

MASTER THESIS

TITLE: An Analysis of incentives mechanisms and evaluation on
BitTorrent

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: David Serra Pàmies

DIRECTOR: Roc Messeguer Pallarès

DATE: October 27th 2013

Títol: An Analysis of incentives mechanisms and evaluation on BitTorrent

Autor: David Serra Pàmies

Director: Roc Meseguer Pallarès

Data: 27 d’octubre de 2013

Resum

D’ençà l’aparició de les primeres xarxes peer-to-peer, el seu nombre d’usuaris
no ha cessat de créixer com a conseqüència dels beneficis que presenten en
comparació amb les altres arquitectures alternatives per a la compartició i
distribució de contingut multimèdia. Tanmateix, atesa la seva natura
distribuïda, poden experimentar un important problema de mal ús: el free-
riding. El free-riding consisteix en que alguns usuaris consumeixin recursos
sense contribuir al sistema. Aquest comportament no només no és just per a la
resta d’usuaris, sinó que també amenaça l’èxit d’aquest tipus de xarxes.

Amb la motivació de posar fi a aquesta conducta van aparèixer els
mecanismes d’incentius, que proporcionen al sistema un mètode per a
incentivar els nodes i, així, aconseguir que comparteixin els seus recursos amb
la resta d’usuaris. En altres paraules, ofereixen a la xarxa la justícia necessària
per tal que tots els usuaris gaudeixin de bon rendiment.

Aquest projecte està organitzat en dues parts principals. En la primera s’ha
realitzat un estudi exhaustiu sobre l’estat de l’art en relació als mecanismes
d’incentius que ha donat com a resultat una classificació segons les
característiques dels algoritmes estudiats. Aquest estudi proporciona al lector
una primera visió de les fortaleses i debilitats de cada algoritme. En la segona
part s’ha construït un escenari de test basat en la virtualització de màquines
que ha servit per a avaluar empíricament alguns dels algoritmes estudiats.
Finalment s’han realitzat una sèrie d’experiments per a comparar
determinades característiques d’aquests algoritmes i, d’aquesta manera, s’ha
pogut confirmar o desmentir les conclusions fruit de l’estudi de l’estat de l’art.

Title: An Analysis of incentives mechanisms and evaluation on BitTorrent

Author: David Serra Pàmies

Director: Roc Meseguer Pallarès

Date: October 27th 2013

Overview

Since the first peer-to-peer communities appeared, their number of users has
increased considerably owing to the benefits they offer compared to their
alternative architectures in the sharing and distribution of multimedia content.
However, due to its distributed nature, they can suffer an important problem of
misuse: free-riding. Free-riding consists on users consuming resources without
contributing to the system. Such behaviour not only is not fair for the rest of the
users, but also threatens the success of this type of nets.

With the motivation to avoid free-riding, the mechanisms of incentives were
born. They provide the system with a method to motivate the nodes and make
them share their resources with the other users. In one word, they provide the
net with the needed fairness to achieve a good performance for all users.

This thesis is organised in two main parts. In the first part there is a
comprehensive study of the state of the art regarding the incentive
mechanisms, resulting in a classification depending on the characteristics of
the studied algorithms. That study provides the reader with a first sight of the
strengths and weaknesses of each algorithm. In the second part there is a test
scenario based in the virtualization of machines that was useful to evaluate
empirically some of the studied algorithms. Finally, a series of experiments
were carried out in order to compare some characteristics of these algorithms
and thus verify or deny the conclusions resulted in the study of the state of the
art.

“I dedicate this thesis to my professors, parents, friends, classmates and

Sònia who always encouraged me to achieve my goals and that without

their support I could not have completed this work.”

Thank you all.

INDEX

INTRODUCTION .. 1

CHAPTER 1. PEER-TO-PEER COMMUNITIES .. 4

1.1. Introduction .. 4

1.2. What is a Peer-to-peer Network? ... 5

1.3. Selfish peers and incentive mechanisms ... 6

1.4. Incentives mechanisms to bring fairness ... 7

1.5. Attacks related to unfairness in peer-to-peer ... 8
1.5.1. Free-riding .. 8
1.5.2. The large view exploit ... 8
1.5.3. The sybil attack ... 9
1.5.4. Collusion ... 10

CHAPTER 2. INCENTIVES SCHEMES STUDY .. 11

2.1 Introduction .. 11

2.2 Inherent Generosity ... 11

2.3 Reciprocity-Based Schemes .. 12
2.3.1 Direct-reciprocity ... 12
2.3.2 Indirect reciprocity .. 17

2.4 Monetary-based schemes ... 18
2.4.1 Dandelion .. 19

CHAPTER 3: USED TECHNOLOGIES AND SCENARIO 20

3.1 Introduction .. 20

3.2 BitTorrent architecture .. 20

3.3 Netkit ... 21

3.4 User-mode Linux ... 23

3.5 Hardware .. 24

3.6 Other tools used .. 25

CHAPTER 4: EXPERIMENTAL TESTS RESULTS ... 26

4.1. Introduction .. 26

4.2. Fairness Evaluation ... 26

4.3. Resilience to strategic peers .. 31

4.4. Convergence time of each algorithm .. 35

CHAPTER 5: CONCLUSIONS .. 39

5.1. Environmental impact ... 40

5.2. Future work .. 40

5.3. Personal approach .. 41

BIBLIOGRAPHY .. 43

ANNEX 1: NETKIT SET-UP ... 47

ANNEX 2: MODIFYING THE FILESYSTEM IN NETKIT 51

ANNEX 3: NETKIT LABORATORIES CONFIGURATIONS............................ 55

Introduction 1

INTRODUCTION

Since the first peer-to-peer communities appeared, the use of such nets has
increased considerably, becoming more and more popular. However, they
suffer from a fundamental problem of unfairness due to the fact that many users
in these communities try to use these network resources while they contribute
little or not at all. Providing the net with the needed mechanisms so that it is fair
for all its users is needed for the success of these networks.

Today there are numerous peer-to-peer nets with different algorithms of
incentives using a range of mechanisms. Therefore, the motivation of this
master thesis is to study and present in a clearly way these algorithms and
accomplish an experimental studio which will confirm or deny the benefits
provided by each algorithm.

The peer-to-peer technologies and the incentives for the peers are presented in
the first chapter, as well as an analysis of the existing methods and problems to
be solved by the algorithms related to security and performance. After that, the
two main objectives to be accomplished during this thesis will be tackled. The
first objective of this master thesis is to analyse the state of the art related to the
different existing algorithms detailing their characteristics and profits according
to their authors, and provide a classification by characteristics of the algorithms.
The second important goal is to build an scenario where different peer-to-peer
algorithms could be experimentally tested and compared. Those scenarios
should be capable to obtain experimental results allowing to compare several
algorithms among others and confirm the results obtained in the theoretic
comparative. Finally, it is pretended to verify or deny the presumed profits
provided by each algorithm.

This master thesis is organized into five chapters:

An introduction to peer-to-peer technology is provided in the first chapter. It
describes what that technology is, the different types of existing peer-to-peer
networks and the motivation of its existence. Then it is compared with other
existing paradigms in existing networks. Related to the incentive mechanisms,
there is an explanation about what they are and why they are necessary.
Finally, the key concepts of incentive mechanisms are defined for a proper
understanding.

The second chapter contains an analysis of the detail of the state of the art in
terms of incentive mechanisms. It presents the classification most widely
accepted within the research communities in incentive mechanisms based on
how they work. Each algorithm is presented giving its features and compared
among the others in order to identify the strengths and weakness of each of
them.

2 An Analysis of incentives mechanisms and evaluation on BitTorrent

The third chapter corresponds to the beginning of the experimental part. After
the state of the art research some of the algorithms are tested to obtain an
experimental view of the algorithm performance. That will confirm or deny the
features and strengths presented by their authors in their papers. In this chapter
the technologies and scenario used to carry on that test
beds are presented.

The fourth chapter presents the results of the experimental works comprised by
several testbeds. In this experimental part, the fairness, the resilience to
strategic clients and the convergence time are the features tested.

Finally in the fifth chapter the conclusions obtained during all the study are
evaluated.

4 An Analysis of incentives mechanisms and evaluation on BitTorrent

CHAPTER 1. PEER-TO-PEER COMMUNITIES

1.1. Introduction

In the beginning of the first computer networks the client-server architecture
was the predominant. In such networks, clients consume information from a
single server. In the course of time, new technologies and new multimedia
contents appeared. This lead to new user needs. This kind of information
caused an exponential increase of the size of the information to be transferred.
Along with that, the content sharing evolved from a paradigm of a few
information sources with many clients to a new paradigm where all the users
create and consume contents.

In this new scenario, the first peer-to-peer communities began to grow because
it provides new features and capabilities to make more efficient to share and
distribute multimedia information. This new architecture fits better to the new
scenario and provides several benefits such as load balancing, performance
improvement and fault tolerance by decentralization, among others. However, it
also brings new problems due to the decentralization. For instance, new
security issues.

Client - Server Peer-to-peer

Figure 1.1: Client – Server versus Peer-to-peer architecture

From the beginning, these issues have been tried to be solved and therefore
the peer-to-peer system has enhanced a lot. Additionally new features and

Chapter 1: Peer-to-peer communities 5

information formats have led to new specific peer-to-peer systems like peer-to-
peer live video broadcasting.

1.2. What is a Peer-to-peer Network?

A peer-to-peer computer network is one in which each computer in the network
can act as a client or server for the other computers in the network, allowing
shared access to various resources such as files, peripherals and sensors
without the need for a central server [27].

Nowadays many different peer-to-peer networks exist. Each one of them
requires that all the computers in the network use a compatible software using
the same protocol to connect to each other and access to the resources found
on other computers. Peer-to-peer networks can be used for sharing content
such as audio, video, data or anything in digital format.

