

Title: Column generation algorithm for flexgrid optical
network problems

Author: David Rebolo Pérez

Advisor: Luis Velasco Esteban

Co-Advisor: Marc Ruiz Ramírez

Interuniversity Master

 in Statistics and
Operations Research

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41810231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II David Rebolo Pérez

Acknowledgements

I would like to express my deep gratitude to my advisors, Luis Velasco and Marc
Ruiz, for his valuable and constructive suggestions during the planning and
development of this research work and their willingness to give his time so
generously.

My special thanks to all the researchers of the Optical Communications Group of
the UPC for their help and advice for my initiation in the field of optical networks.
I also would like to thank them for providing me a space and a computer for my
project.

I wish to thank Carlos Garrigós and Eider Luzarraga, whose enthusiasm, interest
and support in this project have given me the motivation to realize this
achievement.

Finally, I wish to thank my family for their support and encouragement throughout
my entire career; this dissertation would be simply impossible without them.

Index

Index .. III

List of Figures.. V

List of Tables ... VII

Chapter 1 Introduction .. 1

1.1 Motivation and objectives ... 1

1.2 Report organization .. 2

Chapter 2 Background ... 3

2.1 Optical Networks .. 3

2.1.1 Basic Concepts .. 3

2.1.2 High Capacity Networks .. 4

2.1.3 Flex-Grid Networks .. 4

2.2 Operational Research ... 6

2.2.1 Formulations of Network Problems .. 6

2.2.2 Shortest Path Algorithms .. 7

2.2.3 Column Generation Procedure .. 9

2.2.4 Path Generation Procedure ... 11

2.2.5 Column Generation for ILP’s ... 12

2.3 Summary ... 13

Chapter 3 Lightpath Generation Algorithm 15

IV David Rebolo Pérez

3.1 Problem statement and formulation .. 15

3.1.1 Problem Statement... 15

3.1.2 Notation .. 16

3.1.3 Primal ILP formulation .. 17

3.2 The LIGERO algorithm .. 18

3.2.1 Master Problem .. 18

3.2.2 Pricing Problem .. 19

3.2.3 Main Algorithm .. 20

3.2.4 Dijkstra Based Version .. 21

3.2.5 Floyd-Warshall Based Version .. 23

3.2.6 Initial Sets of Lightpaths ... 24

3.3 Summary ... 28

Chapter 4 Numerical Results .. 29

4.1 Reference Scenario .. 29

4.2 Analysis of proposed algorithms .. 31

4.3 Quality of integer solutions .. 34

4.4 Performance Evaluation with Large Instances ... 35

4.5 Summary ... 37

Chapter 5 Illustrative Use Case ... 39

5.1 Network Re-optimization ... 39

Chapter 6 Concluding Remarks ... 43

6.1 Contributions and work impact ... 43

6.2 Personal Evaluation ... 44

6.3 Future Work .. 45

Apendix A. ... 47

References ... 65

List of Figures

Figure 2-1 Logical representation of a fiber optic link .. 5

Figure 2-2 RSA, continuity and contiguity constraints .. 6

Figure 2-3: Column Generation Diagram .. 9

Figure 3-1 Network with two demands .. 24

Figure 3-2 MaxLeft illustrative example ... 25

Figure 3-3 GreedyRSA illustrative example .. 26

Figure 3-4 MinAll illustrative example ... 27

Figure 4-1 Evaluated Network and Traffic Characteristics 30

Figure 4-2 Effect of the initial set over LIGERO performance: time vs load for a) D-

B, b) FW-B ... 32

Figure 4-3: Effect of the initial lightpaths over LIGERO performance: r.o.f vs time

 .. 33

Figure 4-4: Quality of generated paths for LIGERO with MinAll and K-PCL 35

Figure 5-1 Considered Network Architecture ... 40

Figure 5-2 Daily evolution of traffic load ... 41

List of Tables

Table 2-1 Dijkstra Algorithm Pseudo-code .. 8

Table 2-2 Floyd-Warshall Algorithm Pseudo-code .. 9

Table 2-3: General Column Generation Algorithm ... 11

Table 2-4: Path Generation Algorithm ... 12

Table 3-1 Main Algorithm Pseudo-code ... 21

Table 3-2 D-B LIGERO Algorithm Pseudo-code .. 22

Table 3-3 FW-B Algorithm Pseudo-code .. 23

Table 3-4 MaxLeft procedure .. 25

Table 3-5: GreedyRSA procedure ... 26

Table 3-6 MinAll procedure .. 27

Table 4-1 ILP solutions for small/medium instances .. 30

Table 4-2 LIGERO Dijkstra Performance (medium instances) 31

Table 4-3 LIGERO Floyd-Warshall Performance (medium instances) 31

Table 4-4 Convergence from near-optimal to optimal .. 33

Table 4-5 LIGERO Performance (Large instances) .. 36

Table 4-6 LIGERO vs Stochastic Approach of K-PCL (7 Tbps) 36

Table 4-7 Summary of obtained results ... 38

Chapter 1.

Introduction

1.1 Motivation and objectives

The unstoppable explosion of Internet traffic due to the increase of multimedia
services such as video conferencing, HDTV, or IP telephony is rapidly consuming
capacity resources in optical transport networks. Nowadays operators are looking
for technology solutions for near future to deal with such traffic increase in a cost-
effective way. Recently proposed flexgrid optical networks are presented as the
most promising solution to deal with the expected high volumes of data traffic. In
flexgrid optical networks, optical connections (i.e. lightpaths) use as frequency
spectrum as they need, tightly fitting the allocated capacity with the bandwidth
requirements. In contrast, current fixed grid networks allocate the same amount of
spectrum to each lightpath, thus leading to a notorious waste of usable capacity.

In flexgrid optical networks, the problem of finding unoccupied spectrum resources
so that to establish a lightpath is called the Routing and Spectrum Allocation
(RSA) problem. RSA concerns assigning a contiguous fraction of frequency
spectrum to a connection request subject to the constraint of no frequency
overlapping in network links. Moreover, it is commonly assumed that the same
piece of spectrum is used in all links traversed by a lightpath (i.e. spectrum
continuity). To solve the RSA optimization problem, which is proven to be NP-hard,
efficient integer linear formulations have been proposed. However, when facing
real instances involving thousands or even millions of integer variables, solving the
RSA problem by means of such formulations becomes unaffordable.

To deal with those instances with a large set of variables, decomposition methods
can be derived to improve their tractability. Column generation is one of these
optimization decomposition methods which allows reducing the amount of
variables (referred to as columns) in linear formulations. This technique, based on
iteratively solving a master problem that grows at each iteration and a pricing
problem in charge of finding good columns to feed the master problem, is also

2 David Rebolo Pérez

referred as path generation in the context of network flow problems (since variables
to find are paths over a network).

In this work, we present the novel lightpath generation algorithm (called LIGERO
algorithm) for RSA-based formulations. This algorithm derives from path
generation theoretical basis but adapted to optical paths with a specific and unique
assigned piece of spectrum. The presented method uses the notation and primal
formulation proposed in [Ve12]. To the best of our knowledge, this is one of the first
works concerning the application of column generation methods for solving RSA-
based problems in flexgrid optical networks. It is worth mentioning that this large
scale optimization technique has been deeply studied in the context of fixed grid
optical networks, for example, in [Ja09]. However, the formulations and algorithms
proposed in [Ja09] are not applicable to our case since the adaptable spectrum
allocation in flexgrid optical networks differs from rigid spectrum assignment in
fixed grid networks.

1.2 Report organization

The remainder of this document is organized as follows:

Chapter 2 introduces some background on optical networks, network flows, and
column generation methodology, needed for a better understanding of the
contributions in this work. In Chapter 3 the LIGERO approach is presented for
solving a generic RSA problem, detailing the different algorithm versions designed
and implemented. The performance evaluation of LIGERO, putting special
attention on the selection of the best version, is done in Chapter 4 by means of
medium-size and large-size instances over a real operator optical network. To
illustrate the utility and applicability of our method, Chapter 5 presents a use case
where the proposed RSA problem applies and where LIGERO could be applied to
obtain good-quality solutions. Finally, Chapter 6 concludes the report and opens
new branches to extend the contributions here presented.

Chapter 2.

Background

In this chapter, the necessary concepts of optical networks and operations research
are introduced in order to simplify the understanding of the contents of this project.

Firstly, some concepts on optical networks are introduced, including their
components and their formal representation. After this, high-capacity networks
and specially flexgrid networks are described and the main problem of the thesis,
the Routing and Spectrum Assignment (RSA) problem is defined. Secondly and
regarding network flows, the link-path formulation is detailed, as well as the
shortest path algorithms that will be derived and used in LIGERO. Finally, the
general column generation procedure for linear programming problems and its
application to network flows, called path generation, are illustrated in details.
Moreover, two techniques to obtain integer solutions after applying the column
generation method are described.

2.1 Optical Networks

2.1.1 Basic Concepts

An optical network can be defined as a network topology with its representative
equipment based on a certain optical technology. In general, it is represented by an
undirected graph where the edges are fiber optic links and the vertices are nodes
capable of routing traffic, establishing, and deleting optical connections between
source and destination nodes. The optical technology is limited within a range of
frequencies of the total frequency spectrum, the so called Optical Spectrum (OS).
The OS defines a certain capacity within the fiber optic link and it is measured in
Gigahertz (GHz). In addition, this capacity depends on other factors like the
equipment utilized in the nodes or the spectral efficiency of established
connections.

4 David Rebolo Pérez

Basically, a demand is a petition of bandwidth (or bitrate) to be transported
between the source node (sd) and the termination node (td), usually expressed in
Megabits per second (Mbps or Mb/s) or Gigabits per second (Gbps or Gb/s).
Hereafter, we consider that every demand requests for bitrate between a minimum
and a maximum value. If the minimum cannot be ensured, then the demand will
become blocked (i.e. not served at all), whereas if the minimum bandwidth can be
served but there is not enough resources to serve the maximum one, then the
demand will be accepted but partially un-served. When a demand is accepted, an
optical connection in the network is established between the source and the
termination nodes; these optical connections are called lightpaths since they allow
the data transmission as a light wave. Moreover, a fiber optic can transport more
than one lightpath at the same time, since each of them is allocated in different
parts of the available OS.

2.1.2 High Capacity Networks

In order to establish an optical connection to serve a demand, it is necessary to
solve the problem of finding a route with available free spectrum to support the
lightpath. In Dense Wavelength Division Multiplex (DWDM) networks (i.e. fixed
grid optical networks) [G694], this problem is known as routing and wavelength
assignment (RWA) problem. These networks divide the OS in wavelengths and
each one of them can transport at most one lightpath at the same time. This OS
multiplexing allows very high capacity for transporting data in the network and
represents the most accepted current solution to carry with high volumes of traffic.
Moreover, DWDM networks are a sort of rigid optical networks, since the occupied
spectrum width for all optical connections is the same. Contrarily to this definition,
a flexible optical network can adapt the OS width assigned to each optical
connection to the required bandwidth of the demands. This improves the network
performance and the usage of the resources due to their adaptability in relation
with the spectrum width and the spectrum allocation.

2.1.3 Flex-Grid Networks

In [G964] standardization, it has been included the definition of a flexible grid
(flexgrid) (previously introduced in [Li11]). In a flexgrid optical network, the OS is
divided into slots, which are portions of the OS with a fixed width of few GHz (e.g.
6.25 GHz). The central frequency (CF) defines where the assigned spectrum is
centred and thus it allows positioning the slots within the whole OS. Moreover, a
subset of contiguous (adjacent) slots is called channel and it is characterized by its
CF and the number of slots that contains. In order to illustrate the concepts
introduced above, Figure 2-1 represents the spectrum of a fiber optical link within
an elastic optical network using the flexgrid technology.

Chapter 2 – Background 5

Figure 2-1 Logical representation of a fiber optic link

Similarly to the RWA problem, the Routing and Spectrum Allocation (RSA)
problem is solved in flexgrid networks. The objective of the RSA problem is to find
a route with enough free spectrum width to serve the required bandwidth for traffic
demands. The spectrum allocation (SA) of an optical connection consists of finding
a certain channel which must accomplish the contiguity and continuity constraints;
that is, all slots in a lightpath must be one next to the other (contiguity constraint)
as well as the assigned channel must be placed in the same part of the OS (i.e.
using the same CF) for all links conforming that optical connection (continuity
constraint).

As an example of the RSA problem and for illustrating the continuity and
contiguity constraints, Figure 2-2 shows the routing and spectrum allocation for
serving a demand with a required bitrate equivalent to 2 slots from the source node
B to the destination node D. In a first approach, illustrated in Figure 2-2a, it seems
that the route B-A-D would be the one to choose as it is the shortest one. But when
looking in detail, it can be seen that the links from B-A and A-D do not have two
contiguous slots in the same portion of the OS and therefore the continuity and
contiguity constraints are not satisfied if the route B-A-D is chosen. Because of
this, another route must be selected, that is the shortest route satisfying the
contiguity and continuity constraints. This is the case illustrated in Figure 2-2b,
where the selected route is B-A-C-D and the assigned channel uses the slots {S5,
S6} for this connection.

