
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

Konzeptualisierung und Architektur einer
Content-Management-App für HMI apps im Kontext

eines E-Cars mit zentralisierter IKT Infrastruktur

Josep Mateu Clemente

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

Konzeptualisierung und Architektur einer
Content-Management-App für HMI apps im Kontext eines

E-Cars mit zentralisierter IKT Infrastruktur

Conceptualization and Architecture of a Content Management
App for HMI apps in the Context of an Electric Car with a

centralized ICT infrastructure

Bearbeiter: Josep Mateu Clemente
Aufgabensteller: Prof. Dr. Dr. h.c. Manfred Broy
Betreuer: Thomas Koflert
Abgabedatum: April 15, 2014

Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

I confirm that this master’s thesis is my own work and I have documented all sources and material
used.

München, den April 15, 2014 Josep Mateu Clemente

Acknowledgements

I would like to express my gratitude to my friends and family that stood by my side on the works
of this thesis, their permanent presence and support has made possible for me to finish it. I could
not have envisaged a better travel team. A special thanks go to my friend Andrew, who was all
the time laughing about the close relationship I and this thesis have had and to my girlfriend
Aleksandra, who has made my world change in an unbelievable way.
In addition, I would like to thank my thesis tutor who has stood firmly believing in this project
even on the tough stages, even the difficulties and bad moments that arose.
Lastly I would like to thank everyone from my home University (Gerard, Eduard thank you!)
and all those people that I have met on this wonderful city and that have left a footprint in me
in one way or another. Furthermore, I could say that this thesis has brought me the possibility to
get to know one of the most impressive cities I have ever been to, to know wonderful people and
to build myself as a people. I could not foresee a better scenario to experiment the change I had
while being here and studying with this University.

“Education is the key to unlock the golden door of freedom.“ (George Washington Carver)

Abstract

We understand the concept of Human Machine Interfaces for Automotive Machines from the
Software Engineering perspective as a family of software designed to provide a Graphical User
Interface on-board a vehicle as well as acting as a bridge between the User and the Machine. The
aim of this thesis is to contribute to the Infotainment world on the concept of life expectancy,
which normally dies within the few years of release. This fact is caused by two factors: lack of
updates and improvements and inability to add new features to the product, which the HMI as
an element nearly without consideration on the choice of an Automotive Device. The solution
we present in this thesis, in terms of software, offers the possibility to update itself and extend
its functionalities after the deployment has been done, also opening the door for external devel-
opers to contribute to these enhancements. There are multiple solutions already on the market
regarding HMI software all of them proposing different alternatives and models. These solutions
have points in common and defects that have had to be identified and merged in order to be able
to create a competitive solution. We propose a solution using web-based technologies according
to the HTML5 standard which allows for a Operating System-like interaction. This interaction
is based on a layered concept that encapsulates each layer and allows for security controls from
other components inside the Webpage. Our solution also has the ability to be deployed as a na-
tive application to a mobile device in order to be able to access to extra features not defined by
the HTML5 standard. We couple this solution with a Content Management System on the Cloud
which allows for Components and Updates to be installed from it. The use of Web Technologies
is motivated because of them being widely spread and their independence from any underlying
environment, therefore being able to be run on any device that supports HTML5 browsing. As
this thesis is an architecture proposal we have not been able to provide any feasible evidence re-
garding its fare against the competitors. We have been able to see, though, that the current and
future developments on this world are trending towards a solution similar to the one we have
provided, fact that makes us believe on the future of our proposal.

i

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Stakeholders . 1

1.2.1 Manufacturer . 1
1.2.2 Main User . 1
1.2.3 Other Users . 1
1.2.4 Project Owners . 2
1.2.5 Competent Authorities . 2

1.3 Problems and Motivation . 2
1.3.1 A uniform system . 2
1.3.2 Multiple research branches, multiple companies 2
1.3.3 After-selling business model . 2
1.3.4 Open standards . 3

1.4 Idea of Solution . 3
1.5 Goal of the Thesis . 3

1.5.1 Compliance with standards . 3
1.5.2 Open source environment . 4
1.5.3 Cross platform support . 4
1.5.4 Generic . 4

1.6 Outline . 5

2 Background 7
2.1 Web Services . 7

2.1.1 Remote Procedure Call (RPC) . 7
2.1.2 Publish/Subscribe . 7

2.2 Web Technologies . 8
2.2.1 HTML5, CSS and Javascript . 8
2.2.2 PHP . 8
2.2.3 Client-Server Web Relationship . 8

2.3 Asynchronous Execution - Promise . 9
2.4 Device Types . 9

2.4.1 Main Device . 9
2.4.2 Trusted/Embedded Device . 9
2.4.3 Guest Device . 9

2.5 Plugin . 9

3 Related Work 11
3.1 State of the Art . 11

3.1.1 Native Phone Framework . 11
3.1.2 Web User Interface Mobile Frameworks . 13

3.2 Communication Protocols . 13
3.2.1 XMLHttpRequest and Comet Long Polling 14
3.2.2 Web Sockets . 15
3.2.3 Client-based Security . 16

3.3 State of Practise . 17
3.3.1 Next-Generation HMI Evolution . 17
3.3.2 Research that can be reused . 20

3.4 Standards . 22
3.4.1 Usability Standards . 22
3.4.2 Security Standards . 25

3.5 Resume . 27

iii

4 Analysis 29
4.1 Requisite Analysis . 29

4.1.1 Constraints . 29
4.1.2 Functional . 30
4.1.3 Usability . 35

4.2 Use Cases . 37
4.2.1 Use Case Diagram . 37
4.2.2 Initialise Device . 37
4.2.3 Retrieve Dashboard . 38
4.2.4 Restore System . 39
4.2.5 Check for update . 40
4.2.6 Perform Update . 43
4.2.7 Install Component . 46
4.2.8 Component feature Addition . 47
4.2.9 Perform Diagnosis . 49
4.2.10 Reset Settings . 50
4.2.11 Backup Settings . 52
4.2.12 Restore Settings . 53
4.2.13 Access Plugin . 55
4.2.14 Select Component . 56
4.2.15 Configure Component . 59
4.2.16 Delete Installed Component . 61
4.2.17 Select Active Plugins . 62
4.2.18 Access AppStore . 63
4.2.19 Perform Purchase . 64
4.2.20 Vinculate Account . 66
4.2.21 Select Dashboard Plugins . 68
4.2.22 Add or Modify Recognised Device . 69
4.2.23 Modify System Settings . 71
4.2.24 Delete Recognised Device . 73

4.3 Resume . 74

5 Solution 75
5.1 Architecture . 75

5.1.1 Architecture Diagram . 75
5.1.2 Justification of the Architecture . 75

5.2 Hardware Architecture . 76
5.2.1 Hardware Architecture Diagram . 76
5.2.2 Raspberry PI . 76
5.2.3 Nexus VII Tablet . 77
5.2.4 RACE Components . 77

5.3 Software Architecture . 78
5.3.1 Software Architecture Diagram . 78
5.3.2 System . 79
5.3.3 Components . 81
5.3.4 User Management . 86
5.3.5 Online Infrastructure . 89

5.4 Technology Proposal . 91
5.4.1 Technology Usage Diagram . 91
5.4.2 Server Technologies . 91
5.4.3 Client Technologies . 92
5.4.4 Cloud Technologies . 93
5.4.5 RACE Technologies . 93

6 Discussion 95
6.1 Non-discussed issues . 95

6.1.1 Development Procedure . 95
6.1.2 Critical System Failure . 97

6.2 Main Problems of the current solution . 98

iv

6.2.1 Security . 98
6.2.2 Standards Enforcement . 98
6.2.3 Slow responsiveness . 99
6.2.4 Online Profile . 99
6.2.5 Licenses . 100

6.3 Alternatives to the selected technologies . 101
6.3.1 Client Technologies . 101
6.3.2 Server Technologies . 102
6.3.3 AppStore Technologies . 102

7 Future Work 105
7.1 OEM Integration . 105

7.1.1 Proposals . 105
7.1.2 OEM Analysis . 105
7.1.3 Prototype . 105

7.2 Funding . 105
7.2.1 OEM . 106
7.2.2 Public Institutions . 106
7.2.3 Micro-financing . 106

7.3 Testing . 106
7.3.1 OEM . 106
7.3.2 Business other than OEM’s . 106
7.3.3 Particulars . 106

7.4 Product Enhancement . 107
7.4.1 Security . 107
7.4.2 Feature Expansion . 108
7.4.3 Alternatives to current Hardware Approach 109

7.5 Performance Tests . 109
7.5.1 Architecture Tests . 109
7.5.2 Local Infrastructure Tests . 110

7.6 User Experience Tests . 111
7.6.1 Web Consistency Testing . 111
7.6.2 Functional Testing . 111
7.6.3 Usability Testing . 112

8 Resume 113

v

vi

List of Figures

2.1 Network communication with the remote procedure call [TSG04] 7
2.2 Publish/Subscribe Pattern [Mic13c] . 8

3.1 Reverse Ajax with HTTP polling [Car11] . 14
3.2 Reverse Ajax with Comet [Car11] . 14
3.3 Latency comparison between the polling and WebSocket applications [LC13] 15
3.4 SSL/TLS Protocol Layers . 15
3.5 General Motors is an example in providing a Unified System for all it’s branches [Che13] 18
3.6 Lexus new proposal also is based on Android and has it’s own marketplace [Par13] . . 19
3.7 Touch Input methods are gaining increased sensibility [Kre13] 21
3.8 Tesla Motors Infotainment on Electrical cars proposal breaks with current models [iN13] 24
3.9 Kia future vision emulates a media centre [New12] . 24
3.10 Element placement in an Automotive Vehicle is of extreme importance [RBA13] 26

4.1 Use Case Diagram . 37

5.1 Architecture Diagram . 75
5.2 Hardware Architecture Diagram . 76
5.3 Software Architecture Diagram . 78
5.4 Sitemap Diagram . 78
5.5 Component Interaction Diagram . 82
5.6 Component Request Process . 82
5.7 Profile Role Distribution . 86
5.8 Cloud Infrastructure . 89
5.9 Technology-Use Case diagram . 91

7.1 In a future scope, large amounts of users may be using one system (caption: Lufthansa
BoardConnect [Mar13]) . 111

vii

viii

1 Introduction

In this chapter the first approach to the problem presented will be explained, as well analysing
the goals and objectives that need to be resolved in this work. The first ideas on which the rest of
this thesis is going to be based on are also going to be presented here.

1.1 Context

We understand this thesis in the context of the so-called RACE project, whose objective is to create
an centralised ICT architecture. This means, the project main goal is to separate driving, driver
assistance and infotainment features from the control unit hardware and install them through
software [Pro13]. This thesis, therefore, would be able to comply with the role of an infotainment
system without implying itself in a greater scope in the RACE project. This means, that the thesis
must be able to provide a solution that is compatible - but not limited to - the RACE project.
This solution would therefore comply the role of the centralised HMI system by the use of a
tablet display device, that would only be used to display the software, but would be deployed
in a hardware environment that could coexist with other RACE systems. This thesis will also
abide by the structure and Application Programming Interface scenarios envisaged by the RACE
Project, therefore complying with them and their limitations.

1.2 Stakeholders

In this section we will be analysing the stakeholders for our thesis. “A stakeholder is normally
defined by an entity (group or individual) who can affect or is affected by the achievement of
a thesis objectives. [SFG99]“. For this thesis, we, as a stakeholder, consider any entity that we
want to target as having a relationship with our solution. We will be identifying the multiple
stakeholders according to the stakeholder identification pattern described by Sharp, Finkelstein
& Galal [SFG99].

1.2.1 Manufacturer

We define a Manufacturer as an entity that is able to provide an automotive system without HMI
where out system can be deployed. Our definition of Manufacturer can be understood under
the umbrella of “Developer“, due the fact that they will be covering multiple roles (e.g., Quality
Assurance, Product Training, Associated Software development, etc.).

1.2.2 Main User

We define the wording “Main User“ the entity that will use the result of the thesis once developed.
To simplify our scenarios, we will consider that this term is applicable only to the companies or
people that perform a direct purchase on the developed solution. We consider that these people
need to be the common users of such systems and we don’t contemplate any sublet scenario.

1.2.3 Other Users

We define as “Other Users“ the entities that will utilise the result of the thesis once developed, but
on a passive or secondary basis. As with the previous stakeholder, we will simplify the scenarios
by specifying that such entities will be the companions of the “Main User“ stakeholder during the
usage of the developed solution. We consider these people as occasional users of these systems.

1

1.3 Problems and Motivation

1.2.4 Project Owners

We deem as “Project Owners“ as the entity responsible for this thesis and any future associated
work. They have the power to heavily influence the direction of the thesis, and they could be
reduced to the writer of the thesis and, the advisor.

1.2.5 Competent Authorities

We define “Competent Authorities“ as institutional entities whose main aim is to ensure that any
HMI for automotive environments comply with certain regulations. We will deem this entity as
fictitious due to them being different for each country, and only envisage certain general require-
ments. This stakeholder itself is covered under the umbrella of the “legislator“ according to the
pattern we’re following.

1.3 Problems and Motivation

An HMI system stands for the human-machine interface in any kind of machine that allows a user
to interact with an electronic or mechanic component. Typically on vehicles this system has been
analogue, but with the advancement of technologies multiple proprietary systems that provide a
digital user interface have arisen, therefore opening this world to extensive competition between
the different companies. While trying to develop a next generation car like the project RACE,
context of this thesis, we find multiple issues on this aspect. Our main intention is therefore to
make a contribution by providing an alternative solution oriented on solving these issues.

1.3.1 A uniform system

Currently some systems are developed with support of only a small set of partner companies
(e.g., BMW will only support Google Services [RBA13]). This forces the buyer to either own a
supported device or give up specific features, thereby reducing the final real value of the product.
Solutions to this problem have been proposed, some not being able to solve it due to it not being
part of the expertise of the manufacturer company (e.g., Ford uses Windows Mobile [Com13a]).
At this point, a number of companies tried to solve this problem, the most successful being Nokia
with their Terminal Mode proposal [BBP10], but ended up with the same problem as exposed. ur
solution will be considering these facts and aims to be an alternative without specific Operating
Systems or contextual boundaries, ideally attracting further developers by embracing some open
source ideas.

1.3.2 Multiple research branches, multiple companies

On the line on the previous section, we have observed the fact that each developed system has
different user experiences, and as it can be seen on the Analysis section each of them provide dif-
ferent user experiences. There is also a lack of concrete standardisation (although efforts are under
way, e.g. [HGM+12]) on topics regarding HMI, and therefore a different array of technologies is
used on them often rendering them incompatible with other systems (though we find proposals
that aim to solve this problem [IL13]). On these ground of these previous topics our solution will
propose a uniform user experience based on the research and alternatives already mentioned.

1.3.3 After-selling business model

The current after selling model resides purely on customer support on components, therefore
highly tampering the capability of revenues over time that a device as a car, used by most more
than once per week, could provide. The previous affirmation is taken from the fact that applica-
tion selling has became a huge part of revenues on the mobile world [McC13], therefore rendering
us with the ability to predict the possibility that this would also happen if the context on a HMI
was equivalent. From application development itself, it has proven that Indie techniques are the
one marking the biggest trend by far due to the fact of it being supported on advertisement and
in application purchases [Val11].

2

1 Introduction

1.3.4 Open standards

To the date being, most proposed infotainment systems have been of closed development (with
open source initiatives arising recently [Gen13]), due to the fact that infotainment systems are
an integral part of the automotive device, and therefore reflect the Company Image (with them
two being bounded, as examples have proofed [Rub13]). Some car manufacturers have chosen,
though, to share the design and infrastructure between their sub-branches with successful results
(e.g., General Motors [Mot13]), but majority they have different designs and usability standards
between them (e.g, [Aut13]). Resuming the exposed concerns, one of the problems that we face is
the idea of allowing for a solution that could be used by any business alike, but would alike cus-
tomization in the very much way mobile devices are driven on some open source environments
(e.g., [Fav13]).

1.4 Idea of Solution

Based on the previous section an idea of a solution can be obtained. We have identified the
main problems we think an architecture for this scope should be solving, thus we consider that
the subsections exposed before are part of the most considerable troubles any solution for this
problem could be facing. We will be analysing the scope of the requirements at a later section.
Our thesis should concentrate into finding the common points of the solutions already available
on the market and group their best strengths together in order to propose an alternative, which
should be able to be transformed into a prototype, to provide evidence for one of the possible
paths the HMI development is going to take place into. From these points, we can decide that the
thesis is going to be oriented towards designing a solution complying with open-source standards
while offering the possibility to customize it (as seen in the requirements). We will also give our
vision into the scope of standardisation of the HMI systems and build upon already done research
(e.g., on the analysis chapter) to provide for unifying solution. Adding to this point, we also need
to consider (as part of the initial problem of this thesis) the fact that the solution should be oriented
towards offering Content Management facilities and being able to cope with new functionalities
as they are necessary, scope that also will be tackled in the proposed solution.

1.5 Goal of the Thesis

From both points stated before a more generic idea of the thesis can be abstracted which in turn
could be resumed in a few points as stated next. The main goal of this thesis is the analysis of the
current state of the art and the proposal of a new architecture that aims to sum ideas from the ex-
isting ones while adding concepts for Content Management. From the analysis and requirement
sections, we have concluded that the following statements require a special consideration.

1.5.1 Compliance with standards

As stated previously there is a lack of completely defined standards (again, though, there are
efforts under way e.g., [HGM+12]), but some first-world regions have defined some measures
that such systems should have (even controversial ones e.g., [Jay13]). For this aspect, we will be
considering these and other usability measures that have already been defined as part of ongoing
research (e.g., [RMC13]) and that we think this thesis should take into account. Another important
aspect regarding this topic are the different kind of interactions and the research done into it (e.g.,
[RFB+13]), which need also to be taken into special attention as requirements and indications the
solution should present. On other terms, one of the goals of this thesis is to analyse the current
state of the art (seen on the analysis chapter) and substantial research that has been done and
provide a solution that takes this facts into account as a part of the main proposal that represents.

3

1.5 Goal of the Thesis

1.5.2 Open source environment

As exposed beforehand in the problems section, as analysed with posterity in the analysis sector
and, coping with the initial problem of offering a Content Management System (CMS) on an HMI
solution, we have decided that one of the goals on this thesis is to offer a solution that is able to
be provided on an open-source manner, thus it becoming a requirement of the solution. As it can
be seen on a later stage, we consider the concepts CMS and Open-source coupled on our solution
(check the solution chapter for further clarification), and therefore we established as a goal the fact
that the solution is able to be distributed on an open source manner and that is able to expand
it’s designed capabilities on a later stage. There have been analysis supporting both closed and
open source design (e.g., [bwi09]), but empathising the connection between innovation and open
source. This connection is the fact that made us choose open source (as discussed further ahead),
due to the possibility to provide with substantially more content. The advantages provided by
open sourcing are also clear, in the sense that any product or security flaws can be easily found by
a large community of contributors (e.g., [Bou05]) and therefore easing the duration of an average
bug report.

1.5.3 Cross platform support

The main aim of the product is to be compatible regardless of the hardware components, and
to a greater extent be able to operate for all the users on the car regardless of specific devices
being installed or not. For this objective a clearly defined and ready to use platform is needed.
We have to assure that the software being develop is able to cope with a planned lifespan of
a vehicle (e.g., up to 5-10 years [Inc13f]) or even with the average use on well treated vehicles
(e.g., 11 years [Rec13]), in a sense we can keep a place for compatibility in the future for every
new operating system being released. Furthermore, by combining this the fact of it being free of
charge, and open source we can reach a wide array of not only developers but designers. These
last are set to greatly improve the Look and Feel of the user, which will make for a great step in
our aim to universalize our product. Ideally, this cross platform support should be able to support
applications being ran natively in case they are installed (such as map applications), mainly due
to the extended functionality of native applications but without renouncing to universal use of
the already defined features.

1.5.4 Generic

As previously stated, one of the main problems of current system is the necessity to comply the
manufacturer’s standards. It is imperative that we solve this problem so that any car manufac-
turer can provide an Application Programming Interface capable of interacting with the designed
product. To this extent the solution should be compatible with any context, such as the project
RACE (e.g., [Pro13]). Even though these projects are set to go along, the product should be de-
veloped with total independence of them, by using bridge technologies that would act as an
abstraction layer for them (e.g., [HG13]). Furthermore, defining a standard on car features should
be avoided at all costs, as this is out of the scope of this thesis and is to be defined by the context
the solution will be under with. Although this, the solution should be able to continue compli-
ance with the other goals by resorting to independence from the environment (tackled in a further
section).

4

1 Introduction

1.6 Outline

In this section we have defined the main problems that have led to the creation of this thesis,
as well as tried to scope the thesis to the problems and goals defined in this chapter. The main
purpose of this thesis is, therefore, to analyse the existing technologies and projects that could be
of our interest, as well as observing which have been the main faults of the already existing ones
that have led to the start of this thesis. We will be presenting the thesis on the form of Related
Work-Analysis-Solution-Discussion, with these three chapters interconnected directly between
them. This means, on the first mentioned chapter, Related Work, we will be exposing the research
that we have taken into account for this thesis and the current state of the art, concepts that
will be studied and break down into requirements and Use Cases on the chapter of Analysis.
After this, we will be proposing a Solution that is able to cope completely or partially with the
proposed requirements and Use Cases, and we will be discussing the outcome of this Solution on
the Chapter labelled Discussion. Furthermore there are two extra chapters labelled "Background"
and "Future Work" that indicate background concepts and ideas associated with the thesis and the
work that could be done after the proposals of this thesis. As an added complement, we have also
provided a prototype to provide evidence for the Solution, on the results of which the Discussion
is also based.

5

1.6 Outline

6

2 Background

In this chapter we will be exposing concepts needed to understand the ideas behind this work.
These concepts have been taken heavily into account when developing the solution due to it’s
relationship with the Web Technologies.

2.1 Web Services

In this section we will be going through a short review on the concept of“Web Service“, altogether
with the techniques that we will be using on our solution for these. Further information on the
this topic can be found widely on multiple publications that have been published since the last
decade. The following concepts are based on concepts of these publications (e.g., [EAGK03]).

2.1.1 Remote Procedure Call (RPC)

One of the most used methods nowadays, it allows the remote invocations to resemble the local
ones, thus reducing the complexity of the code. The only problem realisable with such a tech-
nique is the error handling, due to them not being implicitly obvious by the client. We can find
two variations of RPC’s, the synchronous and the asynchronous (also called of the type“fire and
forget“), where the client is also known by the server.

Figure 2.1: Network communication with the remote procedure call [TSG04]

2.1.2 Publish/Subscribe

The objective of this method is to separate the clients (subscribers) from the servers (publishers)
through an intermediate layer that hides the participants. More said, it also allows the clients to
be subscribed to the events that they desire and therefore to avoid others that otherwise would be
discarded. This system, also, allows to act in a transaction basis and also independently of each
participant’s execution time.

7

2.2 Web Technologies

Figure 2.2: Publish/Subscribe Pattern [Mic13c]

2.2 Web Technologies

In this section we will be analysing the web technologies used through this thesis, altogether with
their main functionality and the approach taken while considering them. The knowledge on this
section also covers the sections relating to cloud computing, as well as providing a short insight
on how the main relationship between client and server works.

2.2.1 HTML5, CSS and Javascript

HTML is the most common markup language for structuring and presenting content for the
World Wide Web. Concretely the fifth version, still considered as a draft version [Con13], in-
troduced many new features opening the door to hold a structure similar to that of an Operating
System by providing the ability of using a Message Queue [EAGK03], and the ability of using such
for multi-tasking [NH13]. Similarly we have seen the introduction of the corresponding standard
on JavaScript, ECMA Specification 5 [Int11], that complements such scenario and allows us the
usage of this specific technologies. Finally, the new standard allows us to bring the full world of
3D-graphics natively to the devices [Con11], which allows for an even greater support for appli-
cation development on Web Environments.

2.2.2 PHP

A lightweight server-side web development language, it is one of the most widely used as Web
Applications server-side programming language. It has gone through multiple revamps and re-
structures along its lifeline, but has become one of the iconic elements from the WWW deriving
on the famous AMP (Apache, MySQL and, PHP) structure. The version that we consider is the
5.3 [Gro13].

2.2.3 Client-Server Web Relationship

One of the key concepts on Web interaction is the relationship between Client and Server, which
normally is asynchronous and stateless [Soc99]. This concept is key to understand the architecture
of any Web Environment, and should be considered through the whole thesis. Multiple solutions
have been developed for this problem and progress towards a state web environment has been
made, more on this will be discussed in the State of the Art analysis.

Cloud Systems

Cloud Computing is nowadays a considerable trend to take into account. By avoiding the need for
a physical architecture or data-centre and outsourcing this to providers as Amazon or Google we
can ensure the availability and scalability, up to a certain point, of a service. Further knowledge
on this field is necessary for understanding any kind of web application that is hosted on the
network [AFG+10].

8

2 Background

2.3 Asynchronous Execution - Promise

As a key concept of asynchronous execution we find the concept of a Promise [LS88], that indi-
cates what the user will return. It is worth noting that this concept has been long unused in the
few decades in the world of code development, though its potential has increased since the ad-
vent of Web Technologies. The basis of this document revolves around this concept, and therefore
has become one of the key pillars into understanding the works of this thesis.

2.4 Device Types

Though this concept is further developed on the thesis, it is mentioned often all through it and
therefore is important to be able to identify and classificate the different kind of devices that might
be present on a HMI architecture.

2.4.1 Main Device

We define as Main Device those devices that are installed or connected directly on the dashboard
of the automotive device and therefore under the control of the pilot or the copilot. Those devices
have the highest priority(or privileges, that is, are able to change directly settings of the car) on
the scale of devices due to resembling to the traditional control board on the dashboard of an
automotive device.

2.4.2 Trusted/Embedded Device

We define as Trusted Device those devices that are directly connected to the automotive device by
the manufacturer, and therefore are surely part of it. These devices have therefore have a lesser
degree to modify settings from the automotive device but are still treated as devices that should
be able to access a considerable array of features from it.

2.4.3 Guest Device

We consider as guest device those devices that are connected to the system on a specific period of
time, but are not bundled with it and therefore are aliens to the system. We consider that these
devices should be able to manipulate a minimal amount of the automotive device settings and
also access to a limited array of functionalities.

2.5 Plugin

We understand as for plugin on this thesis the concept of an application, be it standalone or not,
that is encapsulated and prepared to communicate using only defined protocols. This applica-
tion doesn’t need to load any external module other than it’s own, and while may need external
communication to do it’s proper function, it is designed so that it can be ran without this commu-
nication.

9

2.5 Plugin

10

3 Related Work

In this chapter we will be analysing the products or components that are currently available or
in process of becoming so. We will also document research that has been done and proposals
that have not succeeded. The conclusions from this chapter will be the basis of the next Analysis
chapter.

3.1 State of the Art

This section will provide an insight on the software currently available on the market that could
be taken into account as references or possible incorporations for the proposal of a solution or
prototype.

3.1.1 Native Phone Framework

In order to be able to access the full set of features from a device we require a framework that
allows us to extend our application, thus bringing the generic web application into a native one.
To that end, the frameworks listed in this subsection should support the conversion from the
HTML5 and JavaScript to each deployment device’s native system (on an initial basis, and as a
non-negotiable requirement, Android).

Apache Cordova

This software is the base of others that will be explained in subsequent subsections. It allows to
access native API’s from a Web Application using JavaScript calls, thus removing the necessity to
program directly using the native environment programming language [Fou13a]. This software
does not provide a UI interface and thus one is recommended, such as jQuery Mobile or Dojo
Mobile. This framework is licensed under Apache License 2.0 [Fou04] and thus could be used
without paying any license fees nor modifying the distribution license.

PhoneGap

Since October 2011 licensed with Apache License 2.0 [Pho13], as its code is now part of the
Apache Cordova Project, it is free of use and doesn’t require license fees nor having to mod-
ify the distribution license. This Framework allows to deploy applications to a huger variety
of Operating Systems than the other analysed frameworks, accessing its native SDK methods
via JavaScript and packaging the application as Native bits (in a similar fashion to Java compil-
ing e.g., [HGmWH96]), thus dramatically increasing the Applications speed due to the use of
built-in JavaScript and HTML rendering engines. To build applications for the Apache Cordova
Framework, PhoneGap should be used as it provides ready-to-deploy templates. The following
subsections will analyse the available UI Frameworks that could be used.

11

3.1 State of the Art

Appcelerator Titanium Mobile Development Environment

This is one of the most used Mobile Frameworks, more than 30000 Applications have been
shipped to Marketplaces using it, and provides with an extensive API set that allows users to
manipulate the interface in a platform-independent way. Its flagship features consist of provid-
ing a Marketplace where developers can download other compatible APIs (such as the AT&T
API [ATT13]) and the fact that supports desktop, mobile and tablet environment [App13a]. The
main drawback consists on that the code is being interpreted by the program instead of being
“compiled”, that means that the code execution is slower and takes more resources than a native
application. It is licensed on a free or a paid version, which differs on the services in the cloud.
That is, it is included services pro month on the free version but in a limited scale, that may be
expanded (including professional support) by purchasing a license.

Kurogo Mobile Platform

Coming from the MIT Mobile Web Framework [Com13b], this project aims to provide a rich to
use mobile web feature set with a full set of abstracted features that allows users to even use
Ruby to program for the Framework. This Framework is used by prestigious universities like the
Harvard University or the Vermont University, only stating the main disadvantage that resides on
the fact that to develop for Native Applications a license fee is required [Inc13g]. This is because
the Platform is licensed under LGPL [Sys07], and for Apple Store applications this license is not
applicable.

QT Framework

Following the release of Qt 5.1 Alpha, native Application Support for Android and iOS has been
added. Qt is a renowned framework that has a wide variety of features emphasising on advanced
OpenGL integration. The principal problem resides on the fact that the HTML and JavaScript
code wouldn’t be optimised and would run under the Qt’s Web Browser or the Operating Sys-
tem’s one [Oyj13]. The product is licensed under LGPL or under a commercial license.

MoSync

This product consists of two sub-products, MoSync and MoReload. The first one provides a
hybrid combination of C++ and HTML5/JavaScript in order to develop the interface, while the
second allows for live test of the applications on Mobile Devices [AB13]. This product is licensed
under LGPL but also has an annual free license (which must be renewed, free-of-charge every
year).

Corona

This framework uses house-build HTML and JavaScript engines and only provides a limited
amount of features to access the native interfaces on its Free Edition. This Framework was
released on 2008 and hasn’t had a huge impact in the Native Application Frameworks world
[Inc13c], mainly due to its constant license changes and to the fact that nowadays only supports
4 Mobile Operating Systems: iOS, Android, Kindle and nook [LLC13]. Corona offers for free a
service called “Corona Cloud”, which allows for free and unlimited User Account management,
leader boards and achievements. That being said, all the other features are limited on its free
package and should be upgraded to more expensive packages (multiplayer, push notifications
and cloud sync between other options are also available).

Other Alternatives

There are other alternatives such as RhoMobile [MS13], which was set on an unknown status after
the purchase by Motorola, or Unity 3D [Tec13b] which is a huge suite for 3D Game development,
but it is not designed to work as a Native Phone Framework. A comprehensive, community
maintained list of alternatives is available on the net [Wik13].

12

3 Related Work

3.1.2 Web User Interface Mobile Frameworks

In this section we will be analysing the multiple Mobile Web User Interface Frameworks available
on the market that have support for Touch Devices. These frameworks have also had a significant
impact on the market [Ltd13].

JQuery Mobile

This framework is the Mobile library from the jQuery Framework (the most used according to
cited statistics). It is integrated with the jQuery project thus offering also Desktop environment
support. It also provides for an ease-of-use Skin creation and management and a module se-
lection, to reduce the amount of JavaScript code by selecting the used features [jF13]. The only
comparable UI Framework would be Dojo Mobile, but still jQuery has a broader coverage of
browsers. It is licensed under the MIT License [Ini13], which basically allows for free use as long
as the copyright header is held intact.

Dojo Mobile

A differential feature from this framework is the design, as it is designed as a loosely-based plu-
gin environment that allows developers to reduce the amount of JavaScript code needed to be
loaded into the web browser. The main advantage also is the huge coverage of browsers, includ-
ing both Desktop and Mobile flavours and also adding native look and feel versions for mobile
environments [Fou13c]. It should also be noted the huge number of important companies behind
this framework (such as VMWare or IBM [Fou13b]), which provides it with a stable and long-
term development team and support. This framework is licensed under either the modified BSD
[otUoC13] or the Academic Free License [Ros05], which basically allows developers to use it free
of charge and without any need to modify the final product license.

Sencha Touch

The free version of Sencha that allows to deploy for touch-enabled devices. It uses a custom built
JavaScript UI interface which aims to provide native looks on each device, but for embedded or
desktop applications deployment requires a license fee [Inc13h]. One huge advantage of Sencha is
the ability to interact with the AT&T Platform API SDK, which should simplify the development
in case this platform was required.

Google Web Toolkit

This full-fledged toolkit allows developers to use Java in order to develop for JavaScript, as it
includes a compiler that automatically translates the Java code into usable JavaScript, thus aug-
menting the level of abstraction and reducing the time required to develop. This software includes
also a Mobile version, with UI specifically developed to fulfil the mobile browsing requirements,
as well as a wrapper around PhoneGap to provide for an easy-to-use interface that bridges be-
tween the page and the framework [Inc13e].

3.2 Communication Protocols

In this section we will analyse the current standardised or draft protocols available for communi-
cation between the web client and the server. The extra data and flaws of these protocols will be
shown, as well as its ability to provide updates without the other part’s initiation.

13

3.2 Communication Protocols

3.2.1 XMLHttpRequest and Comet Long Polling

The goal of this technique is to allow the server to “push” information to the client, thus the need
for a real-time connection between the two. To do so, the client has to ask the server for infor-
mation, because there’s no full-duplex connection (and thus, the client can only receive data as a
response from the server) [Con12].

Figure 3.1: Reverse Ajax with HTTP polling [Car11]

The problem of this method resides on the amount off bandwidth lost, to overcome that disad-
vantage we may think of just sending the response when there’s actually an answer. This fact, but,
leads to the problem of when shall we decide to send the request? What if we need a constant
flow of critical information? This is when Comet [Ido] comes in, as we can see on the following
drawing.

Figure 3.2: Reverse Ajax with Comet [Car11]

By just keeping the request open (much like streaming) we can end it when we do actually have
the data, and initiate a request as soon as we receive the answer. This solution pretty much solves
any underlying problems, only leaving the ones regarding the amount of data lost on doing re-
quests and to the fact that we need a method to know if a connection has been lost, apart from the
one of regularly polling the server, and that’s precisely where WebSockets fit.

