

INTERACTIVE

VIDEO CODING

Aleix Colom

Linköpings Universitet, 2013

Supervisors LiU: Ingemar Ragnemalm, Harald Naustch

Supervisor UPC: Josep Ramon Casas

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41810261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

CONTENTS

1. INTRODUCTION .. 4

1.1. Project purpose .. 4

1.2. Goals .. 5

1.3. Used tools .. 5

2. BACKGROUND KNOWLEDGE ... 7

2.1. Video Coding ... 7

2.2. Video complexity estimation ... 14

3. PROPOSED SOLUTION AND USED METHODS ... 18

3.1. Proposed solution .. 18

3.2. Video information extraction... 18

3.3. Frames extraction .. 19

3.4. Edges detection .. 20

3.5. Motion detection .. 23

3.6. Global complexity estimation .. 24

3.7. Graphical User Interface .. 25

4. METHODS EVALUATION AND FINAL IMPLEMENTATION 27

4.1. Introduction ... 27

4.2. References ... 27

4.3. Edges estimation .. 29

4.4. Global complexity ... 32

4.5. Full system ... 39

4.6. Fast version implementation .. 41

5. SYSTEM GRAPHICAL USER INTERFACE .. 43

5.1. GUI description ... 43

5.2. GUI implementation and functions integration ... 47

6. CONCLUSIONS .. 50

6.1. Overall evaluation.. 50

6.2. Goal accomplishment .. 50

6.3. Possible further work ... 51

7. BIBLIOGRAPHY AND REFERENCES ... 52

 3

 4

Chapter 1

INTRODUCTION

1.1. Project purpose

The aim and development of this project lie in the video coding field, not exactly in the

codification theory research but in the practical behaviour of video transcoders. Its

purpose is to implement an application to solve one of the common found problems

when a video has to be transcoded: finding the optimum coding parameters to get an

output video fulfilling all kind of requirements.

One of the possible solutions at this problem is to perform a trial and error

method. Given an input video and some requirements (regarding quality or bitrate, for

example), a good solution can be found after several transcodifications of the video,

changing some parameters each time. This solution is based on watching each

transcodification result, identifying the possible existing problems and guessing which

parameter can be changed (and how much) to improve the result. Then, a new

transcodification is done with these new parameters and the result is studied in the same

way as before, repeating the process as many times as it is needed.

Although a good result can be found using this method, there are two main

problems that lead to think on other approximations. The first one is the uncertainty of

getting a really good solution. Since the parameter changes are based on a human

perception about the transcoded video appearance, not all the different possibilities are

studied and the actual reasons of good or bad results are hardly known. But even if a

good solution can be finally found, this method has a second problem: the time to reach

this solution. That is because video transcoding is quite a hard work, in which the codec

has to take the optimal decisions after studying all kind of possibilities along the video

to ensure that a maximum video quality is achieved using the minimum amount of

bytes. Because of this, each transcodification requires a lot of time, which is not a big

problem if a single one is needed, but it is in this trial and error approximation, where

several transcodifications must be done to finally find a good solution.

Although the method explained above is not the only way to solve the problem,

it is useful to understand these two main problems that appear in the process. Therefore,

the tool to be developed needs to solve both issues in order to globally perform a good

solution to the transcoding process problems. The implemented solution is based on

three main points: preview coding, complexity estimation and interactivity. Short

sequences are coded several times, instead of transcoding the whole video, paying

special attention at the most complex parts and letting the user decide how the final

solution will be found.

 5

1.2. Goals

To sum up with the project purpose, three main goals can be defined, as introduced in

the last paragraph:

- Preview coding. Instead of transcoding the whole video in order to evaluate the

performance of a set of coding parameters, short sequences must be used.

Thereby, the first goal of the project is to implement an application which lets

the user to select short sequences and sets of coding parameters, and performs a

study to find the best ones.

- Complexity estimation. The second goal is to develop an algorithm that provides

a complexity estimation of a video sequence. This estimation must let the user

see which are the most complex parts of the video and select them to apply there

the preview coding.

- Interactivity. Finally, the two previous points must be related keeping a high

level of interactivity with the user. The program has to work perfectly fine

automatically, but it must give options to the user to select which coding

parameters to analyse, which parts of the video to select and what to do at every

moment.

1.3. Used tools

To develop this application, two main tools have been utilised to extract information

from the input video file, to develop and evaluate the methods and to implement a

Graphical User Interface to integrate all the parts.

1.2.1 FFMPEG

The first tool that has been used is FFMPEG, which is actually a whole free multimedia

software project. It has analysis and synthesis libraries and programs to handle any kind

of multimedia data and it also includes coding libraries and a container format. The

project started on 2000 and it is nowadays used in many worldwide audio-visual

projects.

In this project, FFMPEG is mainly used to extract visual information from the

source videos, to get information from the container format and to make all the needed

transcodifications, taking advantage of its command line program. It allows to

 6

externally generate any kind of command and then use it to run FFMPEG functions. It

is a quite useful software, supporting any kind of video formats and codecs.

1.2.2. MATLAB

MATLAB is the other mainly used tool. It is a numerical computing and processing

application, using its own programming language. In particular, it is commonly used in

image and video processing tools and in computer vision, because of its coding and

debugging capabilities, although many times the created programs are finally

implemented using other languages by the developers.

In the case of this project, MATLAB has an important role in three different

aspects. First of all, it has been the programming language used to handle FFMPEG

calls and to develop and evaluate all the used methods. Then, it has been rather useful in

the image processing part, applying filters and transformations to the input information

and processing all the results. And finally, taking advantage of its own Graphical User

Interface editor (GUIDE), it has been the used tool to implement the final GUI, where

all the developed parts have been integrated.

 7

Chapter 2

BACKGROUND KNOWLEDGE

To understand all the taken decisions during the project development, there is a need to

know some fundamentals about video coding. In this chapter, there is a brief review

about video coding techniques and formats and also about complexity estimation

methods and video quality measures.

2.1. Video Coding

2.1.1. Digital video coding review

All video codecs, although they can have their own aims and particularities, have a

common goal: to reduce the weight of the coding files while the video quality is kept as

good as possible. If there is not any compression technique applied to the input video, a

digital video file will weight too much to be stored or transmitted without problems,

hence the trade-off between compression and quality: video quality will be inevitably

reduced when the number of bits in the file is also reduced.

Image compression

Since video can be seen as a sequence of a large amount of images, the first step

in compression can be the study of how to reduce the amount of bits needed to represent

a still image. A raw colour image from an HD video will weigh, at least, 1920 width

pixels x 1080 height pixels x 8 bits/pixel x 3 colour images = 5.93 MB, while the same

image coded in JPEG format can weigh only about 120 KB, without losing quality

apparently. How is this possible?

Firstly, there is no need to keep the value of each pixel in each one of the three

colour images RGB. Instead, a transformation can be done in order to separate the

image brightness or luma (Y) from the image chrominance (Cb and Cr). This decreases

the correlation between the three images and it is proved that chrominance can be

downsampled by a factor of 2 or even 4, as it can be seen in Figure 1, without producing

significant changes in the image from the point of view of the Human Visual System.

This can suppose a first reduction of 50% of the number of bits.

 8

Figure 1 – Different types of chroma subsampling. Chrominance values may be interpolated from the ones before

subsampling.