6 David Rebolo Pérez

Figure 2-2 RSA, continuity and contiguity constraints

2.2 Operational Research

2.2.1 Formulations of Network Problems

The problem we are dealing with is a multi-commodity flow problem: multiple
unitary flow demands between different source and destination nodes must be
routed. It can be formulated using either the node-link or the link-path
formulations. The node-link formulation considers every link as a choice for every
demand flow and keeps the continuity of the flows by means of degree and sub-tour
elimination constraints. On the other hand the link-path formulation uses a set of
pre-computed routes between every pair of nodes origin-destination corresponding
to a demand [Ah93].

In order to explain with more details the link-path formulation, which is used to
formalize the RSA problem, we are going to introduce a multi-commodity flow
problem involving continuous variables and express it using a link-path based
formulation. Let us consider an undirected graph G = (E,V) and a set of demands D
to be satisfied. For every d in D we have to assign a flow demand hd throughout a
pre-computed set of paths between the source and destination nodes Pd. Suppose

Chapter 2 – Background 7

that there exist link capacities ce for every link e in E and we want to minimize the
total un-served flow. Let us consider the set of non-negative real variables zd for
every d in D, which represents the un-served bandwidth for demand d. Consider
also the set of non-negative variables xdp for every d in D and p in Pd, whose values
are the amount of flow that path p serves for demand d. Then, the problem can be
formalized as follows:

 () d
d D

MP Minimize z

 (2.1)

Subject to:

[]
d

d dp d d
p P

x z h d D

 (2.2)

:

[0]
d

e dp e
d D p P e p

x c e E

 (2.3)

0 ,dp dx d D p P (2.4)

0dz d D (2.5)

Constraint (2.2) jointly with objective function (2.1) ensures that the un-served
demand is minimized by serving demands with paths, while constraint (2.3) does
not permit to excess link capacities. Finally constraints (2.4) and (2.5) are non-
negativity constraints.

It is important to notice that in the link-path formulation the amount of routes
increases exponentially. Hence it is necessary to consider only a subset of routes in
order to reduce the computational complexity. Unfortunately, this might result
that the reached solution is not optimal. However, this set of routes can be
carefully chosen to guarantee that the optimal solution (or almost optimal) is
reached, for instance using an algorithm to find the k-shortest routes between two
nodes such as the Yen algorithm [Ye70].

Finally, remember that the RSA involves integer (i.e. binary) variables. In the
literature several alternative Mixed Integer Programming (MIP) formulations of
RSA problems can be found (e.g. see [Kl11], [Ch11], [Wa12], and [Ve12]). Among
them, the link-path MIP formulation proposed in [Ve12] appears to be the most
effective since both continuity and contiguity constraints are removed from the
MIP by using both pre-computed paths and channels.

2.2.2 Shortest Path Algorithms

As we will see in section 2.2.3, we need to find the shortest path between several
pairs of nodes in the pricing problem. In this section we are going to present two
shortest-path methods: the Dijkstra and the Floyd-Warshall algorithms. The
Dijkstra algorithm finds the shortest route between a source and every other node

8 David Rebolo Pérez

in the network, whereas the Floyd-Warshall algorithm computes the cost of the
shortest route between every pair of nodes but does not return any route explicitly.

The Dijkstra algorithm [Di59] starts setting to infinity the distance of every node
except the origin which is initialized as 0. A list V’ contains the nodes whose
neighbours have not been explored (in the first iteration V’ is equal to V). While at
least one node has not been visited (i.e. V’ is not empty), the node with the
minimum distance is taken (in the first iteration this is the source node) and the
distances of all its neighbours are updated if the current routes from the source is
shorter than the preceding ones. Every time the distance of a node is updated the
previous node in the new route is saved. When all the neighbours of a node are
visited the node is erased from the list V’. Table 2-1 shows a pseudo-code of the
Dijkstra Algorithm.

Observe that for a connected undirected graph all nodes are visited before the
algorithm is finished. Nevertheless a directed graph may have some nodes which
are not accessible from the source and then the distance remains as infinity along
the algorithm. In that case, when V’ only contains the non-reachable nodes, lines 8
and 9 of Table 2-1 stops the algorithm ensuring the shortest path from source to
any other accessible node have been found.

Table 2-1 Dijkstra Algorithm Pseudo-code

INPUT: Network G(V,E), source
OUTPUT: dist[], previous[]
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

for each node v in V do
 dist[v] ← infinity
dist[source] ← 0
V’ ← V (set of all nodes)
while V’ is not empty do
 u := argmin{dist[v] : v in V’ }
 V’=V’\{u}
 if dist[u] = infinity
 break
 for each neighbour v of u in V’ do
 aux ← dist[u] + weight(u, v)
 if aux < dist[v] then
 dist[v] ← aux
 previous[v] ← u

The Floyd-Warshall algorithm [Fl62], shown in Table 2-2, computes the distance
between every two nodes of a graph. It starts setting the distance between each
pair of nodes as following. The distance of a node with itself is 0. If an edge between
two different nodes exists, the distance is the weight of this edge. If there does not
exist any edge between two different nodes, the distance is infinity. Then, chosen
an intermediate node w, the algorithm checks for every pair of nodes whether using
intermediate node w reduces the current route distance. If the distance is lower
when the route visits w then the distance between these nodes is updated.

Chapter 2 – Background 9

Table 2-2 Floyd-Warshall Algorithm Pseudo-code

INPUT: Network G(V,E)
OUTPUT: dist
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

for each pair of nodes u and v do
 dist(u,v) ← infinity
 dist(v,u) ← infinity
for each node v
 dist(v,v) ← 0
for each edge (u,v)
 dist(u,v) ← weight(u,v)
for each w in V do //half-way node
 for each s in V-{w} do //source node
 for each t in V-{s,w} do //target node
 if dist(s,t) > dist(s,w)+dist(w,t) then
 dist(s,t) ← dist(s,w)+dist(w,t)

2.2.3 Column Generation Procedure

Column generation (CG) is a decomposition method for solving large-scale linear
programming problems and it can be regarded as an application of the Dantzig-
Wolfe decomposition [Ba98]. This technique solves iteratively two simpler problems
in order to obtain a solution of the original one, which is usually called master
problem (MP). The restricted master problem (RMP) is exactly as the MP, besides it
contains only a subset of variables (columns), which makes possible to solve it in
practice time using, for instance, the simplex algorithm or interior point methods.
If the current solution obtained by the RMP is not optimal (since it does not contain
all the variables), the pricing problem (PP) finds new columns to provide a better
solution. We will see later how it works and why this technique provides the
optimal solution for linear programming problems. An illustration of the
interaction between the RMP and the PP is shown in Figure 2-3.

Figure 2-3: Column Generation Diagram

10 David Rebolo Pérez

For the sake of clarity, let us consider a general formulation of a linear
programming problem and the derivation of its pricing problem. We call the master
problem of this linear programming problem (L-MP).

 TL MP Minimize c x (2.6)

Subject to:

[] Ax b (2.7)

0, nx x (2.8)

where m are the dual variables of restriction set (2.7).

As we said before, the restricted master problem (L-RMP) has the same structure
as the L-MP problem but only considering an initial subset of r variables xR

indexed by 1, 2,...,R n and their corresponding cost and constraint coefficients

cR and AR. The L-RMP is shown below.

 T
R RL RMP Minimize c x (2.9)

Subject to:

[] R RA x b (2.10)

0, r
R Rx x (2.11)

Thus, the dual problem (L-DP) of the restricted master problem is the following:

 TL DP Maximize b (2.12)

Subject to:

[] R
T

R Rx A c (2.13)

0, m (2.14)

If there exists a Ck R such that the variables xk and the corresponding constraint
makes the current solution of the dual problem to become not feasible, then the
corresponding primal solution is not optimal for the L-MP. Hence, in order to find
the necessary variables to reach the optimum, we must be able to solve the pricing
problem (L-PP) which consists of finding the minimum value of the reduced costs
for each potential variable in RC. If this value is negative, then the corresponding
constraint is violated and thus, the current optimal solution for the L-RMP is not
optimal for the L-MP. Contrarily if this value is positive, then the current optimal
solution for the L-RMP is also the optimal solution for the L-MP.

 () :
C k k k

k R
L PP Minimize c a a k th column of matrix A

 (2.15)

Chapter 2 – Background 11

This pricing problem is NP-hard, especially when the number of non-considered
variables is large, which is the scenario that we are considering to apply the
column generation algorithm. For this reason this problem is usually solved by
means of a heuristic approach.

In Table 2-3 we show a pseudo-code of the general column generation algorithm:

Table 2-3: General Column Generation Algorithm

INPUT: R
OUTPUT: x*

1:
2:
3:

4:

5:

6:
7:

(x*,π*) ← Solve the RMP with columns R
z* ← Solve the PP
while z* < 0 (new columns are found) do
 k ← Argument of PP: z* = ck - π* ak
 R ← R ∪ {k}
 (x*,π*) ← Solve the RMP with columns R
 z* ← Solve the PP

2.2.4 Path Generation Procedure

When column generation method is applied in a network flow problem it is called
path generation [Pi04]. We are going to see how to apply the column generation
method for the problem formulated in section 2.2.1, considering only a subset of
columns (paths) P’.

In order to state the pricing problem and get a better understanding of the path
generation method, the dual problem of the RMP is formulated below.

() d d e e
d D e E

DRMP Minimize h c

 (2.16)

Subject to:

[0] 'dp d e d
e p

x d D p P

 (2.17)

[0] 1d dz d D (2.18)

0e e E (2.19)

Once the RMP is solved, we have an optimal solution for the primal (x*,z*) and the
dual (λ*,π*) problems. Even though, it might result that this solution is not the
optimal solution for the MP since we did not consider the full set of routes. Thus we
would like to know whether the current solution is optimal and otherwise how to
find out which of the non-considered routes are necessary to reach the optimal
solution.

Observe that the set of constraints (2.17) force the value λd* (where (λd*)d = λ*) to
be the shortest path of Pd’ with respect to link metrics induced by π*. Now suppose

12 David Rebolo Pérez

that there exists a route pd for a demand d of D outside the list Pd’ that is sharply
shorter with respect to metrics π* than λd*. Adding this route to the list Pd’ and the
corresponding constraint (2.20), we can see that the current optimal dual solution
becomes non-feasible as a consequence of adding this new constraint, opening the
possibility to decrease the optimal dual objective and at the same time decreasing
the optimal primal objective.

d

d e
e p

 (2.20)

Hence, we could search for the shortest route between source and target nodes of
the demand d and check whether the new possible constraint (2.20) would be
violated in the current solution. If it is violated, in other words, if equation (2.21) is
satisfied, then the current solution is not optimal and pd is one of the missing
routes for the demand d. Moreover, if for every demand d in D the new constraint
is not violated means that the solution is optimal for the master problem.

(,) : 0
d

d d e
e p

Q

 (2.21)

Notice that we can try to find few new route for every demand d in D and add as
many columns (routes) as desired in each iteration of the procedure. In the next
path-generation algorithm one route for each demand is added as long as new
useful routes are found.

Table 2-4: Path Generation Algorithm

INPUT: P’
OUTPUT: x*

1:
2:
3:

4:

5:

6:
7:

(x*,z*,λ*,π*) ← Solve the RMP with columns P’
for each d in D do
 pd ← Shortest path with metric π*
while Q(λd*,π*)> 0 (new routes are found) do
 for each d in D do
 Pd’ ← Pd’ ∪ { pd }
 (x*,z*,λ*,π*) ← Solve the RMP with columns P’

2.2.5 Column Generation for MIP’s

The column generation procedure is a method for linear programming problems.
Despite this, the problems we are to solve evolve integer variables; for this reason
we present some techniques that can be used after solving the relaxed integer
problem by means of column generation in order to derive a heuristic MIP solution
as similar as possible to the relaxed solution.

One technique is to apply branch-and-bound (B&B) to the restricted master
problem with the restricted set of variables including the added columns. This
technique is often called Price and Branch (P&B) and differs from Branch and

Chapter 2 – Background 13

Price (B&P) on when the columns are added. Specifically, the P&B procedure
applies the pricing to add new columns only in the root node of the B&B method,
whereas the B&P technique applies the pricing in each node of the branching tree.
The benefit of proceeding this way instead of applying B&B directly to the original
problem is that probably the original problem could not be solved by means of B&B
method or it can take too long. However, after applying column generation the
number of variables should be much smaller than the original one and hence
possible to solve (or solve it faster) by B&B.

Another technique that can be applied is the so called rounding method, which, at
each iteration, sets few variables rounding their values to integers and solves the
restricted master problem using (iteratively) the column generation procedure until
an optimal solution is reached. Since few variables are set as integer at each
iteration of the rounding method, it finishes providing an integer solution.

2.3 Summary

In this section the main concepts of optical networks and operation research were
presented. First, the necessary definitions such as node, link, optical spectrum and
demand were introduced. Then the concept of lightpath and the RWA were
presented. The highlight was focused on flex-grid optical networks defining what
slices, slots and channels are. Moreover the RSA problem and the continuity and
contiguity constraints were stated.

In the operations research background, network problems and the way they can be
formulated, the node-link and the link-path formulations were introduced, Then, a
general procedure of the column generation method for linear programming
problems was explained. The path generation procedure was described with more
details stating the restricted master, the dual and the pricing problems as well as a
detailed pseudo-code of the path-generation algorithm. Since a shortest-path
algorithm is needed in order to solve the pricing problem, Dijkstra and Floyd-
Warshall algorithms and pseudo-codes were explained in detail. Finally, two
techniques to obtain integer solutions after applying the column generation method
were described.

