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Abstract
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En la criptograf́ıa de clave pública actual el uso de curvas eĺıpticas es muy habitual: ofrecen
una seguridad similar a los ya utilizados cuerpos finitos, pero con unas claves mucho más
cortas. Además, la introducción de los apareamientos sobre curvas eĺıpticas ha hecho
posible el desarrollo de soluciones en escenarios en que la criptograf́ıa previa no era capaz
de encontrar soluciones eficientes. Algunos ejemplos son el cifrado basado en la identidad
del receptor, o el cifrado basado en atributos. Para que estos esquemas criptográficos
puedan ser utilizados de manera eficiente en situaciones prácticas, es muy interesante
encontrar optimizaciones en el cálculo de los apareamientos bilineales necesarios.

En este trabajo final de máster describimos y completamos el trabajo hecho por Costello
et al. [11], sobre una optimización en el cálculo de apareamientos basada en precálculos.
La optimización explota el hecho que un argumento del apareamiento se mantiene fijo
para muchas evaluaciones diferentes (por ejemplo, en esquemas criptográficos donde una
misma clave secreta es usada en muchas ejecuciones del protocolo de descifrado). Damos
una cota superior a la complejidad en ambos algoritmos de precálculo y evaluación, en el
peor caso posible.

También hemos implementado, por primera vez, esta optimización en el lenguaje de pro-
gramación C usando la libreŕıa PBC [27] de criptograf́ıa basada en apareamientos. De esta
manera hemos sido capaces de comparar los tiempos dados por la optimización de Costello
con un apareamiento ya implementado previamente (parcialmente optimizado). También
hemos dado una estimación de cuántos apareamientos se debe calcular para amortizar el
tiempo gastado en precálculos. Los datos obtenidos muestran que esta optimización es
factible en usos realistas de la criptograf́ıa basada en curvas eĺıpticas.
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In modern public-key cryptography the use of elliptic curves is very common: they offer
a similar security level as finite field schemes, but with shorter keys. Moreover, the
introduction of pairings over elliptic curves has made possible the development of solutions
in scenarios where previous cryptography had failed in finding efficient solutions. Some
examples are identity based encryption and attribute based encryption. In order to use
such cryptographic schemes efficiently in practical situations, it is very interesting to find
optimizations in the computation of the required pairings.

In this master thesis we describe and complete the work done by Costello et al. [11], on
an optimization in the computation of bilinear pairings based on precomputation. The
optimization exploits the fact that one or the arguments of the pairing remains fixed for
many different evaluations (for instance, in cryptographic schemes where the same secret
key is used in several executions of the decryption protocol). We give an upper bound of
the complexity of both the precomputation and the evaluating stages, in the worst-case
scenario.

We have also implemented, for the first time, this optimization in C using the pairing
library PBC [27]. In this way we have been able to compare the execution times of this
optimization with an already implemented (and partially optimized) pairing. We also
give an estimate of how many pairing evaluations are needed in order to amortize the cost
of the off-line precomputations. Surprisingly not so many evaluations are needed, and
therefore this optimization is very useful in current implementations of cryptography over
elliptic curves.



Notation

K Any finite field

K∗ Multiplicative group of K

K The algebraic closure of a field K

Fq A finite field of q elements

V (f) The set of zeros of a polynomial f ∈ K[X,Y, Z]

E(K) An elliptic curve defined over a field K

k The embedding degree of an elliptic curve.

µn The subgroup of n-th roots of unity. The underlying field is given by context.



Contents

Introduction 1

Chapter 1. Mathematical Preliminaries 3
1.1. Finite fields 3
1.2. Elliptic curves over finite fields 7
1.3. Pairings on elliptic curves 10

Chapter 2. Some uses of pairings in cryptography 15
2.1. Identity based encryption 15
2.2. Short signatures 16
2.3. Attribute based encryption 17

Chapter 3. Optimization of Miller’s Algorithm 21
3.1. Precomputed lines 21
3.2. Merging N-lines 23

Chapter 4. Numerical results 31
4.1. Preliminary tests 31
4.2. Pairing tests 33

Chapter 5. Conclusion and future work 39

References 41

Appendix A. Source code 43

i



Introduction

Public key cryptography is based on the existence of a pair of maps E and D
such that D ◦ E is the identity map, and the information provided from E is
not enough to compute the function D. If such a pair of maps exists, a message
m can be encrypted as E(m), and only the owner of the pair (E,D) is able to
retrieve the message D(E(M)) = m. Historically, some examples of such pairs
were defined thanks to the properties of integers modulo n and finite fields [1]. But
thanks to Miller and Koblitz [16] [17], in 1985, a new mathematical object started
to be interesting in cryptography: the group of points of an elliptic curve. The
complicated geometric definition of addition in this group allowed cryptographers
to hide an integer n in a multiple of a point P as nP . It was assumed that retrieving
n from P and nP (e.g. the elliptic discrete logarithm problem) was an unfeasible
operation for points with a large order, and an upper bound of the complexity of the
elliptic discrete logarithm problem was given by Menezes, Okamoto and Vanstones
[18] in 1991. In that paper a very useful tool was introduced: the existence of a
bilinear map, called pairing, which sends a pair of points in an elliptic curve to a
(well-studied) finite field.

Pairings over elliptic curves offered a solution to cryptographic problems that re-
mained open, and also lead to the introduction of new cryptographic primitives.
We will review three examples of cryptographic schemes where pairings play an im-
portant role: identity based encryption, where the receiver’s identity is used as the
key to encrypt data for him; the BLS signature scheme, used to generate very short
signatures; and an attribute based encryption scheme in which data can be en-
crypted so that only users (maybe many) with attributes satisfying the decryption
policy chosen by the sender can decrypt the ciphertext correctly.

Even though pairings over elliptic curves produce more secure, and useful, schemes,
they are not massively used in practice because of the very expensive cost of the
computation of a single pairing. A lot of work has been done in order to make
pairings appealing to computer scientists. At a very early stage a lot of existing
optimizations for the modular exponentiation algorithm were adapted to the evalu-
ation of pairings [2], since the known algorithm to compute pairings is very similar
to the algorithm for fast exponentiation. But this was not enough, and the search of
new optimizations led to a study of good elliptic curves to be used in cryptography.
Some of them offered a fast point operation and a reduction in the total number of
operations [13] [14]. This last bunch of optimizations should convince people that
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2 INTRODUCTION

pairings are not a so expensive operations, and pairing-based cryptosystems should
be used in real-life situations.

When pairings are used in some particular scenarios one may find further optimiza-
tions. For example, when a lot of pairing evaluations are done with one of the
arguments of the pairing fixed, then off-line precomputations can be done in order
to reduce later the cost of each pairing evaluation. One of these precomputation
optimization was explained by Costello et al. in [11] and [12]. Later in [15] Scott
gave some examples of public key cryptographic schemes where this optimization
could be useful, and he also hinted a possible adaptation of the optimization given
by Costello et al. to the computation of multipairings. None of these works in-
cluded a explicit implementation of the algorithms of this optimization, and they
did not give the execution time of the off-line precomputation phase.

In this master thesis we do a theoretical study of Costello et al. optimization, by
completing some aspects of the off-line precomputations. We first give a theoretical
estimation of how costly is the precomputation phase, and then we implement the
whole optimization to show that it can be perfectly used to improve the global
efficiency of many practical cryptographic scenarios. The master thesis is divided
in five chapters.

In Chapter 1, we review the basics on finite fields, elliptic curves and pairings. Some
useful basic optimizations of both finite fields and pairings are described. We do
not consider optimizations on elliptic curves, like the use of different coordinates to
speed-up the point operation, even though all pairing optimizations could benefit
from them.

In Chapter 2 we explain three known cryptographic schemes with a heavy use of
pairings. Two of them benefit directly from the Costello et al. optimization, but
the third one needs some additional work to adapt the optimization to the scenario
of multipairings.

In Chapter 3 we describe the Costello et al. optimization and we do a theoretical
study of it. We extend the work of Costello et al. in [11] in two ways: firstly by
not considering only a specific structure of the parameter (even though the elliptic
curves can be chosen so that their order has few bits different from 0, not all of them
are zero), and secondly by considering its application to multipairings as sketched
in [15].

In Chapter 4 we give numerical results of our implementation of this optimization
(the source code can be found in Appendix A). We chose an existing library, PBC
Library, to implement this optimization and we compare it to an already imple-
mented, and partially optimized, algorithm for the evaluation of a pairing. The
most surprising result of these experiments is the (low) number of pairings needed
to amortize the cost of the off-line precomputation phase of the new optimization:
in all our test cases a maximum of 6 evaluations are enough.

Finally, in Chapter 5 we summarize the work done in this master thesis and we list
some possible lines for related future work.



Chapter 1

Mathematical Preliminaries

1.1. Finite fields

It is well-known that if p is prime, then Z/pZ, denoted by Fp, is a finite field. This
mathematical object will be the basic structure of our study. Sometimes we will
call it small field or base field.

In our base field we have three operations available: addition, multiplication, and
the inversion of an element. Among these three operations, the most computa-
tionally expensive one is inversion: in the worst case, it requires about log10 x
multiplications to compute the inverse of x [3]. Therefore, it is possible to obtain
a better algorithm if the number of divisions is reduced, even if that increases the
number of multiplications and additions, as one can see in Example 1.1.1. In Ta-
ble 1.1 we compare the execution times of the three operations over finite fields of
different sizes.

bits in p x+ y x · y x−1

32 32 89 370
58 31 88 553
124 22 60 1489
196 27 82 2480
437 30 179 5271
677 34 386 8489
1357 43 1294 18610
5295 173 17175 118335

Table 1.1. Time, in µs, to compute 1000 operations in Fp

Example 1.1.1 (Montgomery’s Trick). Suppose we have n elements x1, x2, . . . , xn
and we want to compute their inverses x−11 , x−12 , . . . , x−1n . Montgomery’s Trick
shows how we can compute all this with only 1 division.
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4 1. MATHEMATICAL PRELIMINARIES

We start by computing

ai =

i∏
j=1

xi i = 1, . . . , n.

Then, we compute the inverse of an, and

x−1n = a−1n · an−1 a−1n−1 = a−1n · xn,
x−1i = a−1i · ai−1 a−1i−1 = a−1i · xi for i = n− 1, . . . 2,

x−11 = a−11 .

In this way, we replace n−1 inversions with 3(n−1) multiplications. As one can see
in Table 1.1, one division is always more expensive than 3 multiplications. So, this
way of computing simultaneously n inverses is faster than doing it independently.

In [4] authors used this technique to improve an implementation of Masked AES
— a way of hiding how many operations, and which ones, are done in an AES
encryption so that no information is provided to a possible attacker. Later in this
chapter we will use Montgomery’s trick to reduce the number of divisions in multiple
evaluations of Miller’s algorithm.

1.1.1. Extensions of finite fields. The finite fields of the form Fp are not the
whole set of finite fields: given an integer n, and a prime p, we can find a finite field
with pn elements. To construct this bigger field we need an irreducible polynomial
f of degree n with coefficients over Fp, and then

Fpn := Fp[X]/(f(X)).

We will denote this field as the full field.

Since dimFp
Fpn = n, the set {1, x, . . . , xn−1} is a basis and we can interpret an

element of Fpn as an n-tuple of elements — or a polynomial of degree less than n
— of the base field Fp. It seems natural to compare the cost of operations in Fpn
and in Fp. A full addition in the full field needs n additions in the base field. The
best known method to compute the greatest common divisor of two polynomials
needs about 3n2 base operations [5], some of them are divisions. Therefore, we
need about 3 ·n2 operations to compute an inversion in the full field. This could be
greatly improved for some specific fields — see Examples 1.1.4, 1.1.5 and 1.1.6. A
multiplication in Fpn may need more than n2 multiplications in the base field, but
this can also be improved for some field as we can see in Examples 1.1.2, 1.1.3 and
1.1.6. In Table 1.2 we can find a comparison of these operations in different fields.

Example 1.1.2 (Multiplication in Fp2). We can use Karatsuba’s algorithm for
the multiplication of polynomials [6] to reduce the number of base multiplications
needed. We will explain this optimization for

Fp2 = Fp[X]/(X2 + α)

where α ∈ Fp, but it can be adapted to any polynomial.

We can represent an element in Fp2 as a polynomial of degree 1. To multiply two
elements a = a0 + a1X and b = b0 + b1X we first compute:

D0 = a0b0 D1 = a1b1 D0,1 = (a0 + a1) · (b0 + b1)
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bits in p n x+ y x · y x−1

190 6 203 5268 16774
196 6 221 6055 18410
102 12 281 11945 26568
252 6 214 5961 19443
127 12 283 12510 28162
250 10 140 22185 88931
437 6 295 10357 31393
677 6 278 18210 50974
2046 10 322 263008 1285844
2456 12 1031 548559 795344
5295 6 1333 672896 1411283

Table 1.2. Time, in µs, to compute 1000 operations in Fpn

And then

a · b = D1X
2 + (D0,1 −D0 −D1)X +D0

= (D0,1 −D0 −D1)X +D0 − αD1

We only used 4 multiplications and 5 additions, instead of 5 multiplications and 2
additions.