Besides that, there is another source of weigh reduction: taking advantage of the

spatial redundancy in the image. This approach is based on the local stationarity in

small blocks inside the image. Since usually high frequencies are not present in most of

the image, but mainly only where an edge is present, pixel values are very similar if

only a few neighbour pixels are taken into account. To take advantage of this spatial

redundancy some transformation can be performed to the image, both in the space and

in the frequency domains. One of the well-known methods is to split the image in small

blocks and apply then a transformation to the frequency domain at each block. It can be

done with the Discrete Cosine Transform (DCT), which produces, from 8x8 pixel

blocks, 64 new coefficients representing the previous block by 64 different

combinations of different frequencies sinusoids. The image can be obtained back

without losing any information if all the 64 coefficients are kept.

If the previous assumption was true, only a few of the total number of

coefficients at each block will have a significant value: the ones that represent the

lowest frequencies. Therefore, if only these few coefficients are kept and the high

frequency ones are set as zero (even if they had a small positive value), a high

compression ratio will be achieved without losing a lot of information, as seen in Figure

2. It can be done with a quantification matrix.

 9

Figure 2 – Quality los by DCT quantization [1]. a) Original image – 100% coefficients. b) 16% coefficients. c) 9%

coefficients. d) 6% coefficients.

Finally, how all the coefficients are stored is another way to increase the data

compression. The coefficients of the matrix can be scanned in a particular path [2],

trying to produce a new array in which the non-zero coefficients are placed in the

beginning, whereas the zero ones are placed at the end. Besides that, this array can be

coded using an Entropy Coder, like Run-Length, which also reduces the number of

needed bits, because of the large amount of zeros in the array.

Image prediction and motion compensation

After reviewing how still images are compressed, the same can be done with

video files, which are nothing but several consecutive images. Apart from the space

one, there is another important redundancy present in video and it precisely appears

when this several consecutives frames are taken into account: the time redundancy. It is

obvious that consecutive frames will be similar when it is known that the most common

frame rate values are between 25 and 30 frames per second.

Thus, given a single compressed frame, it seems better to compute the difference

between this frame and the next one and store this difference (or prediction error), than

to store the new frame itself. After that, this second frame can be got back by adding the

 10

stored difference to the previous coded frame. Then, all the following frames can be

also predicted from the previous compressed one, producing a higher error when they

are further from it. Actually, a frame can also be predicted from a future one, if it is

more similar to it than a previous one. It only results in having to decode the future

frame first, although it will be displayed later.

What actually happens is that most of the codecs implement all these predictions

in a lot of independent consecutive frames along the video, which are called Group of

Pictures (GOP), which is visually explained in Figure 3. At each GOP there is a frame

which is coded by itself, without taking into account the temporal redundancy. It is

called I frame. Then, there are several P frames, which are all predicted only from this I

frame. Finally, a lot of frames are placed between I and P frames or between P frames.

They are called B frames because they are bidirectional predicted from past and future

frames.

Figure 3- GOP example. Frames 4 and 7 are predicted from frame 1. Frames 2 and 3 are interpolated from frames 1

and 4, and so on. In frame number 10, a new GOP starts.

With this approach, there is a high compression when there are no big

differences between close frames. But what usually happens is that, even if the objects

in the scene do not quickly change, they don’t appear always in the same zone of the

picture because they move inside the scene or because of the camera movement. For

this reason, most of the encoders use a second tool when a frame has to be predicted

from another one: the motion compensation. Splitting the frame to predict in Macro

Blocks (MB), each MB is compared to all zones in the reference frame with the same

size as the MB, moving it along al the image. When the most similar zone is found, the

difference between the MB and the reference found zone is computed, instead of

subtracting the MB values from the same position in the reference frame.

It results in having to store the position of the reference zone, which is called

Motion Vector, but on the other hand it helps to reduce the difference between a frame

to be predicted and the reference one. Because of having the frame split in a lot of MB,

each MB can be predicted in a different way from the others. For example, in a B frame,

there can be frames predicted either from a previous one, a future one or by themselves,

if there is not any similar block in anyone of the references.

 11

Therefore, after this technique is applied, instead of several consecutive frames,

there is a single frame to be coded itself and a lot of prediction error frames, which will

have lower values than before. In any case, the DCT can be applied to all of them,

providing a high compression rate due to all the used tools. Both space and time

redundancies are taken into account, in what is called a hybrid encoder, to reduce the

amount of bits without losing too much information.

2.1.2. H.264

In the case of this project, a specific coding standard will be used: H.264. It means that

it will be the compression format in which the videos will be transcoded and, because of

that, all the developed methods to estimate the video complexity will be based on H.264

features. However, due to the similarities between H.264 and most of the previous and

further standards also based on a hybrid redundancy reduction, the final implementation

can also work if other standards are used.

H.264 is a video compression standard that was completed in 2003. After the

previous standards H.262, which is used in DTT, and H.263, which was designed for

low bitrate environments, H.264 was thought to increase the video compression

efficiency and to provide more flexibility in compression, transmission and storing. This

improved compression performance results on higher computational cost to encode the

video. However, H.264 does not specify how to encode the video, but only defines the

bit stream syntax and the way to decode it. It was implemented by the Joint Video Team

(JVT), involving the Moving Picture Experts Group (MPEG) from ISO and the Video

Coding Experts Group (VCEG) from ITU. Its name corresponds to the given one by

ITU (ISO named it MPEG-4 part 10), but is also commonly known as Advanced Video

Coding (AVC).

Intra prediction

Although H.264 does not suppose any great change from past coding standards,

it includes some important improvements in the already known coding techniques. The

first topic to review is the inclusion of intra prediction in I frames. It means that, in

those frames which are not predicted from other ones, it appears an internal prediction

of MB in the frame from other already coded MB. Actually, the pixel values are

predicted only from the neighbour pixels in the upper and left already coded MB.

Regarding the Y (or brightness) images, it can be done either for whole 16x16

MB or for 4x4 blocks into each MB. In the case of 4x4 blocks, there are 9 different

kinds of prediction, depending on the used pixels and the prediction direction. In Figure

4, it can be seen how the information from the reference pixels is used to create the new

block prediction.

 12

Figure 4 – Prediction from neighbour pixels for the nine intra prediction modes for 4x4 blocks [3].

Besides using 4x4 MB, a whole MB may be also predicted from the neighbour

pixels from previous MB. In this case, only 4 different prediction modes are available,

instead of the 9 present in 4x4 blocks: from the upper pixels, from the left pixels, as the

mean of the upper and left pixels and as an estimated plane from upper and left pixels,

as shown in Figure 5.

Figure 5- The four prediction modes for 16x16 blocks5.

Then, an independent prediction is realized at each 8x8 chrominance MB,

although both Cb and Cr blocks will be predicted in the same way. Each 8x8 block

represents an original 16x16 block, downsampled both vertically and horizontally by a 2

factor. In this case, the same 4 modes as in the 4x4 Y prediction may be selected.

In all the previous cases, the chosen prediction mode is selected after a rate-

distortion analysis. Furthermore, taking advantage of the correlation between neighbour

blocks, the system predicts the most probable prediction mode, from the modes selected

in the previous blocks. It helps to reduce the needed amount of bits in case the most

probable mode coincides with the actual best one.

