
1

 Master in Artificial Intelligence (UPC-URV-UB)

 Master of Science Thesis

 Using Application-Specific Ontologies to Generate Grammar

 Rules in English, Hindi, and Spanish for a Web Interface

 Piyush Paliwal

 Advisor: Dr. Marta Gatius

 September, 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41810897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

 Abstract

This thesis is concerned with the use of domain ontologies facilitating the generation of

multilingual grammars, which furthermore can be integrated in the natural language

understanding module of a communication system. In particular we work on grammars for

supporting user queries when accessing the web in English, Hindi and Spanish in two scenarios:

searching for a new medical specialist and looking for the information about cultural events in

the city. Although there have been many works on communication systems supporting English

and Spanish, this is not the case for Hindi language. For economical and cultural reasons there

have not been many studies on the integration of Hindi language on communication systems. For

this reason, our thesis also deals with the difficulty of working on a language for which not many

studies have been done nor do existing resources exist.

In order to facilitate the generation of linguistic resources for the three languages in different

domains we propose a clear separation of the conceptual and linguistic knowledge, as well as a

separation of general and domain-restricted knowledge bases, being conceptual knowledge.

Conceptual knowledge is represented in ontologies and is reused across the three languages.

Linguistic knowledge is language specific. General knowledge consists in general conceptual

concepts represented in a general ontology and general linguistic knowledge can be represented

as general grammars rules that can be reused across domains. For developing the grammar rules

for each domain and language we use grammatical framework (GF), a powerful tool for writing

multilingual grammars. One of the main advantages of this formalism is that favours a clear

separation of conceptual and syntactic knowledge involved in a particular grammar: it represent

the conceptual knowledge in a module called abstract grammar and the syntactic details in a

separate but related module called concrete grammar. We define abstract grammar from

ontologies and they are base to further developing the concrete grammar.

3

 Acknowledgements

 I would like to thank, first and foremost, my thesis supervisor, Prof. Marta Gatius, for

providing me fruitful guidance and persistent help. Her time-to-time suggestions during the

planning and development of the project as well as writing the thesis have enriched the work-

progress.

 I am also grateful to all the professors from different disciplines with whom I interacted

during the Master’s and gained streamy knowledge.

 Last but not the least, I can never forget the never-ending support accommodated by my

family and close friends who, despite being miles away, have always motivated me.

Piyush Paliwal

Septembet, 2013

Barcelona, Spain

4

I hereby declare that this thesis, to the best of my knowledge, is solely my own work. Citations

are provided when the work of others is used as for references.

5

Contents

Abstract ……………………………………………………………………………………….2

Acknowledgements ……………………………………………………………………………3

1 Introduction

 1.1 Insights and Technical Background …………………………………………………..6

 1.2 Thesis Objectives ……………………………………………………………………...7

 1.3 Thesis Layout ………………………………………………………………………….8

2 State of the Art

 2.1 General Architectures of Web Interface Systems ………………………………………9

 2.2 Ontologies and Web Interface Systems ……………………………………………….11

 2.3 Natural Language Generation …………………………………………………………16

 2.4 Summary of State-of-the-Art …………………………………………………………18

3 Generating Grammar Rules using Application-Specific Ontologies

 3.1 Introduction to Grammatical Framework ……………………………………………..21

 3.2 Medical Domain: Knowledge Representation ………………………………………...24

 3.3 Medical Domain: Grammar Rules using Grammatical Framework …………………..27

 3.3.1 Abstract Grammar ……………………………………………………………….29

 3.3.2 Concrete Grammar ………………………………………………………………33

 3.4 Cultural Events Domain: Knowledge Representation ……………………… ………...45

 3.5 Cultural Events Domain: Grammar Rules using Grammatical Framework …………...46

 3.5.1 Abstract Grammar ………………………………………………………………. 47

 3.5.2 Concrete Grammar ……………………………………………………………….49

 3.6 Summary of Grammar Development …………………………………………………..49

4 Natural Language Generation …………………………………………………………….50

5 Grammar Evaluations and Experimental Examples ……………………………………54

6 Conclusion ………………………………………………………………………………….65

 7 Future Direction ……………………………………………………………………………67

Appendix ………………………………………………………………………………………. 68

References ………………………………………………………………………………….. … 82

6

Chapter 1

Introduction

1.1 Insights and Technical Background

With the constantly increasing demands for development in this emerging web society, the time

has reached a point, where children are born with attractive machinery devices integrated with

several assistive natural language (NL) interface systems. These NL interfaces are benchmarks

that confer manifold assistance in many different activities: education systems, health

assistances, or just for entertainment.

 At the same time, more and more people are inclined towards the web usability, the research

on web interfaces supporting different languages and modalities to assist users is growing

rapidly. One of the main challenges in NL interface systems is to understand correctly the user’s

needs. This problem can be faced substantially using two different approaches: machine learning

based methods, or conceptual and linguistic knowledge based method. The machine learning

based approach needs a large corpora to learn but can be of great help in recognizing an

incremental number of user’s queries. The conceptual and linguistic based approach uses

conceptual and linguistic knowledge that have to be developed by skilled professionals. Both

approaches present several advantages and limitations. The machine learning based approach can

perform worse if the data is not enough. On other hand, the knowledge based approach is

expensive to develop, since an ample linguistic as well as domain knowledge have to be

developed. Furthermore, developing the resources in different languages intensifies the

workload. In this context, the use of domain ontologies representing the domain knowledge

presents several advantages to simplify the complexity of dealing with multilinguality and

multimodality.

7

 Ontologies are formal representations of world-knowledge where the entities and relations are

explicitly described. In a given context, the communication process often evolved the contents

that are focused on a particular word-knowledge (i.e domain). This is how a child is taught to

learn to speak and learn the language. Furthermore, when we try to communicate in different

languages, conceptual knowledge is shared at the very first reasoning. This forces to separate the

conceptual knowledge about the domain from the linguistic knowledge of a particular natural

language. Additionally, several modules can be further defined separating the general conceptual

knowledge from the domain specific knowledge.

 This is where this Master thesis comes in, with the use of application- specific ontologies to

facilitate the domain-restricted communication by separating the conceptual knowledge from the

linguistic knowledge in three different languages: English, Spanish, and Hindi.

1.2 Thesis Objectives

The goal of this Master thesis is to use the application-specific ontologies to facilitate the two

basic processes of NL interface systems: natural language understanding (NLU) and natural

language generation (NLG).

 The NL understanding is to be done by implementing the multilingual grammars in three

different languages: English, Spanish, and Hindi. We work with two different domain scenarios:

health domain and cultural events domain for each language. In particular, we have focused the

first scenario where the user is looking for new medical specialists and the second scenario

where the user searches practical information about cultural events in city.

 The reason of working with two different domains is to meet our purpose of reusing the shared

knowledge across domains and for that we organize the knowledge in a structured representation

in ontologies. For implementing the grammars we use a tool Grammatical Framework (GF) [A.

Ranta, 2004], a multilingual formalism. The GF grammar is composed of abstract syntax and a

set of concrete syntaxes. The abstract syntax defined the meaning of user interventions and is

same for all the languages, where the concrete syntax is languages dependent defined for each

language. We define a correspondence between domain ontologies and abstract syntax and

develop the concrete grammars using the abstract grammar.

 We also describe the syntactic-semantic taxonomy (Gatius, 2001) adapted to health domain

for NLG component. But this thesis will not detail this taxonomy at implementation level, but

rather to provide a framework that can be easily extended and adapted to different domains and

languages.

8

 Evaluation is based on the measure of the reusability of grammars rules at different level of

integration. The scope of this thesis is not to achieve a larger coverage of grammars that will

recognize an arbitrary number of user queries, but rather construct the rules that can be reused or

at least easily adapted across domains and languages.

 Finally we experiment with some test examples from our developed multilingual grammar

resources and demonstrate some applications thereon.

1.3 Thesis Layout

The layout of the thesis is as follows:

Chapter 2 State Of the Art

This chapter introduces the general architecture of a typical conversational interface system,

describes the state-of-the-art of several assistive NL interface systems that use ontologies.

Chapter 3 Generating Grammar Rules using Application-Specific Ontologies

In Chapter 3 an introduction to the Grammatical Framework is given. Then the work done in this

thesis is described for generating the grammar rules in two domain scenarios: health domain and

cultural events domain.

Chapter 4 Natural language Generation

This chapter provides a brief description of the syntactic-semantic taxonomy adapted to health

domain for facilitating the system answers generation.

Chapter 5 Grammar Rules Evaluation and Experimental Examples

Evaluation metrics of grammars developed are specified in this chapter. Then the experimental

examples are demonstrated.

Chapter 6 Conclusion

The conclusions drawn from this thesis work are provided in this chapter.

Chapter 7 Future Direction

Finally, suggestions to guide the future work are given in this chapter.

9

Chapter 2

State of the Art

 This chapter briefly reviews the most relevant web interaction systems that use ontologies to

facilitate the developing process. Section 2.1 describes the general classical architecture of the

web interface systems. Section 2.2 discusses about the most relevant ontology-based interface

systems and their functionalities.

2.1 General Architecture of a Conversational Interface System

 A typical web conversational interface system integrates several modules or components. Each

of these components has unique functionality that must be carried out within a system. This

section describes a generic architecture of a typical conversational system and their

functionalities as defined in (Zue and Glass, 2000).

 Figure 2.1: Generic Block Diagram for a Typical Conversational System

10

 As shown in Figure 2.1, the component speech recognition (SR) is used to process the spoken

input, i.e. to convert the speech signals into textual form. With the rapid advancements in speech

technologies, SR has now shown to be effective against errors and disfluencies, like filled

pauses, word fragments, and unknown words.

 The language understanding (NLU) component extracts the meaningful information from the

utterances. The utterances are either the output of speech recognition component or the typed-

text input from the user, depending on whether the input modality is text-based or speech-based.

This analysis is traditionally syntax-driven, that is, it takes into account all the words in an

utterance. However, this approach presents several problems, like the user often gives

grammatically incorrect sentences or incomplete sentences and in case of spoken input, the

recognizer can give errors (J. Dowding et al., 1993). To deal with such problems, many works

favor more semantic-driven approaches where the spotting keywords are enough to derive the

relevant meanings using the robust parser (W. Ward, 1990).

 The syntactic and semantic analysis of the utterances is not enough. A more in-depth analysis

is needed, since they convey a context-independent meaning representation of the utterances. In

order to have an effective communication, the system must also have ability to inherit

information from the previous utterances that the user has followed so far. For example, if a user

says, “can you find me a doctor?” followed with, “I have some problems in my heart” in a

previous utterance, then the system must not provide all the different types of doctors, but the

heart experts only, nor the system must further clarify with the user about the doctor’s specialist.

To deal with such issues, the system must consider context-information (one or more previous

utterances) when analyzing the current utterance of the user. Such discourse-context information

is thus maintained by a discourse-context component.

 The natural language generation component (NLG) plays just an opposite role of NLU

component, hence is used to generate the answers to the user query. This generation process can

range from a very simple, either template based or simple grammar based (Glass et al., 1994),

approaches to the sophisticated corpus-based methods (Oh, 2000). However, the simple

approaches lack the generation expressivity in complex-domain applications. The output of NLG

component is then fed to speech synthesizer, a text-to-speech synthesis (TTS), to provide a

spoken response to the user’s query. TTS systems, in their early stages of development, were

rule-driven where the text input is first constituted into an abstract linguistic representation

(Klatt, 1987). However, due to the lack of naturalness in such systems researchers have tended

towards their further findings and the corpus-based approaches are one of their explorations

(Sagisaka et al., 1992).

 All these aforementioned components are linked to a dialogue manager (DM) which controls

the flow and interaction between user and system.

11

2.2 Ontologies and Web Assistive Interface Systems

 Developing the user friendly and collaborative interfaces is becoming crucial because the real

world knowledge is immense and unstructured. In this direction, during the past years, ontologies

have been used in several assistive natural language interfaces (NLIs) and have shown plausible

improvements both in the development process and the usability of such interfaces.

 The purpose of using ontologies is to identify and characterize the central concepts and

relations in the real world, typically the ones used in a particular application (health services,

travel, form-filling, etc.). It therefore facilitates the developing process.