14

3 Related Work

3.2.2 Web Sockets

Web Sockets is a novel technology meant to be the next big step forward in changing the actual
HTML model [Kum12], in a sense that allows for constant communication between the browser
and the server without resorting to huge payload techniques. An extended analysis is required
because at the moment of writing this document [HG13] it is still considered as a DRAFT status
by the W3C and thus each browser may use his own interpretation and implementation of the
soon-to-be standard.

Event Driven

The main novelty that WebSockets provide to the world of Web browsing is the capability to pro-
vide a full-duplex (two-way) communication between the user and the server, without the first
one having to install complex plug-ins and without actually knowing the underlying technol-
ogy. As seen by the anterior image, we have a huge boost on the interaction between the older

Figure 3.3: Latency comparison between the polling and WebSocket applications [LC13]

techniques (in this case, Long-term polling) and the new Web Sockets. Also, by using WebSock-
ets (as it is a two way communication), we can exactly know when the connection has been lost
and therefore inform the user or take the appropriate steps. This new functionality allows us to
actually implement a full Event-driven architecture, as it is shown in [Fur10].

Security

As a new, non-fully standardised, protocol WebSockets provide a huge amount of vulnerability-
prone features that should be analysed and considered before any direct use [Lai13]. We can
certainly affirm, that any WebSocket connection made using the standard TLS [Mic03] encryption
will be as secure as the current HTTP-based alternatives (due to the handshaking and posterior
encapsulating being held on the same fashion).

Figure 3.4: SSL/TLS Protocol Layers

15

3.2 Communication Protocols

The main problem associated with WebSockets may arise from its very own usage. An extensive
analysis on the pros and cons of WebSockets can be found on [Erk12] upon which this section is
based on. However, as far as this thesis is concerned on none of the security inconvenient should
be a problem due to the fact that we’re assured verified-origin content. The only notable problems
that may arise are due to the possible security implementations that the browsers can implement
(especially when regarding to white-list services as noted by the anterior reference).

Extendibility

In order to avoid multiple parallel developments or considering out-of-scope browsers that do
not comply with the draft standard version being used [MozPM], there have been extensive de-
velopments in WebSockets emulation for non-compatible browsers [LLC12]. An example of such
libraries is SockJS [Soc13], which is free to use and provide ready-to-deploy Client and Server
complement that simulate using the already known and commented HTTP protocols the Web-
Socket interaction. Using this interfaces we could easily speed up the development by easing
the actual deployed code and bringing the level of supported browsers to the levels of Internet
Explorer version 5.5 which by now should represent 100% of the used mobile browsers.

WAMP – WebSocket Application Messaging Protocol

As a result of the WebSocket protocol a number of registered subprotocols appeared [MozPM].
Of those, one that is immediately interesting for our needs is meant to be WAMP. This protocol
provides us exactly with the necessary structure to avoid a low-level design using WebSockets.
By using the already-known standard patterns of RPC and Publish & Subscribe we can simplify
the work regarding to it (mainly due to the fact that our design relies on the latest property in or-
der to get updated information). As an added advantage, by using the technique of RPC we can
simplify the communication with the server by effectively transferring all the transmissions to a
WebSocket-based transmission. There are immediate inherent benefits with this approach, such
as that WebDevelopers can totally abstract (and can be forced to do so) from Client – Web Server
communication, only having access to a handful of methods that will provide it with data associ-
ated to it. To that extent, all plugins calls can be evaluated client-side and denied in case a plugin
lacks the required privileges to access them (for example, due to a buggy plugin implementation).

3.2.3 Client-based Security

It’s an concern to avoid user modification of this service due to the criticality of the underlying
systems. Due to the system being based on JavaScript, as it is the very base technology of web
browsing, it arises the requirement that some sort of control over JavaScript tampering should
be implemented. However, that requirement is currently not possible to be complied up with
because the current implementation of browser interpretation of JavaScript implies that the user
can change which code is executed in their computer, and furthermore can change and execute
custom code if deemed so. However, a number of options exist in order to complicate and make
it a burdensome task to actually understand and modify the code in order to perform custom
actions and also a number of recommendations in order to be able to limit the harm that an
unauthorised user may do in the system.

• Authenticate users against a trusted-user database with assigned privileges and role levels.
• Transmit only the information that a user is available to use, therefore implying that a role

changing event may represent a full reload of the user interface. This has advantages in
the immediate transfer of data but may actually cause a detriment in the functionality of
caching features.

• Obfuscate the JavaScript code in order to difficult user interpretation of it. There are pro-
fessional tools that can do this task for us (and also the other way around), using of such
would require a user to have a professional tool which should avoid the vast majority of
users to even try to tamper with it. Even thought, this methods may not be enough as
already demonstrated [LCDna].

• Watch for Document Changing Events (DOMEvents) and execute code when one of these
occur, such as reloading the page with a totally different JavaScript (obfuscated) code or by
banning the user from using the service and notifying the driver.

16

3 Related Work

• Use blackbox simulating environments in order to check for possible loopholes or vulnera-
bilities that the developers might have not taken into account [BHS+10].

• Use immutable objects, as defined by the ECMAScript 5 standard [Int11], in order to difficult
object property modification.

Ultimately all this suggestions may prove useless against a well-armed and experience system
breaker, but should provide enough time or warnings for the driver to know it and to take the
opportune steps. Also, by taking actions on the server-side we may effectively limit the extent of
damage able to be done on the system.

3.3 State of Practise

In this section we will be analysing the Infotainment and HMI solutions already existing on the
market. We will cover the ones designed and developed by major manufacturers as well as re-
search and proposals that have not been able to get a footstep on the market.

3.3.1 Next-Generation HMI Evolution

In this section we will be analysing the different approaches proposed over the last decade regard-
ing HMI systems development. It is key that we analyse the market in this sense and provide a
general overview of the proposals as well as the their main contributions and innovations.

Nokia

Nokia started to promote an unsuccessful mobile-based HMI system back in 2010. The system
they proposed had a wide range of innovating features that were not present in any system avail-
able till then, therefore becoming the first next-generation HMI system. It’s important to note
that their proposal, labelled “Terminal Mode“, already had into consideration two key features:
Manufacturer and Application Independent (thought this one ultimately was not complied with).
They aimed to promote a product that would not be bound to any system already existing and to
make it a basis for standardisation on the world of HMI systems. The key fact of their approach
is bound to the fact that the user needed a Nokia device to ultimately use this system [BBP10],
excluding therefore all the users without any device as such.

General Motors

General Motors used to have its UX design for Infotainment systems externalised to other de-
velopers. This trend changed when they decided to take a direct action on them due to the lack
of brand customisation of these systems, and ultimately proved the right approach for them.
Lessons that have to be learned from GM’s approach is the fact that they came into the conclusion
that the user’s life should be shared within a car, that is, there should not be a drastic change on
the user behaviour while he is driving and while he is on the real life, therefore the automotive
vehicle should provide the user with a similar experience than that of his real life. [GHHW10]

An example of Unified System General Motors introduced a huge concept into the industry
by defining a unified User Experience interface for all its brands, that is, all the automotive Vehi-
cles from General Motors have a common HMI system and usability-like features. This is a key
concept for the future of the industry, and one of the justifying facts for this thesis, as it shows
that providing the same base system for multiple manufacturers doesn’t make them unable to
compete with each other. [Mot13]

BMW

In the same fashion of General Motors, BMW introduced some of the current standards back in
the beginning of the century. Those include, for instance, the need to support multiple monitors
or the fact that user controls should either be integrated into the automotive device or be on a set
of easy-access for the user. Further envisaging into this approach, BMW has specialised into the

17

3.3 State of Practise

Figure 3.5: General Motors is an example in providing a Unified System for all it’s branches [Che13]

idea behind providing a non-distracting user experience, that drastically reduces distraction of
the user using in-car systems, even promoting for the fact that any user response should take less
than two seconds. [NDEK09]

iDrive 4.2 and BMW Online With the advent of the current generation of mobile devices and
operating systems, BMW has taken the approach to provide parallel services to either couple with
those already existing on the market or co-exist safely by allowing the possibility to use the mobile
services instead of the own of BMW. It is key noting the planned release of the new system “BMW
Online“ that would allow users to be connected with the world while the vehicle is not on drive
mode, or even the fact that services such as “Google Maps“ or “Apple Siri“ are now able to be
used within the car. [RBA13]

Audi

Traditionally aiming for an exclusive set of user experience and features, Audi has been a leading
innovative business on in-car user experience. Their latest proposal therefore aims to make their
vehicle social and integrated with the most common services defined by this approach such as
Facebook or Twitter. Furthermore, they have totally replaced their in-house built systems by
those provided by Google therefore integrating into their system the features regarding Voice-
based navigation, wireless connectivity and mobile device integration. One of the lack of their
systems is, though, the inability of the user to change Services Provider, being bound to those
already defined. [Aud13]

Ford and Microsoft

Ford was one of the first major manufacturers to decide a total outsourcing of its services to a
major software and mobile company, Microsoft. Microsoft had vast experience on the develop-
ment of mobile devices for Enterprise Users and therefore appeared as a clear approach. Fruit of
this agreement, Ford has been able to provide a software that had integrated phone within and
that allowed the Users to use a vast number of Mobile Features (Web 1.0) while assuring itself a
constant update on this rapid-development world. [Com13a]

Sued over HMI system This agreement hasn’t been ultimately successful and has led to a huge
downgrade on Ford rating on HMI devices. Distractions due to the system being generically mo-
bile with a custom configuration led to multiple errors, freezing and slow response environments,
and distractions that strained to a maximum extent Ford resources on this sense, ultimately lead-
ing to a joint customer complain against its defective proposal. [Rub13]

18

3 Related Work

Volvo

Being one of the safest car manufacturers, Volvo traditionally hasn’t provided a huge interest on
enhancing and setting as a proper Infotainment system provider. [Vol13] The fact that their sys-
tems lack in such a sense features that have been long established in the industry have lead the
manufacturer to couple with other developers in order to provide for a new system that tries to
close the gap with other manufacturers. [McG13] The problem that has arisen with this manufac-
turer is the high specialisation level of their systems while not providing for a proper infotainment
environment, therefore making the driving environment more dangerous and drastically down-
grading the User Experience on their vehicles, ultimately leading to negative overview of their
general system.

Mazda

This manufacturer has developed its infotainment system with a key objective: The ability to
revamp it when necessary, that is, when next-generation HMI systems come into effect. They
have provided a system itself complying with the current generation HMI but with the ability
of auto-update and, literally, “Also, software is updatable, just like smartphones, through USB
ports, [the] whole software can be rewritten“. They have cited their lack of vision for the develop-
ment of tablets and smartphones, so they took a most conservative approach while proposing this
HMI that allows itself to be completely changed and expanded both in software and in hardware
considerations, therefore expanding the useful lifetime of their HMI system. [Fal13]

Others

In this section we will be analysing drastic proposals on the industry of HMI systems that ulti-
mately have resulted n failure and lack of impact, but altogether have provided for new ideas that
have been adopted in other products.

i-PASSION Labelled as i-PASSION is a new and revolutionary system that aims for total user
integration with real life bounding features, such as household and child management. The main
aim of this proposal is to provide the user with a complete control on all the features that might
distract him, such as family status, together with healthcare on the user, such as controlling the
pulse. This innovative system also promoted for the need to provide for user experience also
on the rest of passengers and integrating common user devices, as laptops and tablets, into the
system by bounding the two devices and allowing for a range asset of tasks. [Jeo10] In resume,
the most ground-breaking idea that is provided by this design revolves around driver healthcare,
a fact that has not been taken into account on other systems and that ultimately derivative in the
wide range of options that are proposed on this design.

CA-Fi This proposal revolves around taking an already existing Mobile System, Android, and
embedding it into a structure capable of being adapted into almost any vehicle. It provides for
the vast majority of Infotainment features and, as it is based on a Mobile OS, it provides access
to a full set of applications as well as security updates. The main problem with this approach
is the fact that the system itself is not adapted to the conditions that arise from driving, as well
as providing unverified access to applications that ultimately might harm the user by provoking
active distraction and, ultimately, driver accident. [IL13]

Figure 3.6: Lexus new proposal also is based on Android and has it’s own marketplace [Par13]

19

3.3 State of Practise

VNC Automotive This approach deals with the coupling of a HMI device with a mobile one by
providing the ability to remotely visualize and control a mobile device from the own Infotainment
infrastructure. One of the key advantages of this approach is the fact that all upgrade features and
application handling are phased out due to them being an integral part of the services provided
by the mobile device. It also claims to provide safety control due to the software provided by
OEM manufacturers ability to control the applications being used, but ultimately this might lead
to a failure on identifying those or erratic behaviour, which ultimately might as well cause driver
distraction. [Rea13]

3.3.2 Research that can be reused

In this section we will be analysing possible research already done in the context of Automotive
Vehicles and that can be useful while developing certain aspects of this thesis. Concretely, we will
be analysing proposed enhancements in the sectors of communication, interaction nd content
displaying as well as different approaches based on the multiple backgrounds of the users.

Entertainment

As a key part of any infotainment system its the entertainment part. This part, subtle at the very
beginning and restricted to simple functional access and abilities, has progressed to require a
fully interactive system that allows the user to access and use the most common applications and
experiences available to mobile devices. Too this extent, we have been able to identify two basic
usage environments regarding with entertainment, the analysis of those will follow.

Classical As a concept of infotainment usage we can find usages as navigation, video display,
call handling or the most typical associated with music play. This kind of applications have been
long developed and tested, and the final outcome has been that of what we have available nowa-
days, applications with large inputs and ease of use interfaces whose functionality is extremely
simple in order to avoid any kind of driver distraction. Although proven, with the advent of
the new technologies and the concepts of touch screens and voice interaction, those models have
become outdated and in need for revision. Recent studies [LK12] cite the advantages of concen-
trating the interaction on certain movements as swiping, not only on the classical applications but
on an overall usage for the system.

Gaming The concept of entertaining itself is a mean to indicate distraction upon certain tasks.
In this case, there’s the increasing need to provide the users of the vehicle with a more pleasing
experience without ever ignoring the fact that the safety of the vehicles is of utmost importance.
Taking this concept in mind, we can find research [TGH+11] that has analysed and indicated
multiple interaction possibilities between the users of the automotive vehicle without incurring
into a high level of distraction and therefore keeping the safety standards to a recommended level.

Content Displaying

In the current state of the art on Content Interaction we can find multiple approaches, all of them
having their positive and negative aspects, that define the vast majority of the user tasks while
being on an Automotive Vehicle. For this extent, and due to the fact that all of them are inter-
connected and affect directly the user experience on such environments it is necessary to take
into account the multiple research on this direction. Follows an analysis on the current methods
available and an insight on techniques and best practices while displaying content and providing
information to the user in order to simplify the load of unnecessary information that ultimately
distracts the user from its main task, driving.

Current Input Methods There has been continuous development in the automotive industry
since the arise of the Personal Navigation Devices at the beginning of the millennia, and ulti-
mately that has lead to the integration of multiple technologies that these devices provided, such
as touch and voice integration into the own vehicle. Although now having the possibility to use

20

3 Related Work

Figure 3.7: Touch Input methods are gaining increased sensibility [Kre13]

these new interaction capabilities, recent studies [dMHW+09] demonstrate that only a well inte-
grated and shared interaction set will allow the users to obtain the maximum performance out
of the system. It is important to note that integration with the market is necessary, and therefore
the need to keep backwards compatibility with already existing systems, such as the physical
buttons, is a need still.

Information Display Nowadays the users are subject to a constant bombardment of information
which can detriment in their concentration during critical periods. This question is specially
sensible when talking about the concentration capacity of a user during driving, a lack of which
may lead to drastic outcomes, and therefore prioritises on most of the available researches. One
of the approaches used in order to solve this problem is by summarising and awaiting the perfect
moment in order to transmit the user the information. Research [RLH11] shows that by using
specific algorithms is possible to transmit not so important information when the load of driver’s
tasks is low and therefore it is able to handle this information.

User Information Absorption Coupled with the aforementioned elements, there is another one
that influences heavily the way the user gets the information being displayed. There is a full
research [PSDK11] world behind this and is centred on the different locations and positioning of
the multiple interaction elements, to allow for a natural flow when interacting with them and an
intuitive response from the user. It is worth noting that this area is particularly interesting when
considering the fact that the number of input devices is greater than a single centralised one.

Social Approach

The current world seen from an information perspective is always on a changing state, having
evolved from the previous local interaction levels to a global scope. This is what we understand
for Social Web and Internet overall, and therefore is important to understand the concepts and
ideas behind it, as well as to adapt to it and provide support for innovation in this sense. In
this section we will therefore analyse investigation done in this direction, that provides feedback
on the different behaviours and need of users according to their age, experience levels in the
informative environment or global communication needs.

Socializing the Automotive Environment User necessities have evolved since the last decade,
from a user that required a simple functional product to one that expects to have all the informa-
tion he could want at his fingertips. It is important for any product developed in this sense to
be able to provide the user with this kind of information on a integrated basis, so that the user
conserves the feeling of his world going at the pace he desires. This concept is further expanded

21

3.4 Standards

by taking into account the different information that could derive from urban areas, such as city
information and news or traffic information.[SRF12] Allowing the user to always be informed on
the latest events on his world will make him want to stay using the devices that provide that level
of information, and therefore will ease and facilitate the use of the devices and interfaces.

Avoiding Cultural Shocks One of the key approaches of social computing and social interfaces
is the fact that they are adapted to every culture by providing the information in the appropriate
content and basis, as well as prioritizing it according to the cultural preferences. Ultimately, each
user is different and therefore will want the environment to adapt to its own basis, but they are
influenced heavily by their culture and ways of doing. Research [JRL12] shows that such affirma-
tions are correct and that they heavily influence on the user experience even on the automotive
environment with evidence showing that allowing each device and interface to be adapt to their
general cultural preferences on a first glance eases the tension the user might have while using it.

Adapting to multiple Age ranges One of the major research fields on the causes of traffic ac-
cidents has to do with the variability of age on the different users and their approaches when
tackling driving situations. It is important for any interface designed for all the segments to take
into account these differences and provide custom feedback and responses to these segments.
By being able to provide a different interaction to multiple ages we can ensure the willingness
of the older sectors to obtain new devices, thus eliminating the concept of technology difficulty
while also keeping the interest and usage from the younger sectors. [RS09b] Research ultimately
shows that by acting as a bridge of these two sectors an interface for automotive devices would
ultimately be highly successful.

3.4 Standards

In this section we will be evaluating the research done while relating to the different conditions
that can arise within an automotive device. In this sense, we will be analysing the different work
done in the concepts of usability and security, around whose the main aim for user satisfaction is
centred about. Concretely, we will be analysing which concepts should the solution presented on
this thesis take into account in order to avoid falling into design failures as the ones indicated on
the previous section.

3.4.1 Usability Standards

In this section we will be exposing the research already done in the fields of usability on Au-
tomotive Environments. Concretely, we will be analysing which factors might lead to driving
distraction and therefore should be taken into account on the design of any solution, as well as
different interaction concepts that should be present on it. Altogether with these factors, we will
be giving emphasis into simplifying the concept of driving and the interactions needed on the
environment by applying the idea of a “smart“ vehicle.

Driver Distraction

In this section we will be tackling the concept of driver distraction feedback, one of the first ap-
proaches in order to keep the user notified of the distractions that he is submitted to and therefore
allowing him to act upon these. These distractions might come in the basis of having the driver
subject to different events from the global environment and the ones having to do with the dif-
ferent feedback that we will be providing. Ultimately social interaction inside the car is a subject
that has already been tackled beforehand in a previous section and therefore won’t be analysed
on a second basis.

22

3 Related Work

Interactive Interfaces Having the user using a connected automotive environment might itself
be counter-productive when talking about driver distraction and therefore its ability to respond
to these events. It is important to keep a balance between the user concentration and its desire
to keep connected and obtain the latest information that he is requesting. Therefore, research
[LDS12] has proposed new and innovative methods to calculate such events and therefore allows
design to be adapted to the negative facts that might arise from these calculations and analysis.

Driver Performance The first commitment any analysis comes into when tackling user distrac-
tion is the fact that a report is needed. The principal assumption is that the user will not be aware
of its own errors and distractions and therefore reminders are needed in order for further correc-
tions to be applied. In this sense, performance feedback might be a viable option when regarding
feedback report, and research [RJL12] shows that this feedback doesn’t impact negatively on the
user experience except on the cases where it adds up as being an additional distraction. There-
fore, this research coincides with the previous analysis showing that the interfaces need to adapt
to every user needs and requirements.

Interaction

In this section we will be analysing the usability requirements related to different interaction
procedures. Concretely, we will be analysing the user behaviour when changing the underlying
technologies and the fact that the user might or not be concious of that. Concretely, we will be
analysing the need for user to keep the interfaces adapted to what he is already used to, in order
to avoid unexpected user responses. We will also be analysing upon the fact that no real standard
exists when relating to user interaction on HMI devices, therefore implying that following guide-
lines leads to a divergent number of already existing interfaces that might influence and impact
into what the user considers as a traditional interface.

Adapting to different Automotive Vehicles The number of underlying technologies used in
the automotive world is greater each year, with new alternatives appearing with their benefits
and disadvantages. Ultimately, it is upon the user to choose which kind of technology he desires
to use, but more often than not they feel guided by the opinion of external reviews due to their
lack of knowledge. This factor, while not being itself critical, can be heavily influenced by having
a different interaction interface, which might lead him having insecure behaviour as research has
proven. [SAA+11] This research has shown that is important to minimize the foreign sensation
of a user while using a new underlying technology by providing an already known and familiar
design that can guide the user through this technology transition.

Heterogeneous Interaction Design Due to the lack of standardisation in the current world
of User Interaction design for HMI devices, each manufacturer takes its own research and back-
ground while designing it. Therefore, each user might have a different idea of a traditional inter-
face and therefore might consider other devices too complicated too use or understand. While this
issue has settled in the most used components, it is still a hot issue on most innovative environ-
ments, where no major opinion has been settled and therefore multiple ideas are being proposed
and developed. Research and standardisation efforts are under way [RFB+13], but in the mean-
time user comprehension and adaptation must be noted as the preventive solution against any
kind of user fears by providing transition help with the current designs.

Interface

In this section we will be considering the different research regarding user transitioning and adap-
tation from the devices they are currently using, be it PND, PDA, Tablet or Mobile Devices, to an
infotainment based environment. For this aspect, multiple proof has been established demon-
strating the different elements that need to be taken into consideration on environments for auto-
motive devices that have to provide a user experience similar to the other devices.

23

3.4 Standards

Figure 3.8: Tesla Motors Infotainment on Electrical cars proposal breaks with current models [iN13]

Content Adaptation Due to the increasing urbanisation and crowding of the driving environ-
ment drivers have been treating more often than not with congestion environments in traffics
jams or even red lights. On these spaces, drivers tend to use their mobile devices in order to
keep connected with the world as research suggests. [AKS+10] It is important that the future of
the automotive design to grow on the direction to cooperate with these devices in order to allow
the user to access the information he needs, but in a controlled manner thus ensuring always the
safety of the own user by avoiding the possible distractions that might arise.

Application Transfer Transferring from a mobile environment to an automotive one is not as
easy as it sounds, due to the users being used to the mobile interactions and way of doing. It is
important, therefore, for the automotive designs to learn from those and be able to provide the
same features but in a controlled manner and space, so that they’re adapted for the requirements
that might arise on a car environment as research has empathised. [Son10]

Figure 3.9: Kia future vision emulates a media centre [New12]

24

3 Related Work

3.4.2 Security Standards

In this section we will be analysing a shared content with the previous section regarding the
concept of “Security“ while on an automotive environment. Concretely, we will be observing the
factors that might lead to a car accident and driver distraction from a security oriented point of
view. This means, we will be giving a major emphasis on the kind of interactions disallowed
during driving and the major reasoning behind their selection.

Infotainment Distractions

In this section we will be considering the multiple distractions that can arise from the use of an
infotainment system, and the security risks that these distractions can cause. Furthermore, we will
be analysing research showing the different security considerations between multiple countries
and the need to keep track the different age of the users or impairments. We will also feature
research showing a practical analysis on the interface distractions from current devices.

Standardisation per Country With the recent developments on the HMI industry, a full new
world of standardisation has come suddenly into high pressure to be agreed upon. This is due to
the proliferation of multiple devices and interfaces that have not the proper research and testing
behind them and therefore might pose a risk to the security of the system. These standardisation
processes, such as of Germany as noted on research [HGM+12], have to be keep on track for any
proposal due to them having the possibility to be enforced on the very near future.

Age considerations One of the growing security risks on the road environments is that of the
growing age of the driving population. This factor is of high concern due to these users not being
conscious in a direct manner of their loose of features that might lead to slower response times
or different impairments. Research shows, though, that by providing a system that constantly
adapts to these impairments security issues can be drastically reduced. [RS09a]

Structural Distractions We consider into this category all these elements that will cause a struc-
tural distraction on the users, such as those from embedded devices or external ones but used
directly by the driver. We consider into the second category devices such as PNDs or PDAs, the
regulation of which is spare and therefore provide no liable standard for them. Even though most
of them keeping the same design and functionality, they affect heavily on driver’s reactions and
behaviour and therefore lessons from this must be considered as research suggest.[KPeM+09]

Vehicle Distribution

In this section we will be analysing the outcome of multiple research on the ideas behind the
location of the different devices inside a car and their distribution. Furthermore, we will gain
an insight on how differently designed interfaces affect those people that have a higher degree
concentrating and deducting the tasks and also will analyse the outcome of suppressing both of
them and providing the user with an embedded experience using augmented reality.

Distribution on Car Device and element distribution inside a car has been since long time a
standing part of the car design, that is, an immovable part that has only changed and design.
With the advent of the new technologies and requirements for the environment of a car, research
has been carried out[MWG+11] that has shown how much the different element and devices
distribution on a car might impact heavily on the security and response of the user.

Interfaces impact Developing a bad interface can lead to disastrous effects on the user expe-
rience while driving and may cause major security issues. Therefore is important to take into
account the level of concentration a user needs in order to successfully use the interface while
driving, research suggests. [MCS+11] By doing successfully tested and calibrated interfaces these
kind of errors could be avoided, while also providing for a better user experience as suggested by
the aforementioned citation.

25

3.4 Standards

Figure 3.10: Element placement in an Automotive Vehicle is of extreme importance [RBA13]

Augmented Reality Interface One of the alternatives that have been considered and to a cer-
tain trend implemented, for instance, on rear cameras, is the use of Augmented Reality in order
to quell the necessity for devices to provide for information to the user. Research on this field
leads to the conclusion that using such kind of environment might even be beneficial to the user
and reduce the distractions on the user by allowing a wider place-holder where to display the
information.[FBH+11]

External Factors

In this section we will be analysing the major factors that lead to security disruptions, or distrac-
tions and to a major extent to driving accidents. It’s worth nothing that we will be analysing
research on the three main fields regarding this aspect, all of them revolving around the way the
transmission of information from the user to the machine is transmitted and the way notifications
are transmitted back to the user.

High demanding Interactions On the way to add extra technology support and features to
an Automotive Environment we fall into more complex environments which might themselves
cause major catastrophes. Research on this field[TSZ+11] suggest that a badly designed interface
is likely to cause distractions and accidents on situations where a high level of concentration and
fast-paced action is on need.

Input and security The way that the input concept for Automotive Devices has evolved is
pretty much similar at the one that the HMI devices have evolved. This fault itself influences
heavily on the fact that there’s no standard when regarding to data inputs into systems. Research,
though, provides us with an insight on which kind of elements[KSL13] are outdated and should
not be considered as input methods because of their grave distraction levels.

26

3 Related Work

Traditional methods Sticking with the traditional way of acting while driving might not be the
safest approach. In this case we are referring to the fact of providing the user with a manual
input method against a computer-assisted one. Research[WCN+13] shows that software that is
providing direct feedback to the user and requires minimum effort to use is a better way to reduce
risk on driving.

Crisis Management

In this section we will be analysing different approaches while handling the possible crisis sce-
narios prior to an accident. These must be tackled with extreme care and caution, because te
most critical part of the system arises on these scenarios and ultimately is what assesses whether
a system is appropriate for usage. Concretely, we will be observing the two very important steps
needed in order to minimize the feasible effects that any accident might have upon the driver by
allowing him to concentrate directly on resolving the situation.

Assessing Driver Workload One of the elements that any system should be tackling nowadays
is the control on the driver’s status, the so called healthcare on the driver. In order to determine
which actions can be done taking into account the level of user distraction, or the corrective ac-
tions needed in order to improve it, is necessary to evaluate and quantify the level of user con-
centration as suggested by research into the topic.[SPB+13]

Reacting to critical situations Another of the critical steps on any automotive system is the
fact that it should be able to properly act when a critical situation is being handled by helping
the user in all steps possible to solve the situation or, in case that is not feasible, provide after-
care. Research indicates that a considerable danger could be providing direct feedback to the user
while a situation of such is under way. [HJC10]

Environment adaptation Adapting the user environment in the case of a crisis means that the
own automotive vehicle is able to modify subtle elements, such as the temperature, humidity
level or control touch experience in order to ease the use of it by the user. Research in this sense
show that such elements, also called driver health care, might allow to reduce the level of stress a
user can have while commanding the environment.[Jeo10]

3.5 Resume

In this chapter we have overseen an overview through some products that have already been
published and that we can use as evidence for their features being possible. We will use this
on the next sections of Analysis and Solution, as they will become the base we will be using for
proposing our solution. In addition, we have also presented research into the Infotainment fields
that will contribute to our solution proposal. The experience shown on this chapter is therefore
crucial to consider requirements on the proposal. Overall, we have extracted concepts such as
the controls that are going to be used by the user and constraints such as keeping the traditional
interfaces on the vehicle due to it being safer for the user. It has come into our sight the necessity
to empathise on Security on any proposal done on this sector, all of which will also have their
impact on the requirements. While there are interesting proposals, such as an Android System as
a car interface, we consider that our problem is still not solved but a combination of the present
solutions on the market (for example, we get the multi-device environment from BMWi and the
Tablet Display from Terminal Mode of Nokia).

27

3.5 Resume

28

4 Analysis

In this chapter we will be analysing the work on the previous chapter, Related Work, and deciding
the requirements and Use Cases that our proposal has to support upon the Problems and Goals
exposed on the Introduction Chapter. We will explain the requirements that are considered to be
needed for any successful implementation of the work as well as the cases that are most feasibly in
need to be considered. In order to provide for this, we have based our analysis also on products,
proposals and research already available, as explained on the chapter of Related Work, as well
as focusing on following the background directives defined in the Introduction chapter. In this
chapter we will be exposing the main topic of this thesis, the analysis of the requirements needed
by a solution to fulfil the goals and problems exposed on the introduction chapter.

4.1 Requisite Analysis

In this section we expose the requisites that have been elicited for this thesis. The vast majority
of them are functional requirements, due to it being constricted by the different environmental
variables that we will see along this thesis.

4.1.1 Constraints

In this section we will be developing upon the concept of Constraints for any feasible solution
that could be proposed on this thesis. An accepted definition for Constraint could be “those that
define any restrictions imposed on the choices that the supplier can make when designing and
developing the software. [Wes13]“, therefore they are requirements needed to be complied with
in order to suffice the conditions of the initial problem.

Requirement: Native device

Description: The system must be able to access device-specific functions without needing to be
modified substantially, that is, only adding the corresponding extra module.
Justification: It is specified as one of the main problems and goals of for this thesis, therefore
becomes a core requirement.
Satisfaction Criteria: The user can install an application on their system that provides the same
features as the web version, as well as extended ones.
Satisfaction of the Client: 5
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Push Support

Description: The system must transmit important data to the clients without requesting for it.
Justification: While closely related to an Event-based system, this one differs in that it makes ex-
plicitly the need for a non-user initiated communication.
Satisfaction Criteria: The client can receive information from the server without asking for it.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

29

4.1 Requisite Analysis

Requirement: Genericness

Description: The system should be able to run in modern devices such as smartphones, tablets
or net-/notebooks as well as being integrated on the car.
Justification: As one of the key goals of the thesis, this requirement is essential if any proposed
architecture is supposed to satisfy our stakeholders needs.
Satisfaction Criteria: The user can use the application on his modern handheld device.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

4.1.2 Functional

In this section we will be specifying the core functional requirements that we deem as essentials
for te development of a feasible solution. These requirements form the core of any solution or
proposal and are themselves defined as “those that define what the software has to do in order
for the users to accomplish their objectives“ [Wes13], therefore indicating the main functionalities
that any compliant solution has to have at least.