Peer-to-peer file transfer protocols provide more scalable architectures for
distributing large files than the traditional server-client paradigm. The idea is
that the peers that are downloading also contribute uploading to the system,
thus scaling the available bandwidth as more peers join the system. Even
centralized services with large network connections can be overwhelmed by a
large number of clients, while peer-to-peer services can ostensibly continue to
scale, even in extreme scenarios.

Peer-to-peer content distribution systems range from relatively simple direct file
sharing applications, to more sophisticated systems that create a distributed
storage infrastructure for securely and efficiently publishing, organizing,
indexing, searching, updating and retrieving data.

Peer-to-peer systems often implement an abstract overlay network, built at
Application Layer. Such overlays are used for indexing and peer discovery and
make the peer-to-peer system independent from the physical network topology.
Based on how the nodes in the overlay network are linked to each other, two
general categories of systems can be identified in this respect: the unstructured
and the structured networks.

In structured peer-to-peer networks, peers are organized following specific
criteria and algorithms, which lead to overlays with specific topologies and
properties.

Unstructured peer-to-peer networks do not impose any structure on the overlay
networks. Peers in these networks connect in an ad-hoc fashion based on a
loose set of rules. Ideally, unstructured peer-to-peer systems would have
absolutely no centralized elements, but in practice there are several types of
unstructured systems with various degrees of centralization. Three categories
can easily be identified [27]:

6 An Analysis of incentives mechanisms and evaluation on BitTorrent

 In pure peer-to-peer systems the entire network consists solely of
equipotent peers. There is only one routing layer, as there are no
preferred nodes with any special infrastructure function.

 In centralized peer-to-peer systems, a central server is used for indexing
functions and to bootstrap the entire system. Although it has similarities
with a structured architecture, the connections between peers are not
determined by any algorithm.

 Hybrid peer-to-peer systems allow such infrastructure nodes to exist.

Some advantages of Peer-to-peer networking over client–Server networking are
[27]:

 All the resources and contents are shared by all the peers, unlike server-
client architecture where server shares all the contents and resources.

 Peer-to-peer is more reliable as central dependency is eliminated.
Failure of one peer does not affect the functioning of other peers. In case
of client–server network, if server goes down, the whole network gets
affected.

 There is no need for full-time system administrators. Every user is the
administrator of his own machine. User can control their shared
resources.

 The overall cost of building and maintaining this type of network is
comparatively very less.

But peer-to-peer architecture has also some drawbacks over a client-Server
one [27]:

 In this network, the whole system is decentralized thus it is difficult to
administer. That is, one person cannot manage by itself the whole
network. Each user manages its node in the network.

 Security in this system is lower. Virus and other malwares can be easily
transmitted over this peer-to-peer architecture.

1.3. Selfish peers and incentive mechanisms

Peer-to-peer content distribution networks are powerful systems that use the
bandwidth resources of their users. However, in those networks, the
performance is highly dependent on the user's willingness to contribute with
their bandwidth. Selfish users tend not to share their bandwidth and only want
their own benefit. Some studies have showed that in the real peer-to-peer
communities, a large number of peers become selfish if the system does not
implement any kind of incentive mechanism. For example, in Gnutella more
than 70% could behave as free-riders [21].

So peer-to-peer networks suffer from a fundamental problem of unfairness.
Free-riders cause slower download times for others by contributing little or no
upload bandwidth while consuming much download bandwidth. Cooperation is

Chapter 1: Peer-to-peer communities 7

a key to the success of a peer-to-peer system, but it is difficult to encourage
without an incentive mechanism.

In order to be successful, a peer-to-peer network has to be fair and, therefore, it
has to implement an effective incentive mechanism. Fair bandwidth allocation in
peer-to-peer systems can be difficult to achieve for several reasons [1]:

 No central entity controls and arbitrates access to all resources.

 The amount of bandwidth resources available is not known in advance
and peers cannot be relied upon to specify their own resources honestly.

 Strategic peers and free-riders may try to take advantage of the system
by contributing little or nothing to the bandwidth, while consuming others’
resources.

Developing an effective incentive mechanism is not an easy task. This implies a
thorough statistical analysis of existing networks and their peers. Some
attempts to address this fair bandwidth allocation problem may suffer from slow
peer discovery, inaccurate predictions of neighbouring peers’ bandwidth
allocations, underutilization of bandwidth, and complex parameter tuning. All
this can lead to a worse or even an unusable network due to a bad incentive
mechanism [1].

1.4. Incentives mechanisms to bring fairness

Incentives play an inherently crucial role in a peer-to-peer system. Users
generally wish to download their files as quickly as possible and since peer-to-
peer is a decentralized system, users are therefore free to attempt to
strategically manipulate others into helping themselves to download faster. The
role of incentives in peer-to-peer is to motivate users to contribute their
resources to others so as to achieve desirable global system properties.

Usually, the incentives are resources that the network can give to a peer in
order to motivate it. Among others, some of these incentives can be [8]:

 Uploading bandwidth: A local peer will divide his uploading bandwidth
capacity between downloaders based on their contribution. Then, as
much as the local peer contributes to the remote peer, the remote peer
will reward it providing a bigger upload rate.

 Number of peers per search: In peer-to-peer systems with an overlay,
this is the number of remote peers that the system will provide to a peer.
As much as the local peer contribute, the system will provide more
remote peers location to provide him with a larger view of the network
and therefore a better performance.

8 An Analysis of incentives mechanisms and evaluation on BitTorrent

 Uncommon segments exchange: The peers revelation strategy dictates
the piece revelation to a peer. Building an effective strategy will lead to
reward the peers with high cooperation by providing them with
uncommon pieces before than doing so to the other peers.

1.5. Attacks related to unfairness in peer-to-peer

Due to the decentralised nature of the peer-to-peer networks, the security in
such networks tends to be a weak point. Some users exploit it in order to obtain
their own benefit. Although there are several kinds of benefit from attacking a
peer-to-peer system, one very extended is to obtain more resources from the
system than the resources provided back to the system.

1.5.1. Free-riding

Particularly, for the content delivery peer-to-peer networks, Free-riding means
to obtain great downloading rates while the contribution uploading to the
network is little or nothing. Users acting that way are called free-riders [24].

Selfish users in a peer-to-peer network only want to consume resources of the
network without contributing to the network in order to only improve their own
performance. Peer-to-peer networks without an effective incentive mechanism
will have a large amount of free-rider users and therefore they will suffer from
very bad performance.

Peer-to-peer networks with an incentive mechanism are more proof against
free-riders. The main reason is that if a user wants to be a free-rider, he not
only has to modify their upload/download maximum ratios, he also has to use
more complex tasks like to cheat to the incentive mechanism. It that point, it
begins a battle between the free-rider users and the incentive algorithms. Here
is the description of some types of attacks used by the free-rider users in a
peer-to-peer network .

1.5.2. The large view exploit

The large view exploit is an attack used by free-rider users against peer-to-peer
networks such as BitTorrent. The attack is based in a client that acquires a
larger than normal view of a BitTorrent swarm and connects to all peers in its
view. At the same time, the client does not upload any data to its peers while it
downloads from all the peers connected to him.
Experimental results demonstrates that the modified client can achieve better
download rates than a compliant client in most common-case public torrents [7].

Chapter 1: Peer-to-peer communities 9

1.5.3. The sybil attack

Sybil attack is an attack against identity in which an individual entity
masquerades as multiple simultaneous identities. In the context of peer-to-peer
applications, that is to control multiple peers inside the swarm. A peer-to-peer
incentive mechanism, has to manage to be proof to sybil attack. Otherwise, the
incentive mechanism cannot work at all. With sybil attack, the attacker can be
beneficiated obtaining better performance from attacking some mechanisms.

Sybil
attacker

Figure 1.2: Sybil attack in a peer-to-peer network: A unique user has achieved
the control of several entities within the swarm

A common example is in the bootstrapping mechanism. When a new peer joins
the swarm doesn't have any block. In order to be able to begin to upload
information, other peers will have to provide him with new blocks without having
previous information about him. These peers will provide him blocks without
expecting anything in return, before they realise that the new peer does not
share anything at all.

Therefore, an attacker can be generating new identities and for each of them,
obtain a few blocks from other peers without nothing in exchange, and finally
substitute this identity by another and begin the same procedure again. The
result is that in a peer-to-peer system without a protection against the sybil
attack, a peer can obtain the file without noting in exchange and with very good
performance to him and causing a performance deterioration throughout the
swarm.

10 An Analysis of incentives mechanisms and evaluation on BitTorrent

1.5.4. Collusion

The definition of collusion is an agreement between two or more peers, to limit
open competition by deceiving, misleading, or defrauding others to obtain an
objective by gaining an unfair advantage. Specifically in peer-to-peer networks,
it means that colluders can cooperate with each other and artificially boost their
upload-to-download ratios, thereby free-riding the system [22].

Collusion can very effectively against peer-to-peer systems based on a shared
reputation of the peers. If there are a large number of colluders in a system
based on a shared reputation, the reputation of each peer can be altered
providing the capacity to subvert the whole reputation system.

Collusion is a critical issue in peer-to-peer applications. If a large portion of
peers in a peer-to-peer system are colluders, the resource in the system will be
over-exploited and the system could collapse. Note that a set of colluders can
actually be one user who has created several colluding accounts.

The effect of collusion is magnified in systems with cheap pseudonyms, where
users can engage in the sybil attack, create fake identities and collude with their
own multiple identities.

Chapter 2: Incentives schemes study 11

CHAPTER 2. INCENTIVES SCHEMES STUDY

2.1 Introduction

Having explained the context of the study, in this chapter is analysed the detail
of the state of the art in terms of incentive mechanisms. The goal of this chapter
is to identify the strengths and weakness of each algorithm.

This survey analyses the main existing incentive algorithms classified about
their characteristics at the present. The classification described is currently the
most widely accepted classification within the research communities in incentive
mechanisms.