Inter prediction

The second topic to review is the inter prediction: the way in which MB in B and

P frames are predicted from I and P frames. In this case, 16x16 MB can be split in more

different ways than in intra prediction, to find the one which provides best results.

Specifically, 16x16, 8x16, 16x8 and 8x8 partitions can be applied at each MB [4].

Moreover, each 8x8 partition can be also divided into 8x8, 4x8, 8x4 and 4x4 sub-

partitions, as it is shown in Figures 6 and 7, providing what it is called tree-structured

motion compensation. Regarding chrominance MB, they have the same shape and are

 13

pointed to the same zones as the brightness ones, except that both size and vectors are

half of the ones in brightness blocks, due to downsampling.

Figure 6 – Possible partitions for 16x16 MB for inter prediction

Figure 7 - Possible sub-partitions for 8x8 partitions

The large amount of possible partitions results on a higher signalling cost, but it

helps to achieve lower values in the prediction error. In practice, what actually happens

is that the most homogenous zones are predicted with larger partitions, while in the

most complex zones smaller blocks are needed to reduce the prediction error. In

addition, in a similar way as in the intra prediction, Motion Vectors (MV) are predicted

from the neighbour blocks, and only the difference with the actual MV has to be stored.

To improve the prediction result, sub-pixel motion vectors are used. This means

that the vector values are not integers, with a precision up to 1/4 pixels. Therefore,

reference frames have to be interpolated by a factor of 4, because those sub-pixel values

do not actually exist.

Other features

Some last features can be described to finalize this review. First of all, H.264

does not actually use a Discrete Cosine Transform (DCT) when I frames or error frames

have to be coded. Instead, it uses an Integer Cosine Transform (ICT), which is an

approximation of DCT that optimizes the computational cost of all calculations, because

only additions and binary shifts are needed when each block is multiplied by the

transformation matrix [5].

Besides that, H.264 includes a reconstruction low-pass filter. This filter is

applied in the block boundaries after the inverse transformation of the blocks, where

 14

there can appear high artefact gaps between consecutive pixels. This helps to improve

the appearance of the decoded frame, as it can be seen in Figure 8.

Figure 8- The same image with (lower) and without (upper) using a reconstruction low-pass filter [6]

Finally, in a higher level, two kinds of entropy coding are used in H.264 to

encode all the information (signalling, transform coefficients, motion vectors, etc.):

Context Adaptive Binary Arithmetic Coding (CABAC) and Context Adaptive Variable

Length Coding (CAVLC) [7][8]. They define some models, with different probability

distribution of each bin, to perform the arithmetic codification. Thereby, the coder

chooses the model depending on the context (and also adapts the models to the context)

to improve the coding efficiency at each particular situation.

2.2. Video complexity estimation

Quality, complexity and bitrate are three highly related concepts in video coding. The

more complex is a video, the more bits will be needed to encode it maintaining the same

quality. Thus, there is a hard trade-off between bitrate and quality, which is differently

solved depending on the context. Usually, bitrate availability defines the coding limits

and quality is tried to be maximized within this bitrate boundary, depending on the

video complexity. In fact, if the video is coded with Constant Bit Rate (CBR), quality

will fluctuate in function of the complexity. Even if a Variable Bit Rate (VBR) is used,

there may be too complex to code parts to ensure that a constant quality is reached along

the video.

 15

Unlike bitrate, video quality and complexity are two non-well-defined concepts,

which are difficult to measure. In this section, some objective and subjective video

quality measures will be reviewed, since it is hard to build a model that is able to

measure video quality in terms of Human Visual System, which is actually the final

target of all audio-visual codification process. Finding a good relationship between

subjective and objective measure will speed up the quality evaluation of videos and can

be used in the case of this project to estimate the video complexity, since they are highly

related.

Objective measures

The first problem when defining objective video quality measures is that it can

only be done by comparing original frames with coded frames. This means that the

result is highly dependent on the original frames quality and it does not actually

represent video quality but only measures the difference or degradation of the coded

image from the original one. However, assuming good quality in the original video, the

distortion measure of the coded video provides a good representation of the quality loss.

Mean Square Error (MSE) is one of the possible ways to measure the difference

of two frames. It averages the sum of the square difference between two images at each

pixel. Then, combining the given result of each frame, a single value can be found for a

whole sequence. A second approach is to use the Signal to Noise Ratio (SNR),

considering the mean of the original frame as Signal and the MSE as error. However, in

case of image processing, another method is more commonly used: Peak Signal to

Noise Ratio (PSNR). In this case, the highest possible pixel value is considered Signal,

while the MSE is considered Noise again. With PSNR, a better approximation to the

Human Visual System behaviour is obtained, compared to MSE, but it doesn’t actually

model how changes in images are finally perceived.

To improve the measure of the difference between two images, Structural

Similarity (SSIM) method was implemented. The implementation of all this techniques

can be compared in Table 1. This method considers the distortion as the changes in the

structural information in the image, whereas previous methods only looked for pixel

differences or errors between them. To do so, SSIM value is obtained by calculating

mean, variances and covariance matrices of both images.

 16

Where means average, means covariance and are constants to stabilise the division.

Table 1 – Objective quality measures algorithms

Subjective measures

On the other hand, subjective quality measures are very hard to obtain, since

they cannot be automatically calculated by any formula. Instead, there is a need to ask

people to watch and give a score to each video. However, the obtained results are much

more relevant than the ones obtained by automatic methods, because of they actually

represent how the video is perceived by the Human Visual System, and there is not any

dependence on a previous original sequence.

One of the well-known tests for measuring subjective quality in many audio-

visual systems is the Mean Opinion Score (MOS). In the case of video, several

sequences are shown to a large group of people. Depending on the aim of the test, that

sequences could be either the same scene coded with different parameters or different

scenes coded with a specified parameter set, in function of what is wanted to be studied.

In any case, all that sequences need to be shown in the same environmental conditions

and each one of the evaluators have to give a score between 1 and 5 about the video

quality. If there is not any perceptible distortion, a 5 must be given, while if the

distortion is completely annoying, the score must be 0. Then a single value can be

calculated for each test sequence by averaging the result of each participant.

Relationship between objective/subjective measures and with video complexity

Since it is quite difficult to evaluate video quality by subjective measures, some

other objective methods must be found if video quality is wanted to be measured in real

time. As introduced before, video quality and scene complexity or criticality are two

high related concepts, since given the same bitrate availability, the more complex to

code is a scene, the less visual quality is achieved. Thus, it seems that the same

approaches can be valid to estimate both quality and complexity.

Although the video coding process involves so many parts which have nothing

to do with it, the presence of a lot of objects in a scene and their movement will clearly

increase the complexity of a scene. That is because, as a result of the previously

reviewed concepts, high frequencies in a frame produce more transformed coefficients

to code, and high and fast movements in close frames reduce the capability to predict a

frame from previous or future ones.

Because of that, video complexity can be estimated by analysing how much are

those two complexity increasing factors present in a scene. For example, some filters

can be applied to find high frequencies at each frame and also the changes between

 17

close frames can be estimated [9]. Another approach to estimate the still complexity and

the presence of movement can be done from the point of view of the coded stream. For

example, the complexity inside a frame can be studied by the size of the intra coded

blocks in the frame and the movement can be analysed by looking at how many blocks

are forward or intra coded [10]. In the case of this project, the implemented solution is

based on the first approach, which is more related to the image processing field, while

the second one is closer to the information coding theory.