Example 1.1.3 (Multiplication in Fp3). Suppose we have the field Fp3 constructed
as follows

Fp3 = Fp[X]/(X3 + β)

for some β ∈ Fp. We can represent an element in Fp3 as a polynomial of degree 2.
Then, to multiply two elements a = a0 +a1X +a2X

2 and b = b0 + b1X + b2X
2 one

can use Karatsuba’s algorithm in the case of polynomials of degree 2

D0 = a0b0 D1 = a1b1 D2 = a2b2

D0,1 = (a0 + a1)(b0 + b1) D0,2 = (a0 + a2)(b0 + b2) D1,2 = (a1 + a2)(b1 + b2)

Then

a · b =D2X
4 + (D1,2 −D1 −D2)X3 + (D0,2 −D2 −D0 +D1)X2

+ (D0,1 −D1 −D0)X +D0

=(D0,2 −D2 −D0 +D1)X2 + (D0,1 −D1 −D0 − βD2)X

+D0 − β(D1,2 −D1 −D2)

We only used 8 multiplications and 16 additions, instead of 10 multiplications and
5 additions.

Example 1.1.4 (Inversion in Fp2). There are better division algorithms if we know
something more about the field. For example, if

Fp2 = Fp[X]/(X2 + α)
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for some α ∈ Fp, then the inverse of a+ bX is

a

a2 − αb2
+

−b
a2 − αb2

X

whose computation needs only five base multiplications, one base division and one
addition.

Example 1.1.5 (Inversion in Fp3). As in the previous example, we can improve the
inversion of an element a+ bX + cX2 if

Fp3 = Fp[X]/(X3 + β)

by first computing

4 = a3 − β((b2 − 3ac)b− βc3),

and then the inverse is

4−1
[
a2 + bcβ − (βc2 + ab)X + (b2 − ac)X2

]
.

We only needed 18 multiplications, 1 base inversion and 7 additions.

1.1.2. Towers of finite fields. Sometimes it is useful to construct an intermedi-
ate field between the base and the full fields,

Fp ⊂ Fpd ⊂ Fpn , with d|n.

To construct the full field from the new Fpd one may use the same idea as before,
replacing the role of Fp with the new field.

One of the biggest utilities of towers of finite fields is to improve the computation
of multiplications and inversions; the next example shows how to use the formulas
given in Examples 1.1.2 and 1.1.3 to compute efficiently a multiplication in Fp6 .

Example 1.1.6 (Multiplication and inverse in Fp6). Suppose we have the field Fp6
constructed as follows

Fp6 = Fp3 [X]/(X2 + α)

for some α ∈ Fp3 . By using the formulas in Example 1.1.5, in order to multiply
two elements of Fp6 we need to do 4 multiplications in Fp3 and 5 additions in Fp3
— or 15 additions in Fp.

Now, we can use the formulas in Example 1.1.2 to transform these 4 multiplications
in Fp3 into 4 · 8 = 32 multiplications in Fp and 4 · 10 additions in Fp. Therefore, we
can multiply in Fp6 with 32 base multiplications and 55 base additions, instead of
41 multiplications and 30 additions.

This technique can also be applied to compute the inverse of an element in Fp6 : we
will use 5 multiplications and one inverse in Fp3 . Therefore we will need 5·8+18 = 58
base multiplications and 1 division, instead of the 3·62 = 108 base operations needed
by the algorithm in [5].
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1.2. Elliptic curves over finite fields

In this introduction we are going to define elliptic curves as the projective smooth
curves of degree 3, so that they have a nice geometric property that allows us to
define a group law over their points. But, in fact, there is a more algebraic definition
of elliptic curves: they are all curves of genus 1. This algebraic property allows us
to define a group law over their divisors which translates into the geometric law
that we are going to explain.

Definition 1.2.1. A projective curve in the projective plane P2(K) is the set of
zeros of a given homogeneous polynomial f ∈ K[X,Y, Z]:

V (f) = {[x : y : z] ∈ P2 / f(x, y, z) = 0}.

If f is a homogeneous polynomial of degree d, then the curve V (f) has degree d.

The curve is smooth if ( ∂f∂X ,
∂
∂Y ,

∂
∂Z )(P ) is not the zero vector for every point

P ∈ V (f) — and it defines the tangent line at P .

Every curve of degree 3 is defined by a polynomial of the form

aX3 + bY 3 + cZ3 + dXY 2 + eXZ2 + fXY Z + gX2Y + hX2Z + iY 2Z + jY Z2

but, if we want to make it smooth, we can do some projective transformations
(in [7] one can see the details for the real case, even though it only uses that the
underlying field does not have characteristic 2) to obtain a simpler equation:

Definition 1.2.2. An elliptic curve E(K) is a projective curve in P2(K) that can
be transformed into a curve defined by a polynomial

ZY 2 − h(X,Z)

where h is a homogeneous polynomial of degree 3 and h(X, 1) has no repeated
factors.

Remark. There is only one point in E(K) with Z = 0, which is [0 : 1 : 0]. This is
the point at infinity and will be denoted by P∞.

Remark. Since the algebraic curve V (ZY 2−h(X,Z)) is smooth, we can compute
the tangent line at every point of an elliptic curve.

Remark. In affine coordinates one usually says that an elliptic curve is the set of
zeros of the polynomial

y2 − h(x)

with deg h = 3 and the resultant of h is different from 0 - so it has no repeated
factors.

Bezout’s Theorem on curves over algebraically closed fields says that the intersec-
tion of a curve of degree 3 and a line contains always 3 points (counting multiplici-
ties). This is no longer true when we are working over general fields, but if we add
an extra condition over the line we obtain a similar result:

Corollary 1.2.3. Let E(K) be an elliptic curve over a field K and L a line which
intersects E(K) in at least 2 points (counting multiplicities). Then L intersects
E(K) at a third point.
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This geometric property allows us to define a group law over the set of points of an
elliptic curve

Definition 1.2.4. Let P and Q be two points of E(K), not necessarily different.
Then the line PQ - the tangent of the curve at P - intersects at E(K) in a third
point R. Then we define P +Q as the third point of intersection of the line RP∞.

Example 1.2.5 (Group law). Assume the elliptic curve E(K), with char(K) 6=
2, 3, is defined by y2 = x3 + bx + c. Given two affine points P = (xP , yP ) and
Q = (xQ, yQ) we know that:

• The identity element is P∞.
• −P = −(xP , yP ) = (xP ,−yP ).
• If xP 6= xQ then the coordinates of P +Q can be computed as follows.

First compute the slope of the line PQ:

m =
yP − yQ
xP − xQ

and then, the third point of intersection is (xP+Q, yP+Q):

xP+Q = m2 − xP − xQ
and

yP+Q = −yP −m(xP+Q − xP )

• The coordinates of 2P can be computed as follows.
First we need the slope of the tangent line at P :

m =
3x2P + b

2yP

an then, the third point of intersection is (x2P , y2P ):

x2P = m2 − 2xP

and
y2P = −yP −m(x2P − xP )

Similar to other commutative groups like Zp, the group of points of an elliptic
curve offers an alternative to be used in cryptography since the discrete logarithm
problem seems unfeasible in that group; that is, given a point P ∈ E(Fq) and a
multiple Q = aP =

∑a
i=1 P there is no general efficient method to retrieve the

integer a.

But this group may have an efficient way to solve the generalized Decisional Diffie-
Hellman problem: given points P, aP,Q, T decide whether T = aQ or not. This
problem can be efficiently solved by using bilinear maps defined over the elliptic
curve. We are going to define now such a bilinear map — called pairing — and
some known algorithms and optimizations to evaluate this pairing.

Before doing that, we need to know how applications over elliptic curves are defined.
Not all applications will be useful since a point P of an elliptic curve has many
representatives. We will ask for homogeneous polynomials of some degree d, since

g(λX, λY, λZ) = λdg(X,Y, Z)

is well defined for zeros of g.
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Definition 1.2.6. A polynomial function defined over the points of an elliptic
curve E(K) = V (f) is an homogeneous representative of the quotient

K[E] = K[X,Y, Z]/(f).

If g and h are two representatives of the same class, then g− h ∈ (f) and therefore
g(P ) = h(P ) for every point P of the curve.

Definition 1.2.7. The multiplicity of a polynomial function g(x, y) at (0, 0) ∈
E(K) = V (f(x, y)) is

i(0,0)(g, f) = dimK K[[x, y]]/(f, g),

where K[[x, y]] is the formal series ring on the variables X,Y and Z.

Remark. This is a local property. Given a projective point P different from
[0 : 0 : 1] we need to do a projective transformation in order to send it to [0 : 0 : 1]
and then replace Z = 1 in both f(X,Y, Z) and g(X,Y, Z).

Example 1.2.8. The multiplicity tells us how good is V (g) as an approximation of
V (f) = E(K) at the point P .

For example,

i(0,0)(y − x3, y − x3) =∞
i(0,0)(y − x, y − x3) = 1

i(0,0)(y − x2, y − x3) = 2

The last two multiplicities show us that V (y − x) only goes through (0, 0), but
y − x2 goes through (0, 0) and is tangent to V (y − x3) in (0, 0).

Definition 1.2.9. The field of functions on an elliptic curve E(K) is

K(E) = Field of fractions K[E].

where every function ϕ ∈ K(E) can be written as ϕ = g/h with g and h polynomial
functions with the same homogeneous degree.

Remark. The multiplicity at P can be extended to functions ϕ = g/h ∈ K(E) by

iP (g/h, f) = iP (g, f)− iP (h, f).

Now we can define principal divisors. This is an elegant tool to describe functions
over elliptic curves and to check whether two functions are equal or not.

Definition 1.2.10. A divisor of E(K) is a formal sum of a finite number of points
in E(K); in other words, a divisor D is

D =
∑

P∈E(K)

nP (P )

where nP = 0 except at a finite number of points, and no sum is done at all.

Definition 1.2.11. Given a function ϕ ∈ K(E), with E = V (f), its divisor is

(ϕ) =
∑

P∈E(K)

iP (ϕ, f)(P ).
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All divisors D such that there exists a function ϕ ∈ K(E) with D = (ϕ) are called
principal divisors.

Definition 1.2.12. Two divisors D1 and D2 are equivalent if D1−D2 is a principal
divisor.

Principal divisors are totally characterized:

Theorem 1.2.13. Let D be a divisor of an elliptic curve, then D is principal if,
and only if,

∑
P∈E(K) nP = 0 and

∑
P∈E(K) nP · P = P∞.

Furthermore, (ϕ) = 0 if, and only if, ϕ is constant.

Proof. Corollary 3.3.5 in [8]. ut

This result is what allows us to check if two functions are equal — except by,
maybe, a multiplicative constant: if (ϕ) = (Ψ) then (ϕ/Ψ) = 0 and ϕ/Ψ is a
constant function.

1.3. Pairings on elliptic curves

Definition 1.3.1. A pairing is a map e : G1 ×G2 → G3 with G1 = 〈P 〉, G2 = 〈Q〉
cyclic groups and G3 a group such that

• e(P,Q) 6= 1
• e(aP, bQ) = e(P,Q)ab for every choice of a, b ∈ Z.

We are interested in pairings that can be computed efficiently.

Not every choice of the groups G1 and G2 allows us to find a suitable pairing. But
elliptic curves over finite fields are an example of an algebraic structure capable of
producing this kind of bilinear maps.

These two groups are defined as follows in the case of elliptic curves. G1 can be
defined as the multiples of a point P ∈ E(Fp), but with order n coprime to p =
char(K). Then, let k be the minimum possible positive integer such that n|pk − 1.
This value of k is called the embedding degree of the point in the curve. Then we can
choose a point Q in E(Fpk) which is not a multiple of P ∈ E(Fp) ⊂ E(Fpk). This
can always be done because given an integer n > 1 coprime with p the subgroup
of points of n-torsion is isomorphic to Zn × Zn. Finally, the group G3 is the set of
n-th roots of 1 in Fp ⊂ Fpk .

Remark. For some special elliptic curves, called supersingular, one may define this
bilinear map as e : G1 × G1 → µn, where G1 = 〈P 〉 ⊂ Fpm . These elliptic curves
allow us to have G1 = G2 but by using bigger base fields.

It was very recently when Joux proved [26] that one can compute quickly the
discrete logarithm in µn for every choice of a supersingular elliptic curve over F2257 .
And therefore, this kind of groups are not very useful in cryptography: if we get two
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points P and aP , it is easy to retrieve the value of a by first computing g = e(P, aP )
and then computing the discrete logarithm of g, in µn.

That is why nowadays pairings are almost always defined in the asymmetric setting
(G1 6= G2), as we have done.

Definition 1.3.2. Given two points P,Q of n-torsion, we define the Tate pairing
of P and Q as follows: let fP be a function such that Div(fP ) = n(P )−n(P∞). Let
R be a point of n-torsion different from P∞, P,−Q,P −Q and consider the divisor
DQ = (Q+R)− (R). Then

eT (P,Q) = fP (DQ)(q
k−1)/n

where k is the embedding degree.