 Several directions conducted towards the use of ontologies have substantiated to be a greatest

payoff in their quests. Some of the most relevant systems and architectures are revised in this

section.

 The SMARTWEB System

 Our work of thesis proposes the use of ontologies for obtaining the linguistic resources where

the ontologies are hand-crafted, whereas the system SMARTWEB incorporates some previously

established ontologies in addition to some conceptual developed ontologies. Therefore, the

system is reusing the existing knowledge available from some fundamental ontologies. Apart

from the generic interface components, like NLU, NLG, DM, the system also consists of several

specific modules (as will be described in the following introduction) which make the system

more robust.

 SMARTWEB is multimodal mobile interaction platform (D Sonntag et al., 2007) used for

assisting the user when accessing the web services on Football World Cup in Brazil (in 1998)

and in Germany (2006). The ontology used in this architecture, SWInto (SmartWeb Integrated

Ontology) (Oberle, D et al, 2006), is an integrated ontology merging the two different

fundamental established ontologies: DOLCE (Gangemi, A et al, 2002) and SUMO (Niles, I.,

Pease, A., 2001). These fundamental ontologies are sharing world knowledge for this

application. In addition to these ontologies, two more ontologies are added: DiscOnt (discourse

ontology), which pays attention to modeling the discourse interactions in a question-answering

(QA) scenarios, and the SMARTMEDIA (media ontology), which is used to represent the

multimodal information results. In a QA scenario, system supports flexible control flow allowing

the clarification questions of web services.

 Supporting multimodality functions in this particular architecture are verbal and non-verbal

communications with the user. In order to access to the web, semantic representation formalism

12

based on OWL-S and a service composition engine that exploits the semantic of user query are

developed. Apart from this knowledge-intensive component (i.e, ontology), the system has other

components: a speech interpretation component (SPIN), a modality fusion and discourse

component (FADE), a system reaction and presentation component (REAPR), a natural

language generation component (NIPSGEN). All of these processing components are integrated

with a Java-based hub-and-spoke architecture (Reithinger, N., Sonntag, D, 2005).

 ORAKEL System

 This system is more focused on adapting the interfaces to different domains, for that the

system mainly separates the conceptual knowledge into different lexicon databases. This thesis

work is also focused on adaptation to different domains, but also work on multilinguality. In

both systems the general conceptual knowledge unique to different domains are to be reused in

all the domains.

 ORAKEL system as discussed in (Cimiano et al., 2007) corroborates the claim of porting the

natural language interfaces (NLIs) to new domains. The lexicon components are basically broken

down in three separate lexicons consisting of domain-specific lexicon, domain-independent

lexicon, and ontology lexicon. For generating the domain-specific lexicon, the user maps the

linguistic expressions, such as verbs, adjectives, relational nouns that occur in a specific domain,

to the corresponding domain-specific predicates. This mapping model is accomplished by using

a FrameMapper and the aftermath of the mapping performed by a lexicon engineer is deployed

to the system in an integrative manner. Therefore, the user is not supposed to being familiar with

computational linguistics for generating the domain-specific lexicon. The domain-independent

lexicon contains the meaning representation of the domain-independent words, like determiners,

pronouns, prepositions, across the several domains. Such meaning representation is accredited

with reference to the categories provided by a well-established ontology DOLCE (Masolo et al.,

2003). The ontology lexicon is automatically derived from the domain ontology and contains the

lexical entries and meaning representation of all the concepts and instances of the ontology. The

benefit of having a modularized structure of the lexicon components is that the domain-

independent lexicon can be used for every different domain.

 Except these lexicon components, the system incorporates a query interpreter which constructs

the meaning representation of the user’s query through lambda expressions and it then

transforms query into a First-Order-Logic (FOL)-like language. This FOL query further can be

converted into any specified target language by a query converter component.

 As for the results, a user study was carried out where the knowledge base containing the

geographical facts, such as cities, states, rivers and highways, about Germany was used as a

13

demonstration. Moreover, a case study was carried out at British Telecom to fulfill the aim of

enhancing the search over a digital library.

 Active Platform

 This platform combines several Active ontologies which have several relational notations that

can be of help in under/over specification. Similar proposal has been developed in this thesis

work where onologies are made not so complex, but can comprise additional relational

information.

 Active platform, as introduced in (Guzzoni et al., 2006), provides an intelligent mobile

assistance able to retrieve the online information for the user’s query. This platform incorporates

the use of one or more Active ontologies. The Active ontology is a formal representation of the

domain knowledge defining the domain in terms of classes, attributes and their relations. The

Active platform is java-based and has three components. The first component is the Active

Editor which is used by the developers for modeling, deploying, and testing the applications. The

second component is the Active Server which is a run-time engine that executes the Active

programs. The third component is the Active Console that allows remote configuration of the

Active Server.

 In particular to the use of Active ontologies, Active framework uses two types of relational

ontological notations: “is-a” classification relationships and “has-a” structural relationships. One

of the classical ability of this framework is that it deals with the discourse context information,

where the system when analyzing the current user sentence can inherit the previous utterances,

thus providing an effective communication. Such type of communication is indeed appropriate in

mobile communications because of the less bandwidth and interface complexity thereon.

 The use of specialized Active ontology has shown to be conducive in the sense that it eases the

process of registering and dynamically selecting the web services since the service categories are

represented with the concepts and relationships of Active ontology.

 PANTO System

 The work of Wang et al. (2007) presents the PANTO, a portable natural language interface to

ontologies, that aims at providing users the convenience in the sense that to map users’ queries to

formally defined ontologies. Consequently, improving the query’ semantic interpretation. The

PANTO system integrates the WordNet (Fellbaum, 1998) and string metrics algorithms (Cohen,

2003) that help the system in mapping NL queries to concepts and relations in ontology. It

14

basically consists of three modules including ontology processing, query processing, and

translator. First two modules process the user query input and using the lexicon database in

ontology give the output in SPARQL formal query language. Inside query processing module,

they system has a StanfordParser to generate the parse tress. The parse tree is then transferred to

translator. The translator first transforms parse tree into QueryTriple which is mapped to

OntoQuery by the help of lexicon in query processing module. The basic idea of translating the

natural language queries into formal ones is to allow a deep parsing to observe the nominal-

phrase pairs. The use of ontologies allows matching of nominal-phrase pairs with the facts that

are like a triple form, i.e. <subject, predicate, object>, knowledge stored in ontology. In this

triple form, the subject and object may be the concepts or instances in ontology, the predicate are

most probably verbs, verb phrases, prepositional phrases, or nominal phrases. This triple-based

analysis is very effective in interpreting the natural language queries.

 GEMINI Platform

 GEMINI (Generic Environment for Multilingual Interactive Natural Interfaces), an EC

research project, is a generic platform which assists in developing the user-friendly multilingual

and multimodal dialogue systems (Hamerich et al., 2004). The main contribution of GEMINI

project is to minimize the development time, maintenances, and human efforts at providing the

adaption to numerous modality services and languages. In this behalf, GEMINI project exploits

the Application Generation Platform (AGP) as architecture that integrates set of assistants. The

architecture is divided into three layers: framework layer, retrievals layer, and dialogue layer.

 The framework layer has several assistants including the application description assistant

(ADA), the data modeling assistant (DMA), and the data connector modeling assistant (DCMA).

The user first provides the system all necessary information regarding, for instance, the type of

modalities, his/her language preferences for dialogue communication. Then the application

model is defined by consecutive assistants and the output is created in XML-based files. The

retrievals layer consists of retrieval modeling assistant (RMA), which is independent to the

modality and language, and is used to produce application flow. Finally the dialogue layer is

modality and language dependent and consisting of modality extension assistant (MEA). This

assistant enables the layer results the dialogue model for a specific modality. In case the chosen

modality is speech, the resulting dialogue model is processed by a speech script generator to

generate the VoiceXML scripts, or is processed by a screen script generator to generate the

xHTML scripts, if the user chooses a web modality.

 GDialogXML, a new abstract dialogue description language (Hamerich et al., 2003), is the

object oriented language that supports the generation of dialogue applications within the

GEMINI platform. This language makes use of the concepts for dialogue flow. The dialogue

15

models written in GDialogXML generate the previously mentioned dialogue scripts (i.e.

VoiceXML or XHTML scripts).

 DIGUI System

 The work of thesis is similar in many aspects to the work done for the DIGUI system. Both

works convey the same message of using the ontologies for obtaining the linguistic resources for

NLU, NLG components. The DIGUI system incorporates all the generic modules that the system

needs to fulfill various tasks, whereas the current thesis work focuses on obtaining the linguistic

resources for only two modules of interface system: NLU and NLG. In addition, a new language:

 and a new domain scenario: have been studied using a new existing

framework, Grammatical Framework, for writing grammars in our work.

 DIGUI (DIalogues Guiding the User Interaction) system developed by (González, 2010) aims

at providing the flexible and user friendly mixed-initiatives dialogue system that is adaptable to

different web services and is accessible in different languages including Spanish, Catalan, and,

English, and with the different modes of communication: text and speech. The system has four

general components: natural language understanding (NLU), dialogue manager (DM), natural

language generation (NLG), and task manager (TM).

 The NLU component analyses the various types of concerns the user may pose to dialogue

agent. This component traverses those concerns through the semantic grammars and lexicons

that are obtained from the conceptual linguistic resources. The DM module uses the information

state update (ISU) approach which controls the communication plans and decides the possible

action that the system must follow at each turn by means of the set of rules. The DM also

dynamically keep contacting with one or more TMs. The TM module advances the process of

accessing the web services by the use of general schemas defined for this particular module.

Adapting to the new web services is achieved by these general schemas.

 The NLG component produces system answer to the user query. It uses the output of DM

manager and decides how to produce the answer in natural way that must be followed for an

effective communication. The developed system semi-automatically generates the main phrases

by adapting the syntactic-semantic taxonomy (Gatius, 2001) to the particular application used.

This taxonomy eases the adaption process to different domain scenarios. Several patterns are also

described that can represent phrases in different way. Therefore the system can vary the same

intended message in different forms resulting in a more flexible and friendlier communication.

16

 As a summary, the system attains efficiency, adaptability, and multilinguality with the

modular architecture described. The different linguistic resources such as language resources,

domain resources are isolated, thus can very effectively facilitate the adaptation.

2.3 Natural Language Generation

 Natural language answer generation (NLG) is an important discipline involved in several NL

applications: dialogue systems, summary generators, systems generating documentation from

programs, etc. Although several NLG problems are common in all applications the approaches to

them may change considering the type of application.

 In communication systems the NLG, although is the opposite process to NLU, it is much

simpler. The answers are usually generated by mapping the output of DM to a natural text

understandable by the human. Within the system as whole, the NLG must decide how to express

the contents to user. The DM however may already have provided the dialogue moves, that is,

the content to be presented to the user and its form (as a question, as a description, etc). In that

case the NLG component only needs to organize those moves in human readable text. Many of

the systems use grammar based rules or hand-crafted written texts that correspond with the

dialogue moves obtained from the DM. In many other practical interface systems where not so

complex reasoning about the previous utterances is needed (i.e., simple interfaces to databases),

the DM and the NLG are not implemented as independent modules. In those systems the

semantic meaning representation obtained from the NLU component is transformed into a query

to the database and the results are presented to the user. The NL answer generation can be

limited to a set of sentences (“Those are the results”, “No results are found”, “Do you want ask

anything else to the system”, etc.). For these systems the NLG process may be limited to a

simple set of rules in charge to select a particular sentence from a previously defined set.

 Research communication systems can also include more complex NLG that may generate

automatically complex responses in any domain (and in different languages). NLG in those

systems consists of two separated steps: first the generation of the content and then the linguistic

realization (expression in language of the content). They can use several methods for this

process: statistical- based, knowledge-based and also combining statistical and knowledge-based.

In this thesis we have followed a particular approach to language generation, based on (Bateman,

et al., 1994). This approach uses a syntactico-semantic ontology to relate conceptual knowledge

in a conceptual ontology to the general linguistic structures needed for their realization.