 18

Chapter 3

PROPOSED SOLUTION AND USED

METHODS

3.1. Proposed solution

Since the aim of the project is based on three points (complexity estimation, preview

coding and interactivity), the final solution has to contain developed tools and an

implemented interface specifically thought to fulfil all the demands of all three bases.

To begin with, a good complexity estimation has to be found. As seen Chapter 2,

it seems that there are clearly two complexity increasing sources, which can model both

time and space redundancy reduction processes: high frequencies in frames and high

differences between frames. What is proposed is to extract some frames along the

sequence and process them to get information about the presence of edges and high

frequencies and also about the changes between close frames. Then, this must result in a

continuous complexity measure along the video, so the most complex parts can be

found.

Once these complex parts are found, they can be used in the preview coding

part. In this part, short sequences of the video are chosen to be transcoded with different

coding parameters, in order to find the ones that accomplish with previous user

requirements. That is why finding the most complex parts in the video is so important:

if a set of parameters works well in these parts, it would also work well in the rest of the

video, while a good behaviour in a random part would not ensure the same in the

complex ones. Thereby, in the final interface there must be a part in which user may use

the found complex zones to test different sets of coding parameters there.

Besides this, it is important to let the user interact with the program and not to

restrict the application execution to an automatically generated solution. The user must

be allowed to choose all the possible coding parameters, to ask for transcodifications at

any part of the video (and not only at the most complex ones, if he or she thinks that it

can be also useful), to do it as many times as desired and to easily see the results. In this

case, the user will truly find a way to solve the initial coding problem of large

transcoding times and uncertainty of finding a good solution.

3.2. Video information extraction

 19

First of all, some information is needed to be found out of the source video, to be

shown in the interface as well as to be used by some of the developed functions: input

format, video duration, frame rate, etc.

This information can be extracted from the video using FFMPEG functions by a

short processing of the obtained information. The procedure is shown in Figure 9.

Figure 9 - Video information extraction process description and example

3.3. Frames extraction

To extract frames along the video, a FFMPEG function is used. This function allows to

select the exact instant from which a frame must be given along with the frame format

and size. Its syntax is described in Figure 10.

Figure 10 – Image extracting syntax. 1) Timestamp of the frame to extract. 2) Input path and video file name. 3)

Number of consecutive frames to extract. 4) Extracted image size in pixels. 5) Output path and image filename.

 20

The goal is to get all the desired frames extracted and sorted in a directory to

then analyse and process them as it is explained in next sections and Chapter 4. The

result is a set of frames that, strategically distributed along the video, give a good

representation of the video features and, therefore, can be used to estimate the video

complexity. One of the particular goals in the case of the frame extraction is to find the

best distribution, which produces good video representation with low number of frames,

since it would be the main bottleneck of the whole process, as it will be later explained.

Anyway, to show some possible solutions, different frame distributions can be seen in

Figure 11.

Figure 11 – Three possible distributions of the extracted frames. At each studied point a) a single frame is extracted

b) two consecutive frames are extracted c) a set of six frames are extracted to get information from a larger part.

Since a single FFMPEG call is needed for almost each extracted frame, there is

an obvious need of a loop implementation in MATLAB. This can be done thanks to the

previously found video information by selecting the different instants at each iteration.

3.4. Edges detection

Once all frames have been extracted, it is time to process them, to find both high

frequencies and high changes between close frames. In the case of high frequencies,

some filters have been tested in order to see which one provides the best approximation

of the presence of high frequencies or edges, which will increase the coding complexity.

These tested techniques are described below, using the image shown in Figure 12 as an

example, while the evaluation process is described in Chapter 4.

 21

Figure 12 – Example image

3.4.1. Sobel filter

Working as a high-pass filter, Sobel operator is kind of an approximation of the

gradient. In this case, a two dimensional 3x3 implementation has been used, as it is

shown in Equation 1.

Equation 1 – Two dimensional Sobel filter coefficients.

The result of applying this filter is a new image where high frequency zones are visible:

object edges, shadows and complex textures, as it can be seen in Figure 13.

Figure 13 – Result of applying a Sobel filter in an image.

 22

In the case of this project, to quantify the presence of high frequencies, the mean of all

the pixels in the result image is calculated.

3.4.2. Prewitt filter

Another well-kown filter in the image processing field has also been tested: Prewitt

filter. It is almost the same as the Sobel one, but with a modification of the impulse

response, as it can be seen in Equation 2. The result, which is also very similar to

Sobel’s, is shown in Figure 14.

Equation 2 – Two dimensional Prewitt filter coefficients.

Figure 14 - Result of applying a Prewitt filter in an image

As done before, the mean of all pixels is calculated.

3.4.3. Fourier Transform

Besides classical image processing filters, a method based on the Fourier Transform has

also been tested. A Fast Fourier Transform has been firstly applied to the extracted

images, and the high frequency regions are studied; in particular, the mean of the values

in the four corners, where the highest frequencies are present. The result can be seen in

Figure 15.

 23

Figure 15 – FFT base method. a) FFT is applied to the image and b) only high frequencies are taken into account.

Then, the mean of these values is computed.

3.4.4. MATLAB edge detection functions

Taking advantage of the utilization of MATLAB as the developing tool, some already

implemented functions from its toolboxes have been also tried. They are thought to be

used in edge detection applications and the result images are similar to the ones

provided by Sobel and Prewitt simple implementations seen before. The studied ones

are Sobel, Prewitt, Roberts, Laplacian of Gaussian and Canny aproximations. All of

them include a decision threshold to see whether an edge will be preserved or not, in

function of the values in the neighbour pixels.

In Figure 16, the results of the application of these filters are shown.

Figure 16 – Result of applying MATLAB edge detection function. a) Sobel version (very similar to Prewitt and

Robert ones). b) Laplacian of Gaussian version. c) Canny version.

3.5. Motion detection

Besides looking for high frequencies, changes between close frames must also be

estimated. In this case, an image cannot be processed alone because it does not carry

 24

any motion information by itself. Instead, at least two frames must be selected at each

time, to try to quantify the amount of movement present from the first one to the second

one.

In fact, different combinations of close frames have been tried. At each studied

point, some frames have been extracted from a few milliseconds to almost a second

from the first reference frame. Then, the difference between all the images, two by two,

have been calculated and a single value has been given to each subtraction, by

calculating the mean of the resulting image. This process is illustrated in Figure 17,

supposing a frame extraction distribution like in Figure 11 c).

Figure 17 – a) Supposed frame extraction distribution in a point. b) Resulting matrix, where M(x,y) = mean(framex-

framey)

The evaluation process to select which frame differences are better to be used is

described in Chapter 4.

3.6. Global complexity estimation

After all needed frames are extracted and processed, two vectors are available by

combining the values at each extracted point: edges estimation (EI) and motion

estimation (MI). Webster and Wolf [9] developed an algorithm to give a single value to

a whole sequence after processing all frames on it. Although in this project the aim is to

obtain a continuous vector to represent the complexity along the sequence, some

 25

methods are based on Webster and Wolf ones. For example, four different vectors are

computed before combining them in a single vector: EI, MI, EI·MI and EI’, in a similar

way as in their algorithm. EI·MI is just the multiplication of both vectors, component by

component, to obtain a new vector where the parts in which there is a high value in both

EI and MI are emphasised. Then, the derivative of EI (EI’) provides another

approximation about how much the frames are changing along the video, but in a

processed domain in this case.