Requirement: Diagnostics

Description: The system must be able to identify problems itself is having and propose steps for
the user to take in order to solve this problem.
Justification: The user needs to be able to get the problems with the system solved without the
need of a technician, at least the most common ones.
Satisfaction Criteria: The user is able to run a diagnostics tool whenever he finds a problem, and
the system automatically runs it when he detects any issue that requires user interaction.
Satisfaction of the Client: 5
Dissatisfaction of the Client: 5
Priority: High
Conflicts: —
Additional Notes: —

Requirement: Component Installation and Update

Description: The system must be able to add new extensions on the fly, that is, while deployed.
These extensions may be in working in different contexts and with multiple aims. Also the system
must be able to update them whenever new versions become available.
Justification: In order to provide an extensibility context to the architecture, we define ’compo-
nents’ as the key extensibility feature that will allow for expanding the system features while
deployed.
Satisfaction Criteria: The user can expand the features that the system provides on the fly, with-
out having to have the whole architecture redeployed.
Satisfaction of the Client: 3
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Component Trusting

Description: Each installed component must go through a series of tests before being able to be
deployed, that is, it must have the seal of approval of a trusted company before being able to be

30

4 Analysis

installed.
Justification: In order to avoid unauthorised components (either because the author didn’t au-
thorise or because it didn’t go through the necessary tests) to be installed.
Satisfaction Criteria: User can’t add a non-trusted or non-authorised component to the system.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: System Boot Protection

Description: The system must ensure its very own integrity, and the integrity and allowance of
the components installed, in each start.
Justification: In order to compliment requirement 6 and to ensure that malware can’t replace the
base system with unwanted finalities.
Satisfaction Criteria: The system and its components are checked against compromise, disabling
them in case of being so.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: System Restore

Description: The system must be able to be restored to a previous status in case of critical un-
wanted modification.
Justification: In order to provide security against external attacks, a system check and restore if
failed must be run on every boot (start). The system should try to restore the most recent version
of itself.
Satisfaction Criteria: On a unwanted user or external modification and architecture start, the ar-
chitecture must detect the changes and revert to a trusted version, even if older than the currently
installed version.
Satisfaction of the Client: 4
Dissatisfaction of the Client: 2
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: System Update

Description: The system must be able to autonomously update itself when a new version is avail-
able.
Justification: In order to provide for the latest security updates and system enhancements, a self
update mechanism must be provided.
Satisfaction Criteria: The system updates itself when a trusted update is present, in a way de-
fined by the very own architecture.
Satisfaction of the Client: 2
Dissatisfaction of the Client: 4
Priority: Medium
Conflicts: —
Additional Notes: —

31

4.1 Requisite Analysis

Requirement: License Tracking

Description: The system must install updates and new components whenever they available, as
well as take care of any kind of license limitations of the installed components.
Justification: It is necessary in order to provide an autonomous component license handling sys-
tem that will handle expired components and notify the user of the situation.
Satisfaction Criteria: A component is able to set an expiry date, from which the component won’t
work unless a license change is made.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 4
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Silent System Actions

Description: System actions that don’t require user interaction should be done in the background
and only notified, if so, when completed or on failure.
Justification: It is necessary to provide a cover ground for operations that could potentially in-
crease the user feel on the application, such as component updates.
Satisfaction Criteria: Components and system can be updated on the fly and without the user
having to do a direct action over it.
Satisfaction of the Client: 5
Dissatisfaction of the Client: 2
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Plugin Support

Description: The system must provide support for ’plugins’, which are extensions that act like an
full fledged embedded application.
Justification: This would represent the main extensibility feature of the whole architecture, with
a practically unlimited ground of possibilities.
Satisfaction Criteria: The system is able to execute plugins no matter what they are designed for,
and is able to keep them under certain restricted security constraints.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Layout Support

Description: A layout component is responsible of showing the plugins arranged in multiple
ways.
Justification: So that the user can organise his plugins, which need to have different display
modes depending on the size, and it can customise based on the selected layout.
Satisfaction Criteria: The user can download and change the layout, which impact in the direct
look and feel of the displayed architecture.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

32

4 Analysis

Requirement: Language Support

Description: A multiple, expandable, language system must be provided so that the own archi-
tecture is translated and also offers support to the other components in this sense.
Justification: It is necessary in order to reach the greatest amount of regions and users without
having to redesign or modify substantially the architecture or otherwise risk loosing clients.
Satisfaction Criteria: The user can add language packs to the deployed architecture that enhance
and improve the user experience by translating the user interface to the selected language.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Style Support

Description: A component that changes directly the user interface, and therefore impacts directly
in the user experience.
Justification: In order to provide for diversifying and enhancing user experience, thus avoiding
the need for major revamps of the product even after long term deployment. Also, in order to
provide a similar look and feel across all the components, by enabling them to adapt to the se-
lected style.
Satisfaction Criteria: The user is able to install a new style, revamping the user look and feel.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Embedded devices detection

Description: The differentiation between a device installed on the ground and a device that is
not, therefore bringing the possibility of offering different user experiences to each of them.
Justification: In order to prevent external devices from changing key features in the architecture’s
environment, therefore also avoiding a key security risk.
Satisfaction Criteria: An external device is identified as such and an installed device is also iden-
tified with its key differentiation.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Data Storage

Description: Saving the data to different locations on depending the certain environmental pa-
rameters, such as, but not restricted to, the type of device currently being used. Certain restric-
tions may apply to the components using this requirement.
Justification: In order to provide the architecture to keep the data from an execution to the next
execution, for tracking or for other purposes that the components might deem to.
Satisfaction Criteria: The system must be able to save data and restore it on when the necessity
arises.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium

33

4.1 Requisite Analysis

Conflicts: —
Additional Notes: —

Requirement: Plugin execution side-by-side

Description: Running more than one plugin at the same time, while providing the same experi-
ence as of a normal plugin execution.
Justification: Enhances the user experience by allowing user multitasking, must be handled by
the layout (to which in turn this requirement may apply and therefore be shown along the run-
ning plugins).
Satisfaction Criteria: The user can run more than one plugin at the same time and they offer
no interference between them, furthermore they behave in the same way as if they were ran in a
single basis.
Satisfaction of the Client: 5
Dissatisfaction of the Client: 1
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Online profile support

Description: Being able to save the preferences and settings on the cloud, so that they can be
autonomously used in another device without the need to reconfigure it.
Justification: Expanding user experience by storing the data in a place that is always accessible,
the cloud, therefore aiding in the device transfer task, even if it is only temporary.
Satisfaction Criteria: The user can successfully log in on another device and have a similar user
experience that on his own device and environment.
Satisfaction of the Client: 5
Dissatisfaction of the Client: 1
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Purchase support

Description: An online store that allows the purchase of new features and extensions or compo-
nents from any location.
Justification: In order to provide for a so called ’appstore’ that represents the key pillar in most
after-selling business models, therefore complying with one of the goals of the thesis.
Satisfaction Criteria: The user can access a online store and perform a purasche on a desired
component or feature using an online payment method.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Settings backup and restoration

Description: Allowance to save and restore the settings on a local or online basis.
Justification: The user experience can be tampered by system crashes and posterior restoring, so
an independent procedure that allows the user to recover its customizations must be provided.
Satisfaction Criteria: The user can save a backup of its settings and restore them anytime after-
wards, even online (on the cloud).

34

4 Analysis

Satisfaction of the Client: 3
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Online updates and component providing

Description: Online downloading of new content that has either been purchased or is allowed by
the license requirements that constrain the user.
Justification: In order to provide a key support to new component releases, this feature would
greatly enhance the user experience by allowing the whole architecture to be kept up to date as
long as there is a present internet connection.
Satisfaction Criteria: The system can download content from the cloud in order to update or
enhance itself.
Satisfaction of the Client: 2
Dissatisfaction of the Client: 4
Priority: Medium
Conflicts: —
Additional Notes: —

4.1.3 Usability

In this section we will be analysing the diverse usability requirements that, at lest, any viable
solution should have. In concrete, we can easily define as usability requirement as those that
determine the acceptability of a certain product [RMC13], therefore easily obtaining the rank of
the most important non-functional requirements to be fulfilled by any studied solution.

Requirement: Plugin Preview

Description: The system must be able to show critical information of the plugin without them
being actively running.
Justification: In order to provide a seamless experience of the plugins being ’gadgets’ on the sys-
tem.
Satisfaction Criteria: The user is capable of knowing information regarding a plugin output with-
out having to run the plugin.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Priority: Medium
Conflicts: —
Additional Notes: —

Requirement: Quick Installation

Description: The system must proceed extremely fast with updates.
Justification: The user experience must, by all means, not be tampered by lengthy update proce-
dures and waiting times. Therefore, a quick updating method must be provided.
Satisfaction Criteria: The user can nearly not feel the installation of the updates apart from the
system notifications, if available. That is, they last less than 5 seconds.
Satisfaction of the Client: 5
Dissatisfaction of the Client: 2
Priority: Medium
Conflicts: —
Additional Notes: —

35

4.1 Requisite Analysis

Requirement: Execution restoration

Description: The ability to restore execution to the point where it was before system exit, with
the components used and the same user interface.
Justification: Enhance the user experience by providing a work on-the-fly suspension and restora-
tion, therefore avoiding the need the cumbersome task of restoring the components, if required.
Satisfaction Criteria: The user can leave the use of an architecture and resume it again, with the
user interface being exactly the same.
Satisfaction of the Client: 5
Dissatisfaction of the Client: 1
Priority: Medium
Conflicts: —
Additional Notes: —

36

4 Analysis

4.2 Use Cases

In this section we will present the set of basic use cases that we will be evaluating along the design
of the thesis. Altogether with the requirements, this is of importance in the way to define a new
architecture.

4.2.1 Use Case Diagram

As follows is the Use Case Diagram depicting the relationship between the different kind of users
and the use cases that are available to them.

Figure 4.1: Use Case Diagram

4.2.2 Initialise Device

Main Actor: User
Precondition: The system is in a uninitialised status.
Trigger: The user tries to access the system.
Main Scenario:

• 1. The user request access to the system using a main device (a device attached to the
dashboard).

• 2. The system detects that is in a uninitialised status and provides for the initialisation
screen.

• 3. The user follows the instructions presented by the system and provides the adequate
configuration.

• 4. The system is set to a initialised status with the configuration provided by the user.
Afterwards, proceeds with the Use Case “Restore Device“.

Alternative Cases:
• 4a. The configuration provided by the user is invalid and the use case returns to step 2.
• 4b./2a. The system detects that a critical component of it can’t be configured, and informs

the user. Afterwards it starts immediately the Use Case “Restore System“.
• 4c. The system detects that a non-critical component of it can’t be configured. It informs the

user and proceeds with the Use Case “Retrieve Dashboard“.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: Restore System, Retrieve Dashboard

37

4.2 Use Cases

Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user uses a main device to access the system. The system detects that it has still
not been initialised and provides a screen that the user fills in with the settings it needs to
be configured. The user accepts and the system proceeds to save the settings and initialised
itself.

• Use 2. The user uses a main device to access the system. The system detects that it has still
not been initialised and provides a screen that the user fills in with the settings it needs to
be configured. The user accepts and the system detects that the settings are not correctly set,
the system indicates so and the user correctly introduces the settings. Following the system
saves the settings and configures itself.

• Use 3. The user uses a main device to access the system. The system detects that it has still
not been initialised and provides a screen that the user fills in with the settings it needs to be
configured. The system tries to configure itself but detects that a critical error has occurred
with one of the components. It informs the user and proceeds with restoring itself.

• Use 4. The user uses a main device to access the system. The system detects that it has still
not been initialised and that a critical component is missing or damaged. It informs the user
and proceeds with restoring itself.

History: 2013
Modified: 2013

4.2.3 Retrieve Dashboard

Main Actor: User
Precondition: The system has been initialized.
Trigger: The user wants to access the system.
Main Scenario:

• 1. The user connects a device to the wireless system, or uses one that is embedded in the
car.

• 2. The system recognises the user and provides for the adequate screen.

Alternative Cases:

• 2a. The system is not available and the system provides for a default screen.

• 2b. The system can’t provide a content for the current user or device, the system provides
information as well as registers the attempt.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user uses a device to access the system. The system is available and identifies
the type of device and user and provides a dashboard adapted to it.

• Use 2. The user uses a device to access the system. The system is unavailable and therefore
a default information screen is displayed, urging the user to take consequent steps.

• Use 3. The user uses a device to access the system. The system detects and invalid user or
device, such as those of a tampering attempt for instance, and provides information regard-
ing this event. The system also records the data of this incident.

History: 2013
Modified: 2013

38

4 Analysis

4.2.4 Restore System

Main Actor: User
Precondition: The system will always have a base restore version.
Trigger: The system detects that a System Restore has been requested.
Main Scenario:

• 1. The system detects that a System Restore procedure has been requested.
• 2. The system proceeds to check for the latest version available and downloads it.
• 3. The system shows the user a list of available versions to be restored to.
• 4. The user selects the desired version.
• 5. The system proceeds to check for the integrity of the selected version.
• 6. The system restores itself and restarts.

Alternative Cases:
• 1a. The user requests for a System Restore procedure to be done, the System requests the

procedure to be done and proceeds to step 1.
• 2a. The system can’t find the latest version available and proceeds to step 3.
• 2b. The system detects that it already downloaded the latest version available and proceeds

to step 3.
• 5a. The system detects that the selected version is not valid: informs the user, proceeds to

delete it and returns to step 2.
• 6a. The system finds a critical error while restoring, informing the user that he needs to

restart the restore system procedure. The system reinitialises itself and returns to step 1.
Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The system detects at startup that a system restore has been scheduled and enters
into service mode. The system checks for the last available version and downloads it. Once
done, it shows the user a list of available versions capable of being restored to, whilst the
user chooses one of them. After that, the system proceeds to check the selected version and
afterwards starts with the system restore. After restoring, exits service mode and proceeds
with the corresponding use case.

• Use 2. The user goes to the settings menu of a working system and requests the system to
be restored. The system enters in service mode and checks for the last available version.
The system downloads the latest available version from internet and shows the user the list
of versions that it can restore to. The user selects a version and the system checks that the
version is correct, in integrity terms, and proceeds to restore it. Once done the system exits
service mode and presents the user with the corresponding use case.

• Use 3. The user goes to the settings menu of a working system and requests the system to
be restored. The system enters in service mode and checks for the last available version.
The system can’t connect or check, so and shows the user the list of versions present on
the system that it can restore to. The user selects a version and the system checks that the
version is correct, in integrity terms, and proceeds to restore it. Once done the system exits
service mode and presents the user with the corresponding use case.

• Use 4. The user goes to the settings menu of a working system and requests the system to
be restored. The system enters in service mode and checks for the last available version.
The system downloads the latest available version from internet and shows the user the list
of versions that it can restore to. The user selects a version and the system checks that the
version is correct, in integrity terms, but fails and removes the version. The system informs
the user and goes back to step 2. The user selects a correct version and the system checks
for the integrity of the file, succeeds, and proceeds to restore it. Once done the system exits
service mode and presents the user with the corresponding use case.

39

4.2 Use Cases

• Use 5. The user goes to the settings menu of a working system and requests the system to
be restored. The system enters in service mode and checks for the last available version.
The system downloads the latest available version from internet and shows the user the
list of versions that it can restore to. The user selects a version and the system checks that
the version is correct, in integrity terms, and proceeds to restore it. The system fails on the
restoration process and informs the user, afterwards proceeds to restart itself and goes to
step 1. The user goes to the settings menu of a working system and requests the system
to be restored. The system enters in service mode and checks for the last available version.
The system downloads the latest available version from internet and shows the user the list
of versions that it can restore to. The user selects a version and the system checks that the
version is correct, in integrity terms, and proceeds to restore it. Once done the system exits
service mode and presents the user with the corresponding use case.

History: 2013
Modified: 2013

4.2.5 Check for update

Main Actor: User
Precondition: The system is initialised and the device is identified as a main device. There is no
Critical Update Procedure requested.
Trigger: The user wants the system to check for updates on the moment.
Main Scenario:

• 1. The user initiates the case by accessing the Update menu.
• 2. The user informs the system that desires it to start a Update Check procedure.
• 3. The system detects that a Check for Updates procedure has been requested.
• 4. The system connects to the internet, to a update server, and retrieves a list of the latest

versions for each of the installed components (including itself). For this end it does provide
data about itself and the installed components to the update server which includes their
versions but may also include general data.

• 5. The system checks for outdated components and creates a list of them based on the
priority to update each of them. This priority may take into account the user own update
preferences.

• 6. The system provides a user with the list of available updates for current situation of
the system, sorted according to their priority. This situation may be regarding the internet
connectivity, energy levels or other conditions.

• 7. The user proceeds with the Perform Update Use Case.
Alternative Cases:

• 2a. The system has planned a Check for Updates task, and triggers it by requesting the task
to be executed.

• 4a1. The system detects that there is no access to the internet.
• 4a1.1. The system shows the User a informative screen indicating that no internet connec-

tion could be established. It provides the user with a option to plan for a Check for Up-
dates procedure as soon as the Internet Connection can be re-established if it is not already
planned (the case will start on step 2a).

• 4a1.2. The system detects that the Check for Updates task was planned, and therefore post-
pones the task to the next time an Internet Connection is established (the use case will start
on step 2a). The system may provide the user with a non-intrusive notification if the update
settings allow it.

• 4b. The system detects that it has just Checked for Updates, therefore indicates the user that
there should be no need to do it again, to avoid bandwidth costs, but offers the user to force
the Check. If the user agrees, a Check for Updates procedure is requested, indicating that it
needs to be forced. This alternative case is not triggered if the Check for Updates procedure
is in a forced status.

• 4c. The system is informed that a critical update is available to itself. Due to this exceptional
situation, the System informs the user that a critical update procedure is under way. The

40

4 Analysis

system downloads the update without user interaction and plans a task to execute this up-
date when possible, if the user update settings allow it; on base to which it also informs the
user of the availability of this update. The Use Case Check for Updates is disabled while
this condition is under-way.

• 5a. The system detects that the user has indicated that certain products should not be
updated under the current situation. Therefore saves the data of the possible update but
doesn’t list it on the created update list unless the are of maximum priority.

• 7a. The system detects that the Update Procedure has not been directly initiated by the user
and proceeds with the Perform Update Use Case based on the created list.

• 7b. The system detects that the Update Procedure has not been directly initiated by the user,
and that the user settings forbid for automatic update procedures to be held. Therefore it
will only proceed with the Perform Update Use Case on case of critical updates, otherwise
only showing a notification.

Satisfaction of the Client: 3
Dissatisfaction of the Client: 3
Dependencies: Perform Update
Conflicts: Restore System
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Update screen inside the Settings menu. The user requests for
a Check for Update procedure to be held on an immediate basis. The system tries to contact
the update server for new updates, and successfully establishes a connection with it. The
system provides the update server with a list of the installed components as well with their
versions and general data about them and the system. The update server provides a list
of the available updates based on the provided data as well as the recommended update
priority. Based on the user own preferences it orders the list on updates that could be held
at the moment and updates that are going to be postponed. The user reviews the list and
checks the updates to be performed, once acceptance a Perform Update Use Case is initiated.

• Use 2. The system detects that a Check for Updates procedure is planned to execute in the
current period of time. The system tries to contact the update server for new updates, and
successfully establishes a connection with it. The system provides the update server with a
list of the installed components as well with their versions and general data about them and
the system. The update server provides a list of the available updates based on the provided
data as well as the recommended update priority. Based on the user own preferences it
orders the list on updates that could be held at the moment and updates that are going to be
postponed. Based on the ordered list it proceeds to initiate the Perform Update Use Case.

• Use 3. The user accesses the Update screen inside the Settings menu. The user requests
for a Check for Update procedure to be held on an immediate basis. The system tries to
contact the update server for new updates, but either is unable to perform the operation or
detects that there is no internet connection. The system provides the user with an informa-
tive screen indicating the problem, and providing a quick shortcut to diagnose and solve
internet connectivity problems. The user asks the system to perform the task at a later date,
when the internet connection becomes available. The system plans for a task to be held
when this conditions arises.

• Use 4. The user accesses the Update screen inside the Settings menu. The user requests for
a Check for Update procedure to be held on an immediate basis. The system tries to contact
the update server for new updates, but either is unable to perform the operation or detects
that there is no internet connection. The system checks for the update settings and provides
the user with a non-intrusive information screen if the user update settings allow so. The
system plans for a task on Check for Updates to be executed as soon as Internet Connection
becomes available.

• Use 5. The user accesses the Update screen inside the Settings menu. The user requests
for a Check for Update procedure to be held on an immediate basis. The system detects
that it has recently performed a Update Check Procedure. The system informs the user of
the situation, and provides a quick overview of the planned update settings as well as the
option to force a check for updates. The user requests for an Update procedure to be forced.

41

4.2 Use Cases

The system tries to contact the update server for new updates, and successfully establishes
a connection with it. The system provides the update server with a list of the installed
components as well with their versions and general data about them and the system. The
update server provides a list of the available updates based on the provided data as well as
the recommended update priority. Based on the user own preferences it orders the list on
updates that could be held at the moment and updates that are going to be postponed. The
user reviews the list and checks the updates to be performed, once acceptance a Perform
Update Use Case is initiated.

• Use 6. The user accesses the Update screen inside the Settings menu. The user requests
for a Check for Update procedure to be held on an immediate basis. The system tries to
contact the update server for new updates, and successfully establishes a connection with
it. The system provides the update server with a list of the installed components as well
with their versions and general data about them and the system. The update server detects
that the system needs for a critical update and can’t serve for other updates until this update
is applied. The update server informs the system of the situation. The system indicates the
user that a critical update is necessary before any other Check for Updates procedure can
be performed. The user accepts the update and requests for a Perform Update Use Case,
which is initiated.

• Use 7. The system detects that a Check for Updates procedure is planned to execute in the
current period of time. The system tries to contact the update server for new updates, and
successfully establishes a connection with it. The system provides the update server with
a list of the installed components as well with their versions and general data about them
and the system. The update server detects that the system needs for a critical update and
can’t serve for other updates until this update is applied. The update server informs the
system of the situation. The system proceeds to initiate on an immediate basis a Perform
Update Use Case if the user update settings allow for it. Otherwise, it informs the user of
the availability of this update if the user update settings allow for it.

• Use 8. The user accesses the Update screen inside the Settings menu. The user requests
for a Check for Update procedure to be held on an immediate basis. The system tries to
contact the update server for new updates, and successfully establishes a connection with it.
The system provides the update server with a list of the installed components as well with
their versions and general data about them and the system. The update server provides
a list of the available updates based on the provided data as well as the recommended
update priority. Based on the user own preferences it orders the list on updates that could
be held at the moment and updates that are going to be postponed. If the user update
settings indicate it, the system filters the update list and doesn’t list the updates available
for selected components unless they are deemed of maximum priority; but will always show
a notification indicating that there are some components that are not checked for updates.
The user reviews the list and checks the updates to be performed, once acceptance a Perform
Update Use Case is initiated.

• Use 9. The system detects that a Check for Updates procedure is planned to execute in
the current period of time. The system tries to contact the update server for new updates,
and successfully establishes a connection with it. The system provides the update server
with a list of the installed components as well with their versions and general data about
them and the system. The update server provides a list of the available updates based on
the provided data as well as the recommended update priority. Based on the user own
preferences it orders the list on updates that could be held at the moment and updates that
are going to be postponed. The system detects that no update is of critical priority and
that the user settings forbid for the automatic execution of the Perform Update Use Case.
Therefore it shows a notification to the user informing it about the situation.

History: 2013
Modified: 2013

42

4 Analysis

4.2.6 Perform Update

Main Actor: User
Precondition: A Check for Update procedure has been held, and therefore a update list is avail-
able.
Trigger: The user requests for the Perform Update task to be held.
Main Scenario:

• 1. The user requests for a Perform Update procedure to be held on an immediate basis.
• 2. The system checks for the freshness of the Update List.
• 3. The system proceeds to contact the update server with a list of the desired updates.
• 4. The update server checks for the availability of the updates.
• 5. The update server provides the system with a list of the locations where the desired

updates can be downloaded from.
• 6. The system downloads the updates and checks for the validity of it. This step can be held

on a parallel basis with step 7.
• 7. The system proceeds to install the updates.
• 8. The system informs the user of the update installation operation.

Alternative Cases:
• 1a. The system detects that a Perform Update procedure has been requested.
• 2a. The system detects that the Update List is old, and proceeds to initiate for a Check for

Update Use Case. After the procedure, the system proceeds with step 3.
• 2b. The system detects that a Critical Update is available and proceeds with step 3.
• 3a. The system detects that no internet connection is available.
• 3a1. The system informs the user of the situation, and gives the user the possibility to plan

for a Perform Update Use Case when an Internet Connection becomes available; it will
always be done if the update is critical.

• 3a2. The system detects that the perform update procedure was planned. If the user settings
allow for so, performs to plan for the task to be held once Internet Connection becomes
available, always if the update is critical, otherwise it informs the user of the situation.

• 4a. The update server detects that certain requested updates are outdated, or that the update
list is itself outdated or invalid and informs the system.

• 4a1. The system informs the user of the situation, and gives the user the possibility to
execute a Check for Update Use Case; it will always be done if the update is critical.

• 4a2. The system detects that the perform update procedure was planned. If the user settings
allow for so, performs to execute the Check for Update use case, always if the update is
critical, otherwise it informs the user of the situation.

• 6a. The system can’t download for a update or detects that an update is corrupt, and notifies
the update server. The update server provides for an alternate source and the system restarts
the step 6 for this update. In case there is no alternate source the system proceeds with the
next update.

• 7a. The system detects that a update requires certain components (including system compo-
nents) that are in use. The system marks this components as ready for update and programs
an update procedure on them (step 7) once they become free to update.

• 7b. The system can’t install an update. The system proceeds with next update (step 6) and
postpones till the end. If it is already the end, proceeds to step 8.

• 8a. The system detects that the procedure was planned, and therefore it proceeds to show
the user a notification about the success of the update operation.

• 8b. The system detects that a system restart is required, due to the need of critical core com-
ponents to be updated. The system proceeds to restart itself if the conditions are adequate.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: Check for update
Conflicts: —
Additional Notes: The situation 7b. is not expected to last to a point where it is the only update

43

4.2 Use Cases

left to install. This use case is designed having in mind the different component dependencies and
therefore might not be able to update all components at once, but instead require certain update
of the other components before a update might even be applied.
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Update screen inside the Settings menu. The user requests for
a Perform Update procedure to be held on an immediate basis. The system checks for the
freshness of the selected updates list. The system proceeds to contact the update server with
the list of selected updates, and this last one checks for the correctness of it as well as for
the availability of the listed updates. The update server reports back to the system with a
list of the servers where it can download the desired updates from. The system proceeds
to download each of the updates from the provided list and check for the correctness of
them. Independently, once a update becomes ready it proceeds to install it performing the
necessary procedures. Once this process has been ended the system shows the user a list of
the processed updates with their final outcome.

• Use 2. The system detects that a Perform Update procedure is planned to execute in the
current period of time. The system checks for the freshness of the selected updates list. The
system proceeds to contact the update server with the list of selected updates, and this last
one checks for the correctness of it as well as for the availability of the listed updates. The
update server reports back to the system with a list of the servers where it can download
the desired updates from. The system proceeds to download each of the updates from the
provided list and check for the correctness of them. Independently, once a update becomes
ready it proceeds to install it performing the necessary procedures. Once this process has
been ended the system shows the user a notification with a quick overview of the update
procedure, allowing for a complete overview should the user want to.

• Use 3. The user accesses the Update screen inside the Settings menu. The user requests
for a Perform Update procedure to be held on an immediate basis. The system checks for
the freshness of the selected updates list, and detects that the list is outdated or not correct.
The system informs the user of the situation and proceeds to initiate the Check for Update
Use Case. After the procedure, the system proceeds to contact the update server with the
list of selected updates, and this last one checks for the correctness of it as well as for the
availability of the listed updates. The update server reports back to the system with a list
of the servers where it can download the desired updates from. The system proceeds to
download each of the updates from the provided list and check for the correctness of them.
Independently, once a update becomes ready it proceeds to install it performing the neces-
sary procedures. Once this process has been ended the system shows the user a list of the
processed updates with their final outcome.

• Use 4. The user accesses the Update screen inside the Settings menu. The user requests
for a Perform Update procedure to be held on an immediate basis. The system detects
that a critical update is requested. The system proceeds to contact the update server with
the list of selected updates, and this last one checks for the correctness of it as well as for
the availability of the listed updates. The update server reports back to the system with a
list of the servers where it can download the desired updates from. The system proceeds
to download each of the updates from the provided list and check for the correctness of
them. Independently, once a update becomes ready it proceeds to install it performing
the necessary procedures. Once this process has been ended the system shows the user a
list of the processed updates with their final outcome. Due to the update being critical, it
shows the user a notification stating that the system will enter the update procedure once
the adequate conditions are met.

• Use 5. The user accesses the Update screen inside the Settings menu. The user requests for
a Perform Update procedure to be held on an immediate basis. The system checks for the
freshness of the selected updates list. The system proceeds to contact the update server with
the list of selected updates, but detects that no internet connection is possible. The system
shows the user the possibility of programming the execution of the Perform Update task
when an internet connection becomes available and shows the user the possibility to run a
diagnostics on internet connection.

• Use 6. The system detects that a Perform Update procedure is planned to execute in the
current period of time. The system checks for the freshness of the selected updates list. The

44

4 Analysis

system proceeds to contact the update server with the list of selected updates, but detects
that no internet connection is possible. The system proceeds to plan the perform update
procedure to execute when an Internet Connection becomes available.

• Use 7. The user accesses the Update screen inside the Settings menu. The user requests
for a Perform Update procedure to be held on an immediate basis. The system checks for
the freshness of the selected updates list. The system proceeds to contact the update server
with the list of selected updates, and this last one checks for the correctness of it and detects
it as invalid or outdated. The system informs the user of the situation, and proceeds to
execute a check for updates procedure. Once ended, it proceeds to send again the list of
desired updates to the update server, which check for the correctness of it as well as for
the availability of the listed updates. The update server reports back to the system with a
list of the servers where it can download the desired updates from. The system proceeds
to download each of the updates from the provided list and check for the correctness of
them. Independently, once a update becomes ready it proceeds to install it performing the
necessary procedures. Once this process has been ended the system shows the user a list of
the processed updates with their final outcome.

• Use 8. The system detects that a Perform Update procedure is planned to execute in the
current period of time. The system checks for the freshness of the selected updates list. The
system proceeds to contact the update server with the list of selected updates, and this last
one checks for the correctness of it as well as for the availability of the listed updates. The
update server reports that the list is outdated and the system proceeds to start a check for
updates procedure, once done proceeds to contact again the update server which checks
for the correctness of it and the availability of the updates. The update server reports back
to the system with a list of the servers where it can download the desired updates from.
The system proceeds to download each of the updates from the provided list and check
for the correctness of them. Independently, once a update becomes ready it proceeds to
install it performing the necessary procedures. Once this process has been ended the system
shows the user a notification with a quick overview of the update procedure, allowing for a
complete overview should the user want to.

• Use 9. The user accesses the Update screen inside the Settings menu. The user requests for
a Perform Update procedure to be held on an immediate basis. The system checks for the
freshness of the selected updates list. The system proceeds to contact the update server with
the list of selected updates, and this last one checks for the correctness of it as well as for
the availability of the listed updates. The update server reports back to the system with a
list of the servers where it can download the desired updates from. The system proceeds
to download each of the updates from the provided list and check for the correctness of
them. For a given update, the system detects that the update is not correct. It proceeds to
contact to the update server and notify the problem, and request anew for the update. The
system downloads again the update but detects again the same problem, and the update
server notifies the system that there is no alternate source to download from; the system
proceeds with the next update. Independently, once a update becomes ready it proceeds to
install it performing the necessary procedures. Once this process has been ended the system
shows the user a list of the processed updates with their final outcome. The system makes
emphasis on the failure to install an update and informs the user that this problem will be
reviewed.

• Use 10. The user accesses the Update screen inside the Settings menu. The user requests
for a Perform Update procedure to be held on an immediate basis. The system checks for
the freshness of the selected updates list. The system proceeds to contact the update server
with the list of selected updates, and this last one checks for the correctness of it as well as
for the availability of the listed updates. The update server reports back to the system with
a list of the servers where it can download the desired updates from. The system proceeds
to download each of the updates from the provided list and check for the correctness of
them. Independently, once a update becomes ready it proceeds to install it performing the
necessary procedures. The system detects that a component can’t be updated and marks it
to be installed once all other updates are installed. Once this process has been ended the
system proceeds to install the update that couldn’t be updated, and after that the system
shows the user a list of the processed updates with their final outcome.

• Use 11. The user accesses the Update screen inside the Settings menu. The user requests

45

4.2 Use Cases

for a Perform Update procedure to be held on an immediate basis. The system checks for
the freshness of the selected updates list. The system proceeds to contact the update server
with the list of selected updates, and this last one checks for the correctness of it as well as
for the availability of the listed updates. The update server reports back to the system with
a list of the servers where it can download the desired updates from. The system proceeds
to download each of the updates from the provided list and check for the correctness of
them. Independently, once a update becomes ready it proceeds to install it performing
the necessary procedures. The system detects that the component is in use and marks this
component as ready for update. Once this process has been ended the system shows the
user a list of the processed updates with their final outcome. Once the component is closed
the system proceeds to update it before the user can use it.

History: 2013
Modified: 2013

4.2.7 Install Component

Main Actor: User
Precondition: The system has been initialized, and the component is available to the user for
installation.
Trigger: The user requests for a certain component to be installed.
Main Scenario:

• 1. The user requests for a component installation.
• 2. The system contacts the installation server and forwards the installation request, which

checks whether the user is eligible for the component installation.
• 3. The installation server provides the location of the component’s package altogether with

the license for it.
• 4. The system downloads both the component and the license.
• 5. The system installs the component.
• 6. The system informs the user of the status of the installation and about the license that has

been installed and allows the component to be used.
Alternative Cases:

• 1a. The system asks for a component installation.
• 2a. The system can’t contact the installation server, therefore plans the component installa-

tion till when the internet connection is re-established and notifies the user.
• 2b. The installation server detects that the installation request is invalid, therefore denying

the request and notifying the system in the process. The system informs the user about the
failed request and provides alternate solutions.

• 4a. The system can’t download the packages provided by the installation server. The system
notifies the error and contacts again the installation server asking for a new package loca-
tion. The installation server provides for a new package location and returns to step 4; if no
alternate package location is available it notifies the system about it and this last notifies the
user.

• 5a. Te system can’t install the component. If this situation arises the system notifies the
installation server and also the user of the problem.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: Perform Purchase
Conflicts: —
Additional Notes: In this use case, the steps 3 and 4 might be specified separately. Concretely,
both the license and the component may be located on different servers, but that will be defined
by the solution.
Author: Josep
Validation Scenarios:

• Use 1. The user initiates a request for a component installation. The system start the request
by contacting the installation server and transferring the installation request. Following this

46

4 Analysis

step, this last checks that the installation request is valid and succeeds, so it provides the
system back with the location of the component package and license. The system proceeds
to successfully download and afterwards install the package and license without trouble. As
a next step, it informs the user about the success of the operation and makes the component
ready to use.

• Use 2. The system detects that a component installation has been requested. The system
start the request by contacting the installation server and transferring the installation re-
quest. Following this step, this last checks that the installation request is valid and succeeds,
so it provides the system back with the location of the component package and license. The
system proceeds to successfully download and afterwards install the package and license
without trouble. As a next step, it informs the user about the success of the operation and
makes the component ready to use.

• Use 3. The system detects that a component installation has been requested. The system
start the request by contacting the installation server and transferring the installation re-
quest. However, the system can’t transfer the request and therefore postpones the compo-
nent installation task till a internet connection can be re-established. The system notifies the
user that the installation will be postponed.

• Use 4. The user initiates a request for a component installation. The system start the request
by contacting the installation server and transferring the installation request. Following this
step, this last checks that the installation request is valid and fails, saving the request for
further review. The system informs the user that a problem with the component installation
has occurred, and provides a diagnostic shortcut to help him solve this problem.

• Use 5. The user initiates a request for a component installation. The system start the request
by contacting the installation server and transferring the installation request. Following this
step, this last checks that the installation request is valid and succeeds, so it provides the
system back with the location of the component package and license. The system proceeds
to download the elements but fails. It notifies the installation server and asks for a new
location. The server notifies that no alternate location is available so the system postpones
the installation to a further date and notifies the user.