17

 In particular, in this thesis we use the work described in (Gatius,2001) that uses a syntactic-

semantic taxonomy of the attributes of the concepts described in the ontology. Each attribute

class is associated with one or more general forms to express the basic operations of filling and

consulting the attributes represented by the class. The seven basic attribute classes in this

taxonomy are associated with grammatical roles: participants (the three classes WHO_DOES,

WHO_OBJECT, WHAT_OBJECT), being (the class IS), possession (the class HAS),

descriptions and relationships between two or more objects (the class OF) and related processes

(the class DOES). Subclasses are obtained from basic classes considering other information

relevant for the linguistic realization of attributes. The OF class was subdivided into three

classes: OF_PERSON, OF_OBJECT and OF_DESCRIPTION. The class OF_PERSON

describes relations between the concept representing a person and one or more persons. The class

OF_OBJECT represents relations between the concept and one or more objects. The class

OF_DESCRIPTION represents qualities and circumstances related to the concept. The

subclasses have been further sub classified considering specific linguistic details in the

expression of the attributes in the class, such as having an associated verb or preposition. The

class OF_DESCRIPTION was subdivided into the classes: OF_TIME, OF_PLACE,

OF_MANNER, OF_CAUSE, OF_QUANTITY, OF_NAME, OF_TYPE. These subclasses

represent attributes describing time, place, manner, cause, quantity, name and type respectively.

For example, the class OF_QUANTITY describes attributes referring to quantities. Attributes in

this class always involve the use of a unit of measure. The interrogative adverb cuánto/cuántos

(how much/how many) appearing in the interrogation clauses expressing consult operations on

these attributes is also included in the description of the class. In Spanish, attributes expressing a

quantity have an associated verb (which corresponds to an associated adjective in English). They

have been further subclassified considering specific linguistic details in the expression of the

attributes in the class, such as having an associated verb or preposition. The main benefit of this

taxonomy of attributes is that it is designed in a way to be reusable across various languages. In

the Chapter 4, we describe this taxonomy of attributes is been used for the scenario in the health

domain we have considered.

18

2.4 Summary of State-of-the-Art

In this chapter we briefly introduced about the fundamental architecture of the web interface

system. The continuing section reviewed some of the most relevant web interface systems that

use ontologies for facilitating the development process.

 Next continued section described the natural language answer generation phenomenon from

the system side. In particular, we focused on reviewing the syntactic-semantic taxonomy

architecture which will also be used in this thesis work in Chapter 4 when facilitating the system

answer generations in multiple languages and domain scenarios.

19

Chapter 3

Generating Grammar Rules using Application-specific

Ontologies

 Obtaining the linguistic resources for NL interface systems is not a trivial task especially when

its impact will exhibit more useable, robust, efficient, and adaptive system. Application specific

ontologies reduce the human efforts in acquiring the application-restricted knowledge resources

in different languages. The same ontology is the basis for generating the linguistic rules in

multiple language scenarios and hence can greatly help meet the underlying goals during the

development process.

 This chapter describes the work done in this thesis. After introducing the system architecture,

we begin with Section 3.1 where a brief introduction to Grammatical Framework, a tool used in

our work, has been given. In Section 3.2 the conceptual knowledge for health domain is

formalized and described. Section 3.3 covers all the significant phases required for obtaining the

grammars rules in health domain scenario. Section 3.4 and 3.5 cover all the conceptual

knowledge defined for cultural events domain and the grammars rules obtained, respectively.

Finally we summarize this chapter in Section 3.6.

20

This Figure shows a system that incorporates the ontologies knowledge, GF grammars (for NLU)

and syntactic-semantic taxonomy (for NLG). Our current work does not use the taxonomy for

NLG, we however provide the representation of taxonomy adapted to medical domain and that

can be extended easily to different concepts appearing in different domains as well as to different

languages. Our work is mainly focused on grammar development for NLU component of the

system. For generating the system responses for a toy demonstration, we use the output of NLU

component and look up into a query database and then generate the appropriate canned

sentences. For NL understanding we have used Grammatical Framework (GF), a very well suited

tool for facilitating the grammar developments. Now let us first introduce the basic concepts

about this tool.

 Figure 3.0 System Architecture

21

3.1 Introduction to Grammatical Framework

This section provides an abridged introduction to the grammatical framework (GF) (A. Ranta,

2011), a powerful tool well suited for writing multilingual grammars and building applications

thereon.

The GF is a functional programming language which was discovered based on the idea of

constructive type theory (Martin-Löf, 1982). The main underlying feature of GF language is a

clear separation of the grammars into two components: abstract syntax and concrete syntax. The

abstract syntax has two parts: (i) a list of cat or category declarations introducing the main

conceptual domain entities and their meanings and (ii) a list of fun or function declarations

defining how the categories manipulate domain entities to form their semantics to be used in

communication process. The concrete syntax consisting of (i) a list of lincat or linearization type

assigning a linearization type to each category in cat and (ii) a list of lin or linearization telling

how the categories and functions are linearized in a particular natural language.

A single abstract grammar can be defined for a particular application domain whereas concrete

grammars can be as many as of natural languages involved. The abstract grammar is a language-

independent component and only domain knowledge is required to define it. On other hand, each

concrete grammar would need a linguist expert dealing with naturally evolved complexities in

target natural language (i.e. variations in word orders, different linearization types, agreement

features, etc.). However, it is worth noting that the inherent engineering features and

functionalities of GF greatly help human experts ease the generation of rules in each language

because of the shared syntactic rules in abstract grammar.

The format of and in abstract syntax:

cat C1, C2, …Cn

There are total n categories

fun f1 : T1, f1 : T2, …., fm : Tm

There are total m functions (so-called syntactic

rules), each of them has function type (for e.g.

f1 is a function of type T1)

The format of and in contract syntax:

lincat C1 = L1, C1 = L2, … Cn = Ln

There are total n categories, each of them has a

linearization type, for e.g. category C1 has a

linearization type L1

lin f1 = t1, f2 = t2, …, fm = tm

There are total m functions (so-called

linearization or syntactic rules), each of them

has a linearization function, for e.g. function

f1 has linearization function t1

22

There must be at least one category (i.e. n≥1) and one function (i.e. m≥1) defined in abstract

syntax and so must be in concrete syntax the lincat and lin, since they are equal in number of that

of the abstract cat and fun, respectively. The n and m may differ in number, though. Following

these can lead us to one working grammar application.

Let us illustrate a discernible toy example expressed by grammars: an abstract grammar (Figure

3.1.1), a concrete English grammar (Figure 3.1.2), and a concrete Spanish grammar (Figure

3.1.3) that are capable to parse a demo sentence “Welcome to my thesis” in both languages. The

Figures 3.1.4 and 3.1.5 show the parse tree representation for English and Spanish, respectively.

 Figure 3.1.1 demo abstract Welcome grammar

The abstract grammar represents its main parts described earlier. The “Phrase” and

“Welcome_AT” are two categories and the two functions named “welcome” and “thesis” describe

how categories are manipulated. A startcat flag declaration defines the default start category (i.e.

Phrase) to be used in parse tree.

 The concrete grammars for English and Spanish are relating the linguistic formulation in

concerned languages to the abstract grammar. All the non-linguistically constructed syntactic

rules in abstract syntax are to be shared by all the concrete syntaxes, while the rules in concrete

syntaxes alter depending on the language and their formulation (i.e., the lexicon or other

morphological syntactic rules), for e.g., “thesis” in English and “tesis” in Spanish.

Figure 3.1.2 demo concrete English Welcome grammar Figure 3.1.3 demo concrete Spanish Welcome grammar

23

Figure 3.1.4 parse tree structure for English grammar Figure 3.1.5 parse tree structure for Spanish grammar

With GF, we can use grammars for several purposes as follow:

 Linearization and Parsing

Linearization is a mapping of tree-like representation of abstract syntax (i.e. syntactic

functions) to strings. Inversely, the parsing of any natural language sentence recognized

by concrete grammar is a mapping of strings to tree-like syntactic functions.

 Translation

The Sentences can be translated into other languages within the developed multilingual

grammar resources. Here translation from language L1 to L2 is just parsing in L1 and

linearization to L2.

 Guiding the user access the resources

The system can guide the user next possible acceptable words, resulting in a friendlier

conversation.

 Random generation of acceptable sentences

All possible sentences can be generated randomly that furthermore can be used, for e.g.,

for deriving the multilingual linguistic corpora.

We study these features to some extent in Section 3.3 and in Chapter 5 where the results from

our developed grammar resources have been analyzed.

24

3.2 Medical Domain: Knowledge Representation

 The domain knowledge representing the various types of concerns the user may pose to the

system can be explicitly formalized in ontologies. The ontologies in comparison to some other

semantic formalisms, e.g., database models and frames are richer and a flexible way of

representing domain concepts. In most known formalisms they comprise a hierarchical

representation where the terms are related usually in a “is-a” form. However this is not the only

limiting form of relations, but can, beyond, contains other forms such as “part-of” relations

overcoming the problem of under/over specifications phenomenon encompassing in most of the

communication processes, and other relations for similarity measures dealing with synonyms.

The ontologies also magnify the reusability of domain knowledge whereby making the human

life easier while adapting the resources to other domains. Besides, the use of ontologies favors

the integration of knowledge from widely used web services.

 This section transmits the essence of domain ontologies representing the medical domain

knowledge we have considered to work on. In particular, we have focused on a scenario where

the user is looking for new medical specialists and can express his/her therapeutical

circumstances to the system. We first study the user needs and till feasible dimensions we

describe the domain-specific knowledge by the class Medical_Concept and its subclasses (as

shown in Figure 3.2.1), and general knowledge about time and space is represented as the

general concepts “Unit_Of_Time” and “Space” and their subclasses (as shown in Figure 3.2.2).

The main goal of this separation is to favour the reusability of such general concepts across

domains.

 The domain-specific entities represented in the medical domain ontology are as follows:

 Medical concepts are subdivided into three categories: Medical_Resources, Body_Part,

and Disease.

 The class Body_Part is included because in informal conversation the most common

way of asking for a specialist or revealing the disease types can implicitly be given by

indicating a specific part of body where the assistance is required.

 Including the user’s disease types by Disease class can be essential in case the user

already knows his/her disease types rather expressing the body parts betimes.

 The class Medical_Resources has been subclassified into Human_Resources and

Equipment subclasses. The Equipment class can have subclasses like Hospital,

Pharmacy, Clinics, and other kinds of medical facilities where users can reach

according to their exigency and preferences.

25

 Human_Resources can be described by subclasses representing the particular types of

human experts involved (doctors, nurses, directors, secretaries, etc.). In our particular

implementation we have focused on doctor specialists. We describe the main attributes

related to the Doctor class that are involve in dialogues such as visit_at_equipment

(system may answer the user needs by answering the equipment the doctor is supposed

to visit at), treat_for_body_part_of (to express the concerned body part the doctor treats

for), visit_at_zone and visit_at_hour (for their visiting schedule and location), name

(name of the doctor).

This ontology has been constructed such that a number of user exemplary queries can be

recognized:

 My ear hurts. Can I get a doctor, please?

 I prefer a small clinic.

 Is (are) there any cardiologist(s) near Barcelona centre?

 I am looking for an ophthalmologist.

 I am feeling severe pain in my elbow(s), which specialist should I look for?

26

 Figure 3.2.1: Medical Domain Conceptual Knowledge Representation

27

 Figure 3.2.2: General Conceptual Knowledge Representation

3.3 Medical Domain: Developing the Grammar Rules using

Grammatical Framework

 In previous section we summarized the ontology representation for medical domain. This

section details how we define the grammar rules for understanding the user needs during the

communication process. The grammar rules are developed using the information represented in

the ontology along with the grammatical framework. Generated grammar rules are incorporated

into the natural language understanding (NLU) component of the system.

 The generation of natural language answers to user queries will be described in Chapter 4

where we obtain the linguistic resources semi-automatically from domain ontologies using a

syntactic-semantic taxonomy. For now let us emphasize particularly on how we developed the

grammars for the NLU component.

28

 Many practical rule-based NL interface systems make use of ontologies while writing the

grammar rules in a particular application. This is because the domain-specific rules are implicitly

organized in ontologies. Although the rules are written manually by using the conceptual

knowledge represented in ontologies, reducing the human efforts required is one of the central

goals of our work.