Then, the best linear combination of these four vectors has to be calculated, in

order to find the best approximation of the complexity along the video, in a single

vector. This will be explained in Chapter 4.

3.7. Graphical User Interface

The Graphical User Interface will suppose the final integration of all the developed

parts in the project. Therefore it is responsible of providing solutions to fulfil the three

main goals of the project: preview coding, complexity estimation and interactivity.

Although the whole development process will be explained in Chapter 5, a first

scheme of the proposed appearance can be seen in Figure 18. First of all, the upper part

will be used for the main menu and to show information, and the main coding options

will be introduced in the left section. Then, preview coding and complexity estimation

implemented parts are represented in two clearly separated sections. In the complexity

estimation section, user will be able to ask for the estimation and to visualise the results

by looking at the shown graphics and even at each extracted frame. Then, in the preview

coding part some parameters can be chosen and the most complex found parts can be

used to apply there the transcodifications. This is where the interactivity appears,

because user will be able to decide how all the process will be done, by deciding how

many transcodifications will be performed, in which points and with which coding

parameters. The resulting previews will be shown in this part and user will be able to

play them at any time.

 26

Figure 18 – Schema of the final GUI.

 27

Chapter 4

METHODS EVALUATION AND

FINAL IMPLEMENTATION

4.1. Introduction

In this Chapter, the methods presented in Chapter 3 are optimized and evaluated. First

of all, the reference obtaining process will be explained. Then the optimization of edge,

motion and global complexity estimation will be described. Finally, the global system

behaviour will be analysed, both for the full system and for a fast implemented version,

which will also be explained.

The system development was mainly thought to work with short videos, from

one minute to fifteen. However, a further implementation for longer sequences will be

totally based on the described methods and procedures. Since short videos are used, an

arbitrary value of 100 studied points along the videos has been selected. It has been

studied that it provides a good temporal representation for videos of this kind of

duration. This single 100 components vector will be the final complexity estimation,

and it will be obtained by combining both edge and motion information vectors.

What will be explained in following sections is how the information is extracted

at each one of these 100 studied points to obtain two vectors with edge and motion

information. Several frames will be extracted at each point and they will be processed,

generating several values. These values are the ones that, properly combined, will

provide a single value for each one of the two wanted vectors.

4.2. References

When the complexity estimation process has to be evaluated some references are needed

to compare with, in order to know how close the estimations are to the real video

complexity. However, video complexity is not a well-defined concept and it is hard to

know how those references can be obtained.

Therefore, an experimental method has been chosen to find these references. First of

all, ten video files have been selected. There are both real and synthesized videos, from

movie trailers, short movies and engineering rendered videos. Then, a single complexity

estimation vector has been found for each video, following the below described steps:

 28

1. The video is transcoded using FFMPEG with a higher variable bitrate.

2. Frame bitrate is extracted using FFMPEG functions. The resulting vector is

plotted with the value of all frames along the video. The goal is to obtain a bit

distribution which shows a higher bitrate in the more complex zones. If the

distribution is approximately flat or clearly not connected with the a priori most

complex zones, a new bitrate is chosen and step 1 is repeated.

3. Frame types (I, P or B) are extracted using FFMPEG functions. GOP sizes are

calculated and the previous vector values are averaged at each GOP. This is

done because bitrate vector has high changes between close frames, since I

frames bit cost can be over twenty times higher than B or P frames one in the

same GOP.

4. A low pass filter is applied to the new vector. This reduces the flatness of large

GOPs zones and produces a new vector which is easier to be compared with the

obtained complexity estimation. Filter impulse response size has to accurately be

chosen in order to remove low undesired fluctuations but keep separated the

different complex zones.

5. The final result is exhaustively compared with the displayed video, in order to

identify the higher values in the vector with complex scenes in the video.

Obviously, Human Visual System cannot know how complex to code a scene is

for an encoder, but it helps to identify bad bitrate distributions due to other

problems. If the result is not good enough, all process is repeated from step 1.

These steps are repeated for each one of the reference videos, obtaining ten

complexity references. The process is illustrated in Figure 19. It has to be said that these

references do not exactly represent video complexity, but are adapted to be compared

with the complexity estimation.

 29

Figure 19 – Reference obtaining process. a) Frame bitrate extraction. b) Bitrate plot. c) GOP averaging. d) Low pass

filtering.

4.3. Edges estimation

4.2.1. Evaluation method

In this case, simple references can be used in the evaluation process. Since JPEG format

also uses a DCT approach to encode still images, the file size of JPEG images directly

gives an approximation of the image complexity. Therefore, applying the before

described methods and comparing the obtained result to the size of the images can be a

fast evaluation process. To do it, 2000 still images have been tested with all methods

described in Chapter 3 (Sobel, Prewitt, FT, MATLAB Sobel, MATLAB Prewitt,

MATLAB Roberts, MATLAB LOG, MATLAB Canny) to compare the results with

their actual file size.

However, the dynamic range of the file sizes values in bits was highly different

from the results given by all methods. This makes the comparison very hard, since

changes in the values will not mean the same in the two vectors to compare.

Normalizing them by the mean and the standard deviation could be a solution for that

kind of problems, but in the case of this project, the given results were not good enough

yet.

 30

For this reason, another comparison method was implemented. Considering each

vector of N samples, a new value from 1 to N was given to each component, in function

of the order position if all the components of the vector were sorted by its value. An

example can be seen in Figure 20. If this procedure is applied to both vectors, the new

dynamic range is the same for them (since they both had N values) and the comparison

can be performed. Obviously, it changes the actual values of the vectors, but it keeps the

relative value within each vector and that is what is actually wanted to estimate.

Figure 20 – New transformation method illustration. An input vector (a) of any dynamic range is transformed in a

new vector (b) with integer values from 1 to 8, which is the vector length, in function of the relative value of the

components.

Then, the comparison method can be described in the following steps:

1. For each studied method, two vectors of 2000 components must be compared.

The first one contains the values of the image files coded in JPEG format. The

second one contains the results of applying the specific method to each image.

As explained in Chapter 3, the values are the mean of the resulting image after

applying the corresponding filter.

2. Since the two vectors have very different dynamic ranges, the previous

described transformation is applied. After that, there are two new vectors with

values from 1 to 2000.

3. The difference of the two vectors is calculated component by component, and

the mean of the new differences vector is computed. This will be the value

assigned to the corresponding method. The lower that value is, the higher the

correlation between the two original vectors will be.

Moreover, in the case of MATLAB edge detection function, an additional process is

performed, since there is the option to select a detecting threshold for the found edges.

For this reason, this parameter is optimized by applying the previously described

procedure using a large number of values for this threshold, as described in Figure 21.

 31

Figure 21 – Optimization of the detection threshold for ML Sobel. Many values are tested within the ranges from 0-1

(a) to 0.01-0.03 (d).

4.2.2. Results

Once the evaluation method is described, it is time to see the obtained results, in Table 2

and Figure 22.