There is a number of reasons for users to contribute in a peer-to-peer system.
Some of them offer resources in exchange for receiving other resources in the
present or future time. Others may do so under threat of retaliation such as the
expulsion of the community. Still others do so only out of altruism.

In order to present the incentive mechanism, there has been classified
depending on how they work. This classification consist on three main
categories of schemes for addressing the free-rider issues. These are inherent
generosity, reciprocity-based schemes and monetary payment schemes.

2.2 Inherent Generosity

The first category in which the incentive mechanisms are classified is the
inherent generosity. This category include all the peer-to-peer systems in each
peer contribute based only on its generosity.

The file sharing networks such as eDonkey and Pruna are uploading and
downloading inside established limits, but users can alter their applications to
use the network more than they have been allowed.

In order to analyse the behaviour of this kind of systems it exists a model
framework that studies the phenomenon of free-riding in peer-to-peer systems
[23]. The model is based on the insight that some users gain utility from the
mere act of giving. It analytically determines the resulting percentage of free-
riders in the system based on the distribution of generosity in the population.

They find that if the societal generosity is below a certain threshold, then there
are too many selfish peers around and the system collapses. But if it exceeds
the threshold, the contribution level increases in the societal generosity.

12 An Analysis of incentives mechanisms and evaluation on BitTorrent

2.3 Reciprocity-Based Schemes

This category includes the mechanisms based on reciprocity, meaning that
each peer can download if he has uploaded previously. Each one maintain
histories of past behaviour of other users and use this information in their
decision making processes.

This category is divided into two subcategories: direct reciprocity and indirect
reciprocity. The first one, user A, decides how to serve user B only based on the
service provided by B to A in the past. Instead of that, in indirect reciprocity
schemes, the decision of A also depends on the service provided by B to other
users on the system.

2.3.1 Direct-reciprocity

In direct-reciprocity schemes, each user maintains histories of past behaviour of
other users and provides a service based on the service provided by each
remote peer. There is no history shared among the users in the swarm.

Direct-reciprocity schemes are suitable for applications with long lasting
session, providing ample opportunities for reciprocity between pairs of users.

Direct-reciprocity schemes do not need a central entity to control the incentive
operation of the whole network. Each user maintains the history and competes
in the system like in a market. It has to be able to determine which peers are the
best to provide service in order to obtain the best service in return.

In a decentralized incentive mechanism, sybil attacks can have direct
consequences for peer-to-peer systems and are difficult to prevent. On the
other hand, the decentralisation of the incentive mechanism reduces the costs
and problems related to maintain a central entity.

Literature in peer-to-peer incentives usually uses the Iterated Prisoner’s
Dilemma as a model for understanding cooperation. In the classical Prisoner’s
Dilemma, two players choose simultaneously whether or not to cooperate. Each
of the peers is rewarded if both cooperate, but at a lower rate than the penalty
received if one cooperates and the other does not. Hence the dilemma: the
rational choice of not cooperating leaves both worse off than if both had
cooperated.

The classical Prisoner’s Dilemma has to be adapted to the peer-to-peer
environment. The model must be extended to more than two participants. It also
has to be iterative, that is to play over and over during the session.

The Prisoner’s Dilemma can be generalised as a payoff matrix in Table 1, in
which depending on cooperation or defection of each peer, it assigns a payoff:
R for reward, T for temptation to defect, S for sucker’s payoff, and P for

Chapter 2: Incentives schemes study 13

punishment for mutual defection. This payoff reflects the utility values earned
after the exchange.

 Cooperate Defect

Cooperate R=3, R=3 S=0, T=5

Defect T=5, S=0 P=1, P=1

Table 2.1: Payoff matrix for the Prisoner’s Dilemma

Using the Prisoner’s Dilemma is possible to model players with different
strategies on deciding how to act. In order to test and design new strategies
computer tournaments are used in which every pair in a pool of players is
subjected to repeated exchanges.

Here it is important to define what is a Nash equilibrium: In game theory, a Nash
equilibrium is a solution concept of a game between two or more players, in
which each player is supposed to know the equilibrium strategies of the other
players, and no player has anything to gain if only unilaterally changing its own
strategy.

In a Nash equilibrium each player has chosen a strategy and no player can
benefit by changing its strategy and the other players keep their unchanged set
of strategic options and the corresponding gains.

It is important to note that a Nash equilibrium does not imply the achievement of
the best overall result for the participants, but only the best result for each
considered individually. It is perfectly possible that the outcome would be better
for everyone if, somehow, the players coordinate their action.

Within the peer-to-peer scope, therefore the Nash equilibrium is a point in the
time where all the peers already know each other’s strategies and no one has
anything to gain if only unilaterally change its own strategy.

In a simulation environment with many repeated games, persistent identities,
and no collusion, the Tit-for-Tat strategy dominates when the goal is the best
result among all users. Instead, in a real network, with free-rider users using
attacks, the issue is more complex. In Tit-for-Tat strategy, a peer will cooperate
unless the remote peer defect. In case of defection in one round by the remote
peer, the local peer will defect in the next round.

Direct-reciprocity schemes are the incentive schemes in which more research
efforts have been done. The most important mechanisms developed up to date
are showed below.

14 An Analysis of incentives mechanisms and evaluation on BitTorrent

2.3.1.1 Chocking and unchocking mechanism

The chocking and unchocking mechanism is the incentive used in the official
BitTorrent client implementation proposed by Bram Cohen [12]. The goal of this
mechanism is to bring fairness to all users in the swarm and avoid free-rider
users.

The mechanism is based in two possible states of each connection with a
remote peer: chocking (not uploading) and unchocking (uploading). A peer
maintains the current download rates from all its links. Based on this
information, it unchocks the b links with the highest download rates (b defaults
to 7 or smaller). All the other links are choked except for one that is allowed by
a mechanism called the optimistic unchocking, the purpose of which is to find a
better link. The period of the optimistic unchocking should be sufficiently long
(30 seconds in BitTorrent 4.0.0) so that this link may be put on the unchocking
list of the other peer. If it downloads from this link at a higher rate than some of
the b links, this new link replaces the link with the b-th highest rate. Otherwise,
another link is chosen for the optimistic unchocking in a round-robin fashion.

Some studies have shown that BitTorrent’s Tit-For-Tat heuristic does not result
in fair bandwidth exchange. Because it only identifies and exchanges data with
a small number of peers at a time, a BitTorrent client may waste much time and
bandwidth while discovering peers with similar upload rates in a large network
[18].

In addition to the bad bandwidth allocation, it is vulnerable to some free-rider
user attacks. Experimental test results show that the mechanism is susceptible
to free riding [3]. Some studies show that bitTorrent is vulnerable to the Large
view exploit [2]. This mechanism is also vulnerable to sybil attack. A peer can
use multiple identities each of one asking for a block without upload nothing in
back exploiting the optimistic unchocking mechanism.

2.3.1.2 Tit-for-tat from the Iterated prisoner’s dilemma tournaments

Seung Jun and Mustaque Ahamad investigated the incentive mechanism of
BitTorrent and proposed a new incentive algorithm based on their experience
on Iterated prisioner’s dilemma tournaments [3]. The algorithm proposed is the
winning entry tit-for-tat of that tournaments. The goal of this mechanism is to
bring fairness to all users in the swarm and avoid free-rider users.

In this mechanism, peers maintain the upload amount u and the download
amount d for each link. We can define the deficit of a link as u−d. If the constant
c denotes the size of a fragment, a peer ensures that the deficit of every link is
restricted up to a certain bound at any time:

 u−d ≤ f ·c (2.1)

Chapter 2: Incentives schemes study 15

where f (≥ 1) is called a nice factor. Within this condition and the maximum
upload rate allowed, the peer uploads evenly to all links as much as it can. This
factor determines the amount that a peer is willing to risk for a chance to
establish cooperation. Although neighbours may be tempted to take advantage
of this nice peer, they will benefit more through the repeated exchange of
fragments if they cooperate.

Although this algorithm improves the incentive mechanism provided by the
original BitTorrent implementation, it still has some drawbacks. It requires long
round durations to estimate bandwidth contribution of the neighbouring peers,
and wastes much bandwidth each round before discovering other contributing
peers. This results in a bandwidth underutilization and it is also vulnerable to
strategic clients.

2.3.1.3 Strategic client: BitTyrant

Piatek, Isdal, Anderson, Krishnamurthy and Venkataramani show that the
incentive mechanism of the standard BitTorrent implementation is not robust to
strategic clients. Through performance modelling parameterized by real world
traces, they demonstrate that all peers contribute resources that do not directly
improve their performance [18].

They have modelled and analysed the BitTorrent's current incentive
mechanism. They found that although the original algorithm of BitTorrent
discourages free-riding, the dominant performance effect, in practice, is an
altruistic contribution on the part of a small minority of high capacity peers and
this is not a consequence of his chocking and unchcoking TFT algorithm.
Selfish peers can significantly reduce their contribution and yet improve their
download performance.

They concluded that incentives in original BitTorrent algorithm do not build
robustness. Instead of this, BitTorrent works well today simply because most
people use client software as-is without trying to cheat the system.

They use these results to drive the design and implementation of BitTyrant.
BitTyrant can improve performance only due to more effective use of altruistic
contribution of the other peers. So one BitTyrant client in a swarm full of original
BitTorrent clients can improve its performance and harm the whole performance
of the swarm.

BitTyrant is a strategic BitTorrent client meaning his goal is not to provide
fairness to the whole swarm but only to a client be a free-rider.

2.3.1.4 TFT with Proportional Response algorithm

Levin, LaCurts Spring and Bhattacharjee view BitTorrent as an auction instead
of a tit-for-tat. With this point of view They show that the unchocking algorithm

16 An Analysis of incentives mechanisms and evaluation on BitTorrent

of the BitTorrent standard implementation does not yield the fairness and
robustness guarantees desired from such a system. With the goal of “the more
you give the more you get", they investigate the use of a proportional share
mechanism as a replacement to BitTorrent’s unchoker and creates the
PropShare implementation [8].

