a Distributed Communications Middleware

phase"). If at least one of them indicates that it cannot be executed, then the TP monitor
asks all nodes to do a rollback in order to do not apply any change.

TP monitors provide reliability by means of support for replications and load balancing for
the different server components.

One of the drawbacks of TM is the overhead introduced to manage and guarantee the
transactions. This type of middleware also does not provide automatic marshalling and
unmarshalling capabilities.

As mentioned before, TM is typically used in DBMS where the transactions have to be
synchronized and controlled over multiple databases. BEA’s Tuxedo, IBM’s CICS, and
Transarc’s Encina are some typical implementations of this type of middleware.

1.1.3.4 Object Oriented Middleware (OOM)

Object oriented middleware (OOM) is an evolution of PM which extends its features adding
object oriented capabilities.

OOM supports distributed object requests based on a client/server model. This type of
middleware provides a local representation of remote objects, and hides the communica-
tion between remote objects and its local representation. The main idea is that all the
objects can be accessed and invoked remotely anywhere in the network. OOM supports
both synchronous and asynchronous communication.

There are many examples of OOMs like CCM (CORBA Component Model), SUN’s Enter-
prise Java Beans, Java/RMI (Remote Method Invocation), Microsoft’s DCOM (Distributed
Component Object Model), CORBA (Common Object Request Broker Architecture), etc.

OOM presents good heterogeneity. For instance, CORBA supports different programming
languages in the server and client. Java/RMI resolves the heterogeneity issue using Java
Virtual Machine (JVM).

One of the drawbacks of this type of middleware is scalability. Only some specific imple-
mentations like Enterprise Java Beans and CORBA support replication and load balancing
respectively.

OOM has high runtime and network communication overhead introduced by the support of
features like service discovery. The bottlenecks appeared in the OOM technologies were
due to many factors which includes excessive data copying, less compact encoding and
complex encoding rules [3].

For other part, this type of middleware simplifies and provides a rapid integration of pro-
gramming tasks for distributed and heterogeneous environments. This type of middleware
is starting to be integrated with MOM.

MAREA 7

1.1.4 Adaptive and Reflective Techniques

Most of the middleware used until today present a lack of flexibility and adaptability to
different application environments and areas. Adaptive and reflective techniques have
been noted as a key emerging paradigm for the development of dynamic next-generation
middleware platforms [1]. This type of techniques improves configurability and provides
dynamic adaptation to middleware systems and technologies.

Adaptive middleware is software whose functional behavior can be modified dynamically
to optimize for a change in environmental conditions or requirements [4].

Reflective middleware applies reflection technique at middleware level. Reflection provides
the ability for a program to observe or change its own code as well as all aspects of its
programming language during runtime.

Reflexive and adaptive techniques are both useful separately, but become very powerful
tool together. Reflective capabilities trigger adaptive capabilities by allowing system in-
spection in case a behavior adaptation is needed. During this work new reflective and
adaptive capabilities will be added to MAREA middleware architecture.

1.1.5 Conclusions

This section introduces some basic concepts about distributed systems and middleware.
Middleware provides mechanisms and tools that simplify the development of distributed
applications. The distributed transparency provided by this type of software reduces the
complexity of handling widely distributed systems.

The idea of this section is not to overwhelm the reader with explanations but only to pro-
vide as much information as is necessary to understand basic concepts about middle-
ware. Some of these concepts are mentioned in the subsequent chapters with the aim of
describe implementation details about MAREA 2.

1.2 Description

Middleware Architecture for Remote Embedded Applications (MAREA) is a middleware de-
signed by ICARUS group specifically designed to fulfill Unmanned Aircraft Systems (UAS)
communications and their application to the design of complex distributed UAS avionics
[5].

The ICARUS group is composed by researchers of the Technical University of Catalo-
nia - Barcelona Tech (UPC) mainly from the Computer Architecture Department of the
Castelldefels School of Telecommunications and Aerospace Engineering (EETAC). The
basic aim of this research group, formed in 2005, is develop technologies to automate air
traffic management (ATM) with low cost UAS in civil airspace as well as more intelligent
platforms that allow the deployment of civil applications for unmanned aircraft.

8 MAREA 2. Design and Optimization of a Distributed Communications Middleware

MAREA proposes a modular architecture based on services (SOA). These type of archi-
tectures ensures extensibility, flexibility and interoperability across heterogeneous envi-
ronments. MAREA is a mixed MOM/OOM which implements a Data Distribution System
communication model based on the publish-subscribe pattern. This middleware also offers
additional features like RPC and file-based data transfer.

1.3 Communication Primitives

MAREA provides to the developers a different range of possibilities to interact and com-
municate the services between them through the following communication primitives:

• Variables: This type of communication primitive is designed to share periodic and
short deterministic information between different services following a publish-subscribe
model. In this type of primitives the data is sent in a best effort way, through UDP
transport, taking in account the periodic behavior of the publisher and the limited
lifetime of the information. An appropriate use case of this type of primitive is the
telemetry provided by a GPS navigation device.

• Events: Similar to the variables, events are also used to share periodic and short
information between services following a publish-subscribe model. As opposite of
variables, the information in events is guaranteed to be delivered to all the sub-
scribed services through TCP transport. This type of primitive is designed to share
information about important and unpredictable facts. An example of this type of
communication primitive can be any alarm used to inform about a critical system
failure.

• Remote invocation: MAREA also offers an alternative Data Distribution System
communication model to the publish-subscribe pattern like remote invocation. In
this type of primitive the communication is established only between two services
following the request/reply pattern using a client/server model. In remote invoca-
tion, as opposite of variables and events, the relation between the two services is
punctual and it only lasts the execution time of the remote call. This type of primitive
allows the use of multiple parameter and a single result value. Remote invocation is
useful in these situations where a one-off action has to be taken.

• File-based data transfer: This type of communication primitive is used to transfer
continuous information in an efficient way. In file-based data transfer the information
is sent in chunks in a non reliable way through UDP Transport. File-based data
transfer also provides a reliable control mechanism in order the consumer could
notify the missing packets to the provider. This type of communication primitive is
useful to share any kind of information like images and configuration files.

MAREA 9

1.4 System Architecture

MAREA describes an architecture based on reusable services that can be distributed over
a network of low-cost computing devices. As shown in figure 1.1, two distributed services
are running and interacting in two different MAREA instances on the top of the middle-
ware core. MAREA core has been designed according to the following two layer system
architecture: service container and network layer.

Network Layer

Service Container

Service 1

Network

Network Layer

Service Container

Service 2

MAREA

Core

Services

Figure 1.1: A high level view of MAREA core layers

The network layer, which is explained with more detail in chapter 2, is on charge of trans-
late MAREA protocol messages in streams of bytes and send them through the network.
This layer can also undertake the inverse operation: receive a stream of bytes through the
network and translate them into MAREA protocol messages. One of the purposes of the
network layer is to provide flexibility allowing the use of different transports and encodings
depending on the scenario characteristics (e.g. hardware and software limitations). Net-
work layer is a highly reusable component that could potentially send and receive any type
of of object over the network.

MAREA services are managed and executed by the service container. This component
allows message passing between services making communication between both local and
remote services transparent, manages the communication protocols and primitives, etc.
Service container decouples the services from the core hiding implementation details of
some aspects like message management, service location and message delivery. Notice
that, only one single service container is executed in each node of the distributed network.

The service container delegates the responsibility of managing and processing MAREA
protocol messages to a sublayer called protocol layer (chapter 4). This component also
manages the exchange of messages in order to discover and use the communication
primitives of different services.

10 MAREA 2. Design and Optimization of a Distributed Communications Middleware

For one hand, network layer and protocol layer are responsible for providing message
oriented capabilities to the system. For the other hand, the remaining parts of the service
container are in charge of provide object oriented capabilities. Therefore, MAREA can be
considered as a mixed MOM/OOM middleware.

1.5 Naming Service

The naming service allows MAREA to find, share and access services and its communica-
tion primitives hiding the network complexity. This component should address the different
service and its communication primitives with name resolution.

An important requirement of the naming service is that the resolution name should not
be bounded statically to specific locations. The main problem with that is if the service is
moved to another location the reference to it becomes invalid. The proposed solution to
this problem is to allow the usage of location independent service identifiers. The naming
service provides fault tolerance to the system (services could be replicated in different
nodes for redundancy).

The service identifier expression is a string comprising five fields separated by a slash
which correspond to four different hierarchical levels. Each of the fields represent a hier-
archical level name space, with exception of the service and the primitive are in the same
level. The information of these hierarchical levels is represented by the following string:

/<subsystem>/<node>/<instance>/<service>/<primitive>

• Subsystem: A subsystem is defined as a logical group of nodes.

• Node: A node is defined as a group or just a single processor which runs MAREA
middleware.

• Instance: The instance identifies a specific instance of a service.

• Service: The service identifies the type of the service.

• Primitive: The primitive identifies a specific communication primitive.

1.5.1 Address Types

MAREA hierarchical level naming scheme supports two different address types: single
and query.

1.5.1.1 Single

Single addressing is applied to those service identifiers which represent a unique primitive
or service (depending if the field of the primitive level is present or not in the service

MAREA 11

identifier) inside the network or MAREA domain.

For instance the service identifier /Vehicle 1/Devices/Main/GPS represents a unique in-
stance called Main of the service type GPS inside the node called Devices of the subsys-
tem Vehicle 1.

1.5.1.2 Query

Query addressing is applied to those service identifiers which represent a group of primi-
tive or services inside the network or MAREA domain.

This type of addressing allow the usage of special characters in each of the hierarchical
levels to provide flexibility to the service location. The table 1.1 shows a brief description
of each one.

Special character Description Usage

* Selects any element of the actual
field/hierarchical level

Any of the fields of the service iden-
tifier

* Forces dynamic name resolution for
the given service identifier

At the beginning of the service iden-
tifier

Forces static name resolution for the
given service identifier

At the beginning of the service iden-
tifier

! Forces static name resolution and
locks the service with highest prior-
ity of the set referenced by the ser-
vice identifier

At the beginning of the service iden-
tifier

Table 1.1: MAREA naming special characters

For instance, */Vehicle 1/Devices/*/GPS means all the GPS type instances in the node
Devices belonging to subsystem Vehicle 1, regardless of their instance name.

MAREA presents by default dynamic name resolution. This means that if a new service is
started, the naming service is able to notice it and update all the name resolutions which
contain a reference to this service. In some specific cases its required the use of static
name resolution. In these situations future changes will not be taken into account. For
instance, #/Vehicle 1/*/*/GPS means all GPS type instances of Vehicle 1, regardless the
node and their instance name, obtained at search time. In this specific case, changes like
the addition of new GPS services or the removal of existent GPS services will not be taken
into account.

1.6 Service

MAREA services have been designed according to the deployment unit concept. A deploy-
ment unit is a compressed file that contains a single module of application code loadable

12 MAREA 2. Design and Optimization of a Distributed Communications Middleware

by the service container [6].

MAREA defines the following three different types of deployment units:

• Service Deployment Units (SDU): Contains the implementation of the service. It
has a dependency with its corresponding IDU.

• Interface Deployment Units (IDU): Contains the description of the service. This
description is defined by an interface.

• Library Deployment Units (LDU): Contains libraries or other dependencies re-
quired by the service.

For example, consider a barometric and a radioelectric altimeter which both implement the
same interface (IDU), but the implementation (SDU) of them is different. With the deploy-
ment unit approach, the interface can be shared among them. Following with this example,
a possible LDU could contain data about the altimetry which is information susceptible to
be used by other services (e.g. GPS).

The proposed way to distribute deployment units is to build a private package management
system using the NuGet tool. The final idea is setup a private NuGet server in order to
host the deployment units as NuGet feed. A proof of concept has been made in order to
test the feasibility of using NuGet as a package management system. Some of the details
are introduced in appendix A.1.

The following subsections detail the implementation of the IDU an SDU of a service with
an example of a multiple battery management system. The system is composed of a
BatteryManager service on charge of monitoring the charge of the batteries and multiple
Battery services connected to the sensing hardware installed in the different battery packs.
From now to the end of the document, this example is referenced in several sections.

1.6.1 Service Description

MAREA services are described by an interface (IDU) which contains the different commu-
nication primitives published by all the services that implement the interface.

The listing 1.1 contains the interface of all the Battery services. It declares three different
primitives: a variable exposing the amperage, an event notifying low charge condition and
a function that controls the recharging hardware of the battery.

The interface also contains additional data to describe the service and their communica-
tion primitives. Optional information like description, units or a property to publish or not
the primitive, is assignable by using different attributes.

MAREA 13

Listing 1.1: Battery IDU

[S e r v i c e D e f i n i t i o n (" This se rv i ce represents a b a t t e r y ")]
pub l i c i n t e r f a c e I B a t t e r y
{

[Desc r ip t i on (" This v a r i a b l e represents the amperage of the b a t t e r y ")]
[Uni t ("A")]
[Publ ish]
Var iab le <double > amperage { get ; }

[Desc r ip t i on (" This event in forms t h a t the b a t t e r y i s low and needs to be recharged ")]
[Publ ish]
Event<None> lowBattery { get ; }

vo id Recharge (bool b) ;
}

The listing 1.2 contains the interface of all the BatteryManager services. It declares an
event notifying a warning condition.

Listing 1.2: BatteryManager IDU

[S e r v i c e D e f i n i t i o n (" This i s a b a t t e r y manager ")]
pub l i c i n t e r f a c e IBat teryManager
{

[Desc r ip t i on (" This event warns when any of the b a t t e r i e s of the system i s low . ")]
Event<St r ing > globalBatteryWarning { get ; }

}

1.6.2 Service Implementation

The SDU defines a specific implementation or definition for an interface (IDU). MAREA
service implementation offers the following common interface operations to manage ser-
vices:

• Start: This operation is executed when a service is started. This method is respon-
sible for allocating resources and starting the service functionality.

• Stop: This operation is executed when a service is asked to finish. This method is
responsible for stopping the service functionality and freeing the allocated resources.

Considering the battery management system, each different battery package will require
a different service implementation. However, the service implementation details of the
Battery services will remain hidden by the same compatible interface. In this way, all the
Battery implementations are interoperable and could be accessed in a uniform, transparent
manner. This means that the BatteryManager does not notice any differences among the
different Battery implementations.

The listing 1.3 depicts the implementation of a dummy Battery service. The Start method
is on charge to create and start a thread which executes the Run method. This dummy
method is on charge to notify the value of the amperage every second. A lowBattery event
is also generated if the amperage value is under 0.5 A.

14 MAREA 2. Design and Optimization of a Distributed Communications Middleware

Then the Recharge method is implemented. This method is inherited from the service
description (IDU) like the variable and event communication primitives located in IBattery
Members region. Recharge method is called transparently when other service calls this
specific remote invocation communication primitive.