METHOD RESULT

Sobel 95.9

Prewitt 111.9

FT 509.1

ML Sobel 136.1

ML Prewitt 136.1

ML Roberts 139.3

ML LOG 131.1

ML Canny 212.2

 32

Table 2 - Results

Figure 22 – Results plot

The best result is obtained using a Sobel filter. This is quite a good fact for the

project development, since applying a simple 3x3 filter to the images is a reasonably

easy task, in terms of computing cost. Prewitt filter and MATLAB edge detection

function provide slightly worse results, while FT based method result is clearly worse.

4.4. Global complexity

4.3.1. Introduction

Once the edges estimation has been done, four vectors are available to work with in

order to find a global complexity estimation single vector, as it was explained in

Chapter 3. They are Edge Information (EI), Motion Information (MI), the product

EIxMI and the derivative of EI, EI’. By combining the value of all four vectors, a good

estimation of the video complexity must be found. To find the best way to do it, the

obtained references before described have been used to test many linear combinations of

the four vectors.

In addition, there are two weighting vectors which must also be optimized. As

explained in Chapter 3 in the section of image extraction, different possibilities were

possible, regarding the number of extracted images at each point and their distribution.

Sobel Prew itt FT ML Sobel ML Prew itt ML Roberts ML LOG ML Canny
0

100

200

300

400

500

600

 33

Finally, the following distribution was decided to be applied for the studied points at

Frame N: [Frame N, Frame N+1, Frame N+2, Frame N+5, Frame N+10, Frame N+20].

It has been chosen because it combines a reasonably reduced number of extracted

frames per studied point while it provides a representation of the information of almost

a second of the video. Then, the two described methods for edge and motion

information detection are applied to all images. Thereby, there are six values of Edge

Information and 15 for Motion Information (all the possible subtractions, two by two) at

each studied point. However, a single value must be obtained for both parameters and

thus all the values must be averaged. To do it, different weighting matrices have been

tested, as it is shown in Figures 23 and 24. This means that, apart from testing many

linear combinations of the four available methods, the different weighting vectors for EI

and MI have to be tested for each combination too, since EI and MI vectors are

constructed by averaging all the values at each point.

Figure 23 – Edge information weighting procedure

 34

Figure 24 - Motion information weighting procedure

4.3.2. Evaluation method

In total 131760 combinations have been tested and evaluated for each one of the ten

reference videos, between weighting vectors of EI and MI and linear combinations of

the four available vectors. To find the best combination, two measures were calculated.

The first one was the accuracy in detecting complex zones. It is just the rate of the well

found zones from the ones labelled in the references, as it is explained in Figure 25.

However, different combinations could produce the same result, and it gives no

information about the order of complexity among the complex zones. For this reason, a

second measure was added. It takes into account the value of the estimated vector at the

exactly moment were a complex part is marked at the reference. Then, the relative

difference of the values between the reference and the estimation is measured in exactly

the same way as with the edges estimations: a value is given from 1 to N and the

differences are calculated component by component. It is illustrated in Figure 26. Then,

the mean of the resulting subtracting vector is calculated. By using both two measures,

the best combination can be found from all the calculated ones.

 35

Figure 25 – Accuracy measuring. a) The reference with the five most complex zones marked in green. b) The

obtained complexity estimation with the found five most complex zones. c) Both signals are compared in order to

calculate the accuracy. In this case, 4 out of 5 complex zones were found.

Figure 26 – Relative difference of the most complex zones. In red, the order of the five found zones in the reference.

In blue, the order of the values of the complexity estimation vector in the same instants (note that they can be

different from the five most complex found zones)

Some other parameters have also been optimized in this process. They are

related to the way in which the signals are processed in order to detect the most complex

 36

zones. For example, a low-pass filter is applied to the obtained signal and then a

MATLAB function is used to find the vector peaks. This function includes a parameter

to set the margin in which two different local peaks will be considered part of the same

peak. The filter width and the margin value have been manually optimized by a trial and

error procedure, to ensure a good behaviour in all kind of videos.

Besides that, the width of the labelled zones in the references is an important

point to take into account when the accuracy is calculated. That width has been chosen

in order to ensure that a point will be considered well found only if it is close enough to

the peak.

4.3.3. Results

After testing all the combinations, each one of them has a value of accuracy and another

of relative difference associated, as it can be seen in Figure 27.

Figure 27 – A first representation of all combinations results

In Figure 28, two different kinds of ordering the combinations are shown: by the

accuracy and by the relative difference. It is clear that the dynamic range of the values

of the non-sorted parameter of the best combinations in the sorted parameter is too large

to easily find a good combination for both parameters.

0 0.5 1 1.5 2 2.5 3

x 10
5

0.4

0.5

0.6

0.7

0.8
Accuracy

0 0.5 1 1.5 2 2.5 3

x 10
5

2

2.5

3

3.5

4
Relative difference

 37

Figure 28 – All combinations sorted by accuracy (a) and relative difference (b).

For this reason a two-step optimizing process has been followed. First of all, the

combinations with best accuracy have been selected, without taking into account the

relative difference of the peaks. It makes sense since the accuracy is the most desired

parameter to be optimized. Then, all that good combinations are sorted by the relative

difference, as it is shown in Figure 29. Finally, only the ten best combinations are

selected. This ensures that the final studied combinations provide a good result firstly in

accuracy and also in relative difference of the peaks.

Figure 29 – a) The combinations with best accuracy, sorted by the relative difference. b) The ten overall best

combinations.

Once the best combinations are found, it is time to study them. As it can be

observed in Figure 30, the first eight combinations provide exactly the same values of

accuracy and relative difference. For this reason, they will be the only ones taken into

account.

 38

Figure 30 – Final results of the best eight combinations

In Table 3, the descriptions of these combinations are shown.

N W_EI_I W_MI_I Linear combination

1 4 1 [3 5 5 5]

2 4 1 [3 5 6 5]

3 4 1 [3 8 7 7]

4 4 1 [5 8 8 8]

5 4 1 [3 8 9 8]

6 4 1 [6 10 9 9]

7 4 1 [6 10 10 9]

8 4 1 [6 10 10 10]
Table 3 - Weighting vectors and linear combinations that provide the best results

It seems clear that the 4
th

 edge weighting vector and the first motion weighting

vectors are the best ones. However, it is difficult to decide which linear combination

should be selected. In Figure 31, all the combinations haven been normalized and

represented together (they have been actually normalized during the test). It can be seen

that the relative values of the vector components are very close and, since calculating

the mean of all vectors will not ensure a best performance, combination number two has

been arbitrarily selected.

1 2 3 4 5 6 7 8
-1

0

1

2
Accuracy

1 2 3 4 5 6 7 8
1

2

3

4
Relative difference

 39

Figure 31 – Representation of the normalized 8 best combinations. They are all very similar.

With these results, the optimum parameters can be fixed. For the edge

estimation, the best weighting matrix is [30, 20, 10, 5, 2, 1], which calculates the value

taking into account all six images, but giving more importance to the ones which are

close to the studied point. In the case of the motion information, [1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0] vector is selected. It means that it only uses the subtraction between

the actual frame of the studied point and the immediately following one to create the

estimation. Finally, EI, MI, EIxMI and EI’ vectors will be combined in the following

way: [3 5 6 5].

4.5. Full system

Although the final integration of all the functions in the Graphical User Interface will be

explained in next Chapter, a first evaluation of the system behaviour can be previously

done.