• Use 6. The user initiates a request for a component installation. The system start the request
by contacting the installation server and transferring the installation request. Following this
step, this last checks that the installation request is valid and succeeds, so it provides the
system back with the location of the component package and license. The system proceeds
to successfully download and afterwards install the package, but detects a problem while
doing so. Notifies both the installation server and the user and postpones the component
installation task to a further date.

History: 2013
Modified: 2013

4.2.8 Component feature Addition

Main Actor: User
Precondition: The system is initialised, the component is installed and with the adequate permis-
sions, the user settings allow this Use Case to be held.
Trigger: The user starts a request for a component expansion.
Main Scenario:

• 1. The user starts a component expansion request.
• 2. The system detects that a request has been initiated and contacts the installation server

with the expansion request.
• 3. The installation server checks that the expansion request is valid and has been authorised.
• 4. The installation server provides the system with the expansion package location.
• 5. The system downloads the expansion package with the adequate component expansion

license.
• 6. The system installs the expansion package and registers the new expansion license.
• 7. The component is notified of the new expansion package.
• 8. The system notifies the user about the expansion procedure.

47

4.2 Use Cases

Alternative Cases:
• 1a. A component requests for a component expansion.
• 2a. The system can’t contact the installation server. Notifies the user of the situation and

postpones the operation till a later stage.
• 3a. The installation server denies the expansion request. Therefore notifies the system of the

failure, which subsequently notifies the user.
• 5a. The system can’t download the package from the established location, and thus informs

the installation server of this issue. The installation server provides for an alternate location
and the system downloads the package from it. In case that the installation server can’t
provide for another package location, the it informs the system which in turns also notifies
the user.

• 6a. The system encounters an installation problem and notifies the user, the component and
the installation server. It also postpones the component expansion.

Satisfaction of the Client: 5
Dissatisfaction of the Client: 1
Dependencies: Component installation
Conflicts: —
Additional Notes: This use case might also be used to update the own component, therefore
replicating the Check for Updates Use Case in a minor scale.
Author: Josep
Validation Scenarios:

• Use 1. The user starts a component expansion request. The system starts a component
expansion request by querying the installation server for the expansion package and li-
cense. The installation server provides for the expansion package and license and the sys-
tem downloads successfully these elements. It proceeds to install the elements, with success,
and afterwards informs the component of the installation result. After, it also informs the
user of the outcome of the procedure and the readiness of the component to use the new
content.

• Use 2. The system detects that a component expansion request has been issued by a com-
ponent and starts it by querying the installation server for the expansion package and li-
cense. The installation server provides for the expansion package and license and the sys-
tem downloads successfully these elements. It proceeds to install the elements, with success,
and afterwards informs the component of the installation result. After, it also informs the
user of the outcome of the procedure and the readiness of the component to use the new
content.

• Use 3. The user starts a component expansion request. The system starts a component
expansion request by querying the installation server for the expansion package and license.
Unfortunately the query is dismissed because the system is unable to reach the installation
server. The component request is postponed and the user, who is also notified, given the
possibility to dismiss it any time.

• Use 4. The user starts a component expansion request. The system starts a component
expansion request by querying the installation server for the expansion package and license.
The installation server processes the request and issues a denial. The system receives the
outcome and notifies both the component and the user.

• Use 5. The user starts a component expansion request. The system starts a component
expansion request by querying the installation server for the expansion package and license.
The installation server provides for the expansion package and license but the system can’t
download these. Therefore the system queries the installation server for another location,
but this one notifies the system that no alternate installation location is available. Due to
this problem the component expansion is postponed and the user given the ability to cancel
it any time.

• Use 6. The user starts a component expansion request. The system starts a component
expansion request by querying the installation server for the expansion package and li-
cense. The installation server provides for the expansion package and license and the sys-
tem downloads successfully these elements. It proceeds to install the elements but fails.
Due to this failure the component, the user and the installation server are notified; while
also postponing the expansion procedure to a further date.

48

4 Analysis

History: 2013
Modified: 2013

4.2.9 Perform Diagnosis

Main Actor: User
Precondition: —
Trigger: A diagnosis has been requested.
Main Scenario:

• 1. The user requests a diagnosis on a certain problem.
• 2. The system provides for a diagnosis screen where it shows the checks on that field in

general, querying a help server if possible, and the progress on them.
• 3. The system processes all the checks and encounters one or several errors.
• 4. The system provides the user with the option to try to apply several automatic fixes. For

each problem, it also provides the user with an informative sheet about why that problem
may have appeared and a list of related community questions on that aspect.

• 5. The user tells the system to proceed with applying the automated fixes.
• 6. The system does a set of fixes according to the problems detected and informs the user of

the outcome.
• 7. The user checks the review and accepts the outcome of the diagnosis.

Alternative Cases:
• 1a. The system encounters an error while performing one critical task and automatically

opens the diagnosis screen.
• 3a. The system can’t find any problem regarding a general issue, giving the ability to force-

fully apply fixes. Nevertheless, it shows an informative screen regarding possible causes for
a problem and general check procedures and provides the user with contact information for
further technical review.

• 4a. The system encounters several problems but can’t find any automated fix for them. It
provides the user with the opportunity to search online for an automated fix and an infor-
mative page about possible causes for the problem.

• 6a. The system can’t apply one or more automated fixes for a concrete problem, notifying
the user of it once all automated fixes have been applied.

• 7a. The user may choose to restart the case by checking again for the same problem or
another one, thus starting again on step 2.

Satisfaction of the Client: 5
Dissatisfaction of the Client: 5
Dependencies: Check for update
Conflicts: —
Additional Notes: It’s worth noting that this Use Case must be available even when the system
has not been initialised.
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the diagnosis screen. The user selects the problem he faces from a
list of system-available problems, optionally searching online for new definitions/commu-
nity support. The system then creates a list of common checks for the problem and finding
one or more errors, checking from the help server on the internet if available. The user re-
views the list of checks and selects the fixes that desires to be applied, once confirmation the
system starts applying the fixes one by one. Once ended, the system shows the user with
an informative screen regarding the fixes applied, why they were applied and the outcome
of those. Additionally, it also provides the user with a quick link to a community website
where similar issues can be found.

• Use 2. The system detects that a critical error has occurred and automatically starts the di-
agnosis procedure. The system then creates a list of common fixes for the problem, checking
from the help server on the internet if available. The system starts applying the fixes one by
one. Once ended, the system shows the user with an informative screen regarding the fixes

49

4.2 Use Cases

applied, why they were applied and the outcome of those. Additionally, it also provides the
user with a quick link to a community website where similar issues can be found.

• Use 3. The user accesses the diagnosis screen. The user selects the problem he faces from a
list of system-available problems, optionally searching online for new definitions/commu-
nity support. The system then creates a list of common checks for the problem, checking
from the help server on the internet if available. After processing the checks, the system
realises that no error was found, and therefore informs the user of this outcome. The system
offers the user a list of fixes that can be forcefully applied, as well with a link to related
issues on the community.

• Use 4. The user accesses the diagnosis screen. The user selects the problem he faces from a
list of system-available problems, optionally searching online for new definitions/commu-
nity support. The system then creates a list of common checks for the problem, checking
from the help server on the internet if available. After processing the checks, the system
realises that no error was found, and therefore informs the user of this outcome. The system
offers the user a list of fixes that can be forcefully applied, as well with a link to related
issues on the community.

• Use 5. The user accesses the diagnosis screen. The user selects the problem he faces from a
list of system-available problems, optionally searching online for new definitions/commu-
nity support. The system then creates a list of common checks for the problem and finding
one or more errors, checking from the help server on the internet if available. Additionally,
the system can’t find any related fixes for this problem, so it provides the user with a list of
checks and community questions related to this problem.

• Use 6. The user accesses the diagnosis screen. The user selects the problem he faces from a
list of system-available problems, optionally searching online for new definitions/commu-
nity support. The system then creates a list of common checks for the problem and finding
one or more errors, checking from the help server on the internet if available. The user re-
views the list of checks and selects the fixes that desires to be applied, once confirmation the
system starts applying the fixes one by one. The system encounters an error while applying
one or more fixes, and notes them down. Once ended, the system shows the user with an
informative screen regarding the fixes applied, why they were applied and the outcome of
those. It also shows a list of the fixes that it was not able to apply and the common problems
related to those. Additionally, it also provides the user with a quick link to a community
website where similar issues can be found.

• Use 7. The user accesses the diagnosis screen. The user selects the problem he faces from a
list of system-available problems, optionally searching online for new definitions/commu-
nity support. The system then creates a list of common checks for the problem and finding
one or more errors, checking from the help server on the internet if available. The user re-
views the list of checks and selects the fixes that desires to be applied, once confirmation the
system starts applying the fixes one by one. Once ended, the system shows the user with an
informative screen regarding the checks applied, why they were applied and the outcome
of those. Additionally, it also provides the user with a quick link to a community website
where similar issues can be found. The user decides that the outcome of the diagnosis is not
satisfactory and decides to restart it for the same problem or for similar problems suggested
by the system; or for another totally different problem.

History: 2013
Modified: 2013

4.2.10 Reset Settings

Main Actor: User
Precondition: —
Trigger: The user wants to force a global reset of the system settings.
Main Scenario:

• 1. The user accesses the Reset Settings screen.
• 2. The system provides the user with an overall information about the settings that will be

erased, how they will be returned to the defaults and the overall consequences of the action.
Additionally, it is offered on which settings not to remove (from system or components).

50

4 Analysis

• 3. The user reviews the information and proceeds through a double confirmation procedure.
• 4. The system erases the settings and shows the user a resume screen.
• 5. The user reviews the outcome of the operation and accepts.
• 6. The system proceeds to reload all the components with the new default settings.

Alternative Cases:
• 1a. The system is forced to reset the settings and starts the reset settings (for example, after

an update procedure).
• 2a. As it is a forced procedure, the system proceeds without user confirmation. This is only

available for system settings reset.
• 4a. The system can’t erase some settings on the moment, so a settings remove will be

planned after the system restarts itself.
• 5a. As it is a forced procedure, the system proceeds without user confirmation. This is only

available for system settings reset.
• 6a. If there are some components that couldn’t have their settings removed, the system

proceeds to close the components and try again. If that’s not possible, a task will be planned
for system restart.

• 6b. After a system settings reset, the system will be automatically restarted. Once restart, a
Initialise Device Use Case will be carried out.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: Initialise Device
Conflicts: Restore system, Backup Settings
Additional Notes: It’s worth noting that this Use Case must be available even when the system
has not been initialised.
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Reset Settings menu inside the settings screen. The system
provides for a list of all the installed components that currently have saved settings on the
system, as well as with the settings that the own system has and the size of each of them. The
system also provides comprehensive list of the general settings that each component might
be able to save, allowing for selective removal of settings and features. The user selects
the settings that wants to remove and, afterwards, accepts. After a double-confirmation
procedure the system proceeds to delete every feature; on confirmation a screen will be
shown to the user indicating the outcome of the operation. After the user accepts the results,
the system proceeds to reload every component that has had its settings modified.

• Use 2. The system detects that a forced settings reset procedure has been initiated. The
system proceeds to enumerate and list the settings to be deleted, showing the user the list of
settings to be deleted and the data that will be lost. Once the listing is complete, the system
proceeds to erase all the listed settings. When the settings have been deleted the system will
show a screen stating the results. Afterwards, a system reload will be carried out. Once this
is done the system will start the Initialise Device Use Case.

• Use 3. The user accesses the Reset Settings menu inside the settings screen. The system
provides for a list of all the installed components that currently have saved settings on the
system, as well as with the settings that the own system has and the size of each of them. The
system also provides comprehensive list of the general settings that each component might
be able to save, allowing for selective removal of settings and features. The user selects
the settings that wants to remove and, afterwards, accepts. After a double-confirmation
procedure the system proceeds to delete every feature but finds out that can’t delete some,
so they will be marked as such; on confirmation a screen will be shown to the user indicating
the outcome of the operation. After the user accepts the results, the system proceeds to
reload every component that has had its settings modified. For those components whose
settings couldn’t be removed, they will be restarted having their settings removed after
they are shut down. If that’s not possible, then they will be marked to have their settings
removed upon system restart.

History: 2013
Modified: 2013

51

4.2 Use Cases

4.2.11 Backup Settings

Main Actor: User
Precondition: The system has been initialised.
Trigger: The user wants to save his settings on a secondary system.
Main Scenario:

• 1. The user accesses the Backup Settings menu from the Settings screen.
• 2. The user indicates the system that wants to do a system backup.
• 3. The system indicates the user the available methods to do a system backup, the locations

where this data will be stored as well as the conditions of use of these methods.
• 4. The user selects a methods and provides for the necessary configuration settings for the

method including the components and settings that will be on the backup. Afterwards, the
user confirms the order.

• 5. The system proceeds to save the settings using the selected method.
• 6. Once the settings have been saved, the system provides the user with a resume of the

operation.
• 7. The user checks the outcome of the operation and finalises the use case.

Alternative Cases:
• 1a. The system detects that an Backup Settings task was planned.
• 2a/3a/4a. In case of an automatic Backup Settings, the system already has the backup

method selected and configured.
• 2b. The user indicates the system that wants to do an already configured backup. The use

case jumps to the step 5.
• 5a. The system finds an error while saving the settings using the provided method. On that

case, the system notifies the user of the failure to do so and returns to step 3.
• 5b. In case of an automatic Backup Settings the system might resort to a default backup

method if it finds an error while saving and the settings allow so, otherwise informs the
user and finalises the use case.

• 5c/6a/7a. The user might choose to exit the menu any time, therefore the system will pro-
vide all communications via notifications.

Satisfaction of the Client: 5
Dissatisfaction of the Client: 2
Dependencies: Restore Settings
Conflicts: Reset Settings
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user proceeds to the Backup Settings menu. The user indicates the system that it
desires to do a Backup Settings procedure. The system proceeds to provide the user with a
list of the available backup methods along with information regarding each method and the
conditions of use of it. The user chooses from within this list for a backup method and pro-
ceeds. The system provides the user with the configuration settings for the backup method.
After the user selects the components and settings to backup along with the configuration
settings, the system proceeds to save the backup using those. After ending, the system
shows the user with a resume screen showing the output of the operation and the location
of the new backup. The user reviews it and accepts the review.

• Use 2. The system detects that an automatic Backup Settings procedure has been requested.
The system selects automatically the backup method based on the configured settings, as
well as the method’s configuration. Afterwards, the system proceeds to backup the data us-
ing the selected conditions and elements. After the backup operation has ended the system
shows a notification to the user showing the outcome of the operation and the different data
that was recorded.

• Use 3. The user proceeds to the Backup Settings menu. The user indicates the system that it
desires to do a Backup Settings procedure. The system proceeds to provide the user with a
list of the available backup methods along with information regarding each method and the

52

4 Analysis

conditions of use of it. The user chooses from within this list for a backup method and pro-
ceeds. The system provides the user with the configuration settings for the backup method.
After the user selects the components and settings to backup along with the configuration
settings, the system proceeds to save the backup using those. During the saving operation
the system finds an error. The system notifies the user of the error and the user proceeds
to select another backup method. After configuring the method the system retries to save
the settings this time with success. After ending, the system shows the user with a resume
screen showing the output of the operation and the location of the new backup. The user
reviews it and accepts the review.

• Use 4. The system detects that an automatic Backup Settings procedure has been requested.
The system selects automatically the backup method based on the configured settings, as
well as the method’s configuration. Afterwards, the system proceeds to backup the data
using the selected conditions and elements. The system encounters an error while doing
the backup operation, so it resorts to an alternate method if configured; otherwise it notifies
the user of the failure and programs the operation for a later execution. After the backup
operation has ended the system shows a notification to the user showing the outcome of the
operation and the different data that was recorded.

• Use 5. The user proceeds to the Backup Settings menu. The user indicates the system that it
desires to do a Backup Settings procedure. The system proceeds to provide the user with a
list of the available backup methods along with information regarding each method and the
conditions of use of it. The user chooses from within this list for a backup method and pro-
ceeds. The system provides the user with the configuration settings for the backup method.
After the user selects the components and settings to backup along with the configuration
settings, the system proceeds to save the backup using those. The user decides to exit the
menu and continue manual operation. After the system ends the backup procedure, the
system notifies the user of the outcome of it.

• Use 6. The user proceeds to the Backup Settings menu. The user indicates the system that
it desires to do a Backup Settings procedure. The system proceeds to provide the user with
a list of the available backup methods along with information regarding each method and
the conditions of use of it. The user chooses from within this list for a custom backup
method containing all the settings and proceeds. The system proceeds to save the backup
using those. After the system ends the backup procedure, the system notifies the user of the
outcome of it.

History: 2013
Modified: 2013

4.2.12 Restore Settings

Main Actor: User
Precondition: —
Trigger: The user wants to restore the settings.
Main Scenario:

• 1. The user accesses the Restore Settings menu from the Settings screen.

• 2. The system offers the user a list of the restore settings methods that are available to it
along with the backups that each one has.

• 3. The user selects a backup from the list along with the method used.

• 4. The user goes through a double-confirmation procedure after selecting which settings
will be restored, also for components.

• 5. The system starts the restoration procedure and provides the user with a resume of the
restore operation when ended.

• 6. The user reviews the restore operation and confirms it.

• 7. The system reloads the restored components.

Alternative Cases:

• 1a. The system starts a automatic Restore Settings procedure after a certain Update or Re-
store procedure. A migrate procedure may also apply.

53

4.2 Use Cases

• 2a/3a/4a. On the case of an automated Restore Settings procedure the restore method,
backup and settings may automatically be selected, thus avoiding these steps and going
directly to step 5.

• 5a. The system may encounter an error while restoring the settings. If that’s the case the
system must roll back the changes already done and go back to step 2a.

• 5b. In case of an automatic procedure, if the system encounters an error then it must start
the case Reset Settings.

• 7a. The operation might require some critical components to be reloaded, the system then
plans for a system restart after the procedure.

• 7b. If the operation is planned by the system, then the restart is done automatically.

Satisfaction of the Client: SatisfClient
Dissatisfaction of the Client: DissatClient
Dependencies: —
Conflicts: —
Additional Notes: This procedure may have an special behaviour on update to migrate the back-
ups.
Author: Josep
Validation Scenarios:

• Use 1. The user starts the use case by going to the Restore Settings menu through the set-
tings screen. The user then asks the system for a list of Restore Settings backups. The system
provides the user with a list of Restore Settings backups along with the methods used and
the settings that have been stored in each of those. The user then selects the desired backup
and the settings to be restored along it and goes through a double confirmation procedure to
start the task. The system then proceeds to restore the backup settings. Once completed, the
system provides the user with a list of settings that have been restored along with other de-
tails concerning the operation. The user then reviews the details and confirms the operation.
The system proceeds to reload each of the modified components.

• Use 2. The system detects that an automated Restore Settings procedure has been requested.
The system collects the list of available Restore Settings backups and selects the one based
on the previously provided settings, that also indicate which elements and configurations
to be restored. The system starts the procedure. When done, it shows the user a notification
indicating a resume of the operation. It reloads the components restored and automatically
restarts the system if the settings restored affected one of the critical components of the
system.

• Use 3. The user starts the use case by going to the Restore Settings menu through the set-
tings screen. The user then asks the system for a list of Restore Settings backups. The system
provides the user with a list of Restore Settings backups along with the methods used and
the settings that have been stored in each of those. The user then selects the desired backup
and the settings to be restored along it and goes through a double confirmation procedure
to start the task. The system then proceeds to restore the backup settings. The system en-
counters an error while restoring the settings and proceeds to roll back the changes, and
after to inform the user of it. The system offers again a list of the available restore system
points, to which the user provides the adequate settings. The system then proceeds to re-
store the settings. Once completed, the system provides the user with a list of settings that
have been restored along with other details concerning the operation. The user then reviews
the details and confirms the operation. The system proceeds to reload each of the modified
components.

• Use 4. The system detects that an automated Restore Settings procedure has been requested.
The system collects the list of available Restore Settings backups and selects the one based
on the previously provided settings, that also indicate which elements and configurations
to be restored. The system starts the procedure. The system encounters an error within the
procedure, so it proceeds to roll back the changes and initiate a Reset Settings procedure.

History: 2013
Modified: 2013

54

4 Analysis

4.2.13 Access Plugin

Main Actor: User
Precondition: The system has been initialised and the component has been installed.
Trigger: The user wants to start an installed plugin component.
Main Scenario:

• 1. The user goes into the main plugin management screen and selects the desired plugin.
• 2. The system checks for the correctness of the plugin component and its license to be valid.
• 3. The system starts the selected plugin component.
• 4. The component initialised itself and shows its main screen.

Alternative Cases:
• 1a. The system starts the use case invoked by another use case or because of it being

planned.
• 2a. The system can’t find the installed plugin. The system shows the user a screen to search

for the plugin on an online environment, starts use case Access Appstore.
• 2b. The system detects that the plugin installation is corrupt. The plugin then checks for it

online and if found starts the Delete Installed Component Use Case followed by the Install
Component Use Case.

• 2c. The system detects that the license is invalid. The system then forwards the user to a
purchase screen by starting the Purchase Component Use Case.

• 3a. The system detects that the component needs to be initialised for a first time, therefore
starts in on the corresponding mode and allows the component to be configured before
continuing with step 4.

• 3b/4a. The system can’t start the component or a critical failure occurs. The system then
notifies the user and starts the use case Reset Settings for this component.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: Access Appstore, Delete Installed Component, Install Component, Purchase
Component
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user goes into the plugin management screen where all the plugins are located,
and looks for the desired plugin. Upon finding it the user requests the system to start the
plugin. The system does plugin checks against the plugin structure to check for the cor-
rectness of it. Afterwards, it checks the component license to check for the validity of the
user request. Following this step, the system proceeds to start the plugin execution and
checks on whether it needs to be initialised for the first time. The component then starts
itself and does basic initialisation procedures, not first-time ones, and proceeds to show its
main screen with which the user can interact.

• Use 2. The system detects that an Access Plugin procedure was planned. The system does
plugin checks against the plugin structure to check for the correctness of it. Afterwards, it
checks the component license to check for the validity of the user request. Following this
step, the system proceeds to start the plugin execution and checks on whether it needs to
be initialised for the first time. The component then starts itself and does basic initialisation
procedures, not first-time ones, and proceeds to show its main screen with which the user
can interact.

• Use 3. The user goes into the plugin management screen where all the plugins are located,
and looks for the desired plugin. As the system can’t find the desired plugin, the system
starts the case Access Appstore. After successfully completing the case, the system pro-
cesses a request to start the plugin. The system does plugin checks against the plugin struc-
ture to check for the correctness of it. Afterwards, it checks the component license to check
for the validity of the user request. Following this step, the system proceeds to start the
plugin execution and checks on whether it needs to be initialised for the first time. The
component then starts itself and does basic initialisation procedures, not first-time ones,
and proceeds to show its main screen with which the user can interact.

55

4.2 Use Cases

• Use 4. The user goes into the plugin management screen where all the plugins are located,
and looks for the desired plugin. Upon finding it the user requests the system to start the
plugin. The system does plugin checks against the plugin structure to check for the cor-
rectness of it and it detects errors. Following this it automatically starts a reinstallation
procedure by starting the Delete Installed Component Use Case and upon completion of it
the Install Component Use Case. Afterwards, it checks the component license to check for
the validity of the user request. Following this step, the system proceeds to start the plugin
execution and checks on whether it needs to be initialised for the first time. The component
then starts itself and does basic initialisation procedures, not first-time ones, and proceeds
to show its main screen with which the user can interact.

• Use 5. The user goes into the plugin management screen where all the plugins are located,
and looks for the desired plugin. Upon finding it the user requests the system to start the
plugin. The system does plugin checks against the plugin structure to check for the correct-
ness of it. Afterwards, it checks the component license to check for the validity of the user
request, which fails. When the system detects the fail, the system starts the use case Pur-
chase Component. Following this step, the system proceeds to start the plugin execution
and checks on whether it needs to be initialised for the first time. The component then starts
itself and does basic initialisation procedures, not first-time ones, and proceeds to show its
main screen with which the user can interact.

• Use 6. The user goes into the plugin management screen where all the plugins are located,
and looks for the desired plugin. Upon finding it the user requests the system to start the
plugin. The system does plugin checks against the plugin structure to check for the correct-
ness of it. Afterwards, it checks the component license to check for the validity of the user
request. Following this step, the system proceeds to start the plugin execution and checks
on whether it needs to be initialised for the first time. The system detects that the component
needs to do a first-time initialisation so it provides the user with the necessary configuration
screens from the component. After this, the component then starts itself and does basic ini-
tialisation procedures, not first-time ones, and proceeds to show its main screen with which
the user can interact.

• Use 7. The user goes into the plugin management screen where all the plugins are located,
and looks for the desired plugin. Upon finding it the user requests the system to start the
plugin. The system does plugin checks against the plugin structure to check for the cor-
rectness of it. Afterwards, it checks the component license to check for the validity of the
user request. Following this step, the system proceeds to start the plugin execution and
checks on whether it needs to be initialised for the first time. The component then starts
itself and does basic initialisation procedures, not first-time ones, but fails at starting. Due
to this problem, the system then proceeds to start an automatic Reset Settings use case for
this component. After it, the system starts again the plugin and detects that the component
needs to do a first-time initialisation so it provides the user with the necessary configuration
screens from the component. After this, the component then starts itself and does basic ini-
tialisation procedures, not first-time ones, and proceeds to show its main screen with which
the user can interact.

History: 2013
Modified: 2013

4.2.14 Select Component

Main Actor: User
Precondition: The system has been initialised and the corresponding component is installed.
Trigger: The user wants to select or enable the component.
Main Scenario:

• 1. The user goes to the Select Component menu in the settings screen.
• 2. The system provides the user with a list of the installed components.
• 3. The user searches for and selects the desired component.
• 4. The system checks for the correctness of the desired component component and the

validity of its license. Afterwards, the system provides the user with what the end result
will be like with the selected component.

56

4 Analysis

• 5. The user goes through a double confirmation screen to change the component.
• 6. The system starts the selected component and asks for it to configure itself using the

already selected (other) components.
• 7. The component configures itself automatically.
• 8. The system provides the user with a changed component.

Alternative Cases:
• 1a. The system may detect that a Change Component use case is requested and therefore

initiate the use case.
• 2a/3a/5a. In case of an automated Change Component use case, these steps will be omitted.
• 3a. The system can’t find the desired component and starts the use case Access Appstore.
• 4a. The system detects that the selected component has an invalid structure. Therefore,

starts the use case Delete Installed Component and afterwards the Install Component use
case.

• 4b. The system detects that the selected component has an invalid license. Therefore, starts
the use case Purchase Component.

• 4c. The system can’t display a preview with the selected component because it doesn’t
support it.

• 6a. The system can’t start the selected component, so it goes through the use cases Delete
Installed Component and then Install Component.

• 7a. The component needs additional configuration by the user, so the system provides the
user with a configuration screen for it.

• 7b. The component was previously run and has already the configuration, so the component
loads it.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Select Component menu through the Settings screen. After-
wards the user gets a list of the already installed components from the system, from which
it searches for the desired component. The user selects the desired component, to which
the system performs integrity checks and also checks that its license is valid. The user
reviews the result with the selected component and goes through a double-confirmation
procedure to accept for the change. The system proceeds to change the component and pre-
pares the component to configure itself. The component does automatic configuration steps
and when ready the system applies it. Lastly the system presents the user with the updated
component.

• Use 2. The system detects that a change component procedure has been requested. The
system performs integrity checks on the requested component and also checks that its li-
cense is valid. The system proceeds to change the component and prepares the component
to configure itself. The component does automatic configuration steps and when ready the
system applies it. Lastly the system presents the user with the updated component.

• Use 3. The user accesses the Change Component menu through the Settings screen. After-
wards the user gets a list of the already installed components from the system, from which it
searches for the desired component. The user selects the desired component but the system
can’t find it so starts the use case Access Appstore. After it, the system performs integrity
checks to the component and also checks that its license is valid. The user reviews the result
with the selected component and goes through a double-confirmation procedure to accept
for the change. The system proceeds to change the component and prepares the component
to configure itself. The component does automatic configuration steps and when ready the
system applies it. Lastly the system presents the user with the updated component.

• Use 4. The user accesses the Select Component menu through the Settings screen. After-
wards the user gets a list of the already installed components from the system, from which

57

4.2 Use Cases

it searches for the desired component. The user selects the desired component, to which
the system performs integrity checks but fails. The system starts the use case Delete In-
stalled Component and afterwards Install Component, after which also checks that its li-
cense is valid. The user reviews the result with the selected component and goes through a
double-confirmation procedure to accept for the change. The system proceeds to change the
component and prepares the component to configure itself. The component does automatic
configuration steps and when ready the system applies it. Lastly the system presents the
user with the updated component.

• Use 5. The user accesses the Select Component menu through the Settings screen. After-
wards the user gets a list of the already installed components from the system, from which
it searches for the desired component. The user selects the desired component, to which
the system performs integrity checks and also checks that its license is valid but fails. The
system then starts the use case Purchase Component. After it, the user reviews the result
with the selected component and goes through a double-confirmation procedure to accept
for the change. The system proceeds to change the component and prepares the component
to configure itself. The component does automatic configuration steps and when ready the
system applies it. Lastly the system presents the user with the updated component.

• Use 6. The user accesses the Select Component menu through the Settings screen. Af-
terwards the user gets a list of the already installed components from the system, from
which it searches for the desired component. The user selects the desired component, to
which the system performs integrity checks and also checks that its license is valid. The
user can’t review the result because the component doesn’t allow for it, so goes through a
double-confirmation procedure to accept for the change. The system proceeds to change the
component and prepares the component to configure itself. The component does automatic
configuration steps and when ready the system applies it. Lastly the system presents the
user with the updated component.

• Use 7. The user accesses the Select Component menu through the Settings screen. After-
wards the user gets a list of the already installed components from the system, from which
it searches for the desired component. The user selects the desired component, to which the
system performs integrity checks and also checks that its license is valid. The user reviews
the result with the selected component and goes through a double-confirmation procedure
to accept for the change. The system proceeds to change the component but fails so starts
the use case Delete Installed Component and after it the use case Install Component. After-
wards prepares the component to configure itself. The component does automatic configu-
ration steps and when ready the system applies it. Lastly the system presents the user with
the updated component.

• Use 8. The user accesses the Select Component menu through the Settings screen. After-
wards the user gets a list of the already installed components from the system, from which
it searches for the desired component. The user selects the desired component, to which the
system performs integrity checks and also checks that its license is valid. The user reviews
the result with the selected component and goes through a double-confirmation procedure
to accept for the change. The system proceeds to change the component and prepares the
component to configure itself. The component does automatic configuration steps but de-
tects that additional configuration is required so the system presents the user with a series of
screen to provide for it. When ended the system applies the component. Lastly the system
presents the user with the updated component.

• Use 9. The user accesses the Select Component menu through the Settings screen. After-
wards the user gets a list of the already installed components from the system, from which
it searches for the desired component. The user selects the desired component, to which the
system performs integrity checks and also checks that its license is valid. The user reviews
the result with the selected component and goes through a double-confirmation procedure
to accept for the change. The system proceeds to change the component and prepares the
component to configure itself. The component detects that a previous configurations is
available, so it loads it and when ready the system applies it. Lastly the system presents the
user with the updated component.

History: 2013
Modified: 2013

58

4 Analysis

4.2.15 Configure Component

Main Actor: User
Precondition: The system has been initialised and the component is installed.
Trigger: The user wants to configure a component.
Main Scenario:

• 1. The user goes to the Configure Component Menu in the Settings screen and selects the
component that wants to configure.

• 2. The system searches for the component and checks for its correctness and the validity of
the license.

• 3. The system queries the component for the settings screen, which provides to the user.
• 4. The user provides the settings configuration as indicated by the system and accepts the

changes.
• 5. The system checks for the validity of the settings provided by the user.
• 6. The system applies the changes to the component and reloads it.

Alternative Cases:
• 1a. The component may decide to start this use case manually.
• 1b. The system will start this use case if necessary on the component’s first-time usage.
• 2a. The system can’t find the component and therefore starts the use case Access Appstore.
• 2b. The system detects that the component is corrupt and starts the use case Delete Installed

Component and thereafter Install Component.
• 2c. The system detects that the component’s license is invalid and starts the use case Perform

Purchase.
• 3a. The component fails to provide the settings screen, therefore the system proceeds to

notify the user of the situation and start the use case Reset Settings or Perform Diagnosis for
the component, depending on the user input.

• 5a. The system detects that the settings provided by the user are invalid and therefore
returns to step 4.

• 6a. The system detects that the component is a critical system component and therefore
prompts the user to restart the system in order for the changes to be applied. The system
marks the component to have its settings restored on next start.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Configure Component menu from the Settings screen. On it,
it searches for the desired component, which the system finds, and asks the component to
provide the configuration screen. The system checks for the correctness of the component
and the validity of its license, both being satisfactory. Afterwards, it prompts the component
for the configuration screen which provides swiftly to the user. The user then fills in the
configuration screen and accepts the modifications. The system checks for the validity of
the changes and succeeds, therefore modifying the component settings and reloading it.

• Use 2. The component requests the system to provide the user with the component’s con-
figuration menu. The system prompts the component for the configuration screen which
provides swiftly to the user. The user then fills in the configuration screen and accepts the
modifications. The system checks for the validity of the changes and succeeds, therefore
modifying the component settings and reloading it.

• Use 3. The system detects that this case is initiated by the Access Component use case.
The system prompts the component for the configuration screen which provides swiftly
to the user. The user then fills in the configuration screen and accepts the modifications.
The system checks for the validity of the changes and succeeds, therefore modifying the
component settings and reloading it.

59

4.2 Use Cases

• Use 4. The user accesses the Configure Component menu from the Settings screen. On it,
it searches for the desired component, which the system can’t find. Therefore, the system
starts the use case Access AppStore. After it, the system asks the component to provide
the configuration screen. The system checks for the correctness of the component and the
validity of its license, both being satisfactory. Afterwards, it prompts the component for the
configuration screen which provides swiftly to the user. The user then fills in the configura-
tion screen and accepts the modifications. The system checks for the validity of the changes
and succeeds, therefore modifying the component settings and reloading it.

• Use 5. The user accesses the Configure Component menu from the Settings screen. On it,
it searches for the desired component, which the system finds, and asks the component to
provide the configuration screen. The system checks for the correctness of the component
and fails. The system starts the use case Delete Installed Component and Install Component.
Then it checks validity of the component’s license, both being satisfactory. Afterwards, it
prompts the component for the configuration screen which provides swiftly to the user.
The user then fills in the configuration screen and accepts the modifications. The system
checks for the validity of the changes and succeeds, therefore modifying the component
settings and reloading it.