In the following chapter, the details of the LIGERO algorithm, using some of the
concepts described in this chapter, will be exposed.

Chapter 3.

Lightpath Generation Algorithm

This section is devoted to the LIghtpath GEneRation algOrithm (LIGERO). To this
aim, the problem statement of the considered RSA problem is presented in the
context previously defined. A mixed integer formulation of the problem is proposed
and the derivation of the dual and pricing problems are introduced for a complete
understanding of the proposed methodology. Then, two path-generation based
algorithms are proposed. Finally, three strategies to start our approach with an
initial set of lightpaths are defined.

3.1 Problem statement and formulation

3.1.1 Problem Statement

The problem we aim to solve is briefly defined as follows: for each demand, we want
to find the route over the flexgrid optical network and the spectrum allocation to
minimize the number of rejected demands (primary objective) and the amount of
un-served bitrate (secondary objective). The served bitrate of each demand is a
value between the minimum and the maximum bitrate respectively. The detailed
problem statement is the following:

Given:

 A network topology represented by a graph G(V,E), being V the set of nodes
and E the set of bidirectional fiber links connecting two nodes.

 A set S of available slots of a given spectral width for each link in E.

 A set of allowable channels Cd for each demand d of D.

 A set D of demands to be served. Each demand d is defined by its source
node (sd), its target node (td), its minimum (hd) and maximum (Hd) bitrates.

16 David Rebolo Pérez

 An initial set of allowable lightpaths Pd for every demand d. The full set of
lightpaths is denoted by P.

Output:

 The lightpaths used to serve the demands.

 The set of blocked demands

 The amount of un-served bandwidth.

Objective:

 Primary objective: minimize the number of blocked demands.

 Secondary objective: minimize the total amount of un-served bandwidth.

Constraints:

 Spectrum contiguity: the subset of slots, that joined with a route, perform a
lightpath have to be contiguous (adjacent). Channels are defined and used
with this purpose.

 Spectrum continuity: the spectrum frequency should be the same along all
the links on the route. In other words, the same channel must be used
throughout every link on the route.

 Channel capacity: a channel cannot serve a bitrate higher than its capacity,
which is proportional to the number of slots that compose it.

 Slot capacity: a slot in a link can be allocated, at most, to one demand.

3.1.2 Notation

In this section a list with the sets and the parameters is given in order to
summarize all the input information necessary to formulate the mathematical
programming problem. Later the decision variables used in the model are listed.

Parameters:

D Set of demands

hd Minimum volume of demand d ∊ D (in Gbps)

Hd Maximum volume of demand d ∊ D (in Gbps)

E Set of network links

S Set of spectrum slots at a link

B Bandwidth carried by one slot

nd = ⎾hd /B⏋ Number of slots required to carry hd, d ∊ D

Nd = ⎾Hd /B⏋ Number of slots required to carry Hd, d ∊ D

Chapter 3 – Lightpath Generation Algorithm 17

C Set of channels

mc Number of slots used by channel c ∊ C

S(c) Set of (contiguous) slots composing channel c

Cd⊂C Channels allowable for demand d ∊ D

c∊Cd ⇿ nd ≤ mc ≤ Nd

Pd Set of allowable lightpaths for demand d ∊ D

P =∪d∊D Pd Set of all allowable lightpaths

Qdes ⊆ Pd Set of lightpaths of d using slot s ∊ S on link e ∊	E

E(p) Set of links traversed by lightpath p ∊ P

gp Bandwidth carried on lightpath p ∊ P, computed as
follows:

)()()()(

)()()(

pdpcpdpc

pdpcpd
p NmnifmB

NmifH
g

A Weight for objective function

Decision Variables:

Xd, d ∊ D binary, Xd = 1 when d is blocked

xdp, d ∊ D,p ∊ Pd binary, xdp = 1 when route p carries its demand d

Yd, d ∊ D continuous, un-served bandwidth of demand d

3.1.3 Primal ILP formulation

The primal formulation of the above-stated problem (RSA-P) is as follows:

 RSA P d d d
d D d D

Minimize F A h X Y

 (3.1)

Subject to:

DdxX
dPp

dpd

1 (3.2)

SsEex
Dd Qp

dp

des

,1 (3.3)

DdHxgY
dPp

ddppd

 (3.4)

18 David Rebolo Pérez

{0,1},
,

{0,1}
d d

d

dp

X Y
d D p P

x

 (3.5)

The objective function (3.1) minimizes the number of rejected demands, using a
weight factor A, and the amount of un-served bitrate. Each constraint form set (3.2)
either assigns a lightpath or blocks the demand. Moreover, it guarantees that at
most one lightpath will be assigned per demand. Constraints (3.3) make sure that
capacity of slots is not violated, by ensuring that the number of used routes sharing
one specific slot is at most equal to 1. Constraints (3.4) set Yd as the un-served
bitrate. Finally constraints (3.5) define the type of decision variables and limit
their range.

3.2 The LIGERO algorithm

In this section, the LIGERO algorithm is presented in the context of the problem
previously defined. Before that, the derivation of the pricing problem is introduced
for a complete understanding of the proposed methodology. Two approaches for
solving LIGERO are presented and few improving techniques are explained
afterwards. Finally, three different strategies to generate an initial set of
lightpaths are defined.

3.2.1 Master Problem

The Master Problem (RSA-M) formulation is the same as RSA-P besides that
integrity of variables has been relaxed by continuity in the real domain, becoming
thus a LP formulation. Equations (3.6) to (3.10) show the RSA-M with the
associated dual variables for each constraint (in square brackets at left side of
constraints). A second linear problem with the same algebraic form can be defined,
the Restricted Master Problem (RSA-RM), that contains a subset of those variables
present in the RSA-M problem. More specifically, we consider that RSA-RM
contains the whole set of X and Y variables and a subset of all admissible x
variables (i.e. routes). Since there are no appreciable differences between RSA-M
and RSA-RM algebraic formulations, we specify the following for both:

Dd

d
Dd

dd YXhAFMinimizeMRRSA (3.6)

Subject to:

 DdxX
dPp

dpdd

1 (3.7)

Chapter 3 – Lightpath Generation Algorithm 19

 SsEex
Dd Qp

dpes

des

,10 (3.8)

 DdHxgY
dPp

ddppdd

 (3.9)

d
pd

dd PpDdx
YX signinnedunconstrai

,
0
,0

 (3.10)

From the dual variables specified in the above-defined RSA-M formulation and
applying a common technique based on Lagrangean Relaxation (see [Pi04] for more
details), we obtain the dual formulation (RSA-D). Specifically, we first obtain the
Lagrangean function L of the RSA-M problem, which combines primal and dual
variables as denoted in equation (3.11).

Dd Pp
dp

pEe pSs
espd

d
Dd

d

Dd
ddd

Dd Ee Ss
esd

Dd
dd

d

xg

Y

XAh

HYXxL

)()(

1

),,;,,(

 (3.11)

Then, from equation (3.11) the derivation of the RSA-D formulation is
straightforward:

Dd Ee Ss

esd
Dd

dd HWMaximize DRSA (3.12)

Subject to:

Ddd 1 (3.13)

DdAHdd (3.14)

d
pEe pSs

espd PpDdg

,
)()(

 (3.15)

SsEees ,0 (3.16)

3.2.2 Pricing Problem

At this point, we recall that the reduced cost of a variable xdp derived from equation
(3.15) must be non-positive at the optimal solution. The reduced cost of variable xdp
is defined as zdp in equation (3.17).

() ()

,dp d p es d
e E p s S p

z g d D p P

 (3.17)

20 David Rebolo Pérez

When the RSA-RM is solved, if we want to improve the reached optimal solution,
new variables with positive reduced costs must be found. Thus, given a demand d
and a new lightpath p* not included in current Pd set, the lightpath p* could be
useful to improve the current solution if and only if its reduced cost zdp* is greater
than 0. Equation (3.18) shows which condition concerning dual variables must be
met to include the new lightpath.

*
(*) (*)

0dp es d p
e E p s S p

z g

 (3.18)

In fact, in order to obtain the lightpath p that most improves the current solution;
we want to find the reduced cost with the maximum value. This is, indeed, the
pricing problem for our LIGERO procedure, whose model is shown in equation
(3.19). Note that the pricing problem is independent for each demand d in D, so we
can find a best improving p not included in Pd for each d in D.

 (RSA-PP) Maximize {
() ()

: ,dp d p es d
e E p s S p

z g d D p P

 } (3.19)

Note that the pricing problem has three distinguishable components. The dual
variables λd only depend on the chosen demand; the parameter gp takes the same
values for lightpaths with a same number of slots; whereas the factor evolving π
variables depends on the route and the specific slots. Hence, for a given demand
and a given channel size (between nd and Nd) the lightpath with the maximum
reduced cost is the one with the shortest route in terms of the metric induced by π.
This metric assigns to the link e the cost fe(c) given by equation (3.20).

Eecf
Cs

ese

)(
 (3.20)

3.2.3 Main Algorithm

Before presenting the LIGERO algorithm in more detail, we define the main
procedure that iteratively executes our algorithm and which is common for any
path generation method. This main algorithm (detailed in Table 3-1) starts
generating an initial set of lightpaths and solves the RSA-RM linear formulation.
Then the LIGERO algorithm is iteratively executed as long as it finds new
lightpaths to be added to the RSA-RM. Every time a subset of new routes is found,
it is added to the set of existing routes and the problem is re-solved. When no more
routes are found, we can ensure that the last solution is optimal not only for the
RSA-RM but also for the RSA-M.

Chapter 3 – Lightpath Generation Algorithm 21

Table 3-1 Main Algorithm Pseudo-code

INPUT: Network G(V,E), Demand set D
OUTPUT: Solution

1:
2:
3:
4:
5:
6:
7:

Define an initial set Pd of lightpaths, d ∊ D
P ← ∪d∊D Pd
P’← P
while P’ ≠ Ø do
 Solution ← Solve RSA-MR with lightpaths in P
 P’← Solve LIGERO
 P ← P ∪ P’

In the following section two versions of LIGERO are presented: the Dijkstra-based
(D-B) version and the Floyd-Warshall-based (FW-B) version. The first one, as it
names suggests, applies several Dijkstra algorithm computations for each demand
(one for each possible channel size and allocation in the spectrum) in order to find
the most suitable lightpath to be added to the RSA-RM. With the aim to provide a
less complex version, the FW-B version computes Floyd-Warshall to obtain the cost
of shortest paths between all node pairs for each possible channel allocation. With
this action, the detection of those demands needing new variables (with the
reduced cost associated to them) should be obtained faster than using an
exhaustive search like the proposed in D-B version. Then, only for those demands
for which a suitable new lightpath is found, the Dijkstra algorithm is afterwards
applied to obtain the explicit route.

3.2.4 Dijkstra-Based Version

Table 3-2 shows the pseudo-code of the D-B version. This algorithm finds, for each
demand, the lightpath with the highest positive reduced cost, which is the one that
would provide the highest improvement on the quality of the solution. To this aim,
the shortest route over the network with metric links depending on π dual
variables is found. Since π variables are related with single slots in links, the
metric of a given link (fe) depends on the selected channel and is computed as
defined in equation (3.20). Since link metrics depend on the channel selected, it is
necessary to compute several shortest routes (one for all possible channels whose
number of slots is between nd and Nd) in order to find the best lightpath to enter.
However, this search can be early stopped when some conditions are satisfied
ensuring that the best route has been found (if it exists). These conditions to
improve the algorithm are explained later.

Given a certain channel size, we know before route computation whether it is
necessary to explore channels of such size. Thus, we define zmax as the largest value
that z can reach for a given demand d and any channel of n slots. This zmax value is
computed from those elements that do not depend on the route and assuming that
a route with the minimum cost over the current network is found. Although we can
assume that this minimum cost for a route can be equal to 0, we can slightly

22 David Rebolo Pérez

improve zmax by subtracting the value of the lowest π variable. If this zmax is lower
than 0, we can conclude that no better routes than existing ones can be found for
this size and, therefore, we avoid computing a significant number of routes. In case
of obtaining a positive zmax bound, this size should be explored until either all
possible channels have been studied or a route with z*= zmax is found.

Table 3-2 D-B LIGERO Algorithm Pseudo-code

INPUT: G(V,E),D, Solution
OUTPUT: P’
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

P’= Ø
λ, π, γ ← get duals from Solution
πmin ← min(πes), e ∊ E, s ∊ S
for each d in D do
 z* ← –inf
 newPd=Ø
 for (n=Nd; nnd; n--) do
 g’← carried bandwidth in a n-slot channel for d
 zmax ← λd + g’ - πmin
 if zmax0 ||z*zmax then
 break
 Create C with all channels of n slots
 for each channel c ∊ C do
 Update link metrics f using equation (3.20)
 rd ← Shortest route of demand d over G (Dijkstra)
 z ← λd – g’ – dist(r)
 if z � 0 and z > z* then
 z* ← z
 Add pd = (rd,c) (r with cost z) to newPd
 if z* α zmax then
 break
 if newPd≠Ø then
 pd = {p ∊ newPd | maximum z}
 P’=P’ U pd

In addition to the previous condition, we can also ensure that when zmax is either
worse than the incumbent z* or non-positive for a given channel size, then we can
skip searching remaining channels sizes. For the sake of clarity, let g(n) and g(m)
be the served bitrate in a channel of n and m slots respectively. Assuming that
n<m, then by definition of parameter g, we can conclude that g(n)≤ g(m). Thus, the
value of zmax for channels of size n will be lower than those of size m. This condition
allows stopping lightpath search when zmax ≤ 0 or zmax ≤ z* for a given channel size.
Note that this property is useful if and only if channel sizes are explored from
highest to lowest size.