The algorithm works as follows: PropShare runs an auction for a peer i's
bandwidth and accepts the bandwidth offer from peer j as j's bid. Then peer i
sends to j the proportional upload bandwidth taking into account all the remote
peers and the total available upload bandwidth. It also uses a mechanism that
reveals strategic blocks to the neighbours only enough to keep neighbours
interested.

The proportional Response algorithm provides several benefits in front of the
previous algorithms. PropShare is Sybil attack proof and more collusion
resistant and therefore it is more free-riding proof.

2.3.1.5 Treat-Before-Trick

Shin, Reeves and Rhee propose a method of preventing free-riding in peer-to-
peer systems based on cryptography [15]. This method, called Treat-Before-
Trick, is based on secret sharing. The goal of that mechanism is to provide
fairness to the whole swarm and avoid free-ride users.

The steps of Treat-Before-Trick are the same as those of the BitTorrent
standard implementation, with the exception of key management. Peers are still
assumed to use TFT and optimistic unchocking when determining how much
resources to share.

Treat-Before-Trick adds the secret sharing to BitTorrent: A file is divided into
pieces, encrypted with a symmetric secret key, and then distributed to
requesting peers along with subkeys generated. Peers must then swap file
pieces for subkeys, which are needed in order to decrypt the file pieces.

The use of secret sharing effectively counters known free-riding techniques,
such as the sybil attack, while download time for compliant peers is heavily
reduced. The computational cost and the extra bandwidth required for subkey
exchange is not very high. However Treat-Before-Trick is subject to attack by
malicious peers, who potentially disclose keys but do not profit themselves and
collusion between free-riders (exchanging subkeys) is not prevented in current
Treat-Before-Trick.

2.3.1.6 Fair Torrent

Sherman, Nieh and Stein presented a deficit-based distributed algorithm called
FairTorrent [1]. The goal of this mechanism is to provide fairness to the whole
swarm.

Chapter 2: Incentives schemes study 17

They realised that all the mechanisms based on direct reciprocity are rate-
based and suffer from a fundamental flaw. First, they require long round
durations to estimate bandwidth contribution of the neighbouring peers and
waste much bandwidth in that. Second, they assume that a peer’s allocation
measured in a given round is an accurate estimate of the future contribution
from that peer and this assumption is problematic as each peer can change its
allocation or even stop uploading to a given peer.

A FairTorrent client uploads a data block to the peer it owes the most data and
automatically converges to the individual reciprocation rates of its peers, without
measuring or predicting these rates. FairTorrent runs locally at each peer and
maintains a deficit counter for each neighbour who represents the difference
between bytes sent and bytes received from that neighbour. When it is ready to
upload a data block, it sends the block to the peer with the lowest deficit.
FairTorrent does not require an estimate of neighbouring peers’ rate allocation.
Therefore, it does not require rounds for discovering favourable peer sets.

FairTorrent creators compared FairTorrent against BitTorrent, Azureus,
PropShare and BitTyrant. They show that FairTorrent provides better degree of
fairness, compared with other peer-to-peer systems. They also prove that
FairTorrent is the algorithm with a better performance among the others
compared with. Up to now FairTorrent is resilient to free-riders, low contributors
and strategic peers.

2.3.2 Indirect reciprocity

In indirect-reciprocity schemes, users maintain a shared history of past
behaviour of all the users. They provide a service based on the service provided
in the past by each remote peer to the whole swarm. Indirect-reciprocity
schemes are also called reputation-based schemes in the literature.

The difference from the direct-reciprocity is the computation of reputation scores
for each peer. These schemes have the ability to map the scores to strategies
applied by the whole swarm.

Indirect-reciprocity schemes are more scalable than direct-reciprocity schemes
[22]. However, indirect-reciprocity schemes rely on second-hand observations
and thus must confront trust issues that do not arise in direct-reciprocity
schemes. Collusion can be very harmful to these peer-to-peer systems if they
are not well handled. Colluded peers could alter the reputation of peers in the
shared history of the swarm.

18 An Analysis of incentives mechanisms and evaluation on BitTorrent

2.3.2.1 EigenTrust

EigenTrust is not only an incentive mechanism but a complete reputation
mechanism. Each peer is assigned a unique global trust value that reflects the
experiences of all peers in the network with peer. In EigenTrust all peers in the
network participate in computing these values in a distributed manner.

The reputation value of each peer is not only based in the uploading and
downloading rates. It includes other parameters such as if the peer has been
sharing inauthentic files. The whole system takes actions against the malicious
peers based on the reputation values such as isolate them from the network.

EigenTrust tries to provide the fairness to the swarm. However EigenTrust has
many drawbacks. It is vulnerable to collusion and to the sybil attack. A group of
peers can lie about the reputation of a peer. Moreover, the distributed
computation and management of the reputation is very complex and it causes
computation and bandwidth overheads.

2.3.2.2 FOX

FOX is a file-sharing protocol which incentive mechanism is based on an
overlay structure [14]. This overlay structure build a logical topology in which the
peers are placed. Each peer will only be able to share information with their
immediate neighbours.

FOX's structured topology provides a means for peer to punish nodes both
upstream and downstream from it. The FOX topology is restructured in a cyclic
way. When a peer is no sharing as it should, it will be punished moving it on the
topology.

FOX provides optimal download times when everyone cooperates and punishes
free-riders. However it has some drawbacks: reforming the structure causes
overheads and peers must wait for a new restructuring to even have the
possibility of punishing free-riders. Moreover, FOX is unnecessarily strict, as
there may be highly provisioned nodes that are willing to give much more to the
system as long as they can download more, but FOX does not provision for this.

2.4 Monetary-based schemes

The last category of methods to prevent free-riders from downloading is the
Monetary-based scheme. In this category each downloader should pay the
downloading fees for resources they consume and there must be a public key
infrastructure to add an economic system to the network.

Chapter 2: Incentives schemes study 19

Monetary schemes provide a mechanism to exchange tokens by blocks of
information. It allows individual users to make a profit by uploading more than
they download and the other way around it allows an individual to pay for
download without upload requirements. However, they have a notable
drawback: It is high complex since they require an infrastructure for accounting
and micropayments.

2.4.1 Dandelion

Dandelion is a monetary-based file distribution protocol that uses currency and
key exchanges through a centralized server to provide incentive for sharing
across different downloads [13].

Dandelion system is reminiscent of BitTorrent. However, Dandelion uses a
different incentive mechanism. It employs a cryptographic scheme for the fair
exchange of content uploads for credit, the content provider is able to redeem a
client’s credit for monetary rewards. Thus, it provides strong incentives for
clients to seed content.

Cryptographic scheme provides Dandelion with free-rider robustness and
makes the system proof to most of the attacks such as sibyl attack and
collusion. However, it has the drawbacks associated to a monetary scheme: a
centralised infrastructure for accounting and micropayments and the complexity
because of the cryptographic scheme.

20 An Analysis of incentives mechanisms and evaluation on BitTorrent

CHAPTER 3: USED TECHNOLOGIES AND SCENARIO

3.1 Introduction

Having realised a deep analysis of the state of the art of the algorithms of
incentives existing today, now it is pretended to build an scenario that allow to
compare experimentally different algorithms. In this chapter, the scenario of
tests developed and the technologies used are described.

The scenario used is based on virtualization. In a physical machine, a test
scenario has been created. In this scenario, the peer-to-peer network elements
are virtual, intending to look as much as possible to reality by performing the
same operations than a real peer-to-peer network.

In order to obtain the results in equal conditions and be able to use different
algorithms together, the tests have been conducted using the same peer-to-
peer protocol. In this case, BitTorrent has been used due to the fact that its
specification is free to use and it exists a large number of clients which
implement different algorithms of incentives.

3.2 BitTorrent architecture

BitTorrent is a protocol supporting the practice of peer-to-peer file sharing and is
used to distribute large amounts of data. BitTorrent is one of the most common
protocols for transferring large files in Internet. Programmer Bram Cohen, a
former graduate student in Computer Science Major by the University at
Buffalo, designed the protocol in April 2001 and released the first available
version on July 2nd, 2001. BitTorrent clients are available for a variety of
computing platforms and operating systems.

In order to be able to mount the peer-to-peer testbeds, BitTorrent requires the
presence of a tracker. A tracker is a server that assists in the communication
between peers using the BitTorrent protocol. A tracker maintains all the peers
belonging to the swarm identified. Clients are required to communicate with the
tracker to initiate downloads. After that, when clients have already begun
downloading, they also communicate with the tracker periodically to negotiate
with newer peers and provide statistics. However, after the initial reception of
peer data, peer communication can continue without a tracker.

Chapter 3: Experimental tests 21

75% 100% 55% 25% 100% 75%

Tracker

.torrent file

LeechSeedLeechLeechSeedLeech

42%

Figure 3.3: Tracker operation

In particular for these tests, the BitTornado tracker has been used. BitTornado
has been run in a machine dedicated to this role in all the testbeds done. In the
testsbeds, when a machine starts the BitTorrent client, it loads the torrent file
containing the information about the file and the tracker. With this information,
the client contacts with the tracker and registers itself as a peer in the swarm.
The trackers gives to the client the list of the other peers already registered in
the swarm.

3.3 Netkit

Netkit [29] is a self-contained environment developed by the Roma Tre
University that makes it easy and costless to emulate complex network
configurations on a single host machine in order to perform networking
experiments. It allows creating several virtual network components that can be
easily interconnected in order to form a network on a single PC. Interconnected
machines may be organized to form a laboratory, which can be used to emulate
the behaviour of a particular service or protocol.