• Use 6. The user accesses the Configure Component menu from the Settings screen. On it,
it searches for the desired component, which the system finds, and asks the component to
provide the configuration screen. The system checks for the correctness of the component
and the validity of its license but fails on this last. The system then starts the use case Per-
form Purchase. Afterwards, it prompts the component for the configuration screen which
provides swiftly to the user. The user then fills in the configuration screen and accepts the
modifications. The system checks for the validity of the changes and succeeds, therefore
modifying the component settings and reloading it.

• Use 7. The user accesses the Configure Component menu from the Settings screen. On it,
it searches for the desired component, which the system finds, and asks the component to
provide the configuration screen. The system checks for the correctness of the component
and the validity of its license, both being satisfactory. Afterwards, it prompts the component
for the configuration screen but this last notifies that it can’t due to an internal error. Te
system then notifies the user of the problem and prompts the user to start the use case Reset
Settings or Perform Diagnosis for the component. After, the system successfully provides
the configuration screen to the user. The user then fills in the configuration screen and
accepts the modifications. The system checks for the validity of the changes and succeeds,
therefore modifying the component settings and reloading it.

• Use 8. The user accesses the Configure Component menu from the Settings screen. On it,
it searches for the desired component, which the system finds, and asks the component to
provide the configuration screen. The system checks for the correctness of the component
and the validity of its license, both being satisfactory. Afterwards, it prompts the component
for the configuration screen which provides swiftly to the user. The user then fills in the
configuration screen and accepts the modifications. The system checks for the validity of the
changes and fails therefore prompting the user again for the settings. The user inputs this
time correctly the settings and the system succeeds on checking them, therefore modifying
the component settings and reloading it.

• Use 9. The user accesses the Configure Component menu from the Settings screen. On it,
it searches for the desired component, which the system finds, and asks the component to
provide the configuration screen. The system checks for the correctness of the component
and the validity of its license, both being satisfactory. Afterwards, it prompts the component
for the configuration screen which provides swiftly to the user. The user then fills in the
configuration screen and accepts the modifications. The system checks for the validity of
the changes and succeeds, but realises that it is a critical system component. The system
informs the user of the situation and programs a settings change for when the system is
restarted.

History: 2013
Modified: 2013

60

4 Analysis

4.2.16 Delete Installed Component

Main Actor: User
Precondition: The system has been initialised and the component is installed.
Trigger: The user wants to delete a installed component.
Main Scenario:

• 1. The user accesses the Manage Installed Components menu in the Settings screen.
• 2. The system provides the user with a list of installed components.
• 3. The user selects the appropriate component from the list and double confirms the dele-

tion.
• 4. The system prompts the user on whether it wants to preserve the settings and/or the

stored data of the component.
• 5. The user decides on which data wants to remove and accepts.
• 6. The system proceeds to remove the selected data.
• 7. The system informs the user of the success of the operation.

Alternative Cases:
• 1a. The system starts the use case from another use case, therefore the steps 2-5 will be

omitted and only the component’s main data will be removed.
• 3a. The system detects that the selected component is a system critical one, therefore doesn’t

allow the user to ask for its deletion. The use case ends on this step.
• 6a. The system detects that the component is in use and therefore ends it. If after that it still

detects that there is some data in use, it indicates the user that a system restart is needed.
• 7a. If the step 6a is done, the system prompts the user to restart the system.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Manage Installed Components menu from the Settings screen.
The system provides the user with a list of already installed components, from which the
user selects the desired component. The user then confirms the component to be deleted
twice. The system then asks the user on which data to keep, such as settings or other
component-specific data. The user selects the data to be removed and confirm again. The
system proceeds to remove the selected data and after that it informs the user on the success
of the operation.

• Use 2. The system starts the use case prompted by another use case. The system proceeds
to remove the main component’s data and after that it informs the user on the success of the
operation.

• Use 3. The user accesses the Manage Installed Components menu from the Settings screen.
The system provides the user with a list of already installed components, from which the
user selects the desired component. The user then confirms the component but the system
informs the user that the component is listed as a system component and therefore can’t be
removed.

• Use 1. The user accesses the Manage Installed Components menu from the Settings screen.
The system provides the user with a list of already installed components, from which the
user selects the desired component. The user then confirms the component to be deleted
twice. The system then asks the user on which data to keep, such as settings or other
component-specific data. The user selects the data to be removed and confirm again. The
system detects that the component is in use and terminates it, after it proceeds to remove the
selected data. The system then detects that there is data that can’t be removed and marks it
to be deleted on restart, so it informs the user of the outcome of the operation and prompts
it to restart the system in order to fully remove the remaining data.

History: 2013
Modified: 2013

61

4.2 Use Cases

4.2.17 Select Active Plugins

Main Actor: User
Precondition: The system is initialised.
Trigger: The user wants to select the active plugins.
Main Scenario:

• 1. The user accesses the Select Active Plugins menu in the Settings screen.

• 2. The system provides the user with a list of plugins already installed on the system and
from these marking the ones that are currently active.

• 3. The user selects the plugins that would like to have available on the dashboard from the
list and confirms.

• 4. The system checks that the selection is valid and for the allowance of the current config-
uration.

• 5. The system notifies the other components and the user of the change.

Alternative Cases:

• 1a. A component may request this case to be started.

• 2a. In case that the case has been started by a component request, that component will
automatically be selected/unselected according to its petition.

• 4a. The system detects that the selection is not compatible with the current configuration.
The system provides the user with either a Perform Diagnosis use case or to return to step
3.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: This use case differs from the Select Component one because on the former
the plugins are just selected and not ran like on the later one.
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the select Active Plugins menu on the Settings screen. Following
this step, the system provides a list of the installed plugins marking the ones that are already
active. The user then modifies the selection of active plugins and confirms. The system then
queries the current configuration with the selection provided by the user and checks that
there is no conflict. After that, the system notifies all the currently selected components of
the change, and the user of the success of the operation.

• Use 2. A component asks for the user case to be held. Following this step, the system pro-
vides a list of the installed plugins marking the ones that are already active plus performing
the action requested by the component on the list. The user then modifies the selection of
active plugins and confirms. The system then queries the current configuration with the
selection provided by the user and checks that there is no conflict. After that, the system
notifies all the currently selected components of the change, and the user of the success of
the operation.

• Use 3. The user accesses the select Active Plugins menu on the Settings screen. Following
this step, the system provides a list of the installed plugins marking the ones that are already
active. The user then modifies the selection of active plugins and confirms. The system then
queries the current configuration with the selection provided by the user and checks that
there is no conflict but fails. The system then provides the user with the option to modify
the selection or to start the use case Perform Diagnosis. The user modifies the selection
and this time the system checks successfully that there’s no conflict. After that, the system
notifies all the currently selected components of the change, and the user of the success of
the operation.

History: 2013
Modified: 2013

62

4 Analysis

4.2.18 Access AppStore

Main Actor: User
Precondition: The system has been initialised.
Trigger: The user wants to access the AppStore.
Main Scenario:

• 1. The user accesses the AppStore screen.
• 2. The system contacts the AppStore server with the already vinculated user account.
• 3. The AppStore server returns back a category-based list of recommended components,

special offers and other information that it may deem of importance based on the user ac-
count.

• 4. The user then searches for a component that wants to review.
• 5. The system queries the AppStore server for the component and provides it to the user.
• 6. At this point, the user may decide to start the use case Perform Purchase.

Alternative Cases:
• 1a. The system detects that the use case execution has been requested.
• 2a. The system detects that the device is not vinculated with any user account. Therefore

the system sends the AppStore server a list of the currently installed components.
• 2b. The system detects that it is the first time that the user accesses the AppStore, therefore

it start the Vinculate Account use case.
• 2c. The server can’t contact the AppStore server, therefore it asks the user to try again later.

The use case ends here.
• 5a. The server can’t find the component and notifies the system. The use case returns to

step 4.
Satisfaction of the Client: 3
Dissatisfaction of the Client: 3
Dependencies: Vinculate Account, Perform Purchase
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the AppStore screen. The system then queries the AppStore pro-
viding the vinculated account for a recommended list of components and categories. The
user then selects the component that it desires to view and the system queries again the
AppStore server for the component’s information. The user may then start the use case
Perform Purchase.

• Use 2. The system detects that a use case start has been requested. The system then queries
the AppStore for a recommended list of components and categories. The user then selects
the component that it desires to view and the system queries again the AppStore server for
the component’s information. The user may then start the use case Perform Purchase.

• Use 3. The user accesses the AppStore screen. The system detects that no user account
is vinculated, and therefore queries the AppStore for a recommended list of components
and categories by sending the currently installed components. The user then selects the
component that it desires to view and the system queries again the AppStore server for the
component’s information. The user may then start the use case Perform Purchase.

• Use 4. The user accesses the AppStore screen. The system also detects that it is the first time
that the user accesses the AppStore, and therefore starts the use case Vinculate Account. The
system then queries the AppStore providing the vinculated account for a recommended list
of components and categories. The user then selects the component that it desires to view
and the system queries again the AppStore server for the component’s information. The
user may then start the use case Perform Purchase.

• Use 5. The user accesses the AppStore screen. The system then queries the AppStore pro-
viding the vinculated account for a recommended list of components and categories. The
user then selects the component that it desires to view and the system queries again the
AppStore server for the component’s information. The server notifies the system that no

63

4.2 Use Cases

component could be found and and the later notifies also the user. The user then searches
for another component and the server finds it, so the system provides the user with the
information for this component. The user may then start the use case Perform Purchase.

History: 2013
Modified: 2013

4.2.19 Perform Purchase

Main Actor: User
Precondition: The system has been initialised and an account has been vinculated.
Trigger: The user wants to purchase a component.
Main Scenario:

• 1. The user accesses the Component Purchase screen from the Component Information
screen provided by the AppStore.

• 2. The AppStore server provides the user with an overview of what kind of information will
the Component use.

• 3. The user accepts the conditions of the information the Component will share.
• 4. The AppStore server provides the user with an overview of the price that it will be paying

and a list of payments methods, including the ones saved by the user.
• 5. The user accepts the conditions and selects a payment method and inputs the correspond-

ing data.
• 6. The AppStore server proceeds to process the selected options.
• 7. The AppStore informs the user when the operation has been processed with the outcome.
• 8. The user reviews the information and accepts.
• 9. The AppStore notifies the system of the user of a new component available, and this latter

starts the use case Install Component.
Alternative Cases:

• 1a. The system detects that a Perfom Purchase method has been requested.
• 2a. The AppStore server detects that the user is not eligible for the components installation,

and therefore informs the user of the situation. The Appstore provides a set of alternative
Components that are similar to the requested one.

• 3a. The user unchecks some optional features from the component, so that certain informa-
tion is not accessed.

• 6a. The Appstore server detects that certain data is not correct and therefore informs the
user, returning the use case to step 5.

• 7a. The Appstore server can’t process the payment with the data provided by the user,
therefore informing the user and returning to step 5.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: Access Appstore, Vinculate Account
Conflicts: —
Additional Notes: A component may not be available for purchase on publisher’s demand, there-
fore its justified to show the component information with the contact information of the publisher.
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Component Purchase screen from the Component Information
screen after the use case Access Appstore. The Appstore server provides the user with the
registered information regarding the desired component. The user then decides to proceed
with the purchase. The Appstore then provides the user with a list of the available payment
processing methods available on the user’s country. The user selects the desired payment
method and inputs the required data associated with it. The Appstore then processes the
payment request using the provided information. After successfully checking the data and
having proceed to ask for the money transfer, the Appstore communicates the user of the
success of the operation. The user then reviews the data and accepts. The Appstore server

64

4 Analysis

proceeds to notify the user’s system of the outcome of the operation and a use case Install
Component begins.

• Use 2. The system detects that a Perform Purchase use case has been requested. The App-
store server provides the user with the registered information regarding the desired compo-
nent. The user then decides to proceed with the purchase. The Appstore then provides the
user with a list of the available payment processing methods available on the user’s coun-
try. The user selects the desired payment method and inputs the required data associated
with it. The Appstore then processes the payment request using the provided information.
After successfully checking the data and having proceed to ask for the money transfer, the
Appstore communicates the user of the success of the operation. The user then reviews the
data and accepts. The Appstore server proceeds to notify the user’s system of the outcome
of the operation and a use case Install Component begins.

• Use 3. The user accesses the Component Purchase screen from the Component Information
screen after the use case Access Appstore. The Appstore server provides the user with the
registered information regarding the desired component notifiying him that the selected
component is not available for his region. The user then selects another component from
the alternative component list provide dby the server decides to proceed with the purchase.
The user reviews the information and proceeds with the purchase The Appstore then pro-
vides the user with a list of the available payment processing methods available on the
user’s country. The user selects the desired payment method and inputs the required data
associated with it. The Appstore then processes the payment request using the provided
information. After successfully checking the data and having proceed to ask for the money
transfer, the Appstore communicates the user of the success of the operation. The user then
reviews the data and accepts. The Appstore server proceeds to notify the user’s system of
the outcome of the operation and a use case Install Component begins.

• Use 4. The user accesses the Component Purchase screen from the Component Information
screen after the use case Access Appstore. The Appstore server provides the user with the
registered information regarding the desired component. The user then decides to proceed
with the purchase but chooses to refuse certain conditions of use of the component, therefore
disabling certain features. The Appstore then provides the user with a list of the available
payment processing methods available on the user’s country. The user selects the desired
payment method and inputs the required data associated with it. The Appstore then pro-
cesses the payment request using the provided information. After successfully checking the
data and having proceed to ask for the money transfer, the Appstore communicates the user
of the success of the operation. The user then reviews the data and accepts. The Appstore
server proceeds to notify the user’s system of the outcome of the operation and a use case
Install Component begins.

• Use 5. The user accesses the Component Purchase screen from the Component Information
screen after the use case Access Appstore. The Appstore server provides the user with the
registered information regarding the desired component. The user then decides to proceed
with the purchase. The Appstore then provides the user with a list of the available payment
processing methods available on the user’s country. The user selects the desired payment
method and inputs the required data associated with it. The Appstore then detects that
certain inputted data is incorrect and informs the user. The user inputs the data again, this
time correctly. The Appstore proceeds to process the payment. After successfully checking
the data and having proceed to ask for the money transfer, the Appstore communicates
the user of the success of the operation. The user then reviews the data and accepts. The
Appstore server proceeds to notify the user’s system of the outcome of the operation and a
use case Install Component begins.

• Use 6. The user accesses the Component Purchase screen from the Component Informa-
tion screen after the use case Access Appstore. The Appstore server provides the user with
the registered information regarding the desired component. The user then decides to pro-
ceed with the purchase. The Appstore then provides the user with a list of the available
payment processing methods available on the user’s country. The user selects the desired
payment method and inputs the required data associated with it. The Appstore then pro-
cesses the payment request using the provided information. After successfully checking the
data the Appstore server asks for the money transfer but an external error occurs. Therefore
the Appstore system informs the user of it and offers the user the possibility to change the

65

4.2 Use Cases

method or trying again. The user selects to retry and this time the Appstore server success-
fully complies with the request, thus the Appstore communicates the user of the success of
the operation. The user then reviews the data and accepts. The Appstore server proceeds to
notify the user’s system of the outcome of the operation and a use case Install Component
begins.

History: 2013
Modified: 2013

4.2.20 Vinculate Account

Main Actor: User
Precondition: —
Trigger: The system requires the user to vinculate itself with the AppStore server.
Main Scenario:

• 1. The user goes to the Account screen in the settings menu.

• 2. The system checks that the user has not a vinculated account on the server.

• 3. The system provides the user with relevant information regarding the account vincula-
tion, including the terms and conditions.

• 4. The user accepts the base conditions for account vinculation.

• 5. The system asks the user with the relevant data in order to create an account.

• 6. The user provides the system with the relevant data and proceeds.

• 7. The system contacts the Registration server and creates the account. Thereafter, informs
the user of the result.

• 8. The user reviews the result and accepts.

Alternative Cases:

• 1a. The system detects that a Vinculate Account use case has been requested.

• 2a. The system detects that an account is already vinculated. Therefore, the system shows
the user the registered information, the user reviews it and ends the case.

• 2b. The system detects that an account is already vincualted. The user decides to edit the
information and continues with the use case on step 5 using prefilled data.

• 2c. The system can’t establish a connection with the Registration server, therefore notifying
the user and offering the possibility to start a Diagnosis Use Case.

• 6a. The user provides the system with incorrect data. The system then prompts the user to
correct the mistakes and the use case returns to step 5.

• 7a. The server detects that the inputed data contains payment information. Therefore, pro-
ceeds to validate it. In case the payment information is incorrect the server notifies the
system and returns to step 5.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: This use case may be started without account vinculation.
Author: Josep
Validation Scenarios:

• Use 1. The user goes into the account menu in the settings screen. The system then success-
fully contacts the Registration server and observes that no account is currently vinculated,
thus informing the user. The user then proceeds to vinculate the account by accepting the
terms and conditions shown by the system. The system then prompts the user for extra
information regarding its personal data which the user inputs. Afterwards, the user inputs
the data and confirms. After this step, the system validates the information inputted by the
user and proceeds to contact the server in order to create the account. The server double
checks the provided information and proceeds to create an account. After successfully cre-
ating one, the server contacts the system in order to notify it of the success of the operation.

66

4 Analysis

• Use 2. The system detects that a Vinculate Account use case has been requested. The user
then proceeds to vinculate the account by accepting the terms and conditions shown by
the system. The system then prompts the user for extra information regarding its personal
data which the user inputs. Afterwards, the user inputs the data and confirms. After this
step, the system validates the information inputted by the user and proceeds to contact the
server in order to create the account. The server double checks the provided information
and proceeds to create an account. After successfully creating one, the server contacts the
system in order to notify it of the success of the operation.

• Use 3. The user goes into the account menu in the settings screen. The system then success-
fully contacts the Registration server and observes that an account is already vinculated.
The user reviews the information and ends the use case.

• Use 4. The user goes into the account menu in the settings screen. The system then success-
fully contacts the Registration server and observes that an account is already vinculated.
The user reviews the information and decides to change some of the present information.
The system then prompts the user for information regarding its personal data, which is pre-
filled with the user’s actual data, that the user inputs. Afterwards, the user inputs the data
and confirms. After this step, the system validates the information inputted by the user and
proceeds to contact the server in order to create the account. The server double checks the
provided information and proceeds to create an account. After successfully creating one,
the server contacts the system in order to notify it of the success of the operation.

• Use 5. The user goes into the account menu in the settings screen. The system then contacts
the Registration server but detects that it is not possible to establish a connection. The sys-
tem informs the user of the problem and offers the user the possibility to start a Diagnosis
Use Case.

• Use 6. The user goes into the account menu in the settings screen. The system then success-
fully contacts the Registration server and observes that no account is currently vinculated,
thus informing the user. The user then proceeds to vinculate the account by accepting the
terms and conditions shown by the system. The system then prompts the user for extra
information regarding its personal data which the user inputs. Afterwards, the user inputs
the data and confirms. After this step, the system validates the information inputted by the
user but detects an error. Therefore prompts the user to solve the detected issues. The user
corrects the data and submits again, to which point the system successfully validates it and
proceeds to contact the server in order to create the account. The server double checks the
provided information and proceeds to create an account. After successfully creating one,
the server contacts the system in order to notify it of the success of the operation.

• Use 7. The user goes into the account menu in the settings screen. The system then success-
fully contacts the Registration server and observes that no account is currently vinculated,
thus informing the user. The user then proceeds to vinculate the account by accepting the
terms and conditions shown by the system. The system then prompts the user for extra
information regarding its personal data which the user inputs. Afterwards, the user inputs
the data and confirms. After this step, the system validates the information inputted by the
user and proceeds to contact the server in order to create the account. The server double
checks the provided information and detects that there is payment data present. Therefore
proceeds to validate the data, but detects that payment data is incorrect or invalid. It pro-
ceeds to notify the system, which in turn notifies the user. The user then inputs the correct
data and the system communicates it to the server. The server successfully checks all the
data and proceeds to create an account. After successfully creating one, the server contacts
the system in order to notify it of the success of the operation.

History: 2013
Modified: 2013

67

4.2 Use Cases

4.2.21 Select Dashboard Plugins

Main Actor: User
Precondition: The system has been initialised.
Trigger: The user wants to select which plugins are visible on his dashboard.
Main Scenario:

• 1. The user goes to the Plugin Management menu in the Settings screen.
• 2. The system provides the user with a list of the plugins currently in use, as well as the

plugins that are embedded into the system and can’t be changed.
• 3. The user then chooses to change the currently selected plugins.
• 4. The system then provides the user a view with each of the installed plugins general

features, as well as the approximate resource consumption they may take and the effect
they may take on the system.

• 5. The user then chooses from the list the plugins he would like to have available on the
system and confirms.

• 6. The system checks for incompatibilities and proceeds to do the changes. Afterwards,
presents the user with an informative screen.

• 7. The user accepts the review.
Alternative Cases:

• 2a. The system detects that the user has permissions to modify the system’s behavior. There-
fore, prompts the user on whether it wants to modify its personal settings or the whole of
the system.

• 4a. The system has no extra plugins installed. Therefore the system informs the user and
prompts on whether it want to start the use case Access AppStore.

• 6a. The system detects that the user has chosen some incompatible plugin combinations.
Therefore, it informs the user of the problem and returns to step 5.

• 6b. The system detects that there is a problem while disabling or enabling certain plugin. It
informs the user and proceeds.

• 6c. The system detects that the system needs to be restarted after enabling a plugin, therefore
it prompts the user on step 7.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user goes to the Select Dashboard Plugins screen in the Settings menu. The sys-
tem then provides the list of the currently active plugins for the user. The user then selects
to change the configuration and the system proceeds to show him a list of the currently in-
stalled plugins as well as the plugins that are already installed on the system. It marks as
well the plugins that can’t be disabled or enabled depending on their functionality. The user
then selects the plugins he desires to be enabled and afterwards he confirms the selection.
The system then processes the selection and checks for incompatibilities. On the point of
not finding any, it proceeds to apply the new configuration. After applying the necessary
changes, it shows the user a briefing screen.

• Use 2. The user goes to the Select Dashboard Plugins screen in the Settings menu. The
system detects that the user has permission to change the default settings of the system.
The system then provides the list of the currently active plugins for the system. The user
then selects to change the configuration and the system proceeds to show him a list of the
currently installed plugins as well as the plugins that are already installed on the system. It
marks as well the plugins that can’t be disabled or enabled depending on their functionality.
The user then selects the plugins he desires to be enabled and afterwards he confirms the
selection. The system then processes the selection and checks for incompatibilities. On the
point of not finding any, it proceeds to apply the new configuration. After applying the
necessary changes, it shows the user a briefing screen.

68

4 Analysis

• Use 3. The user goes to the Select Dashboard Plugins screen in the Settings menu. The
system then provides the list of the currently active plugins for the user. The user then
selects to change the configuration but the system detects that no extra plugins are installed,
thus not being able to provide the list with a choice. The system then prompts the user to
start the use case Access AppStore to install more plugins.

• Use 4. The user goes to the Select Dashboard Plugins screen in the Settings menu. The sys-
tem then provides the list of the currently active plugins for the user. The user then selects
to change the configuration and the system proceeds to show him a list of the currently
installed plugins as well as the plugins that are already installed on the system. It marks
as well the plugins that can’t be disabled or enabled depending on their functionality. The
user then selects the plugins he desires to be enabled and afterwards he confirms the se-
lection. The system then processes the selection and checks for incompatibilities, therefore
detecting them. The system notifies the user of the problem and prompts the user to solve
the incompatibilities by either disabling one of the conflicting plugins or running a Diagno-
sis Use Case. After the user makes the request again the system proceeds and doesn’t find
any incompatibility, thus proceeding to apply the new configuration. After applying the
necessary changes, it shows the user a briefing screen.

• Use 5. The user goes to the Select Dashboard Plugins screen in the Settings menu. The sys-
tem then provides the list of the currently active plugins for the user. The user then selects
to change the configuration and the system proceeds to show him a list of the currently
installed plugins as well as the plugins that are already installed on the system. It marks
as well the plugins that can’t be disabled or enabled depending on their functionality. The
user then selects the plugins he desires to be enabled and afterwards he confirms the selec-
tion. The system then processes the selection and checks for incompatibilities. On the point
of not finding any, it proceeds to apply the new configuration but detects problems while
applying it. After applying the necessary changes, it shows the user a briefing screen noting
down the plugins whose status couldn’t be modified.

• Use 6. The user goes to the Select Dashboard Plugins screen in the Settings menu. The sys-
tem then provides the list of the currently active plugins for the user. The user then selects
to change the configuration and the system proceeds to show him a list of the currently
installed plugins as well as the plugins that are already installed on the system. It marks
as well the plugins that can’t be disabled or enabled depending on their functionality. The
user then selects the plugins he desires to be enabled and afterwards he confirms the selec-
tion. The system then processes the selection and checks for incompatibilities. On the point
of not finding any, it proceeds to apply the new configuration. After applying the neces-
sary changes the system detects that it needs to restart itself in order to apply fully the new
configuration, therefore it shows the user a briefing screen and prompts him to proceed to
restart the system.

History: 2013
Modified: 2013

4.2.22 Add or Modify Recognised Device

Main Actor: User
Precondition: The system has been initialised and the user has the required privileges.
Trigger: The user wants to add a new recognised device.
Main Scenario:

• 1. The user accesses the Recognised Devices management screen from the Settings menu.

• 2. The system provides the user with a list of the currently enabled Recognised Devices and
the newly detected devices, altogether with a briefing on the number of secondary devices.

• 3. The user then chooses to add a new Trusted Device.

• 4. The system provides a list of all the devices that are eligible to be added as a Recognised
Device, as well as an option to force the detection of new devices.

• 5. The user selects a device from the list and indicates the level of trust.

• 6. The system then proceeds to add the device as a recognized device, therefore allowing
the device a higher level of access if the user decided so.

69

4.2 Use Cases

• 7. The system informs the user of the outcome of the operation, and informs him that in
case the device can’t access with its new level of trustfulness, the device might need to be
restarted.

Alternative Cases:
• 3a. The user clicks on one of the newly recognised devices, the system then prompts the

user for the level of trust and continues with step 6.
• 3b. The user selects one of the already recognised devices, the system then prompts the user

for the level of trust and continues with step 6.
• 5a1. The user wants to add manually a new device that’s not available on the screen.
• 5a2. The system then prompts the user to manually introduce the device information.
• 5a3. The user introduces the information and accepts.
• 5a4. The system adds a new device to the list and proceeds to the step 6.
• 5b. The user selects a device that was previously blocked. The system then double confirms

the user action and proceeds to step 6.
• 6a. The system can’t add the device as a recognised device, therefore it prompts the user to

start a diagnosis case or returning to step 4.
Satisfaction of the Client: 2
Dissatisfaction of the Client: 4
Dependencies: —
Conflicts: —
Additional Notes: By default all devices are allowed, thus this case might only be used to set a
device as recognised by the user. This case can’t be started by the system itself due to its criticality
on the security of the system.
Author: Josep
Validation Scenarios:

• Use 1. The user selects the Trusted Devices management screen in the Settings menu. The
system then displays a list of the devices whose role has not been established, such as a
“guest device“ or a “trusted device“, as well as currently trusted devices. The user then
clicks on the option to add a new device and the system shows the user a full list of the cur-
rently recognised devices. The user then selects one of the devices and chooses to add it as
a recognised device. The system then provides the user with a list of the currently available
levels of trust. The user chooses one of the levels of trust and accepts. The system then pro-
ceeds to add the device as a recognised device with the selected level of trust. Afterwards,
the system shows the user with a briefing screen on the outcome of the operation.

• Use 2. The user selects the Trusted Devices management screen in the Settings menu. The
system then displays a list of the devices whose role has not been established, such as a
“guest device“ or a “trusted device“, as well as currently trusted devices. The user then
clicks on one of the newly recognised devices. The system then provides the user with a
list of the currently available levels of trust. The user chooses one of the levels of trust and
accepts. The system then proceeds to add the device as a recognised device with the selected
level of trust. Afterwards, the system shows the user with a briefing screen on the outcome
of the operation.

• Use 3. The user selects the Trusted Devices management screen in the Settings menu. The
system then displays a list of the devices whose role has not been established, such as a
“guest device“ or a “trusted device“, as well as currently trusted devices. The user then
clicks on one of the already recognised devices. The system then provides the user with a
list of the currently available levels of trust for that device. The user chooses one of the levels
of trust and accepts. The system then proceeds to add the device as a recognised device with
the selected level of trust. Afterwards, the system shows the user with a briefing screen on
the outcome of the operation.

• Use 4. The user selects the Trusted Devices management screen in the Settings menu. The
system then displays a list of the devices whose role has not been established, such as a
“guest device“ or a “trusted device“, as well as currently trusted devices. The user then
clicks on the option to add a new device and the system shows the user a full list of the
currently recognised devices. The user then realises that the desired device is not on the list
and therefore clicks the option to add a new recognised device. The system then prompts

70

4 Analysis

the user for the device information. After the user accepts, the system then provides the
user with a list of the currently available levels of trust. The user chooses one of the levels of
trust and accepts. The system then proceeds to add the device as a recognised device with
the selected level of trust. Afterwards, the system shows the user with a briefing screen on
the outcome of the operation and informs the user that the next time a device is shown with
the parameters that were registered, it will be recognised with its corresponding level of
trust.

• Use 5. The user selects the Trusted Devices management screen in the Settings menu. The
system then displays a list of the devices whose role has not been established, such as a
“guest device“ or a “trusted device“, as well as currently trusted devices. The user then
clicks on the option to add a new device and the system shows the user a full list of the cur-
rently recognised devices. The user then selects one of the devices and chooses to add it as
a recognised device. The system recognised the device as previously blocked and prompts
the user for confirmation on the action. The system then provides the user with a list of the
currently available levels of trust. The user chooses one of the levels of trust and accepts.
The system then proceeds to add the device as a recognised device with the selected level of
trust. Afterwards, the system shows the user with a briefing screen on the outcome of the
operation.

• Use 6. The user selects the Trusted Devices management screen in the Settings menu. The
system then displays a list of the devices whose role has not been established, such as a
“guest device“ or a “trusted device“, as well as currently trusted devices. The user then
clicks on the option to add a new device and the system shows the user a full list of the
currently recognised devices. The user then selects one of the devices and chooses to add
it as a recognised device. The system then provides the user with a list of the currently
available levels of trust. The user chooses one of the levels of trust and accepts. The system
then proceeds to add the device as a recognised device with the selected level of trust but
fails. The system then informs the user of the situation and allows the user to select another
device or to start a Perform Diagnosis Use Case.

History: 2013
Modified: 2013

4.2.23 Modify System Settings

Main Actor: User
Precondition: The system has been initialised and the user has the required privileges.
Trigger: The user wants to modify the system settings.
Main Scenario:

• 1. The user accesses the System Settings screen from the Settings menu.

• 2. The system then provides the user with a list of the currently available system settings.

• 3. The user then selects which setting he wants to be modified.

• 4. The system then provides the user with the currently available options for the selected
setting.

• 5. The user then selects the option that desires for that setting and accepts.

• 6. The system then proceeds to apply the new configuration.

• 7. The system informs the user of the outcome of the operation.

Alternative Cases:

• 3a. The system detects that the selected setting can’t be modified due to some factors, for
example a system restart, and thus prompts the user to resolve this factors.

• 6a. The system detects that the desired option is not currently valid or applicable, therefore
informing the user and returning to step 5.

• 6b. The system detects an error while trying to apply the changes, therefore informing the
user and returning to step 5.

• 7a. The system detects that some components need to be reloaded, or the system itself needs
to be restarted, after the operation and prompts the user to do so.

71

4.2 Use Cases

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user goes to the System Settings screen from the Settings menu. The system then
provides the user with a list of the system currently selected system settings. The user then
selects a setting to modify. The system then provides the user with a list of the available
options for that setting, as well as custom input if that setting allows for it. The user then
selects or inputs the appropriate data and accepts. The system then proceeds to apply the
desired changes and, afterwards, informs the user of the outcome of the operation.

• Use 2. The user goes to the System Settings screen from the Settings menu. The system then
provides the user with a list of the system currently selected system settings. The user then
selects a setting to modify, but the system detects that the selected setting can’t be modified
due to some factors. The system then prompts the user to resolve this factors and offers the
possibility to start a Perform Diagnosis Use Case.

• Use 3. The user goes to the System Settings screen from the Settings menu. The system then
provides the user with a list of the system currently selected system settings. The user then
selects a setting to modify. The system then provides the user with a list of the available
options for that setting, as well as custom input if that setting allows for it. The user then
selects or inputs the appropriate data and accepts, but the system detects that the selected
data is not valid. Therefore the system prompts the user to correct the data and proceed.
The user then inputs the data and the system successfully validates it. The system then
proceeds to apply the desired changes and, afterwards, informs the user of the outcome of
the operation.

• Use 4. The user goes to the System Settings screen from the Settings menu. The system then
provides the user with a list of the system currently selected system settings. The user then
selects a setting to modify. The system then provides the user with a list of the available
options for that setting, as well as custom input if that setting allows for it. The user then
selects or inputs the appropriate data and accepts. The system then proceeds to apply the
desired changes but encounters an error while doing so. Therefore it informs the user of the
problem and offers the user the possibility to choose again another system setting or start a
Perform Diagnosis Use Case.

• Use 5. The user goes to the System Settings screen from the Settings menu. The system then
provides the user with a list of the system currently selected system settings. The user then
selects a setting to modify. The system then provides the user with a list of the available
options for that setting, as well as custom input if that setting allows for it. The user then
selects or inputs the appropriate data and accepts. The system then proceeds to apply the
desired changes and detects that a partial component reload or a full system restart is re-
quired, therefore prompting the user to proceed with the required actions altogether with
showing a briefing screen of the operation.

History: 2013
Modified: 2013

72

4 Analysis

4.2.24 Delete Recognised Device

Main Actor: User
Precondition: The system has been initialised and the user has the required privileges.
Trigger: The user wants to delete a currently registered Recognised Device.
Main Scenario:

• 1. The user accesses the Recognised Device management screen from the Settings menu.
• 2. The system then provides the user with a list of currently registered devices, as well as

other ones.
• 3. The user then selects a registered device.
• 4. The system provides the information of the trusted device.
• 5. The user then selects the option to delete the trusted device.
• 6. The system then asks the user for double confirmation on the action.
• 7. The user confirms the action and proceeds.
• 8. The system proceeds to perform the operation and, afterwards, provides the user with a

briefing screen.
Alternative Cases:

• 6a. The system detects that the selected device is one of the initial devices, therefore inform-
ing the user of the impossibility to remove it as a trusted device and returning to step 2 or
offering the possibility to start a Perform Diagnosis Use Case.