Listing 1.3: Battery SDU

pub l i c c lass Ba t t e r y : Service , I B a t t e r y
{

protec ted Thread th ;
p ro tec ted bool isStarted = f a l s e ;

pub l i c ove r r i de bool Start ()
{
th = new Thread (new ThreadStart (Run)) ;
isStarted = t rue ;
th .Start () ;
r e t u rn t rue ;

}
pub l i c ove r r i de bool Stop ()
{
isStarted = f a l s e ;
re t u rn t rue ;

}

pro tec ted vo id Run ()
{
Random r = new Random () ;
bool state = f a l s e ;

whi le (isStarted)
{
amperage .Notify (id , r .NextDouble ()) ;

i f (amperage .Value < 0 . 5)
lowBattery .Notify (id , None .Instance) ;

Thread .Sleep (1000) ;
}

pub l i c vo id Recharge (bool t)
{
Console .WriteLine (" Recharge=>"+ t) ;
/ / Here should go the command to recharge or not the b a t t e r y

}

reg ion I B a t t e r y Members

pub l i c Var iab le <double > amperage { get ; p r i v a t e set ; }

pub l i c Event<None> lowBattery { get ; p r i v a t e set ; }

#endregion
}

One of the benefits of the deployment unit paradigm is that types and parameters of the
service implementation are checked with the service interface at compile time. In this way,
the compilation process will not start if the parameters and types of the interface and the
implementation do not match.

The listing 1.4 depicts the implementation of a BatteryManger service. This service con-
sumes the communication primitives published by the batteries which implement the Bat-
tery interface (see IBattery object called bat).

MAREA 15

To consume a variable or event it necessary to subscribe the primitive to a specific method.
This method will act as a callback when new data is available (see AmperageChanged and
LowBatteryChanged methods). As shown in listing 1.4 this subscription and unsubscrip-
tion process is executed inside the Start and Stop methods respectively.

Each time a new value of amperage is generated the AmperageChanged method is called.
If the new value of the amperage is less than 0.1 A the event globalBatteryWarning is fired.
This event uses a string with the name of the battery to discriminate the battery with low
charge among all the batteries of the system.

Listing 1.4: BatteryManager SDU

c lass BatteryManager : Service , IBat teryManager
{

[LocateService (" * /EC−UPC/ * / bat1 / Ba t t e r y ")]
p r i v a t e I B a t t e r y bat ;

pub l i c ove r r i de bool Start ()
{
bat .amperage .Subscribe (id , AmperageChanged) ;
bat .lowBattery .Subscribe (id , LowBatteryChanged) ;
r e t u rn t rue ;

}

pub l i c ove r r i de bool Stop ()
{

bat .amperage .Unsubscribe (id , AmperageChanged) ;
bat .lowBattery .Unsubscribe (id , LowBatteryChanged) ;
r e t u rn t rue ;

}

pub l i c vo id AmperageChanged (String name , double amps)
{
Console .WriteLine (" ["+id+"] "+ " Var iab le : "+name+" Value : " +amps) ;
i f (amps<0.1)
globalBatteryWarning .Notify (id , name) ;

}

pub l i c vo id LowBatteryChanged(String name , None none)
{
Console .WriteLine (" [" +id + "] "+ " Event : " + name +" Value : " +none) ;

}

reg ion IBat teryManager Members

pub l i c Event< s t r i n g > globalBatteryWarning { get ; p r i v a t e set ; }

#endregion
}

1.6.2.1 Service location and consumption

MAREA services could consume primitives from a specific service or a set of services
which implement the interface (IDU) of the service. This depends on the naming address-
ing type used (section 1.5.1) in the LocateService attribute.

Now consider the a scenario based on the battery management system in a single node.
This node runs two different Battery services and one BatteryManager.

16 MAREA 2. Design and Optimization of a Distributed Communications Middleware

Network Layer

Service Container

Battery

EC-UPC/IP1/bat1/

Battery

Network

MAREA

Core

Battery

EC-UPC/IP1/bat2/

Battery

Battery

/EC-UPC//bat1/

Battery

BatteryManager

EC-UPC/IP1/bat2/

BatteryManager
Services

Figure 1.2: Services interacting with a query proxy in a multiple battery management
scenario

According to the implementation of the BatteryManager depicted in listing 1.4 the Battery-
Manager located in node 2 will consume the communication primitives from all the services
which match with the query */EC-UPC/*/bat1/Battery (see LocateService attribute in IBat-
tery object).

Before following with the example, is necessary to define proxies. Proxy objects are ser-
vices that implement the same interface (IDU) as the represented service and control the
access to the represented service. Proxies just act as redirectors an do not add any extra
specific functionality for themselves.

As shown in figure 1.2, the service container will generate a proxy object that represent
the set of services selected by the query (service in light blue color). In this case the
represented service corresponds to the result of the query */EC UPC/*/bat1/Battery, which
corresponds to both Battery services.

Another kind of proxy used by MAREA middleware is remote proxy. This type of service
provides a local representative for a service that reside in a different service container or
node than the current one. The functioning of both, remote and query proxies, is detailed
in section 3.3.1.

1.7 Conclusions

MAREA 2 proposes an architecture based on services that ensures extensibility, flexibility
and interoperability across heterogeneous environments. MAREA is a mixed MOM/OOM
that provides four MAREA different types of communication primitives to interact and com-
municate the different services: variable, event, remote produce call and file-based data
transfer.

MAREA 17

MAREA core has been designed according to the following two layer system architecture:
service container and network layer. Service container is responsible for managing and ex-
ecuting services following the deployment unit approach. Network and protocol layers are
on charge of offering network access and remote message delivery capabilities respec-
tively. The new implemented naming service allows to find, share and access services
and its communication primitives hiding the network complexity.

18 MAREA 2. Design and Optimization of a Distributed Communications Middleware

NETWORK LAYER 19

CHAPTER 2. NETWORK LAYER

The first part of this chapter presents a general overview of the new network system ar-
chitecture. The following subsections describe each network component with more detail,
and present results to the measurements of some performance parameters that represent
most critical capabilities and characteristics of the network system architecture. Some
of these the key performance parameters are: simultaneous connections, round-trip time
(RTT) and memory allocation.

The chapters comes to and end with a comparison between the current and previous
design of the network layer.

2.1 Architecture

The network layer is the lowest level layer on the MAREA stack. This layer it is on charge of
providing an optimized, modular and reusable usage of the network capabilities. MAREA
network system architecture consist of two main sublayers: encoder and transport.

Coder Layer

Receive (NetworkMessage,Lane)

Serialize (NetworkMessage)

Deserialize (NetworkMessage)

Send (NetworkMessage)

Router

UDP TCP

C
o
n
n
e
c
tio
n

Transport

Layer

C
o
n
n
e
c
tio
n

C
o
n
n
e
c
tio
n

Network

Message

Pool

FIFO

Figure 2.1: MAREA 2 network layer architecture

One one hand, the encoder layer is responsible for coding MAREA protocol messages into
byte sequences. This component also undertakes the inverse operation of decode byte
sequences into MAREA protocol messages.

20 MAREA 2. Design and Optimization of a Distributed Communications Middleware

On the other hand, the transport layer is on charge of send and receive data (byte se-
quences) from the underlying network through transports (UDP, TCP).

The Router is primarily responsible for selecting encoders and transports dynamically by
using network lanes (section 2.2.1). This component plays a very important role in offering
adaptive capabilities to the network layer and in building a highly reconfigurable system.

The idea of the proposed design, in order to improve the performance in terms of speed,
is to minimize the amount of time used by the garbage collector to create and destroy
object instances. The architecture component called NetworkMessage Pool (section 2.3)
achieves this improvement using a memory pool mechanism.

In order to provide uniformity and simplicity to the design of each sublayer, the communi-
cation between them is done using a common interface. Each of the sublayers send and
receive a NetworkMessage entity (figure 2.2) to the upper and lower layers. This common
data structure, which contains all the necessary information used by the encoding and
transport layers, is modified as it travels downward or upward the architecture.

Figure 2.2: NetworkMessage entity

Next is detailed the flow of NetworkMessage entities through the entire network system
architecture depending on the network lane used. The interaction with different network
components (encoder, transport and NetworkMessage Pool) is also explained.

• Output lane: Every time a MAREA protocol message is received from the service
container a NetworkMessage is dequeued from the NetworkMessage Pool. Then,
the MAREA protocol message is stored in the field Object of the NetworkMessage
entity. The network output lane is consequently executed and the NetworkMessage
entity automatically starts to flow downward the network architecture.

First, the encoder sublayer serializes the MAREA protocol message, contained in
the field Object of the NetworkMessage entity, and stores the resulting byte stream
in the Buffer field of the same NetworkMessage. At the same time, the total length
of the serialized data is assigned to the field Offset.

Second, the transport layer sends the set of bytes specified by the Offset field from
the buffer of the NetworkMessage entity through the network. It is important to
note that the network lane takes reference directly to the TCP connection or UDP

NETWORK LAYER 21

transport depending on the type of protocol required. Finally, the NetworkMessage
is enqueued in the NetworkMessage Pool.

• Input lane: Every time a byte stream data representation of a MAREA protocol
message is received in the transport layer from the network, a NetworkMessage is
dequeued from the NetworkMessage Pool. Then, the byte stream is stored in the
field Buffer of the NetworkMessage entity. At the same time, the total length of the
received data is assigned to the field Offset. The network input lane is consequently
executed and the NetworkMessage entity automatically starts to flow upward the
network architecture.

First, the encoder sublayer deserializes the set of bytes of specified by the Offset
field from the buffer into a MAREA protocol message, which is consequently stored
in Object field of the NetworkMessage entity.

Second, the network layer forwards the MAREA protocol message stored in the field
Object of the NetworkMessage to the service container. Finally, the NetworkMes-
sage entity is enqueued in the NetworkMessage Pool.

In relation to the transport layer, when a message is received the fields StatusCode and
TransportAddress are set in order to inform the upper layers about the reception status
and the source of the incoming MAREA protocol message.

The field Id of the NetworkMessage entity is a byte code identifier used by the encoder
layer to encode and decode MAREA protocol messages. This identifier is also reused by
the service container in order to process the MAREA protocol message according to the
type of message and the protocol (discovery, publish-subscribe, rpc) which belongs.

2.2 Router

MAREA is able to use different encoders and transports in order to build a modular and
configurable network architecture. The Router has the ability to select the elements (en-
coders and transports), of the layered network architecture, at execution time depending
on needs and the state of the network. The main aim of this element is to create and
manage the network lanes.

2.2.1 Network Lanes

A network lane can be defined as a set of references to the bindings establish between
the different network architecture elements (encoder and transports) used at a particular
moment. Lanes have been implemented as linked lists of delegates or multicast delegates.
A delegate is an object that allows the programmer to encapsulate a reference to a method.
A delegate is similar to a function pointer in C or C++ but is object-oriented, type-safe, and
secure [7].

22 MAREA 2. Design and Optimization of a Distributed Communications Middleware

The following characteristics of multicast delegates have been taken in account to create
network lanes:

• The invocation list of multicast delegates is called synchronously and orderly.

• If an exception occurs in a delegate, the remaining delegates of the list are not
invoked.

According to the figure 2.2 the Router use two different network lanes to send and receive
data, output and input lanes respectively.

Lanes Invocation List

Output lane MareaCoder.Serialize(NetworkMessage m)
Transport.Send(NetworkMessage m)

Input lane Coder.Deserialize(NetworkMessage m)
Container.Receive(NetworkMessage m)

Table 2.1: Output and input network lanes

A way to trap link loss or disconnection exceptions is required in order to notify the upper
layers that an error has occurred. There exist two different solutions to this issue:

• Use the method GetInvocationList to get each individual delegate from the multicast
delegate and invoke each delegate within the try block of an exception handler. This
solution is very powerful but it has counterparts like the use of system resources and
execution time due to the handling of exceptions.

• Use a field in the NetworkMessage entity as a status code (figure 2.2).

The second alternative has been implemented in order to accomplish with the objective of
improve the performance.

2.3 NetworkMessage Pool

The non deterministic process of garbage collection is executed .NET virtual machine
in order to maintain the memory clean. This process can introduce non deterministic
pauses into the execution of a program which are not correlated with the algorithm being
processed.

One solution in order to reduce garbage collection interruptions is use a memory pooling
mechanism. The main idea of this type of mechanisms is to provide a managed set of func-
tions in order to allocate and deallocate memory. Pooling mechanisms keep references to
object instances that are beyond destruction, allowing it to be reused when needed. With

NETWORK LAYER 23

this technique no objects (NetworkMessage entities) are released to be garbage collected
until the middleware is shut down.

The proposed design to implement a memory pool mechanism is to use a FIFO queuing
discipline for NetworkMessage entities. In this common queue disciple, the elements are
added to the tail and removed from the head using a pair of object references to the tail
and the queue.

The final purpose of the NetworkMessage Pool is to reduce the amount of work that has
to be done by the garbage collector and consequently minimize the time used by its own
execution.

2.3.1 Results

A memory allocation profiling test has been executed in order to evaluate the behavior of
the NetworkMessage Pool. The figure 2.3 and the table 2.2 present the total bytes al-
located by MAREA 1 and the MAREA 1 network backport (section 2.6) during an echo
request/response test with two MAREA instances. Each instance runs a different service
which sends or responds to the message. This results correspond to the total bytes allo-
cated by the requester.

The test has been executed 10000 times to send variables (UDP) and events (TCP) prim-
itives with a total payload of 1000 bytes and frequency of 100 Hz. MAREA 1 network
backport has been tested in two different modes: reusing network lanes and creating ev-
ery time on demand.

MAREA 1 MAREA 1 Backport [Lane Reuse] MAREA 1 Backport [Lane]
10

0

10
2

10
4

10
6

10
8

10
10

10
12

M
em

or
y

A
llo

ca
tio

n
[b

yt
e]

UDP
TCP

Figure 2.3: Number of bytes allocated by MAREA 1, MAREA 1 network backport in an
echo test (requester side): 1000 Bytes, 10000 times, 100 Hz

24 MAREA 2. Design and Optimization of a Distributed Communications Middleware

Bytes Allocated
Middleware UDP TCP

MAREA 1 15222996197 15159086765
MAREA 1 Backport [Lane Reuse] 74992540 8092972
MAREA 1 Backport [Lane] 98911888 23693442

Table 2.2: Number of bytes allocated by MAREA 1, MAREA 1 network backport in an
echo test (requester side): 1000 Bytes, 10000 times, 100 Hz

2.4 Encoding Layer

The encoding layer is on charge of serializing and deserializing MAREA messages. This
layer provides an abstraction layer such all logic above contained in the upper-layers does
not need to know the particulars about how messages are serialized and deserialized.

Serialization is the act of taking an in-memory object or object graph (set of objects that
reference each other) and flattening it into a stream of bytes [8]. The reverse operation
is deserialization which takes a data stream and regenerates into an in-memory object or
object graph.