 As time is a limited resource, we try to write the grammar rules in a structured way that makes

them partially reusable in different domains. This is possible because of the modular architecture

and the multiple inheritance property of GF. We now will go more in-depth to study the richer

features of GF used in our implementation.

 As said earlier we first analyzed the possible user needs when creating the medical ontology.

We then included the domain entities therein to abstract grammar as in Figure 3.3.1.1. From

these entities the semantic rules that can match a feasible number of user utterances are

constructed. Though in abstract syntax the rules do not take into account any linguistic

intimations about a particular language, those will however be developed in concrete syntax.

Such modular architecture therefore indeed helps in development process of grammar rules later

on in each language. We propose to deploy a partially reusable system that contains a clear

separation of domain-specific knowledge from the general conceptual entities. Hence the

grammar rules supporting those general knowledge entities are represented separately in general

grammar, i.e. the Time and Zone grammars as in Figure 3.3.1.2 and can be inherited into

domain-specific grammar.

 Figure 3.3.1 Correspondence between Ontology and Grammars

29

3.3.1 Abstract grammar for Health Domain

30

 Figure 3.3.1.1 The Domain-Specific Abstract grammar (for Health Domain)

 Figure 3.3.1.2 domain-independent Time and Zone abstract grammar

In introductory Section 3.1, we explained that the abstract grammar only represents the

semantics of the domain concepts and how they are formulated, it does not deal with language-

specific details. In other words, the purpose of abstract syntax is to describe in a semantic form

the most probable concepts the user may pose to the system. We therefore have used domain

entities described in ontology and defined them in GF abstract syntax.

31

Correspondence between the domain ontology and the abstract grammar:

 Abstract categories correspond to the combination of lexical and syntactical categories.

 The lexical categories represent the concept classes, subclasses plus relevant attributes of

those concepts in ontology.

 The syntactical categories are defined considering the combination of ontology attributes

and concepts involved in users sentences and are then constructed from one or more

lexical categories and/or syntactical categories in the right side of the function rules.

This type of correspondence is maintained differently in the following two conditions:

 If there is only one category on right side of the function rule, it must be a lexical

category. Given the lexical category is an attribute of any concept class in

ontology, the function name associated with the rule corresponds to attribute’s

value. Given the lexical category is a concept class in ontology, the function name

associated with the rule corresponds to its subclass or instance.

 If there is more than one category on right side of the rule, the abstract function

name is just a keyword defining the function rule with that particular name.

In abstract grammar, we then have a list of lexical categories including , ,

, , (categories inherited from Time grammar), and

(category inherited from Zone grammar), and a list of syntactical categories including

, , , (category inherited from Time grammar) and

.

The Zone and Time abstract grammars are inherited in domain-specific grammar using multiple

inheritance property of GF language. This separation of grammars forces the domain experts to

keep focus only on building grammar rules for the entities appearing in domain-specific

ontologies, while the general grammars can be defined by a domain non-specialist from the

general conceptual ontologies.

32

Here we give a thumbnail description about types of categories and their relations with ontology.

Body_Part lexical category represents the concept in ontology and

the functions associated with this category express the subclasses

of (e.g. ear, heart)

Capacity lexical category represents the attribute of Equipment

concept in ontology and the functions associated with this

category express the values of attribute (e.g. small, big)

Equipment lexical category represents the concept in ontology and

the functions associated with this category expresse the

subclasses of (e.g. clinic, hospital)

EquipCapacity

syntactical category expresses the phrase describing the

information related to lexical category: (e.g. small, big)

Description_1

syntactical category expresses the phrase describing the

information related to lexical categories and

(e.g. “I am looking for an eye specialist near plaza catalunya”)

Description syntactical category expresses the phrase describing the

information related to a syntactical category and

 (i.e. information about , and all in same

phrase) and to lexical categories: , and

(e.g. “I am looking for a cardiologist near gracia around 9AM”

“My legs are hurting”

“I prefer a small clinic”)

Comment syntactical category expresses the complete phrase (i.e. any

possible examples expressed by categories and

)

One or more functions (syntactic rules) can be defined for expressing the associated meaning of

the rule in right side. For example, and are the functions expressing the attribute values

of a lexical category and is the function name for the rule in its right side

(since right side contains more than one category and at least one of them is a syntactical

33

category, the function name, , is just a keyword). The function constructs

the syntactical category which is set to be a start category (by flags startcat) to be used

in parse tree. The defined syntactic rules are intended to capture the semantics of the user query

and to form a parse tree.

To further understand the implementation of abstract syntax ideally, let us formalize a particular

syntactic rule,

 fun

 equipmentInquiry : EquipCapacity -> Equipment -> Description;

Where

 equipmentInquiry is the name a function that represents the user’s query about the

equipment and its capacity as in “is there a big hospital”

 EquipCapacity is a syntactical category constructed from the lexical category Capacity

from the rule equipCapacity : Capacity -> EquipCapacity;

 Equipment is a lexical category constructed itself in each of associated functions clinic,

hospital, and pharmacy

 Description is a syntactical category constructed from a lexical category Equipment and a

syntactical category EquipCapacity.

3.3.2 Concrete grammars for Health Domain

We previously made an indispensable attempt to explain how the abstract grammar abstracts

away all the language-specific details. The shared syntactic rules in abstract grammar are needed

to represent the content of user’s interventions. In this subsection we describe how they are

related to the actual surface forms in a particular natural language. In particular, we describe our

implementation of concrete grammars for health domain in Spanish, English and Hindi

languages. The complete grammars are provided in Appendix.

34

The linguistic realizations or linearizations of the functions (fun) in abstract grammar are

assigned to corresponding linearization functions (lin) in the concrete grammar. The linearization

type (lincat) is assigned to each category (cat) in abstract grammar. We now will explain one

rule and the fragments of grammars needed to show the syntax of the language. We will only

give example sentences for the rest of the rules. The full grammars can however be found in

Appendix.

3.3.2.1 <The rule 1>

The syntactic rule from the abstract syntax:

 equipmentInquiry

The concrete rules using the abstract rule in [equation 1] can be constructed by a linguistic

expert, with the ambition of parsing a set of example sentences correctly. To the context of the

following example sentences, the concrete grammar rules have been constructed in our

implementation:

Context 1 Sentences corresponding to template format:

 {i prefer/ i would like to see} a {small/big} {hospital/clinic/pharmacy}

 I prefer a small clinic

 The abstract/parse tree of above sentence would look like:

 => userComment (equipmentInquiry (equipCapacity small) clinic)

 I would like to see a big clinic

 I prefer a big pharmacy

 I would like to see a big hospital

 ….

Context 2 Sentences corresponding to template format:

 is there {-/any/some} {small/big/-} {hospital/clinic/pharmacy}

 is there any small clinic

 is there some big pharmacy

 is there big hospital

 ……

35

Context 3 Sentences corresponding to template format:

 are there {-/any/some} {small/big/-} {hospitals/clinics/pharmacies}

 are there any small hospitals

 are there any small pharmacies

 are there some small clinics

 are there some pharmacies

 are there clinics

 ……

Agreement type:

In all the sentences above, there is a verb (is/are) agreement with the equipment singularity or

plurality, for instance, sentences starting with “is” will end up with singular equipment, like

hospital/pharmacy, and sentences starting with “are” will end up, for instance, with pharmacies.

(A) Linearization rules and description in English concrete grammar

Linearization rule for the function (in in English concrete grammar is

 equipmentInquiry

Where

 -- [e

In above equations, the equipInquiry is the name of the rule that corresponds to the function in

abstract grammar [equation 1] and to the in concrete grammar. The is (it can

be written with any short name for convenience, because the order can be recognized from

function rule in abstract syntax), is , and description is . The above

 is telling how a syntactical category has been constructed from a lexical

category (), and a syntactical category (). Along with these two

categories, this description includes several GF constructions with variables and mechanisms

tying them properly, and that should need the following brief explanations to serve our purpose

for wider audience:

36

- The word allows any expression enclosed inside curly braces. Each expression

must end in ‘;’. The use of ‘[]’ allows an empty expression.

- The symbol ‘++’ differs from ‘+’. The former adds the two strings with space between

them while the latter adds the two strings without space, i.e. gluing them for suffix or

prefix operations (we will see the use of ‘+’ symbol later in the grammar).

- Syntactic and semantic agreements are performed representing the categories as records

and tables. They symbol ‘.’ is used to access a record field and the symbol ‘!’ is used to

access a table value.

-

Now we detail the types of categories. The linearization types of categories and

 are of record type with one field which has an object s of string type.

The linearization type of category consists of a record type with two fields. The one

field consists of an object s of table-type structure: { }. This can be read

as: a table from agreement_param to String, where is a parameter. The second

field consists of an object b of type , where is a parameter.

Each parameter has values to be used in linearization rules that can be selected using “!” as in

[ewhen using , this indicates the rule will select

for . For example, it can be used to establish the singular and plural agreement of nouns

with respect to determiners. For example, the given rule in [equation 1.1a] is assigned

type using the outcome of other rules named , , or (see full

English grammar in Appendix).

37

For e.g., with we have an associated linearization rule:

Since GF is a functional programming language, we can also define

which allow a single function to be called for a number of agreements dealing with them. The

 (operation function as in [equation 1.3a]), equip and

 in are three operation definitions to be used for checking

various kinds of agreements.

 This operation has a type

, and it can be read as “an operation function

named check_agreement_Equip reads the two object inputs of string type and boolean type, and

outputs the record type object enclosed inside curly braces”. It will, when calling from clinic

which passes a string “clinic” and the value T of parameter , equate the x

= “clinic” and y = T, then the table checks if associated with lincat is

used either Sg or Pl. If it is Sg, the function returns x, in vice versa the function returns x adding

the suffix “s” to it (if y = T) or returns pharmacies (if y = F). This was defined to agree on, for

e.g., when y = T which is associated with clinic, the plural of “clinic” would become “clinics”.

38

But as not every noun is to be suffixed “s”, special attentions are needed, for e.g., in the case of

“pharmacy”, the parameter value associated is F, hence after calling the function, y = F and

function returns not the “” but “” instead. This T and F are therefore just

indicators assigned with a particular lexicon entry telling the rule how the categories should be

appeared with morphological analysis and agreements.

(B) Linearization rules and description in Spanish concrete grammars

Same like in English where we needed a referential corpus of sentences, to the context of the

following example sentences, the concrete grammar rules for Spanish have been constructed in

our implementation:

Context Sentences corresponding to the following template formats:

 { { yo/-} prefiero / {me/-} gustaria } {a/-} un hospital {grande/pequno}

 { { yo/-} prefiero / {me/-} gustaria } {a/-} una {clinica/farmacia} {grande/pequna}

 hay algun hospital {grande(s)/pequno(s)}

 hay algunas {clinicas/farmacias} {grandes/(pequnas}

 hay algunos hospitales {grandes/pequnos}

 yo prefiero a un hospital pequno

 prefiero a una clinica pequna

 gustaria una farmacia grande

 hay algunas clinicas pequnas

 hay algunos hospitales grandes

 ………

In all sentences above there is a determiner type - noun singularity/plurality – adjective

feminine/masculine agreement.

Linearization rule for the function in in Spanish concrete grammar is

 equipmentInquiry

 Where

39

The linearization type of category is of record type with one field which has an object

s of String type.

The linearization type of category is of record type with two fields. The one field has

an object s, which is of table-type structure: {}, this can be read as: a table

from agreement_param to String, where is a parameter. The other field has an

object b1 of type , where is a parameter. The linearization type of

is of record type with single field which has an object s of a table-type structure: {boolean1 =>

Str}, reading: a table from boolean1 to String.

These parameters, in same fashion as in English grammar, are used to deal with agreements

needed in Spanish. For example, is a feminine noun in Spanish. Then to use it as a plural

or singular, we define an operation which will, when

calling from [equation 1.3b], assign y = FEM and x = “clinica”, then the operation checks

whether is set to Sg, Pl or Sg1. Depending on that it adds suffix, prefixes and

perform other morphological operations defined in this particular operation. For example, in

[equation 1.2b] we set eq.s ! Sg1 ++ eqc.s ! eq.b1, this indicates that we want an equipment that

fixes to Sg1, and in equipment capacity (the type from equipment

is used (eq.b1). So if has been used for , the associated type is FEM in

 so the output of operation would be: “una clinica”.