4.4.1. Time evaluation

The needed time to complete a full transcoding process highly depends on the selected

video and on the used processor specifications. However it can be compared with the

needed time if the process must be done with a trial and error procedure, as improving

this time is one of the main goals of the project.

Firstly, this trial and error time will be calculated, testing the process with a

short video which lasts 143 seconds. A full transcodification of this sequence will take 4

time units (expressing it in seconds is meaningless since it depends on the processor, as

explained). In one of the best assumptions, the user will need at least three trials to get a

good final solution. For example, with the two first attempts the user could find two

boundaries of too much and insufficient quality, while in a good choice the third one

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

 40

could fulfil the requirements being placed between the two previous ones. This means

that 12 time units will be needed to complete the process.

With the implemented application, a first step of complexity estimation will be

needed. This estimation will last 5 time unites with the same video. However, several

previews can then be quickly generated. For example, creating 8 different previews with

different parameters will last 1 time unit. Finally, the whole video must be transcoded

only once, adding 4 time units to the process.

As it can be seen in Figure 32, the traditional procedure would last 12 time units

in total, while by using this application the process can be done in only 10 time units. In

addition, the larger the videos are, the higher the time to transcode them is, while the

estimation process time can be almost the same as before. For this reason, the difference

between the two methods will be increased if the video duration is also increased.

Finally, it has to be said that although these presented values have been empirically

measured, it is hard to establish a time relation between the two methods, since it also

depends on the user specifications when the video has to be transcoded, apart from the

video duration and the processor specifications.

Figure 32 – Time evaluation

4.4.2. Accuracy evaluation

As the result of the evaluation process described in section 4.3, the accuracy of the

complexity estimation can be fixed at 66% of found complex zones. This value

corresponds to the following evaluation method: placing a 6 second window around a

marked complex zone in the reference, a point will be considered as well detected only

if a 6 second window placed around the found point in the estimation contains, at least,

2/3 of the first window. It is obvious that if this restriction is reduced, the accuracy will

 41

be increased. Actually, if 1/2 of covered window is considered enough (which will

mean that the detected window includes the marked point), a 74% of accuracy is

reached. However, the first restriction was used for practical reasons in the evaluation

process.

4.6. Fast version implementation

As the complexity estimation process is clearly the bottleneck of this project, an attempt

to reduce it has been studied. This approach is based on reducing the number of

extracted frames while trying to keep the accuracy as good as possible. This process

was partially done when the weighting vectors where optimized, since some options

reduced the importance of the last extracted frames. However, in this case a single

situation is evaluated: using only one extracted frame at each studied point (in fact two

consecutive frames must be extracted every time for the motion estimation).

The previously evaluation process has been performed again for this case, with the

difference that it makes no sense to optimize the weighting vectors, since it has been

decided to use only one frame per studied point (two for the motion estimation).

With this fast version, user will be able to speed the process in the cases in

which there is a lower accuracy requirement in selecting the actual most complex zones.

4.5.1. Time evaluation

Regarding the time needed, the estimation process has been reduced about 80%. This

leads to a higher time difference from the trial and error method, as it can be seen in

Figure 33.

 42

Figure 33 – Time evaluation including fast estimation

4.5.2. Accuracy evaluation

The obtained accuracy after the evaluation test for the fast implementation is 54% of

found complex zones. However, as explained in the full implementation case, if the

window restriction reduced at 50%, the accuracy is increased. In this case, it reaches

68%.

 43

Chapter 5

SYSTEM GRAPHICAL USER

INTERFACE

In this chapter, the implementation and the functionalities of the final developed GUI

will be described. First of all, there will be a review of the available options and the

program behaviour and, finally, the implementation of the different parts will be

described.

5.1. GUI description

To describe the final design of the GUI, all user possibilities will be reviewed as a

virtual guide to the application.

To begin with, the user can name the current project and has to select an input

video to be studied. Once the video is selected, its information appears at the top of the

window: file size, duration, frame rate, codecs, etc. At the left part, the user can

introduce the desired video parameters. These parameters may not be the final ones,

since the goal of the application is to find them, but they can suppose a first step for the

application to begin with. Anyway, the user can use the application as a simple

transcoder by selecting there the coding parameters and ask for a simple

transcodification. These steps are illustrated in Figure 34.

 44

Figure 34 – Running the application. a) Input video selection. b) Once the video is selected, the information is shown

and user can introduce coding parameters.

Then, the user can start with the preview coding study. At this part, the user can

ask the program to transcode as many parts of the video as desired, selecting also the

duration of them. Then, bitrate and frame rate reductions can be tested, by selecting

from the menus some reduction ratios. This will apply to all the asked transcodings and

thus the number of new generated sequences will be increased. At this moment, random

parts of the video may only be selected to apply the transcodifications just there, since

no more information of the video is available. However, this is only a fast possibility for

the user, while the more interesting execution will include a complexity estimation of

the video, to apply all transcodings in the most difficult to code parts. Actually, if a fast

execution is wanted, the fast complexity estimation option can also be selected. All this

can be seen in Figure 35.

 45

Figure 35 – a) Bitrate and frame rate reductions can be tested using the GUI menus. b) To know where the video most

complex parts are, the user can start the complexity analysis.

When the analysis is finished, a complexity vector appears at the bottom part of

the window, with the most complex parts marked. Apart from the global complexity

vector, all previously calculated complexity measures can be visualized in the same

area: edge information, motion information, their product and the derivative of the edge

information. With all this information, user can exactly select where to apply the

transcodifications. As it can be seen in Figure 36, besides using random parts, the most

complex parts can be selected and there is also the freedom to manually select any part

of the video that user think it can be interesting.

Apart from visualising all vectors, user can directly extract actual and processed

frames along the video, as it is shown in Figure 37.

Figure 36 – a) All information vectors can be plotted in the complexity analysis part. b) User can select where to

apply the transcodifications.

 46

Figure 37 – Any frame can be extracted and visualised a) as itself, b) by its edge information and c) by its motion

information.

When the desired parts to be transcoded are decided and the process is finished,

video files are stored in the program directory. At the same moment, they can be seen in

the preview coding part, as a list where each video file has its information about time,

bitrate, frame rate and extrapolated whole video size, as it can be seen in Figure 38.

From this menu, user can select which sequence to visualize. In addition, every time a

transcodification is performed, its FFMPEG command is presented in the very bottom

of the screen. This allows the user to understand the process and to perform a manually

generated transcodification.

In Figure 39, two frames from the same time are presented. The first one is

extracted from a sequence coded with a higher bitrate and thus the video quality is

clearly better. By visualizing the generated previews, the user can decide which coding

parameters are better to be used. Moreover, if any of them fulfil his or her requirements,

all the parameters can be changed and all the preview process can be repeated again,

without needing a new complexity estimation, since it will be still available.

Actually, the GUI implementation is thought to allow this kind of execution:

letting the user interact with the application and ask for as many previews as desired, in

function of the information provided by the program.

Figure 38 – Once the previews are generated, they can be visualized using the new appeared list in the preview

coding part.

 47

Figure 39 – Two frame from the generated previews. Is by visualizing the result of choosing different parameters that

user can find which are the best coding parameters.

5.2. GUI implementation and functions integration

Three main parts of the final GUI will be explained, in order to describe the process in

which all functions have been integrated.