2.4.1 Previous Work

The initial version of MAREA has been implemented with the idea of providing several en-
coding layer implementations (XML serialization, binary serialization and MAREA coder) in
order to allow adaptability and interoperability between the devices and the network. The
first two implementations of the encoding layer use .NET Framework serialization mech-
anisms such as binary serialization through BinaryFormatter class, and human-readable
XML serialization through XMLSerializer class.

Feature BinaryFormatter XMLSerializer

Level of automation ***** ****
Type coupling Tight Loose
Version Tolerance *** *****
Can serialize nonpublic fields Yes No
Preserves the object reference Yes No
Suitability for interoperable messaging ** ***
Flexibility in reading/writing XML files - ****
Compact output **** **
Performance **** * To ***

Table 2.3: Serialization engine comparison between .NET BinaryFormatter and
XMLSerializer [8]

NETWORK LAYER 25

The BinaryFormatter is easy to use and automatic, but it is not such flexible as XMLSerial-
izer. On the other hand, XMLSerializer is slower and less powerful because it is not able to
restore shared object references. Furthermore, XML serialization does not convert private
fields, indexers, methods, or read-only properties (except read-only collections). In order
to do this, is mandatory to use the BinaryFormatter class.

One of the main drawbacks of these two mechanisms is the performance overhead. Se-
rializing a message with BinaryFormatter is expensive because of the metadata present.
This is more noticeable in XMLSerializer because the overhead introduced by the XML
tags is bigger.

Another disadvantage of these two mechanisms is the interoperability between the differ-
ent virtual machine representations of .NET Frameworks. For instance, XML serialization
is not available on the Micro Framework and binary serialization works different in .NET
Framework and .NET Compact Framework.

The last implementation of the encoding layer, which is called MAREA coder, has been
designed in order to solve these two drawbacks controlling the serialization and deserial-
ization of the different types. This technique, allows the programmer to have more control
over the serialization and deserialization processes and ensures serialization compatibility.

The first implementation of this encoder was made using introspection to serialize and
deserialize each message dynamically. The results of this first approach were not satis-
factory in terms of speed because introspection it is a slow process. Custom serialization
solves this issue by using specific methods or routines to serialize and deserialize specific
MAREA messages.

MAREA coder has better performance in terms of speed and serialized data size than .NET
BinaryFormatter and XMLSerializer implementations. MAREA coder is not dependent of
the .NET Framework, so the interoperability between different virtual representations of
the .NET Frameworks is not a problem like in .NET BinaryFormatter and XMLSerializer
implementations.

2.4.2 Drawbacks

MAREA coder has some drawbacks inherited from custom serialization like complexity,
especially in those cases like tree of objects or object graphs that might contain cycles. In
these cases the code could be really hard to study.

Another point that has to be taken in account of this approach is development speed.
Custom serialization does take time for testing, developing and maintenance. For instance,
if some messages are added or modified in the protocol layer, the corresponding methods
to serialize and deserialize these messages must be added or modified too in order the
encoder layer continues to work properly.

MAREA coder has been designed with two serialize and deserialize entry point methods
that implement a large switch statement to get the type of object that has to be serial-
ized/deserialized. A large switch statement means the method is large, hard to read and

26 MAREA 2. Design and Optimization of a Distributed Communications Middleware

can generate very high complexity metrics.

2.4.3 Improvements

The following subsection presents an alternative design for the encoding layer in order to
solve the drawbacks of MAREA coder.

The new proposed design is based on an automatic tool called MAREAGen. This tool
generates classes automatically with methods to serialize and deserialize MAREA entities
marked as serializable. This eliminates the need for developers to implement serializing
and deserializing code and guarantees run-time type safety.

Serialize and deserialize methods have been implemented as static because they have no
instance. This type of methods is slightly faster than instance methods because are called
with type name instead of an instance identifier. Serialize and deserialize methods also
include inlining through the method implementation option aggressive inlining (listing 2.1).
This option allows compiler to eliminate the cost of method calls if it is possible.

Listing 2.1: Class to serialize/deserialize MAREA SlowData messages

pub l i c c lass MG_SlowData
{

/ * *
* This s t a t i c cons t ruc t o r i s ca l l ed by MAREA in order to load

* and r e g i s t e r the i d e n t i f i e r and s p e c i f i c methods to s e r i a l i z e

* and d e s e r i a l i z e t h i s type .

* * /
s t a t i c MG_SlowData ()
{
M2CoderTables .GetInstance () .AddClass (t ypeof (Marea . SlowData) , 50 ,
MG_SlowData .Decode , MG_SlowData .Encode) ;

}

pub l i c s t a t i c readonly ulong MAREAGEN_FINGERPRINT= 11653293;

/ * *
* This method s e r i a l i z e s a l l the d i f f e r e n t ob jec t s contained

* i ns ide a SlowData message i n t o the given byte ar ray .

* * /
[MethodImpl (MethodImplOptions .AggressiveInlining)]
pub l i c s t a t i c vo id Encode (ob jec t theSlowData , byte [] buffer , r e f i n t offset)
{

/ / S e r i a l i z e f i e l d s . . .
}

/ * *
* This method d e s e r i a l i z e s a l l the d i f f e r e n t ob jec t s of a

* SlowData message from the given byte ar ray . This method also

* r e t u rns the whole SlowData ob jec t

* * /
[MethodImpl (MethodImplOptions .AggressiveInlining)]
pub l i c s t a t i c ob jec t Decode (byte [] buffer , r e f i n t offset)
{

SlowData slowdata = new SlowData () ;
/ / Deser ia l i ze f i e l d s . . .
r e t u rn slowdata ;

}
}

MAREAGen provides fingerprints in each of every generated class, derived from the type

NETWORK LAYER 27

definition, in order to provide an unequivocal and fast way to detect code that had not been
recompiled.

At the end of every execution, MAREAGen generates a XML and a DLL file which contains
a list of the generated types with its unique byte code identifier and the generated classes
to serialize and deserialize MAREA serializable classes respectively.

The proposed solution to solve the complexity issues is to include a hash table and an
array of delegates for serialization and deserialization methods. Each of these collections
also stores a reference to the byte code identifier provided by MAREAGen: the key values
in case of the hash table and the index in case of the array.

One of the things that has to be accomplished in order to store all the delegates into a
same dictionary is that all of the different serialize and deserialize methods must have a
compatible signature (encode and decode methods from listing 2.1).

With this approach, the complexity of having large methods with a lot of switch statements
is reduced by moving each of the code sections, for every type of MAREA message, to a
specific serialize and deserialize methods.

Furthermore, the speed performance should be improved using the dictionary with the
byte code identifiers, because with this solution long switch statements are avoided. The
proposed approach is also more scalable: if the number of MAREA messages grows the
serialization time should maintain constant, because it only depends on the time to access
time to the delegates contained in the dictionary.

The table 2.4 presents the proposed byte code identifier distribution according to the dif-
ferent types used by MAREA Coder. MAREA protocol message identifiers are assigned at
the beginning in order to reuse them in the service container. Similar to the encode layer,
the service container has an array of delegates used to process each MAREA protocol
message according to its identifier. In this case the position of the delegates inside the
array correspond to the MAREA protocol message byte code identifier.

Id Type

From 0 to 63 MAREA protocol messages
64 Null
From 65 to 126 MAREA Coder basic types
127 Not null
From 128 to 255 MAREA Coder types created by

MAREAGen

Table 2.4: MAREAGen identifier distribution

Once MAREA is started the DLL file generated from MAREAGen tool is used by MAREA
coder in order to add the byte type codes and delegates of the generated classes in the
dictionary. This task is performed automatically by calling the constructor of those classes
that have been previously generated by MAREAGen.

Marea coder serialize and deserialize specific methods have also been modified in order

28 MAREA 2. Design and Optimization of a Distributed Communications Middleware

to reduce the data size. For instance, the size of serialized System.Double is now reduced
from 11 Bytes to 5 Bytes (1 of this 5 bytes is Marea to encode the number 19 that indicates
that the payload is a double).

Another new feature of this implementation is the support for some of the most commonly
used .NET collection types like lists, dictionaries and hash tables.

The following bugs have also been resolved according to the results obtained in the imple-
mented unit testing with NUnit tool:

• Compatibility with UTF8 character encoding.

• Overflow exceptions for high values (double.MaxValue) in double types.

• Support for run-time/dynamic Enum types.

• Full support of polymorphic capabilities: Inheritance and control of null objects in
object trees.

2.4.4 Results

The figure 2.4 and the table 2.5 present the total serialization and deserialization time for
some specific types for the previous and the new implementation of MAREA coder. The
most representative type is the specific MAREA message SlowData. This message is
used by MAREA to transmit the data different MAREA primitives (variables and events).
This time is 223.49 and 19.64 µs for the old and new implementation respectively. Notice
that the y axis in the figure is a logarithmic scale.

10
−1

10
0

10
1

10
2

10
3

T
im

e
[µ

s]

UIn
t1

6

UIn
t3

2
In

t1
6

In
t6

4
In

t3
2

Dou
ble

Sing
le

Dat
eT

im
e

Cha
r

Byte

Boo
lea

n

IP
End

Poin
t

Byte
[]

Arra
yli

st

Slow
Dat

a

.NET Binary Coder
Marea Coder (v.1)
Marea Coder (v.2)

Figure 2.4: Encoder layer implementations: Total serialization and deserialization time

NETWORK LAYER 29

Type Marea Coder (v.2) Marea Coder (v.1) .NET Binary Coder
Total Serialization and Deserialization Time (µs)

UInt16 0.6542 190.4008
UInt32 0.6965 190.5905
Int16 0.5677 187.2317
Int64 0.7839 182.9995
Int32 0.6850 181.1064
Double 0.9407 188.7585
Single 0.7644 195.3172
DateTime 0.8038 177.8468
Char 0.7824 178.3560
Byte 0.6464 168.3250
Boolean 0.7418 161.2008
IPEndPoint 1.9847 189.7303
Byte[] 7.2739 187.8259
Arraylist 80.9052 545.5369
SlowData 19.6484 223.4966 52.9961

Table 2.5: Encoder layer implementations: Total serialization and deserialization time

The figure 2.5 and the table 2.6 present the total serialization and deserialization time for
the new supported types in MAREA coder. These latencies are also compared with the
.NET BinaryFormatter coder implementation.

Dictionary<Int,Char> HashTable(char,byte) List<byte> System.Char (UTF8)
0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
[µ

s]

.NET Binary Coder

Marea Coder (v.2)

Figure 2.5: Encoder layer implementations: Total serialization and deserialization time for
new supported types

30 MAREA 2. Design and Optimization of a Distributed Communications Middleware

Type .NET Binary Coder MAREA Coder (v.2)
Total Serialization and Deserialization Time (µs)

Dictionary<Int,Char> 1799.6832 127.3783
HashTable(char,byte) 257.7913 177.4298
List<byte> 26.0283 28.5439
System.Char (UTF8) 15.9436 0.7926

Table 2.6: Encoder layer implementations: Total serialization and deserialization time for
new supported types

2.5 Transport Layer

The transport layer provides communication facilities to send and receive data (byte se-
quences) from the network. This layer provides transfer of data with a certain degree of
transparency supporting the two most common transport protocols: TCP and UDP.

TCP transport guarantees reliable end-to-end connection oriented communications. This
type of connections require a handshake mechanism in order to negotiate the terms of the
connection. The exchange of segments related with this mechanism can adversely affect
the performance.

This problem can be resolved by reusing the established connections instead of opening
new TCP connections. The use of persistent connections results in less network traffic,
use less time in order to establish new connections and allows the TCP protocol to work
more efficiently.

Each MAREA protocol message is sent by TCP transport adding previously a magic num-
ber to the corresponding byte sequence representation of itself. This magic number con-
sists in a synchronization header of 3 bytes followed by an integer (4 bytes) to specify the
payload length. The first 3 bytes are use to indicate that the data is synchronized. If this
first 3 bytes do not correspond to the expected ones, the transport layer detects that an
error condition has happened.

UDP transport provides unreliable (best-effort) datagram communications. In this type of
transport, as the opposite of TCP transport, one datagram socket is opened and closed
for the dispatching of each message.

2.5.1 Drawbacks

MAREA old transport layer model use the .NET synchronous socket API in order to im-
plement transports. The blocking mode of it set of calls require different threads to accept
connections and perform socket I/O operations.

The use of one thread for each individual connection is non-scalable, especially in Win-
dows systems. The management of a large number of threads is highly inefficient due

NETWORK LAYER 31

to the ineffectiveness of the scheduler to determine which thread should be receiving the
processor time.

The memory overhead is also a handicap. For instance, in Windows the default memory
overhead is 1 MB for both native and Common Language Runtime threads.

2.5.2 Improvements

The scalability performance issue can be solved by using asynchronous sockets. Asyn-
chronous I/O operations alleviate the need to create and manage threads [9]. This type of
sockets use threads internally at the OS Level, which is much faster.

Asynchronous sockets implement specific methods that use the AsyncCallback class to
call completion methods to the following operations: send, receive, connect, accept. Call-
backs allow the application to continue processing other events while network operations
are been executed.

Two new TCP and UDP asynchronous transport modes have been added in transport layer
in order to improve the scalability and the performance.

2.5.3 Results

Synchronous and asynchronous UDP transports have been compared using a round-trip
isolated test. The figure 2.6 and the table 2.7 present the mean round-trip times during an
echo request/response test with simultaneous transports. The mean round-trip time has
been calculated according to the average value of the round-trip time of each simultaneous
transport.

25 50 75 100 150 175 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
T

T
 [m

s]

Simultaneous Transports

UDP Asynchronous

UDP Synchronous

Figure 2.6: Mean round-trip times for an echo test using isolated synchronous and
synchronous UDP transports: 1000 Bytes, 10000 times, 100 Hz

32 MAREA 2. Design and Optimization of a Distributed Communications Middleware

UDP Transports RTT (ms)
Asynchronous Synchronous

25 0.1265 0.1092
50 0.1885 0.1395
75 0.2368 0.2097
100 0.2742 0.2354
150 0.3617 0.38550
175 0.4409 0.5431
250 0.5952 0.7966

Table 2.7: Mean round-trip times for an echo test using isolated synchronous and
synchronous UDP transports: 1000 Bytes, 10000 times, 100 Hz

According to the results, the round-trip time tends to grow exponentially with the number
of simultaneous connections. The round-trip becomes lower in asynchronous mode, in
comparison to synchronous mode, from around 150 simultaneous transports.

2.6 MAREA 1 Network Backport

The whole new MAREA 2 network architecture has been backported to MAREA 1 in order
to ensure its proper functioning. Backporting is the action of taking a certain software
modification (patch) and applying it to an older version of the software than it was initially
created for [10]. This software backport also provides a fair and realistic way to compare
the performance between the old and new network architecture.