40

(C) Linearization rules and description in Hindi concrete grammars

To the context of the following example sentences, the concrete grammar rules for Hindi have

been constructed in our implementation:

Context Sentences corresponding to the following template formats:

41

All sentences have noun singularity/plurality with adjective feminine/masculine agreements.

Linearization rule for the function (in in Hindi concrete grammar is:

 equipmentInquiry

Where

The linearization types of categories , , are same like in

Spanish grammar.

However, the parameter has only two values defined in Hindi grammar. In

Spanish grammar it contained three values instead. We defined this because of the different

grammatical structure in language.

42

Unlike the Spanish and English grammar we have not defined any operations for checking

agreement for , we rather provide all the necessary structure inside each

associated with . For e.g.,

In above lines of code we explicitly set the and to be masculine nouns, and

to be a feminine noun in Hindi. And we express how each of them varies in singular (Sg) and

plural (Pl) case. In Spanish and English we did that using the operation definitions after passing

the parameters. That helps if we have many rules performing the same kinds of morphological

analysis, for e.g., if many words are needed to be suffixed by “s”, calling them from operations

would cost less. But in Hindi, for this particular rule, the morphological analysis is very different

in each of the words (, , and). So we better express their variability in

definitions. However, in many of the other rules in Hindi, as in defined complete Hindi grammar

in Appendix, the operation definitions have been used to develop the grammar at lower cost.

43

3.3.2.2 <The rule 2>

The syntactic rule from the abstract syntax:

The linearization rule corresponding to the above syntactic rule in concrete grammars enable the

system recognizes some of the following sentences:

Slight changes were needed for representing agreements when translating rule from

English to Spanish. This is because in Spanish number agreement concerns on verb-determiner-

noun altogether, whereas in English only verb and noun agreement was necessary for this

particular rule. For example, in the sentence “my eye hurts” the verb form will be “hurt” or

“hurts” depending if the noun is eyes or eye. In Spanish in the sentence “me duele el ojo” there is

an agreement between verb or , the determiner whether or and the noun

whether or . Feminine and masculine of singular noun make determiners to be and ,

respectively. Such a triple form of agreements makes Spanish grammar different than the English

one.

3.3.2.3 <The rule 3>

The following are the sentences to be recognized by the linearization rule corresponding to above

function rule:

44

3.3.2.4 <The rule 4>

This rule lengthen the previously described rule, <The rule 3>, with the addition of the

category. Therefore any sentence recognized by <The rule 3> plus the information about Time

will be recognized via this rule. A possible sentence recognized by the concrete English grammar

rule following above function rule as base is: “I need a cardiologist close to gracia at 9AM”.

3.3.2.5 <The rule 5 and 6>

This function rule can recognize any sentence recognized with a syntactical category

and construct a new syntactical category that is set to be a start category to appear in

parse abstract tree.

3.3.2.6 <Rest of the rules>

Rest of the syntactic function rules have only one category on right side, i.e they do not combine

more categories to manipulate the semantics, but they still are called rules and are used for

constructing the other rules previously described.

45

3.4 Cultural Events Domain: Knowledge Representation

The second scenario we considered where the user wants to consult the information on the

cultural events that take place in the city. The users may ask for specific types of events by

giving additional information such as event venue, schedule, and location. We represented this

knowledge as domain concepts, their attributes and relations among them in doman ontology.

Although our focus was restricted to a few of concepts involved in Figure 3.4.1, this conceptual

model can be further extended.

 Figure 3.4.1 Cultural Events Domain Knowledge Representation

The domain-specific knowledge is described by the concept Event_Concept and its subclasses).

To represent the general knowledge about time and space we reuse the same general concepts

“Unit_Of_Time” and “Space” and their subclasses from the previously defined knowledge in

Section 3.2.

 Event_Concept is further subclassified into two concepts Event and Event_Venue. The

concept Event is described by a set of attributes name (to describe the name of the event),

at_hour (event schedule), genre (genre of the event), at_venue (venue information about the

event).

46

 Event_Venue is described by a set of attributes venue (venue name of event), venue_zone

(venue zone of event). Next, the Event concept can have a particular type subclassified as Movie,

Concert, and Sport.

 Figure 3.4.2 domain-independent Time and Zone knowledge representation

3.5 Cultural Events Domain: Developing the Grammar Rules using

Grammatical Framework

A thorough explanation about correspondence between ontology and abstract grammar was

already given in introductory part of Section 3.3. We now can directly describe the abstract

grammar in cultural events domain.

47

3.5.1 Abstract Grammar

Figure 3.5.1.1 The Domain-Specific Abstract grammar (for Cultural Events Domain)

48

We have a list of lexical categories including , Genre, Venue, h

(categories inherited from Time grammar), and (category inherited from Zone grammar),

and a list of syntactical categories including , , (category inherited from

Time grammar) and .

Here we give a thumbnail description about types of categories and their relations with ontology.

Event lexical category represents the concept in ontology and

the functions associated with this category express the

subclasses of (e.g. movie, concert)

Genre lexical category represents the attribute of concept

in ontology and the functions associated with this category

express the values of this attribute (e.g. “musical”, “romantic”)

Venue lexical category represents the attribute of concept

 in ontology and the functions associated with this

category express the values of this attribute (e.g. city_hall,

auditori)

Event_Info Syntactical category expresses the phrase describing the

information related to Event and its Genre.

e.g. “I want to see a musical concert”

Description Syntactical category expresses the phrase describing the

information related to functions event_zone_time (Event_Info,

its and) and event_venue_time (_Info, its

and).

e.g. “I want to see a romantic movie that take place at city hall

near Barcelona centre”

Comment syntactical category expresses the complete phrase (i.e. any

possible examples expressed by category:)

The functions (syntactic rules) are named to assign a meaning to each rule in right side. For

example, and are the functions expressing the attribute values of a lexical

category The is a function name for the rule in its right side. Since right side

of this rule contains more than one category and at least one of them is a syntactical category, the

function name, , is just a keyword. The function constructs the

49

syntactical category which is set to be a start category (by flags startcat) to be used in

parse tree. The defined syntactic rules are intended to capture the semantics of the user query and

to form a parse tree.

3.5.2 Concrete grammar cultural events domain

We have already detailed the GF features facilitating the development of the concrete syntaxes in

all three languages in Medical domain. In cultural domain we developed the concrete rules only

on smaller range. However, the purpose of using two different domains was to reuse the

knowledge and fulfill the aim of constructing the rules in a very organized way what can set a

base to adaption to different languages and domains. The implemented concrete grammars for

cultural domain are in Appendix.

3.6 Summary of Grammar Development

In this chapter we have worked on the use of domain ontologies for grammar development in

several languages. Our work is focused on the generation of grammar rules in three different

languages: English, Spanish, and Hindi. The differences in linguistic structure of these three

languages are considerable, especially in case of the Hindi language, that it also uses a different

alphabet. However GF reduces the cost of development the grammar rules for each language by

separating the abstract grammar (conceptual) from the concrete syntax. Because the content of

user’s interventions is the same for all three languages, they share the same abstract grammar

rules. Then, the GF formalism facilitates the generation of concrete syntax rules for each

language from abstract rules. Additionally, GF formalism supports richer features which

facilitate the conceptual and syntactic agreements between the constituents (categories and

words) in concrete rules that are different in all three languages. It also facilitates the

representation of different orders of rules constituent orders in different languages.

50

Chapter 4

Natural language Generation

Most practical communication systems use simple natural language generation (NLG)

component of NL systems. When developing NL interfaces usually efforts are focused on NL

understanding modules. Main reason is that simple NLG modules using general templates or

hand-crafted messages may have good results and also because complex modules using

discourse planner and surface generators can be expensive to generate. There have been several

relevant works on defining general mechanisms to generate NL sentences for any domain.

Several of those works are based on empirical methods while other are based on the use of

conceptual knowledge resources, such as ontologies. The work we present in this section belongs

to the second group. We have followed a similar approach to that proposed by (Bateman, 1994).

We have used a syntactic-semantic taxonomy of conceptual attributes previously defined in

(Gatius, 2001). As we explained in Chapter 2, in Section 2.3 the purpose of this taxonomy is to

perform an interface between the conceptual knowledge in the ontology and the linguistic

information appearing in the grammars. We adapted the taxonomy to the medical domain to be

used in generating the answers in different languages. We have related the attributes of the main

concepts: , as shown in Figure 4.1 (note that for simplicity we started working only with

the main domain concepts, we could relate any conceptual attribute in the domain ontology to

this taxonomy). Each of the attributes describing the concept is associated with one or

more general classes in the syntactico-semantic taxonomy. Each class in this taxonomy expresses

the basic operations of filling and consulting conceptual attributes. For this purpose three new

basic attribute classes are defined.

51

The attribute name is related to a new class, OF_DESIGNATION that describes the doctor name.

It is a subclass of the class OF_NAME and it has been created because all doctors are designed

with the same title: Doctor/Dr/Specialist. The attribute visit_at_equipment describes the action of

visiting and the specific equipment where this action takes place. For this reason, it is related to

the syntactico-semantic taxonomy by combining the basic class IS with the basic class

OF_PLACE. The attribute visit_at_zone is related to a combination of two classes: the basic

class IS with the basic class OF_TIME.

 Figure 4.1 Syntactic-Semantic taxonomy adapted to medical domain

52

The attribute classes used would be same for all the languages, or can have some modifications

depending on how a particular language uses those attributes. The Figure currently shows the

instances of attribute classes to generate messages in English. Adapting it to another language

just require the changes in lexical entries. For e.g., the attribute VISIT_AT_ZONE is related to

the attribute class OF_PLACE that has an associated lexical entry:

 prep_zone : in | near

Adapting it to Hindi would need to define how the attribute can be expressed in Hindi; the

following is the change in associated lexical entry:

Using this taxonomy and thus the patterns associated with classes allows the automatic

generation of system's messages at system developing time in different languages. Then, we have

to select and do minor corrections manually. The cost of this process is less than what would be

needed to write manually the sentences from scratch. More complex patterns combining the

different attribute classes could also be used.

53

Chapter 5

Grammar Evaluations and

Experimental Examples

In Chapter 3 we described the generation of grammar rules in there different languages: Spanish,

Hindi, and English for two different domain scenarios: health domain and cultural events

domain. We focused our implementation mostly on health domain, but fulfilled our objective of

using a different domain, the cultural events domain, and to reuse grammar components across

both domains. In Section 5.1 in this chapter we described some metrics used to measure the

reusability of our implemented grammar rules at different level of organization. Section 5.2

provides some of the interesting applications using our developed multilingual grammars.

54

5.1 Grammar Evaluations

In grammar based NL interfaces, evaluating the results of grammars is quite hard since major

goal is to cover as many possible user sentences in different variations. Although building a large

set of grammar rules can cover many possible user queries, there still will be the problem of not

supporting all possible user interventions (new words, informal expressions, mistakes, etc).

These can however be solved to some extent by grammars accepting a few informal words, user

mistakes etc., they are still not enough. This is why the grammar based systems often result a

poor efficiency.

There can have many other metrics to evaluate the grammar for several purposes. Since our goal

has not been to develop a complete grammar for each language and domain but well structured

grammars, easy to extend and adapt (to other domains, other types of users, other languages).

We measure a degree of reusability of grammar syntaxes at different level of organizations

(reusability at modular level, at syntactical level, at lexical level) considering different coverage

range of evaluation (across domains and across each language pairs) and different types of

grammar (concrete and abstract type).

5.1.1 Reusability at modular level

The developed resources have a total of 14 distinct modules. The distribution is the following:

 Number of domain-specific abstract grammar components is 2 (1 for each domain)

 Number of domain-independent abstract grammar components is 2 (representing Zone

and Time grammar)

 Number of domain-specific concrete grammar components is 6 (3 for all three languages

in health domain, other three for all three languages in cultural event domain)

 Number of domain-independent concrete grammar components is 4 (3 representing Zone

abstract grammar separately in all three languages, 1 representing Time abstract

grammar shared by all three language)

Metrics calculated are the following:

 Across

domains

(health-event)

Across languages

(Eng-Spa)

Across

languages (Eng-

Hin)

Across

languages (Spa-

Hin)

Abstract

grammar

reusability

50% NA NA NA

Concrete

grammar

reusability

40% 20% (health

domain)

20% (event

domain)

20% (health

domain)

20% (event

domain)

20% (health

domain)

20% (event

domain)

55

Explanation <1> Metric: abstract grammar reusability across domain: 50%

By this metric we calculate the reusability ratio of abstract grammar between health domain and

event domain.