This definition show us that with two points of n-torsion we can define a map
e : 〈P 〉×〈Q〉 → µn, where µn are the n-th roots of unity in Fpk ⊂ Fp. But this map
does not always satisfy the properties we wanted: eT (P, P ) = 1 for every point P .

Remark. The final exponentiation allows us to use any possible choice of the
function fP , which is not unique.

It is also true that the Tate pairing is well defined for every divisor DQ equivalent
to (Q)− (P∞).

Theorem 1.3.3. There exist two points P and Q of n-torsion, with n coprime with
p = char(Fp) such that the map

eT : 〈P 〉 × 〈Q〉 → µn

is a pairing, and it is a surjective map.

Proof. This can be found in [9]. The idea is that the map eT (P,−) is constant
if, and only if, P = P∞. Then for sure there exist two points P and Q such that
eT (P,Q) 6= 1. Now consider the image by eT of all pairs of points of n-torsion. We
know it is not trivial, and it is a subgroup of µn equal to µd, with d ≤ n. Then
eT (R,S)d = 1 for all points R and S, i.e. eT (dR, S) = 1 for all choices of R and
S. Since the map eT (dR,−) is constant, dR = P∞. This means that all points of
n-torsion are d-torsion points. But this is only possible if d = n. ut

Definition 1.3.4. A multipairing of points Pi with Qi, for i = 1, . . . ,m is the
multiplication of m parings e(Pi, Qi):

e({Pi}mi=1, {Qi}mi=1) =

m∏
i=1

e(Pi, Qi).

1.3.1. Miller’s algorithm. The definition of the Tate pairing does not tell us
how we can find the map fP such that (fP ) = n(P )− n(P∞). But there is a very
simple algorithm that computes it.

Instead of computing directly fP we are going to compute a lot of intermediate
steps fi in which (fi) = i(P ) − (iP ) − (i − 1)(P∞). This family of functions have
the following properties:
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• fn = fP since

(fn) = n(P )− (nP )− (n− 1)(P∞)

= n(P )− (P∞)− (n− 1)(P∞)

= (fP )

• f0 is constant, because

(f0) = 0(P )− (0P ) + (P∞) = 0

and a constant zero divisor means a constant function.
• There exists a relation

fi+j = fi · fj ·
liP,jP
v(i+j)P

where lP,Q is the line that goes through points P and Q, and vP is the vertical
line through P . This relation holds because the divisors of both applications
are the same.

These last two properties resemble two key properties of exponentiation: e0 = 1
and ei+j = ei ·ej . In fact, Miller’s algorithm is an adaptation of a famous algorithm
for fast exponentiation: we consider the representation of n in base 2 and starting
with f0 = 1 we update the value of the pairing using the information of the bits of
n until we compute fn. In Algorithm 1 we give a sketch of this algorithm.

In the rest of this master thesis we are going to call doubling step to the part of
the algorithm that does not depend on the bit ni. On the other hand, the adding
step is the part of the algorithm that is only executed when ni = 1. We are very
interested in reducing the number of times the adding step is executed, and this
could be done if a good n is chosen. But, even if we cannot choose a n with few
ones in its bit representation, we can reduce the number of times the adding step
is executed by replacing the list (ni) with its NAF representation — no two ones
are adjacent, but we add the possibility of a −1 bit. This is possible because the

relation fi+j = fi · fj · liP,jP

v(i+j)P
is also true when i or j are negative integers.
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Data: An elliptic curve E(Fp) and two points P ∈ E(Fp), Q ∈ E(Fpk) of order n.
Result: The Tate pairing e(P,Q).
Write n in base 2: n = (ntnt−1 . . . n1)2.
Choose a point R 6= P∞, P,−Q,P −Q. Initialize f = 1, T = P
for i = n, . . . , 1 do

Compute the tangent line to T , lT , and the line vT that goes vertically
through T . Update the point T = 2T .

Update the value of the pairing f = f2 · lT (Q+R)
vT (Q+R) ·

vT (R)
lT (R) .

if ni = 1 then
Compute the line through T and P , lT,P , and the line vT+P that goes
vertically through T .
Update the point T = T + P . Update the value of the pairing

f = f · lT (Q+R)
vT (Q+R) ·

vT (Q)
lT (Q) .

end

end

Return f (q
k−1)/n.

Algorithm 1: Miller’s algorithm for computing the Tate pairing.

There are some important optimizations that reduce the number of operations in
Algorithm 1. In [14] authors explained that if the embedding degree k is even,
then we can remove all divisions in the algorithm. They also proved that the fact
of adding a random point R to the algorithm is not necessary at all.

Using these two optimization we can simplify Miller’s algorithm to Algorithm 2.

Data: An elliptic curve E(Fp) and two points P ∈ E(Fp), Q ∈ E(Fpk) of order n.
Result: The Tate pairing e(P,Q).
Write n in base 2: n = (ntnt−1 . . . n1)2.
Initialize f = 1, T = P
for i = n, . . . , 1 do

Compute the tangent line to T : lT = aX + bY + c.
Update the point T = 2T .
Update the value of the pairing f = f2 · (aQx + bQy + c).
if ni = 1 then

Compute the line through T and P : lT,P = aX + bY + c.
Update the point T = T + P . Update the value of the pairing
f = f · (aQx + bQy + c).

end

end

Return f (q
k−1)/n.

Algorithm 2: Miller’s algorithm for computing the Tate pairing, when the embed-
ding degree is even.

When computing a multipairing we do not need to compute each pairing indepen-
dently and then multiply the obtained values; with this trivial solution, we are doing
m times the final exponentiation of Miller’s algorithm, which can be avoided if we
do this exponentiation after the final multiplication. But this is not the only thing
we can improve: all squares in the doubling step can be done simultaneously if f is
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the temporal value of the multipairing as one can see in Algorithm 3. In this final
version of Miller’s algorithm the update of all m points can be done simultaneously
by using Montgomery’s Trick. When computing the m doubles of a point, or when
adding a point, we use exactly m inversions that could have been avoided.

But there is even a better optimization, if we use Montgomery’s Trick to compute
simultaneously all double points 2Ti — there are m field inversions involved in this
computation — and all m adding steps Ti + P — here there are also m base field
inversions.

Data: An elliptic curve E(Fp) and two list of m points {Pi}mi=1 ⊂ E(Fp),
{Qi}mi=1 ⊂ E(Fpk) of order n.

Result: The Tate multipairing e({Pi}mi=1, {Qi}mi=1).
Write n in base 2: n = (ntnt−1 . . . n1)2.
Initialize f = 1, Ti = Pi
for i = n, . . . , 1 do

Compute the tangent lines to Ti, lTi
.

Update the points Ti = 2Ti.
Update the value of the pairing f = f2 ·

∏m
i=1 vTi(Q).

if ni = 1 then
Compute the lines through Ti and P , lTi,P .
Update the points Ti = Ti + P . Update the value of the pairing
f = f ·

∏m
i=1 lTi,P (Q).

end

end

Return f (q
k−1)/n.

Algorithm 3: Miller’s algorithm for computing the Tate multipairing, when the
embedding degree is even.



Chapter 2

Some uses of pairings in cryptogra-
phy

As it happens in the multiplicative groups Z∗p, in the group of points of an elliptic
curve the discrete logarithm is also assumed to be unfeasible: given two points P
and Q ∈ 〈P 〉, computing an integer a ∈ Z such that Q = aP is computationally
hard. This property allowed Miller and Koblitz, [16] [17], to adapt previously
known cryptographic schemes to the framework of elliptic curves. Later, an upper
bound of the security of these groups was discovered, using pairings, by Menezes,
Okamoto and Vanstones [18]: a scheme defined in an elliptic curve over Fq and a
point of n torsion does not provide more security than the subgroup of n-th roots of
unity in Fqk where k is the embedding degree of the n-torsion subgroup. Although
the first of use of pairings in cryptography was therefore negative, later pairings
started to offer new positive solutions for constructing new cryptographic protocols.
Here we provide some examples.

2.1. Identity based encryption

Traditional public-key cryptography (for encryption) is based in the idea that each
user has a pair of keys: one public that everybody can use to encrypt messages to
him, and one matching private, only known by him, that is used to decrypt. This
paradigm has some problems:

• The generation of keys is done before the communication. If we want to send
a message, first we need to contact the receiver and ask for his public key.
• The keys are chosen randomly, and there is no a direct link between public

keys and users, which can lead to impersonation attacks.

By introducing a trusted third entity, often called certification authority (CA) or
trusted third party (TTP), these two problems can be solved. The idea of a pair of
keys, one public and one private, for each user is maintained, but now the public
keys are somewhat related to the user’s identity and the matching private keys
are generated by the trusted third entity. Now if a user A wants to communicate
with user B, then A can use B’s identity directly as the public key to encrypt the

15
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message, without any precommunication with B. Maybe the TTP has not even
generated B’s private key yet. When B receives the message, he should ask for the
private key to the TTP (if he has not done it before). At this point, the TTP can
check if the identity of B is true or not, and provide him the private key.

Shamir introduced this notion of identity-based cryptography in 1984 [19], but the
first practical scheme was discovered in 2001 by Boneh and Franklin [20] and pair-
ings over elliptic curves were used in their construction. Suppose we have a pairing
e over an elliptic curve and two subgroups of n-torsion G1 = 〈P 〉 and G2 = 〈Q〉 such
that e : G1×G2 → µn. We also need two hash functions H1 : {0, 1}∗ → G1 \{P∞},
which is used to generate a point given an identity, and H2 : µn → {0, 1}l, which
maps a point of µn to a sequence of bits (one-time key) in order to hide a message.
The scheme is then divided in four algorithms:

TTP key generation. The TTP has a secret key t ∈ Z∗n and publishes the
matching public information T = t ·Q ∈ G2.

Users’ secret key generation. Given an identity IDA of user A, the TTP
generates the private key of A as SKA = t ·H1(IDA) ∈ G1.

Encryption. If user A wants to send a message m ∈ {0, 1}l user B with identity
IDB , he first computes QB = H1(IDB). Now, the encryption of a message m is

R = r ·Q c = m⊕H2(e(QB , T )r)

where r is a randomly choosen integer and ⊕ is the bit-by-bit XOR operator.

Decryption. When a user B receives a ciphertext (R, c), he can retrieve the
message by doing

m = c⊕H2(e(SKB , R))

where the secret key SKB was asked by B to the TTP beforehand.

This decryption algorithm works because

e(SKB , R) = e(t ·H1(IDB), rQ) = e(H1(IDB), Q)tr

= e(H1(IDB), tQ)r = e(QB , T )r

which was the information that A used to encrypt the message.

Notice that in this scheme the private key of the user, SKB , is used as the first
argument in the pairing, each time a ciphertext is decrypted. Therefore, assuming
that the user will decrypt many messages, it is interesting to consider optimization
techniques suitable for this situation where the pairing is always evaluated with the
same fixed first argument.

2.2. Short signatures

When speaking about cryptography one usually thinks on how we can send an
important message secretly through an insecure channel, like the Internet. But
cryptography can also solve problems about the authentication of the sender or the
integrity of the message: when we receive a letter asking us to pay a debt, how
can we be sure the sender’s identity is true? Was the message modified by some
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third person? That is why signature schemes are also important in cryptography. In
these schemes usually one appends to the (encrypted) sent information an additional
element, called signature, which depends on the content of the message and some
(private) key only known by the sender. By using some public information of the
expected sender, the receiver can be sure the message really comes from the sender
and it was not modified by a third person.

Sometimes we want to make very short signatures, in order to avoid that the total
length of the sent information increases dramatically. In the letter example, one
has a very limited space to place the signature and, therefore, the existence of very
short signatures is very important [10].

By using elliptic curves one can achieve shorter signatures than with other math-
ematical structures: as we have seen in Chapter 1, a pairing is defined over two
subgroups G1 = 〈P 〉, points of n-torsion in E(Fp), and G2 = 〈Q〉, which lies in the
bigger curve E(Fpk). If the signature scheme is defined so that the signature is a
point in G1 and k is big enough, then we can get a shorter signature with a very
big security level. One of these short signature schemes, denoted as BLS scheme,
was proposed by Boneh, Lihn and Shacham [21]. It contains three algorithms.

Key generation. Select a random element x ∈ Z∗n. The private key of the sender
is x, and the public key is µ = x ·Q ∈ G2.

Signing algorithm. Given a private key x, and some message m — the content
of the letter, or the contact information of the sender — we compute the signature
σ = x ·H(m) ∈ G1, where H : {0, 1}∗ → G1 \ {P∞} is a secure hash function.

Verification. Once the receiver has read the message m, he can check the authen-
ticity of the sender and the integrity of the message by verifying if

e(σ,Q) = e(H(m), µ).

In this case, if one user is verifying a lot of signatures coming from the same user
(with public key µ), the second argument µ is fixed in the evaluation of the second
pairing.

Again, it makes sense to consider optimizations in the computation of many pairings
when one of the arguments (in this case, the second one) is fixed. Sometimes one can
interchange the roles of the first and second arguments so that the fixed argument
is always on the left (first argument), but in this case if we swap the roles, then the
signature σ is a point of the full field, and so it is no longer a short signature.