2.6.1 Results

MAREA 1 and MAREA 1 network backport have been compared using a round-trip test.
The figure 2.7 presents the round trip time distribution during an echo request/response
test with two MAREA instances. Each instance runs a different service which sends or
responds to the message.

The test has been executed 10000 times to send variables (UDP) with a total payload of
1000 bytes and frequency of 100 Hz. The mean round-trip time is 0.2399 and 0.433 ms for
MAREA 1 network backport and MAREA 1. The standard deviation is 0.1756 and 0.3813
ms respectively.

The same test has been done using events (TCP). The mean round-trip time is 0.3501
and 0.6564 ms for MAREA 1 network backport and MAREA 1.The standard deviation is
0.2206 and 0.4061 ms respectively.

NETWORK LAYER 33

Figure 2.7: Round-trip time distribution for an echo test of MAREA 1 and MAREA 1
network backport using variable primitives: 1000 Bytes, 10000 packets, 100 Hz

2.7 Comparison with MAREA 1 Network Architecture

MAREA 1 network system architecture consist of three main sublayers: encoder, transport
and Lane Manager.

Coder Layer

UDP TCP

Connections

Gateway Lane ManagerTransport

Multiplexor

Transport

Layer

Figure 2.8: MAREA 1 network layer architecture

34 MAREA 2. Design and Optimization of a Distributed Communications Middleware

One of the main differences between the old and new MAREA network designs is the
top entry point of the architecture which is called Lane Manager. This component is the
responsible to control which transports and encoders are used by the middleware at a
particular moment. In contrast, the Router is the responsible for performing this task in the
new architecture.

As opposite of the new architecture, network lanes (subsection 2.2.1) are not a set of
references to the bindings establish between the different network architecture elements.
Instead of this, there are object references (copies) to these elements.

The main idea of taking out the Lane Manager in the new architecture is to simplify the
design and improve the speed by removing unnecessary repeated searches to the lane,
which in normal conditions is always the same. Every time a message is sent in MAREA
1 network architecture, a search has to be done into dictionary in order to get the default
lane.

Figure 2.9: Lane Manager class diagram

The new design does not use a dictionary in order to avoid slowdowns in the performance.
Instead of this, the network layer use only one output and input lane for the outgoing and
incoming data respectively. These lanes are reused while the network continues to work
properly.

The service container, which is the immediate upper layer, is the responsible for keeping
and providing the hint to the network layer every time. Only if a network change happens,
new lanes are demanded to the Router. This solution is more complex but reduces the
acquisition time of the lanes.

In the transport sublayer, lanes also take profit of its new approach by taking reference di-
rectly to the TCP connection which is required in a particular moment instead of searching
it in a dictionary.

Another big difference between the two architectures is the sublayer architecture design.
For one hand, the MAREA 2 network sublayers (figure 2.1) are uniform. In MAREA 1
the network sublayers (figure 2.8) are inconsistent because every single sublayer presents
different interfaces in order to communicate with to the upper and lower sublayers.

On the other hand, in the old architecture every sublayer is dependent of the upper and
lower one because it has to keep a reference in order to communicate with them. The
new sublayer architecture is more independent and flexible, because the responsibility of
manage the bindings between the different sublayers is delegated to the network lanes
instead of the sublayers by itself. Another difference, that has been mentioned before, is
the pooling mechanism used in the new architecture which is explained in section 2.3.

NETWORK LAYER 35

In MAREA 1, the Gateway module is on charge of interconnect networks that use differ-
ent types or protocols and architectures. Its main goal is the translation of the source
network protocol to the destination network protocol, and vice versa, in order to allow the
communication between them. In MAREA 2, this task is accomplished by the Router.

2.8 Conclusions

Network layer provides an optimized, modular and reusable usage of the network capa-
bilities. MAREA network system architecture consist of two main sublayers: encoder and
transport. The Router component together with the network lane approach builds a highly
reconfigurable and adaptive architecture.

Most of the optimization work is focused in components of the network system architecture:
encoder and transports, which are the most delay-sensitive layers of the whole architec-
ture. The global performance of network sublayers has been improved implementing the
following new features:

• A serialization code generation utility called MAREAGen which generates classes
automatically with methods to serialize and deserialize MAREA messages in order
to take advantage of the custom serialization benefits.

• A memory pooling mechanism to minimize garbage collection interruptions.

• New transport implementations with asynchronous sockets which are more scalable
than traditional synchronous sockets.

36 MAREA 2. Design and Optimization of a Distributed Communications Middleware

SERVICE CONTAINER 37

CHAPTER 3. SERVICE CONTAINER

The first part of this chapter sketches out the new version of the service container. Then,
the Service Manager and remote services are presented. The last sections present some
services used by the middleware, and make a brief comparison between the previous and
new version of the service container.

3.1 Architecture

Service container, which is the highest level layer on the MAREA stack, consist of two main
components: protocol layer and Service Manager.

Protocol layer controls the exchange of MAREA protocol messages in order to discover
and implement the communication primitives of remote services. This layer implements
three different protocols: discovery, publish-subscribe and remote procedure call, which
are detailed in chapter 4.

Network Layer

Service Container

Service Manager

Services

Running

Receive (NetworkMessage)

Proccess (Message)

Send (TransportAddress, Message)

Query Manager

Loader

IDU SDU

Protocol

Proxies Services

D

I

S

C

O

V

E

R

Y

P

U

B

/

S

U

B

R

P

C

Service 1 Service n

Figure 3.1: A high level view of service container

Service Manager is on charge of control the startup and shutdown the services at any
moment during MAREA execution. To perform this task the service manger provides the

38 MAREA 2. Design and Optimization of a Distributed Communications Middleware

following set of service collections:

• Running: Contains the local services that have been started and are actually run-
ning in the service container.

• Proxies: This type of services are proxy objects that could represent a remote ser-
vice or set of services selected by a query.

• Services: This collection contains references to all the services (running and prox-
ies).

Services operate following the Inversion Of Control paradigm. The term Inversion of Con-
trol (IoC) is a computer programming technique wherein the flow of the control of an ap-
plication is inverted. Rather than a caller deciding how to use an object, in this technique,
the object called decides when and how to answer the caller, so the caller is not in charge
of controlling the main flow of the application [11].

Services do not provide a main() method that starts the ball rolling and procedurally calls
methods to send and receive. Instead, service container is responsible for instantiating
running and controlling the entire life cycle of services. Services only allow to specify
different configuration aspects like what to receive, from whom, and how to process it.

Another of the functions regarding service management is service loading. This task is
accomplished dynamically at the beginning of the middleware’s execution. All MAREA
services are loaded in such a way that information about the service description (IDU) and
implementation (SDU) is cached.

The Query Manager provides methods to manage and search services that match with
queries. This component also provides some functionalities for the creation and retrieval
of query proxies used to implement the naming service.

3.1.1 Relationship Between Service Container And Network L ayer

As shown in figure 3.1, service container provides to different methods to receive and send
the incoming and outgoing protocol messages.

First, a NetworkMessage entity is passed as a parameter in Receive method. As explained
in section 2.1, the NetworkMessage contains the protocol message inside the field called
Object. In this way, every time a NetworkMessage is received, the service container pro-
cess the protocol message inside of it, and passes it subsequently to the specific protocol
through the corresponding Process method. In addition, during the protocol message seri-
alization stage, the encoder layer is responsible for setting the field Id of the NetworkMes-
sage entity according on the protocol message type. This identifier is also reused by the
service container in order to address the received protocol message to the specific Pro-
cess protocol method. Notice that, service container Receive function is the last method
inside the network input lane, which is a multicast delegate (table 2.1).

SERVICE CONTAINER 39

On the other hand, Send method is called from the protocol layer to transparently pass
MAREA protocol messages from the protocol layer to the network layer.

3.1.2 Relationship Between Service Container And Protocol Layer

As explained in section 2.4.3, MAREA protocol message identifiers are assigned by MAREAGen
with values from 0 to 63 in order to reuse them in the service container (table 2.4).

The service container contains an array of delegates used to process each MAREA pro-
tocol message according to its identifier. The position inside of the array represents the
protocol message identifier, while the object stored inside is the delegate. This delegate
basically points to the Process method used to handle the specific incoming MAREA mes-
sages according to the protocol type (discovery, publish-subscribe or remote procedure
call protocol).

Service container provides two different methods to add and remove the delegates from
the array. These methods are automatically called inside the start and stop methods of the
specific protocol.

The final aim of this approach is to extend the use of delegates in the service container
in order to reduce the coupling and improve maintainability in the upper layers. This new
design also reduces the degree of complexity of adding more protocols in the service
container.

3.2 Service Manager

The Service Manager does basically two different functions that are going to be described
in the following subsections: service loading and service start up and shutdown.

3.2.1 Service Loading

Service Manager is responsible for caching information about the interface (IDU) and im-
plementation (SDU) of services during the system startup. This information is necessary
to manage services and the communication primitives during the middleware execution.

Service Manager searches for services in assemblies in order to carry out the service
loading. One of the tools used to manage assemblies, types and namespaces in MAREA
is the assemblies manager. This component, which is also used used by MAREAGen, has
been implemented as a cache with the idea to improve the performance.

40 MAREA 2. Design and Optimization of a Distributed Communications Middleware

3.2.2 Service Start Up And Shutdown

Once the service loading has been done, the Service Manager reads an XML which in-
cludes the list of services that will be automatically started by the middleware. However,
any MAREA service could be started or stopped subsequently while the interface and
implementation of the service exist in the SDU and IDU collections.

The following subsection explains one of the steps accomplished during the service startup:
the creation of communication primitives.

3.2.2.1 Communication primitives management

Service Manager is responsible for creating and getting variable and event primitives from
services. As shown in listings 1.2 and 1.1 this type of primitives are implemented using
generics.

Generics make possible to design classes and methods that defer the specification of one
or more types until the class or method is declared and instantiated by the programmer.
To create generic type instances at run time is necessary to use reflection.

On the one hand, reflection provides extensibility to applications by allowing them to see
their own inner workings. But on the other hand, reflection is a slow and expensive process.
The proposed solution to solve this problem is to implement our own cache on top of the
one that exists in the .NET Framework (Pobar, 2005)[12].

The attributes and metadata of communication primitives is stored together with the spe-
cific implementation of the service (SDU). The idea is to minimize the reflection operations
and execute them at the service loading phase, during the middleware startup process.

Variables and events provide a common interface to control and manage primitives. For
one hand, this interface implements methods to subscribe and unsubscribe the primitive
to specific methods in order to receive or not new values of the communication primitive
using a callback pattern. Notice that these two operations are executed when services are
started and stopped (listing 1.4)

Subscribe and unsubscribe functionalities are used to add or remove a method from the
invocation list of a multicast delegate respectively. This specific method has to accom-
plish with the following signature: a string which represent the address of the primitive and
an object, of the same type as the generic type of the primitive, which carries new primi-
tive values (see AmperageChanged and LowBatteryChanged BatteryManager methods in
listing 1.4).

For the other hand, this interface provides a Notify method to inform to all the subscribed
services about the new data. When the Notify method is called all the methods inside the
delegate’s invocation list are fired (see Run Battery method in listing 1.3).

The figure 3.2 shows the interaction between the communication primitives of one Battery-
Manager and three Battery services. The BatteryManager is consuming the Amperage
variable and the Low Battery event from all the Batteries of the current subsystem. Notice

SERVICE CONTAINER 41

that the Battery service with the address EC-UP/IP2/Bat2/Battery is a remote proxy which
represent a remote service (node field info is different from the other services).

Service ManagerProxies IDU SDU

IBatteryManager

EC-UP/IP1/bat1/BatteryEC-UP/IP1/bat2/BatteryEC-UP/IP2/bat2/Battery

AmperageChanged

GlobalBatteryWarningAmperage LowBatteryAmperage LowBattery Amperage LowBattery

Notify NotifyNotify

IBattery BatteryManagerBattery

Running

EC-UP/IP1/man1/

BatteryManager

Communication Primitive

Event-Variable

Service

Service Container

Figure 3.2: Interaction between communication primitives and services from Service
Manager’s point of view in a battery management system

3.3 Proxy And Remote Consumer Services

The following section describes some of the services involved in the communication be-
tween remote consumers and proxy services.

Figure 3.3 shows the scenario of a battery management system with four service contain-
ers. In this example, blue color is used for representing services that are running in service
containers, while light blue an grey colors are used for representing remote producer prox-
ies (section 3.3.1.1) and remote consumers (section 3.3.1.2) respectively. Each container
is running one service: one Battery and three BatteryManager.

Proxies and remote consumers services are used to share communication primitives be-
tween services that are actually running in different service containers. The following sub-
sections describe both proxy and remote consumer services.

42 MAREA 2. Design and Optimization of a Distributed Communications Middleware

Service Container 1 (EC-UPC/IP1)

EC-UP/IP1/bat1/Battery

Amperage LowBattery

EC-UP/IP1/*/Battery/Amperage

EC-UP/IP2/*/Battery/LowBattery

EC-UP/IP3/*/Battery/LowBattery

EC-UP/IP4/*/Battery/LowBattery EC-UP/IP1/bat1/Battery

LowBattery Amperage

Service Container 2 (EC-UPC/IP2)

EC-UP/IP2/man1/

BatteryManager

AmperageChanged

LowBatteryChanged

Notify Notify

EC-UP/IP1/bat1/Battery

LowBattery Amperage

Service Container 3 (EC-UPC/IP3)

EC-UP/IP3/man1/

BatteryManager

AmperageChanged

LowBatteryChanged

Notify Notify

EC-UP/IP1/bat1/Battery

Amperage LowBattery

Service Container 4 (EC-UPC/IP4)

EC-UP/IP4/man1/

BatteryManager

AmperageChanged

LowBatteryChanged

Notify Notify

Remote Broadcast Consumer Remote Consumer Remote Proxy Producer

Communication Primitive

Event-Variable

Service

Service Container

Communication Primitive

Event-Variable

Service

Service Container

Figure 3.3: Interaction between communication primitives and remote proxies in a
battery management system

Notice that, the communication between the different service containers is simplified (dashed
line). In a real scenario the information flows downward and upward the network layer. Also
some details, like BatteryManager’s event called GlobalBatteryWarning, are passed over.

3.3.1 Proxy Services

Proxy services are objects that could represent a remote service or set of services selected
by a query. This type of services implement the same interface as the represented service
(IDU) and consequently, hold its own set of communication primitives.

The proxy approach based on encapsulation makes the code orthogonal and maintainable
and provides location transparency between services. There is a more detailed explana-

SERVICE CONTAINER 43

tion of the features each type of proxy in the following subsections.

Each MAREA service needs to implement specific remote producer and query proxies.
The source code of proxies is automatically generated by MAREAGen together with the
template engine StringTemplate (appendix A.1.6.5), with the idea of simplify service devel-
opment to end user programmers.