• 8a. The system detects an error while trying to perform the operation and prompts the user
to start a Perform Diagnosis Use Case.

Satisfaction of the Client: 1
Dissatisfaction of the Client: 5
Dependencies: —
Conflicts: —
Additional Notes: —
Author: Josep
Validation Scenarios:

• Use 1. The user accesses the Recognised Devices menu in the Settings screen. The system
then provides the user with a list of the available registered devices and other devices. The
user then proceeds to select the desired device to be deleted. The system the provides the
user with a briefing screen on that device, so that the user can correctly identify it, as well
as the option to delete the device. The user then selects to delete the device, to which the
system double confirms the action. After the user input, the system proceeds to delete the
recognised device from the system and informs the user afterwards.

• Use 2. The user accesses the Recognised Devices menu in the Settings screen. The system
then provides the user with a list of the available registered devices and other devices. The
user then proceeds to select the desired device to be deleted. The system the provides the
user with a briefing screen on that device, so that the user can correctly identify it, as well
as the option to delete the device. The user then selects to delete the device, but the system
detects that the device is one of the initial devices. The system informs the user of the
impossibility to perform the action and offers him with a Perform Diagnosis Use Case.

• Use 3. The user accesses the Recognised Devices menu in the Settings screen. The system
then provides the user with a list of the available registered devices and other devices. The
user then proceeds to select the desired device to be deleted. The system the provides the
user with a briefing screen on that device, so that the user can correctly identify it, as well
as the option to delete the device. The user then selects to delete the device, to which the
system double confirms the action. After the user input, the system proceeds to delete the
recognised device from the system but detects an error while doing so. Therefore informs
the user of the situation and offers him the ability to start a Perform Diagnosis Use Case.

History: 2013
Modified: 2013

73

4.3 Resume

4.3 Resume

In this chapter we have seen the Golden Topic of this thesis, describing the requisites any pro-
posed solution must have in order to comply the goals of it and solve the proposed problems.
We have obtained from the previous chapters the necessary knowledge to define and group the
ones we considered most important for the objectives we have had presented. As a resume of
the structure presented in this chapter, it resumes into a infotainment system highly resembling
to the mobile world. This is due to the fact that the system has to provide support for Content
Management capabilities, as stated on the goals of the thesis, and therefore we have based the
requirements for this aspect on the already present solutions on the mobile world. This fact will
influence on the development of the proposed solution, on the next chapter, on the conceptuali-
sation of the architecture and the outcome of any prototype.

74

5 Solution

In this chapter we will explain the designed architecture, based on the requirements, goals and
alternative solutions exposed in the previous chapters. Along it, we will also observe how the
proposed requirements are fulfilled, along with the limitations of the design which will also be
discussed in the next chapter. In order to achieve this, we will first show the designed architecture
and then we will go down step by step on why each portion of it has been designed meanwhile
we also explain them in detail.

5.1 Architecture

In this section we will analyse the hardware architecture that compromises the thesis, as well as
the base technologies we are bound to use and how can we adapt and wrap our thesis around
them.

5.1.1 Architecture Diagram

This is the architecture diagram that represents the general hardware set-up of the thesis along
with the base technologies being used.

Figure 5.1: Architecture Diagram

5.1.2 Justification of the Architecture

Our architecture proposal is centred around a server-client architecture. That means, that apart
from any of the infrastructure that might be developed by the manufacturer, or the RACE project
in our case, our thesis will be providing for a totally independent server that will be on charge
to communicate with the available services. This server will be the main gateway between our
clients and any functionality that they might require, that is, access to the vehicle’s features or
even to internet will have to be allowed by it. By using this architecture we make sure to provide
a solution to one of the major security concerns, client tampering. Due to the criticality of our
system we can’t allow that certain clients are affected by other clients on the network, and we
need a device that itself plays the role of a moderator in order to avoid for any malfunction to
be taken care of without the other clients ever noticing. Furthermore, this architecture allows
for any extension on the system to be fully centralised, thus avoiding the necessity of any client
changes or any manufacturer-specific enchantments. Further discussion on this topic is present
on the chapter Discussion, where we will evaluate the different alternatives and the main reasons
on why they were ruled out.

75

5.2 Hardware Architecture

5.2 Hardware Architecture

In this section the selected Hardware Architecture will be explained. Although not a big part itself
of the thesis, we have to take into account that it has greatly influenced the choice of components
on the Software Architecture. It is important to be noted that none of these hardware considera-
tions have been selected on the work and, instead, they have been imposed. Different alternatives
and proposals will be taken into account into the Discussion chapter.

5.2.1 Hardware Architecture Diagram

Follows is the Hardware Architecture Diagram. This diagram is of extreme importance in order to
understand the inner workings of the system architecture, and will play a key role in the definition
of the Software Architecture in the next section.

Figure 5.2: Hardware Architecture Diagram

5.2.2 Raspberry PI

Raspberry PI is a Single-board computer which is designed to be both extremely cheap and with
very low power consumption rates. The RACE project will be actively using Raspberry PI as
their main server to provide for the interface to the vehicle’s features. To that extent, it is a work’s
requirement for our server to be established on the same device, therefore we have to take into
account the following premises:

• The device has a 700 Mhz processor and 256 MB of RAM.
• The device is running a Linux-based operating system.

This two considerations will heavily impact into our software choice and furthermore are limit-
ing our techniques of development and imposing heavily requisites. Concretely, the developed
software will have to take into account the following parts mostly present in embedded devices
projects.

RAM limitation This is, perhaps, the most serious problem that has been confronted up to date.
Being a server as such and having to provide for services to the multiple clients might require a
huge usage of system resources, specially if the main load is centred on the server. Therefore, an
informal requirement is added to the solution regarding extremely-high efficiency and another
regarding the capability to manage the used resources and to scale down the number of clients or
the features being provided.

76

5 Solution

CPU limitation As a second-in-line requirement we have the added feature of low CPU con-
sumption. Being in an infrastructure as ours it is not considered to have a system capable of
adapting to fluctuating processing speeds, but of a system capable of managing its very own re-
sources whilst providing for stable information transmission capabilities. As of such, our system
also has to take into account that another system, the one developed by RACE, will be partly on
the same system and as such it might take vital resources for our very own; therefore requiring
the software to be able to adapt to this circumstances.

OS limitation The choice of the running operating system might have tampered our efforts to
provide for the best State of the Art technology proposals. The collaboration with the RACE
project bounds us to use a Linux operating system and therefore any of the complements that
might be required in the software implementation has to work necessarily on this system. This
is not a huge limitation in some aspects, because our system already has the requirement to be
completely architecture-independent, but of course might pose some obstacles for our initial pro-
posal.

5.2.3 Nexus VII Tablet

This device is going to represent a standard client system. This tablet uses State of the Art technol-
ogy and software, therefore allowing us to practically not restrain the software development on
the client on any means. Through our architecture choice we will be using a Web-based approach
on the client, but this is not a problem either for this tablet as it is coupled with the best browser
on terms of both JavaScript performance [Tea13] and HTML5-standards compliance [Lee13] ac-
cording to the most prestigious tests available on internet, Google Chrome.

5.2.4 RACE Components

The RACE project will be providing certain manufacturer-specific components such as the WiFi
identification procedures and the database entries indicating which devices should be considered
as car-embedded devices (also called main devices along this whole document). Although this
fact and that we have collaborated closely in the development of these procedures, those shall not
be considered as part of this thesis itself. The fact is that the barrier between the Manufacturer
and our System is clearly defined, as we can see in te previous Architecture Diagram, but in this
case the components we just cited will be running also on the same Server we will be using, and
therefore will be helping it along by providing the defined required server procedures (which are
explained in this very same chapter).

77

5.3 Software Architecture

5.3 Software Architecture

In this section we will explain the Software Architecture that we have selected, along with the
main reason before this. In our choices the main objective was to satisfy the maximal number
of requirements whilst keeping a delicate equilibrium between them. The technologies that have
been chosen here can be justified based on the chapter Related Work.

5.3.1 Software Architecture Diagram

Following is a the Software Architecture Diagram depicting the planned approach for the our
architecture. This diagram depicts the planned approach to the different subsections of the sug-
gested solution for our work, altogether as explaining in a detailed way the designed interaction
between the multiple components.

Figure 5.3: Software Architecture Diagram

Figure 5.4: Sitemap Diagram

78

5 Solution

5.3.2 System

In this section we will be commenting on the different roles and features that our system will be
exhibiting as well and analysing the different scenarios that it will manage. Apart from providing
the basis technologies and features that are associated with a Web-Server with Web-Sockets com-
munication, it’ll be providing an additional set of functionalities specially designed for our sys-
tem. As follows we will be explaining these features which combine both server- and client-side
specifics. The system is also responsible to handle the trusted devices, and therefore corresponds
with the “Add or Modify Recognised Device“ and “Delete Recognised Device“ use cases, a full
list can be seen on the Technology Diagram.

Bootloader

Due to the modular design of our system, we are considering this special component of it. This
component is the one responsible for the system update and recovery tasks, in order to comply
with the relative requisites. It is the last line of defence against a total system failure and therefore
it must comply with the maximum quality standards. Angular key of the whole system, it will
need to check for the system integrity every time this last is started anew and provide the user
for recovering activities, rolling back any possible undesired changes, and also providing for the
ability to update the system. This component’s features are heavily based on current Operating
System bootloaders, and therefore offers a similar functionality set. With this component we aim
to provide functionality of the use cases relating to device initialization and restoration, due to it
being designed as standalone from the system.

System Update One of the star features of the bootloader is to replace the system contents
with a new package thus upgrading the system. Whilst this procedure must comply with all the
necessary security checks, it must also ensure to be quick and responsiveness by providing the
user a maximum execution time and progress information. This system update procedure is also
responsible for preserving the already existing settings, providing for the necessary changes in
case they are.

Self Update The bootloader must be able to update itself and the underlying system, thus this
component will be the one with a most low-level approach to the underlying system architecture.
The incorporation of this feature is due to the consciousness that our system will be running on
another infrastructure which may contain critical exploits that might affect our system at the end.
Along with the general strategy to allow components and the system itself to be updated, this
functionality specification goes along the “Check for Update“ and “Perform Update“ use cases.

Settings Reset The component must be able to provide for a settings roll-over in order to return
the system to its very defaults in case of a situation that might require it. This feature is set to
remove any local custom data stored by the user either on the system side, the modules side
or both. Inside this feature we also include the ability to disable selected system modules that
might be causing an unexpected behaviour. This functionality is paired with the use case “Reset
Settings“.

Integrity Checks The bootloader is the module responsible for the system’s identification and
load, therefore providing the loaded system with the appropriate environment to execute. To this
extent, a swift but extensive verification role must be playing for it to ensure that the system or
itself has not been modified by any external source and providing for a solution (to apply one the
bootloader’s features) to be applied.

System Rollback This feature is based on the already known “System Restore“ that can be
found on modern versions of the “Microsoft Windows“ Operating System. It’s main functional-
ity is to allow the system to return to a previous working status. To this extent, the system needs
to make “Snapshots“ of its configuration every specified time while also preserving the different
system versions. The idea behind this feature is that the different system and module versions
will be preserved (up to a maximum amount) altogether with the different configurations of those.

79

5.3 Software Architecture

Therefore, the system will be able to downgrade itself to a previous version and/or apply a previ-
ous configuration, thus allowing the user a easy way to solve any system problems. This feature
is exactly coupled with the corresponding use case labelled “Restore System“.

Error Handling

The system is the maximum authority in the whole deployment scenario, and therefore it must
control and enforce certain rules. For instance, the system must be able to detect when an error
has occurred on itself or one of the running components and solve it. This affirmation is deemed
to resolve any doubts regarding the stability of the system as a whole, therefore the system will
handle when a critical error occurs to a component and try to find out a solution to it, restarting
the component or rolling back its settings. This feature means that in the most extreme cases the
system will detect a non-standard procedure on itself and take the appropriate measures to restore
its normal behaviour (for example, by using the bootloader), without almost no user interaction
and avoiding to a maximum extend getting the user to realise the problem. To comply with this
objective we propose the use of different testing tools to ensure that a plugin has not itself got
victim of its own bad programming. This feature is embedded in order to be able to fulfil one of
the “Perform Diagnosis“ use case and the “Diagnostics“ requirement.

Performance Assurance

One of the key requirements of our system, in terms of user experience, is the fact that we ensure a
maximum responsiveness time. This is required to avoid the user itself from overloading the sys-
tem, as it is web-based, as well to avoid the user from any distractions. Therefore the system must
be able to manage, to a maximum extent for the given technologies, each component resources
usage and prioritize the ones that the user is using in detriment of others. For this objective, we
have deemed to use components typically used on testing directly on the different components,
to test their efficiency on the fly.

Component Update

The system must be able to provide updates for the components in an orderly and correct manner
while also taking into account the different component requirements (that is, certification proce-
dures). To this extent, the system must be able to itself update, install and remove the deemed
components. On our solution this is based on a combination of factors. In first place, the system
can be provided of a new component by providing the package to it via either internet or through
a personal device. On second place, the system is able to check against a server on the internet for
new updates.

Diagnosis

As a key requirement and itself being used in multiple Use Cases, we have taken into account
the consideration that our solution could execute diagnostics into itself and therefore be able to
propose active solutions to the user. The idea that we used has come from the Problem Handling
procedures on “Microsoft Windows“ and most recently to the “Fix It“ innovations. To this extent,
we propose availability of a list of common known problems and solutions to it, that can be
actively enhanced by means of system updates or directly accessed on the internet. Furthermore,
we aim onto the community-based support and therefore propose the user to submit his problem
to a community website where experts could help him. Also, the idea revolves around the fact
that if a similar problem has been detected and submitted previously, then the user would be
redirected to this one. With this proposal we aim to replicate the success rate of Open-Source
software by actively supporting the in-user problem solving. As a second part of the “Perform
Diagnosis“ use case, due to different components being involved, this feature is also bound to it.

80

5 Solution

5.3.3 Components

In this section we will be explaining the proposed component architecture for this thesis. This ar-
chitecture is set to solely represent the maximum aspiration on this thesis: providing sandboxing-
like capabilities to a Web-based software. To this extent we will first analyse the proposed ap-
proach and also the main reasons on why it was selected, afterwards detecting the different type
of components that have been selected for this work. This section is paired with the “Content“
part of the Content Management System goal that has been defined for this thesis.

Component-based Approach

We have developed a custom sandboxing-based approach for our component architecture. This
system is possible in Web-based environments because of the existence of the following factors.
On the next section we will be exposing these features in a diagram.

Sandboxing The concept that we’re tackling on this part is the “sandboxing“ part that has been
obtained from the use case analysis. The idea of sandboxing comes from the fact that by it’s usage
each component can be isolated from the others, with the “parent“ components having a higher
degree of privileges that that of the children, thus leading to the concept of layered architecture
[AM11].

Messaging Queue In order to communicate between the different layers, the concept of “Mes-
sage Queue“ needs to be used. With this concept in mind each layer is able to communicate with
the others by simply passing a “message“ to the other layer, who can choose on whether to in-
terpret it or not and identify it with security features in place therefore rendering the message
harmless [TN00].

Centralised Communication API Our system will only provide one way to communicate with
the exterior, via a centralised communication API. This means, all the traffic towards any external
request will be held through the API and therefore will be able to be monitored and supervised
in order to prevent unexpected or undeclared behaviour. This concept is understood under the
hood of the Message Queue mechanism, as each layer needs to contact it’s immediate superior in
order to send a message.

Dynamic Feature Detection Our system has been designed in such way that the features ex-
posed by the car interface will be automatically available on the different components regardless
of their specification. That is, upon complying with the component’s privilege requirements, that
component will be able to execute the different methods if they are available.

81

5.3 Software Architecture

Component Interaction Diagram

Next is the component interaction diagram, this element is key to understand the underlined
process of interaction between the different elements in our system.

Figure 5.5: Component Interaction Diagram

Figure 5.6: Component Request Process

Component Management

In this section we will be explaining the client-side layered conceptual architecture on our work.
In concrete, we will expose the different roles accepted inside our system and the level of sub-
ordination of them. Each of the different component types will be exposed in the the following
sections.

Root Layer This layer is the uppermost one and is represented itself by the base web site. That
means, this “layer“ itself is under the direct DOM structure and therefore has no boundaries apart
from those imposed by the own browser. This layer will be in charge of the communication with
the Server itself via the use of Web Sockets. Therefore will need to identify every requester and
their credentials, along with providing them to the Server for further checks. Apart, will also be
in charge to provide for the main Error Handling and fall-back, as well as managing the resources
that the other components might be using. Accessing this layer should only be available through
the Messaging API.

Layout Layer This is the first client-side layer, we could represent it as the actual Window Man-
ager in an operating system environment. Therefore its main job resides on managing the location
of the multiple elements as well as providing access to a common set of multiple features that

82

5 Solution

should be available to this layer. These features will be later explained in the section “Layouts“.
In concrete, the Layout Layer has to provide for showing notifications to the user, informing the
user of any problems that might occur and maintain a two-way communication with the Root
Layer about any status from the multiple components.

Plugin Layer This is the lower layer, the so called “Component Layer“. In this layer we can
find the main extension point for our application, the plugins. Components located in this layer
are completely sandboxed and can only access external information via querying the superior
layer (Layout Layer). The main idea of this layer is that any component running on it should
be able to execute the vast majority of its own process without any need for external help. Also
this layer should adapt itself to the styles provided by the superior layer in order to provide a
smooth-looking interface along the whole system.

Component Trusting

A key security feature of our system, and also one of the most important requirements, has to
do with the way a component is identified and trusted into our system. The final objective is to
avoid piracy and illegitimate component installation, with its main focus on curving any possi-
ble exploits on our system and protecting also the user’s integrity and security. To this extent,
we propose to allow each system to identify the planned installed software on their own, thus
removing the need for the system to have an active connection for any component expansion or
update.

Trusted A trusted level on a component means that this component has been recognised as
being signed by a trusted authority, therefore assuring the system of the source of it. A trusted
component might not be able to operate on the required role thought, with only a handful of
authorities being allowed to sign the system components for instance; thus assuring a standard
of quality for the system infrastructure.

Self-signed A self signed component, also called untrusted, is that component that represents
a valid signing structure but that has not been trusted on the system. This doesn’t necessarily
mean that the component is an evil one, but that the certificate authority that announces is not
recognised by the system yet, or that is a too old version for the system and therefore a new
version of the component should be provided. This components will be allowed to be installed
under the sole user’s responsibility, but also have the possibility to be registered with the device
in order to help the user find trusted versions of it.

Developing We can consider into this category those components product of the development,
that have still not achieved a final stage or that are pending of validation by a competent authority.
Due to the necessity of the developers to test their components on a wider scale community,
this kind of components will be issued by a trusted authority a temporal signing allowing the
component to be distributed to a group of general enthusiasts (but refraining from general-public
release).

Plugins

The main extension component of our system, the so called “Plugin Components“. This compo-
nents aim to solve the requisites of expansion, whilst also complying with the modular pattern.
This pattern is basic for our system, in order to provide extensibility and flexibility points to our
work which otherwise would lack and fall on the same level as of the existing systems. A Plu-
gin can be considered as a whole entity on itself and shall compromise of its very own deployed
package, with all the associated data that might require in order to operate, as well as external
infrastructure that is not covered in this work, therefore rendering the plugin developer as the
sole responsible for this as well as the security and coverage risks associated with it. This concept
is coupled with the use cases regarding plugin selection and execution, due to the fact that we
consider a plugin to be itself an application (as explained on the background chapter).

83

5.3 Software Architecture

Plugin Execution State Any plugin must be able to be executed and therefore show a full inter-
active screen with the user. Apart from this base requirement, a plugin can have other execution
states.

Suspended A suspended plugin is that which will be ran on the background on a very low-
priority execution under time and resources limitation. A plugin has to register for this state as
for a normal deployment no plugin will ever go into this status and instead be terminated. A
plugin in Suspended status might also provide notifications to the user and therefore be started
anytime.

Informative A plugin can be shown on the dashboard if the configuration and the plugin allow
for it. In this state, the plugin will have a higher resource pool than in the Suspended status
and will be able to provide direct feedback to the user. The informative status can have multiple
display sizes, with the plugin deciding on which sizes to support.

Running A plugin in the running status will be providing the user with direct feedback infor-
mation. That is, it will be occupying the central scenario and will have access to almost unlimited
resource boundaries, except for those needed by the other superior layers.

Disabled A disabled plugin is that whose activity is null. A disabled plugin can be set to run-
ning state but will not be able to provide any information to the user or show any notifications to
the user.

Plugin Definitions Inside the Plugin definition, though, we can find two implementation-able
definitions.

Application Plugin The most logical outcome of defining a plugin is that which will be ran
under the very own application, that is, in the Plugin Layer. This plugin will have a restricted set
of features from the system in order to protect this last integrity and functionality. This plugin
is the one that will be under the commercialization efforts and therefore will impact directly on
the revenue and success of the designed system. Each plugin developer will be provided with a
minimum API that he will be able to use in any deployed system, with extra features also available
to the plugin developer based on the different systems. By default, only trusted plugins, these are
the ones that come from trusted sources, will be able to be deployed. Though, the system must
support for untrusted plugins, also called self-signed, to be deployed in order to provide for the
plugin development.

System Module A system module is by definition a component with far higher privileges than
a normal plugin. These modules are designed with the solely idea to help with system expansion
by the manufacturers. This system has been designed with the key objective to avoid the need
for any custom OEM modification, but we have taken into account the requirement to provide for
some unique points to each manufacturer, to allow for a more brand-customised environment.
These components require from previous development and test approval, due to the critically of
them, and will be run in a server environment with the capability to modify the user experience
on the client side too.

Layouts

This component is the one that mostly characterises the Layout Layer, as the very same name
indicates. Whilst is the responsible for managing the subsequent plugins, it is inside the realm
of the reality to have more than one doing this task on the same time. It’s sole role as a Window
Manager allows it to have direct contact with the underlying plugins and acts also as a bridge
between them and the upper parts of the system, therefore having the capability to homogenise
the behaviour of the system as a whole. As such, every Layout will provide a minimum set of
common features

84

5 Solution

Notifications This feature encompasses the need to provide for constant feedback to the user.
To achieve this goal, each layout needs to provide for a way to show information dynamically to
the user, even when the plugins are not under active execution status. The layout has to control
absolutely everything on how the notifications are displayed, though a good practise would be
to notify itself to the superior layer for every notification, in order to take preventive measures if
there is a plugin that’s abusing the system. Apart from this, the Layout itself is also responsible to
provide for any notifications center if it is decided as such. By allowing the control of the way the
notifications are displayed, the location and the styling we allow for a full customisation of such
feature.

Information Plugin Display Every layout can provide for the possibility to display one or mul-
tiple plugins in a informative status. That means, the plugins that claim to support the certain
display will be eligible for this status. Previous resource consumption analysis, this will should
allow for the user to obtain the maximum information without the need to set the plugin a run-
ning status. It is key in order to interpret this feature the knowledge regarding the different
display sizes, which will be taken care of by the own Layout managing infrastructure. A plugin
might advertise its availability to be run in a certain size as informative status, but the layout must
proof that such a display is not going to affect the other plugin interfaces.

Plugin Selection As an imperative for any Layout, a plugin selection screen must be provided.
This selection screen might be also coupled with a search feature, but nevertheless the layout
must allow for any installed plugin eligible to be run to be executed. Therefore, the layout itself
has no control of the executed plugin, instead it has to notify the superior layer of the user request
for plugin execution.

Languages

A key requirement of any modern software nowadays is the need for Localisation. Such is the
need, that non localised software tend to fail in the prospects of global growth in a totally dra-
matic manner. Therefore, and as empathised by one of the strong requirements proposed in the
work analysis, we will be providing the system with a wide set of translations covering the ma-
jor languages as well as the emerging ones, such as Catalan or Scottish. The main aim of this
localisation service is therefore to also provide the different components with already localised
translations in order to ease the global need for them to be translated. Even a partial localisation
is better than nothing on the eyes of user experience. In order to simplify translation though, an
service for submitting translation suggestions and corrections will be submitted, altogether with
a public community-based service for translation such as Crowdin.

Styles

This component sole aim is to provide a continuous dynamic and innovative look to the system
once deployed. Is a key feature for any system that the user sees the system as improving over
time on both quality and effectiveness. To achieve this goal, we are proposing the ability for
the system to change its appearance at user’s will, with new styles being able to be obtained
via internet. Styling is a key feature on Web Design also, and the possibilities that it nowadays
provides makes it easy for our system to take a footnote on these thesis. In a turn to try to offer
a homogeneous look, both layouts and plugins will be required to support at least basic styling
based on the system settings. Apart from this, though, every component is capable of offering its
very own custom themes apart from the system ones.

85

5.3 Software Architecture

5.3.4 User Management

In this section we will be commenting on the different options selected for the user identification
and management, altogether with the device identification and the user data storage. With the
comprehensive set of selected features we aim to cover the major aspects that we can find nowa-
days in any modern system, as well as to provide mobility and flexibility to the user by allowing
him to have as much of the same look and feel in any device that uses our system.

Profile-based Approach

In order to cover the user necessities in terms of data storage and settings sharing, we have turned
ourselves into the same feature that modern Operating Systems have been promoting since their
initial multi–user designs. That is, we propose to use the concept of “Profile“ for every user or
device. This concept allows us to provide for the much needed encapsulation and sand-boxing of
the user data, as well as providing for the mobility factor due to the ease on bringing the profile
to other environments. On a more extensive approach, having a profile-based scenario allows us
for better configuration and data recovery tasks.

Profile Diagram

In this section we will be exposing the proposed Profile diagram as well as commenting the dif-
ferent fluctuation of the states, that will drastically change the way a profile is treated as shared.

Figure 5.7: Profile Role Distribution

Main Device

A Main Device is, by definition a device that can be trusted with a higher level of privileges and
execution than any other device. As a result, a user using a Main Device will always have a higher
degree of freedom into the System Settings than a user another kind of device. We consider Main
Devices the ones that are embedded into the vehicle by the Vehicle Manufacturer, considering as
successors of those any upgrades to them. By using this definition, we ensure ourselves that the
any user using this devices will at least have a physical presence on the car. That said, we can still
distinguish two subtypes of main devices.

86

5 Solution

Principal Device We consider Principal Device the one that is on the frontal part of the vehicle.
As such, this device is typically only accessible by the driver and, to a certain extent, the person
next to it. Therefore, and as inheritance from previous HMI devices as we have already analysed,
it is deemed to be the main vehicle’s control device. On this role, it has access to special func-
tionalities not able to be present on any other device, even though they can be configured to a
certain extent to be accessible. These functionalities range from simple volume control to day-
light mode or custom car settings. We recognise the critically of this device, and as such certain
functionalities will be disabled while on driving mode or when not; as well as a differentiation
from when the key is input or not. The extent of those will be the same as the ones in the previous
HMI devices in order to comply with the already existing regulations. Also, System Update and
Recovery procedures will be only accessible through a main device.

Secondary Device We can define as a Secondary Device the one that is also installed on the car,
and therefore a physical access is required to use it, but not next to the driver. Such devices have a
natural limited functionality against the normal devices, or a limited scope of actuation. Such an
example could be, again, for the volume controls where the main device would control all of the
car controls and a secondary device only the local ones. A secondary device has a minor degree of
difference between having the key input or not, due to be itself configured in the general system
settings. Also, but, can be configured to different degrees of freedom according to the identified
user.

Guest Device

A guest device is any device that is not embedded in the car and therefore is using an external
connection. Such devices have the maximum degree of freedom when regarding to accessing
non car-based features, as well as being the ones that have the hugest chance to aim for system
disruption. As such, these devices can’t modify most system settings and are only considered as
entertainment devices. Their use is solely regarded as to obtain information about the car multiple
variables, as well as external ones regarding the car’s otherwise public information such as speed
or destination. These devices are also meant for temporary travellers and, as such, are the ones
that will be benefited to a maximum extent regarding profile management. Although this last
statement, if the user is not online or trusted the data will only be stored locally and won’t be able
to be used to this extent.

Trusted User/Device

A Trusted User, also called Trusted Device through this documentation, is such that is entitled to
be have a huger degree of privileges and freedom whilst operating with the system than normal
users or devices. This device or user is an evolution from the concept of Guest Device and there-
fore is not applicable to the concept of Main Device. This kind of devices need to be authorised by
a Main Device, and as such will only be providing for extended features as long as this authorisa-
tion is in place; as described by the related use cases. A user might also be trusted, and therefore
any device to which it is logged on will also be provided with that level of trust. When a user is
trusted but does not have an online vinculation, then the data will be stored on a system basis for
that user; to see the behaviour for Online Vinculated Users, check next section.

Online User

An Online User is one that is itself stored in our Online Servers, as explained in the next section.
That means, that its data is stored in a centralised Online Cloud totally independent from any sys-
tem. This way, when a user logs in in any device the system will download its profile information
and proceed to provide the user with the look and feel that user has configured. Furthermore,
data as plugin customisations and last used data will also be transferred, so the user will be able,
in the most ideal of the cases where the new system has the same components installed, to use
the exact same user interface as on the previous device. For further discussion on this issue, we
dedicate a section in the next Chapter to it. When an Online Profile is authorised on a system,
this authorisation is vinculated to the user and not the device. This means that the level of trust

87

5.3 Software Architecture

is applicable to the user, and this is the preferred way for trusting because of the technical com-
plications on identifying a device correctly and the possible tampering attempts to supplant this
device. This section is coupled to the Appstore-related cases, because it provides the elements
necessary to allow the profile to be on the online infrastructure, as explained on the next section.

88

5 Solution

5.3.5 Online Infrastructure

In this section we will be explaining the concept of Online Infrastructure that we’ve been taking
into consideration on the whole thesis. Therefore, we will be analysing our considerations when
selecting the solution for this problem, as well as with the main tasks assigned to it. It must be
noted that due to the modular and encapsulated development of this work, this part is completely
optional from the system itself. That means, that a system can function properly without ever get-
ting a connection with our online services, but will lack of the extended features that differentiate
this thesis from other HMI ones. As part of our Content Management System requirements, this
is tightly bound to the Appstore Use Cases such as “Check for Update“, “Perform Update“ or
“Access Appstore“, them being part of the cluster of CMS cases and therefore being that the main
reason on why this feature has been considered.

AppStore-based Approach

Our approach consists basically of a main Application Store cluster that will provide the bulk
of post-sale services. This infrastructure can therefore be divided into different parts, and there-
fore clusters, but that part is out of scope for this work. With this approach we have tried to
emulate the latest trends in Operating Systems post-sale business, such as the ones that Apple,
Google or Microsoft have been actively promoting. This way, we aim to follow the global trend
on having the vast majority of our income based on the single concept of selling components after
the product has been bought. Taking advantage of this fact, we have designed a whole system
around it that compromises other features such as storing data on the Cloud, providing Cloud
Infrastructure to Application Developers or providing Community-based services to the user.

Cloud Infrastructure Diagram

In this section we will be analysing the suggested cloud diagram altogether with the different
tasks that it will be representing and the way the software should interact between itself. We will
also be observing the capabilities that each user or device has depending on their level of trust
against the system.

Figure 5.8: Cloud Infrastructure

89

5.3 Software Architecture

Component Purchase

As promulgated by a huge number of Use Cases and identical explicitness on the Requirements
part, we have deemed necessary the ability to be able to provide for a post-sale model by offering
the possibility to the user to expand te functionalities associated with the system. Therefore,
any system can grow without any boundaries apart from the technology, which we shall remind
is ever evolving in this case, and simplifying enormously the work that the system will need
after being released, only complying with enhancements proposed by the manufacturers or users
and also technical fixes. This advantage leads us to see a huge increase in profits while keeping
the maintenance costs to a relative minimum. To achieve this goal our AppStore system will be
offering the possibility to purchase components as submitted by the indie developers, the own
company or the own manufacturers, in order to expand the work of the system. To this extent,
a partnership with major payment processors, such as Paypal, is required as well as providing
the developers with the adequate documentation as discussed on the next chapter. A component
might also be offering a trial mode or period, after which either it has to be purchased or deleted,
as well as showing advertisement in order to support the own developer. Proper purchase of the
component will lead to a permanent usage of the component, but this own component can allow
for extra component purchases in order to enhance it. Such purchases must be explicitly declared
and will be acquired as a separate pack for the respective component.

Updates

Coupled with the aforementioned feature, we can find the necessity to provide for software and
component updates on the fly. This is achieved by using the same infrastructure as needed for
the “component Purchase“ feature. By making users access the AppStore in order to obtain up-
dates we can also, via the use of proper social engineering, make the user become interested on
software that otherwise would not have seen. For this to become true, it is extremely important
to not interrupt the user during sensitive work and therefore only ask for user permission on big
updates. The motto of this idea is to provide silent updates to the user as long as they are consid-
ered as small enchantments or hotfixes whilst having the user accept for bigger updates due to
the possibility that they will take more resources or time to complete.

Trial and Demos

As explained on the previous section we have considered a Trial and Demo option for our system.
This means that our system will be providing the developers to offer their products on a lease, that
is, free of charge under certain limitations. Apart, developers will also be able to offer purchase-
only products. The idea before the Trial of Products is basically that any product is always better
sold after a user has been able to try it, in order to assure that the purchase is going to provide for
the user’s needs. Often compared with buying clothes, this system is highly effective in terms of
marketing and has been widely used by all our referents in this section. By offering the developer
the chance to show advertisement we can ensure that a group of indie developers are going to
participate in this scheme due to the products being free of charge and the user only paying for a
version without as in order to offer support to the own developer.

Online Services

One of the key innovations of our work, and based almost exclusively on Online Gaming services,
is offering developers the possibility to use our own Online Infrastructure for their developing
needs. Using this approach, similar to Microsoft Windows Azure, we can ensure that the devel-
opers will not need to have an external provider for the service, thus reducing costs and being
able to offer the service as a percentage from the income that is transferred to the developer. By
eliminating costly monthly fees we can ensure that even though a developer might be willing
to give up a product, this product will continue to have its full set of functionality till a viable
replacement is found. The main objective between this idea is therefore to avoid the users from
feeling scammed after purchasing a product and this one becoming discontinued.

90

5 Solution

5.4 Technology Proposal

As indicated in the main architecture selection, we will be taking a Web-based approach in-
between the client and the server in order to aim at the maximum number of devices and not
bounding ourselves to a single device manufacturer. In fact, the main objective of this decision
is to provide for a complete genericness on the used device, whilst performing at the maximum
extent of the device’s capabilities. That way, the user has the power over its user experience based
on the choice of hardware and software allowing for hardware replacements after the vehicle has
been shipped.