Aiming at reducing even more the complexity of route search, we could assume
that if a new lightpath is found with z* accomplishing that z* α zmax, where α
belongs to the interval [0,1], then that channel size will be explored no more. In our
studies, however, we consider that α = 1.

Finally and in order to compute the complexity of this LIGERO version, let us
consider the case when all demands have the same size and, therefore, the set of

Chapter 3 – Lightpath Generation Algorithm 23

possible channels to serve a demand (i.e. C) is equal for all demands. Additionally,
we consider that the complexity of Dijkstra algorithm can be assumed as O(|V|2),
where |V| is the cardinality of the node set (i.e. the number of nodes). Then, the
complexity of D-B algorithm is |D|·|C|·O(|V|2).

3.2.5 Floyd-Warshall-Based Version

The FW-B version of LIGERO, shown in Table 3-3, computes, for each channel size
and for every channel of the considered size, the cost of the shortest routes over the
network with metric given by equation (3.20) for every demand using Floyd-
Warshall algorithm. Recall that Floyd-Warshall algorithm computes the costs of
the shortest route but does not return explicitly the route. Then for each demand it
computes the reduced cost z following the equation (3.17); if z is as good as the
incumbent value z* then the corresponding demand and channel are added into the
list T. It is important to emphasize that if a better solution is found, then all the
elements in T are removed and only the new pair demand-channel is kept. When z
has been computed for all channels of every size, we iterate over all the demands in
order to randomly choose a channel from [',] : 'dT d c T d d . This channel is

used to update the metric of the network according to equation (3.20) and the
shortest route of the considered demand is computed using the Dijkstra algorithm.
This pair channel-route performs the lightpath that LIGERO algorithm provides to
the RMP for the considered demand.

Table 3-3 FW-B Algorithm Pseudo-code

INPUT: G(V,E),D,Solution
OUTPUT: P’
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

P’= Ø
λ, π, γ ← get duals from Solution
for each d in D do
 zd* ← –inf
nmin ← min{nd : d in D}
Nmax ← max{Nd : d in D}
for (n=nmin; nNmax; n++) do
 for each channel c ∊ Cn do
 Update link metrics f using equation (3.20)
 Solve Floyd-Warshall Algorithm
 for each d in D do
 Cd ← Cost of shortest route for demand d (F-W)
 bc ← min(nB, Hd)
 z ← λd – µd + bcγd – Cd
 if z0 || z zd* then
 z* ← z
 T = Ø
 if z= zd* then
 T ← T U [d,c]
for each d in D do
 c ← channel randomly selected from Td
 Update link metrics f using equation (3.20)
 rd ← Shortest route of demand d over network (Dijkstra)
 pd ← [rd,c]
 P’=P’ U pd

24 David Rebolo Pérez

For analyzing the complexity of this algorithm, we take the same assumption than
for D-B and also assume that the complexity of Floyd-Warshall is O(|V|3). Thus,
the complexity is |C|· O(|V|3) + |D|· O(|V|2). Since in real networks we can
state that |V| <<|D| (we will see the examples in next chapter), then the
following comparison can be done:

O(FW-B)= |C|· O(|V|3)+ |D|· O(|V|2) < |D|·|C|· O(|V|2) = O(D-B)

Nevertheless, we will see the performance of both versions when solving real
instances before taking conclusions about the complexity of the algorithms.

3.2.6 Initial Sets of Lightpaths

For evaluating the impact of the initial set of lightpaths P on the LIGERO
performance, we have used three initialization procedures, referred to as MaxLeft,
GreedyRSA, and MinAll. For the sake of clarity, a detailed example over the
network depicted in Figure 3-1 is performed to give a better understanding about
how these three methods proceed. This network has to supply two demands whose
routes concur in the fiber link A-D, so that the corresponding channels have to
share resources appropriately. Let us assume that the slot width and the spectral
efficiency are such that the optical spectrum is divided in 10 slots. Suppose that the
minimum and maximum bandwidth for the first demand corresponds to 2 and 5
slots respectively; whereas the minimum and maximum bitrate for the second
demand need an amount of 1 and 4 slots.

Figure 3-1 Example of a network with two demands

The MaxLeft procedure assigns the channel with the first Nd slots to each demand.
Table 3-4 shows the algorithm used in order to get this initial solution. Note that
this initial solution is the same as what LIGERO would do if the initial set of
variables was empty. However it is necessary an initial set of dual variables for the

Chapter 3 – Lightpath Generation Algorithm 25

first iteration of the algorithm so that it is necessary a first solution of the relaxed
problem.

Table 3-4 MaxLeft procedure

INPUT: G(V,E),Demands
OUTPUT: P
1:
2:
3:
4:
5:
6:

for each d in Demands
 Nd ← Necessary number of slots to satisfy Hd
 srd ← Shortest route using Dijkstra algorithm
 cleft ← First channel of size Nd
 pd ← (srd ,cleft)
 P ← P U {pd}

For the example explained above, the MaxLeft initial procedure offers for each
demand the most left channel. Thus, since they share a fiber link and they cannot
use the same slots, for the solution at the first iteration one of them has to be
chosen. The channel for demand 1 is preferred since it provides a higher bandwidth
(more slots). Figure 3-2 depicts the explained example.

Figure 3-2 MaxLeft illustrative example

The second method, called GreedyRSA, is similar to MaxLeft except because the
assigned lightpath is not the leftmost one. Instead the demands are previously sort
in the decreasing order of H(d) and processed sequentially in this order. Then a
simple first-fit is applied in order to find (in the shortest route) enough capacity to
serve Hd. The first demand is assigned to its shortest route sr(d1) and the leftmost
channel cleft as in MaxLeft (since all the slots are still free) and the slots used by
this channel are permanently deleted from the links of sr(d1). Next, for d2 we find
the shortest route and checks whether a channel of size Nd is available in all the
links of the route. If there is a free channel of size Nd in the shortest route then
they are assigned to d2, otherwise it searches a free channel of the same size in the
second shortest route. It searches for a free channel in at most the K shortest
routes; if any of them could not be used then it assigns the demand to the shortest

26 David Rebolo Pérez

route with the left channel of size Nd. The algorithm to perform this procedure is
shown in Table 3-5.

Table 3-5: GreedyRSA procedure

INPUT: G(V,E),Demands
OUTPUT: P
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:

Demands set is sorted in the decreasing order of H(d)
for each d in Demands
 Nd ← Necessary number of slots to satisfy Hd
 ksrd ← K-shortest routes using Dijkstra algorithm.
 for each route in ksrd (from shortest to longest)
 for each channel c of size Nd
 if c is not used by any link of route
 pd ← (route,c)
 P ← P U {pd}
 break
 if pd ≠ ø
 break
if pd = ø
 cfirst ← First channel of size Nd
 pd ← (srd ,cfirst)
 P ← P U {pd}

In our illustrative example, the GreedyRSA initial procedure, has enough number
of slots to supply both requested demands from the beginning in the shortest route
(the ones we are considering). Then it provides channels that do not share any slot,
so the final solution can serve both demands and no further iterations would be
needed. This is depicted in Figure 3-3.

Figure 3-3 GreedyRSA illustrative example

The two above described procedures assign the maximum number of slots to the
selected demand lightpaths. Hence, using lightpaths P produced by MaxLeft or
GreedyRSA will result in a solution with two groups of demands: those with
maximum bandwidth allocation and those not realized at all (blocked). Since the
objective function strongly penalizes (through A big enough) the presence of
demands of the latter group, we consider the third initialization procedure, MinAll,

Chapter 3 – Lightpath Generation Algorithm 27

that aims at alleviating this penalization. This initialization procedure provides,
for each demand, all the lightpaths which are a combination of the shortest route
and a channel of size nd. Namely, the set of lightpaths for each demand is given by
the equation (3.21)

 (,) : ,d d d c dP sr c c C m n (3.21)

Note that the number of initial variables that are obtained with this method is
much larger than the obtained with the other two initial solutions. Table 3-6 shows
the pseudo-code of the initial procedure explained above.

Table 3-6 MinAll procedure

INPUT: G(V,E),Demands
OUTPUT: P
1:
2:
3:
4:
5:
6:

for each d in Demands
 nd ← Necessary number of slots to satisfy hd
 srd ← Shortest route using Dijkstra algorithm
 for each channel c with size nd do
 pd ← (srd,c)
 P ← P U {pd}

The example for the MinAll procedure shows that, for each of the demands, it
provides all the possible channels of minimum size; it is 2 and 1 slots respectively.
This is a total amount of 9 channels of 2 slots for the first demand and 10 channels
of 1 slot for the second demand. The final solution provides any combination that
supplies both demands with their minimum bandwidth, since the model contains
all the lightpaths with these channels. In order to illustrate a solution, demand 1
uses its second channel and demand 2 choses channel number 8. From this point,
each iteration applying LIGERO will add lightpaths with more capacity than the
minimum in order to decrease the un-served bandwidth.

Figure 3-4 MinAll illustrative example

28 David Rebolo Pérez

3.3 Summary

In this section we have studied the problem statement and a proposed mixed
integer linear programming problem formulation. Then, the derivation of the dual
and pricing problems have been given and linked with the proposed lightpath
generation methodology. After that, two lightpath generation algorithms have been
shown highlighting the difference between them. Finally, three strategies to start
the LIGERO approach with an initial set of lightpaths have been proposed with
emphasis in the different objectives they have been geared toward.

The numerical evaluation of the algorithm here presented will be done in the
following chapter.

Chapter 4.

Numerical Results

In this chapter we study and compare the two versions of the LIGERO method and
the three techniques used to generate initial set of lightpaths. In order to choose
the best version of LIGERO and the most suitable initial procedure, an analysis
with different loads is performed. Hereafter a large-scale evaluation of the
LIGERO algorithm is made for a large number of demands and channels. For the
sake of comparing the quality of the generated variables by the LIGERO procedure,
a stochastic approach to generate variables is eventually performed with the aim to
produce the same number of lightpaths than LIGERO.

4.1 Reference Scenario

For numerical evaluation we consider the 21-node Spanish Telefónica optical
network (detailed in Figure 4-1) [Ca12]. For this network we created instances
consisting in sets of randomly generated demands. For each one of these demands,
first a random source/destination pair is selected, being each possible pair chosen
with the same probability. Then, a class of the traffic profile defined in Figure 4-1
is assigned with a certain probability. Each class is defined by its specific values of
minimum and maximum bitrate and required number of slots. For computing the
number of required slots, we assumed a slot width of 12.5 GHz and a spectral
efficiency of 2bit/s/Hz, so that the bitrate that a single slot can carry is up to 25
Gbps. To refer us to the size of an instance we will use equally the number of
demands or the total load of bitrate to serve (in Tbps).

We implemented the LIGERO algorithm in Matlab [MLB] and making use of the
linear solver engine in CPLEX 12.2 [CPLX]. We run all experiments on a 2:4GHz
Quad-core machine with 8GB RAM running Linux.

30 David Rebolo Pérez

Figure 4-1 Evaluated Network and Traffic Characteristics

Aiming at providing a reference for the later performance evaluation of our
LIGERO approach, we generated medium instances which were solved to primal
optimality by applying CPLEX. To solve ILP formulations we generated sets of pre-
computed lightpaths as proposed in [Ve12]. Specifically, for each demand we
computed the K shortest routes (with K=5) and, for each one of them, we created
one lightpath for any possible channel with capacity ranging from nd to Nd slots. In
this work, we will call this method K-PreComputed Lightpaths (K-PCL). We set a
10 hours limit to CPLEX in order to find the optimal integer solution; otherwise the
best integer solution and the optimality gap were returned. Although this time
could seem short for a network planning problem, in the next section we will show
(with a real application) that the execution time is a limiting factor in real optical
network problems. Table 4-1 show the obtained average values of 5 randomly
generated independent runs per traffic load.

Table 4-1 ILP solutions for small/medium instances

Total load
(in Tbps)

demands
(|D|)

routes
(|P|)

linear
relax.

integer upper
bound

Time to
solve(in sec.)

optimality
MIP gap

2.5 40 27230 0 0 59.20 0

3 48 32666 0 0 2,280 0%

3.5 56 38122 0 6.67 8,502 20%(1)

4 64 43568 220 334 36,000(2) 42%

(1) – Only one instance exceeded 10 hour time limit, with gap = 100%
(2) All instances exceeded 10 hour limit (36,000 seconds)

For loads 2.5 and 3 Tbps, both the relaxed and the integer solutions reach 0 as
optimal objective value. This indicates that these requested loads are low enough to
be fully served. Contrarily, loads between 3.5 and 4 Tbps show positive integer
objective functions, which implies that some instances had few demands which
have been blocked or partial un-served. Although it is not visible in the

Chapter 4 – Numerical Results 31

summarized table, the amount of rejected demands and/or un-served bandwidth in
these higher loads represent common and accepted values in real in-operation
working networks [Kl13]. Note that 4 Tbps instances exhausted the 10 hour limit
without reaching the optimal. Hereafter, we will put special attention to these
latter instances since, finding high-quality solutions requires much effort than
instances with lower loads.