3.3.1.1 Remote Producer Proxy

Remote producer proxies are used to represent remote services, which is the same as
services that have been started in a different service container than the current one.

The implementation of this type of proxies is quite simple because, as mentioned before,
only includes the set of communication primitives held by the interface (IDU) of the remote
represented service. In this type of proxy, communication primitives are created following
lazy initialization. This technique defers object creation until the object is first used. Lazy
initialization is primarily used to improve performance, avoid wasteful computation, and
reduce program memory requirements [13].

As shown in figure 3.3, services that are consumers of communication primitives from a
remote service should subscribe primitives from the remote producer proxy to local meth-
ods, that will act as a callbacks. Notice that, this behavior is the same as if the remote
producer proxy and the consumer service were local services.

3.3.1.2 Query Proxy

Query proxies are used to represent a set of services selected by a query. This type
of proxies also use lazy initialization to create the communication primitives held by the
interface (IDU) of the represented service.

Service Container 1 (EC-UPC/IP1)

EC-UP/IP1/bat1/Battery

Amperage Amperage

EC-UP/IP2/man1/

BatteryManager

AmperageChanged

/EC-UP//*/Battery

EC-UP/IP1/bat2/Battery

Amperage

FireAmperage

Notify

Service Container 2 (EC-UPC/IP2)

EC-UP/IP2/bat1/Battery

Amperage

Notify

AddSubscriber

AddSubscriber

Subscribe Subscribe

Notify

Subscribe

NotifyCommunication Primitive

Variable

Service

Service

Container

Figure 3.4: Interaction between communication primitives and a query proxy in a battery
management system

Figure 3.3 shows the scenario of a battery management system with two service con-
tainers. Service container 1 is running two Battery and one Battery Manager services,
while service container 2 is running a Battery service. The service in light blue color in

44 MAREA 2. Design and Optimization of a Distributed Communications Middleware

service container 1 is a proxy that represents all the services that match with the query
/EC-UP//*/Battery. To simplify the figure the remote proxy corresponding to the service
EC-UP/IP2/bat1/Battery, from service container 2, has been omitted in service container
1. Some other details of the battery management system are also passed over in figure
3.4, for instance, LowBattery and GlobalBatteryWarning events from Battery and Battery
Manager services are not included.

As shown in listing 3.1 and figure 3.4, when a variable or and event primitive is created for
the first time the method RegisterSubscriber from the specific primitive is also called. This
method registers a delegate that points to AddSubscriber method contained in the query
proxy (red dashed line in figure 3.4).

Notice that, this delegate is different from the one used to subscribe primitives to methods
in order to notify new data values from the primitive. In fact, this delegate is automatically
fired when a service subscribes to any of the communication primitives hold by the query
proxy.

Listing 3.1: Query proxy variable lazy initialization example

p r i v a t e Var iab le <double > _amperage ;
pub l i c Var iab le <double > amperage

{
get
{

i f (_amperage == n u l l)
{
_amperage = container .CreatePrimitive<Var iab le <double >>(id , " amperage ") ;
((P r i m i t i v e)_amperage) .RegisterSubscriber (AddSubscriber) ;

}
r e t u rn _amperage ;

}
}

First, the AddSubscriber method looks for all services that match the query. Then, the
primitive (variable or event) of each service that matches the query is subscribed to a spe-
cific method of the query proxy (FireAmperage method in figure 3.4). This method receives
the values from the primitives, of those services that match with the query, and propagates
them through the primitive of the query proxy. The propagation is accomplished by the
Notify method of the query proxy primitive. The subscription process of the primitives
that match the query to a specific method of the query proxy is represented with a purple
dashed line in figure 3.4.

3.3.2 Remote Consumer Services

The purpose of remote consumer services is to transparently forward the values of each
variable and event communication primitive through the network. Remote consumer ser-
vices, in contrast with proxy services, do not implement the interface of the represented
service. In this case, one remote consumer is needed for each primitive (services in grey
in container 1, figure 3.3).

There exist two different types of remote consumers according to the type of primitive used:

SERVICE CONTAINER 45

• Remote consumer: This service is used to transparently forward the values of
each event through the network. As shown in figure 3.3, one remote consumer is
created for each of the services that will consume a specific event (remote con-
sumers EC-UP/IP2/*/Battery/LowBattery, EC-UP/IP3/*/Battery/LowBattery and EC-
UP/IP4/*/Battery/LowBattery in service container 1).

• Remote broadcast consumer: This service is used to transparently forward the
values of each variable through the network. As shown in figure 3.3, one single
remote broadcast consumer service is created independently the number of the
services that will consume this specific variable (remote broadcast consumer EC-
UP/IP1/*/Battery/Amperage in service container 1). This is implemented in this way
because variables are sent via broadcast. In addition, remote broadcast consumer
implementation includes a list to control all the services that are consuming the
variable.

3.4 Services

The following section introduces three different services used to execute and have access
to some of the features and functionalities of MAREA middleware.

3.4.1 Node Manager

One of the main functions of Node Manager is to control and manage services from re-
mote containers. This task is accomplished using remote procedure calls. Node manager
provides methods to remotely start and stop services, get running and available services,
start and stop the containers, etc.

This service is loaded and started by default in service containers. Other future features
related with the node management should be included in this service.

3.4.2 MAREA Console

MAREA provides to end-users a specific console based service to manage and monitor
the service container. MAREA Console works along with the Node Manager service to
interact with other containers that are available in the network.

The main features and functionalities that are available from the MAREA Console are:

• Service management: Starts and stops new instances of a service in a given con-
tainer.

• Services information: Shows all the running and available services in a given con-
tainer.

46 MAREA 2. Design and Optimization of a Distributed Communications Middleware

• Debug information: Shows the debug messages generated by the services (e.g.
variables and events values, remote procedure call results, etc.).

• Configuration: Gets and sets some configuration parameters (e.g. MAREA default
subsystem).

• Middleware information: Shows information about the middleware: description,
version, company, etc.

• Command help support

Figure 3.5: MAREA Console service

The major difference between the old and new version of the MAREA Console is the tool
and interface used to implement it. The previous version of this service was implemented
by using a .NET console application and providing and alfa-numerical configuration menu
interface to get access to the different features.

The new version of MAREA Console has been implemented with the Thorn utility (ap-
pendix A.1.6.4). This tool is very useful to build quickly command line interface applications
with a bash prompt appearance.

3.4.3 MAREA GUI

The aim of MAREA GUI service is to provide access to the same features and function-
alities used by the MAREA Console using a GUI (graphical user interface) instead of a
console.

MAREA GUI has been implemented during the service container developing stage only for
debugging purposes. The future idea is to build a more user-friendly GUI based on a tree
structure in order to navigate through the different levels of the naming scheme hierarchy.

SERVICE CONTAINER 47

Figure 3.6: MAREA GUI service

3.5 Comparison with MAREA 1 Service Container Archi-
tecture

A noticeable difference between the new and old service container is the existence protocol
layer. In MAREA 1, the features and functionalities carry out by this layer are directly
accomplished by the service container. The new version of the service container provides
an exclusive layer to process and send MAREA messages according to the communication
primitive used.

The new service container includes the following new features and enhancements:

• New service implementation which accomplishes with the deployment unit concept.

• A naming service based on location independent service identifiers used to find,
share and access services and its communication primitives hiding the network com-
plexity.

The new design also makes special emphasis on making the code related with the commu-
nication primitives orthogonal. For instance, the previous version of the service container,
in contrast with the new one, provides different managers to control each communication
primitive (variables, events, remote invocation, file-based data transfer).

In this new version, the communication primitives are also simplified, because they keep
delegates instead of lists of publishers and consumers.

48 MAREA 2. Design and Optimization of a Distributed Communications Middleware

3.6 Conclusions

The service container consist of two main components: protocol layer and Service Man-
ager. Service Manager is on charge of service loading and service start up and shutdown.
Protocol layer controls the exchange of MAREA protocol messages in order to discover
and subscribe the communication primitives of remote services. The implementation and
internal details of the protocol layer are presented in the next chapter.

MAREA provides to end users a console an a GUI service to manage and monitor the
service container. The service container implements services following the service de-
ployment approach and interacts with them following the Inversion Of Control paradigm.

Proxies and remote consumers services are used to share communication primitives be-
tween services that are running in different service containers.

PROTOCOL LAYER 49

CHAPTER 4. PROTOCOL LAYER

This chapter introduces the different protocols used by the middleware to dynamically dis-
cover remote services (those which reside in a different service containers) and consume
their communication primitives. The different type of messages and some the most im-
portant features of each protocol are presented in the following subsections. Some im-
provements made in all the whole protocol architecture are introduced at the end of this
chapter.

4.1 Discovery Protocol

The main purpose of this protocol is to discover and advertise services using a dynamic
and non-centralized mechanism. Discovery protocol behaves actively to request services
and also passively to listen service announcements by exchanging different types of dis-
covery messages (red messages in figure 4.1).

BatteryManager (Container A) Battery (Container B) BatteryManager (Container C)

PUBLISH (@Control B) PUBLISH (@Control B)

SUBSCRIBE (@Control A, @Data A)

DISCOVER

PUBLISH (@Control B)

SUBSCRIBE-ACK (@Data A)

SUBSCRIBE (@Control C, @Data C)

SUBSCRIBE-ACK (@Data C)

DATA

DATA

UNSUBSCRIBE (@Control A, @Data A)

DATA

DATA

UNPUBLISH (@Control B)

Figure 4.1: Discovery and subscription protocol message exchange bettwen a Battery
and two BatteryManager services into different service containers

As shown in figure 4.1, the discovery protocol is divided in two phases: the discovery
and advertisement of services (discover and publish messages) and the publish service
termination (unpublish message).

In contrast to MAREA 1, this new implementation discovers and announces services in-
stead of the communication primitives. This reduces considerably the message traffic in

50 MAREA 2. Design and Optimization of a Distributed Communications Middleware

the network during the initial discovery stage.

4.1.1 Messages

This subsection makes a brief description of the different types of messages used in dis-
covery protocol.

4.1.1.1 Discover

This type of message is used to request services that are actually running in other contain-
ers. Discover message could request a single or group of services depending on the type
of address is used (single or query, subsections 1.5.1.1 and 1.5.1.2 respectively). This
type of message is broadcasted using the UDP protocol.

Considering a Battery is running in container B, as shown in figure 4.1, if a BatteryManager
is started afterwards in container C, a discover broadcast message is sent requesting a
service or a group of services according to the address contained in the LocateService
attribute of the object Battery inside the BatteryManger SDU (listing 1.4).

In case of the requested service address is a query, all the containers will respond to the
discover message with a publish message for each of the running services that actually
match with the given query. Otherwise, if the requested service address is not a query, a
single publish message will be sent by the container which actually owns the requested
service.

The discovery protocol retransmits discover message periodically, for each service, as
long as there is no service which publishes one or more communication primitives that are
consumed by the given service.

4.1.1.2 Publish

Publish message is used to advertise a service that is actually running in a container. This
type of message, which contains the control transport address of the container that offers
the service, is broadcasted using the UDP protocol.

Publish messages are used in one of these two possible scenarios:

• To advertise a specific service that has been requested through a discover message
(see discover and publish message exchange between container B and C in figure
4.1).

• When a service is started (see first broadcast publish message in container B of the
figure 4.1).

PROTOCOL LAYER 51

4.1.1.3 Unpublish

This type of message is used to notify that a service has been stopped. This implies that
all its communication primitives have stopped publishing information. Similarly to publish
and discover messages, unpublish message is also broadcasted using the UDP protocol.

4.2 Publish-Subscribe Protocol

Publish-subscribe protocol is on charge of manage the subscriptions and data transfer of
the variable and events primitives. Unlike discovery protocol, publish-subscribe protocol
works at communication primitive level instead of service level.

As shown in figure 4.1, the publish-subscribe protocol (blue messages in figure 4.1) is
divided in three phases: the subscription (subscribe and subscribeACK messages), the
primitive data transfer (data messages) and the unsubscription (unsubscribe message).

Subscription and unsubscription messages are sent in a reliable way through TCP proto-
col. On the other hand, the protocol used to transport data messages depends on the type
of primitive, which is TCP and UDP for events and variables respectively (section 1.3).

4.2.1 Messages

This subsection makes a brief description of the different types of messages used in
publish-subscribe protocol.

4.2.1.1 Subscribe

Subscribe message is used to specify the primitive which wants a service to be subscribed.
This type of message, besides the address of the primitive, specifies the control address of
the service container which requires the subscription and a single or a set of data address
to receive the incoming primitive.

4.2.1.2 SubscribeACK

SubscribeACK message is sent as a response of remote subscription request (subscribe
message). The main purpose of this message is to negotiate the address used in the
future data transfer of the primitive. This message is used to confirm the transport data
address, if more than one have been offered in the request (subscribe message).

52 MAREA 2. Design and Optimization of a Distributed Communications Middleware

4.2.1.3 Unsubscribe

This type of message is used to end the subscription of a primitive. The aim of unsubscribe
messages is to inform to the publisher, the service that holds the primitive, that a service
subscribed to the primitive is not longer a consumer. As shown in figure 4.1, unsubscribe
messages specify the control and data transport address of the cosumer.

4.2.1.4 Data

This message is used to send data to those services that have been subscribed to the
primitive. Data messages are sent systematically due to the nature of the variables and
events primitives (section 1.3), which are both used to share periodic information. This type
of message contains three different fields: address, type and data value of the primitive.

4.3 Remote Procedure Call Protocol

Remote procedure call protocol implements a point-to-point synchronous communication
model using the remote invocation primitive. As explained in section 1.3, remote invocation
follows a request/reply pattern using a client/server model.

One of the features added in the new version of this protocol is the support of session
tokens as a way to avoid reply attacks. To allow the client to assign a certain result to a
previous request, the client assigns a token to each request. The server always returns
this token together with the result so that the client can easily associate a result with the
corresponding previous request.

4.3.1 Messages

The remote procedure call (RPC) paradigm is implemented through the exchange of call
and reply function messages. Both type of messages are sent reliably by using the TCP
protocol. In the figure 4.2, a Battery and BatteryManager are running in different service
containers. The BatteryManager service offers the method Recharge according to its IDU
definition.

BatteryManager (Container A) Battery (Container B)

CALL FUNCTION (Name, Id, Params[], Reply @, Token)

Recharge(bool)

RETURN FUNCTION (Id, Result, Token)

Figure 4.2: Remote procedure protocol message exchange bettwen a Battery and a
BatteryManager services into different service containers

PROTOCOL LAYER 53

The BatteryManager (container A) starts the communication by sending a call function
message to make the remote invocation call of the method Recharge of the service Battery
(container B). Once the execution of this method has been done, a reply function message
is returned with the results of the procedure’s execution.