2.3. Attribute based encryption

In identity based encryption each user has a property — his identity — which makes
him totally distinguishable from other users. What happens if we substitute the idea
of identity by some collection of properties which may be satisfied by many users
at the same time? It may be useful when we want to send an encrypted message to
a group, so that only users in posession of some properties are capable to decrypt.
Attribute based encryption provides a solution for this problem. The scheme we are



18 2. SOME USES OF PAIRINGS IN CRYPTOGRAPHY

going to explain is by Waters [23], adapted to the case of nonsymmetric pairings,
where one user can decrypt a ciphertext if his attributes (properties) satisfy an
access policy chosen by the sender.

Definition 2.3.1. An access policy is a boolean expression given by operators
and, or and one variable for each attribute. Only users whose attributes evaluate
positively this expression would be able to decrypt a ciphertext encrypted for this
access policy. An access policy is usually represented as an LSSS matrix, in [24]
is explained how to build this matrix given the boolean expression. Another more
visual way of representing an access policy is by using trees, like in the following
example

1

Admin 2

UPC 1

Student Professor

Attributes are put in the leaves of the tree, and in the interior nodes there are
integers that indicate the number of subtrees the user should satisfy in order to
access the data. In the example, one has acces to an UPC intranet either if he is
an administrator or if he is a Student or Professor at UPC.

The protocols of Waters’ attribute based encryption scheme work as follows.

Setup. Given a set of attributes U , for simplicity we will suppose that U =
{1, . . . , u}, the TTP chooses u = |U | random elements in G1, h1, h2, . . . , hu, and
also two integers a, α ∈ Z∗n.

The public parameters are

P, aP,G1 = 〈P 〉, Q,G2 = 〈Q〉, e, e(P,Q)α, h1, . . . , hu,

and the master secret key of the TTP is

αP.

Key generation. The key generation algorithm takes as input the master secret
key and a subset S of attributes satisfied by an user. The algorithm first chooses a
random t ∈ Z∗n, and creates the private key as

K = αP + t · aP L = t · P ∀x ∈ S,Kx = t · hx

Encryption. This algorithm takes as input the public parameters and an access
policy (M,ρ), where M is a matrix and the function ρ associates rows of M to
attributes.

If M is a l×m matrix, the sender chooses a random vector v = (s, y2, . . . , ym) ∈ Zmn .
Now, he compute λ = (λ1, . . . , λl) = v · M ∈ Zln. In addition, the encryption
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algorithm needs l extra random elements r1, . . . rl ∈ Zn. Finally, the ciphertext of
a message m̃ ∈ µn is

C = m̃ · e(P,Q)sα, C ′ = s · P,

(Ci = λi · aP − ri · hρ(i), Di = ri ·Q) ∀i = 1, . . . , l.

Decryption. This algorithm takes a ciphertext (C,C ′, {Ci}i=1,...,l) for an acces
policy (M,ρ) and a private key for a set S. Suppose that S satisfies the access policy
with the attributes I ⊂ S, and let {ωi ∈ Zn}i∈I be a set of constants such that if
{λi} are valid values generated in the encryption algorithm, then

∑
i∈I ωiλi = s.

This set of values ωi always exists as explained in [25].

The decryption algorithm first computes

e(C ′,K) ·
∏
i∈I

e(Ci, L)−ωie(Di,Kρ(i))
−ωi

or, equivalently,

e(C ′,K) · e

(
−
∑
i∈I

ωiCi, L

)
·
∏
i∈I

e(Di,−ωiKρ(i)),

and then divide this value in C to retrieve the message m̃.

Note that a user who decrypts many ciphertexts will have to compute a multipairing
where the second arguments (the values Kρ(i)) are fixed values of the user’s secret
key. Therefore, it is interesting to consider optimizations in the computation of
multipairings for the particular situation where some arguments of the multipairing
are fixed.





Chapter 3

Optimization of Miller’s Algorithm

In Chapter 1 we mentioned some techniques that are used to optimize a single
evaluation of a Tate pairing. But, as we have seen in the previous chapter, there are
cryptographic applications of pairings where a lot of evaluations are done with one
parameter fixed. In identity based encryption, the private key of an user is always
used as a fixed parameter of a pairing evaluation when decrypting ciphertexts. In
the BLS short signature scheme, the public key of the sender is used a lot of times
if many signatures from the same sender are verified. Finally, in attribute based
encryption the same points of the user’s secret key, associated to attributes, are fixed
parameters of a multipairing that is computed every time this user wants to decrypt
a ciphertext. Therefore, it may make sense to spend some time preprocessing the
fixed arguments of the pairings in order to obtain a faster evaluation algorithm, in
the later execution of the cryptographic protocols.

The optimizations we are going to study need to have the first argument of the
pairing fixed. Sometimes the roles of the first and second arguments can be inter-
changed, so this optimization can also be used to improve the efficiency of these
schemes. When this is not possible, the use of other pairings, like the Ate pairing,
may be useful.

This chapter is subdivided in three sections: the first two ones will explain how to
define efficient functions eP : E(Fpk) → Fpk such that given a point Q in E(Fpk),
with the same order as P , the equality eP (Q) = e(P,Q) holds. Finally, we will see
that this optimization can also be applied to multipairings and to the Ate pairing.

3.1. Precomputed lines

In Miller’s algorithm the two points (arguments of the pairing) have different roles:

• Multiples of the left argument are used to compute the coefficients of lines lT
and lT,P . But the right argument is not involved in these computations.
• The right argument is evaluated on the lines. But when we have the coefficients

of a line, the left argument is no longer involved.

21
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This gives the idea of precomputing, and storing in memory, all possible lines
produced by the fixed left argument P . Later, when we want to evaluate the
pairing at Q, we only need to recover this information.

In Algorithm 4 we can find a sketch of the precomputing algorithm. Basically, it
computes all the needed multiples of P and stores in memory the coefficients of its
Miller lines. For each such line we need to store 3 coefficients in Fp and a boolean
bit that tells us if the line comes from the doubling step, or the adding step. Later
on we will need this extra bit to decide if we need to compute a square in order to
update the value of the pairing.

In Algorithm 5 we explain how to compute a pairing e(P,Q) given the information
of precomputed lines. Notice that only the update operation is done, and no point
operations are needed.

Data: An elliptic curve E(Fp) and a point P ∈ E(Fp) of order n.
Result: A list of tuples [ai, bi, ci, double] that represent the Miller lines

aiX + biY + ci.
Write n in base 2: n = (ntnt−1 . . . n1)2.
Initialize T = P
for i = n, . . . , 1 do

Compute the tangent line to T : lT = aX + bY + c.
Update the point T = 2T .
Store [a, b, c, true] in the list.
if ni = 1 then

Compute the line through T and P : lT,P = aX + bY + c.
Update the point T = T + P . Store [a, b, c, false] in the list.

end

end
Algorithm 4: Algorithm to precompute Miller lines.

Data: An elliptic curve E(Fp), a point Q ∈ E(Fpk) of order n, and the list of
precomputed lines.

Result: The Tate pairing eP (Q) = e(P,Q).
Initialize f = 1
for every element [a, b, c, double] in the list do

if double is true then
Update f , since we are in the doubling step: f = f2.

end
Update the value of the pairing f = f · (aQx + bQy + c).

end

Return f (q
k−1)/n.

Algorithm 5: Evaluation of a Tate pairing if we have a list of precomputed lines.

3.1.1. Computational cost and storage size. Two fundamental questions about
this optimization are how big our storage memory needs to be and how much time
the precomputation is going to take — maybe we need to compute a lot of pairings
before the cost of the precomputation is amortized.
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Regarding the storage, for every Miller line we need to store 3 elements in Fp and
an extra bit. As there are O(log n) Miller lines, we need to store 3O(log n) elements
in Fp, and O(log n) extra bits. But as the base 2 representation of n usually has a
very low Hamming weight, the adding step is almost always avoided and the real
numbers are very close to 3 log n elements in Fp and log n extra bits.

As for the computational cost, we are also assuming there are so few adding steps
that they have almost no effect in the computational cost.

At every step of the precomputing algorithm we need to compute:

• The double of a point in E(Fp).
• The coefficients a, b, c.

As we saw in Example 1.2.5, if we are in affine coordinates this can be done in:

• Point operation: one division, 2 multiplications, 2 squares and 8 additions in
Fp.

• Coefficients: 2 multiplications, one square and 4 additions in Fp.

In total, we need 1 division, 4 multiplications, 3 squares and 11 additions in Fp for
every Miller line.

For the evaluating algorithm, we need to compute at each step:

• Evaluate aQx + bQy + c.
• A square f2.
• Multiply f · (aQx + bQy + c).

The coefficients a, b, c are in the base field, and Qx, Qy are in the full field Fpk .
Therefore computing aQx and bQy requires 2k multiplications in Fp. The element
f is also in the full field, therefore all multiplications and square operations are
done there.

• 2k multiplications and k + 1 additions in Fp.
• A square in Fpn .
• A multiplication in Fpn .

In Table 3.1 we give a summary of the costs and storage requirement of the two
considered optimization technique, compared with those of the original Miller al-
gorithm, and without considering the cost of computing the final exponentiation.

3.2. Merging N-lines

In [11] the authors noticed that computing and evaluating Miller lines was less
expensive than evaluating the value of the pairing — a single full multiplication.
They propose to optimize Miller’s algorithm by putting some additional work in
the computation of Miller lines in order to reduce the number of full multiplications
needed in the evaluation algorithm. Their idea was to merge various steps of Miller’s
loop in only one update of the pairing value.
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Algorithm Storage Computational cost
Original Miller 0 (2k + 4) log n base multiplications

and log n full multiplications.
3 log n base squares

and log n full squares.
(k + 12) log n base additions.

log n base divisions.
Precomputing alg. 4 log n Fq 4 log n base multiplications.

log n extra bits 3 log n base squares.
11 log n base additions.

log n divisions.
Evaluation alg. 0 2k log n base multiplication.

log n full squares and mult.
k + 1 additions.

0 divisions.

Table 3.1. Computational costs and required storage for the
Miller algorithm with the first argument fixed.

Suppose we are in step i and the bits i and i− 1 of the group size are both 0 —we
will not do the add step. The original Miller’s loop does:

(1) Compute Miller line lT = aiY + biX + ci.
(2) Update the pairing fi = f2i+1 · lT (Q).
(3) Now, in the next step it computes Miller line l2T = ai−1Y + bi−1X + ci−1.
(4) And finally, we update the pairing fi−1 = f2i · l2T (Q).

Then

fi−1 = f2i · l2T (Q) = f4i+1lT (Q)2 · l2T (Q) =

= f4i+1 · (aiQy + biQx + ci)
2 · (ai−1Qy + bi−1Qx + ci−1)

The idea is to first compute the bigger polynomial l2T · l2T and then evaluate it in Q.
One can also use the fact that y2 = h(x) so there are no monomials with deg Y > 1.

fi−1 = f4i+1 ·


a2i ai−1Qyh(Qx) + a2i bi−1h(Qx)Qx + a2i ci−1h(Qx)

+b2i ai−1QyQ
2
x + b2i bi−1Q

3
x + b2i ci−1Q

2
x

+2aibiai−1h(Qx)Qx + 2aibibi−1Q
2
xQy + 2aibici−1QyQx

+2aiciai−1h(Qx) + 2aicibi−1QxQy + 2aicici−1Qy
+2biciai−1QxQy + 2bicibi−1Q

2
x + 2bicici−1Qx

+c2i ai−1Qy + c2i bi−1Qx + c2i ci−1


In this way, one replaces one full multiplication with a lot of simpler base multi-
plications and additions. But we should be aware that in that evaluation powers
of Qx, and its multiples by Qy, need to be computed. If these operations are done
each time a polynomial is evaluated then a lot of additional work is being added
— since Qx lies in the full field computing Q3

x is as bad as doing the two updates
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that are being merged. This can be avoided because the point Q is fixed in all
the polynomial evaluations performed in the evaluation of the pairing: one should
precompute as many powers of Qx, and its multiples by Qy, as needed.

In [11], authors noticed that this approach does not improve the algorithm cost in
all the cases, but it seems that as long as the embedding degree becomes bigger,
the difference between a full multiplication and base operations is so big that this
complicated optimization is faster. Later in [12], the algorithm was adapted for the
case of our study: if the first parameter of the pairing is fixed, all these complicated
operations can be done only once, and used later as many times as needed.

3.2.1. General case with offline precomputation. The previous idea can be
generalized to merge N Miller steps in only one: suppose we have a temporal value
of the pairing, f1, and next we are going to compute N consecutive doubling steps
of Miller algorithm. At the end, we have:

• N Miller lines, l2i−1T for i = 1, . . . , N .
• N updates of the pairing value

fi+1 = f2i · l2i−1T (Q) i = 1, . . . , N,

and then

fN+1 = f2
N

1 ·
N∏
i=1

(l2i−1T (Q))2
N−i

.

The idea of the algorithm is now to compute first the merged polynomial

GN (X,Y ) =

N∏
i=1

l2i−1T (X,Y )2
N−i

to finally update the value of the pairing by

fN+1 = f2
N

i ·GN (Q).