4.2 Analysis of proposed algorithms

For the instances described in the previous section, we applied our two LIGERO
versions with all initial lightpath set generation procedures. Table 4-2 and Table
4-3 show the number of initial lightpaths and final (i.e. initial + generated) ones;
the number of LIGERO iterations; the value of the relaxed objective function, and
the time to reach such optimal relaxation. The comparison of the detailed
experiment leads to the main following observation: the value of the optimal
relaxation is met for all initial strategies and both LIGERO versions (compare with
relaxation values in Table 4-1). This allows validating our LIGERO algorithms
since the optimal relaxation of the original problem is always met and,
consequently, this convergence is dependent neither on the version nor on the
initial set of lightpaths.

Table 4-2 LIGERO Dijkstra Performance (medium instances)

MaxLeft MinAll GreedyRSA

Total

load

Tbps

init.

var

final

var
iter.

linear

relax.

time

sec.

init.

Var

final

var
iter.

linear

relax.

time

sec.

init.

var

final

var
iter.

linear

relax.

time

sec.

2.5 40 1025 27 0 33.9 1530 2527 27 0 35.9 40 374 8 0 6.3

3.0 48 1512 32 0 66.1 1836 3255 31 0 68.4 48 963 20 0 38.8

3.5 56 1639 28 0 76.1 2142 3787 30 0 85.5 56 1009 17 0 34.6

4.0 64 2639 46 220 361.3 2448 4314 30 220 146.1 64 2375 42 220 440.2

Table 4-3 LIGERO Floyd-Warshall Performance (medium instances)

MaxLeft MinAll GreedyRSA

Total

load

Tbps

init.

var

final

var
iter.

linear

relax.

time

sec.

init.

Var

final

var
iter.

linear

relax.

time

sec.

init.

var

final

var
iter.

linear

relax.

time

sec.

2.5 40 295 6 0 9.36 1530 1824 7 0 11.06 40 236 5 0 7.99

3.0 48 506 9 0 17.12 1836 2299 9 0 17.87 48 423 9 0 16.12

3.5 56 657 9 0 20.78 2142 2748 10 0 24.29 56 651 10 0 20.71

4.0 64 1653 24 220 66.25 2448 3381 13 220 37.07 64 1177 23 220 62.82

32 David Rebolo Pérez

Focusing on the differences between LIGERO versions, we can see that the FW-B
version converges in less iterations and faster than the D-B one. Specifically, the
reductions in terms of execution time and number of iterations of the FW-B version
in comparison with the D-B are in the range of [50%, 75%].

Going into a detailed analysis of the differences among initial procedures, it can be
seen that both the total execution time and the number of LIGERO applications
are strongly dependent on the set of previously existing lightpaths. For loads
between 2.5 and 3.5 Tbps both LIGERO versions show lower number of iterations
and execution times with the GreedyRSA procedure whereas for the 4.0 Tbps
instances the MinAll strategy is the one that reaches lower values in the same
terms. Even though the FW-B version does not show such significant differences, in
relative terms the execution times and the number of iterations of this version has
the same behaviour than the D-B one.

To complement the previous analysis, Figure 4-2 shows the execution time of
LIGERO as a function of the load. In view of the figure, different behaviours are
recognizable. While the time increases linearly with the load for the MinAll
approach in both LIGERO versions, the performance of MaxLeft and GreedyRSA
strategies is clearly worse since the time sharply increases with the highest load.
Thus, the MinAll algorithm provides an initial set of variables that affects
positively to the scalability of LIGERO when the size of the instances increases.

Figure 4-2 Effect of the initial set over LIGERO performance: time vs load for a) D-
B, b) FW-B

Let us focalize now on load 4 Tbps, where similar values for MaxLeft and
GreedyRSA strategies are observed, whereas MinAll provides significantly lower
values (reductions of almost 50% in time and number of iterations). These
differences are detailed in Figure 4-3 where the value of the relaxed optimal
solution is depicted as a function of time for a representative single run of 4 Tbps.
In view of the curves, we can see the high disparity of solutions before applying the
LIGERO algorithm (the first marker of each curve) and how this initial solution is

Chapter 4 – Numerical Results 33

improved along consecutive LIGERO iterations. As explained in previous results,
MinAll provides the fastest solution in both LIGERO versions. More precisely, the
convergence of MinAll approach to the optimal relaxation when the incumbent
solution is near-optimal is faster than in the other cases. To support this
conclusion, Table 4-4 shows, using the same example, the time needed to reach a
near-optimal solution (whose objective function is 300) and the time needed for
reaching the optimal (objective function equal to 200), as well as the time elapsed
between both solutions (in seconds and in percentage with respect to the total
execution time). As can be observed, the time to converge to the optimal when the
incumbent is approaching is the shortest when MinAll is used. In relative terms,
MinAll consumes around 35% of time in improving the near-optimal solution,
whereas with the other strategies, this time raises up to 84%. Therefore, we
conclude that the MinAll approach provides the best LIGERO performance
independently of the version used, although we can also see that running times for
FW-B version are remarkably smaller than times for D-B version.

Figure 4-3: Effect of the initial lightpaths over LIGERO performance: o.f. vs time
* The time needed is out of the range of the figure

Table 4-4 Convergence from near-optimal to optimal

 D‐B FW‐B

Initial Strategy MaxLeft MinAll
greedy
RSA

MaxLeft MinAll
greedy
RSA

Time to Near‐Optimal Solution (=300)
(sec.)

119.74 109.20 103.45 40.08 29.71 42.02

Time to Optimal Solution (=200)
(sec.)

355.19 170.17 653.12 98.92 43.66 106.24

Elapsed Time (sec.) 235.45 60.97 549.67 58.84 13.95 64.22

Elapsed Time vs Total Time (%) 66.3% 35.8% 84.2% 59.5% 32.0% 60.4%

34 David Rebolo Pérez

4.3 Quality of integer solutions

The previous results and conclusions concern to the quality of the proposed
algorithms for obtaining optimal solutions for the linear relaxation of the problem.
Aiming at evaluating the quality of the integer solutions obtained by applying the
B&B algorithm after solving LIGERO, we have performed two different
experiments.

Firstly, we have obtained the best integer solution after 10 hours of the 4 Tbps
instances for all the possible combinations among LIGERO algorithm versions and
initial procedures. The average results are shown in Table 4-5. In light of the
results we can conclude that MinAll procedure provides the best values in terms of
quality of the integer solution (see the accumulated values in the last row of Table
4-5). However, although the D-B LIGERO version presents a worse convergence
and higher execution times and number of generated variables than FW-B one
(shown in previous results), the quality of the integer solutions provided by D-B is
better (as summarized in the last column of Table 4-5). This could be mainly due to
the total amount of variables that this version contains after being applied, which
is significantly higher than in FW-B version. Therefore, after comparing the
performance of the LIGERO algorithm and the quality of the best integer solutions,
we cannot conclude which version is better from this set of medium-size instances.

Table 4-5 Quality of Integer Solutions for medium instances

MaxLeft MinAll GreedyRSA

MaxLeft +

MinAll +

GreedyRSA

D‐B 717.00 454.00 872.00 2043.00

FW‐B 672.00 570.00 1029.00 2271.00

D‐B + FW‐B 1389.00 1024.00 1901.00

Secondly, we compared our LIGERO versions initialized using the MinAll
procedure against other solutions with also a reduced number of variables. In this
regard, the most direct way to reduce the number of lightpaths of the problem to
solve consists of considering a lower number of pre-computed lightpaths for the
RSA-P. This can be done by reducing the value of K for the K-PCL when computing
different routes for each demand. Figure 4-4 depicts, for a given instance with 3
Tbps load, the objective function of the integer solution and the number of
lightpaths obtained with both LIGERO methods and the K-PCL algorithm with K
from 1 to 5. Note that we selected such load to ensure that the K-PCL method find
the optimal integer solution in a reasonable time (not possible with higher loads).

Chapter 4 – Numerical Results 35

In a first look to these results, we can also see how for the K-PCL method the
number of variables increases drastically for larger values of K. Specifically, we
stated that to obtain a solution as good as the one obtained by our methods, it is
necessary to pre-compute all lightpaths from the shortest 4 routes. This represents
a number of variables close to 27000, which is over an order of magnitude higher
than the number of variables generated by our LIGERO approaches (lower than
2000 lightpaths). In view of this, we propose to use one of our methods to generate
good sets of lightpaths instead of the commonly used K-PCL method.

Figure 4-4: Quality of generated paths for LIGERO with MinAll and K-PCL

After this numerical evaluation, the selection of MinAll procedure as the best
initial algorithm is clearly supported by the results (LIGERO performance and
quality of integer solutions). Regarding the LIGERO version, the convergence of
LIGERO is faster and better scalable with respect to the instance size for the FW-B
version than for the D-B one. However, the quality of the obtained integer solutions
(at a given B&B execution time) is better for the latter. In order to definitely decide
which the best algorithm version is, we will illustrate the performance of LIGERO
when solving large-scale instances in the next section. Recall that our goal is to
provide an efficient method to solve instances involving thousands or millions of
variables.

4.4 Performance Evaluation with Large Instances

To illustrate the applicability of this proposal, we generated large instances based
on the same network topology but with large number of demands and spectrum
slots. By also considering a large K value (equal to K=10, to practically ensure that
optimal solutions will be reached), the number of variables rises to un-tractable
values. Table 4-6 shows meaningful results for these large instances. In both cases

36 David Rebolo Pérez

(K-PCL and LIGERO), the time limit set to CPLEX to return the best integer
solution was 10 hours. Since FW-B adds some randomness in the final set of
selected variables and this can affect to the quality of the integer solution, we
repeat 5 times each load, showing in the table the average values. As can be
observed, our methods provide, with up to 2 orders of magnitude less number of
variables, better integer solutions in the same running time that simply applying
CPLEX with pre-computed lightpaths. Moreover, in such cases when the number of
variables is too large to allow generating the problem by CPLEX (out-of-memory
messages appear), our LIGERO approaches provide an affordable way to obtain
feasible and good-quality solutions. Furthermore, even though the integer upper
bounds for both LIGERO versions are similar, the FW-B version clearly
outperforms the D-B version in terms of number of lightpaths and integer objective
values. For this reasons, we definitely chose the FW-B version of LIGERO as the
best of our methods to solve the RSA problem with large instances.

Table 4-6 LIGERO Performance (Large instances)

Finally, we compare the FW-B version of LIGERO against a random selection of
lightpaths. Specifically, we performed a stochastic approach of the K-PCL (with K
from 1 to 4) algorithm. This approach consists of a random selection of the
lightpaths generated by the K-PCL algorithm, selecting exactly the same number
of lightpaths than the LIGERO procedure generates. Table 4-7 exposes the
average, the minimum and the maximum values of 5 repetitions of the same
instance. It shows the number of lightpaths obtained with the FW-B version of
LIGERO algorithm and the objective values for the relaxed and the incumbent
solutions found running the LIGERO and the K-PCL (K=1, 2, 3 and 4) algorithms
with a limit of 10 hours.

 Table 4-7 LIGERO vs Stochastic Approach of K-PCL (7 Tbps)

Pre‐Computed Lightpaths D‐B LIGERO FW‐B LIGERO

Total
BW

|D| |S| |P|
linear
relax.

integer
upper
bound

|P|
linear
relax.

integer
upper
bound

|P|
linear
relax.

integer
upper
bound

4 64 40 132400 520 1895 4176 520 670 3287 520 775

7 112 68 269640 0 7420 11017 0 835 9338 0 785

10 180 96 8675190 out‐of‐memory 22750 0 1020 17203 0 857

LIGERO K=1 K=2 K=3 K=4

|P|
linear
relax.

integer
upper
bound

linear
relax.

integer
upper
bound

linear
relax.

integer
upper
bound

linear
relax.

integer
upper
bound

linear
relax.

integer
upper
bound

avg. 9338 0 785 1913.64 2110 1186.35 1790 1181.26 1850 1337.54 2025

min 9300 0 755 1893.75 2100 1180.44 1770 1151.40 1760 1254.56 1920

max 9409 0 820 1949.48 2115 1195.61 1820 1233.96 1935 1416.07 2180

Chapter 4 – Numerical Results 37

As can be observed, the average of the relaxed objective function is 0 for the FW-B
LIGERO algorithm, which means that for all the repetitions the optimal relaxed
solution is reached. Contrarily for the relaxed K-PCL, the minimum value obtained
is 1151.4, and thus none of the repetitions reached the optimal relaxed solution by
means of this method. Furthermore, the integer solutions achieved with the FW-B
version of LIGERO are, in all the cases, better than the obtained by the K-PCL.
Actually, in the worst case, the FW-B LIGERO objective value decreases in a 53%
with respect to the obtained solution with the K-PCL algorithm.