4.3.1.1 Call Function

The call function message contains the following fields:

• Name: Contains the name of the remote method.

• Identifier: Identifies the procedure with a random number.

• Parameters: Contains an array with the parameters of the call. As an inherited
limitation of using the .NET Func and Action parameterized delegates, the maximum
number of parameters is sixteen.

• Reply address: Contains the address of the procedure’s caller.

• Token: A session token that the caller will transmit as part of the future response.

4.3.1.2 Reply Function

The reply function message contains the result of the procedure’s execution together with
the identifier and the token of the call function message. This message is returned to the
remote call procedure requester according to the field reply address of the call function
message.

4.4 Improvements

One of the problems with MAREA 1 is that all the protocols and its functionalities are in-
cluded inside the service container. The goal of the new implementation of the protocol
layer is to decouple the different protocols into smaller independent modules. This ap-
proach makes protocols easier to modify by decomposing them around smaller design
decisions.

The different protocols have been implemented in independent classes with two different
methods for each type of message of the specific protocol. The idea is to use one them to
process the incoming MAREA messages from the service container and the other to build
and send the MAREA messages to the service container.

Each protocol offers a start and stop method in order to make the whole protocol layer
highly configurable. The different protocols could be used by calling these methods, de-
pending on the scenario and requirements of the system. The implementation of these
two methods basically adds or removes the different delegates from the array located in
service container.

54 MAREA 2. Design and Optimization of a Distributed Communications Middleware

4.5 Conclusions

In contrast to MAREA 1, MAREA 2 implements a new component called protocol layer.
Protocol layer is on charge of offering remote message delivery capabilities according to
the communication protocol used for each communication primitive. Protocol layer allows
to easily plug additional protocols for implementing other primitives (e.g. file-based data
transfer) and other communication features.

The protocol layer implements three different protocols: discovery, publish-subscribe and
RCP. Firstly, discovery protocol, as its name suggests, aims to discover and an announce
services. Secondly, publish-subscribe protocol is on charge of manage the subscriptions
and data transfer of the variable and events primitives. Finally, RPC protocol defines a
point-to-point synchronous communication model based on a request/reply pattern in order
to implement remote invocation protocol.

CONCLUSIONS 55

CHAPTER 5. CONCLUSIONS

This chapter provides a final analysis of the master thesis. The first sections present results
and the different conclusions: the project conclusions and the personal conclusions. This
chapter comes to an end with some of the future lines of work and the environmental
impact.

5.1 Results

Although MAREA was not designed for hard real-time applications, one of the objectives of
this master thesis is to optimize, evaluate and compare the performance between MAREA
1 and MAREA2 middlewares.

For this evaluation, the performance analysis consists in communicate two services that
are deployed in two different service containers. The communication between them is ac-
complished following an echo request/response exchange-pattern. The requester service
starts a timer and sends a message with a timestamp to the replier service. The replier
service simply returns the message to the requester. Then, the requester calculates the
round-trip time with the actual time and the timestamp of the message.

5.1.1 Round-Trip Time

The test has been executed 10000 times to send variables (UDP transport) and events
(TCP transport) with a total payload of 1000 bytes and frequency of 100 Hz. The chosen
frequency is 100 Hz, because in avionics the typical requirements are in the 20-100 Hz
range. The test has been executed with the following three versions of MAREA middle-
ware: MAREA 1, MAREA 1 network backport and MAREA2.

In relation to variables, the mean round-trip time is 0.8313, 0.2797 and 0.3587 ms for
MAREA 1, MAREA 1 network backport and MAREA 2 respectively. In events, the mean
round-trip time is 0.9422, 0.3922 and 0.6481 ms for MAREA 1, MAREA 1 network backport
and MAREA 2 respectively. The table 5.1 shows the standard deviation of the RTT results.
In both variables and events the mean RTT has been reduced a 56.93% and 31.21%
respectively.

Middleware Variable-RTT (ms) Event-RTT (ms)
Mean STD Mean STD

MAREA 1 0.8313 0.6594 0.9422 0.5453
MAREA 1 Backport 0.2797 0.2992 0.3922 0.5221
MAREA 2 0.3587 0.4081 0.6481 0.5737

Table 5.1: Mean round-trip times for an echo test using MAREA 1, MAREA 1 network
backport, MAREA 2: 1000 Bytes, 10000 times, 100 Hz

56 MAREA 2. Design and Optimization of a Distributed Communications Middleware

Variable [UDP] Event [TCP]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
T

T
 [m

s]

MAREA 1

MAREA 1 Backport

MAREA 2

Figure 5.1: Mean round-trip times for an echo test using MAREA 1, MAREA 1 network
backport, MAREA 2: 1000 Bytes, 10000 times, 100 Hz

5.1.2 Memory allocation

The number of bytes allocated by the different versions of the middleware has been also
measured during the execution of the same test in the requester side. Notice that the y
axis of the figure 5.2 is in logarithmic scale.

In relation to variables, the total number of bytes allocated are 15834797234, 85587107
and 139311411 bytes for MAREA 1, MAREA 1 network backport and MAREA 2 respec-
tively. In events, the total number of bytes allocated are 14805029654 , 54609735 and
122285449 bytes for MAREA 1, MAREA 1 network backport and MAREA 2 respectively.
In both variables and events the total number of bytes has been reduced a 91.2% and
99.17% respectively.

Middleware Memory Allocation (bytes)
Variable Event

MAREA 1 15834797234 14805029654
MAREA 1 Backport 85587107 54609735
MAREA 2 139311411 122285449

Table 5.2: Number of bytes allocated by MAREA 1, MAREA 1 network backport, MAREA
2 in an echo test (requester side): 1000 Bytes, 10000 times, 100 Hz

CONCLUSIONS 57

Variable [UDP] Event [TCP]
10

0

10
2

10
4

10
6

10
8

10
10

10
12

M
em

or
y

A
llo

ca
tio

n
[b

yt
e]

MAREA 1
MAREA 1 Backport
MAREA 2

Figure 5.2: Number of bytes allocated by MAREA 1, MAREA 1 network backport,
MAREA 2 in an echo test (requester side): 1000 Bytes, 10000 times, 100 Hz

In MAREA 2 the number total of bytes allocated and the mean RTT has been significantly
reduced from MAREA 1, for both variables and events primitives.

The number total of bytes and the mean RTT results for MAREA 1 network backport are
slightly lower compared to MAREA 2. One plausible explanation could be that in MAREA 2,
the service container should manage one additional proxy service to support the queries.
This additional service may introduce some delay due to the propagation of variable and
event primitives. The other reason is that no specific performance optimization work has
been done in the service container. In this sense, there is still room for performance
improvement in the service container.

5.2 Project Conclusions

The specified objectives at the start of the project have been successfully reached.

A new version of the middleware MAREA 1, has been designed and implemented. The
enhancements provided by MAREA 2 design is a more modular, flexible and reusable
architecture. The new design offers a starting point for providing reflective and adaptive
capabilities, and builds a highly reconfigurable system. The use of delegates both in the
service container and network layer reduces the coupling and improves maintainability of
the different sublayers. Based on the first feedback received from developers, at least
regarding the network layer, MAREA 2 programming complexity has been reduced com-

58 MAREA 2. Design and Optimization of a Distributed Communications Middleware

pared to MAREA 1 middleware.

The new service implementation based on the deployment unit concept takes benefit from
interfaces and the Composite Reuse Principle, one of the most powerful concepts in mod-
ern object orientated languages. Work with interfaces become much more flexible because
different services can be easily switched out. In this regard, this new approach defines a
SOA composed of plug-compatible services. In addition, services are loosely coupled from
each other, making the entire system more adaptable to change.

One of the new features added in MAREA 2 is the support of a naming service. The
implemented naming service based on dynamic name resolution allows the middleware
to find, share and access services and its communication primitives hiding the network
complexity. The naming service provides fault tolerance to the system (services could be
replicated in different nodes for redundancy).

Most of the optimization work is focused in the components of the network layer. The global
performance of this layer has been improved implementening the following features:

• MAREAGen is a custom serialization tool that generates code automatically to seri-
alize and deseserialize entities marked as serializable. MAREAGen eliminates the
need for developers to implement serializing and deserializing code and guarantees
run-time type safety. This tool is also responsible for creating proxies automatically.

• A memory pool mechanism has been implemented to minimize garbage collection
interruptions. The implemented pool supports the insertion and removal of Net-
workMessage entities using a FIFO discipline.

• Two new TCP and UDP asynchronous transports have been added in transport layer
in order to improve the scalability.

Some key performance parameter like round-trip time (RTT) and memory allocation have
been analyzed in order to evaluate and compare the performance between MAREA 1 and
MAREA2 middlewares. In MAREA 2, the RTT and number total of bytes allocated by the
sender in an echo request/response test, between two services that are deployed in two
different service containers, have been reduced considerably with respect to MAREA 1.

One of the topics covered during this master thesis is the improvement of the middleware
quality with continuous integration. Building a large software systems, like middlewares,
from several modules, integrating them into a working product is difficult and time con-
suming. Continuous integration is very useful tool used in combination with automated
unit tests because it save both time and money over the lifespan of a project. Jenkins
(appendix A.4.1) open-source continuous integration server and NUnit (appendix A.1.6.2)
unit testing framework have been used to offer support for both continuous integration and
unit testing.

CONCLUSIONS 59

5.3 Personal Conclusions

Beyond academic achievements, all the process involving this master thesis has been
certainly rewarding. This project has given me a real chance to design and develop an
application from beginning to end. In this sense, it has been a very rewarding challenge.

This project has allowed me to get familiar with middleware, which represents the conflu-
ence of two key areas of information technology (IT): distributed systems and component-
based design and programming.

There are many skills acquired or consolidated during this time: from the initial touch-
down of the MAREA middleware, reflection, inversion of control with the delegation pattern,
guidelines for application performance, the orthogonality and its importance in software de-
velopment, reduction of software complexity by capturing successful patterns and creating
reusable components, etc.

I also have realized that the development of a project is a quite complex task and requires
hard effort and dedication, but most of all a strict control of timings in order to accomplish
with the established work plan.

In addition, the experience working with my tutor has been very positive too, because he
leave so much leeway. The direct and close communication with him, has allowed me to
fulfill with the objectives and deadlines.

5.4 Future Work

The results of this master thesis point to several interesting directions for future work:

• Addition of new protocols: The first protocol that should be added is a file-based
data transfer protocol to implement the file communication primitive. An interesting
future work-line is to implement a P2P protocol in order to support content distribu-
tion capabilities.

• Static name resolution support: In some specific cases services require the con-
sumption of a specific service instance during its whole execution. In these situations
is necessary to use static name resolution. In contrast to the implemented dynamic
name resolution, static resolution does not offer redundancy and, consequently, fault
tolerance. This means that if the provider service fails or shutdowns, the consumer
cannot automatically change to another service.

• Extend capabilities to other platforms: One of the first steps is to extend the
middleware usability to other .NET platforms like .NET Compact Framework and
.NET Micro Framework, simpler versions of the .NET Framework designed to run
in mobile and embedded devices. Another interesting step is to extend its use to
devices like Raspberry Pi, a new minimalist computer built for the ARMv6 architec-
ture, together with the cross software platform Mono (appendix A.3.1) and IOSharp

60 MAREA 2. Design and Optimization of a Distributed Communications Middleware

(appendix A.3.3). These extensions would significantly leverage the meaning of
MAREA, a middleware specially designed for systems composed by a number of
low-cost distributed computing devices connected by a network.

• Performance optimization: Most of the performance optimization work of this mas-
ter thesis is focused in the network architecture, the most delay-sensitive layer of the
whole architecture. In this sense, there is still a path to follow with the service con-
tainer. Another future option to optimize the performance, ensure hard real time
requirements, and also improve the portability to other platforms is to make a new
implementation of the middleware in C++. A very interesting alternative to make a
new implementation in C++, can be the use of Alternative (appendix A.3.2), a tool
for easy port applications from high-level languages to native languages.

• QoS control mechanisms: The idea is is to implement an adaptive message QoS
control in the service container that handle workload variations dynamically.

• Software usability: One of the significant aspects that not was covered in MAREA
1 is the usability level. Usability techniques increase user efficiency and productivity
and, consequently, user satisfaction.

One of the proposals related to this topic, is the creation of Visual Studio customized
service oriented project templates. The use of templates is one of the numerous
ways to boost productivity in Visual Studio by automating redundant steps. Tem-
plates provide more time to the developer to concentrate on the more challenging
aspects of their work. Templates would provide a starting point for users to create
MAREA service projects according to the deploy unit concept. Templates would in-
clude the files that are required for each particular project type (IDU, SDU and LDU):
standard assembly references, project properties and compiler options.

Another topic that would be convenient to take in consideration regarding to usability
is end user distribution of services based on the deployment unit concept. It would
be interesting to build a distribution platform of MAREA services based on NuGet
(appendix A.1.1). The idea is that each service counts with an exclusive Git (ap-
pendix A.2.1) repository to host the source code and a NuGet package to host the
binaries. The final goal is to provide a generic tool that enables the distribution of
the source code and binaries depending on the programmer specific needs.

5.5 Environmental Impact

At last but not least it is necessary to talk about the environmental impact of the work
described in this document. As can be seen from the present document, this project
consists in the design and development of a software application. This has not a direct
environmental benefit, but this middleware was mainly specifically designed to fulfill UAS
communications and their application to the design of complex distributed UAS avionics.
UAS can perform air operations that manned aviation can hardly do, with evident economic
savings and environmental benefits while reducing the risk to human life.

REFERENCES 61

REFERENCES

[1] Schmidt, D.C. and Schantz, R.E., "Middleware for Distributed System - Evolving the
Common Structure for Network-centric Applications", Encyclopedia of Software Eng.,
Wiley & Sons, New York, 2001. Available at http://www.agentgroup.unimore.
it/didattica/ingss/Lec_Middleware/Schmidt_Middleware.pdf (visited
26, January, 2013).

[2] Bagula, A.B., Denko, M.K. and Zennaro, M., "Middleware for Mobile and Pervasive
Services", Chap. 7 in Handbook of mobile systems applications and services, Taylor
and Francis Group, Kumar, A. and Xie, B., pp. 248-249, Boca Raton (FL), 2012.

[3] Khan, S., Qureshi, K. and Rashid, H., "Performance Comparison of ICE, HORB,
CORBA and Dot NET Remoting Middleware Technologies", International Jour-
nal of Computer Applications, 3(11), 15-18 (2010). Available at http://www.

ijcaonline.org/volume3/number11/pxc3871105.pdf (visited 26, January,
2013).

[4] Loyall, J., Schantz, R., Zinky, J., et al. "Comparing and Contrasting Adaptive Mid-
dleware Support in Wide-Area and Embedded Distributed Object Applications",
Proceedings of the 21st International Conference on Distributed Computing Sys-
tems, Mesa (AZ), 2001. Available at http://www.cse.wustl.edu/~cdgill/
PDF/ICDCS01.pdf (visited 15, January, 2013).