We have 2 domain-specific abstract grammars (1 each for health domain and event domain).

Both are not reusable across domains. We also have 2 domain-independent (Time and Zone

abstract grammars) shared by both domains. Thus we have a total of 4 distinct abstract

grammars, where 2 domain-independent abstract grammars are reusable between both domains.

Henceforth reusability noted is 50%.

Explanation <2> Metric: concrete grammar reusability across domain: 40%

We have 6 domain-specific concrete grammars: 1 for each language in health domain and 1 for

each language in event domain. Apart from this we have 3 domain-independent Zone concrete

grammars (one for each language, common in both domains) and 1 domain-independent Time

concrete grammar (common in all three languages as well as in both domains). Thus total distinct

concrete grammars are 10. Out of them 4 are reusable across both domains (3 Zone grammars

and 1 Time grammar). Henceforth reusability noted is 40%.

Explanation <3> Metric: concrete grammar reusability across languages (Eng-Spa): 20%

(health domain)

By this metric we calculate the percentage of concrete grammar modules that are reusable

between English and Spanish languages.

In health domain, we have total 2 domain-specific concrete grammars one for each language

(English and Spanish), and 3 domain-independent concrete grammars (2 Zone concrete

grammars one for each language, 1 Time concrete grammar common to both languages). Thus

we have a total of 5 distinct grammar modules. Among them total modules reusable in English

and Spanish is only 1 (Time grammar), therefore reusability is 20%.

Explanation <rest of metrics>

The same explanation as of Explanation 3 goes for other metrics at modular level (considering

different domain and language pairs)

The keyword “NA” implies the measure for that particular grammar type with particular

coverage range may not be performed (since the abstract grammars are defined only for domain

knowledge, and are the base for generating the concrete grammar in all the languages).

56

5.1.2 Reusability at syntactical level

On syntactical level we exclude the syntactic function rules that come with only one lexical

category at right side, those are called lexical rules.

 Across

domains

(health-event)

Across languages

(Eng-Spa)

Across

languages (Eng-

Hin)

Across

languages (Spa-

Hin)

Abstract

grammar

reusability

25% NA NA NA

Concrete

grammar

reusability

12% 50% (health

domain)

33.3% (event

domain)

38.5% (health

domain)

33.3% (event

domain)

38.5% (health

domain)

33.3% (event

domain)

Explanation 1> Metric: abstract grammar reusability across domains: 25%

We have a total of 9 syntactic rules in abstract grammars of health domain: 7 in domain specific

grammar and 2 in domain-independent Time abstract grammar (Zone grammar does not have

any syntactic rules, they have lexical rules instead).

We have a total of 6 syntactic rules in abstract grammars of event domain: 4 in domain-specific

grammar and 2 in domain-independent Time grammar (Zone grammar does not have any

syntactic rules).

With this distribution, we have a total number of 12 distinct rules (6 distinct from domain-

specific abstract grammar of health domain, 3 distinct from domain-specific of event domain, 2

from domain independent Time grammar (common in both domains), and 1 common both in

event and health abstract grammar). Reusable grammar modules are 3 out of 12. Henceforth

reusability is 25%

Explanation 2> Metric: concrete grammar reusability across domain: 12%

We have a total of 7 syntactic rules in domain-specific concrete grammar of health domain in

each language. Among them 3 rules are common in all three languages (let us call it by R1=3),

and the 3 rules are distinct in overall language pairs (R2=3), one rule is common in English-

Spanish, but not in pair consisting Hindi (R3=1+1=2; the first 1 common to both English and

Spanish and the second one for Hindi).

57

We have a total of 4 syntactic rules in domain-specific concrete grammar of event domain in

each language. Among them 1 rule is common in all three languages (R4=1), and rest of the 3

rules are distinct in overall language pairs (R5=3).

 Domain-independent concrete Time grammar syntactic rules are 2 (all are common to both

domains) (let us say R6=2). The Zone grammar does not contain any syntactic rule.

With this distribution, we have a total number of 25 distinct rules: 2 distinct from R1, 0 distinct

from R4, 1 common in R1 and R4 (this rule is shared between domains), 9 distinct from R2*3

(considering the three different languages), 9 distinct from R5*3 (again, considering the three

different languages), 2 distinct from R3, 2 distinct from R6 (these rules are common to both

domains). Reusable grammar rules across domains are 3 out of 25. Henceforth reusability is 12%

Explanation 3> Metric: concrete grammar reusability across languages (Eng-Spa): 50%

(health domain)

We have a total of 7 syntactic rules in domain-specific concrete grammar of health domain in

each language (English and Spanish). Among them 4 rules are common in both languages, and

rest of the 3 rules are distinct in each language (hence 6 distinct rules considering both

languages).

Domain-independent concrete Time grammar rules are 2 (common in both languages). The Zone

grammar does not contain any syntactic rule.

With this distribution, reusable grammar rules are 6 out of 12. Henceforth reusability is 50%

Here we can notice that the most sharing is because of the general conceptual knowledge,

especially the Time grammars, where the syntactic rules do not combine any linguistic

information but the categories only in upper rules. And the shared rules in domain-specific

grammars are because there are not any lexicons/words present, but the rules are just combining

categories with appropriate access to categories’ values from the lower lexical rules that

construct them. For e.g., one syntactic rule that is common both in English and Spanish is:

 lin userComment_specialistInquiry d1 = {s = d1.s}

In right side of the rule, the information is common to both languages.

Explanation <rest of metrics>

The same explanation goes for other metrics at syntactical level.

58

5.1.3 Reusability at lexical level

 Across

domains

(health-event)

Across languages

(Eng-Spa)

Across

languages (Eng-

Hin)

Across

languages (Spa-

Hin)

Abstract

grammar

reusability

26.2% NA NA NA

Concrete

grammar

reusability

14.7% 20% (health

domain)

27.8% (event

domain)

13.2% (health

domain)

17.9% (event

domain)

13.2% (health

domain)

17.9% (event

domain)

Explanation 1> Metric: abstract grammar reusability across domains: 26.2%

We have a total of 30 lexical rules in abstract grammars of health domain: 19 in domain specific

grammar and 7 in domain-independent Time grammar, 4 in domain-independent Zone grammar.

We have a total of 23 lexical rules in abstract grammars of event domain: 12 in domain-specific

grammar and 7 in domain-independent Time grammar, 4 in domain-independent Zone grammar.

With this distribution, we have a total number of 42 distinct rules (19 distinct from domain-

specific abstract grammar of health domain, 12 distinct from domain-specific of event domain,

11 distinct from domain independent Time plus Zone grammar (common in both domains).

Reusable grammar modules across both domains are 11 out of 42. Henceforth reusability is

26.2%

 Explanation 2> Metric: concrete grammar reusability across domain: 14.7%

We have a total of 19 lexical rules in domain-specific concrete grammar of health domain in

each language. None of them are common to any language. So domain specific distinct rules

considering all three languages are 19*3= 57

We have a total of 12 lexical rules in domain-specific concrete grammar of event domain in each

language. None of them are common to any language. So domain specific distinct rules

considering all three languages are 12*3= 36

Domain-independent concrete Time grammar lexical rules are 7 (all are common to both

domains and all three languages). Domain-independent concrete Zone grammar distinct lexical

rules are 9 (4 in Zone Hindi concrete grammar, 1 distinct in Zone English grammar, 1 distinct in

Zone Spanish grammar, 3 common in both Spanish and English). Each of these 9 distinct lexical

rules from Zone grammar is common to both domains

59

With this distribution, we have a total number of 57+36+7+9= 109 distinct lexical rules.

Reusable lexical grammar rules across domains are 16 out of 109. Henceforth reusability is

14.7%

Explanation 3> Metric: concrete grammar reusability across languages (Eng-Spa): 20%

(health domain)

We have a total of 19 lexical rules in domain-specific concrete grammar of health domain in

each language (English and Spanish). None of them are common to any language. So domain

specific distinct lexical rules considering both languages are 19*2= 38

Domain-independent concrete Time grammar lexical rules are 7 (each of them common both

languages). Domain-independent concrete Zone grammar distinct lexical rules are 5 (1 distinct in

Zone English grammar, 1 distinct in Zone Spanish grammar, 3 common in both Spanish and

English Zone grammar).

With this distribution, we have a total of 38+7+5= 50 distinct lexical rules. Reusable lexical

grammar rules between English and Spanish are 10 out of 50. Henceforth reusability is 20%

 Explanation <rest of metrics>

The same explanation goes for other metric at lexical level.

We can see the reusability ratios in a pair consisting of Hindi language for lexical rules are lower

in number than Eng-Spa pair. In Eng-Spa pair reusability for lexical rules is because they have

same alphabets in some lexicon values (for e.g. “plaza catalunya” is same lexicon for Spanish

and English). Some of the reusable lexicons in Hindi are also present, but those are just because

of the shared Time grammar that is expressed with numbers in Hindi too.

60

5.2 Generating the parsed abstract tree and translating the query

into all the other languages within multilingual developed resources

An interesting functionality of GF consists of showing the parsed tree of a natural language

sentence recognized by a specific grammar. In the Figure below the user query “hay algun

hospital pequno” is in Spanish and the abstract tree was obtained by parsing this Spanish query

using the health domain abstract grammar and concrete Spanish grammar. Furthermore, GF can

translate the query into other languages by mapping the tree-like syntactic function (i.e. abstract

tree) to the strings. This process is called linearization of abstract tree to the corresponding

concrete syntax.

It is worth noting that the GF can generate random sentences (those are of course developed in

concrete grammar in different variations to express a single query) similar in meaning to the

expressed query, for e.g., the above mentioned query has many forms of expressing that are

developed in concrete grammar, the GF generates randomly any form similar in meaning, that is,

for the same abstract rule (e.g. “yo prefiero a un hospital pequno” has same meaning as of the

expressed user query).

61

5.3 Guiding the user access the resources

GF environment supports another interesting functionality for assisting the user where building

the query, it presents next acceptable options on the screen when writing. When using this

functionality the errors when processing user interventions are minimized, resulting in a

friendlier communication. Next figures show how this functionality has been used to guide the

user when using the grammars we have developed.

 Figure 5.3.1 demo1: guiding the user in Spanish (health domain)

 Figure 5.3.2 demo2: guiding the user in English (health domain)

62

 Figure 5.3.3 demo3: guiding the user in English (health domain)

 Figure 5.3.4 demo4: guiding the user in Hindi (health domain)

63

5.4 Demo Experimentations

Along with the NLU component, we tested our system by building a toy prototype and

incorporating a small set of databases. The prototype uses the information resulting from the

parsed used interventions and generates the answers. However, the answer generated consisted of

canned sentences.

Experiment 1: parsing of a sentence “my skin suffers” was successfully done, and then the

answer was generated

64

Experiment 2: parsing of a sentence “i m feeling pain in my heart” was not successfully done

because NLU component doesn’t understands this, the system then asks the user to retry the

query, second time when the user asks query recognized by NLU, the answer was generated

Experiment 3: parsing of a sentence “i am looking for an eye specialist near plaza catalunya”

was successfully done because the NLU component understands this, but since we have not used

database large enough that are related to specialist information, thus answer couldn’t be

generated.

65

Chapter 6

Conclusions

In this thesis we have proposed the use of domain-restricted ontologies to generate efficient and

structured grammars in different languages. In particular we have worked with three languages:

English, Hindi and Spanish. These three languages differ in many different ways: vocabulary,

syntax and even a different alphabet for Hindi. In order to facilitate the generation of linguistic

resources for the three languages our proposal is based on a complete separation of conceptual

and linguistic knowledge bases, being conceptual knowledge reused across the three languages.

Conceptual knowledge represented in ontologies consists of the domain concepts together and

their attributes involved in a particular scenario. This clear separation between conceptual and

linguistic knowledge also facilitates the generation of the grammars in a new language, because

conceptual knowledge is already defined and only the specific syntactic rules expressed each

concept have to be defined.