4.5 Summary

In this chapter a real network was chosen in order to study and compare the two
versions of the LIGERO method and three initial set of lightpath generators. First
the network performance and capacity was studied solving the K-PCL method
(with K=5). Then an analysis with different loads for both versions and the three
initial procedures was performed. This analysis leads to the conclusion that the
FW-B version converges in a lower number of iterations, and acquires better
execution times than the D-B version. Namely, D-B needs 80% more iterations and
70% more time to converge to the linear optimal than FW-B. The MinAll initial
procedure was chosen as the most consistent, since the execution times obtained
applying this initial method before the LIGERO algorithm increase smoothly with
the load than using other initial procedures. Moreover for medium loads (4 Tbps)
GreedyRSA needs 3 times the number of iterations and 3.6 times the execution
time that MinAll procedure does. Hereafter a large-scale evaluation was made
comparing the LIGERO and the K-PCL (with K=10) algorithms for larger number
of demands (high loads) and larger number of channels. The number of variables
with LIGERO was dramatically lower and the upper bound of the integer objective
function that the LIGERO algorithm reached in 10 hours of execution time was
almost an order of magnitude (9.5x) lower than the reached by the K-PCL
procedure. Finally an examination of the LIGERO algorithm was made in order to
compare the quality of the generated variables. With this goal, a stochastic
approach of the K-PCL (with K=5) algorithm was performed so that it generates
the same number of lightpaths than the LIGERO procedure. The results show that
CGA outperforms the stochastic approach by returning a set of lightpaths that
provides results a 40% better on average than the results obtained using the set of
lightpaths returned by the stochastic approach. Table 4-8 summarizes the main
results.

38 David Rebolo Pérez

Table 4-8 Summary of obtained results

Compared methods Comparison Compared methods Comparison

 D‐B vs FW‐B:
 iterations (2‐4 Tbps)

80%
D‐B vs FW‐B:

exec. time (2‐4 Tbps)
70%

GreedyRSA vs MinAll:
iterations (4 Tbps)

3x
GreedyRSA vs MinAll:
exe. time (4 Tbps)

3.6x

10‐PCL vs LIGERO:
integer upper bound

(7 Tbps)
9.5x

Random (avg) vs LIGERO:
integer upper bound

(7 Tbps)
2.6x

Chapter 5.

Illustrative Use Case

In this section, a specific real scenario of application of our LIGERO algorithm is
presented, highlighting the integration of the method in the architecture of an
operational real optical network.

5.1 Periodical Network Re-optimization

While in static traffic environments the optimal RSA solution can be computed
beforehand during the planning phase, the optimal use of spectrum resources is a
challenging problem when dynamic traffic scenarios are considered. Subsequently
to the network design, some strategies of resources re-optimization should be
applied to periodically adapt the network to traffic fluctuations. Lightpath
Rerouting consists of rerouting an existing lightpath from its original route to a
different one, changing neither the source nor the destination (e.g. see [Ch07]). The
rerouting procedure, designed for improving the performance of the network by, for
example, reducing the amount of un-served traffic, follows a scheme like this:

1) The network operator triggers the network re-optimization, by launching an
ad-hoc implemented procedure in the planning tool. Without entering into
details, the planning tool is a network element that contains the hardware
and software needed for solving all the optimization problems related with
the planning, configuration, and re-optimization of the network. A
component of the software implemented is the LIGERO algorithm explained
in this project.

2) The planning tool gets the information of the current state of the network
from the Network Management System (NMS). The NMS, in charge of
managing the core network and implementing fault, configuration,
administration, performance and security (FCAPS) functions, returns the
information of the current set of routed lightpaths used to serve the set of

40 David Rebolo Pérez

demands, as well as the needs (minimum and maximum bitrates) of such
demands.

3) The planning tool solves the re-optimization problem with the desired
configuration (e.g. total execution time). Finally, returns the solution to the
operator.

4) The operator decides if the obtained solution substantially improves the
current RSA. If it does, then the solution is provided to the NMS and its
distribution to the engineering department is done. The engineering
department is in charge of doing the manual operations to perform the
changes provided by the planning tool. When the manual operations start,
the traffic is partially/totally interrupted.

5) Once all changes have been performed and tested, the traffic is restored
again.

Figure 5-1 shows the considered network architecture with all the elements
described above.

Planning Tool

Engineering Department

NMS

Working Optical Network

Operator

User

Inter
face

RSA algorithms

Configuration
algorithms

LIGERO
Algorithm

……

Figure 5-1 Considered Network Architecture

As previously anticipated, rerouting entails the temporary interruption of current
optical connections and this represents a high cost for the provider. However, it is
well known that during night hours the traffic carried is much lower than during
the day. To illustrate this, Figure 5-2 shows the network traffic evolution along the

Chapter 5 - Illustrative Use Case 41

day (based on [UA09]), which can be also assumed equal for the effective bitrate
fluctuations on a single lightpath. Thus, during night time, the percentage of
lightpath bitrate that is used to transport data decreases remarkably. Therefore,
this fact opens the possibility to perform the traffic re-optimization during such
night period to avoid high revenues penalization.

N
e
tw

o
rk
 L
o
a
d

(c
o
n
n
e
c
ti
o
n
u
se
d
b
it
ra
te
)
(%
)

100%

75%

50%

25%

0 3 6 9 12 15 18 21 24

Time (hour)

T1 T2 T3 T2 T1

Figure 5-2 Daily evolution of traffic load

In a dynamic scenario like the one introduced here, new lightpaths could appear to
serve new clients or extend the service to already served ones. From time to time,
the operator receives new connections requests which will be established if the
network contains enough free resources. To compute the best RSA for a single
lightpath over a network with existing traffic, a kind of online RSA algorithm can
be solved to obtain the solution (e.g. see [Ca12]), which will be also implemented in
the planning tool. However, the operations for establishing and testing a new
optical connection require from a manual action and, without loss of generality, we
can assume that new lightpaths are created only during central working hours. At
this point, we can consider that a single day could be split in three time frames (as
illustrated in Figure 5-2):

 Low-Activity Period (T1): characterized by low effective loads carried in
lightpaths and the absence of set-up of new optical connections.

 Medium-Activity Period (T2): consists in that period when, although new
connection setup is not allowed, the volumes of traffic dissuade from
perform traffic interruptions (in order to avoid high penalization costs).

 High-Activity Period (T3): characterized by high volumes of traffic in
lightpaths and the possibility of establishing new connections or releasing
active ones (i.e. changes in the set of demands).

42 David Rebolo Pérez

Therefore, the best moment to start with the re-optimization is at the beginning of
T2, since we can assume that the pool of established connections will remain static
for a long time period (T2+T3). Moreover, the solution of the re-optimization
problem must be obtained and sent to the engineering department during (the
latest) T1, to guarantee that manual actions will be done in the most appropriate
time period (i.e. affecting as less as possible to the current service). Therefore, from
the values of Figure 5-2, the best moment to start the re-optimization is at hour 18,
while the application of the changes must be done before hour 6. This represents a
time frame of 12 hours for computing and implementing the re-optimization.
Considering that manual actions require some time (e.g. 2 hours), the algorithm
computation time should not exceed 10 hours.

Finally, note that in a dynamic scenario the continuous changes in the set of routed
demands make that, if the optimal solution of a re-optimization problem is found,
this becomes suboptimal after few incomes/outcomes of connections. For this
reason, our LIGERO algorithm becomes a good method for solving this problem
since the need of obtaining optimal solutions is not a necessary condition. This is in
line with works like [Ca12] where heuristics for even simpler re-optimization
problems are presented.

Chapter 6.

Concluding Remarks

6.1 Contributions and work impact

In this work we have developed a lightpath generation algorithm (named LIGERO)
to solve a RSA problem for flexgrid optical networks. The designed procedure is
divided in two phases: first an algorithm in used to find a reasonable set of
lightpaths to be used as starting point of the second phase, consisting in a
specifically designed column generation algorithm. The method aims at improving
current approaches consisting of using large sets of pre-computed lightpaths that
lead to excessively many optimization variables in the MIP formulations when
applied to realistic network instances.

To consider different alternatives, we have developed two different versions of the
LIGERO algorithm, based on different known routing algorithms which allow an
efficient search of variables suitable to improve the solution of the RSA problem.
Moreover, different criteria to produce initial set of variables have been designed
and implemented.

Our numerical results for small, medium, and large network instances show that
the proposed LIGERO algorithm remarkably reduces the number of variables in
the MIP formulation of RSA (up to 2 orders of magnitude) and maintains (or even
improves) the solution quality as compared with other approaches. It is worth
mentioning that although our approach is heuristic, it performs better than other
reasonable ways of approaching the considered problem.

Part of the work here presented has been included in the journal paper titled
“Column Generation Algorithm for RSA Problems in Flexgrid Optical Networks”
which has been recently accepted for publication in Photonic Network
Communications journal (indexed in the Journal Citation Reports).

44 David Rebolo Pérez

Finally, this work has been partially supported by the FP7 project IDEALIST
(grant agreement no. 317999) and by the Spanish Ministry of Science through the
TEC2011-27310 ELASTIC Project.

6.2 Personal Evaluation

For the achievement of this project, I was introduced to the optical networks field
by means of reading specific papers and the valuable help of my advisors. I also
studied the column generation method to deeply understand the idea and how it
can be applied. Particularly I brought into focus the path generation algorithm and
how it can be put into practise for optical networks. Finally I learnt how to
implement a mathematical programming problem in Matlab making use of the
linear solver engine in CPLEX 12.2.

The knowledge that I had to use for the contents of the project, are absolutely
related with the courses I attended in the MIEIO master degree. Along the project
I had to model a mixed integer mathematical programming problem. I also had to
build its dual problem by means of its Lagrangean relaxation. Since the column
generation algorithm is a decomposition method, I used my knowledge in large-
scale optimisation where many techniques divide the original problem in few
simpler problems. It is remarkably necessary to be familiar with networks since
the RSA problem is a multi-commodity flow problem. It was especially important to
be able to interpret the relaxed solutions and how the B&B method works. Finally,
since the LIGERO algorithm does not provide optimal solutions, being able to
discern the similitudes and the differences with other heuristic methods was
notably important.

Personally, working with a group of professional and competitive researchers was a
great experience for my career. Moreover, I was part of a research project from the
development of the idea. I worked on it during its process, its implementations as
well as the study of the results and the possible improvements. Finally I
contributed on the writing of the paper which helped me to realize how a research
report must be structured and explained.

I also attended to an international meeting of the IDEALIST European project.
There, besides living a great personal experience, I learnt what international
research groups and companies meet for. For instance I could see how the different
groups put their ideas and objectives in common and take the relevant decisions
together.

Last but not least, I would like to highlight the constant and significant dedication
that this project requires and the enormous effort that it meant as my first step in
research.

Chapter 6 – Concluding Remarks 45

6.3 Future Work

To continue the work already done, some extensions have been considered:

 Enhancement of the proposed procedure (LIGERO + Branch & Bound) by
strengthening linear formulations with problem-specific valid inequalities.

 Development of a Branch & Price Algorithm for solving the RSA problem to
optimality. When the optimal solution is really necessary (offline RSA
planning), this method could improve the common used Branch & Bound
algorithm with a large set of pre-computed lightpaths.

 Development of specific and more complex use cases that are attracting
research interest in the context of flexgrid optical networks. Two of them
are:

o Multi-Hour RSA: In this problem, demands vary the required
bandwidth on time and, although changes of spectrum allocations for
lightpaths are allowed between consecutive time periods, the route
must remain invariant [Kl13].

o After Failure Repair Network Re-optimization: in this problem, some
new resources (i.e. fiber links) appear after a previous failure has
been repaired. Then, the traffic can be re-optimized to use new
capacity resources but all the re-routings are forced to use part of the
new capacity.

Apendix A.

Implemented Code

This appendix shows a part of the code implemented in this work, specifically the
main Matlab function for executing the initial procedures and the chosen version of
the LIGERO algorithm. Then both LIGERO versions codes and the three initial
procedures are included.

Main Algorithm

function [nvar,nvarIni,nconst, fvalrelCG, iteCG, CGTime_alg,CGTime_cplex,
fvalILP,unsDemandsILP,unsBandILP, fvalHEU, unsDemandsHEU,unsBandHEU,ILPTime,
HEUTime, mipgap] = CG_MAIN_FW(network, OD, parameters, outSol, inisol,FW)

%Solution = RSA_MAIN(network, sw, ss, OD)
% network <- Matrix with [idLinks, Node, Node, Distance]
% OD <- [origin destination bandwidth_min bandwidth_max]
% paramters <- Struct with all the parameters
% outSol <- binary. 1=print the solution; 0= no print
% inisol <- 1=smallest channel; other=channels for maximum demand

% Initial parameters

demands=size(OD,1);
T=[0 0];

% Initial set of variables

if inisol==1 %Demanda mÃ-nima, 1 channel heurÃ-stica
 [Data]=RSA_inisol_minmax1(network, OD, parameters, outSol, 0);
elseif inisol==2 %Demanda maxima, 1 channel heurÃ-stica
 [Data]=RSA_inisol_minmax1(network, OD, parameters, outSol,1);
elseif inisol==3 %Demanda mÃ-nima, 1 channel Izquierda
 [Data]=RSA_inisol_minmaxleft(network, OD, parameters, outSol, 0);
elseif inisol==4 %Demanda mÃ¡xima, 1 channel Izquierda
 [Data]=RSA_inisol_minmaxleft(network, OD, parameters, outSol, 1);
elseif inisol==5 %Demanda mÃ-nima, Todos channels Izquierda
 [Data]=RSA_inisol_minmaxall(network, OD, parameters, outSol, 0);
elseif inisol==6 %Demanda mÃ¡xima, Todos channels Derecha

48 David Rebolo Pérez

 [Data]=RSA_inisol_minmaxall(network, OD, parameters, outSol, 1);
elseif inisol==7 %Demanda mÃ-nima, 1 channels, HEURÃ?STICA_PRO
 [Data]=RSA_inisol_minHeuristica(network, OD, parameters, outSol, 0);
elseif inisol==8 %Demanda mÃ¡xima, 1 channels, HEURÃ?STICA_PRO
 [Data]=RSA_inisol_minHeuristica(network, OD, parameters, outSol, 1);
end

nvarIni=Data.('nvar');