This reduces N − 1 full multiplications, but we need a lot of work to compute, and
evaluate in Q, the polynomial GN .

3.2.1.1. Computing the merged polynomial. As we pointed out in the case N = 2, if
the points in our elliptic curve satisfy Y 2 = h(X) then we can use this information
to reduce the degree of Y in the merged polynomial GN . We will denote by fN the
monomials of GN that are not a multiple of Y , and by Y · gN the monomials of GN
that are a multiple of Y . Then we can express

GN (X,Y ) = fN (X) + Y · gN (X).

Lemma 3.2.1. Suppose that N consecutive Miller loops are doubling steps and let
GN (X,Y ) = fN (X) + Y gN (X) be the N -merged polynomial. Then deg gN =
deg fN − 1 and deg fN = 3(2N−1 − 1) + 1.

Proof. The proof is by induction on N .

If N = 1 the polynomial is GN = lT = aY + bX + c. Therefore deg f1 = 1 and
deg g1 = 0.
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This way of representing GN allows us to write a recursion formula to compute
GN : if we know GN−1 = fN−1(X) + Y · gN−1(X) and l2N−1T = aY + bX + c then

GN =G2
N−1 · l2N−2T

= (fN−1 + Y gN−1)2 · l2N−2T

= (f2N−1 + Y 2g2N−1 + 2fN−1gN−1Y ) · (aY + bX + c)

= cf2N−1 + bf2N−1X + Y (af2N−1 + 2bfN−1gN−1X + 2cfN−1gN−1)

+ Y 2(2afN−1gN−1 + g2N−1c+ g2N−1bX) + Y 3ag2N−1.

Then, since Y 2 = h(X) we obtain GN = fN + Y gN where

fN = cf2N−1 + bf2N−1X + h(X)(2afN−1gN−1 + g2N−1c+ g2N−1bX)

gN = af2N−1 + 2bfN−1gN−1X + 2cfN−1gN−1 + ag2N−1h(X).

Then by the induction hypothesis, we know that deg fN−1 = deg gN−1 + 1. There-
fore

deg fN = deg fN−1 + deg gN−1 + deg h

= 2 deg fN−1 + deg h− 1 = 2 deg fN−1 + 2

deg gN = 2 deg gN−1 + deg h

= 2 deg fN−1 + deg h− 2 = 2 deg fN−1 + 1

If deg fN−1 = 3(2N−2 − 1) + 1 then

deg fN = 2 deg fN−1 + 2 = 2(3 · 2N−2 − 3 + 1) + 2

= 3 · 2N−1 − 2 = 3(2N−1 − 1) + 1

ut

The previous lemma gives us the exact degree of the merged polynomial GN when
all Miller steps did not need adding a point, in the proof we also have seen a
constructive way to compute it. Now it remains to see what happens when some
adding step is involved. Neither in [11] nor in [12] it is explained what is the best
approach in this case. But there are clearly two possible solutions:

• We can count the doubling and adding steps as only one bigger step in the
algorithm, i.e. we always update the merged polynomial with the adding
steps.

• Instead of fixing the number of steps to merge, we can build the merged
polynomial until we reach a maximum fixed degree.

In both cases we need an upper bound on the degree and some constructive way
to build the merged polynomial GN . These two things are given by the following
lemma.

Lemma 3.2.2. Let GN (X,Y ) = fN (X) + Y gN (X) be the N -merged polynomial.
Then deg fN and deg gn are bounded by 6 · 2N−1 − 3 and deg gn ≤ deg fn − 2.
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Proof. To prove this lemma (again, by induction on N) we assume all Miller steps
have doubling and adding steps, then the recursion for GN is given by:

GN = G2
N−1 · lT · lT,P .

First, if N = 1 then

G1 = lT · lT,P = (aY + bX + c) · (iY + jX + k)

= ck + (bk + cj)X + aih(X) + Y (ak + ci+X(aj + bi))

Then deg g1 = 1 < deg f1 = 3 ≤ 7 · 20 − 4.

Now, for N arbitrary we know that

GN = G2
N−1 · lT · lT,P ,

due to the case N = 1 we know that lT · lT,P can be represented as lx + Y ly, where
deg lx = 3 and deg ly = 1; therefore

GN = f2N−1lx + g2N−1hlx + 2fN−1gN−1lyh

+ Y (f2N−1ly + g2N−1hly + 2fN−1gN−1lx).

And

deg fN ≤ max{2 deg fN−1 + 3, 2 deg gN−1 + 6,deg fN + deg gN + 4}
deg gN ≤ max{2 deg fN−1 + 1, 2 deg gN−1 + 4,deg fN + deg gN + 3}.

Knowing that deg gi ≤ deg fi − 2 we get

deg fN ≤ 2 deg fN−1 + 3

deg gN ≤ 2 deg fN−1 + 1.

Finally, if deg fN−1 ≤ 6 · 2N−2 − 3, then

deg fN ≤ 2(6 · 2N−2 − 3) + 3 = 6 · 2N−1 − 3

ut

This bound is only tight when there are N consecutive bits different from 0, and
we usually choose the point in the elliptic curve with low Hamming weight so that
this happens almost never. In Table 3.2 we give the maximum degree found in our
test cases compared to this two bounds.

N Lower bound Upper bound In tests
1 1 3 3
2 4 9 6
3 10 21 12
4 22 45 24

Table 3.2. Maximum degree of the merged polynomial GN and
degree found in our tests.
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3.2.1.2. Computational cost of the algorithm. In this optimization there are two
main sub-algorithms whose computational cost must be studied: how hard is to
evaluate a merged polynomial and how hard is to compute a merged polynomial?

The first question has the easiest answer: we have just seen that the polynomial
GN can be decomposed in two polynomials of degree at most 6 · 2N−1− 3. Then, if
we suppose that all powers of Qx are precomputed we need exactly 6k · 2N−1 − 3k
base multiplications — to compute all ai ·Qix and then 6 ·2N−1−2 full additions —
or 6k · 2N−1 − 2k base additions. Since we need to do this twice — for the Y part
— we need at most 12k · 2N−1 − 6k base multiplications and 12k · 2N−1 − 4k + 1
additions.

We need to precompute all powers of Qx because, otherwise, when we will evaluate
the merged polynomial we will have to do as many full multiplications as we wanted
to avoid with this optimization.

Therefore, the cost of a single evaluation of this optimized Miller’s algorithm is the
cost of precomputing all the needed powers of Qx and its multiples by Qy — about
12 · 2N−1 − 6 full multiplications — and the cost of evaluating log n/N merged
polynomials. The big number of possible powers of Qx that we need to compute
is not as bad as evaluating log n/N polynomials, so we do not really focus on this
computation — even though a good way of computing these powers will benefit the
whole algorithm.

Regarding the computational cost of computing the merged polynomials, we first
analyze how many multiplications and additions are needed to compute an update
of the merged polynomial; suppose we have Gi and we want to compute Gi+1 then

Gi+1 = f2i lx + g2i hlx + 2figilyh

+ Y (f2i ly + g2i hly + 2figilx).

where lx is a polynomial of degree 3 and ly is a polynomial of degree 1. And we
also know that deg fi ≤ 6 · 2i−1 − 3 and deg gi ≤ 6 · 2i−1 − 5. Let f and g be the
number of coefficients of fi and gi.

Assuming we need about f2, g2 and fg multiplications and additions to compute
f2i , g2i and fi · gi, then we need about

6f2 + 4g2 + 9fg

multiplications and additions to compute Gi+1. But since g = f−2, we need about

19f2 − 34f + 16

multiplications and additions. Since f = 6 · 2i−1 − 2 and we are doing this for
i = 1, . . . , N − 1, we need in total about

N−1∑
i=1

19·(6·2i−1−3)−34·(6·2i−1−3)+16 = 684
4N−1 − 1

3
−660·(2N−1−1)+160(N−1)

multiplications and additions.

But this is not a realistic upper bound of the number of multiplications: not all the
bits of n are 1, and therefore not always we will need to add so much information



3.2. MERGING N-LINES 29

Worst case Best case
Initialize Qx 2 · (6 · 2N−1 − 3) m1 2 · (3 · 2N−1 − 2) m1

Miller loop logn
N (12k · 2N−1 − 6k) m1

logn
N (6k · (2N−1 − 4k)) m1

logn
N (12k · 2N−1 − 4k + 1) a1

logn
N (6k · 2N−1 − 2k + 1) a1

Table 3.3. Summary of how many multiplications, m1, and ad-
ditions, a1, are needed to compute a single pairing when we merge
N steps. The first row gives the cost of precomputing all possible
powers of Qx. The second row gives the cost of evaluating one
polynomial, multiplied with the number of steps of the algorithm.

Worst case

Merge polynomial logn
N

(
684 4N−1−1

3 − 660 · (2N−1 − 1) + 160(N − 1)
)

Updating points logn
N point doubling and logn

N point addition.

Best case

Merge polynomial 135 4N−1−1
3 − 135 · (2N−1 − 1) + 34

Updating points logn
N point doubling.

Table 3.4. Summary of how many multiplications and additions
are needed to compute all the merged polynomials.

to the polynomial. On the other hand, if we assume that no adding steps are
performed then the approximated number of operations is

4f2 + 4g2 + 7fg

and doing the same computations with f = 3 · 2i−1− 1 and g = f − 1 then we need
about

135
4N−1 − 1

3
− 135 · (2N−1 − 1) + 34

multiplications and additions.

In Tables 3.3 and 3.4 we summarize the computational cost of the two algorithms
involved in this optimization. One can see that it may be feasible for small values
of N , but when N grows, the extra work we are adding in the evaluating algorithm
is much bigger than the decrease in the number of Miller steps. Therefore we only
expect some real optimization for very small values of N .

3.2.2. Related optimizations. There is a natural adaptation of the merging op-

timization to compute a multipairing
m∏
i=1

e(Pi, Qi): since all the first arguments

have the same order n, the resulting merged polynomials of each point are merg-
ing the same steps of the original Miller’s loop. Therefore, if GN,Pi

(x, y) are the
N -merged polynomials of points P1, . . . , Pm, then the merged polynomial of the
multipairing would be

GN (Q1, . . . , Qm) =

m∏
i=1

GN,Pi
(Qi).
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But contrary to the merging optimization, we do not want to compute first the
big polynomial GN and then evaluate at Q1, . . . , Qn. In this case the resulting
polynomial can be very big — since m can be quite big in some cryptographic
applications like attribute based encryption. Therefore, we are going to evaluate
each merged polynomial and finally multiply all the resulting values. In this way,
we are reducing the operations needed to compute N original Miller steps. And
since we are updating the multipairing in the same temporal variable, we are also
reducing the number of squares we need to compute it.

Even though we did not talk about the Ate pairing in the mathematical prelimi-
naries, the optimization we have presented for the Tate pairing also holds for the
Ate pairing. The definition of the Ate pairing is similar to that of the Tate pairing,
but now the point P lies in the bigger elliptic curve E(Fpk) and the point Q in the
base elliptic curve E(Fp). With this change we are allowed to reduce the number
of Miller steps we need to compute, but all point operations are done in the bigger
elliptic curve. The merged optimization works exactly in the same way, but:

• When computing the merged polynomial, operations are done in the full field
instead of the base field. This computation will take much more time.

• When evaluating a polynomial, the precomputation of powers of Qx ∈ Fp is
no longer needed since

aQ2
x + bQx + c

needs as many multiplications and additions as

c+Qx(b+ aQx).



Chapter 4

Numerical results

Along with the theoretical explanation of the merging algorithm, we wanted to do
an implementation of it, in order to test whether the results are significant, and to
know how costly are the precomputations costs.

We decided to do this implementation and numerical tests with the PBC (Pairing-
Based Cryptography) Library developed by Ben Lynn [27]. This library is built over
an arbitrary precision library, GMP Library, which is used to perform computations
in fields Fp. All constructions for tower fields, elliptic curves, pairings and some
basic optimizations were done by Ben Lynn.

This is not the only known library for this kind of tests. For example, in [15] the
library called MIRACL [29] is used. This library is very well documented regarding
arithmetics over finite fields, was thought to work in different architectures and
mobile devices, and more constructions of elliptic curves are available there than
in the PBC Library. But elliptic curve algorithms are not so well documented and
we had some problems to understand how the constructions were done and where
the data was stored.

4.1. Preliminary tests

We first tested the cost of operations over finite fields. A summary was found in
Tables 1.1 and 1.2. Computations are done for a pack of 1000 operations because
these operations are done very quickly and sometimes (when the size of the field is
small) one cannot appreciate any difference in µs if only one operation is considered.

Two fundamental comments about these results are that divisions can be very
expensive. So the optimization that allowed us to remove divisions is a very sig-
nificant optimization in the cost of computing pairings. Another thing we noticed
is that tower fields Fp ⊂ Fp10 may have bad properties for the implementation:
the cost of computing divisions in a field of dimension about 10 · 2046 = 20460
(1.2 seconds to compute 1000 inversions) is comparable to the cost in a field of
dimension 6 · 5295 = 31770 (1.4 seconds) or even worse than in a field of dimension
12 · 2456 = 29476 (0.8 seconds), even if the first full field has a better base field.