5.4.1 Technology Usage Diagram

In this section we will be exposing the diagram between technologies used and the use cases that
they will be tackling. In this diagram we also have grouped the use cases according to functions,
and gives a general overview on which technology is on charge of each ground (which later will
be used on the discussion chapter). The elements market on yellow indicate external technologies
that could be shared with the prototype.

Figure 5.9: Technology-Use Case diagram

5.4.2 Server Technologies

In this section we will be explaining the major technology choices for the local server-side part
of our application with the on-line part being discussed on a later stage. It must clearly be noted
down that the main chose of technologies on this side has to do with the current hardware archi-
tecture and the imposed requirements.

PHP

This is meant to be the server technology, on which the vast majority of the server software is
going to be based on. The choice of this technology is motivated on part because of the techni-
cally lightweight of the base software, but heavily because the already present AMP architecture
(Apache, MySQL and PHP) on the server where this will be running. Therefore, and in order
to adapt to the small pool of resources available from the device where the software will be lo-
cated, the system needs to run along its counterparts. Therefore it is deemed as appropriate to
use the already available suite instead of changing the choice of technologies and adding an extra
overhead, to this extent choosing PHP technologies above the other set of available ones.

91

5.4 Technology Proposal

File system Storage

Although we have available an SQL Server, we do not deem as necessary such and therefore we
aim only at a pure file system-based access in order to simplify for the access of user data. We also
define that only a small amount of data is going to be stored in this way, on chapters that follow,
and therefore is not deemed necessary a huger degree of control on its storage and access.

5.4.3 Client Technologies

In this section we will be explicating the selected client technologies, as well as the main rea-
sons behind them. In this section we have only been constrained by the necessity of having at
least a Web-based approach. Therefore, this section has selected the very best of what has been
documented in the chapter Related Work.

Web Client

This will represent the visible part of our thesis versus the actor “User“. The Web Client will be
communicating with the Server in a typical Server-WWW architecture via the use of a RPC and
Publish/Subscribe model. To this extent, we will be using a technology called “Web-Sockets“ in
order to provide a dual-channel communication strategy. By using this feature we will be able
to provide real-time updates to every client, therefore converting the experience into a full OS-
like style. The logic on the client will be controlled exclusively by JavaScript while also using
the latest HTML5 draft specification that will allow us to use Message Queues while preserving
sandboxing between elements thus covering the main concerns on the fields of security. This
element is the one in charge of performing the communication with the server, and therefore is
the one that complies with Use Cases as “Retrieve Dashboard“ or “Access Plugin“.

HTML5 IFrame element The new HTML5 IFrame element contains crucial new features in con-
trast with the old HTML 4.01 one. In concrete, we will be using extensively the feature “sandbox-
ing“ provided by the draft specification. This feature allows us to completely “sandbox“, that is,
encapsulate a certain page into a closed environment thus preventing it from affecting the normal
behaviour of our system. Whilst this element can be encapsulated, it can be also fully manipu-
lated by the parent (higher privileged) elements of it, therefore offering a huge degree of control
over its process.

HTML5 Messaging API The new HTML5 Messaging API will form the basis of the insider com-
munication in our product. That is, it will provide for the data transmission between the different
encapsulated components and their superior layers of abstractions. Thanks to this element, we
will be able to provide real-time data to the different components without loosing our sandboxed
model. This element also allows us to simplify and centralise all the data-communication proce-
dures that we will be using.

Native Client

Alongside with the Web Client we will be providing a Native Client for the most common known
Operating Systems. This Native Client will provide for the needed HTML5 infrastructure in en-
vironments that don’t support it. Also, it will allow us to interact natively with the device thus
allowing for new enhancements on certain devices. To achieve this goal we will be using Phone-
Gap, as analysed previously, due to it being free of charge and because it provides us with the
main features required for this work. Therefore the application will only be designed once, for
web, and extra modules will be added to the Native Client one on-the-fly.

Trusting

This system is going to be based in the widely used concept of Certification Authorities (CA), thus
only trusting those components that are claimed to be signed by a set of CA’s that are recognised
by it. The set of trusted CA’s will be updated dynamically when they become available, on the

92

5 Solution

internet, and on every system update. As explained on the subsequent sections, these updates
do not need to be over the net, thus allowing for this feature to be always up-to-date regarding
the latest component installation. We differentiate, though, two different kind of trusting lev-
els. As each component needs to identify itself and the manufacturer, we will assume that for a
component to exist the corresponding identifying signature will also be existing.

Centralised Communication API

Our system will be communicating to the server via WebSockets, but this communication will
only be effective when several client-only filters proof that the desired transmission data is error-
free (this will also be done on the server).

5.4.4 Cloud Technologies

The Cloud technologies represent the group of technologies that will be used on the infrastructure
associated with the thesis that will be located on the cloud. Although a requirement, this is not
explicitly needed for the work as it provides only extended functionality that could be supplied
by other standalone means. To provide for these technologies we have choose to use the same
set of technologies as with our Server, due to the similarity with our already proposed Server
technologies. To this extent, we propose the use of an open-source AppStore called “PrestaShop“,
that provides the needed AppStore functionalities (and which are out of scope for this thesis) and
also is also based on PHP.

5.4.5 RACE Technologies

The communication with the RACE Project infrastructure will be done totally via Web Services,
mainly due to it being the easiest way to provide an abstract specification on it and also because
it will be based on the same patterns already used on the rest of the components (RPC, Publish/-
Subscribe). This has been reached on agreement altogether with the RACE Project.

93

5.4 Technology Proposal

94

6 Discussion

In this chapter we will be discussing the outcome of the work in the proposed solution against
the analysed requirements. We will be observing why certain decisions were made and which
aspects, if any, have not been covered by the current solution. Furthermore, we will be observing
possible alternatives to the selected ones, but in major words we will be reviewing on the real
motives before each controversial decision.

6.1 Non-discussed issues

There have been a number of aspects that have not been proposed, either because they were
imposed or because they were out of scope from this work. In this section, though, we will be
observing those that have not been documented but are inside the work of the thesis. The reason
on why they have not been documented on the work is because their final specification hugely
resides on a real world implementation, and therefore can’t be documented properly without
reaching an advanced stage into the product development.

6.1.1 Development Procedure

Although we have been propitiating the idea before having third party business or individuals
developing additional software or complements for our system, we have not discussed or offered
a correct explanation on how these developing procedures are going to take place and neither on
which documentation or indications they will have at the reach of their hand. Even though these
impediments, we can reach the consensus that a minimal set of features are in need to be provided
by our work in order for any developer to start developing software associated with our system.

Developing environment

One of the key steps in any software or hardware development is the ability to test a certain
product against its target system. Doing so any developer can ensure that its software will be
complying with its objective and work as expected. In order to help with this objective there are
multiple alternatives to be taken into account, each of them promulgating its own requirements.
As we aim to target at Indie Developers is key for the system to be of ease of use and simplistic, as
well as providing the maximum information possible. From all the following alternatives there’s
none set as a major winner, to this extent we would propose all of them altogether as valid for
proposing an environment.

Emulation The most logical option is that of providing for an emulator of an entire system.
Whilst this option might require a relatively huge resources usage on the developer side, it
can provide for a complete test environment coupled with the ability to check against multiple
sources. For this instance, every car manufacturer could provide its own image to be emulated
in order to allow the developers to check against a specific model or features. Also, it would al-
low businesses and manufacturers to automate tests against a wide range of versions in order to
ensure their compatibility and avoid any conflicts on, for example, system modules.

Real-time deployment One of the typical solutions to this issue is the one to allow the devel-
oped software to be directly installed on a real device. The advantages of this strategy are quite
clear as it allows the developers to test their software directly on the field and experiment with
any issues or nonconformities directly without the need for user feedback. The disadvantages,
but, are also clear on this option as it makes mandatory for any developer to have a compati-
ble system purchased and therefore alienates Indie Developers. Also this option doesn’t allow

95

6.1 Non-discussed issues

for wide-scale testing and therefore might be incompatible with certain combinations (again, for
system modules).

Online Service In a turn of events we propose the creation of an extensive testing environment
as online service, expanding the emulation and bringing to higher levels. Though this option
requires a higher development effort on the product part, it heavily rewards its completion. By
ensuring for an online suite we can provide any developer with the ability to test his software
on our systems, and receive real feedback of the outcome. Whilst not as direct as the Real-time
deployment, this will allow developers to share their outcome with other multiple developers
thus allowing for a higher cooperative level on application development.

Developing API

Having already discussed the developing environment, we have a key issue remaining. For any
development a declared Application Programming Interface is needed. In our case, but, we can
only provide a handful of features that have already been declared in the solution part. We have
missed out the big issue regarding the features exposed by the end vehicle. This issue itself was
raised with our RACE Project counterparts and a mid-term solution was reached as a consensus.
In order to provide the developers with an updated API from an ever-changing specification, we
decided to take as a base the RACE Project as a minimal API for any manufacturer to implement.
This implies directly that the developer could use the documentation provided by the manufac-
turer and bypass any need for secondary documentation, because everything the system would
do is to check the configuration and privileges part. On top of that, we are conscious that every
model might have its own specification and therefore may require additional work on that aspect.
To overcome all of these problems, we evaluated the following decision.

Dynamic API Generation Our main objective is therefore to bring to a minimum the need
for documentation on our side, drawing from the documentation already established by RACE
Project altogether with the one provided by the other manufacturers. In long term, we aim to
propose a common framework with manufacturers to work together in the stabilisation for a
minimum common framework, base for any custom features expansion; pretty much based on
the current relationship between the WWW Council and the different browser manufacturers,
with the first one providing for the standardisation and adopting suggestions provided by the
seconds. To provide for this aim, our system would then dynamically generate the set of avail-
able methods drawing directly from the ones exposed by the vehicle (e.g., [MRS09]). Due to the
standardisation between car manufacturers, the features provided would be of a similar calibre.

Development Framework We’re concious that a transition to our software might imply heavy
work on any previous HMI, in order to simplify the manufacturer’s work we propose the creation
of a developer framework similar of jQuery for JavaScript. That is, a framework that would
expose the features of every model in a similar interface, while processing in an internal way the
conversion to the appropriate transmission method. This proposal has also the clear advantage of
propitiating the early adoption of our software due to the facility to integrate it into existing car
models. Therefore, and because the Framework would be Open-Source, we ensure ourselves the
maximum compatibility with any existing cars due to the most previsible growth of the so-called
scene. This group of developers would then be in charge of providing unofficial compatibility
with existing car models, as well as providing for installation documentation and procedures,
while our business could centre in the implementation of it on new models and manufacturers
while obtain official support from those.

Developer Help/Community

As exposed on all this work, and specially in this section, an innovation on this work is that
is centred around the term of Indie Developers. Whilst there have been already solutions that
have aimed on attracting Indie Developers to an already existing HMI, our idea is to make these
developers as a key part of our system by developing it from direct feedback of those. In order
to achieve this goal a heavy informative campaign is needed before any product model might go

96

6 Discussion

live, so as to have an already existing component base that would be attractive to manufacturers
and users alike. Also is important to keep up this level of collaboration and enhance and expand
the value of this community by allowing these same developers and other users to help solve any
problems they might encounter whilst in the use of our software. To comply with this aim we
propose the creation and establishment of community-like features on our online infrastructure,
with a huge component of media and social engineering to allow users that collaborate highly to
achieve our goals to be rewarded accordingly. And the same concept could be applied by users
that act against the principles and objective of this community. With this proposed incentives
we aim to have a self-growing community that would, at the very end, be auto-propulsive on
our work’s success. The key idea is to get users get users, which is more effective and cheaper
than heavy advertising campaigns for the use of a product that, at the end, will be chosen by a
manufacturer based on the willingness of their users to use it.

Open-Source Code and Examples

In the same line as previously exposed, it is in our goals to provide our thesis as open-source.
Altogether with this, we would also be providing with examples and actively develop to enhance
this software. Whilst some might argue that this path is of risk for such a thesis, with a huge
level of competence before it, we can easily claim that it is not. The reality is that on the current
environment we have a lack of feasible products on this sense. Therefore, our best expectation
would suggest for a monopoly-able scenario very much similar to the start of the already known
Operating Systems. Whilst this has a potential for income on the short and medium term, at
the end new competence would arise those being totally open source and therefore ruining our
expectations because of better opportunities for developers. Having this possible scenario in
mind, we have decided to take a different approach very similar to that of “Google Android“ and
start for an open-source minded system that would allow for the development of an open-source
software with all the guarantees that we would have the monopoly on services to this software
[Inc13d]. Therefore, our main business model would be solely oriented at the offering of online
services such as the AppStore, Update services, maintaining the community and investing on the
creation or sponsoring of new Indie projects. This under a policy of responsible billing and fair
usage would avoid having open-source developers think of creating an alternative to our software
due to the associated costs relating to these services. As commented in this section, one of the
main reinvestment points of the income would be on enhancing the available software, develop
new one, increase and improve the existing documentation and reward new software. All of this
coupled with the maximum transparency levels that our business could provide would allow for
the users to think positively of our business whilst providing a more humane feel to it.

6.1.2 Critical System Failure

One of the non-discussed points recalls the possibility of an unexpected all-out system failure.
Such case, thought unfortunate and a direct implication of a failure of our security and self-
redundancy protocols must still be considered. When one of these cases arise the most common
solution would be for the user to bring the whole of the vehicle to a car manufacturer and for
this one to repair it. Although this might be a feasible solution for some, a more alternative and
innovative approach has been considered. The idea of allowing a user to solve itself its problems
is not new and has been tested in multiple occasions along human history. Our main suggestion
flies around the fact that nowadays high capacity solution can be provided while these being still
portable (flash cards). As an added value to this fact, we can consider that most equipment today
has support to read this format and therefore would make sense for the user to be able to extract
this storage mechanism and connect it to another device. Following this suggestion, the remnant
requires for software that help guide the system to submit any error that might have occurred
and restore the software to be created. This effort, though, would not come without reward if
easy enough, as it would highly reduce the customer dissatisfaction in case of an unexpected fail-
ure, whilst also providing first hand information to both the user and the associate business on
the causes of it.

97

6.2 Main Problems of the current solution

6.2 Main Problems of the current solution

In this section we will be discussing the most obvious problems regarding the current solution, the
causes on why those originated and any possible alternatives that might be proposed. Although
these alternative have been studied, an argument will be provided along those in order to proof
for the failure to apply them.

6.2.1 Security

One of the main concerns of this thesis has been the one concerned with actual system security.
As follows we will be analysing the two main concerns and observe on which solutions have been
observed, all of those without fully solving the proposed problems.

Unwanted intrusion Avoiding a foreign intrusion or any unwanted modification of the system
is crucial as it could end up provoking an accident and the associated possible civil and penal
responsibilities. Such devastating scenario must, at all costs, be avoided. On first place, a number
of legal actions and assurances must be taken for our product to be considered safe and protected
by any customer that might use it. In second chance, we have to ensure that our system is as
closed to intrusions as possible, and that the system modification options are the same of those
on current systems. This assurances could partly lift the burden of any accident related to the
software from itself, but still provide no clear assurance to the customer of a full extent. This fact
is mainly due to the possibility to have external devices interact dynamically with our system.

Code protection Even through this assurances, we have still the concern on unwanted code
retrieval and duplication. This is an unsolvable problem on the current technologies due to most
of the client code being based in JavaScript, which as previously shown can’t be protected against
this fact. This problem could easily be solved by bringing part of the code to a closed environment
on the server-side, but would again require higher resources on an already strained server, which
due to the imposed architecture requirements is not possible to be modified.

6.2.2 Standards Enforcement

In this section we will be analysing the problems derivable from the fact that the already-existing
standards, and future versions, need to be enforced on any trusted component and the problems
derivable from those.

Component enforcement Every installed component needs to be complying with the existing
regulations in order to be approved for use. That, but, requires in huge measure the fact that
these components need extensive testing in order to become officially allowed to be installed.
Due to the most probably huge number of components going to be submitted, and for the im-
perative need that each and every one of them to be complying with the standards we require
of a huge number of automated tests to be ran on every component (and thus, also provided for
the developers) in order to ensure the compliance with those. Apart from this fact, it is quite
obvious that an human interaction would be needed in order to provide for the final approval.
In order to achieve this we propose the creation of a system similar to “Steam Greenlight“, where
the users could positively vote the software they think comply with the regulations and therefore
speed the position of that software in the approval procedures. Users that successfully predict
the behaviour and compliance would be rewarded based on their collaboration information only
if it was of use, thus avoiding those users that would always provide a green light. Along with
this proposal, a maximal approval time would also be guaranteed, with its time to be debated
according to the predicted time needed to approve the already submitted components.

Illegal Installations One of the ever-growing problems of our generation is that of piracy, where
legal software is replicated illegally and therefore evicts users from having to pay to use that
software. Whilst the already known techniques of Trial and Demo software have been provided,
and others such as Application of the Month or similar on the sight, preventive action needs to be

98

6 Discussion

taken in order to ensure to a maximum the existence of those Illegal distributions. It has been long
argued that such a solution is not factible, till now there are still a lot of problems in this sense,
but in our case it is more than the problem of having a loss of revenue due to piracy. By allowing
illegal installations we would allow most potentially the installation of unwanted or disruptive
software that could thwart any concentration effort on the vehicle and lead to the most disastrous
case we could face. In order to avoid this, we have already considered that a user should take
sole responsibility for the installation of software, but further legal action should be planned for
those that make the software. Also, a blacklist and on-system checks should be proposed in order
to ban certain software that might be to a high probability harmful for the user and/or the own
system.

Driving mode The standards dictate that only a handful reduced set of features should be avail-
able to a user on a driving mode. This simple phrase has a direct meaning on both the privileges
control on the client side and the component approval system on the online side. Therefore, ev-
ery component claiming to be available for “driving mode“ should be tested in such and ensured
that complies with the respective standards. Still for the severity of this affirmation, we can en-
sure ourselves that only those devices executing in a “Principal Device“ mode shall be affected
by it, rendering this system to a nearly maximum extent without application on any of the other
devices. To ensure this mode compliance, only officially approved applications will be allowed
to be executed on non-developing systems. This is to burden the responsibility of the component
correctness solely on the driver, thus eliminating any potential harm from the user.

6.2.3 Slow responsiveness

In this section we will be tackling the most probable problems regarding a lack of responsiveness
on the server-side of the system. These limitations come both on the choice of technologies and
hardware, with both of them being considered as mostly inappropriate for the proposed system.
Alternatives will be discussed on following sections, but on this section we will centre around
which techniques have been already proposed and which have been long-sighted in order to im-
prove the software should heavy problems arise with it. Due to the current state of affairs our
system is in a foreseeable manner not capable of providing its uses on large-scale deployments,
such as buses, where the amount of clients is undoubtedly high and the responsiveness require-
ments are also considerably high. Our system therefore has been designed with a “responsive“
mentality, therefore centring around the need for he user to feel that the application never “hangs“
and is at any time informing the user of the status on the current operation. By making the ap-
plication more human, we can expect the user to soften its stance against heavily loaded systems
whose actuation might last a few minutes. On a second hand, we also have specified component
control systems that will ensure that no component “hangs“ or spends too much time on a task
by controlling the resources that a component uses. Such behaviours will be notified whenever
possible and corrective action will be taken in order to ensure that the user never has the feeling
that something has gone wrong.

6.2.4 Online Profile

In the previous chapter we have defined the concept of Online Profile, altogether with the notion
that this is an optional concept for any system due to the necessity to have access to Internet in
order to grasp it. Although the idea is perfectly innovative and stands with the latest trends in
mobile Operating Systems, it provides legal and technical problems on bringing it as effective as
we have deemed, we explain them as follows.

Component Sharing

In this section we will discuss whether any component that is installed on a system should be
usable by all users or not. Theoretically a component installed in a small scale transport, such as a
car, should be available by the maximum number of users of that transport. These would amount
for five to six licenses on a medium basis, which would represent no problem. The problem arises
when we talk about huge transports such as a bus or even bigger such as ferries or aeroplanes.

99

6.2 Main Problems of the current solution

Though that’s quite on the future for this system, it is good to start asking ourselves what action
should be done on those cases. The idea we are bringing around here is that when a product
needs to be used in one of these environments, its licensing costs are going to go on increase.
That is, because the number of people using this product is higher than what it the sale was
originally meant for, therefore increasing substantially the revenue that provides this component
to the company that purchases it.

Component Downloading

In this section we will be discussing on how to handle the unclear situations where an online user
is using a license that is not purchased for the device but on the user. This section is tightly bound
with the one following called Licenses on which can only be applied if the licenses are used on a
per-user basis and not on a per-device basis, where this section would be meaningless. Following
we will be discussing the proposed solutions for a user license-based system, due to the technical
and legal complexities associated with such.

Cache This technique consists primarily on downloading and storing the component on a local-
basis on the device, therefore avoiding any system-based interaction. This option itself might be
cached by the system, but in any case the system won’t install the package, as it will provide
for the package checks. With this option, only those user accounts with the package activated
will be able to use it. This excludes the main device of the account, to which the package will be
automatically installed. This option, but, implies that extra security should be added on our side
in order to avoid unauthorized usage of a product that has not been bought, altogether with the
legal assurances that they would need to be provided from our side.

Temporary License With this option any user can grant a temporary license for a component
to any device. In order to this, the system would need to have a tracking on how many licenses
may be granted to the user and for how long would they be enabled to be active, if the authors
deems as such. This solution inherently has its very own complexities because it requires the de-
velopers to highly specify on which scenarios may a user use the software more than in their main
device, but would hugely help the user while using devices on a temporary basis and moreover
would be a perfect way to allow other users to test the full functionality of a certain component.
Overall, but, this requires extra management from on the user side which in turn worsens the
user experience in the task to share its experience. This option, though, also requires from further
legal investigation which is totally out of scope on this work.

6.2.5 Licenses

In this section we will discuss to which element the licenses should be awarded. Licenses are
due from the purchase of a component, after which the user has the right to use the component
with all the features that were announced on the license purchase. It is also noted that the devel-
oper controls the type of license purchased and any other license possibilities, as configuring the
aforementioned section. A developer, though, can’t revoke a license from a user as this right is
exclusively reserved to the own business and can only be done with a justified cause.

Device

Awarding the license to the Device means that each user using this device would be able to use a
purchased product without any restriction unless the owner of the device decides to. Therefore,
the developer would be selling in a style similar to that of the current Application Stores for
mobile devices. That would mean that once a user has purchased the product, any number of
users might be using the product without any possible control, therefore opening the door also
to possible complications on the legal side due to unauthorized users using a non purchased
software. To this extent, we observe the following aspects.

100

6 Discussion

User Limitation An interesting idea while considering assigning licenses to single devices is
to contemplate which kind of use will that device have regarding the sold license. Therefore,
different licenses can be sold depending on the kind of user, as such as “Enterprise“ user, one that
belongs to a company, “High Occupation“ users, the ones that carry a huge number of passengers,
such as a Ferry or a Bus or “Limited“ users, such as those driving a car or a motorcycle.

Device Owner In accordance with the aforementioned text, the purchaser would then be able
to control which users could use a certain piece of purchased software, therefore managing them
and only allowing certain devices to use them. This way, for instance, a high occupation user
could purchase a component for use only on certain devices, such as the embedded ones, while
purchasing a license for another component that would be in turn available to normal users.

User

Awarding the license to the user means that this user would be able to use the component in more
than a single device. By allowing this fact we avoid the situation where a user owns multiple
devices and doesn’t want to purchase it for every single one. This method reduces therefore the
expected revenue of the developer on a first glance, but by adding the possibility to set the amount
of devices on which a component might be used may simplify and aid the developer’s revenue.

Amount of Devices The first idea that comes into mind when speaking of user-based compo-
nent licenses is the fact that a developer’s income ends when the user purchases the component,
because the user takes ownership of this purchase and therefore can use it in a unlimited amount
of devices. Therefore and available option would be to simply end this by providing the devel-
oper the ability to select on how many devices the component license might be used on. On from
this, a standard price per extra spot, also configurable, would be provided thus allowing the user
to purchase allowance for extra devices.

Online connection This kind of license has the advantage to simplify the offline installations
in contrast with the one previously exposed. It’s main advantage is that it allows for a single user
to register a certain kind of component once the device goes online, and for the server to keep
control if multiple users try to take advantage of this situation by denying them. Therefore, at the
end a user could avoid committing unwanted mistakes by only installing on the owned devices
and the developer could be assured against unauthorized mass installation because they would
be denied online synchronization of the component if that was the case.

6.3 Alternatives to the selected technologies

In this section we will be discussing the multiple alternatives to the currently used technologies,
and the main reasons why they weren’t even considered in the market analysis. The listing of
these technologies is therefore useful in the objective to further improve and specialize the prod-
uct by reducing the base framework and unneeded resources associated with the base where the
product is going to be working on.

6.3.1 Client Technologies

In this chapter we will analyse the different client-side technologies that are current alternatives
to the already selected Web-based model. On this case, we will solely analyse which kind of
technology could be considered or which feature could be dropped in order to achieve a greater
array of compatibility.

Native Client

In this section we will be analysing the impact of the decision regarding the imposition of the
necessity of a native framework in order to comply fully with device integration. Explicitly, we

101

6.3 Alternatives to the selected technologies

will be discussing about the necessity of setting such a requirement given the current status of the
standard, web, client definitions and technologies used. Therefore, this requirement aims solely
to fulfil the necessity to run native applications on the user-side such as navigation applications
and a lifting of these limitations would possibly simplify application deployment and related
work. As follows we will be analysing in this concrete case the possible alternatives that could be
taken around this fact.

Web Limitations The idea behind using such a framework is to overcome the limitations as-
sociated with the web technologies. In concrete, it has been deemed necessary to use such a
framework in order to provide for the sole necessity to run a native application. To this limitation
we can provide alternatives that have already taken place in other similar architectural systems,
such as the use of URI’s. These, standard in most mobile-based operating systems, allow for a
website to execute any registered application altogether with configuration information sent to it
(e.g., [App13b] or [Mic13a]).

Alternatives As an alternative to resorting to this approach, a radical solution was proposed. In
concrete, it would be ideal that all the applications that need to be provided with the product to
be coupled with the same system in order to maintain coherence inside the structure. In this case,
we proposed to have the navigation application built completely with web-based technologies
in the very same fashion as other already existing ones. This is already commercialized in other
products and therefore could be an easy alternative in order to simplify user experience by avoid-
ing the hassle of having to change between the browsing application and the navigation one, and
also allowing the user to have real-time navigation information on the screen [Inc12].

6.3.2 Server Technologies

In this section we will be discussing about the previously selected architecture and the items
that have been forced into scene. In concrete, we will be proposing solutions to the innermost
problems that have been found working with the selected technologies and now been integrated
as limitations of the very own thesis. As already commented, these limitations were established
as part of the thesis requirements and therefore have not been extensively researched, but we
will be providing one of the multiple alternatives that could be used if such limitation was risen,
leading perhaps to a partial reanalysis of the proposed architecture.

Motivation

The reason why an Apache + PHP + MySQL architecture was selected for this thesis has its roots
into the fact that such a architecture is already used on the limited server hardware. Therefore,
in a simple aim to reduce the server costs, and due to the way in which this architecture revolves
around, it was deemed as essential to build a solution around this highly constraint limitations in
order to use the maximum amount of resources on serving the responses.

Alternative

The proposed technology is Node.JS, a full-blown JavaScript based server. The selection of such is
due to two facts: it is more efficient and it simplifies the developer’s previous knowledge to adapt
by removing PHP and Apache from the list of required technologies. Therefore, a single web
developer could implement the whole structure thus reducing also the initial costs for the thesis.
The use of this technology would imply an increase on performance respect the old architecture,
and also lift limitations regarding the stateless environment regarding PHP [Tec13a].

6.3.3 AppStore Technologies

In this section we will be analysing the selected AppStore technology as well as viable alternatives
to it. In concrete, we will analyse the main motivations behind the selection of such a solution
along with a possible alternative, again not the full market has been researched due to it being
totally out of scope for the environment provided for this work, for it. On this section we will be

102

6 Discussion

taking as the base proposal being the current AppStore utility and why it is not useful from our
point of view.

Motivation

The main reason why a selection on the current AppStore technology was made is because it
uses the same set of technologies that we initially selected. To this extent, we decided to use an
Open-source AppStore with an inherent AMP structure as PrestaShop, that provided us the ability
to use the same base hardware platform as a common denominator for all the infrastructure,
thus simplifying development. Our research, though, only provided a worthy competitor to this
selection called “OpenCart“.

Alternative

A collaboration with a cloud services provider (e.g., Amazon [Inc13a]) could be done on the first
approach, helping our system overcome the possible deficiencies and providing security benefits
against possible intrusions (e.g., Amazon includes built-in protection [Inc13b]).

103

6.3 Alternatives to the selected technologies

104

7 Future Work

In this chapter we will be discussing the different approaches that could be taken after the finali-
sation of this work. We will be analysing the different ways to provide extended viability to the
thesis and improve its analysis, altogether with different paths to convert the created analysis into
a real market product.

7.1 OEM Integration

Along this work we have identified a vast set of stakeholders and features that interconnect with
each others and satisfy their necessities. A major lack of this work is, though, the lack of major
communication with the Manufacturers. Deemed as a key flaw of this thesis due to the reticence
to abide by the RACE rules, due to being a base requirement of this thesis, this work has the
ability to change that if further work on it is done.

7.1.1 Proposals

In this section we will be analysing the different proposals regarding the immediate demonstra-
tion of the viability of the work as a whole, that is, convincing arguments needed to defend this
work in front of other elements that might be required for it to go ahead, be customer opinion or
institution approval going through OEM satisfaction and willingness to adopt the work as their
own main architecture for their developed products.

7.1.2 OEM Analysis

One of the main proposals is therefore the provide the results from this work to the different
interested manufacturers and obtain their own evaluation of the outcome of the work, lastly in-
corporating them into the work thus enhancing it. This proposal is deemed as essential for the
progress of this work, because this work requires for a vast sector of the market to approve the se-
lected outcome. By doing this task, we would also provide vast enchantments to this work thanks
to the direct collaboration of the multiple companies by obtaining their expertise and ability to
perform trials on the outcome of this work.

7.1.3 Prototype

Another of the selected proposals is to provide for a prototype demonstrating the viability of the
work already done. This prototype would therefore aid in our crusade to expand the base amount
of manufacturers willing to join the revolution started by this work, as well as providing feasible
proof to the world that such a work is possible. In the progress of implementing such a prototype
would be a key element to follow strictly the specifications here provided, and if due problems
arose then a viable change to the specifications could be possible thus enhancing the work itself.

7.2 Funding

Another of the main questions that lie ahead in the path of bringing this work to a viable product
is that of funding. So far, the already selected funding goes tightly coupled with the project
RACE. This association, though, is deemed not the best to this work due to the necessity of it to
be extended to other systems already on use. Therefore, we propose the following steps.

105

7.3 Testing

7.2.1 OEM

The most logical and less traumatic step into funding this thesis is by using the direct collabo-
ration of the different manufacturers into it by funding a standardisation consortium that would
surely bring this work into reality by providing enough funding and resources for the result to
be flawless. The major drawback of this approach is loosing all the independence strength and
therefore falling into the standardisation of a few manufacturers in detriment of the vast majority.

7.2.2 Public Institutions

This would be the preferred outcome to progress with this thesis. By providing the public in-
stitutions with the ability to participate in a thesis of this magnitude we could get practically
illimitable funding and resources due to the vast contracts that these institutions have with the
manufacturers. Moreover, this kind of association will allow the developers of this work to avoid
any huge manipulation of it by the manufacturers by removing them from the list of essentials
stakeholders and relegating them to the position of preferred ones. As a last note, by doing this
deal the work would surely abide by all the terms and regulations of the institutions and highly
speed up the needed approval by them.

7.2.3 Micro-financing

Lastly the second most preferable option, thought the most complicated ones in terms of later
standardisation, is the one of micro financing. This solution allows possible users to install this
system into their own vehicles and therefore provide for a huge amount of testing on a first glance.
The drawback is precisely the necessity to provide this, and therefore a stable product, on a very
early stage of development due to the users being the major stakeholder of the thesis. While being
able to achieve standardisation on a later stage without manufacturer intrusion, acceptance by the
public institutions will also be standing at a higher degree of completion.

7.3 Testing

Highly coupled with the aforementioned section, on this section we will be discussing the possi-
bility to have external help in the testing and integration efforts of the development and deploy-
ment of this work. Concretely, we will use paired solutions of integration and testing by changing
the public to which the test editions will be directed to.

7.3.1 OEM

This would be the preferred option regarding to integration possibilities. Allowing the different
OEM’s to deploy the work to their systems and obtain their test results would amount for the
best results all over the different methods analysed on this section. This would also comply with
all the security features of the vast majority of countries, because the manufacturers would be
providing this information altogether with the required legal assessment.

7.3.2 Business other than OEM’s

This would mean having other business with a huge number of deployment scenarios preparing
and testing the developed product. While this seems as a viable option problems arise immedi-
ately in the form of lack of standardisation and exhaustive testing altogether with the require-
ment to obtain legal assessment in the multiple countries and the fact that the exhaustive support
should be provided to this businesses or institutions.

7.3.3 Particulars

This would be a highly recommended option no matter the funding or testing scenarios. The main
motive behind this reasoning is that having a huge number of users test totally different scenarios

106

7 Future Work

in their own systems would amount for years of testing being reduced to a matter of months. The
drawback, as in the previous section, is the necessity to provide for a vast and extensive level
of support to users who most likely will lack of the required knowledge in order to effectively
diagnosis and solve any problems that are likely to arise along.

7.4 Product Enhancement

In this section we will be thoroughly discussing, based on the outcome of this work, the different
enhancing possibilities that could be due to apply on an imminent basis or could need further
research on them. These features have not been incorporated on the other sections of the work
either because they are to a certain extent out of scope or because they lack required extra research
which itself is out of scope for this work.

7.4.1 Security

One of the base pillars around which a vast part of this work revolves is that of security, to whom
we owe the fanaticism expressed in some sections of it. This dedication is mainly due because
the strict requirements by the compelling authorities for the kind of products to which this work
relates to. As could be easily interpreted, this exactly means the never-ending need for further
security analysis and improvements on this field, from the own product deployment and normal
function safety to protecting it from external intrusions and modifications that could invalidate
these rules.

Illegal Systems

In this subsection we will discuss the strategy that could be taken against those systems that try
to use software that has not been authorised or in an unwanted basis. This use is naturally against
the own system rules, but what also concerns us is the invalidity of the used software due to it
not going through the extensive tests that normal software would need to comply with in order
to be eligible as feasible components for the developed software.