CGclock=clock;
CGTime_alg=0;
CGTime_cplex=0;

[cplex]=RSA_ROW(Data, parameters);
T(1,2)=etime(clock,CGclock);

%Initialization of parameters
file=fopen('Solution.txt','w');
STOP=0;
ite=0;
status=1;
checkMax=0;
checkMin=0;
checkSum=0;
tries=0;
maxtries=10;

cplexTimeRem=0;
algTimeRem=0;
lastIteTime=0;
newvar=0;
% Add columns while necessary
while STOP~=1
 ite=ite+1;
 % Solving restricted linear relaxation
 if status==1
 clockIni=clock;
 [status,fvalPrel,xPrel,duals,fvalD,
redCosts,intsol,usedlpaths]=RSA_SOLVER_RELAX(Data,cplex,outSol);

 cplex_etime=etime(clock,clockIni);
 CGTime_cplex=CGTime_cplex+cplex_etime;
 T(ite+1, 1)=etime(clock,CGclock);
 maxIte=max(usedlpaths);
 minIte=min(usedlpaths);
 sumIte=sum(usedlpaths);
 end

 if (checkMin==minIte && checkMax==maxIte && checkSum==sumIte)

 tries=tries+1;
 cplexTimeRem=cplexTimeRem+cplex_etime;
 algTimeRem=algTimeRem+lastIteTime;
 nvarRem=nvarRem+newvar;
 if tries==maxtries
 STOP=1;
 continue
 end

 else
 checkMin=minIte;

Apendix A 49

 checkMax=maxIte;
 checkSum=sumIte;
 tries=0;
 cplexTimeRem=0;
 algTimeRem=0;
 nvarRem=0;
 end

 if fvalPrel>0
 fprintf(file,'Iteration %i:\n',ite);

 % Computing new weights for network links and adding a new column
 if outSol==1
 fprintf('\n COLUMN GENERATION (iteration: %i) \n\n', ite)
 end

 clockIni=clock;
 if FW==1
 [STOP, Data]=RSA_CG_vFW(duals, network, parameters, OD, Data);
 else
 [STOP, Data]=RSA_CG_v2(duals, network, parameters, OD, Data);
 end
 CGTime_alg=CGTime_alg+etime(clock,clockIni);
 lastIteTime=etime(clock,clockIni);

 nvar=GETFIELD(Data,'nvar');
 newvar=GETFIELD(Data,'newvar');
 fprintf('Iteration: %i Var: %i (+%i)\n',ite,nvar-newvar,newvar);

 if newvar==0 %If we did not add any column
 STOP=1;
 else %If we added columns
 clockIni=clock;
 [cplex]=RSA_COLUMN(Data,cplex);
 CGTime_cplex=CGTime_cplex+etime(clock,clockIni);
 T(ite+1,2)=etime(clock,CGclock);
 end
 else
 STOP=1;
 end
% end
end

fvalrelCG=fvalPrel;

CGTime=etime(clock,CGclock);
fclose(file);

% Storing solution
nvar=length(xPrel);
nvar=nvar-nvarRem;
fileaux=fopen('nvarLimit.txt','w');
fprintf(fileaux,'%i\n',nvar);
fclose(fileaux);
nconst=length(duals);

CGTime_cplex=CGTime_cplex-cplexTimeRem;
CGTime_alg=CGTime_alg-algTimeRem;

iteCG=ite-tries;

50 David Rebolo Pérez

intsol=0;
ILPclock=clock;

% Solving ILP
fvalPilp=-1;
if (status==1 && intsol==0)

 fprintf('\n\n SOLVING ILP \n\n')
 cplex.Model.ctype = char(ones(1,length(xPrel))*'I');
 [status,fvalPilp,xPilp, egap]=RSA_SOLVER_ILP(Data,cplex,outSol);
else if status==1 && intsol==1
 xPilp=xPrel;
 egap=0;
 end
end

fvalILP=fvalPilp;
ILPTime=etime(clock,ILPclock);

% Storing solution
nconst=length(duals);
unsDemandsILP=sum(xPilp(1:demands));
unsBandILP=sum(xPilp(demands+1:2*demands))/sum(OD(:,4));
mipgap=egap;

HEUclock=clock;

[SolHeu , MSS] = HeurPostCG_Marc_v1(Data, parameters, xPrel, OD);
HEUTime=etime(clock,HEUclock);
% % Storing solution
A=GETFIELD(parameters,'A');

fvalHEU=A*(SolHeu(:,1)'*OD(:,3))+sum(SolHeu(:,2));
unsDemandsHEU=sum(SolHeu(:,1));
unsBandHEU=sum(SolHeu(:,2))/sum(OD(:,4));

clear cplex

LIGERO Dijkstra-Based Version

function [stopCG, Data]=RSA_CG_v2(duals,network,parameters,OD, Data)

% Add OS parameters to the struct parameters
sw=GETFIELD(parameters,'sw');
ss=GETFIELD(parameters,'ss');
mf=GETFIELD(parameters,'mf');
prec=GETFIELD(parameters,'prec');
alfa=GETFIELD(parameters,'alfa');
LDold=GETFIELD(Data,'LD');
LEold=GETFIELD(Data,'LE');
LSold=GETFIELD(Data,'LS');

% Take parameters and dual variables
demands=size(OD,1);
slots=floor(ss/sw);
nodes=max(max(network(:,2:3)));
links=size(network,1);
cardduals=length(duals);

Apendix A 51

duals_mu=-duals(1:demands);
duals_lambda=duals(demands+1:2*demands);
duals_pi=-duals(2*demands+1:2*demands+links*slots);
duals_gamma=duals(cardduals-demands+1:cardduals);

for i=1:length(duals_mu)
 if abs(duals_mu(i))<=prec
 duals_mu(i)=0;
 end
end

for i=1:length(duals_lambda)
 if abs(duals_lambda(i))<=prec
 duals_lambda(i)=0;
 end
end

for i=1:length(duals_pi)
 if abs(duals_pi(i))<=prec
 duals_pi(i)=0;
 end
end

minpi=min(duals_pi);

for i=1:length(duals_gamma)
 if abs(duals_gamma(i))<=prec
 duals_gamma(i)=0;
 end
end

% Initialize the matrix to add new variables (columns)
LD=zeros(1,demands);
LE=zeros(1,links);
LS=zeros(1,slots);
betaL=0;
newvar=0;
Newvars=zeros(1,demands);
stopCG=1;

% For every demand
for d=1:demands
 zetaInc=-inf;
 % Compute the number of slots of size maximum and minimum
 csMax=ceil(OD(d,4)/(mf*sw)); % Formula to compute number of slots
 csMin=ceil(OD(d,3)/(mf*sw));
 costDemand=duals_lambda(d)-duals_mu(d); % Constant part (for the same
demand)of dual costs
 % For eacch possible channel size (from max to min)
 for cs=csMax:-1:csMin
 % Compute dual variables for this size of channel
 bc=min(OD(d,4),cs*mf*sw); %bandwidth of the channel
 costChannel=bc*duals_gamma(d);
 zetaMax=costDemand+costChannel-minpi;
 %%%%%%%%
 if zetaMax<=0 || zetaInc>=zetaMax
 break;
 end
 %%%%%%%%
 % For each channel of this size
 for cp=1:slots-cs+1
 channel=zeros(1,slots);

52 David Rebolo Pérez

 channel(cp:cp+cs-1)=1;
 for e=1:links
 % Set the link metrics using pi dual variables
 network(e,4)=channel*duals_pi((e-1)*slots+1:e*slots);
 end

 [MATRIX, ID,DIST]= networkMatricesInf(network);
 [RUTASAUX, costRoute] = dijkstra(DIST, OD(d,1),OD(d,2));
 RUTAS=zeros(1,3+nodes);
 RUTAS(4:3+length(RUTASAUX))=RUTASAUX;

 %%
 %Compute zeta
 zeta=costDemand+costChannel-costRoute;

 % If zeta >0 and better than the previous one
 if zeta>0 && zetaInc<zeta % Candidate new variable

 % Save data of the candidate variable
 zetaInc=zeta;
 csInc=cs;
 bcInc=bc;
 channelInc=channel;
 RUTASinc=RUTAS(1,:);
 IDinc=ID;
 if zetaInc>=alfa*zetaMax
 break;
 end
 end
 end
 end

 if zetaInc>prec
 % New variable found for demand d, save data.
 stopCG=0;
 newvar=newvar+1;
 Newvars(d)=1;

 LD(newvar,:)=zeros(1,demands);
 LD(newvar,d)=1;

 LE(newvar,:)=zeros(1,links);

 for n=4:length(RUTASinc)
 if RUTASinc(1,n+1)==0
 break;
 end
 linkID=IDinc(RUTASinc(n),RUTASinc(n+1));
 LE(newvar,linkID)=1;
 end

 LS(newvar,:)=zeros(1,slots);
 LS(newvar,:)=channelInc;

 betaL(newvar)=bcInc;
 end

end

% Merge old variables we the new ones
LE=[LEold; LE];

Apendix A 53

LD=[LDold; LD];
LS=[LSold; LS];
lightpaths=size(LE,1);

% Add new variables to Data
Data=SETFIELD(Data,'LD',LD);
Data=SETFIELD(Data,'LE',LE);
Data=SETFIELD(Data,'LS',LS);
Data=SETFIELD(Data,'lightpaths',lightpaths);
Data=SETFIELD(Data,'nvar',lightpaths);
Data=SETFIELD(Data,'betaL',betaL);
Data=SETFIELD(Data,'newvar',newvar);
Data=SETFIELD(Data,'Newvars',Newvars);
end

LIGERO Floyd-Warshall-Based Version

function [stopCG, Data]=RSA_CG_vFW(duals,network,parameters,OD, Data)

lexicographical=1;

if lexicographical~=1
 multLex=-inf;
else
 multLex=1;
end

% Add OS parameters to the struct parameters
sw=GETFIELD(parameters,'sw');
ss=GETFIELD(parameters,'ss');
mf=GETFIELD(parameters,'mf');
prec=GETFIELD(parameters,'prec');
LDold=GETFIELD(Data,'LD');
LEold=GETFIELD(Data,'LE');
LSold=GETFIELD(Data,'LS');

% Take parameters and dual variables
demands=size(OD,1);
slots=floor(ss/sw);
nodes=max(max(network(:,2:3)));
links=size(network,1);
cardduals=length(duals);
duals_mu=-duals(1:demands);
duals_lambda=duals(demands+1:2*demands);
duals_pi=-duals(2*demands+1:2*demands+links*slots);
duals_gamma=duals(cardduals-demands+1:cardduals);

for i=1:length(duals_mu)
 if abs(duals_mu(i))<=prec
 duals_mu(i)=0;
 end

end

for i=1:length(duals_lambda)
 if abs(duals_lambda(i))<=prec
 duals_lambda(i)=0;
 end

54 David Rebolo Pérez

end

for i=1:length(duals_pi)
 if abs(duals_pi(i))<=prec
 duals_pi(i)=0;
 end

end

for i=1:length(duals_gamma)
 if abs(duals_gamma(i))<=prec
 duals_gamma(i)=0;
 end

end

% Initialize the matrix to add new variables (columns)
LD=zeros(1,demands);
LE=zeros(1,links);
LS=zeros(1,slots);
betaL=0;
newvar=0;
Newvars=zeros(1,demands);
stopCG=1;

csMax=ceil(max(OD(:,4))/(mf*sw)); % Slots formula
csMin=ceil(min(OD(:,3))/(mf*sw));

%a)
newlpaths=struct;
for d=1:demands
 newlpaths.(['D' int2str(d)]).('width')=inf;
 newlpaths.(['D' int2str(d)]).('hoplength')=inf;
 newlpaths.(['D' int2str(d)]).('redcost')=-inf;
 newlpaths.(['D' int2str(d)]).('channels').('number')=0;
end

for cs=csMax:-1:csMin
 for cp=1:slots-cs+1
 channel=zeros(1,slots);
 channel(cp:cp+cs-1)=1;
 I=ones(nodes).*inf;
 for e=1:links
 network(e,4)=channel*duals_pi((e-1)*slots+1:e*slots);
 I(network(e,2),network(e,3))=network(e,4);
 I(network(e,3),network(e,2))=network(e,4);

 end
%c)

 [I,Ihop] = FastFloyd(I);

 for d=1:demands
 csMind=ceil(OD(d,3)/(mf*sw));
 csMaxd=ceil(OD(d,4)/(mf*sw));
 bc=min(cs*mf*sw,OD(d,4));
 if csMind>cs || cs>csMaxd
 continue;