31
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bits of p cost mult. cost invr. Point Addition Point Multiplication
32 0.090 0.370 1 1
58 0.088 0.553 1 1
124 0.060 1.489 3 2
196 0.082 2.480 4 4
437 0.179 5.271 7 6
677 0.386 8.489 12 10
1357 1.357 18.610 26 23
5295 17.175 118.335 224 168

Table 4.1. Comparison of the cost of Point Addition and Multi-
plication in Type D elliptic curves with the cost of base multipli-
cations and inversions. Times are in µs and measure one operation.

So we do not expect to be able to obtain spectacular results with elliptic curves of
embedding degree 10.

4.1.1. Families of elliptic curves. The PBC Library has some families of elliptic
curves already implemented. They are called Type A, B, C, D, E, F and G. We
were only interested in Type D, F and G since the other ones either have embedding
degree 1 or do not have an implementation provided. In Tables 4.1, 4.2 and 4.3 we
can find the costs of computing a single point operation in E(Fp) for these curves;
we did not run this test in the bigger elliptic curve because no point operations are
done there.

4.1.1.1. Type D elliptic curves. These are ordinary curves over Fp of the form y2 =
x3 + ax + b with embedding degree 6. These curves have order h · r where r is a
prime, and h is a small constant (so that it is easy to check whether a point P has
large order).

The tower field is constructed as follows

Fp ⊆ Fp3 ⊆ Fp6

like we defined in Example 1.1.6.

The documentation in the library recommended a curve of order about 170 bits,
with a similar security as a typical ElGamal multiplicative group Z∗p with 1024 bits.

4.1.1.2. Type G elliptic curves. These are ordinary curves over Fp of embedding
degree 10. No more information is provided in the general documentation, but a
quick look in the implementation shows that they are very similar to Type D elliptic
curves, and the tower field is constructed as follows:

Fp ⊆ Fp5 ⊆ Fp10 .

We expect slightly better results than in Type D elliptic curves, since the embedding
degree is bigger and they all have a similar underlying structure. But on the other
hand, since operations in Fp5 are more expensive than in Fp3 we may find some
problems.
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bits of p cost mult. cost invr. Point Addition Point Multiplication
102 0.039 1.275 2 2
127 0.052 1.612 3 2
257 0.130 3.267 5 4
418 0.181 4.872 7 6
2456 3.818 38.797 59 51

Table 4.2. Comparison of the cost of Point Addition and Multi-
plication in Type G elliptic curves with the cost of base multipli-
cations and inversions. Times are in µs and measure one operation.

bits of p cost mult. cost invr. Point Addition Point Multiplication
105 0.033 0.876 2 2
124 0.032 1.063 2 2
250 0.070 1.422 5 4
348 0.128 2.089 7 6
2046 2.594 22.499 44 38

Table 4.3. Comparison of the cost of Point Addition and Multi-
plication in Type F elliptic curves with the cost of base multipli-
cations and inversions. Times are in µs and measure one operation.

4.1.1.3. Type F elliptic curves. The last family of curves over Fp has the biggest
embedding degree, 12. The documentation recommends this kind of elliptic curves
to implement signature schemes: as we explained in Chapter 3 a higher embedding
degree allows us to construct shorter signatures with more security.

In this case, the curve has the form y2 = x3+b, so we expect faster point operations
(and less optimization in this aspect).

The tower field in Type F curves are

Fp ⊂ Fp2 ⊂ Fp12 .

The last jump in the tower could be improved by adding an intermediate step

Fp ⊂ Fp2 ⊂ Fp6 ⊂ Fp12

in order to use optimizations like in Example 1.1.6. This was not used because
with the tower Fp ⊂ Fp2 ⊂ Fp12 one can construct G2 such that all points have lots
of zeros in their representation. And therefore, a better multiplication algorithm
could be possible. So in this type of elliptic curves we may not find a very significant
optimization: the structure of G2 is so good that a well implemented multiplication
could be simply better than this general optimization.

4.2. Pairing tests

For testing our optimization we are going to run two different tests: for small values
of N we want to see which is the gain of this algorithm, and how many pairings we
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bits original precomp time % %pre # #pre

179 3.423 1.441 2.488 72 97 2 24
252 6.219 2.613 4.260 68 94 2 11
522 31.982 10.516 21.677 68 88 1 4
1021 141.330 39.697 94.441 67 89 1 4
5295 14105.709 2663.285 10443.196 74 85 1 2

Table 4.4. Comparison of the time spent in computing a single
pairing in type D curves. Optimizations are done with the merging
technique with N = 1.

bits original precomp time % %pre # #pre

179 3.423 2.287 2.282 66 89 2 5
252 6.219 4.022 3.913 63 87 2 4
522 31.982 15.204 19.984 63 82 2 3
1021 141.330 57.642 87.293 62 82 1 3
5295 14105.709 4368.717 9806.592 69 80 1 2

Table 4.5. Comparison of the time spent in computing a single
pairing in type D curves. Optimizations are done with the merging
technique with N = 2.

bits original precomp time % %pre # #pre

179 3.423 3.411 2.289 67 90 3 13
252 6.219 6.287 3.876 62 86 3 10
522 31.982 26.348 19.375 60 79 2 5
1021 141.330 102.337 85.276 60 80 2 5
5295 14105.709 9226.473 9534.591 67 78 2 4

Table 4.6. Comparison of the time spent in computing a single
pairing in type D curves. Optimizations are done with the merging
technique with N = 3.

need to compute in order to amortize the time spent in the precomputation phase.
Finally, we will run the multipairing algorithm for m = 2, 10 and 30.

The idea behind the first test is to see the cost of computing a basic Identity
Based Encryption and a Short Signature scheme like BLS. The second test is to
see how the decryption time of an attribute based encryption scheme is improved
(assuming 10 or 30 attributes are involved in the decryption policy), and the same
for an identity based encryption scheme [22], whose decryption phase evaluates a
multipairing with m = 2.

In Tables 4.4, 4.5, 4.6 and 4.7 we give the times spent in order to compute a
single pairing in type D elliptic curves. We can see how much time is used to
compute the pairing with the original Miller algorithm, how much time is spent in
the precomputation phase of the considered optimization, and how much time is
spent in a single evaluation with our optimization (using the precomputed values).
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bits original precomp time % %pre # #pre

179 3.423 5.669 2.502 73 98 7 123
252 6.219 9.911 4.040 65 90 5 22
522 31.982 43.641 20.271 63 83 4 11
1021 141.330 180.354 89.534 63 84 4 11
5295 14105.709 18059.789 9947.841 70 82 5 9

Table 4.7. Comparison of the time spent in computing a single
pairing in type D curves. Optimizations are done with the merging
technique with N = 4.

bits original N = 1 # N = 2 # N = 3 # N = 4 #
179 3.423 2.488 2 2.282 2 2.289 3 2.502 7
252 6.219 4.260 2 3.913 2 3.876 3 4.040 5
522 31.982 21.677 1 19.984 2 19.375 2 20.271 4
1021 141.330 94.441 1 87.293 1 85.276 2 89.534 4
5295 14105.709 10443.196 1 9806.592 1 9534.591 2 9947.841 5

Table 4.8. Summary of time spent in computing a single pairing
in type D curves. In bold the best time for each curve.

bits original precomp time % %pre # #pre

86 3.611 0.359 3.228 89 97 1 4
127 6.869 0.920 5.794 85 95 1 4
231 18.002 2.386 14.981 83 92 1 2
418 60.434 6.223 51.004 84 94 1 2
2456 6061.466 327.435 5145.309 85 92 1 1

Table 4.9. Comparison of the time spent in computing a single
pairing in type G curves. Optimizations are done with the merging
technique with N = 1.

bits original precomp time % %pre # #pre

86 3.611 0.633 3.076 85 92 2 2
127 6.869 1.481 5.299 77 87 1 2
231 18.002 3.450 13.973 78 87 1 2
418 60.434 9.344 46.886 76 86 1 2
2456 6061.466 511.550 4761.308 79 85 1 2

Table 4.10. Comparison of the time spent in computing a single
pairing in type G curves. Optimizations are done with the merging
technique with N = 2.

To compare these times we include in the column % the percentage of time spent in
an evaluation in the optimization when compared with the original algorithm; we
also include in column %pre the percentage of time of the considered optimization
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bits original precomp time % %pre # #pre

86 3.611 1.006 3.156 87 94 3 6
127 6.869 2.347 5.336 78 88 2 4
231 18.002 5.791 13.411 75 83 2 2
418 60.434 15.792 45.293 75 83 1 2
2456 6061.466 1013.878 4581.405 75 82 1 1

Table 4.11. Comparison of the time spent in computing a single
pairing in type G curves. Optimizations are done with the merging
technique with N = 3.

bits original precomp time % %pre # #pre

86 3.611 1.590 3.336 92 100 6 −
127 6.869 3.676 5.391 78 88 3 5
231 18.002 8.792 13.724 76 85 2 4
418 60.434 25.279 45.467 75 83 2 3
2456 6061.466 1877.872 4577.809 75 82 2 2

Table 4.12. Comparison of the time spent in computing a single
pairing in type G curves. Optimizations are done with the merging
technique with N = 4.

bits original N = 1 # N = 2 # N = 3 # N = 4 #
86 3.611 3.228 1 3.076 2 3.156 3 3.336 6
127 6.869 5.794 1 5.299 1 5.336 2 5.391 3
231 18.002 14.981 1 13.973 1 13.411 2 13.724 2
418 60.434 51.004 1 46.886 1 45.293 1 45.467 2
2456 6061.466 5145.309 1 4761.308 1 4581.405 1 4577.809 2

Table 4.13. Summary of time spent in computing a single pairing
in type G curves. In bold the best time for each curve.

bits original N = 1 # N = 2 # N = 3 # N = 4 #
71 7.058 7.553 7.483 7.718 8.443
105 10.432 10.784 10.559 10.780 11.620
192 22.320 21.903 7 21.479 5 21.286 5 22.105 587
348 54.820 53.803 4 53.256 5 52.110 2 53.214 17
2046 3113.022 2924.441 1 2962.689 2 2813.475 2 2793.080 5

Table 4.14. Summary of time spent in computing a single pairing
in type F curves. In bold the best time for each curve.

when compared with the basic optimization of precomputed lines. Finally, we
include in column # (resp. column #pre) how many pairing evaluations must
be done before the precomputation time is amortized in our optimization, with
respect to the basic Miller algorithm (resp. with respect to the basic optimization
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179 # 252 # 522 # 1021 #

m = 2

original 4.985 9.013 47.727 205.019
N = 2 3.346 3 5.675 3 28.814 2 122.714 2
N = 3 3.338 4 5.398 4 27.778 3 128.993 3

m = 10

original 17.254 31.161 170.247 774.527
N = 2 11.897 5 20.385 4 99.434 3 408.606 2
N = 3 11.183 6 19.214 6 91.388 4 387.0011 3

m = 30

original 48.181 85.527 480.572 2149.255
N = 2 33.280 5 56.311 4 270.303 3 1122.135 2
N = 3 31.043 7 53.391 6 252.811 4 1054.756 3

Table 4.15. Summary of execution times of a multipairing in type
D elliptic curves, without counting precomputation. Column #
gives the number of executions needed to amortize precomputation.

of precomputed lines). In Table 4.8 we give a summary of the important results:
time spent to compute a single evaluation (discarding the precomputation time)
and the evaluations needed to amortize the precomputation effort.

We obtained the same results as in [12]: the best result is obtained in the cases
N = 2 or N = 3. But we also have seen that not so many pairings are needed
to amortize the expensive precomputation algorithm: with only 3 evaluations we
amortize the off-line precomputation phase.

We find similar results in type G elliptic curves, as one can see in Table 4.13. But in
this case we also obtained some elliptic curves where the optimization with N = 4
was also useful. This was expected since a larger embedding degree produces a
bigger difference of computations in Fp and Fpk . In Tables 4.9, 4.10, 4.11 and 4.12
we give a more detailed information about the execution times in type G curves.

The most surprising results were obtained for type F elliptic curves. As one can
see in Table 4.14 the original Miller algorithm is the best solution for almost every
curve in our test. But we noticed that the (few) elliptic curves that led to good
results for our optimization are the ones with large order. There are three main
reasons why this happens. (1) Point operations do not seem expensive compared to
the whole pairing. (2) The gain in every Miller loop is not that high, since points
in G2 have a lot of zeros and a good algorithm for full multiplication is used; but
the merged optimization needs full multiplications. (3) Finally, if the order of the
group G1 is not so high, the time we save in the Miller loops may be less than the
time we need to spend in the online precomputation of powers of Qx.