[5] López, J., Royo, P., Barrado, C., Pastor, E., "Applying marea middleware to
UAS communications", In Proceedings of the AIAA Infotech@Aerospace Con-
ference and AIAA Unmanned Unlimited Conference 2009, Seattle (WH). Avail-
able at http://upcommons.upc.edu/e-prints/bitstream/2117/9248/1/
infotech09.pdf (visited 15, March, 2013).

[6] López, J., "Service Oriented Architecture for Embedded (Avionics) Applications", The
PhD Program on Computer Architecture Technical School of Castelldefels Technical
University of Catalonia, Barcelona, 2011. Available at https://dl.dropbox.com/
u/2857619/thesis-small.pdf(visited 5, October, 2013).

[7] Kiely, D., "Delegates Tutorial" in The Microsoft Developer Network (MSDN).
Available at http://msdn.microsoft.com/en-us/library/aa288459(v=

vs.71).aspx (visited 15, February, 2013)

[8] Albahari, J. and Albahari B., "Serialization", Chap. 17 in C# 5.0 in a Nutshell: The
definitive reference, O‘REILLY, Roumeliotis, R., pp. 691-728, Sebastopol (CA), 2012.

[9] Kiely, D., "Get Closer to the Wire with High-Performance Sockets in .NET" in
The Microsoft Developer Network (MSDN) Magazine. Available at http://msdn.
microsoft.com/es-es/magazine/cc300760(en-us).aspx (visited 5, March,
2013)

[10] Books Llc, Source Wikipedia, "Software Quality: Software Crisis, Kludge, Second-
System Effect, Workaround, Reliability Engineering, Fault-Tolerant System", Books
Llc, Memphis (Tennessee), 2011.

[11] Garofalo, R., "Desing Patterns", Chap. 2 in Building Enterprise Applications with Win-
dows Presentation Foundation and the Model View ViewModel Pattern, O‘REILLY,
Jones, R., pp. 25-60, Sebastopol (CA), 2011.

[12] Pobar, J., "Reflection: Dodge Common Performance Pitfalls to Craft Speedy Applica-
tions" in The Microsoft Developer Network (MSDN) Magazine. Available at http:
//msdn.microsoft.com/en-us/magazine/cc163759.aspx (visited 25, Au-
gust, 2013).

[13] Microsoft, "Performance: Lazy Initialization" in The Microsoft Developer Net-
work (MSDN). Available at http://msdn.microsoft.com/en-us/library/

dd997286.aspx (visited 25, August, 2013).

APPENDICES

Title: MAREA 2. Design and Optimization of a Distributed Com munications Middle-
ware

Master Degree: Master in Science in Telecommunication Engi neering &
Management

Author: Santiago Pérez Fernández

Director: Juan López Rubio

Date: October 26, 2013

TOOLS 1

APPENDIX A. TOOLS

A.1 Package management system

A package management system, is a collection of software tools to automate the process
of installing, upgrading, configuring, and removing software packages. It typically main-
tains a database of software dependencies and version information to prevent software
mismatches and missing prerequisites.

A.1.1 NuGet

NuGet is a free, open source developer focused package management system for the
.NET platform intent on simplifying the process of incorporating third party libraries into a
.NET application during development.

The NuGet tools provide the ability to create, publish and consume packages. Each pack-
ages consists in a nupkg (NuGet package) file which contains packaged source code or
libraries that can be used for any developing program components.

A.1.2 Package Management

Manage package references in projects becomes very simple with the NuGet extension,
which is included by default in Visual Studio 2012. The packages can be added, updated
and removed in projects using the Manage NuGet Packages dialog box.

Figure A.1: Manage NuGet Package option in right click menu project

Figure A.2: MAREA service package management in Manage NuGet Packages dialog
box

A.1.3 Package Creation

The first step to create a NuGet package is to configure a nuspec (NuGet specification)
file. Nuspec files are manifests in XML format that specify all the settings and the package
dependencies.

The metadata of the nuspec file contains the following fields: id, version, authors (collection
of author elements), description, language, tags (collection), licenceUrl (Uri), projectURL
(Uri), iconUrl (Uri), requrireLicenceAcceptance(boolean) and a set of dependencies. Each
dependency element has the following attributes: id (the ID of a package that this package
depends on) and version (the required version of the dependency package.

The figure A.3 shows an example of nuspec file. Notice that the nuspec file is in the root
folder of the project.

Figure A.3: Nuget specification (nuspec) file from a MAREA service project

The following command creates a package(nupkg file) from a given project and a nuspec
file:

nuget pack "ProjectName".csproj

A.1.4 Package Publication

Once the package has been created, it needs to be pushed to a NuGet server A.1.6.3.
Depending on the NuGet server configuration, an access key could be required to publish
and delete packages.

The following command pushes a package to a Nuget server:

nuget push "PackageName".nupkg -s "NugetServerURL" "AccessKey"

A.1.5 Package Managment Automation

An external Visual Studio tool has been created in order to facilitate to developers the
creation and publication of his own packages. With this tool the developers are able to
create and push services just by selecting the project and clicking the option MAREA 2
package source->Create and Push service on the Tools menu.

Figure A.4: Visual Studio Create and Publish package external tool

This tool has been created specifying the following command and arguments:

• Command: C:/WindowsMicrosoft.NET/Framework64/v4.0.30319/MSBuild.exe

• Arguments: /t:Build,Package,Publish /p:Configuration=Debug; NuGetServer=http://localhost:7073;
NuGetKey=3237c377-4253-4b48-91ec-7b5457df28d5 $(ProjectDir)$(ProjectFileName)

Figure A.5: Create and Publish package external tool details

A.1.6 Third Party Packages

This subsection includes the different third party libraries that have been used to develop
MAREA. All of them have been obtained and installed through the NuGet package man-
agement system.

A.1.6.1 Log4net

Log4net, a port of the popular Java library log4j, is an open source library that allows
.NET applications to log output to a variety of sources (e.g., console, files or SMTP). The
information is logged via one or more loggers which provide a the following five logging
levels: debug, information, warnings, errors, fatal.

A.1.6.2 NUnit

NUnit, a port from JUnit, is a unit-testing framework for all .NET languages. It is writ-
ten entirely in C# and has been completely redesigned to take advantage of many .NET
language features, for example custom attributes and other reflection related capabilities.

NUnit does not support Visual Studio integration. Instead of this it provides an external
program compiled either as a console app or a GUI. This program is able to run and
execute the unit tests from an assembly.

Figure A.6: MAREA unit tests executed by NUnit GUI application

This framework has been especially used to test encoder layer, naming and service man-
agement functionalities. The listing A.1 shows an example of a unit test to serialize and
deserialize a double with two diferent pair of parameters.

Listing A.1: MAREA encoder layer unit test: serialization and deserialization of a double

p r i v a t e byte [] seralizedData = n u l l ;
p r i v a t e long start , serializeTicks , deserializeTicks ;
p r i v a t e long clock_freq = PerformanceTimer .Clock_freq () ;

[SetUp]
pub l i c vo id RunAfterAnyTest ()
{
serializeTicks = 0;
deserializeTicks = 0;

}

[TestCase (0.100000234523 , 0) , NUnit .Framework . Desc r ip t i on (" Coder (double , System . Double) ")]
[TestCase (double .MaxValue , 0)]
pub l i c vo id TestDoubleM2 (double oDouble , double rDouble)
{

f o r (i n t i = 0; i < CoderTestsConstants .CODIFICATIONS ; i++)
{
start = PerformanceTimer .Ticks () ;
seralizedData = AdaptedMareaCoder .Send (oDouble) ;
serializeTicks += PerformanceTimer .TicksDifference (start) ;

start = PerformanceTimer .Ticks () ;
rDouble = (double) AdaptedMareaCoder .Receive (seralizedData) ;

deserializeTicks += PerformanceTimer .TicksDifference (start) ;
}

Console .WriteLine (CoderTestsConstants .MAREA2) ;
Results results = ResultsManager .GetResults (serializeTicks , deserializeTicks , clock_freq ,
CoderTestsConstants .CODIFICATIONS , seralizedData .Length , rDouble .GetType () .FullName) ;

i f (oDouble == rDouble)
{

Asser t .True (t r ue) ;
Console .WriteLine (CoderTestsConstants .OK_STATE) ;
Console .WriteLine (results .ToString ()) ;

}
e lse
{
Console .WriteLine (CoderTestsConstants .KO_STATE) ;
Asser t .True (f a l s e) ;

}
}

A.1.6.3 Nuget Server

According to the proposed design MAREA services should be pushed as packages in an
own NuGet server (like the one hosted at nuget.org). The steps to configure a NuGet
server are presented bellow.

• Create a ASP.NET Empty Web Application: Go to the File | New | Project menu
option which will bring up the new project dialog and select ASP.NET Empty Web
Application.

• Install the NuGet.Server Package: Make Right click on the created ASP.NET
Empty Web Application and select the option Manage NuGet Packages (figure A.1).
Search and install the package Nuget.Server in the Manage NuGet Packages dialog
box (figure A.2).

With this last step the NuGet.Server package has just converted the ASP.NET Empty Web
Application into a site that is ready to serve up the package feed. To start the NuGet server
build an run the ASP.NET Web Application project.

The configuration of the NuGet server can be easily modified through Web.config file. The
most important parameters are:

• packagesPath: Specifies a custom (absolute or virtual) path for packages folder.

• requireApiKey: Determines if an access key is required to push/delete packages
from the server.

• apiKey: Sets the value of the key to allow people to push/delete packages from the
server.

Figure A.7: NuGet server application settings from Web.config file

The next step is configure the new package source in Visual Studio by clicking in the button
Settings of the dial box Manage Nuget Packages. To add the new source add a name and
specify the URL of the NuGet server like is shown the figure A.9. Note that the URL is
http://domain/nuget/ and depends on how the site has been deployed.

Figure A.8: Visual Studio package source configuration

The URL http://domain/nuget/Packages lists the name and description of the packages
that have been uploaded to the server.

Figure A.9: View of OData over ATOM feed of MAREA packages

A.1.6.4 Thorn

Thorn is a command line utility accelerator for .NET applications. Thorn essentially pro-
vides a lightweight routing and dispatch layer to code. Such an environment encourages a
style of development which relies on application-aware utilities, and also serves as a good
springboard for experimentation, and ensures that one-offs that work out are already built
in a repeatable, deployable, reusable fashion.

A.1.6.5 StringTemplate

StringTemplate is a java template engine (with ports for C#, Python) for generating source
code, web pages, emails, or any other formatted text output. StringTemplate is particu-
larly good at code generators, multiple site skins, and internationalization / localization.
StringTemplate also powers ANTLR.

A template engine is simply a code generator that emits text using templates, which are
really just "documents with holes" in them where you can stick values called attributes.
An attribute is either a program object such as a string or VarSymbol object, a tem-
plate instance, or sequence of attributes including other sequences. Template engines
are domain-specific languages for generating structured text. StringTemplate breaks up

your template into chunks of text and attribute expressions, which are by default enclosed
in angle brackets <attribute-expression> (but you can use whatever single character start
and stop delimiters you want). StringTemplate ignores everything outside of attribute ex-
pressions, treating it as just text to spit out.

A.2 Source control tools

Source control is defined as the management of changes to documents, computer pro-
grams, large web sites, and other collections of information.

A.2.1 Git

Git is a free and open source distributed version control system designed to handle every-
thing from small to very large projects with speed and efficiency.

The major difference between Git and any other version control system (like Subversion)
is the way Git thinks about its data. Conceptually, most other systems store information as
a list of file-based changes. These systems think of the information they keep as a set of
files and the changes made to each file over time.

Git does not think of or store its data this way. Instead, Git thinks of its data more like a
set of snapshots of a mini filesystem. Every time the user commits, or saves the state of a
project in Git, it basically takes a picture of what all the files look like at that moment and
stores a reference to that snapshot.

Git has three main states that your files can reside in: committed, modified, and staged.
Committed means that the data is safely stored in users local database. Modified means
that the programmer has changed the file but have not committed it his database yet.
Staged means user has marked a modified file in its current version to go into his next
commit snapshot.

The basic Git workflow goes something like this:

• The user modifies files in his working directory.

• The user stages the files, adding snapshots of them to his staging area.

• The user does a commit, which takes the files as they are in the staging area and
stores that snapshot permanently to his Git directory.

A.2.2 GitHub

GitHub is a web-based hosting service for software development projects that use the Git
revision control system. GitHub is one of largest open source community which offers both

paid plans for private repositories, and free accounts for open source projects.

Git makes the code accessible and transparent for developers. Anything push by a user to
a repository is instantly viewable online so users can share it with people even if they don’t
use Git. The main page of every project is a list of the files in the project and information
about the last time it was committed to so the users can instantly see the code which is
the most important about his project.

The site provides social networking functionality such as feeds, followers and the network
graph to display how developers work on their versions of a repository. It also provides
support to manage and contribute to projects from different devices.

A.2.3 Git Source Control Provider Extension

Git Source Control Provider is a Visual Studio extension that integrates Git with Visual
Studio. This extensions becomes integrated with Visual from the update 2 of the Visual
Studio 2012.

A.3 Cross platform tools

Cross-platform tools are a class of developer tool that aim to enable a single implementa-
tion of application functionality to run across multiple platforms.

A.3.1 Mono

Mono is a software platform designed to allow developers to easily create cross platform
applications. It is an open source implementation of Microsoft’s .Net Framework based on
the ECMA standards for C# and the Common Language Runtime.

Some of the benefits of this platform are: popularity, higher-Level Programming, cross
Platform, Common Language Runtime (CLR) support.

A.3.2 AlterNative

AlterNative is a tool for easy port applications from high-level languages (such as .NET)
to native languages (such as C++). Most of the actual systems are C++ compatible, thus
if the application is ported to this language, it can be executed in several platforms (i.e.
smartphones, tablets, embedded systems, computers with different operating systems).

The process of the AlterNative software is divided in three parts: Decompilation, translation
and compilation. The effort of this software is not focused on the code translation, but it is
focused in maintaining all the features and functionality of the original code.

AlterNative it is a good solution for scenarios with several devices with some computational
power able to execute applications compiled for different operating systems, or processors.
AlterNative improves the global performance compiling the applications for every device
with a native performance and without the need of a Virtual Machine or the support the
same operating system or processor.

A.3.3 IOSharp

IOSharp allows standard Micro Framework applications to run on the top of a Linux op-
erating system. Using this port the programmer will be able to deploy MicroFramework
applications in Linux-based devices without doing major changes in the code. The only
modifications that the programmer needs to apply are the references related to the under-
lying hardware. In addition, this port uses the GPIO, SPI and I2C from Userspace to be
both distribution and architecture independent.