Netkit, in itself, is an open source project aiming at integrating different other
open source products. It is heavily based on the User Mode Linux (UML) variant
of the Linux kernel. The purpose of this Netkit is to solve many of the difficulties
and technicalities that a user could have in using UML for networking.

22 An Analysis of incentives mechanisms and evaluation on BitTorrent

Figure 3.4: Netkit architecture (Roma Tre University)

Netkit virtual nodes can be interconnected between them using virtual hubs.
This virtual hubs are a colision domain that allows to connect the network
interfaces of the virtual machines. This virtual hubs can be also connected to
the real world using virtual interfaces "tap" witch connects the virtual hub with a
virtual network interface of the host.

In order to carry out the experimental tests, several virtualization technologies
have been compared in terms of features, performance, licensing and simplicity
of use among others. The virtualization products proposed were Vmware,
Virtual Box, Xen and Netkit with UML. The easy to use and the open source
license of use of Netkit with UML tipped the balance in favor of Netkit with UML.
It was also important the scriptable way to build and boot an entire scenario
used in Netkit.

Regardless the benefits explained above, for the purpose of simulating peer-to-
peer networks, Netkit suffers from a significant limitation. Netkit does not allow
running applications with graphical user interfaces. This limitation prevents from
using some peer-to-peer clients in which the graphical user interface is needed
for running. Therefore, all the peer-to-peer systems tested here are able to run
without the graphical user interface.

The Netkit version used in all the test beds is the version 2.8, the latest version
available as of publication time.

A very interesting feature of Netkit performing the tests has been the Netkit
labs. A Netkit lab is a set of preconfigured virtual machines that can be started
and halted together. This feature of Netkit has allowed to preconfigure the
scenarios and then re-run the experiment as many times as needed. The way in
which these scenarios are defined is by using configuration files for the
elements in the scenario. In annex 3 are detailed the configuration of the
scenarios created for the experiments.

Chapter 3: Experimental tests 23

3.4 User-mode Linux

User-mode Linux allows to run several guest Linux kernels as a process within
the normal Linux kernel (host). As each guest is just a normal application
running as a process in user space, this approach provides the user with a way
of running multiple virtual Linux machines on a single piece of hardware.

Hardware

Linux Kernel (host)

Process 1 Process 2 ... UML kernel 1 (guest)

Process

1

Process

2
...

UML kernel 2 (guest)

Process

1

Process

2
...

Figure 3.5: Execution levels using UML

Virtualization plays a fundamental role in development and testing applications.
In User-mode Linux each guest machine runs as application in user space
giving to the user the total control of that machine. That is why User-mode Linux
is very useful to test and debug new software, as well as in teaching and
research.

User-mode Linux is the technology in which Netkit is based. Netkit takes
advantage of this powerful technology improving it to offer a very useful
framework for a teaching and researching in networks.

When a User-mode Linux machine is booted, it starts to use a filesystem. This
filesystem is contained in a file on the host machine and it is a block device.
UML block devices can be layered, with a read-only device having a copy-on-
write (COW) read-write device on top of it. This acts as a single read-write
device, with the modifications to the read-only layer being recorded in the read-
write COW layer. This allows multiple machines to share a filesystem, allowing
a large saving in disk space on the host.

24 An Analysis of incentives mechanisms and evaluation on BitTorrent

Reading
a sector

COW file
(Read + Write)

Filesystem
(Read only)

Writing
a sector

Figure 3.6: Figure Input / Output Operations on a Block Device with COW

In order to perform the testbeds, a unique filesystem for all the machines has
been created. This filesystem is based on the filesystem provided with Netkit on
its version 5.2 and it has been modified as it is described in the ANNEX 2. It
contains all the software needed: The peer-to-peer clients, tracker, tools, etc.

3.5 Hardware

The hardware used to run the laboratories has been a personal computer with
the following characteristics:

Processor Intel Core i5-2500 Quadcore 3,30 GHz

Memory 8 GB of DDR3 SDRAM

S.O. Ubuntu Linux 12.04 LTS – Linux 3.2.0-37 x86_64

Storage 140GB

Table 3.2: Hardware specifications

It is important to see here that the hardware characteristics of the infrastructure
in which Netkit will run are a determinant limitation. Although the system used
here is not a low performance desktop, this hardware will limit the number of
virtual machines that can be running at the same time on the testbed.

In order to be sure that the performance of each virtual machine does not affect
to the results of the testsbeds, some performance tests with virtual machines
running peer-to-peer software have been performed. Due to the results
obtained in these tests, a limitation of 15 machines running at the same time
has been imposed on the testbeds.

Chapter 3: Experimental tests 25

3.6 Other tools used

Tc [31] and Wondershaper [32] have been used in order to limit the bandwidth
capacities of the peers to perform the different tests. Tc is used to configure
Traffic Control in the Linux kernel. Traffic Control consists of shaping,
scheduling, policing and dropping traffic. Wondershaper provides an easy way
to configure the traffic parameters of Tc using scripts.

Tcpdump [33] has been used to capture the traffic in the network. Tcpdump is a
packet analyser that runs under the command line. It allows the user to
intercept and display TCP/IP and other packets being transmitted or received
over a network to which the computer is attached. Distributed under the BSD
license, tcpdump is free software. With Tcpdump in the “Analysis tools”
machine, all the traffic has been captured and stored in a .cap file.

Wireshark [34] has been used to analyse the dumps stored in the .cap files and
generated with tcpdump. Wireshark is a packet analyser used for network
troubleshooting, analysis, software and communications protocol development,
and education. Wireshark is very similar to tcpdump, but has a graphical front-
end, plus some integrated sorting and filtering options. It also allows generating
statistics information about the traffic captured.

26 An Analysis of incentives mechanisms and evaluation on BitTorrent

CHAPTER 4: EXPERIMENTAL TESTS RESULTS

4.1. Introduction

In order to evaluate and compare the peer-to-peer algorithms some tests have
been performed. These tests intend to compare the algorithms in terms of
fairness, resilience to strategic peers and convergence time. In this chapter the
results of the experimental tests are presented. In order to obtain very easy to
see conclusions, the results are presented in charts.

4.2. Fairness Evaluation

The aim of the first experiment is to compare the different algorithms in terms of
fairness. For a one peer, we could define fairness as the relation between the
quantity of information uploaded and downloaded [14]. As much as this relation
approaches to one, the protocol is fairer. Azureus (Standard BitTorrent
implementation) (section 2.3.1.1), BitTyrant (section 2.3.1.3), FairTorrent
(section 2.3.1.6) and PropShare (section 2.3.1.4) have been evaluated in this
first experiment.

In order to compare the fairness, a laboratory for each studied protocol has
been set up. Each one is comprised by a set of machines located in the same
network with different roles:

 2 peers with the whole file acting as seeders

 8 peers without the file acting as leechers

 1 machine with tracker role

 1 machine where the analysis tools runs

Chapter 3: Experimental tests 27

Leechers

Seeders Tracker

Analysis

tools

Figure 4.7: Fairness evaluation scenario

The seeders have a bandwidth capacity of 100KiB/s of uploading. Each leecher
has a download capacity of 100KiB/s and the upload capacity is uniformly
distributed between 10KiB/s and 60 KiB/s. These bandwidth rates reflect a
typical scenario of users with asymmetric Internet connections with a bigger
download capacity than upload capacity.

In this laboratory, leechers begin downloading simultaneously and remain as
seeds in the system upon download completions. For each leecher, the average
uploading rate has been compared with the average downloading rate from
others leechers. This relation is presented below in very easy to see charts. In
order to obtain the minimum sample results, the experiment has been run
several times. The bandwidth usage measurements have been done using
tcpdump and Wireshark.

28 An Analysis of incentives mechanisms and evaluation on BitTorrent

Figure 4.8: Azureus fairness evaluation chart

Figure 4.9: BitTyrant fairness evaluation chart

Figure 4.10: PropShare fairness evaluation chart

Chapter 3: Experimental tests 29

Figure 4.11: FairTorrent fairness evaluation chart

As defined before, fairness is the relation between the quantity of information
uploaded and downloaded. As this relation is closest to one, we can say that is
fairer. So, in the charts: the more close to the line y=x the results are, the fairer
is the algorithm.

In the charts the red line is the line y=x so it is the ideal. The points marked in
blue are the results of the different measurements done.

In terms of fairness, another interesting point would be to check with which
other peers a peer collaborates, and to what extent is he collaborating. In order
to be able to do so, a series of matrices has been built. These matrices show
the total number of bytes uploaded by peers to each other, averaged over all
runs. Darker squares represent more data.

Figure 4.12: Azureus fairness evaluation matrix

30 An Analysis of incentives mechanisms and evaluation on BitTorrent

Figure 4.13: BitTyrant fairness evaluation matrix

Figure 4.14: PropShare fairness evaluation matrix

Figure 4.15: FairTorrent fairness evaluation matrix

Chapter 3: Experimental tests 31

Thanks to the resulting charts and matrix, is easy to get some interesting
conclusions. We can say that the FairTorrent is the algorithm fairer as it has
almost all the points over the ideal line. In the case of Azureus, it’s showed that
the algorithm benefits those that share less in detriment of those who share
more.

4.3. Resilience to strategic peers

The aim is to compare the response of the different algorithms against a free-
rider user that uses a strategic client. The goal of this testbed is to compare the
resilience of the Azureus (section 2.3.1.1), FairTorrent (section 2.3.1.6) and
PropShare (section 2.3.1.4) clients.

In order to do so, a scenario similar to the fairness experiment is used. This
scenario is comprised of a swarm in which all nodes are sharing a file. All nodes
use the same peer-to-peer algorithm except a node in which the strategic client
BitTyrant is used. The download times for free-riders users with strategic node
are compared with the download times of the rest of peers. Thereby it can be
seen how the algorithm performs in a swarm in which free-riders nodes are
present.