Obviously, in the multipairing algorithm we obtained similar results: in both op-
timizations we reduce the same number of full multiplications, and we merge the
same number of Miller loops. In Tables 4.15, 4.16, 4.17 we give a summary of the
times we obtained. For type D curves we did not put values for p ≈ 5000 bits
because the test failed (not enough memory), and for type F curves we only include
here the tests that gave some positive results for the considered optimization.
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86 # 127 # 231 # 418 #

m = 2

original 4.360 8.552 23.861 77.697
N = 2 3.921 3 7.052 2 18.001 2 58.470 1
N = 3 3.891 5 6.677 3 16.795 2 55.191 2

m = 10

original 11.721 25.542 72.889 274.170
N = 2 9.653 3 19.310 3 48.883 1 155.526 1
N = 3 9.765 5 17.848 3 43.312 2 137.570 2

m = 30

original 29.287 64.461 197.507 630.962
N = 2 24.372 4 50.356 3 125.601 2 391.914 1
N = 3 24.888 7 45.636 4 109.329 2 342.119 2

Table 4.16. Summary of execution times of a multipairing in type
G elliptic curves, without counting precomputation. Column #
gives the number of executions needed to amortize precomputation.

192 # 348 # 2046 #

m = 2

original 25.398 67.283 3937.400
N = 2 24.788 10 61.142 3 3452.705 2
N = 3 24.641 12 59.224 3 3248.099 2

m = 10

original 67.544 171.655 10973.758
N = 2 50.458 2 128.426 2 7611.773 1
N = 3 49.659 7 117.765 3 6481.589 2

m = 30

original 142.747 436.899 25153.521
N = 2 115.563 4 294.455 2 17845.022 2
N = 3 113.255 6 263.022 3 14294.065 2

Table 4.17. Summary of execution times of a multipairing in type
F elliptic curves, without counting precomputation. Column #
gives the number of executions needed to amortize precomputation.



Chapter 5

Conclusion and future work

A lot of work has been done in order to optimize Miller’s algorithm [14] [13] [2]
[11] [12], and we decided to analyze in more detail the last optimization given
by Costello et al. in [12]. This optimization is very useful when an argument of
the pairing is fixed in various evaluations, and Scott mentioned [15] that this is a
common situation in some public-key cryptographic protocols, like the schemes we
reviewed in Chapter 2.

We have added two main contributions to Costello et al. optimization. First we
have analyzed the computational cost of the algorithm in the worst case, instead of
the artificial best case scenario that was considered in [11] and [12]. We have also
analyzed theoretically the complexity of the off-line precomputations stage.

Second, we have implemented this optimization in an already existing cryptographic
library, PBC Library, in order to check numerically the results given by [12] and the
tightness of our complexity upper bound. Positive results have been found, since we
have obtained better times than the classical algorithm with precomputed lines. We
have also observed that very few evaluations, at most 6 but 2 or 3 if the parameter N
is well chosen, are enough to amortize the computational cost of the precomputation
phase. Therefore, the conclusion is that Costello et al. optimization can be very
useful in some modern public-key cryptographic protocols. We have got some bad
results in elliptic curves with embedding degree 10, but we have been able to detect
the reason for this: a better way of updating the pairing value is used in those
elliptic curves, but our optimized algorithm always do a full multiplication, which
is worse. This gives less optimization in every Miller step, and the overall gain is
overcome by the cost of the online precomputations in almost all the tested elliptic
curves. One should not overlook particular optimizations for a specific family of
elliptic curves, since this could provide an even better optimization.

We think that there is still some work to be done in the study of Costello et al.
optimization.

• Since Ate pairings are also defined over two point sets with different sizes, the
same full multiplications can be avoided by using the same idea. In fact, since
Ate pairing has shorter Miller loops, the computational cost of a single evalua-
tion would decrease. But, on the other hand, the off-line computations would

39
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be a lot heavier since now the merged polynomial has coefficients in the full
field. Is it also true that a few evaluations would amortize precomputations?
Or would it be useless since a lot of evaluations must be done in a short time?
• When implementing the Costello et al. optimization for multipairings, all

the first arguments were precomputed with the same value of N . It seems
possible to adapt the algorithm in order to accept a few (not fixed) arguments
without precomputations. This is something needed in some attribute based
encryption schemes like the one described in Chapter 2.
• Modern computers and mobile devices have processors which are able to exe-

cute multiple threads at the same time. This concurrent execution capability
could bring some improvements in the studied optimization: one thread could
do an online computation of the merged polynomial and then pass it to the
other thread, which would evaluate the polynomial and updates the value of
the pairing. This optimization would not give us a faster algorithm, but we
would reduce the memory needed to store all the merged polynomials.
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Appendix A

Source code

#include <pbc.h>

#include "darray.h"

#include <stdbool.h>

typedef struct type_lnodepoly {

struct type_lnodepoly *next;

int n, stps;

element_ptr polynomial, polynomialY;

} lnodepoly;

typedef struct type_lpoly {

struct type_lnodepoly *first, *last;

int MAXD; // Maximum degree in the list

} lpoly;

lpoly* lpoly_init(); // Init a new list of polynomials

void lpoly_free(lpoly *list); // Free memory

// Add a new merged polynomial to the list.

// n is the number of ’Doubling steps’ it contains.

void lpoly_add(lpoly *list, element_ptr polynomial, element_ptr polynomialY, int n);

// To retrieve the merged polynomial

element_ptr get_polynomial(lnodepoly *element);

element_ptr get_polynomialY(lnodepoly *element);

int get_steps(lnodepoly *list); // Number of ’Doubling steps’

lnodepoly* first(lpoly *list);

lnodepoly* next(lnodepoly *list);

bool islast(lnodepoly *list);

Fig. A.1. lpoly.h. Specification of a linked list to store merged polynomials.
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#include <pbc.h>

#include <pbc_poly.h>

#include "lpoly.h"

#ifndef __PBC_PRECOMP_H__

#define __PBC_PRECOMP_H__

// Change the value of N in Costello’s optimization.

void change_NMAX(int n);

// To precompute the merged polynomials.

// Precomputed data is stored in *list

void precompute(lpoly *list, mpz_t q, element_t P);

// To evaluate the pairing using Costello’s optimization.

void compute_miller(element_ptr out, lpoly *list, element_ptr Q, pairing_t pairing);

void compute_multimiller(element_ptr out, lpoly *list, element_ptr Q[], int n_prod,

pairing_t pairing);

#endif

Fig. A.2. precompute.h Public specification of the precomputa-
tion algorithm.



A. SOURCE CODE 45

Fig. A.3. precompute.c Implementation of A.2 for type D and G
elliptic curves.

#include <pbc.h>

#include <pbc_poly.h>

#include "darray.h"

#include "precompute.h"

#include "lpoly.h"

#include <stdbool.h>

#include <stdlib.h>

/*************************************************************************

/ Fixed argument optimization.

/ Implementation for (d,g)-type curves

/

/ P in E(F_q)

/ Q in E(F_qd) --> E(F_q2d)

/ TWIST: (x,y) --> ( xv^{-1}, xv^{-2} sqrt{v} )

/

/ INFO: When computing G_N(X, Y) all X^i lie in F_qk (with Im = 0)

/ and all YX^i lie in F_qk (with Re = 0)

**************************************************************************/

element_ptr curve_equation;

int STEPMAX = 4;

void change_NMAX(int n){ STEPMAX = n; }

// For some reason, element_set0(element in F_p6) returns ([1,0,0],[0,0,0]) instead

of ([0,0,0], [0,0,0])

void KSET0(element_t out){

element_set0(out);

element_ptr re_out = element_x(out);

element_set0(element_item(re_out,0));

}

/**************************************

DATA STRUCTURE OF (D,G)-curves

***************************************/

typedef struct {

field_ptr field; // The field where the curve is defined.

element_t a, b; // The curve is E: Y^2 = X^3 + a X + b.

// cofac == NULL means we’re using the whole group of points.

// otherwise we’re working in the subgroup of order #E / cofac.

mpz_ptr cofac;

// A generator of E.

element_t gen_no_cofac;

// A generator of the subgroup.

element_t gen;

// A non-NULL quotient_cmp means we are working with the quotient group of

// order #E / quotient_cmp.

mpz_ptr quotient_cmp;

} *curve_data_ptr;
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typedef struct {

field_t Fq, Fqx, Fqd, Fqk; // The fields F_q, F_q[x], F_q^d, F_q^k.

field_t Eq, Etwist; // The curves E(F_q) and E’(F_q^d).

// Let v be the quadratic nonresidue used to construct F_q^k from F_q^d,

// namely Fqk = Fqd[sqrt(v)].

element_t nqrinv, nqrinv2; // The constants v^-1 and v^-2.

mpz_t tateexp; // The Tate exponent

int k; // The embedding degree, usually 6.

// Let x be the element used to build Fqd from Fq, i.e. Fqd = Fq[x].

element_t xpowq, xpowq2; // x^q and x^{2q} in F_q^d.

} *pptr;

// Add an element x in F_q to a big element in F_qk

// Used when a polynomial is evaluated

void point_add(element_ptr e0, element_ptr y, element_t x){

element_ptr x_out = element_x(e0); // e0 = x + iy

element_ptr y_out = element_x(y); // e0 = x + iy

element_add(element_item(x_out, 0), element_item(y_out, 0), x);

}

// Computes x*Y when x in F_q and y in F_qk (but Im = 0).

// Used when a polynomial in X is evaluated

void basic_mult(element_ptr out, element_t x, element_ptr y){

element_ptr re_out = element_x(out); element_ptr re_y = element_x(y);

int d = polymod_field_degree(re_out->field);

for (int i = 0; i < d; i++) {

element_mul(element_item(re_out, i), element_item(re_y, i), x);

}

}

// Computes x*Y when x in F_q and y in F_qk (but Re = 0).

// Used when a polynomial in XY is evaluated

void basic_mult2(element_ptr out, element_ptr x, element_ptr y){

element_ptr im_out = element_y(out); element_ptr im_y = element_y(y);

int d = polymod_field_degree(im_out->field);

for (int i = 0; i < d; i++) {

element_mul(element_item(im_out, i), element_item(im_y, i), x);

}

}

// Computes x + y when x, y in F_qk (but Im = 0)

// Use when a polynomial in X is evaluated

void basic_add(element_ptr out, element_ptr x, element_ptr y){

element_ptr re_x = element_x(x); element_ptr re_y = element_x(y);

element_ptr re_out = element_x(out);

element_add(re_out, re_x, re_y);

}

// Computes x + y when x, y in F_qk (but Re = 0)

// Use when a polynomial in XY is evaluated

void basic_add2(element_ptr out, element_ptr x, element_ptr y){

element_ptr im_x = element_y(x); element_ptr im_y = element_y(y);

element_ptr im_out = element_y(out);

element_add(im_out, im_x, im_y);

}
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/**************************************

PRECOMPUTATION ALGORITHMS

***************************************/

// Add a new step in the precomputed data structure

//

// list -> list of precomputed polynomials

// a, b, c -> coeff of the new step: aX + bY + C

// aa = 1 if the new step comes from Doubling; 0 from the Adding part.

void add_poly(lpoly *list, element_t a, element_t b, element_t c, int aa){

// Init the new step

field_ptr tbase = pbc_malloc(sizeof(*tbase));

field_init_poly(tbase, a->field);

element_ptr ppx, ppy;

ppx = pbc_malloc( sizeof(*ppx));

ppy = pbc_malloc( sizeof(*ppy));

element_init(ppx, tbase);

element_init(ppy, tbase);

// p = ax + c + y(b)

poly_set_coeff(ppy, b, 0); poly_set_coeff(ppx, c, 0); poly_set_coeff(ppx, a, 1);

if(last(list)->n != -1 && STEPMAX > last(list)->n){

// If not empty list

// and previous merged polynomial includes less than STEPMAX Miller’s loops.