Our work has focused on developing the domain-restricted resources needed in a web NL system

to assist the users when searching for information in two particular scenarios: finding a medical

specialists and looking for information about cultural events in the city. In order to facilitate the

adaptation to new domains as well as the reusability of knowledge across domains we propose a

clear separation of domain knowledge and the general conceptual knowledge that can be shared

by several domain scenarios.

Grammars have been implemented in GF, a multilingual grammar environment. GF present

several advantages comparing other existing language environments: it supports Hindi alphabet,

efficient parsing, library of resources in many languages and it includes useful functionalities

66

(presentation of the resulting parse-tree, user's guidance, sentence translation, generation of

sentences from grammars, etc). However main advantage the GF presents considering our work

has been the representation of grammars in two separated modules: conceptual (abstract

grammar) and syntactic (concrete grammar). For each domain, we represented domain specific

conceptual knowledge in ontology to the abstract grammar of GF. In the abstract grammar

conceptual instances and values of conceptual attributes were represented as lexical rules while

syntactic rules represent the combination of concepts appearing in user's interventions. From this

abstract grammar concrete grammar was generated. Although it was needed an individual

linguistic expert to further develop the concrete grammar in each language, the inherent features

of GF have become increasingly appreciable in providing the experts an organization that

facilitates the construction of the rules that support particular morphological and syntactic

variations.

The main goal of our work has been to find a general method to facilitate the generation of

grammars that are easy to adapt to new languages, new domains and even new users (i.e. young

people using informal languages including new words and mistakes). Our goal has not been to

construct a complete grammar. For this reason, evaluation to study how many sentences can be

supported by the grammars has not been done. Instead we have measured the reusability of

grammar components at different level of organizations: at modular level, syntactical level, and

lexical level.

We have also worked on the adaptation of a general existing syntactic-semantic taxonomy that

facilitate the semi-automatic generation of the system answers. In particular, we have studied its

adaptation to the scenario we considered in the health domain. Although, due to the time

constraint we did not complete our work on the generation of NL system's responses, we

considered the work we have done in this line could also be extended without major problems for

this and other domains.

67

Chapter 7

Future work

 Our proposal for representing in a separate way conceptual and linguistic knowledge and

general and domain-specific knowledge facilitate the generation of grammars for different

domain and languages. We have studied this proposal applied to three very different languages:

different alphabet, very different vocabulary and syntax. Adapting our proposal to similar

languages will not be a difficult task. This can lead us to a possible future direction to adapt the

grammars to similar languages similar to Spanish (e.g., Catalan) and to Hindi (there are several

Indian languages similar to Hindi).

 A room is still open for more future directions. One promising direction would be to adapt the

modular grammars to different types of users considering their age, language skills, and cultural

sensitivity. We then can have separate concrete grammars for each type of users resulting in

more efficient and friendly system. In order to develop the most appropriate grammar for each

type of user we could collect a corpus of user interventions. The grammars we have already

developed could be used in a simple interface to collect a corpus of interventions of the different

types of users.

 Using the functionality of GF that generates sentences randomly, those can be collected for

deriving multilingual corpora to be used in different applications of NL, what would be useful

especially for Hindi, because there are not many existing resources in this language.

 The main problem with grammar based system is that the users often make mistakes when

typing. GF interface using our grammars could overcome this problem by forcing the users

access the next acceptable words recognized by grammars. However, more interesting

approaches can be used instead, for e.g., to integrate a statistical based spelling correction model,

before the users express their query. This will ensure our grammar based NLU component reads

a grammatically correct user input.

68

Appendix

Appendix A Domain-Specific English concrete grammar for health domain

concrete HealthDomainEng of HealthDomain = TimeEng, ZoneEng ** {

lincat

 Body_Part = {s : agreement_param => Str; b : boolean};

 Capacity = {s : Str};

 Comment = {s : Str};

 Description = {s : Str};

 Description_1 = {s : Str};

 EquipCapacity = {s : Str};

 Equipment = {s : agreement_param => Str; b : boolean};

 Specialist = {s : Str; b : boolean};

lin

 userComment d = {s = d.s};

 userComment_specialistInquiry d1 = {s = d1.s};

 Specialist_with_Time d1 t = {s = d1.s ++ checkTime_format t.b ++ t.s};

 equipmentInquiry eqc eq = {s = variants {give_equip_info_start ++ "a" ++ eqc.s ++ eq.s ! Sg;

 "is there" ++ var_equip ++ variants {[]; eqc.s} ++ eq.s ! Sg;

 "are there" ++ var_equip ++ variants {[]; eqc.s} ++ eq.s ! Pl}};

 illnessInfo bp = {s = variants {ill_Info ++ bp.s ! variants {Sg; Pl};

 "my"++ variants {

 bp.s ! Pl ++ (verb_N bp.b).s ! variants {PresP; PresCont};

 bp.s ! Sg ++ (verb_N bp.b).s ! variants {PresS; PresCont_S}}}

 ++ moreInfoIll};

 specialistInquiry sp z = {s = giveSpecialist_info_start

 ++ det_a_an sp.b ++ sp.s ++ variants {"in"; "near"; "close to"; "around"}

 ++ z.s ++ variants {[]; "please"}};

 cardiologist = {s = "cardiologist"; b = T};

 dentist = {s = "dentist"; b = T};

 dermatologist = {s = variants {"dermatologist"; "skin specialist"}; b = T};

 ophthalmologist = {s = variants {"ophthalmologist"; "eye specialist"; "optician"}; b = F};

69

 clinic = check_agreement_Equip "clinic" T;

 hospital = check_agreement_Equip "hospital" T;

 pharmacy = check_agreement_Equip "pharmacy" F;

 equipCapacity capacity = {s = capacity.s};

 small = {s = "small"};

 big = {s = "big"};

 ear = check_agreement_B_P "ear" T;

 elbow = check_agreement_B_P "elbow" F;

 head = check_agreement_B_P "head" F;

 eye = check_agreement_B_P "eye" T;

 leg = check_agreement_B_P "leg" T;

 face = check_agreement_B_P "face" F;

 heart = check_agreement_B_P "heart" F;

 skin = check_agreement_B_P "skin" F;

 stomach = check_agreement_B_P "stomach" F;

 teeth = check_agreement_B_P "tooth" T;

param

 agreement_param = Sg | Pl;

 boolean = T | F;

 agreement_param_N = PresS | PresP | PresCont | PresCont_S;

oper

 giveSpecialist_info_start = variants {"i am looking for"; "i would like to see"; "i need";

 "can you find me"};

 give_equip_info_start = variants {"i prefer"; "i would like"};

 ill_Info = "i am feeling" ++ variants {ill_strength; []} ++ "pain in my";

 ill_strength = variants {"severe"; "harsh"};

 moreInfoIll = variants {[]; variants {","; []} ++ "can i get a doctor" ++ variants {

 variants {","; []} ++ "please"; []};"which"++ variants {

 "specialist"; "doctor"} ++ variants {"do i"; "should i"} ++ variants {"need";

 "look for"}};

 check_agreement_B_P : Str -> boolean -> {s : agreement_param => Str; b : boolean} = \x,y

 -> {s = table {

 Sg => x;

 Pl => case y of {

 T => case x of {

 "tooth" => "teeth";

 _ => x + "s"

 };

 F => x

 }

 };

 b = y};

 check_agreement_N : Str -> boolean -> {s : agreement_param_N => Str; b : boolean} = \x,y

 -> {s = table {

70

 PresP => case y of {

 T => x;

 F => x + "s"

 };

 PresS => x + "s";

 PresCont_S => "is" ++ x + "ing";

 PresCont => case y of {

 T => "are" ++ x + "ing";

 F => "is" ++ x + "ing"

 }

 };

 b = y};

 check_agreement_Equip : Str -> boolean -> {s : agreement_param => Str; b : boolean} = \x,y

 -> {s = table {

 Sg => x;

 Pl => case y of {

 F => "pharmacies";

 T => x + "s"

 }

 };

 b = y};

 hurt_N = check_agreement_N "hurt";

 suffer_N = check_agreement_N "suffer";

 verb_N = variants {hurt_N; suffer_N};

 var_equip = variants {[]; "any"; "some"};

 det_a_an : boolean -> Str = \x -> case x of {

 T => "a";

 F => "an"

 };

 checkTime_format : boolean -> Str = \x -> case x of {

 T => variants {"at"; "around"};

 F => variants {"around"; variants {[]; "in"} ++ "between"}

 };

}

Appendix B Domain-Specific Spanish Concrete Grammar Health Domain

concrete HealthDomainSpa of HealthDomain = TimeSpa, ZoneSpa ** {

lincat

 Body_Part = {s : agreement_param => Str; b1 : boolean1; b : boolean};

 Capacity = {s : boolean1 => Str};

 Comment = {s : Str};

 Description = {s : Str};

 EquipCapacity = {s : boolean1 => Str};

71

 Equipment = {s : agreement_param => Str; b1 : boolean1};

 Specialist = {s : Str; b : boolean};

 Description_1 = {s : Str};

lin

 userComment d = {s = d.s};

 Specialist_with_Time d1 t = {s = d1.s ++ checkTime_format t.b ++ t.s};

 userComment_specialistInquiry d1 = {s = d1.s};

 equipmentInquiry eqc eq = {s = variants {give_equip_info_start

 ++ variants {"a"; []} ++ eq.s ! Sg1 ++ eqc.s ! eq.b1;

 "hay" ++ eq.s ! variants {Sg; Pl} ++ eqc.s ! eq.b1}};

 illnessInfo bp = {s = variants {"me"++ variants {"duelen" ++ bp.s ! Pl;

 "duele" ++ bp.s ! Sg}}};

 specialistInquiry sp z = {s = giveSpecialist_info_start ++ det_a_an sp.b ++ sp.s

 ++ variants {"en" ++ variants {[]; "el área de"};"cerca" ++ variants {"de"; "del"}}

 ++ z.s ++ variants {[]; "por favor"}};

 cardiologist = {s = "cardiólogo"; b = T};

 dentist = {s = "dentista"; b = F};

 dermatologist = {s = variants {"dermatólogo"; "médico de cuero"}; b = T};

 ophthalmologist = {s = variants {"oftalmólogo"; "óptico"}; b = T};

 clinic = check_agreement_Equip "clínica" FEM;

 hospital = check_agreement_Equip "hospital" MASC;

 pharmacy = check_agreement_Equip "farmacia" FEM;

 equipCapacity capacity = {s = capacity.s};

 small = {s = table {

 FEM => "pequna" + variants {[]; "s"};

 MASC => "pequno" + variants {[]; "s"}

 }};

 big = {s = table {

 FEM => "grande" + variants {[]; "s"};

 MASC => "grande" + variants {[]; "s"}

 }};

 ear = check_agreement_B_P "oído" MASC T;

 elbow = check_agreement_B_P "codo" MASC T;

 head = check_agreement_B_P "cabeza" FEM F;

 eye = check_agreement_B_P "ojo" MASC T;

 face = check_agreement_B_P "cara" FEM F;

 heart = check_agreement_B_P "corazón" MASC F;

 skin = check_agreement_B_P "piel" FEM F;

 leg = check_agreement_B_P " pierna" FEM T;

 teeth = check_agreement_B_P variants {"muela"; "diente"} MASC T;

 stomach = check_agreement_B_P "estómago" MASC F;

param

 agreement_param = Sg | Pl | Sg1;

 boolean1 = FEM | MASC;

72

 boolean = T | F;

oper

 giveSpecialist_info_start = variants {"estoy buscando"; "busco";

 variants {"yo"; []} ++ "necesito";

 "puedes" ++ variants {"buscarme"; "buscar"}; "me pueden buscarme"};

 give_equip_info_start = variants {variants {"yo"; []} ++ "prefiero";

 variants {"me"; []} ++ "gustaría"};

 check_agreement_B_P : Str -> boolean1 -> boolean -> {s : agreement_param => Str;

 b1 : boolean1; b : boolean} = \x,y,z ->

 {s = table {

 Sg => case y of {

 FEM => "la" ++ x;

 MASC => "el" ++ x

 };