In order to compare the resilience, a laboratory for each studied protocol has
been set up. Each one is comprised by a set of machines located in the same
network with different roles:

 2 peers with the whole file acting as seeders

 7 peers without the file acting as leechers

 1 peer acting as leecher running the BitTyrant client

 1 machine with tracker role

 1 machine where the analysis tools run

32 An Analysis of incentives mechanisms and evaluation on BitTorrent

Leechers

Seeders Tracker

Analysis

tools

Strategic client

Figure 4.16: Resilience evaluation architecture

The seeders have a bandwidth capacity of 100KiB/s of upload. Each leecher
have a download capacity of 100KiB/s and a upload capacity of 20 KiB/s. The
strategic client has the same network capacities than the other leechers. This
bandwidth rates reflects a typical scenario of users with asymmetric Internet
connections with a bigger download capacity than upload capacity.

In this scenario, leechers begin downloading simultaneously and remain as
seeds in the system upon download completions. The experiment has been run
several times and for each leecher, the download time has been computed
using tcpdump and Wireshark.

The download times are presented below in a very easy to see chart. This chart
shows for each experiment the average and the range of the download times for
both the strategic client and the algorithm tested.

Chapter 3: Experimental tests 33

Figure 4.17: Average and range of the download times of BitTorrent and other
algorithms competing

Another interesting point of view are the sharing data matrices. These matrices
show the total number of bytes peers uploaded to each other, averaged over all
runs. Darker squares represent more data. Peers 1 to 3 are seeds, peer 4 is the
strategic peer and the other peers are leechers.

34 An Analysis of incentives mechanisms and evaluation on BitTorrent

Figure 4.18: Azureus resilience evaluation matrix

Figure 4.19: PropShare resilience evaluation matrix

Figure 4.20: FairTorrent resilience evaluation matrix

Chapter 3: Experimental tests 35

Although there is not a huge difference, because the number of peers in the
swarm is low, the chart shows clearly different behaviours among the three
algorithms compared here. In the first case, the BitTyrant peer achieves better
download times than the other users who are using Azureus. Furthermore, the
Azureus sharing matrix shows how the peer 4 obtains more data from other
leechers than the other peers do. This matrix also shows how this peer
contributes with less information to the other peers. In this case we can say that
Azureus is vulnerable to the free-rider strategies of the bitTyrant client. These
results are in line with the conclusions of the paper made by the authors of
BitTyrant as discussed in chapter 2 of this report, in the BitTyrant section.

On the other hand, in the PropShare and FairTorrent scenarios, the results are
different. Both of them achieve better download times than BitTyrant. The
PropShare sharing matrix shows that the strategic peer 4 has been penalised
by the other leechers and therefore it has needed to obtain more data from the
seeds. In the FairTorrent sharing matrix, this behaviour is more prominent. In
both cases, PropShare and FairTorrent scenarios, the strategic peer BitTyrant
has being punished by the algorithm on the other leechers because of his free-
rider behaviour. These results are also in line with the respective conclusions
from chapter 2 of this report.

4.4. Convergence time of each algorithm

As we have seen before in the direct-reciprocity section on chapter 2, the Nash
equilibrium is a point in the time where all the peers already know each other’s
strategies and no one has anything to gain if they only change their own
strategy unilaterally. In the Nash equilibrium the best result for each peer
considered individually is achieved.

The goal of this testbed is to compare among the algorithms the time needed by
the algorithm to achieve the equilibrium. We are looking for the convergence
time of the algorithm. Azureus (Standard BitTorrent implementation) (section
2.3.1.1), BitTyrant (section 2.3.1.3), FairTorrent (section 2.3.1.6) and PropShare
(section 2.3.1.4) have been evaluated in this experiment.

In order to do so, each algorithm has been executed in a testbed several times.
For each peer in the swarm, we will consider that the peer has arrived to the
equilibrium when it reaches a download rate of at least 90% of his maximum
upload rate configured. Therefore, we will consider the convergence time as the
time between the moment when the node first contacts the tracker and when
the node arrives to the equilibrium.

The scenario built to compare the converge time of the different algorithms is
comprised by a set of machines located in the same network:

36 An Analysis of incentives mechanisms and evaluation on BitTorrent

 3 peers with the whole file acting as seeders

 8 peers without the file acting as leechers

 1 machine with tracker role

 1 machine where the analysis tools runs

Leechers

Seeders Tracker

Analysis

tools

Figure 4.21: Convergence time evaluation scenario

The seeders have a bandwidth capacity of 100 KiB/s of uploading. Each leecher
has a download capacity of 100 KiB/s and the upload capacity is uniformly
distributed between 10 KiB/s and 60 KiB/s. These bandwidth rates reflect a
typical scenario of users with asymmetric Internet connections with a bigger
download capacity than upload capacity.

In this laboratory, leechers begin downloading simultaneously and remain as
seeds in the system upon download completions. In order to obtain the
minimum sample results, the experiment has been run several times. The
bandwidth usage measurements have been done using tcpdump and
Wireshark.

Chapter 3: Experimental tests 37

Figure 4.22: Figure Rate convergence

As defined before, the convergence time is the time that a peer needs to reach
a downloading rate at least 90% of its maximum download rate configured.
The figure shows the cumulative frequency analysis of the time needed by the
peers to obtain the equilibrium.

Thanks to the resulting charts, we can conclude that FairTorrent is the algorithm
which needs less time to converge among the algorithms compared. The
differences showed in this chart are not too large. That is because the swarms
are very small due to the limitations imposed by the testbed infrastructure in
which we cannot run testbeds with a very large number of peers due to
performance issues. In real swarms where the number of peers are ten times
larger than the used here, the differences between the algorithms would be
larger.

Chapter 5: Conclusions 39

CHAPTER 5: CONCLUSIONS

As they are presented in the introduction of this report, there were two main
goals to be accomplished in this thesis. The first one was to analyse the state of
the art related to the different existing algorithms detailing their characteristics
and profits according to their authors, and provide a classification by
characteristics of the algorithms.

The second important goal was to build an scenario where different peer-to-
peer algorithms could be experimentally tested and compared. Those scenarios
were supposed to be capable to obtain experimental results allowing to
compare several algorithms among others and confirm the results obtained in
the theoretic comparative. The experimental results had to allow verify or deny
the presumed profits provided by each algorithm.

At this point we can affirm that all the goals presented at the beginning of the
thesis have been accomplished throughout the chapters. A strict analysis of the
state of the art has been provided. The different algorithms have been classified
taking into consideration the methods to inventive the peers.

After the theoretical analysis, a functional scenario to test some algorithms has
been built. The scenario built has allowed to test different BitTorrent clients
implementing different incentives algorithms in order to be able to confirm or
deny the most important features. The presented scenario is not a very realistic
swarm, since it is comprised by very few nodes. However, the tests are real
clients running in a virtualization environment and not only simulations, what
means that the results obtained are not perfectly strict, but the results that we
would obtain performing the same test in the real world swarms will be in the
same line that the ones obtained here.

In the experiments, several algorithms of the type Direct-reciprocity have been
tested under a BitTorrent network. Those algorithms are the most interesting
type due to their simple way of working and thus their interoperability with other
clients. In the experiments, fairness, resilience to strategic peers and
convergence time has been evaluated. These test results provide a good vision
of the incentive algorithms quality and allow to compare the algorithms between
them.

Both in the study of the literature and in the experimental results, FairTorrent is
the algorithm with better results: compared to other peer-to-peer systems,
FairTorrent’s deficit-based algorithm provides a high degree of fairness, a better
performance and a fast convergence rate. It was also seen that FairTorrent is
resilient to free-riders, low contributors and strategic peers. FairTorrent does not
require a centralized system, peer reputation, or third-party credit-keeping
services, making it very simple.

Both, the comprehensive study of the state of the art and the experimental
tests, have allowed us to identify not only real but also supposed benefits, which
ended up not being as important as their creators considered. The results

40 An Analysis of incentives mechanisms and evaluation on BitTorrent

obtained in the experimental part have been in line with the results of the
literature analysis.

5.1. Environmental impact

This thesis is related to improvements in the peer-to-peer networks by
improving its incentives algorithms. The environmental impact of this changes in
the algorithms by itself is minimum.

Despite the foregoing, the impact of the infrastructures bellow the peer-to-peer
networks is large. Peer-to-peer networks usually run over Internet. Here we
have to consider all the hardware across the world to support Internet. This
large quantity of hardware has an important impact in terms of energy
consumption. Servers need energy to be build, they need energy to run and
they need energy to be refrigerated inside the datacentres, among other energy
consumption throughout its life. Therefore the carbon footprint related to this
energy consumption is high. Some studies indicate that in 2012, between 2%
and 3% of total world's emissions were due to Internet [25].

The fraction of the total Internet bandwidth used by peer-to-peer networks is so
large. Besides that, the use of peer-to-peer traffic is growing dramatically,
particularly for sharing large video/audio files and software. This is because of
the great success of the peer-to-peer networks on Internet.

The success of the peer-to-peer networks is because they work well. That
means that improving this networks incentivize people to use more and more
these networks. This implies more bandwidth consumption and therefore more
hardware needed consuming energy.

Related to the environmental impact, we can conclude that maybe at first sight
to improve an algorithm has a minimum impact. But an analysis a little bit far
shows us that a little change in an algorithm can have a large environmental
impact. But not all is bad, we also should notice here that the use of data
networks minimizes the impact the technology it replaces, some of them with a
larger footprint.

5.2. Future work

To carry out experimental tests, a virtualization platform called Net-kit has been
used. In the future, those tests could be extrapolated into a real platform of
simulations of peer-to-peer and even data could be extracted from peer-to-peer
swarms. This way, it could be possible to carry out a much more strict
experimental evaluation.

In terms of the development of new algorithms, we can continue researching on
the presented methods of incentives. Algorithms can be improved so that they

Chapter 5: Conclusions 41

improve on performance, fairness, security and computational cost. It is also
possible to keep investigating in combining different methods at the same time
and see if those combinations can bring even more improvements. Finally, we
can also combine incentive methods with other methods to different purposes
such as peer authentication, to check if combining them would bring benefits.