A.4 Continuous Integration tools

Continuous integration is a software engineering practice in which isolated changes are
immediately tested and reported on when they are added to a larger code base.

A.4.1 Jenkins

Jenkins is application that monitors executions of repeated jobs, such as building a soft-
ware project or jobs run by cron. Among those things, current Jenkins focuses on the
following two jobs:

• Building/testing software projects continuously , just like CruiseControl or Dam-
ageControl. In a nutshell, Jenkins provides an easy-to-use so-called continuous in-
tegration system, making it easier for developers to integrate changes to the project,
and making it easier for users to obtain a fresh build. The automated, continuous
build increases the productivity.

• Monitoring executions of externally-run jobs , such as cron jobs and procmail
jobs, even those that are run on a remote machine. For example, with cron, all you
receive is regular e-mails that capture the output, and it is up to you to look at them
diligently and notice when it broke. Jenkins keeps those outputs and makes it easy
for you to notice when something is wrong.

Jenkins has been configured to build MAREA when a change is pushed to GitHub, and to
run automatically the implemented tests.

Figure A.10: Jenkins project configuration

Figure A.11: Jenkins project general view

A.5 Material

The equipment used to perform the different tests is a PC DELL OPTILEX 755 with follow-
ing characteristics:

• Processor: Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz.

• RAM: 4096MB (2x2GB) 667MHz DDR2.

• OS: Windows 7 Enterprise X64.

The .NET Stopwatch diagnostic class and the Visual Studio Profiler have been used to
accurately measure the elapsed time, and to collect memory allocation data respectively.

APPENDIX B. CLASS DIAGRAM

MareaCoder

Class

Methods

AssemblyInitializer() : void

MareaCoder()

Receive() : void

Send() : void
Lane

Class

Network

Class

Fields

broadcastPort : int

controlPort : int

localIPs : IPAddress[]

localUdpPorts : List<int>

queue : LockFreeQueue

Methods

availableNetAdapters() : IPAddress[]

CheckPortAvailability() : bool

GetBroadcastAddress() : IPAddress

GetLocalIP() : IPAddress

GetNextMulticast() : TransportAddress

IsMulticastIP() : bool

IsSameNetwork() : bool

LoadNetworkConfiguration() : void

Network()

Receive() : Lane (+ 1 overload)

Send() : Lane (+ 1 overload)

SetControlTransport() : void

Start() : void

Stop() : void

NetworkMessage

Class

Fields

Buffer : byte[]

Id : byte

MAX_SERIALIZABLE_OBJECT_SIZE : int

Object : object

Offset : int

StatusCode : NetWorkStatusCode

TransportAddress : TransportAddress

Methods

NetworkMessage() (+ 1 overload)

SetMessage() : void

SetTransportAddress() : void

LockFreeQueue

Class

SingleLinkNode…

Generic Class

SyncMethods

Static Class

Router

Class

Fields

network : Network

Methods

GetInputLane() : Lane

GetOutputLane() : Lane

Router()

IpTransportAddress

TransportAddress

Class

SerialTransportAddress

TransportAddress

Class

ConnectionManager

Class

Fields

closeConnectionHandler : CloseConnection

Methods

AddInConnection() : void

Close() : bool

CloseConnections() : void

ConnectionManager()

Remove() : bool

Connection

Class

Fields

closeConnectionHandler : CloseConnection

end : bool

hint : Lane

localPort : int

log : ILog

magicNumber : byte[]

mareaHeader : byte[]

network : Network

outBuffer : ConcurrentQueue<NetworkMessage>

queue : LockFreeQueue

socket : Socket

thread : Thread

thTry : Thread

Methods

Close() : void

Connection() (+ 1 overload)

Run() : void

Send() : void

TrySending() : void

TCPTransport

Class

Fields

inSocket : Socket

isStarted : bool

log : ILog

network : Network

th : Thread

Methods

GetChannel() : Connection

GetTransportAddress() : TransportAddress

Run() : void

Start() : bool

Stop() : bool

TCPTransport()

UDPTransport

Class

Fields

end : bool

inSocket : Socket

localPort : int

log : ILog

network : Network

outSocket : Socket

queue : LockFreeQueue

th : Thread

Methods

GetTransportAddress() : TransportAddress

Run() : void

Send() : void

Start() : bool

Stop() : bool

UDPTransport()

TransportException

Exception

Class

Methods

TransportException() (+ 1 overload)

TransportSendException

TransportException

Class

Fields

data : byte[]

ta : TransportAddress

Methods

TransportSendException() (+ 1 overload)

DiscoverProtocol

Class

Methods

Discover() : void

DiscoverProcess() : void

DiscoverProtocol()

PublishProcess() : void

PublishService() : void

Start() : void

StartDiscovering() : void

Stop() : void

StopDiscovering() : bool

Unpublish() : void

UnpublishProcess() : void

ProtocolUtils

Class

FunctionCall

Class

Fields

Random : Random

randomValue : int

result : object

waitEvent : EventWaitHandle

Methods

FunctionCall()

RemoteProcedureCallProtocol

Class

Methods

BuildInvoker() : IInvoke

CallFunction() : object

CallFunctionProcess() : void

RemoteProcedureCallProtocol()

ReturnFunctionProcess() : void

Start() : void

Stop() : void

EventImpl<T>

Generic Class

Fields

name : string

value : T

Properties

Name : string

Value : T

Methods

AddSubscriber() : void

EventImpl()

GetTotalSubscriptions() : int

Notify() : void

RemoveSubscriber() : void

Subscribe() : void

Unsubscribe() : void

Nested Types

SubscribeProtocol

Class

Methods

Data() : void

DataProcess() : void

Start() : void

Stop() : void

SubscribeACK() : void

SubscribeACKProcess() : void

SubscribePrimitive() : void

SubscribePrimitiveProcess() : void

SubscribePrimitives() : void (+ 1 overload)

SubscribeProtocol()

Unsubscribe() : void

UnsubscribeProcess() : void

VariableImpl<T>

Generic Class

Fields

name : string

value : T

Properties

Name : string

Value : T

Methods

AddSubscriber() : void

GetTotalSubscriptions() : int

Notify() : void

RemoveSubscriber() : void

Subscribe() : void

Unsubscribe() : void

VariableImpl()

Nested Types

QueryManager

Class

Fields

container : ServiceContainer

Methods

CreateQuery() : QueryService

GetQueriesFromService() : Dictionary<MareaAddress, Query…

GetQuery() : QueryService

GetRealServicesFromQuery() : Dictionary<MareaAddress, IS…

GetRegexPatternFromMareaAddress() : string

GetServicesFromQuery() : Dictionary<MareaAddress, IServic…

MareaAddressMatchesWithQueryAddress() : bool

QueryManager()

SubscribeProducersToQuery() : int

SubscribeServiceToExistentQueries() : void

UnsubscribeServiceFromExistentQueries() : void

ServiceContainer

Class

Fields

defaultNode : IPEndPoint

defaultSubsystem : string

getPrimitiveFromServiceMethod : MethodInfo

Methods

CreatePrimitive<T>() : T

GetPrimitive() : Primitive

GetPrimitiveFieldFromService() : Primitive

GetPrimitiveFromService<T>() : T

GetProtocol<T>() : T (+ 1 overload)

GetService<T>() : T (+ 3 overloads)

GetServicesFromQuery() : Dictionary<MareaAddress, IService>

Receive() : void

RegisterMessage() : bool

SendMessage() : void

ServiceContainer()

Start() : void

StartService() : MareaAddress (+ 1 overload)

Stop() : void

StopService() : bool

UnregisterMessage() : bool

GUI

Service

Class

Fields

log : ILog

Methods

Start() : bool

StartCLIGUI() : void

NodeManager

Class

Methods

Add() : int

GetAvailableServices() : string[]

GetKnownServices() : MareaAddress[]

GetRunningServices() : MareaAddress[]

Shutdown() : void

Start() : bool

StartService() : MareaAddress

Stop() : bool

StopService() : bool

ServiceManager

Class

Fields

assembliesManager : AssembliesManager

descriptionBuilder : DescriptionBuilder

implementationBuilder : ImplementationBuilder

methodCreatePrimitiveGeneric : MethodInfo

Methods

CreateAndSetPrimitivesToServiceWithReflection() : void

CreatePrimitive<T>() : T

FindConsumersFromService() : string[]

GetDescription() : ServiceDescription

GetImplementation() : ServiceImplementation

GetImplementations() : ServiceImplementation[]

GetLocalService<T>() : T[]

GetLocalServices() : MareaAddress[]

GetSDUs() : Dictionary<string, ServiceImplementation>

LoadConfiguration() : void

LoadServices() : void

ServiceManager()

SetConsumersFromService() : bool

Start() : void

StartService() : MareaAddress (+ 5 overloads)

StartServiceWithoutQueries() : MareaAddress

Stop() : void

StopService() : bool (+ 1 overload)

StopServiceWithoutQueries() : bool

DigitsSumExten…

Static Class

AssembliesManager

Class

Fields

assembliesCache : Dictionary<string, Assembly>

Properties

Instance : AssembliesManager

Methods

FindFields() : void

GetAllIDUs() : List<string>

GetAllSDUs() : List<string>

GetAllSubClassesFrom() : List<Type>

GetAllTypes() : Dictionary<string, Type>

GetNamespaces() : List<string>

GetNamespacesFromTypeMembers() : List<string>

GetReferencedAssemblyPaths() : IEnumerable<string>

GetSerializableTypesFromAssembly() : List<Type>

GetTypeFromFullName() : Type

GetTypes() : void

UpdateCache() : void

ExtendedAssem…

Static Class

ServiceAddress

MareaAddress

Class

MareaAddress

Class

Service

Abstract Class

Fields

container : IServiceCont…

id : ServiceAddress

Methods

Exit() : void

Service()

Start() : bool (+ 1 overlo…

Stop() : bool

Timer

MarshalByRefObject

Sealed Class

QueryService

Abstract Class

Fields

bindedServices : List<ServiceAddress>

container : IServiceContainer

id : ServiceAddress

Methods

AddMatchingService() : void

AddMatchingServiceAddress() : void

AddMatchingServices() : void

AddOrRemoveSubscriber() : void

QueryService()

RemoveMatchingService() : void

RemoveMatchingServiceAddress() : bool

RemoveMatchingServices() : void

ServiceDescription

Class

Fields

Description : string

files : FileDescription[]

Name : string

Methods

GetTypeFromPrimitve() : PrimitiveType

HasEvent() : bool

HasFile() : bool

HasVariable() : bool

isEmpty() : bool

ServiceDescription()

ServiceImplementation

Class

Fields

PrimitiveFields : Dictionary<string, FieldInfo>

QueryType : Type

Type : Type

Methods

ServiceImplementation()

ConsumerServiceInfo

Class

Fields

Attribute : string

Field : FieldInfo

ProxyType : Type

QueryType : Type

ServiceName : string

Methods

ConsumerServiceInfo()

EventDescription

Class

Fields

Description : string

Name : string

Publish : bool

Type : string

Unit : string

Methods

EventDescription()

VariableDescription

Class

Fields

Description : string

Name : string

Publish : bool

Type : string

Unit : string

Methods

VariableDescription()

FunctionDescription

Class

Fields

Description : string

Name : string

ReturnType : string

Methods

FunctionDescription()

ParameterDescription

Class

Fields

Description : string

Name : string

Type : string

Methods

ParameterDescription()

TransportAddress

Abstract Class

Fields

transportMode : TransportMode

Methods

Clone() : TransportAddress

GetAddress() : string

isReliable() : bool

TransportAddress()

CoderTables

Class

Properties

EncodeTable : Hashtable

Indexer : byte

M2Types : Dictionary<byte, string>

MareaMessageIndexer : byte

Methods

AddClass() : void

AddMareaMessage() : void

GetInstance() : CoderTables

IInvoke

Interface

Methods

Invoke() : object

INodeManager

Interface

Methods

Add() : int

GetAvailableServices() : string[]

GetKnownServices() : MareaAddress[]

GetRunningServices() : MareaAddress[]

Shutdown() : void

StartService() : MareaAddress

StopService() : bool

IService

Interface

Methods

Start() : bool

Stop() : bool

Event<T>

Primitive

Generic Interface

Properties

Value : T

Methods

Notify() : void

Subscribe() : void

Unsubscribe() : void

Variable<T>

Primitive

Generic Interface

Properties

Value : T

Methods

Notify() : void

Subscribe() : void

Unsubscribe() : void

Primitive

Interface

Properties

Name : string

Methods

AddSubscriber() : void

GetTotalSubscriptions() : int

RemoveSubscriber() : void

IConnection

Interface

Methods

Close() : void

NetWorkStatusCode

Enum

TransportSendingError

TransportReceivingError

OK

ConnectionState

Enum

waitingMareaHeader

waitingData

SubscribeOption

Enum

Subscribe

Unsubscribe

NetworkProcess

Delegate

networkMessage : NetworkMessage

CloseConnection

Delegate

connection : IConnection

ManageSubscriberFunc

Delegate

variable : Primitive

isAdding : bool

id : ServiceAddress

notifyFunc : object

totalSubscribers : int

MessageProcess

Delegate

Message : Message

SendDataPrimitiveDelegate

Delegate

ta : TransportAddress

name : string

data : object

type : PrimitiveType

NotifyFunc<T>

Generic Delegate

name : string

value : T

DecodeFunction

Delegate

buffer : byte[]

offset : int

IConnectionITransport

ITransport

IProtocol

IProtocol

IRemoteProcedureCallProtocol

Event<T>

IProtocol

Variable<T>

IServiceContainer

IService

INodeManager

IService

IDisposable

tables

NetworkHandler

UdpTransport

TcpTransport

lastMulticast

router

Broadcast

Control

connections : List<IConnection>

address

connections

outConnections : ConcurrentDictionary<TransportAddress, …

address

discoverTimers : Dictionary<string, Timer>

invokersCache : Dictionary<string, IInvoke>functionCalls : Dictionary<int, FunctionCall>

provider

subscriptions

manageSubscriber

sendData

provider

subscriptions

manageSubscriber

queries : Dictionary<MareaAddress, QueryService>

serviceManager
network

discoverProtocol

subscribeProtocol

RPCProtocol

mareaMessagesProcess : MessageProcess[]

servicesIDU : Dictionary<string, ServiceDescription>

servicesSDU : Dictionary<string, ServiceImplementation>

services : Dictionary<MareaAddress, IService>

runningServices : Dictionary<MareaAddress, IService>

proxies : Dictionary<MareaAddress, IService>

queryManager

variables : VariableDescription[]

events : EventDescription[]

fu

ConsumerServices : ConsumerServiceInfo[]

parameters : ParameterDescription[]

DecodeTable : DecodeFunction[]

Figure B.1: MAREA core class diagram