 Pl => case z of {

 T => case y of {

 FEM => "las" ++ x + "s";

 MASC => "los" ++ x + "s"

 };

 F => case y of {

 FEM => "la" ++ x;

 MASC => "el" ++ x

 }

 };

 Sg1 => ""

 };

 b1 = y; b = z};

 check_agreement_Equip : Str -> boolean1 -> {s : agreement_param => Str; b1 : boolean1} =

 \x,y -> {s = table {

 Sg1 => case y of {

 FEM => "una" ++ x;

 MASC => "un" ++ x

 };

 Pl => case y of {

 FEM => "algunas" ++ x + "s";

 MASC => "algunos" ++ x + "es"

 };

 Sg => case y of {

 FEM => "alguna" ++ x;

 MASC => "algun" ++ x

 }

 };

 b1 = y};

 det_a_an : boolean -> Str = \x ->

 case x of {

73

 T => variants {"a"; []} ++ "un";

 F => variants {"a"; []} ++ variants {"un"; "una"}

 };

 checkTime_format : boolean -> Str = \x ->

 case x of {

 T => "a" ++ variants {[]; "las"};

 F => "entre"

 };

 }

Appendix C Domain-Specific Hindi concrete grammar Health Domain

74

75

76

Appendix D Domain-Specific English Concrete Grammar for Cultural Events Domain

concrete EventDomainEng of EventDomain = ZoneEng, TimeEng ** {

lincat

 Comment = {s : Str};

 Description = {s : Str};

 Event = {s : Str};

 Genre = {s : Str; b : boolean};

 Venue = {s : Str};

 Event_Info = {s : Str};

lin

 userComment d = {s = d.s};

 event_zone_time e z t = {s = e.s++ variants {"around"; "near"; "close to"}

 ++ z.s ++ checkTime_format t.b1 ++ t.s};

 event_venue_time e v t = {s = e.s ++ variants {"that takes place"} ++ variants {

 "at" ++ variants {[]; "venue"}; "in"}

 ++ v.s ++ checkTime_format t.b1 ++ t.s};

 genre_event g e = {s = give_info ++ det_a_an g.b ++ g.s ++ e.s};

 royal_play_ground = {s = "royal play ground"};

 city_hall = {s = "city hall"};

 centre_public_ground = {s = "centre public ground"};

 bcn_centre_hall = {s = "barcelona centre hall"};

 auditori = {s = "auditori"};

 romantic = {s = "romantic"; b = T};

 musical = {s = "musical"; b = T};

 orchestic = {s = "orchestic"; b = F};

 dramatic = {s = "dramatic"; b = T};

 sport = {s = "sport"};

 concert = {s = "concert"};

 movie = {s = variants {"film"; "movie"}};

param

 boolean = T | F;

oper

 give_info = variants {"i am looking for"; "can you find me";

 "i want to see"};

 det_a_an : boolean -> Str = \x -> case x of {

 T => "a";

 F => "an"

 };

 checkTime_format : bool -> Str = \x -> case x of {

 T1 => variants {"at"; "around"};

77

 F1 => variants {"around"; variants {[]; "in"} ++ "between"}

 };

 }

Appendix E Domain-Specific Spanish Concrete Grammar for Cultural Events Domain

concrete EventDomainSpa of EventDomain = ZoneSpa, TimeSpa ** {

lincat

 Comment = {s : Str};

 Description = {s : Str};

 Event = {s : Str; b : boolean};

 Genre = {s : boolean => Str};

 Venue = {s : Str};

 Event_Info = {s : Str};

lin

 userComment d = {s = d.s};

 event_zone_time e z t = {s = e.s++ variants {"en" ++ variants {[]; "el área de"};

 "cerca" ++ variants {"de"; "del"}} ++ z.s ++ checkTime_format t.b1 ++ t.s};

 event_venue_time e v t = {s = e.s++ "en"++ variants {[];"venue"}

 ++ v.s ++ checkTime_format t.b1 ++ t.s};

 genre_event g e = {s = give_info ++ det_a_an e.b++ e.s ++ g.s ! e.b};

 royal_play_ground = {s = "royal play ground"};

 city_hall = {s = "city hall"};

 centre_public_ground = {s = "centre public ground"};

 bcn_centre_hall = {s = "barcelona centre hall"};

 auditori = {s = "auditori"};

 romantic = {s = table {

 FEM => "romántic" + "a";

 MASC => "romántic" + "o"

 }};

 musical = {s = table {

 FEM => "músic" + "a";

 MASC => "músic" + "o"

 }};

 orchestic = {s = table {

 FEM => "orchestic" + "a";

 MASC => "orchestic" + "o"

 }};

 dramatic = {s = table {

 FEM => "dramatic" + "a";

 MASC => "dramatic" + "o"

 }};

 sport = {s = "deporte"; b = MASC};

78

 concert = {s = "concierto"; b = MASC};

 movie = {s = "película"; b = FEM};

 interval_hourInfo ih = {s = ih.s; b1 = ih.b1};

 hourInfo h = {s = h.s; b1 = h.b1};

 t_11AM_2PM = {s = "11AM-2PM"; b1 = F1};

 t_8AM_11AM = {s = "8AM-11AM"; b1 = F1};

 t_2PM_5PM = {s = "2PM-5PM"; b1 = F1};

 t_6PM_9PM = {s = "6PM-9PM"; b1 = F1};

 t_11AM = {s = "11AM"; b1 = T1};

 t_12PM = {s = "12PM"; b1 = T1};

 t_9AM = {s = "9AM"; b1 = T1};

param

 boolean = FEM | MASC;

oper

 give_info = variants {"quiero ver"; "estoy buscando";"busco"};

 det_a_an : boolean -> Str = \x -> case x of {

 MASC => "un";

 FEM => "una"

 };

 checkTime_format : bool -> Str = \x -> case x of {

 T1 => "a" ++ variants {[]; "las"};

 F1 => "entre"

 };

 }

79

F Domain-Specific Hindi Concrete Grammar for Cultural Events Domain

80

Appendix G domain-independent Zone concrete grammars

81

Appendix H domain-independent Time concrete grammars

and are exactly the same as because of the same lexicon

(number alphabets) used.

82

References

Chong Wang, Miao Xiong, Qi Zhou and Yong Yu (2007), “PANTO: A Portable Natural

Language Interface to Ontologies”, Proceedings 4th European Semantic Web Conference,

ESWC, 473-487.

Oberle, D., Ankolekar, A., Hitzler, P., Cimiano, P., Sintek, M., Kiesel, M., Mougouie, B.,

Vembu, S., Baumann, S., Romanelli, M., Buitelaar, P., Engel, R., Sonntag, D., Reithinger, N.,

Loos, B., Porzel, R., Zorn, H.P., Micelli, V., Schmidt, C., Weiten, M., Burkhardt, F., Zhou, J.

(2006): “Dolce ergo sumo: On foundational and domain models in swinto (smartweb integrated

ontology)”, Technical report, AIFB, Karlsruhe (July 2006).

Victor W. Zue and James R. Glass, (2000), “Conversational Interfaces: Advances and

Challenges”, Published in Proceedings of the IEEE, VOL. 88, NO. 8, 1166-1180, August, 2000.

J. Butzberger, H. Murveit, and M. Weintraub, (1992), “Spontaneous Speech Effects in Large

Vocabulary Speech Recognition Applications", Proc. ARPA Workshop on Speech and Natural

Language, 339-344, 1992.

L. Hetherington and V. Zue, (1991), “New words: Implications for Continuous Speech

Recognition," Proc. Eurospeech, 475-931, 1991.

J. Dowding, J. Gawron, D. Appelt, J. Bear, L. Cherny, R.Moore, and D.Moran, (1993), “Gemini:

A Natural Language System for Spoken Language Understanding”, Proc. ARPA Workshop on

Human Language Technology, 21-24, 1993.

W. Ward, (1990), “The CMU Air Travel Information Service: Understanding Spontaneous

Speech", Proc. ARPA Workshop on Speech and Natural Language, 127-129, 1990.

J. Glass, J. Polifroni, and S. Sene (1994), “Multilingual Language Generation across Multiple

Domains", Proc. ICSLP, 983-976, 1994.

A. Oh (2000), “Stochastic Natural Language Generation for Spoken Dialog Systems", M.S.

Thesis, CMU, May 2000.

83

D. Klatt (1987), “Review of text-to-speech conversion for English", J. Acoust. Soc. Am., 82(3),

737-793, 1987.

Y. Sagisaka, N. Kaiki, N. Iwahashi, and K. Mimura (1992), “ATR v-Talk Speech Synthesis

System", Proc. ICSLP, 483-486, 1992.

Daniel Sonntag , Ralf Engel , Gerd Herzog , Alexander Pfalzgraf , Norbert Pfleger , Massimo

Romanelli , Norbert Reithinger, (2007), “SmartWeb Handheld — Multimodal Interaction with

Ontological Knowledge Bases and semantic web services”, Proceeding ICMI'06/IJCAI'07

Proceedings of the ICMI 2006 and IJCAI 2007 international conference on Artificial intelligence

for human computing Pages 272-295.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schcneider, L.: “Sweetening Ontologies

with DOLCE”, In 13th International Conference on Knowledge Engineering and Knowledge

Management (EKAW02). Volume 2473 of Lecture Notes in Computer Science., Sig¨unza, Spain

(Oct. 1–4 2002) 166 ff.

Niles, I., Pease, A.: “Towards a Standard Upper Ontology”, In Welty, C., Smith, B., eds.:

Proceedings of the 2nd International Conference on Formal Ontology in Information Systems

(FOIS-2001), Ogunquit, Maine (October 17–19 2001).

Reithinger, N., Sonntag, D.: “An integration framework for a mobile multimodal dialogue system

accessing the semantic web”, In: Proc. of Interspeech’05, Lisbon, Portugal (2005).

Philipp Cimiano, Peter Haase, J¨org Heizmann (2007), “Porting natural language interfaces

between domains: an experimental user study with the ORAKEL system”, IUI '07 Proceedings of

the 12th international conference on Intelligent user interfaces, 180-189.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari (2003), “Ontology library

(final)”, WonderWeb deliverable D18.

Didier Guzzoni, Charles Baur, and Adam Cheyer (2006), “Active: A unified platform for building

intelligent web interaction assistants”, Proceeding WI-IATW '06 Proceedings of the 2006

IEEE/WIC/ACM international conference on Web Intelligence and Intelligent Agent

Technology, 417-420.

Fellbaum, C., Wordnet: An Electronic Lexical Database. Cambridge: MIT Press (1998).

Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for

Name-Matching Tasks. In: IIWeb. (2003) 73-78.

S.W. Hamerich, V. Schubert, V. Schless, R. de C´ordoba, J.M. Pardo, L.F. dHaro, B. Kladis, O.

Kocsis, and S. Igel. Semi-automatic generation of dialogue applications in the gemini project. In

SIGdial Workshop on Discourse and Dialogue, pages 31–34, 2004.

84

S.W. Hamerich, Y.F. Wang, V. Schubert, V. Schless, and S. Igel., Xml-based dialogue

descriptions in the gemini project, In Berliner XML-Tage, 2003.

M. González, “DIGUI: a Flexible Dialogue System for Guiding the User Interaction to Access

Web Services”, PhD thesis, Universitat Politecnica de Catalunya, 2001/

M. Gatius. “Using an ontology for guiding NL interaction with knowledge based systems”, PhD

thesis, Universitat Politecnica de Catalunya, 2001.

J.A. Bateman, B. Magnini and F. Rinaldi, (1994), The Generalized {Italian, German, English}

Upper Model, Workshop Proceedings, ECAI-94 Workshop on Implemented Ontologies,

Amsterdam.

Martin-Löf, P. (1982), “Constructive mathematics and computer programming”, In Cohen, Los,

Pfeiffer, and Podewski, editors, Logic, Methodology and Philosophy of Science VI, pages 153–

175. North-Holland, Amsterdam.

A. Ranta (2004), “Grammatical Framework : A Type Theoretical Grammar Formalism”, The

Journal of Functional Programming 14(2), 145-189.

A. Ranta (2011), “Grammatical Framework: Programming with Multilingual Grammars”,

CSLI Publications, Stanford.