In the more generic field of peer-to-peer, it is necessary to continue working on
improving the security of the system, preventing the spread of viruses and
malware and avoiding the bad content identification within the network. Another
field with a lot of possible improvement is the search of content algorithms
within the peer-to-peer network.

5.3. Personal approach

The execution of this thesis has provided me with a lot of knowledge in different
fields and technologies. First of all, the initial study made me acquire knowledge
about the peer-to-peer technology and the different algorithms of incentives.

Apart from the knowledge related to the peer-to-peer technology, the
experiments gave me new knowledge of a range of fields like virtualisation
technologies for Linux, the Linux operative system, the tools for traffic analysis,
etc. During the execution of the experimental tests several problems appeared,
whose identification and resolution where crucial during this learning.

The use of Net-kit with the Linux User-Mode technology has allowed me to build
up a test scenario that could be repeated as many times as it was needed,
thanks to the management layer of automatization of laboratories included with
Net-kit. But Net-kit has also some drawbacks. Netkit does not allow running
applications with graphical user interfaces. Such a limitation prevents from
using peer-to-peer clients in which the graphical user interface is needed for
running. Another point has been the difficulties encountered to build the
scenario. Net-kit has some problems related to working with those applications
that have a high use of memory like the Java virtual Machine. That has affected
during the filesystem building phase and the running of the virtual machines.
Some fine tuning configuration related to this issue was performed to overcome
those problems. These configuration parameters, detailed in the ANNEX 2,
were necessary to be able to build the test scenario.

TC is a very powerful tool to control traffic. This tool, combined with the
simplicity of use provided by Wondershaper, has been very useful and effective
to limit the bandwidth of the peers.

The powerful tool Wireshark in combination with tcpdump has been very useful
to obtain a detailed view of the network traffic. Wireshark includes a lot of
appropriate tools to extract stats to generate the experimental results.

42 An Analysis of incentives mechanisms and evaluation on BitTorrent

Apart from the knowledge related to technologies, the execution of this thesis
has provided me with a lot of new knowledge regarding to methodologies,
processes, work organization and a long etcetera.

Bibliography 43

BIBLIOGRAPHY

[1] A. Sherman, J. Nieh and C. Stein. FairTorrent bringing fairness to peer-

to-peer systems. Proceedings of the 5th ACM Conference on the
emerging Networking Experiments and Technologies (CoNEXT 2009),
Rome, Italy, December 1-4, 2009.

[2] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding in BitTorrent

with the large view exploit. In 6th International Workshop on Peer-to-Peer
Systems (IPTPS ’07), Bellevue, WA, Feb. 2007.

[3] S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free-riding. In

Proceedings of the 3nd Workshop on the Economics of Peer-to-Peer
Systems, Aug. 2005.

[4] K. Ranganathan, M. Ripeanu, A. Sarin and I. Foster. To Share or Not to

Share, An Analysis of Incentives to Contribute in Collaborative File
Sharing Environments. In Workshop on Economics of Peer-to-Peer
Systems (June 2003).

[5] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentives for cooperation

in peer-to-peer networks. In Workshop on Economics of Peer-to-Peer
Systems, 2003.

[7] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free Riding in BitTorrent

Networks with the Large View Exploit. In Proceedings of the 6th
International Workshop on Peer-to-Peer Systems (IPTPS ’07), Feb.
2007.

[8] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. BitTorrent is an

Auction: Analyzing and Improving BitTorrent’s Incentives. In Proceedings
of the ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, (SIGCOMM ’08), Aug.
2008.

[10] Z. Liu, P. Dhungel, Di Wu, C. Zhang, and K.W. Ross, “Understanding

and Improving Incentives in Private P2P Communities”, ICDCS, Genoa,
Italy, 2010.

[11] F. Wu and L. Zhang. Proportional Response Dynamics Leads to Market

Equilibrium. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC ’07), June 2007.

[12] B. Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of

the 1st Workshop on the Economics of Peer-to-Peer Systems, June
2003.

44 An Analysis of incentives mechanisms and evaluation on BitTorrent

[13] M. Sirivianos, X. Yang, and S. Jarecski. Dandelion: Cooperative Content
Distribution with Robust Incentives. In Proceedings of the 2007 USENIX
Annual Technical Conference (USENIX ’07), June 2007.

[14] D. Levin, R. Sherwood, and B. Bhattacharjee. Fair file swarming with

FOX. In IPTPS, 2006.

[15] K. Shin, D. Reeves, I. Rhee, "Treat-Before-Trick : Free-riding Prevention

for BitTorrent-like Peer-to-Peer Networks", Proc. Of Intl. Parallel and
Distributed Processing Symposium (IPDPS 2009), May 2009.

[16] D. Qiu and R.Srikant. Modeling and Performance Analysis of BitTorrent-

Like Peet-to-Peer Networks. In Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, (SIGCOMM ’04), Sept. 2004.

[17] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The EigenTrust

Algorithm for Reputation Management in P2P Networks. In Proceedings
of the 12th International World Wide Web Conference (WWW’03), May
2003.

[18] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A.

Venkataramani. Do Incentives Build Robustness in BitTorrent. In
Proceedings of the 4th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’07), Apr. 2007.

[19] M. Feldman and J. Chuang, “Overcoming free-riding behavior in peer-to-

peer systems,” in ACM Sigecom Exchanges, vol. 5, July 2005.

[20] S. J. Nielson, C. E. Spare and D. S. Wallach: Building Better Incentives

for Robustness in BitTorrent. CoRR abs/1108.2716, 2011.

[21] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of

peer-to-peer file sharing systems. In Proceedings of Multimedia
Computing and Networking (MMCN) 2002, January 2002.

[22] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive

techniques for peer-to-peer networks,” in EC, 2004.

[23] Feldman, M., Papadimitriou, C., Stoica, I., and Chuang, J.: Free-Riding

and White-washing in Peer-to-Peer Systems. In Proc. SIGCOMM
workshop on Practice and Theory of Incentives and Game Theory in
Networked Systems, 2004.

[24] Golle, P., Leyton-Brown, K., Mironov, I., and Lillibridge, M.: Incentives

For Sharing in Peer-to-Peer Networks. In Proceedings of the 3rd ACM
conference on Electronic Commerce, October 2001.

Bibliography 45

[25] CEET Annual report 2012. Centre for Energy-Efficient
Telecommunications (CEET), Friday 31 August 2012.

[26] R. Schollmeier, A Definition of Peer-to-Peer Networking for the

Classification of Peer-to-Peer Architectures and Applications,
Proceedings of the First International Conference on Peer-to-Peer
Computing, IEEE, 2002.

[27] Ralf Steinmetz, Klaus Wehrle. Peer-to-Peer Systems and Applications,

Springer-Verlag Berlin Heidelberg, 2005.

[29] Netkit, Computer Networks Laboratory, Università degli studi Roma Tre:

http://wiki.netkit.org

[28] eMule. http://www.emule-project.net/.

[29] Azureus. http://www.azureus.com/.

[30] Kazaa. http://www.kazaa.com/.

[31] Linux Advanced Routing & Traffic Control. http://http://www.lartc.org/.

[32] The Wonder Shaper. http://lartc.org/wondershaper/.

[33] Tcpdump. http://www.tcpdump.org/

[34] WireShark. http://www.wireshark.org/

Annex 1: Netkit set-up 47

ANNEX 1: NETKIT SET-UP

Starting from Netkit version 2, consists of three different packages:

1. The Netkit "core", which contains commands, documentation and other
stuff which is necessary for Netkit to work.

2. The Netkit filesystem, which contains the filesystem for virtual machines.
3. The Netkit kernel, which contains the kernel used by virtual machines.

Netkit is installed in 3 steps:

 Step 1: Download and unpack

Download all the files to a directory of your choice. Then unpack them by
using the following commands:

#tar -xjSf netkit-x.y.tar.bz2

#tar -xjSf netkit-filesystem-Fx.y.tar.bz2

#tar -xjSf netkit-kernel-Kx.y.tar.bz2

Once Netkit has been unpacked, no root privileges are required to
configure it and start working.

 Step 2: Configuration

The first step is to set the environment variable NETKIT_HOME to the
name of the directory Netkit has been installed into. In order to access
the Netkit man pages, the MANPATH variable must be set to
":$NETKIT_HOME/man". For example, assuming that you have installed
Netkit to /home/foo/netkit and that your shell is bash, you would use the
following commands:

#export NETKIT_HOME=/home/foo/netkit

#export MANPATH=:$NETKIT_HOME/man

It may also be useful to put these lines inside your shell initialization file
(`.bashrc' in case you are using the bash shell).

After doing this, you need to update your PATH environment variable to
include the path to the standard Netkit commands. This is required in
order to make Netkit work properly. The entry you need to add to the
PATH is "$NETKIT_HOME/bin". For example, assuming Netkit is (still)
installed into /home/foo/netkit and that your shell is (still) bash, you would
type:

48 An Analysis of incentives mechanisms and evaluation on BitTorrent

#export PATH=$NETKIT_HOME/bin:$PATH

Again, it may be convenient to put this line inside your shell initialization
file.

 Step 3: Checking the configuration

At this point, change the current directory to the Netkit directory:

#cd netkit

Now, run the `check_configuration.sh' script by typing:

#./check_configuration.sh

This script takes care of checking whether your system is configured
properly to make Netkit run. Any misconfigurations are signalled and
instructions for fixing them are reported as well. If the script exits with
success, then Netkit is ready for use.