On-line Ban One of the first ideas that come into force when tackling illegal system usage is
that of the already existing mobile platforms, that is the base of the current console and on-line
systems and therefore known to most users that use this kind of devices. By relegating control
to on-line solutions we can easily simplify and enhance the identification of undesired systems
and remove part of their functionality while also taking legal actions against the users or allowing
themselves to go forward in this aspect. To achieve this objective the on-line ban pattern would be
used, thus limiting on-line functionality and restricting the ability to update or use extra features
due to the client system not passing the minimum verification tests. One of the tasks of the future
work will be to do a full-through analysis on this strategy and provide the essentially required
legal framework to act on this sense, without which this option is not even feasible.

System Blocking Another of the legal points that will be taken into account is the possibility
to block partially the client system in case of an illegal usage. This option is limited if the own
software is modified, and also requires a huge amount of legal framework investigation behind it
in order to provide cover for its implementation and deployment. An added option to this would
be the necessity to immediately take legal actions against the person that committed the infraction
while preserving its minimal functionality and allowing for all security rules to be preserved.

Unauthorized Clients

Another of the major concerns of these systems is the more than enough possibility of external
intrusion by unwanted clients. While already providing for previous approval of devices before
use as a requirement, it is clearly noted that the case of an advanced attack against a huge system
deployment could be done in order to take advantage of some features that could ultimately lead
to security problems on the own system. In order to avoid this scenario it is deemed that a huge

107

7.4 Product Enhancement

security effort is needed in order to pave the way for this product to make into bigger deployment
with dozens of simultaneous clients using it.

Cyber Attacks

Following the previous sections, it is of extreme importance to also have the infrastructure pro-
tected against external unwanted intrusions. Concretely, further research needs to be done into
the cyber security field in order to provide for cover on the already defined systems. Furthermore,
legal cover should be prepared for such a scenario with ready to implement practices available
should such cases arise. Stress tests should be also taken against the systems and further proof of
stability should be obtained before the system is even allowed to go live in order to provide the
purchasing customers the much required seals of quality.

7.4.2 Feature Expansion

In this section we will be analysing the features that could be potentially considered for this the-
sis. This features have not been considered for the thesis due to them not being any of the base
or extended requirements provided by the stakeholders and therefore are only considered as ex-
panding the value of the product.

Custom Base System Integration

In this section we will be discussing multiple approaches to enhance the collaboration between
the deployed work and the base system that will serve as a platform for its base workspace.
Concretely, we will be analysing the possible interaction possibilities with a custom made base
system, that is, a customized base Operating System for our deployed system thus reducing the
amount of extra infrastructure that is not going to be used and therefore enhancing performance
itself.

Keeping with Open Source This may seem obvious but it must be empathized when consid-
ering a custom built system. As such, the idea of building a custom one totally integrated with
the work might occur, but this option would mean redoing a huge amount of already done work
on open source systems that would also imply higher maintenance costs.

Reduce Infrastructure Overload One of the key advantages of using this approach is the abil-
ity to reduce to a maximum extent the extra components on our base system therefore giving an
immediate boost on the productivity and performance of it. To a major extent, it also reduces
security complications by removing the use of unneeded components which in turn might have
security holes.

Feature Extension By using a smart selection of the base software we can avoid developing
extra features by using the ones embedded into the system. Using this approach we can reduce
to a minimum the integration part by reducing it to a simple configuration task of the system.
Altogether with this, we would ensure ourselves of keeping up to date with updated software
due to it being external, and open source so suppressing any need for extra licensing and costs.

Plugin Functionality Extension

In this section we will be analysing the extent on immediate plugin functionality extension. These
extensions have been foreseen while building this work but have deemed as non essential due to
them not being part of the main specification. Following we will provide a briefing on the three
main expansion points that could be foreseen as the most probable path for future development
to take place into.

108

7 Future Work

Plugin Suspension Currently plugins are being executed on a full basis when on the back-
ground, allowing them to run in the background in an uncontrolled manner on the current
planned version. This may lead to performance issues but it has been considered that the ar-
chitectural complexity of such approach might be totally out of scope for this product. Therefore,
is set as part of the tasks to be done on continuing this thesis to further analyse and propose a so-
lution to this problem thus allowing the system to control the flow of the plugins being executed
on a full basis.

Plugin side-by-side In an approach closer to the current tablet-based operating systems the
possibility to run more than one application side-by-side has been proposed. This way, a user
could be using two main functionalities at once without having to change between these plugins.
This, of course, adds a level of complexity to the architecture that is out of scope for the require-
ments associated with this thesis and therefore has been deemed as part of the immediate future
work package associated with this analysis.

Resource management One of the key flaws of this work is the lack of planned resource man-
agement, such as the storage or percentage utilization. These features need to be considered and
embedded into the architecture as they are of maximum privileges and therefore can’t be dele-
gated to other layers. The problem regarding with this is the fact that currently there are no viable
embedded options to handle this task, and therefore a further analysis on it should be made as it
is out of scope for this thesis. Therefore, a possible work path for the future is to provide a viable
outcome on this kind of management visualization and handling.

7.4.3 Alternatives to current Hardware Approach

There has been an extensive research on alternatives to the current Hardware Approach by other
parties. Concretely, they propose two different approaches that should be considered before start-
ing the implementation of the solution.

3D Interaction

This would mean that the users would be able to see the infotainment product with in a 3D
stereoscopic way, therefore enhancing the experience of them by providing a surrounding expe-
rience. Although this feature provides a great bonus to any product, further security and usage
constraints should be considered. [BAS12]

Hands-free Interaction

In this case we would be tackling interaction in a totally different approach. By removing the
touch contact we would remove one of the highest security issues when interacting with touch
devices while in-driving, as seen in the regulations analysis. This approach could be either way
by providing audio-based [FLS12] or gesture-based interaction [OBTT12], but further analysis
into these solutions should be done for this product.

7.5 Performance Tests

In this section we will be discussing to a greater extent the necessary tests related with the devel-
opment of this product along with further scalability tests in order to ensure the functionality of
the deployed architecture under the most likely different loads that are going to arise under its
usage.

7.5.1 Architecture Tests

In this section we will be covering the necessity for a posterior test design and implementation
for the deployed architecture. The analysed system has already been designed with a huge usage
in mind, but further tests will be required in order to check on whether these premises are right
and further corrective action will be in need of appliance in case they are not correct.

109

7.5 Performance Tests

Common Performance Tests

There are a common set of tests that have become standardized under a section professionally
known as “Performance Engineering“. We are not going to go into each of these tests as these are
out of scope for this section. The task that should be performed on a future basis is an analysis of
them and a selected implementation of them based on our performance needs. [Mic13b]

Denial of Service (DDoS) attacks

In this section we will be analysing the necessity of our system to provide constant protection
against such type of large scale attacks against our infrastructure. The deployed architecture
needs to be ready to withstand and counter-attack such attacks while protecting the innermost
data and providing normal usage to the clients. We can see the high level of difficulty related
with this task in other successful attempts to steal data from clients using this fashion, which in
turn have proved to be of a huge negative impact on the user experience. [She12]

7.5.2 Local Infrastructure Tests

The local infrastructure represents those having to do with the deployed system itself. This needs
to be tested in order to provide for the maximum user usage under normal stress conditions, and
if necessary further corrective action in regards of technology or hardware limitations should be
taken into account. This is extremely necessary if the system ever aims to be deployed for a large
amount of users using the same centralized unit, such as in multi person transports.

Infrastructure Security

Our major security directives have been oriented towards ensuring that the projected work is
safe and complying with the currently available and standardized security directives. Due to the
constrains on which this thesis is based, it was always assumed that the Infrastructure on which
this work would be deployed would itself be fool-proof, tested and designed to withstand the
most common security threats for the architecture to be deployed on the development of this
work. Therefore it is obvious that a major aspect on Security has been omitted, certainly because
the product has been designed on an architecture independent basis. To workaround this aspect
and ensure that it will be safe enough to not commit a natural prejudice against the deployed
work the fact of ensuring this security before release of a platform should be done. To this extent
an out-of-scope analysis on the security requisites and development or selection of standards and
tests should be carried out against the infrastructure.

Infrastructure Pass-through handling

The infrastructure will therefore also be providing external devices access to the Internet should
the deployed user allow so. This situation would most probably occur under huge system de-
ployments, such as those deployed in public transport or on big personnel transport scenarios.
For these cases, certain stress tests need to be carried out in order to ensure that it will be able
to withstand the demand without affecting the stability of the system. If such situations were to
happen a future work on analysing the root causes and finding a workaround for them must be
done, task which is also out of scope for this work due to it needing an already built system.

110

7 Future Work

7.6 User Experience Tests

As any other kind of User oriented application a huge emphasis has been taken into the develop-
ment of a valid User Experience. This core requirement of our work should be transferred with
equal priority and correctness to the developed work. In order to ensure that, a set of tests are
also going to be undertaken on the developed system that will punctuate the validity of the im-
plementation regarding the desired output. These tasks are of extreme importance if the product
has to be ultimately successful, and that’s the main justification on the specification of them in
this section.

Figure 7.1: In a future scope, large amounts of users may be using one system (caption: Lufthansa Board-
Connect [Mar13])

7.6.1 Web Consistency Testing

Due to the genericness of the target application that this work defines, it has come to a necessity
the fact that consistency across multiple devices must be assured. We consider this fact of such
criticality that we deem as required for the future development of the application to have web
consistency tests made along it. This tests will ensure that the developed application works on
the same fashion in all the devices that are deemed as supported, and to and end will ultimately
define this much needed list. Following the rules will allow for the application to have the same
behaviour independently on the device the user is using as long as it is supported by the work
and therefore the same look and feel. [Men11]

7.6.2 Functional Testing

This kind of testing will provide an insight on the correct work procedures developed. Most
software nowadays has a key lack on correct testing and therefore should not be available for end
user deployment due to high probability of software failure. In order to prevent this, functional
testing must be applied to the product development already on early stages. This will consist
on the identification of the tasks that the software is expected to perform and analyses on its

111

7.6 User Experience Tests

behaviour for multiple running cases. The correct appliance of this directive will imply a fewer
likeness of deployment errors, as well as highly simplify the procurement of the much needed
quality awards that will surely impact on the final decision from manufacturers and customers
on the product usage. [Kan99]

7.6.3 Usability Testing

That is, user-based testing on a certain product. In this case, we would require potential users
of our application to test its functionality in order to orient it to the maximum level of produc-
tivity and best user experience that could be achieved. To achieve this, we would be coupling
with the partners that have been defined in a previous section and use their feedback while on
development to improve, enhance and modify or add functionalities that might simplify and ease
the every day usage of the application. This kind of testing is therefore the one that will give the
best indication on whether the product is able for publishing and as such is the one that has the
biggest impact in the outcome of these tests and overviews. [Nie94]

112

8 Resume

After the work done in this thesis we have concluded that it is feasible to create a new and in-
novative system able to replace the current ones and provide a feasible solution to the problems
presented by the current products on the markets. With this thesis itself we have been able to
present a unified architecture capable to bring a substantial innovation to a sector that has not yet
adapted to the current state of the art technologies on the world. We achieved the compilation
of the latests innovations on the fastest-evolving IT sectors, the mobile and web world, within
a solution that will also solve the problems present on any HMI design for automotive environ-
ments. The platform design that we have presented is still on its early stages and will therefore
need to be further improved and consulted with sector experts, but still this fact we firmly be-
lieve that is able to become a successful prototype on its current status. Taking into consideration
the multiple hardware constrains of what used to be a closed environment, we have been able
to provide the platform with a regenerative environment via the installation of complements and
updates that will allow the user to customize the HMI to its personal taste and avoid having to
live with software flaws. Altogether, this model allows for a source of income after selling the
main automotive environment, which envisages a better income scenario for manufacturers al-
together. The objectives and the requirements have been fulfilled with a satisfactory result, even
exceeding the expected. To this extent, we have jumped from a architecture that only presented
the necessity to allow for applications to be purchased to a full environment that allows also for
language customisations and full user interface revamps with the same simplicity. In the current
state of the art there is no product like the one proposed on this work, and therefore this has
become the alternative to a market where each developer seeks frontal confrontation with each
other therefore rendering the user experience as a negligible asset, practise that at the end makes
the user unaware of the different features each HMI system has. Although this affirmation, we
can clearly observe a general shift on manufacturer policy that indicates that our approach will
be the main developing line for the next-generation HMI systems and therefore confirming and
justifying the arguments proposed on this thesis.
This thesis itself has brought me to know a world that was previously closed to me as is the world
of HMI on automotive environments. I had previously shown limited interest in this kind of
architectures, but with this thesis I have been able to discover a whole world that could certainly
offer high perspectives.

113

114

Bibliography

[AB13] MoSync AB. Mosync sdk - native mobile app development for multiple platforms
using a single code base, September 2013.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. ACM Computing Surveys Vol. 53, No 4,, April
2010.

[AKS+10] Florian Alt, Dagmar Kern, Fabian Schulte, Bastian Pfleging, Alireza Sahami Shi-
razi, and Albrecht Schmidt. Enabling micro-entertainment in vehicles based on
context information. AutomotiveUI ’10 Proceedings of the 2th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications, 11-12 November
2010.

[AM11] Jason Ansel and Petr Marchenko. Language-independent sandboxing of just-in-
time compilation and self-modifying code. ACM, 4-8 June 2011.

[App13a] Appcelerator. Appcelerator platform, September 2013.
[App13b] AppUrl. Registering and using a url scheme in android, September 2013.
[ATT13] ATT. Att developer apis, September 2013.
[Aud13] Audi. Audi connect brochure, September 2013.
[Aut13] AutoTrader.com. Infotainment systems: A comparison, September 2013.
[BAS12] Nora Broy, Elisabeth André, and Albrecht Schmidt. Is stereoscopic 3d a better

choice for information representation in the car? 4th International Conference on
Automotive User Interfaces and Interactive Vehicular Applications, 17-19 October 2012.

[BBP10] Raja Bose, Jörg Brakensiek, and Keun-Young Park. Terminal mode – transforming
mobile devices into automotive application platforms. AutomotiveUI ’10 Proceed-
ings of the 2th International Conference on Automotive User Interfaces and Interactive
Vehicular Applications, 11-12 November 2010.

[BHS+10] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and V.N.
Venkatakrishnan. Notamper: Automatic blackbox detection of parameter tamper-
ing opportunities in web applications, 4-8 October 2010.

[Bou05] A. Boulanger. Open-source versus proprietary software: Is one more reliable and
secure than the other? IBM Systems Journal, Vol 44, No 2, 2005.

[bwi09] bwired. Open source vs. closed source (proprietary) software, 2009.
[Car11] Mathieu Carbou. Reverse ajax, part 1: Introduction to comet, 19 July 2011.
[Che13] Chevrolet. Discover chevrolet mylink, September 2013.
[Com13a] Ford Motor Company. MyFord Touch User Guide, September 2013.
[Com13b] MIT Mobile Computing. Mit mobile web framework, September 2013.
[Con11] WWW Consortium. Cascading style sheets (css) specification, 12 May 2011.
[Con12] WWW Consortium. Xmlhttprequest specification, 6 December 2012.
[Con13] WWW Consortium. Html5 draft specification, 6 August 2013.
[dMHW+09] Guido de Melo, Frank Honold, Michael Weber, Mark Poguntke, and André Berton.

Towards a flexible ui model for automotive human-machine interaction. Automo-
tiveUI ’09 Proceedings of the 1st International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, 21-22 September 2009.

[EAGK03] Patrick Th. Eugster, Pascal A.Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Computing Surveys, Vol. 35, No. 2,
June 2003.

[Erk12] Jussi-Pekka Erkkilä. Websocket security analysis, Autumn 2012.
[Fal13] Alborz Fallah. New mazda 3 future-proofs infotainment system, 12 July 2013.

115

Bibliography

[Fav13] Loie Favre. Sony xperia ui vs. stock android: Comparing manufacturer-branded
roms, September 2013.

[FBH+11] Peter Fröhlich, Matthias Baldauf, Marion Hagen, Stefan Suette, Dietmar Schabus,
and Andrew L. Kun. Investigating safety services on the motorway: the role of real-
istic visualization. AutomotiveUI ’11 Proceedings of the 3rd International Conference on
Automotive User Interfaces and Interactive Vehicular Applications, 1-2 December 2011.

[FLS12] Johan Fagerlönn, Stefan Lindberg, and Anna Sirkka. Graded auditory warnings
during in-vehicle use: Using sound to guide drivers without additional noise. 4th
International Conference on Automotive User Interfaces and Interactive Vehicular Appli-
cations, 17-19 October 2012.

[Fou04] The Apache Software Foundation. Apache license, version 2.0, January 2004.
[Fou13a] The Apache Software Foundation. About apache cordovaTM, September 2013.
[Fou13b] The Dojo Foundation. Dojo framework backers, September 2013.
[Fou13c] The Dojo Foundation. Dojo mobile, September 2013.
[Fur10] Y. Furukawa, editor. Web-Based Control Application using WebSocket, 2010.
[Gen13] Genivi. Genivi alliance, open-source infotainment, September 2013.
[GHHW10] Andrew W. Gellatly, Cody Hansen, Matthew Highstrom, and John P. Weiss. Jour-

ney: General motors’ move to incorporate contextual design into its next genera-
tion of automotive hmi designs. AutomotiveUI ’10 Proceedings of the 2th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications, 11-12
November 2010.

[Gro13] The PHP Group. Php reference (manual) v5.3, August 2013.
[HG13] Ian Hickso and Inc. Google. The websocket api, 26 July 2013.
[HGM+12] Steffen Hess, Anne Gross, Andreas Maier, Marius Orfgen, and Gerrit Meixner.

Standardizing model-based in-vehicle infotainment development in the german
automotive industry. 4th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, 17-19 October 2012.

[HGmWH96] Cheng-Hsueh A. Hsieh, John C. Gyllenhaal, and Wen mei W. Hwu. Java bytecode
to native code translation: The caffeine prototype and preliminary results. Proceed-
ings of the 29th Annual International Symposium on Microarchitecture, 2-4 December
1996.

[HJC10] Daz L. Hibberd, Samantha L. Jamson, and Oliver M. J. Carsten. Managing in-
vehicle distractions - evidence from the psychological refractory period paradigm.
AutomotiveUI ’10 Proceedings of the 2th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, 11-12 November 2010.

[Ido] Robert David Idol. Looking beyond http: The future of web application protocols.
[IL13] HK Innotrends Ltd. Ca-fi, android infotainment system, September 2013.
[iN13] iTers News. Tesla motors unwraps virtual ui-centric car infotainment system, 9

January 2013.
[Inc12] Telenav Inc. ScoutTM for apps, telenav’s html5 voice-guided gps navigation service,

27 March 2012.
[Inc13a] Amazon Web Services Inc. Amazon web services, September 2013.
[Inc13b] Amazon Web Services Inc. Amazon web services security center, September 2013.
[Inc13c] Corona Labs Inc. Corona sdk, September 2013.
[Inc13d] Google Inc. Android, the world’s most popular mobile platform, September 2013.
[Inc13e] Google Inc. Google web toolkit, September 2013.
[Inc13f] Kia Motors America Inc. Kia 2013 warranty manual, September 2013.
[Inc13g] Modo Labs Inc. The technology behind kurogo, September 2013.
[Inc13h] Sencha Inc. Sencha touch, September 2013.
[Ini13] Open Source Initiative. The mit license (mit), September 2013.
[Int11] Ecma International. Ecmascript language specification, June 2011.
[Jay13] Nick Jaynes. Will outdated regulations force the u.s. to ban complex in-dash tech

systems?, 16 August 2013.

116

Bibliography

[Jeo10] Myounghoon Jeon. “i-passion”: A concept car user interface case study from the
perspective of user experience design. AutomotiveUI ’10 Proceedings of the 2th In-
ternational Conference on Automotive User Interfaces and Interactive Vehicular Applica-
tions, 11-12 November 2010.

[jF13] The jQuery Foundation. A touch-optimized web framework, September 2013.
[JRL12] Myounghoon Jeon, Andreas Riener, and Ju-Hwan Lee. Cross-cultural differences

in the use of in-vehicle technologies and vehicle area network services: Austria,
usa, and south korea. AutomotiveUI ’12 Proceedings of the 4th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications, 17-19 October
2012.

[Kan99] Nguyen Kaner, Falk. Testing Computer Software. Wiley Computer Publishing, 1999.
[KPeM+09] Andrew L. Kun, Tim Paek, Željko Medenica, Nemanja Memarović, and Oskar

Palinko. Glancing at personal navigation devices can affect driving: experimental
results and design implications. AutomotiveUI ’09 Proceedings of the 1st International
Conference on Automotive User Interfaces and Interactive Vehicular Applications, 21-22
September 2009.

[Kre13] Matthaeus Krenn. A new car ui, September 2013.
[KSL13] Tuomo Kujala, Johanna Silvennoinen, and Annegret Lasch. Visual-manual in-car

tasks decomposed: text entry and kinetic scrolling as the main sources of visual
distraction. AutomotiveUI ’13 Proceedings of the 5th International Conference on Auto-
motive User Interfaces and Interactive Vehicular Applications, 8 September 2013.

[Kum12] Awdhesh Kumar. Html5 websockets and coldfusion – part 1: An overview and
first steps, 21 May 2012.

[Lai13] Cameron Laird. The dangers of html5: Websockets and stable standards, Septem-
ber 2013.

[LC13] Peter Lubbers and Frank Greco (Kaazing Corporation). Html5 web sockets: A
quantum leap in scalability for the web, September 2013.

[LCDna] Gen Lu, Kevin Coogan, , and Saumya Debray. Automatic simplification of ob-
fuscated javascript code, Department of Computer Science, The University of Ari-
zona.

[LDS12] Joonbum Lee, John D.Lee, and Dario D. Salvucci. Evaluating the distraction poten-
tial of connected vehicles. 4th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, 17-19 October 2012.

[Lee13] Niels Leenheer. Html 5 test, September 2013.
[LK12] Annegret Lasch and Tuomo Kujala. Designing browsing for in-car music player -

effects of touch screen scrolling techniques, items per page and screen orientation
on driver distraction. 4th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, 17-19 October 2012.

[LLC12] Bergmans Mechatronics LLC. Html5 websocket application research, 2012.
[LLC13] Barnesandnoble.com LLC. Why nook?, September 2013.
[LS88] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asyn-

chronous procedure calls in distributed systems, 22-24 June 1988.
[Ltd13] BuiltWith R© Pty Ltd. Javascript usage statistics, September 2013.
[Mar13] Peter Marwan. Lufthansa system introduces advanced concept for in-flight enter-

tainment, 9 April 2013.
[McC13] Harry McCracken. Who’s winning, ios or android? all the numbers, all in one

place, April 16, 2013.
[McG13] Shane McGlaun. Volvo and neonode team up for sensus connected touch infotain-

ment system, 12 March 2013.
[MCS+11] Sachi Mizobuchi, Mark Chignell, Junko Suzuki, Ko Koga Toyota, and Kazunari

Nawa. Central executive functions likely mediate the impact of device operation
when driving. AutomotiveUI ’11 Proceedings of the 3rd International Conference on
Automotive User Interfaces and Interactive Vehicular Applications, 1-2 December 2011.

[Men11] Kevin Menard. Web consistency testing, 2011.

117

Bibliography

[Mic03] Microsoft. Overview of ssl/tls encryption, 31 July 2003.

[Mic13a] Microsoft. Auto-launching apps using file and uri associations for windows phone
8, September 2013.

[Mic13b] Microsoft. Performance engineering for web applications, September 2013.

[Mic13c] Microsoft. The publish/subscribe pattern (project silk documentation, chapter 8),
September 2013.

[Mot13] General Motors. General motors in-vehicle infotainment vision, September 2013.

[MozPM] Mozilla. Websockets, Apr 17, 2013 2:10:36 PM.

[MRS09] Ivan Magdalenic, Danijel Radosevic, and Zoran Skocir. Dynamic generation of
web services for data retrieval using ontology. Informatica, Vol.20, No. 3, 2009.

[MS13] Inc. Motorola Solutions. Rhomobile suite, September 2013.

[MWG+11] Alexander Meschtscherjakov, David Wilfinger, Nicole Gridling, Katja Neureiter,
and Manfred Tscheligi. Capture the car!: qualitative in-situ methods to grasp the
automotive context. AutomotiveUI ’11 Proceedings of the 3rd International Confer-
ence on Automotive User Interfaces and Interactive Vehicular Applications, 1-2 Decem-
ber 2011.

[NDEK09] Bernhard Niedermaier, Stephan Durach, Lutz Eckstein, and Andreas Keinath. The
new bmw idrive – applied processes and methods to assure high usability. Second
International Conference, ICDHM 2009, Held as Part of HCI International 2009, San
Diego, CA, USA, July 19-24, 2009. Proceedings, 19-24 July 2009.

[New12] Telematic News. Kia showcases infotainment concept with app store, 14 March
2012.

[NH13] Thomas Nolte and Hans Hansson. Modeling and analysis of message-queues in
multi-tasking systems, August 2013.

[Nie94] J Nielsen. Usability Engineering. Academic Press, 1994.

[OBTT12] Eshed Ohn-Bar, Cuong Tran, and Mohan Trivedi. Hand gesture-based visual user
interface for infotainment. 4th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, 17-19 October 2012.

[otUoC13] Regents of the University of California. The bsd 3-clause license, September 2013.

[Oyj13] Digia Oyj. Qt 5.1 specification, September 2013.

[Par13] Parrot. Asteroid range, September 2013.

[Pho13] PhoneGap. What is the difference between phonegap and cordova? (phonegap
faq), September 2013.

[Pro13] RACE Project. Race project - about us, July 2013.

[PSDK11] Bastian Pfleging, Albrecht Schmidt, Tanja Döring, and Martin Knobel. Autonui: a
workshop on automotive natural user interfaces. AutomotiveUI ’11 Proceedings of
the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular
Applications, 1-2 December 2011.

[RBA13] Matthew Russell, David J. Buchko, and Julian Arguelles. Bmw connecteddrive:
Broaden of access and expansion of services globally will include benefits for us
customers, 5 June 2013.

[Rea13] RealVNC. Vnc automotive, September 2013.

[Rec13] Mark Rechtin. Average age of u.s. car, light truck on road hits record 11.4 years,
polk says, 8 August 2013.

[RFB+13] A. Riener, A. Ferscha, F. Bachmair, P. Hagmüller, A. Lemme, D. Muttenthaler,
D. Pühringer, H. Rogner, A. Tappe, and F. Weger. Standardization of the in-car
gesture interaction space. AutomotiveUI ’13 Proceedings of the 5th International Con-
ference on Automotive User Interfaces and Interactive Vehicular Applications, 8 Septem-
ber 2013.

[RJL12] Shannon C. Roberts, William J.Horrey, and Yulan Liang. Effect of performance
feedback (or lack thereof) on driver calibration. 4th International Conference on Au-
tomotive User Interfaces and Interactive Vehicular Applications, 17-19 October 2012.

118

Bibliography

[RLH11] Barbara Rosario, Kent Lyons, and Jennifer Healey. A dynamic content summariza-
tion system for opportunistic driver infotainment. AutomotiveUI ’11 Proceedings of
the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular,
1-2 December 2011.

[RMC13] Luis Rivero, Sabrina Marczak, and Tayana Conte. An approach for the elicitation
of usability requirements in the development of web applications. February 2013.

[Ros05] Lawrence Rosen. Academic free license ("afl") v. 3.0, 2005.
[RS09a] Andry Rakotonirainy and Steinhardt. In-vehicle technology functional require-

ments for older drivers. AutomotiveUI ’09 Proceedings of the 1st International Con-
ference on Automotive User Interfaces and Interactive Vehicular Applications, 21-22
September 2009.

[RS09b] Andry Rakotonirainy and Dale Steinhardt. In-vehicle technology functional re-
quirements for older drivers. AutomotiveUI ’09 Proceedings of the 1st International
Conference on Automotive User Interfaces and Interactive Vehicular Applications, 21-22
September 2009.

[Rub13] Adam Rubenfire. Group sues ford, claims touchscreen systems defective, July 17,
2013.

[SAA+11] Helena Strömberg, Pontus Andersson, Susanne Almgren, Johan Ericsson, Mari-
Anne Karlsson, and Arne Nåbo. Driver interfaces for electric vehicles. Automo-
tiveUI ’11 Proceedings of the 3rd International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, 1-2 December 2011.

[SFG99] Helen Sharp, Anthony Finkelstein, and Galal Galal. Stakeholder identification in
the requirements engineering process, 11/12/1999.

[She12] Sam Shead. Symantec: Data-stealing hackers use ddos to distract from attacks,
October 2012.

[Soc99] Network Working Group (The Internet Society). Hypertext transfer protocol –
http/1.1 (rfc2616), 1999.

[Soc13] SockJs. Sockjs-client, June 2013.
[Son10] Jan Sonnenberg. Service and user interface transfer from nomadic devices to car in-

fotainment systems. AutomotiveUI ’10 Proceedings of the 2th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications, 11-12 November
2010.

[SPB+13] Stefan Schneegass, Bastian Pfleging, Nora Broy, Frederik Heinrich, and Albrecht
Schmidt. A data set of real world driving to assess driver workload. AutomotiveUI
’13 Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, 8 September 2013.

[SRF12] Ronald Schroeter, Andry Rakotonirainy, and Marcus Foth. The social car: New in-
teractive vehicular applications derived from social media and urban informatics.
AutomotiveUI ’12 Proceedings of the 4th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, 17-19 October 2012.

[Sys07] GNU Operating System. Gnu lesser general public license, 29 June 2007.
[Tea13] Webkit Team. Webkit sunspider javascript test, September 2013.
[Tec13a] TechEmpower. Web framework benchmarks, 2 July 2013.
[Tec13b] Unity Technologies. Unity3d showcase, September 2013.
[TGH+11] Nora Broy Technische, Sebastian Goebl, Matheus Hauder, Thomas Kothmayr,

Michael Kugler, Florian Reinhart, Martin Salfer, Kevin Schlieper, and Elisabeth
André. A cooperative in-car game for heterogeneous players. AutomotiveUI ’11
Proceedings of the 3rd International Conference on Automotive User Interfaces and Inter-
active Vehicular Applications, 1-2 December 2011.

[TN00] Hans Hansson Thomas Nolte. Modeling and analysis of message-queues in multi-
tasking systems, 2000.

[TSG04] Inc. The SCO Group. How rpc works, 27 April 2004.
[TSZ+11] Sergej Truschin, Tobias Schlachtbauer, Andreas Zauner, Michael Schermann, and

Helmut Krcmar. Content matters: towards handling e-mail while driving safely.

119

Bibliography

AutomotiveUI ’11 Proceedings of the 3rd Int6ernational Conference on Automotive User
Interfaces and Interactive Vehicular Applications, 1-2 December 2011.

[Val11] Jeferson Valadares. ree-to-play revenue overtakes premium revenue in the app
store, July 07, 2011.

[Vol13] Volvo. SenSuS 3.0 Seven Quick Start Guide, 27 June 2013.
[WCN+13] Jibo He Wichita, Alex Chaparro, Bobby Nguyen, Rondell Burge, Joseph Crandall,

Barbara Chaparro, Rui Ni, and Shi Cao. Texting while driving: is speech-based
texting less risky than handheld texting? AutomotiveUI ’13 Proceedings of the 5th
International Conference on Automotive User Interfaces and Interactive Vehicular Appli-
cations, 8 September 2013.

[Wes13] Linda Westfall. Software requirements engineering: What, why, who, when, and
how, September 2013.

[Wik13] Wikipedia. Multiple phone web-based application framework, 6 August 2013.

120

	Introduction
	Context
	Stakeholders
	Manufacturer
	Main User
	Other Users
	Project Owners
	Competent Authorities

	Problems and Motivation
	A uniform system
	Multiple research branches, multiple companies
	After-selling business model
	Open standards

	Idea of Solution
	Goal of the Thesis
	Compliance with standards
	Open source environment
	Cross platform support
	Generic

	Outline

	Background
	Web Services
	Remote Procedure Call (RPC)
	Publish/Subscribe

	Web Technologies
	HTML5, CSS and Javascript
	PHP
	Client-Server Web Relationship

	Asynchronous Execution - Promise
	Device Types
	Main Device
	Trusted/Embedded Device
	Guest Device

	Plugin

	Related Work
	State of the Art
	Native Phone Framework
	Web User Interface Mobile Frameworks

	Communication Protocols
	XMLHttpRequest and Comet Long Polling
	Web Sockets
	Client-based Security

	State of Practise
	Next-Generation HMI Evolution
	Research that can be reused

	Standards
	Usability Standards
	Security Standards

	Resume

	Analysis
	Requisite Analysis
	Constraints
	Functional
	Usability

	Use Cases
	Use Case Diagram
	Initialise Device
	Retrieve Dashboard
	Restore System
	Check for update
	Perform Update
	Install Component
	Component feature Addition
	Perform Diagnosis
	Reset Settings
	Backup Settings
	Restore Settings
	Access Plugin
	Select Component
	Configure Component
	Delete Installed Component
	Select Active Plugins
	Access AppStore
	Perform Purchase
	Vinculate Account
	Select Dashboard Plugins
	Add or Modify Recognised Device
	Modify System Settings
	Delete Recognised Device

	Resume

	Solution
	Architecture
	Architecture Diagram
	Justification of the Architecture

	Hardware Architecture
	Hardware Architecture Diagram
	Raspberry PI
	Nexus VII Tablet
	RACE Components

	Software Architecture
	Software Architecture Diagram
	System
	Components
	User Management
	Online Infrastructure

	Technology Proposal
	Technology Usage Diagram
	Server Technologies
	Client Technologies
	Cloud Technologies
	RACE Technologies

	Discussion
	Non-discussed issues
	Development Procedure
	Critical System Failure

	Main Problems of the current solution
	Security
	Standards Enforcement
	Slow responsiveness
	Online Profile
	Licenses

	Alternatives to the selected technologies
	Client Technologies
	Server Technologies
	AppStore Technologies

	Future Work
	OEM Integration
	Proposals
	OEM Analysis
	Prototype

	Funding
	OEM
	Public Institutions
	Micro-financing

	Testing
	OEM
	Business other than OEM's
	Particulars

	Product Enhancement
	Security
	Feature Expansion
	Alternatives to current Hardware Approach

	Performance Tests
	Architecture Tests
	Local Infrastructure Tests

	User Experience Tests
	Web Consistency Testing
	Functional Testing
	Usability Testing

	Resume