// INIT

element_ptr polyx = last(list)->polynomial;

element_ptr polyy = last(list)->polynomialY;

element_ptr newx, newy, tmp1, tmp2;

newx = pbc_malloc( sizeof(*newx));

newy = pbc_malloc( sizeof(*newy));

tmp1 = pbc_malloc( sizeof(*tmp1));

tmp2 = pbc_malloc( sizeof(*tmp2));

element_init(newx, tbase);

element_init(newy, tbase);

element_init(tmp1, tbase);

element_init(tmp2, tbase);

element_set0(newx); element_set0(newy);

element_set0(tmp1); element_set0(tmp2);
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if(aa == 1){

// Doubling step

element_mul(tmp1, polyx, polyy);

element_double(tmp1, tmp1);

element_mul(tmp2, tmp1, ppy);

element_mul(tmp2, tmp2, curve_equation);

element_add(newx, newx, tmp2);

element_mul(tmp2, tmp1, ppx);

element_add(newy, newy, tmp2);

element_square(tmp1, polyy);

element_mul(tmp2, tmp1, ppy);

element_mul(tmp2, tmp2, curve_equation);

element_add(newy, newy, tmp2);

element_mul(tmp2, tmp1, ppx);

element_mul(tmp2, tmp2, curve_equation);

element_add(newx, newx, tmp2);

element_square(tmp1, polyx);

element_mul(tmp2, tmp1, ppy);

element_add(newy, newy, tmp2);

element_mul(tmp2, tmp1, ppx);

element_add(newx, newx, tmp2);

}

else{

// If Adding, we only need to multiply the new line

element_mul(tmp1, polyx, ppx);

element_add(newx, newx, tmp1);

element_mul(tmp1, polyy, ppy);

element_mul(tmp1, tmp1, curve_equation);

element_add(newx, newx, tmp1);

element_mul(tmp1, polyx, ppy);

element_add(newy, newy, tmp1);

element_mul(tmp1, polyy, ppx);

element_add(newy, newy, tmp1);

}

last(list)->polynomial = newx;

last(list)->polynomialY = newy;

last(list)->n = last(list)->n + aa;

last(list)->stps = last(list)->stps + 1;

// Update the maximum degree

int d = poly_degree(last(list)->polynomial);

if(d > list->MAXD){ list->MAXD = d; }

}else{

// First step or previous merged polynomial is full.

lpoly_add(list, ppx, ppy, aa);

last(list)->stps = 1;

if(list->MAXD < 1){ list->MAXD = 1; }

}

}
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// Modified Miller algorithm:

// It doesn’t compute the pairing, but the lines that are needed.

void precompute(lpoly *list, mpz_t q, element_t P) {

element_t Z, a, b, c, t0, one; element_ptr Zx, Zy;

const element_ptr cca = curve_a_coeff(P);

const element_ptr Px = curve_x_coord(P);

const element_ptr Py = curve_y_coord(P);

curve_equation = pbc_malloc(sizeof(*curve_equation));

field_ptr tbase = pbc_malloc(sizeof(*tbase));

field_init_poly(tbase, curve_a_coeff(P)->field);

element_init(one, curve_a_coeff(P)->field); element_set1(one);

element_init(curve_equation, tbase);

poly_set_coeff(curve_equation, one, 3);

poly_set_coeff(curve_equation, curve_a_coeff(P), 1);

poly_set_coeff(curve_equation, curve_b_coeff(P), 0);

void do_tangent(void) {

// a = -(3 Zx^2 + cc->a); b = 2 * Zy

// c = -(2 Zy^2 + a Zx);

element_square(a, Zx); element_mul_si(a, a, 3);

element_add(a, a, cca); element_neg(a, a);

element_add(b, Zy, Zy);

element_mul(t0, b, Zy); element_mul(c, a, Zx);

element_add(c, c, t0); element_neg(c, c);

add_poly(list, a, b, c, 1);

}

void do_line(void) {

// a = -(B.y - A.y) / (B.x - A.x); b = 1;

// c = -(A.y + a * A.x); but we multiply by B.x - A.x to avoid division.

element_sub(b, Px, Zx); element_sub(a, Zy, Py);

element_mul(t0, b, Zy); element_mul(c, a, Zx);

element_add(c, c, t0); element_neg(c, c);

add_poly(list, a, b, c, 0);

}

element_init(a, Px->field); element_init(b, a->field);

element_init(c, a->field); element_init(t0, a->field);

element_init(Z, P->field); element_set(Z, P);

Zx = curve_x_coord(Z); Zy = curve_y_coord(Z);

int m = mpz_sizeinbase(q, 2) - 2;

for(;;) {

do_tangent();

if (!m) break;

element_double(Z, Z);

if (mpz_tstbit(q, m)) {

do_line(); element_add(Z, Z, P);

}

m--;

}

element_clear(Z); element_clear(a);

element_clear(b); element_clear(c); element_clear(t0);

}
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// Evaluates two polynomials: one in X and the other in XY.

void compute_polynomial(element_t out, element_t out2, lnodepoly *poly, element_ptr

*point_precomp, element_ptr *point_precomp2)

{

element_ptr p = get_polynomial(poly);

int i;

element_t tmp;

element_init(tmp, out->field);

d = poly_degree(p)+1;

for(i=1; i < d; i++){

KSET0(tmp);

basic_mult(tmp, poly_get_coeff(p, i), point_precomp[i-1]);

basic_add(out, out, tmp);

}

point_add(out, out, poly_get_coeff(p, 0));

p = get_polynomialY(poly);

d = poly_degree(p)+1;

for(i=0; i < d; i++){

element_set0(tmp);

basic_mult2(tmp, poly_get_coeff(p, i), point_precomp2[i]);

basic_add2(out2, out2, tmp);

}

}

// As ’compute_polynomial’, but adapted to be used in multipairings

void compute_polynomialN(element_t out, element_t out2, lnodepoly *poly, int row,

int MAXD, element_ptr point_precomp[][MAXD], element_ptr

point_precomp2[][MAXD])

{

element_ptr p = get_polynomial(poly);

int d = poly_degree(p)+1;

int i;

element_t tmp;

element_init(tmp, out->field);

for(i=1; i < d; i++){

KSET0(tmp);

basic_mult(tmp, poly_get_coeff(p, i), point_precomp[row][i-1]);

basic_add(out, out, tmp);

}

point_add(out, out, poly_get_coeff(p, 0));

p = get_polynomialY(poly);

d = poly_degree(p)+1;

element_init(tmp, out->field);

for(i=0; i < d; i++){

element_set0(tmp);

basic_mult2(tmp, poly_get_coeff(p, i), point_precomp2[row][i]);

basic_add2(out2, out2, tmp);

}

}
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/*********************************

EVALUATION ALGORITHMS

**********************************/

void precomp_miller(element_t res, lpoly *list, element_ptr Qx, element_ptr Qy){

lnodepoly *actual = first(list);

element_ptr *point_precomp, *point_precomp2;

point_precomp = (element_ptr *)malloc((list->MAXD)*sizeof(element_ptr));

point_precomp2 = (element_ptr *)malloc((list->MAXD)*sizeof(element_ptr));

point_precomp[0] = Qx; point_precomp2[0] = Qy;

int i = 0;

for(i = 1; i < list->MAXD; i++){

point_precomp[i] = pbc_malloc(sizeof(element_ptr));

element_init(point_precomp[i], point_precomp[0]->field);

element_mul(point_precomp[i], point_precomp[i-1], Qx);

point_precomp2[i] = pbc_malloc(sizeof(element_ptr));

element_init(point_precomp2[i], point_precomp[0]->field);

element_mul(point_precomp2[i], point_precomp2[i-1], Qx);

}

element_set1(res);

element_t out, out2;

element_init(out, res->field);

element_init(out2, res->field);

while(islast(actual) != true){

int steps = get_steps(actual);

while(steps > 0 && !element_is1(res)){

element_square(res,res);

steps--;

}

KSET0(out); KSET0(out2);

compute_polynomial(out, out2, actual, point_precomp, point_precomp2);

element_ptr im_out = element_y(out);

element_set(im_out, element_y(out2));

element_mul(res, res, out);

actual = next(actual);

}

for(i=1; i < list->MAXD; i++){

pbc_free(point_precomp[i]); pbc_free(point_precomp2[i]);

}

free(point_precomp); free(point_precomp2);

element_clear(out); element_clear(out2);

}
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void precomp_millers(element_t res, lpoly list[], element_t Qx[], element_t Qy[],

int n_prod) {

int MAXD = 0;

int i = 0;

for(i=0; i < n_prod; i++){

if(list[i].MAXD > MAXD){

MAXD = list[i].MAXD;

}

}

element_ptr point_precomp[n_prod][MAXD];

element_ptr point_precomp2[n_prod][MAXD];

for(i = 0; i < n_prod; i++){

point_precomp[i][0] = Qx[i];

point_precomp2[i][0] = Qy[i];

}

int j = 0;

for(j = 0; j < n_prod; j++){

for(i = 1; i < MAXD; i++){

point_precomp[j][i] = pbc_malloc(sizeof(element_ptr));

element_init(point_precomp[j][i], Qx[0]->field);

element_mul(point_precomp[j][i], point_precomp[j][i-1], Qx[j]);

point_precomp2[j][i] = pbc_malloc(sizeof(element_ptr));

element_init(point_precomp2[j][i], Qx[0]->field);

element_mul(point_precomp2[j][i], point_precomp2[j][i-1], Qx[j]);

}

}

element_set1(res);

element_t out, out2;

element_init(out, res->field);

element_init(out2, res->field);

lnodepoly *actuales[n_prod];

for(i=0; i<n_prod; i++){

actuales[i] = first(&list[i]);

}

int still_something_to_do(){

int j = 0;

for(j = 0; j < n_prod; j++){

if(islast(actuales[j]) != true) return 1;

}

return 0;

}
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while(still_something_to_do() == 1){

int steps = get_steps(actuales[0]);

while(steps > 0){

element_square(res,res);

steps--;

}

for(i = 0; i < n_prod; i++){

if(islast(actuales[i]) != true){

KSET0(out);

KSET0(out2);

compute_polynomialN(out, out2, actuales[i], i, MAXD, point_precomp,

point_precomp2);

element_ptr im_out = element_y(out);

element_set(im_out, element_y(out2));

element_mul(res, res, out);

}

}

for(i=0; i<n_prod; i++){

if(islast(actuales[i]) != true) actuales[i] = next(actuales[i]);

}

}

}
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/****************************

PUBLIC METHODS

*****************************/

void compute_miller(element_ptr out, lpoly *list, element_ptr Q, pairing_t pairing)

{

element_ptr Qbase = Q;

element_t Qx, Qy;

pptr p = pairing->data;

element_init(Qx, p->Fqd);

element_init(Qy, p->Fqd);

// Twist: (x, y) --> (v^-1 x, v^-(3/2) y)

// where v is the quadratic nonresidue used to construct the twist.

element_mul(Qx, curve_x_coord(Qbase), p->nqrinv);

// v^-3/2 = v^-2 * v^1/2

element_mul(Qy, curve_y_coord(Qbase), p->nqrinv2);

element_t tmp;

element_init(tmp, out->field);

element_set0(tmp);

element_ptr im_out = element_y(tmp); // e0 = x + iy

element_set(im_out, Qy);

element_t tmp2;

element_init(tmp2, out->field);

element_set0(tmp2);

im_out = element_x(tmp2); // e0 = x + iy

element_set(im_out, Qx);

precomp_miller(out, list, tmp2, tmp);

pairing->finalpow(out);

element_clear(Qx);

element_clear(Qy);

element_clear(tmp);

element_clear(tmp2);

}
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// ’compute_miller’, but adapted to multipairings.

void compute_multimiller(element_ptr out, lpoly *list, element_ptr Q[], int n_prod,

pairing_t pairing) {

element_t Qx[n_prod], Qy[n_prod];

element_t tmp[n_prod], tmp2[n_prod];

pptr p = pairing->data;

int i = 0;

for(i = 0; i < n_prod; i++){

element_init(Qx[i], p->Fqd);

element_init(Qy[i], p->Fqd);

element_mul(Qx[i], curve_x_coord(Q[i]), p->nqrinv);

element_mul(Qy[i], curve_y_coord(Q[i]), p->nqrinv2);

element_init(tmp[i], out->field);

element_init(tmp2[i], out->field);

element_set0(tmp[i]); KSET0(tmp2[i]);

element_ptr im_out = element_y(tmp[i]); element_set0(im_out);

element_ptr re_out = element_x(tmp[i]); element_set0(re_out);

element_add(im_out, im_out, Qy[i]);

im_out = element_x(tmp2[i]);

element_add(im_out, im_out, Qx[i]);

}

precomp_millers(out, list, tmp2, tmp, n_prod);

pairing->finalpow(out);

}
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Fig. A.4. In type F elliptic curves, only point-operation code is
modified in A.3

.

// Computes y*X when y in F_qd and X in F_qk

// The output is in F_qk

void point_mult(element_t e0, element_t x, element_t y) {

element_ptr re_x = element_x(x); element_ptr im_x = element_y(x);

element_ptr re_out = element_x(e0); element_ptr im_out = element_y(e0);

element_mul(re_out, re_x, y);

element_mul(im_out, im_x, y);

}

// Add an element x in F_q to a big element in F_qk

// Used when a polynomial is evaluated

void point_add(element_t e0, element_t y, element_t x){

element_ptr re_out = element_x(e0); // e0 = x + iy

element_ptr y_out = element_x(y); // e0 = x + iy

element_add(element_item(re_out, 0), element_item(y_out, 0), x);

}

// Computes x*Y when x in F_q and y in F_qk.

// Used when a polynomial in X is evaluated

void basic_mult(element_t out, element_t x, element_ptr y){

point_mult(element_item(out, 0), element_item(y, 0), x);

point_mult(element_item(out, 2), element_item(y, 2), x);

point_mult(element_item(out, 4), element_item(y, 4), x);

}

// Computes x*Y when x in F_q and y in F_qk.

// Used when a polynomial in XY is evaluated

void basic_mult2(element_t out, element_t x, element_ptr y){

point_mult(element_item(out, 1), element_item(y, 1), x);

point_mult(element_item(out, 3), element_item(y, 3), x);

point_mult(element_item(out, 5), element_item(y, 5), x);

}

// Computes x + y when x, y in F_qk

// Used when a polynomial in X is evaluated

void basic_add(element_t out, element_t x, element_t y){

for(int i=0; i < 6; i++){

element_add(element_item(out,i), element_item(x,i), element_item(y,i));

}

}

// Computes x + y when x, y in F_qk

// Used when a polynomial in XY is evaluated

void basic_add2(element_t out, element_t x, element_t y){ basic_add(out, x, y); }