After the installation of the Netkit, in order to test whether Netkit is working
properly, you can start a simple virtual machine by issuing the command:

#vstart pc1

If everything is in place, you should see a new virtual machine starting up
(eventually popping up an Xterm window) and the command `vlist' on the host
machine should show an output similar to the following:

#vlist

USER VHOST PID UPTIME SIZE INTERFACES

foo pc1 24102 00:03 12376

Total virtual machines: 1 (you), 1 (all users)

Total consumed memory: 12376 KB (you), 12376 KB (all users)

You can stop the virtual machine by typing the following command on the host
machine console:

#vhalt -r pc1

You can now delete the file pc1.log.

Annex 1: Netkit set-up 49

As an additional feature, users of the bash shell can take advantage of
command line auto completion for Netkit commands. In order to activate it, first
of all make sure your shell is bash:

#readlink -f $SHELL

If it is, then you can safely add the following line at the end of your ~/.bashrc
file:

#. $NETKIT_HOME/bin/netkit_bash_completion

Annex 2: Modifying the filesystem in Netkit 51

ANNEX 2: MODIFYING THE FILESYSTEM IN NETKIT

The Netkit filesystem is an image of an installed Debian GNU/Linux distribution
including several packages that can profitably be used within a network
emulation.

A virtual machine filesystem is a special file on the host machine. There exists a
single model filesystem that is shared by all the virtual machines and provides
the full suite of tools.

To prepare the different laboratory scenarios, the filesystem provided in Netkit
has been modified in order to include all required packages. Below are detailed
all the modifications done in the standard filesystem provided by Netkit its
version 5.2.

To modify the filesystem, a virtual machine booted with the option -- no-cow has
been used. A virtual machine over Netkit uses a base filesystem which is not
modified during the execution and another file for each virtual machine in which
all the file modifications are being done. The --no-cow option allow being able to
modify directly the base filesystem. These modifications will affect all the virtual
machines booted in the future.

In order to have access to Internet, a tunnel to the host machine with the option
--eth0=tap,X,X has been used.

In order that some commands work properly, the virtual machine memory has to
be extended to 512 MBytes. The option used to extend the virtual memory for a
virtual machine is --mem=512.

Finally, the command to boot a machine to modify the filesystem has been the
one showed below:

#echo “nameserver 8.8.8.8” >> /etc/resolv.conf

After that, the apt packages have to be updated and it is required to add the key
in order to authenticate the source of the packages:

#apt-get update

#gpg --keyserver pgpkeys.mit.edu --recv-key

AED4B06F473041FA

#gpg -a --export AED4B06F473041FA | apt-key add -

#apt-get update

The Java Virtual Machine and the Ant packages are required for run the Azureus
Client:

#apt-get install openjdk-6-jdk

#apt-get install ant

52 An Analysis of incentives mechanisms and evaluation on BitTorrent

In order to avoid some errors, the java heap space has been increased:

#export ANT_OPTS="-Xmx512M"

#apt-get install zip

In order to limit the bandwidth and simulate a real network environment
between the servers, Wondershaper is used. Wondershaper is a script to limit
the ethernet connection bandwidth that uses the Linux tc command and makes
it easier to use.

#apt-get install wondershaper

#ln -s /sbin/orig-tc /sbin/tc

Clients installation in the Netkit filesystem:

The first client installed was FairTorrent which is based on Azureus and it also
includes the possibility to run the standard BitTorrent algorithm using the
standard Azureus implementation.

To install the FairTorrent client is has to be downloaded from the official
webpage. After the download, it has been checked the md5 hash and then
decompressed:

#wget

http://www.cs.columbia.edu/~asherman/fairtorrent/downloads/FairTorrent_1.1.1.tgz

#tar -zxvf FairTorrent_1.1.1.tgz

#ant

To install the BitTyrant client, it has to be downloaded from the official webpage.
After the download, it has been checked the md5 hash and then decompressed:

#wget

http://coblitz.codeen.org:3125/bittyrant.cs.washington.edu/

#dist_010807/BitTyrant-src.zip

#apt-get install unzip

#unzip BitTyrant-src.zip

#ant

Bitthieft

#wget http://bitthief.ethz.ch/dist/linux/BitThief.tgz

#tar -zxvf BitThief.tgz

PropShare

#wget

Annex 2: Modifying the filesystem in Netkit 53

#http://www.cs.umd.edu/projects/propshare/propshare_src.tar.gz

#tar -zxvf propshare_src.tar.gz

#ant

Tracker Installation in the Netkit filesystem:

Finally a bitTorrent tracker has been installed. A tracker provides with remote peers
to all the clients of the swarm. The tracker chosen was bittornado due to its
simplicity and its console mode.

To install bitTornado:

#apt-get install bittornado

Annex 3: Netkit Laboratories configurations 55

ANNEX 3: NETKIT LABORATORIES CONFIGURATIONS

Netkit with its labs feature, allows to build scenarios and to re-run the
experiments as many times as needed. A Netkit lab is a set of preconfigured
virtual machines that can be started and halted together. This annex contains
an explanation about how a Netkit lab is built and the specific configurations of
the scenarios used in each experiment.

Netkit allows to build scenarios in two ways:

 As a single script using the commands to execute virtual Machines

 By using laboratory configuration files.

In this case the second option has been used. In this option, Netkit requires a
directory tree with the above elements:

 a lab.conf file describing the network topology.

 a set of subdirectories that contain the configuration settings for each
virtual Machine.

 .startup and .shutdown files that describe actions performed by virtual
machines when they are started or halted.

 [optional] a lab.dep file describing dependency relationships on the
startup order of virtual Machines.

 [optional] a _test directory containing scripts for testing that the lab is
working correctly.

When a laboratory directory tree is created, it can be easily booted by the
command lstart.

Some examples of this configuration files used in the experiments are included
above:

 Lab.conf file: In this file, several machines connected to the same virtual
hub “A” have been defined. The mem parameter is also used in order to
create the virtual machines with more memory than the standard. This is
because using the standard amount of memory, some pieces of software
produced errors due to a lack of memory resources. Finally, it also
includes some descriptive information about the laboratory:

LAB_DESCRIPTION="Fairness LAB"

LAB_VERSION=1

LAB_AUTHOR="D. Serra"

pc1[0]="A"

pc2[0]="A"

pc3[0]="A"

pc4[0]="A"

pc5[0]="A"

pc6[0]="A"

pc7[0]="A"

pc8[0]="A"

56 An Analysis of incentives mechanisms and evaluation on BitTorrent

pc9[0]="A"

pc10[0]="A"

pc11[0]="A"

pc12[0]="A"

pc13[0]="A"

pc14[0]="A"

pc15[0]="A"

pc100[0]="A"

pc101[0]="A"

pc1[mem]=512

pc2[mem]=512

pc3[mem]=512

pc4[mem]=512

pc5[mem]=512

pc6[mem]=512

pc7[mem]=512

pc8[mem]=512

pc9[mem]=512

pc10[mem]=512

pc11[mem]=512

pc12[mem]=512

pc13[mem]=512

pc14[mem]=512

pc15[mem]=512

pc100[mem]=512

pc101[mem]=512

 startup.conf file: This file defines the commands to be executed after the
virtual machine booting. Here are some examples depending on the
machine role:

o Tracker: The first thing to do is to configure the network interface
by ifconfig command. After that, it executes the tracker with the
proper parameters to listen in the 6969 standard BitTorrent
protocol among others:

ifconfig eth0 10.0.0.100 netmask 255.255.255.0 broadcast 10.0.0.255 up

bttrack --port 6969 --dfile ~/.bttrack/dstate --logfile

~/.bttrack/tracker.log --nat_check 0 --scrape_allowed full &

o Seed peer (in this case, using the FairTorrent client):

 Using ifconfig command the network interface is configured.
 With the mkdir command, a directory that will contain the

data file to be shared is created.
 With the command ln, a link to the data file source is

created: /hosthome/10MBfile.txt. In Netkit virtual machine
the /hosthome directory is where the /home/ directory of the
host machine is mounted. That allows to access the host
files from the virtual machine. A link is created in order to
avoid to copy the whole file to the virtual machine.

Annex 3: Netkit Laboratories configurations 57

 The torrent file containing the hash of the file to be
downloaded has been copied from the host using the
/hosthome/ directory by the cp command.

 Using wondershaper, the maximum upload and download
rates have been established.

 Finally the peer-to-peer client has been executed with the
torrent file as a parameter.

ifconfig eth0 10.0.0.1 netmask 255.255.255.0 broadcast 10.0.0.255 up

mkdir /root/FairTorrent/dist/my_dir/

ln -s /hosthome/10MBfile.txt /root/FairTorrent/dist/my_dir/10MBfile.txt

cp /hosthome/10MBfile.txt.torrent /root/FairTorrent/dist/my_dir/

wondershaper eth0 8200 100

cd /root/FairTorrent/dist/

java -jar /root/FairTorrent/dist/Azureus2.jar --ui=console

/root/FairTorrent/dist/my_dir/10MBfile.txt.torrent </dev/null >&/dev/null &

o Leecher peer (in this case, using the FairTorrent client): This file is

the same as the seed one except by the command ln. A leecher
peer does not have the data file to be shared at the beginning:

ifconfig eth0 10.0.0.10 netmask 255.255.255.0 broadcast 10.0.0.255 up

mkdir /root/FairTorrent/dist/my_dir/

cp /hosthome/10MBfile.txt.torrent /root/FairTorrent/dist/my_dir/

wondershaper eth0 8200 100

cd /root/FairTorrent/dist/

java -jar /root/FairTorrent/dist/Azureus2.jar --ui=console

/root/FairTorrent/dist/my_dir/10MBfile.txt.torrent </dev/null >&/dev/null &

o Analysis tool: This machine role is in charge to analyses all the

communications during the sharing process. At the beginning, the
network interface is configured using ifconfig. Then, the network
capture is launched using tcpdump tool:

ifconfig eth0 10.0.0.101 netmask 255.255.255.0 broadcast 10.0.0.255 up

tcpdump -i eth0 -s 65535 -w /hosthome/lab25.cap