5.2.1. Simple transcoder

At the left part of the GUI, there is a simple transcoder, where the user can introduce the

desired coding parameters and use them to ask for a simple transcodification. Moreover,

these parameters will also be the ones that the preview coding part will use for its study.

When the user press the “Transcode video” button, the program gets all the

needed information to then call FFMPEG. Input video information is already available

since the file has been selected, while the parameters introduced by the user are

processed and stored to be used by other functions. If any of the possible input

parameters are not specified, the transcodification will be performed keeping them from

the input file.

After getting all the information, the application has to format it in order to fulfil

FFMPEG syntax. For this reason, some characters are added to the introduced

 48

parameters and some conditional statements are implemented to avoid possible conflicts

between coding parameters. For example, video file and bitrate cannot be introduced at

the same time, since they depend on each other.

When all parameters are formatted, a single string command is constructed and it

is used to call FFMPEG. The previous processing ensures that everything is correct and

FFMPEG will execute without problems. The process finalise when a new video file is

created.

5.2.2. Complexity estimation

To begin with the complexity estimation, all frames must be extracted along the video,

by using FFMPEG calls as it was explained in Chapter 3. They are stored in a specific

directory for the current project. Then, all frames are read and processed one by one and

their information is stored in MATLAB variables.

This process is explained in Chapter 4, like the next step. When all the

information is stored, it has to be processed again, in order to obtain the four

information vectors. Finally, they are linearly combined and a single complexity

estimation vector is found.

If a fast estimation is selected, the process is slightly different. There are less

extracted frames (only two consecutive ones per studied point) and therefore a single

processing step is needed to extract the information vectors from the extracted frames.

Then, the final complexity vector is calculated using a linear combination which is

different from the one used in the normal estimation.

Finally, this vector has to be displayed to the user, with the addition of the most

complex zones marked over it. This labelled time intervals are not only a visual

clarification but also an important parameter to be used in the preview coding part.

Besides this, a menu is also implemented to display any of the vectors which are

available in the running application: edge information, motion information, etc. The

selected one is automatically presented at the same axis as the first one. Moreover,

FFMPEG calls are used to let the user to extract actual o processed frames, just

selecting the instant by clicking to the graph.

5.2.3. Preview coding

To handle the preview coding process some information from other functions is needed.

First of all, the input file information is required to construct an FFMPEG call. Then, as

it was explained, the introduced values in the simple transcoding part are also used to

base on them the bitrate or frame rate reduction tests. And finally, the most complex

parts calculated in the complexity estimation function are used to place there the

transcodifications if it is desired by the user.

However, they can also be placed in a random part of the video or in a specific

moment selected by the user. This is all the information needed to start creating several

single commands, which will be used to call FFMPEG. There must be one command for

 49

each one of the possible combinations between selected moments, bit rate reduction and

frame rate reduction. Once generated, they are executed one by one, creating new video

files which will be stored in a new directory.

With all the parameters used to make the commands, a new list of the generated

previews appears at the screen, specifying these parameters in order to let the user

identify each one. By selecting the elements of the list, user can visualise all the

previews. This is how all the process is finalized and initialized again: watching the

video transcoded with different parameters lets the user choose the best ones or keep

looking for them by starting again the process.

 50

Chapter 6

CONCLUSIONS

6.1. Overall evaluation

This application was designed with the main aim of improving the video transcoding

process. Taking into account the classical solution based on a trial and error procedure,

a new model had to be implemented. After reviewing the implementation process and

the program behaviour, it can be said that it really provides a new good solution for the

studied problem.

That is also true in terms of needed time to complete the process. It can be said

that this implemented solution clearly overcomes the classical one by speeding up the

whole process, as it has been explained in the previous Chapter. Moreover, besides the

reduction of the needed time, the application provides a useful tool with an important

value by itself. It helps the user to get into the transcoding process, to identify why

some solutions are not good enough and to decide what to do to find a good one. Even if

the needed time was not reduced enough, the practical options provided to the user

would make it a success anyway.

6.2. Goal accomplishment

As explained in other chapters, the proposed solution is based on the three main goals

that were defined at the beginning. For this reason, it is meaningful to review them:

- Preview coding. The tool that allows the user to ask for several short previews

has been successfully implemented. User can select which parts to transcode and

which coding parameters to test and the application generates all the

corresponding previews with the specified duration. Then, user can easily

visualize them, and thereby evaluate the results.

- Complexity estimation. Since the preview part needs the video most complex

parts to reach its optimum performance, having found them has also been an

important step for the whole application development. This part has been also

successfully implemented, as it was described in Chapter 4.

- Interactivity. The third main goal was not developing a single part by itself, but

it is related to how the user can execute the application and work with it. As it

was planned, there is a high level of freedom for the user to ask for complexity

estimations and previews and to decide at every moment which way to follow to

 51

find the optimum parameters, after watching at the program results after each

step.

6.3. Possible further work

Finally, although the developed application totally fulfils the initial requirements, some

aspects might be improved or deeply studied can be commented, in order to increase the

program accuracy or to adapt it to other situations.

First of all, the processing part of the extracted frames is one of the deep study

focuses. Besides all edge detection evaluated techniques, some others could also be

tested, especially the ones related to the frequency domain, which is actually the one

used in the blocks transformation and compression. However, the finally chosen

technique provides a very good result in the complexity estimation, as it have been

proved in Chapter 4. In addition, some other methods could be studied for the motion

estimation, like calculating motion vectors between frames, with the hard trade-off of

increasing the processing complexity and thus the execution time.

Another aspect that can be deeply studied is the distribution of the studied points

in the complexity estimation. Since the development was thought to work with short

videos (up to fifteen minutes duration, approximately), the introduction of full movies

or large videos would not produce as good results as with shorter ones. Obviously, all

the system will be correctly executed, but the accuracy in the complexity estimation will

not be good enough to ensure that all complex parts were found. For this reason,

adapting the frame extraction to make it able to work with large videos would be an

interesting focus in further work.

 52

Chapter 7

BIBLIOGRAPHY AND REFERENCES

[1] Kabeen, K. and Gent, P., Image compression and the Discrete Cosine Transform,

Math 45, College of the Redwoods.

[2] Eklund, A., Image coding with H.264 I-frames, Linköpings Universitet, 2007.

[3] Richardson, I., H.264 / AVC Intra prediction, Vcodex.com, 2011.

[4] Richardson, I., H.264 / AVC Inter prediction, Vcodex.com, 2011.

[5] Richardson, I., 4x4 Transform and Quantization in H.264/AVC, Vcodex.com, 2010.

[6] Wiegand, T., Sullivan, G., Bjøntegaard, G. and Luthra, A., Overview of the H.264-AVC

Video Coding Standard, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, 2003.

[7] Richardson, I., H.264 / AVC Context Adaptive Binary Arithmetic Coding (CABAC),

Vcodex.com, 2010.

[8] Richardson, I., H.264 / AVC Context Adaptive Variable Length Coding,

Vcodex.com, 2010.

[9] Webster, A. and Wolf, S., Subjective and Objective Measures of Scene Criticality,

Institute for Telecommunication Sciences (NTIA/ITS), 1997.

[10] Wu, H., Claypool, M. and Kinicki, R., A Study of Video Motion and Scene

Complexity, Worcester Polytechnic Institute.