Apendix A 55

 end

 costRoute=I(OD(d,1),OD(d,2));
 costHops=Ihop(OD(d,1),OD(d,2));
 costDemand=duals_lambda(d)-duals_mu(d);
 costChannel=bc*duals_gamma(d);

 zeta=costDemand+costChannel-costRoute;
 redcost=newlpaths.(['D' int2str(d)]).('redcost');
 width=newlpaths.(['D' int2str(d)]).('width');
 hoplength=newlpaths.(['D' int2str(d)]).('hoplength');

 if ((zeta>0 && zeta>redcost) || (zeta>0 && zeta==redcost &&
cs<width) || (zeta>0 && zeta==redcost && cs==width &&
costHops<hoplength*multLex))

 newlpaths.(['D' int2str(d)]).('width')=cs;
 newlpaths.(['D' int2str(d)]).('hoplength')=costHops;
 newlpaths.(['D' int2str(d)]).('bandch')=bc;
 newlpaths.(['D' int2str(d)]).('redcost')=zeta;

 newlpaths.(['D' int2str(d)]).('channels')=[];
 newlpaths.(['D' int2str(d)]).('channels').('number')=0;

 end

 if (zeta==newlpaths.(['D' int2str(d)]).('redcost') &&
cs==newlpaths.(['D' int2str(d)]).('width'))
 nch=newlpaths.(['D'
int2str(d)]).('channels').('number')+1;
 newlpaths.(['D' int2str(d)]).('channels').('number')=nch;
 newlpaths.(['D' int2str(d)]).('channels').(['C'
int2str(nch)])=channel;
 end
 end
 end
end

for d=1:demands
 if newlpaths.(['D' int2str(d)]).('channels').('number')>0
 nch=newlpaths.(['D' int2str(d)]).('channels').('number');
 choice=ceil(rand*nch);
 channel=newlpaths.(['D' int2str(d)]).('channels').(['C'
int2str(choice)]);

 for e=1:links
 network(e,4)=channel*duals_pi((e-1)*slots+1:e*slots);
 end
 [MATRIX, ID,DIST]= networkMatricesInf(network);
 [RUTASAUX, costRoute] = dijkstra(DIST, OD(d,1),OD(d,2));
 RUTAS=zeros(1,3+nodes);
 RUTAS(4:3+length(RUTASAUX))=RUTASAUX;

 newvar=newvar+1;
 Newvars(d)=1;
 LD(newvar,:)=zeros(1,demands);
 LD(newvar,d)=1;
 LE(newvar,:)=zeros(1,links);
 for n=4:length(RUTAS)
 if RUTAS(1,n+1)==0
 break;

56 David Rebolo Pérez

 end
 linkID=ID(RUTAS(n),RUTAS(n+1));
 LE(newvar,linkID)=1;
 end

 LS(newvar,:)=zeros(1,slots);
 LS(newvar,:)=channel;

 betaL(newvar)=newlpaths.(['D' int2str(d)]).('bandch');

 stopCG=0;
 end

end

LE=[LEold; LE];
LD=[LDold; LD];
LS=[LSold; LS];
lightpaths=size(LE,1);

%Add new variables to struct Data
Data=SETFIELD(Data,'LD',LD);
Data=SETFIELD(Data,'LE',LE);
Data=SETFIELD(Data,'LS',LS);
Data=SETFIELD(Data,'lightpaths',lightpaths);
Data=SETFIELD(Data,'nvar',lightpaths);
Data=SETFIELD(Data,'betaL',betaL);
Data=SETFIELD(Data,'newvar',newvar);
Data=SETFIELD(Data,'Newvars',Newvars);

MaxLeft Initial Procedure

function [Data]=RSA_inisol_minmaxleft(networkLinks, OD, parameters, outSol,
minmax)

sw=GETFIELD(parameters,'sw');
ss=GETFIELD(parameters,'ss');
mf=GETFIELD(parameters,'mf');

varID=[0 0 0];
nvar=0;
slots=ceil(ss/sw);
demands=size(OD,1);
Data=struct();

[MATRIX,ID,DIST]= networkMatrices(networkLinks);
links=size(networkLinks,1);

lightpaths=0;
LE=zeros(1,links); % matrix lightpath-links
LD=zeros(1,demands); % matrix lightpath-demands
LS=zeros(1,slots); % matrix lightpath-slots
ES=zeros(links, slots); %Matrix slots-links

%For each demand, we add a path.
for d=1:demands
 [RUTAS]=SP(MATRIX,MATRIX,OD(d,1),OD(d,2)); %RUTAS only contains a route
 for r=1:size(RUTAS,1) %This loop just do an iteration.

Apendix A 57

 if RUTAS(r,1)>0
 if minmax==0
 ns=ceil(OD(d,3)/(mf*sw)); %Number of slots to cover the
minimum demand.
 else
 ns=ceil(OD(d,4)/(mf*sw)); %Number of slots to cover the
maximum demand.
 end
 [ES, LE, LS] = lightpath_left(RUTAS(4:length(RUTAS(1,:))), ns, ES,
LE, LS, ID);
 lightpaths=lightpaths+1;
 LD(lightpaths,d)=1;
 end
 end
end

%Create the set of variables x_l
for d=1:demands
 for l=1:lightpaths
 if LD(l,d)==1
 nvar=nvar+1;
 varID(nvar,:)=[nvar d l];
 end
 end
end

%Print Initial Solution (it might not be feasible)
if (outSol==1)
 fprintf('*** Initial Solution ***\n\n')
 for v=1:nvar
 d=varID(v,2);
 l=varID(v,3);
 fprintf('D %i -> LP %i (Slots: %i) \n\n',d,l,sum(LS(l,:)));
 fprintf('\t \t Links')
 disp(find(LE(l,:)))
 fprintf('\t \t Slots')
 disp(find(LS(l,:)))
 end
 fprintf('\n')
end

Data=setfield(Data,'links',links);
Data=setfield(Data,'slots',slots);
Data=setfield(Data,'demands',demands);
Data=setfield(Data,'lightpaths',lightpaths);
Data=setfield(Data,'minbw',OD(1:demands,3));
Data=setfield(Data,'maxbw',OD(1:demands,4));
Data=setfield(Data,'LE',LE);
Data=setfield(Data,'LD',LD);
Data=setfield(Data,'LS',LS);
Data=setfield(Data,'ES',ES);
Data=setfield(Data,'nvar',nvar);
Data=setfield(Data,'varID',varID);

channelSizes=zeros(demands,slots);
channelSizes(:,1)=1;
Data=setfield(Data,'channelSizes',channelSizes);
end

58 David Rebolo Pérez

function [ES, LE, LS] = lightpath_left(ruta, ns, ES, LE, LS, ID)
% [ES, LE, LS] = lightpath_left(ruta, ns, ES, LE, LS, ID)
%
%INPUT
% ruta <- ruta que debe ser validada
% ns <- numero de slots que se tienen que añadir
% LS <- matriz lightpath-slot que hay que modificar
% LE <- Matriz lightpath-Link
% lightpaths <- numero de lightpaths (sin contar el que se genera en esta
fciï¿½n)
% Matrix node node with the identity of the link instead of 1's
%
%OUTPUT
% ES <- Matriz link-slot
% LE <- Matriz Lightpath-Link (con el nuevo lightpath)
% LS <- matriz lightpath-slot modificada

slots=size(ES',1);
links=size(LE',1);
if norm(LE(1,:))==0
 lightpaths=0;
else
 lightpaths=size(LE,1);
end

%Convertimos la ruta en vector path con 1's en los links del path
path=zeros(1,links);
vls=zeros(1,slots);
for i=1:length(find(ruta))
 if ruta(i+1)~=0
 e=ID(ruta(i),ruta(i+1));
 path(e)=1;
 ES(e,1:ns)=ones(1,ns);
 vls(1:ns)=ones(1,ns);
 end
end

%Construimos matrices LE y LS
LE(lightpaths+1,:)=path;
LS(lightpaths+1,:)=vls;

end

MinAll Initial Procedure

function [Data]=RSA_inisol_minmaxall(networkLinks, OD, parameters, outSol,
minmax)

sw=GETFIELD(parameters,'sw');
ss=GETFIELD(parameters,'ss');
mf=GETFIELD(parameters,'mf');

slots=ceil(ss/sw);
demands=size(OD,1);
Data=struct();

[MATRIX,ID,DIST]= networkMatrices(networkLinks);

Apendix A 59

links=size(networkLinks,1);

LE=zeros(1,links); % matriz lightpath-links
LD=zeros(1,demands); % matriz lightpath-demands
LS=zeros(1,slots); % matriz lightpath-slots
ES=zeros(links, slots); %Matriz slots-links (Creo que son los channels en
vertical)

%Para each demand we add a path.
for d=1:demands
 [RUTAS]=SP(MATRIX,MATRIX,OD(d,1),OD(d,2)); %RUTAS solo contiene una ruta
 if RUTAS(1,1)>0
 ruta=RUTAS(1,:);
 ruta(1:3)=[];
 [LD, LE, LS] = allchannels_minmax(d, ruta, LD, LE, LS, OD, ID,
parameters, minmax);
 end
end

links=size(LE',1);
slots=size(LS',1);
lightpaths=size(LE,1);

Data=setfield(Data,'links',links);
Data=setfield(Data,'slots',slots);
Data=setfield(Data,'demands',demands);
Data=setfield(Data,'lightpaths',lightpaths);
Data=setfield(Data,'nvar',lightpaths);
Data=setfield(Data,'minbw',OD(1:demands,3));
Data=setfield(Data,'maxbw',OD(1:demands,4));
Data=setfield(Data,'LE',LE);
Data=setfield(Data,'LD',LD);
Data=setfield(Data,'LS',LS);
Data=setfield(Data,'ES',ES);

channelSizes=zeros(demands,slots);
channelSizes(:,1)=1;
Data=setfield(Data,'channelSizes',channelSizes);
end

function [LD, LE, LS] = allchannels_minmax(d, ruta,LD, LE, LS, OD, ID,
parameters, minmax)

sw=GETFIELD(parameters,'sw');
mf=GETFIELD(parameters,'mf');

 %numero de slots necesarios para cubrir la demanda maxima.
if minmax==0
 ns=ceil(OD(d,3)/(mf*sw));
else
 ns=ceil(OD(d,4)/(mf*sw));
end

slots=size(LS',1);
links=size(LE',1);

if norm(LE(1,:))==0
 lightpaths=0;
else
 lightpaths=size(LE,1);
end

60 David Rebolo Pérez

%Convertimos la ruta (cadena de nodos) en vector path (cadena de links)
path=zeros(1,links);
for i=1:length(find(ruta))
 if ruta(i+1)~=0
 path(ID(ruta(i),ruta(i+1)))=1;
 end
end
%Creamos un lightpath para cada posible channel con maxns slots
for i=1:slots-ns+1
 lightpaths=lightpaths+1;
 LE(lightpaths,:)=path;
 LS(lightpaths,i:i+ns-1)=ones(1,ns);
 LD(lightpaths,d)=1;
end

end

GreedyRSA Initial Procedure

function [Data]=RSA_inisol_minHeuristica(networkLinks, OD, parameters, outSol,
minmax)

sw=GETFIELD(parameters,'sw');
ss=GETFIELD(parameters,'ss');
mf=GETFIELD(parameters,'mf');

varID=[0 0 0];
nvar=0;
slots=ceil(ss/sw);
demands=size(OD,1);
Data=struct();

[MATRIX,ID,DIST]= networkMatrices(networkLinks);

links=size(networkLinks,1);

lightpaths=0;
LE=zeros(1,links); % matriz lightpath-links
LD=zeros(1,demands); % matriz lightpath-demands
LS=zeros(1,slots); % matriz lightpath-slots
ES=zeros(links, slots); %Matriz slots-links (Creo que son los channels en
vertical)

%Para cada demanda aÃ±adimos un path. A la vez construimos las matrices
%path-link y path-demands.
for d=1:demands
 [RUTAS, nrutas]=KSP(MATRIX,MATRIX,OD(d,1),OD(d,2), 5);
 ruta1=RUTAS(1,:);
 nrutas=min(nrutas,5);
 for r=1:nrutas
 if RUTAS(r,1)>0
 if minmax==0
 ns=ceil(OD(d,3)/(mf*sw)); %numero de slots necesarios para
cubrir la demanda minima.
 else
 ns=ceil(OD(d,4)/(mf*sw));
 end

Apendix A 61

 [ES, LE, LS, exito] = valid_rute_v3(RUTAS(r,4:length(RUTAS(r,:))),
ns, ES, LE, LS, ID, ruta1(4:length(ruta1)), r, nrutas);
 if exito==1
 lightpaths=lightpaths+1;
 LD(lightpaths,d)=1;
 break
 end
 end
 end
end

%Creamos el conjunto de variables x_l
%i.e. Cada variable cual es su demanda(id) y que lightpath usa.
for d=1:demands
 for l=1:lightpaths
 if LD(l,d)==1
 nvar=nvar+1;
 varID(nvar,:)=[nvar d l];
 end
 end
end

if (outSol==1)
 fprintf('*************** SoluciÃ³n Inicial ****************\n\n')
 for v=1:nvar
 d=varID(v,2);
 l=varID(v,3);
 fprintf('D %i -> LP %i (Slots: %i) \n\n',d,l,sum(LS(l,:)));
 fprintf('\t \t Links')
 disp(find(LE(l,:)))
 fprintf('\t \t Slots')
 disp(find(LS(l,:)))
 end
 fprintf('\n')
end

Data=setfield(Data,'links',links);
Data=setfield(Data,'slots',slots);
Data=setfield(Data,'demands',demands);
Data=setfield(Data,'lightpaths',lightpaths);
Data=setfield(Data,'minbw',OD(1:demands,3));
Data=setfield(Data,'maxbw',OD(1:demands,4));
Data=setfield(Data,'LE',LE);
Data=setfield(Data,'LD',LD);
Data=setfield(Data,'LS',LS);
Data=setfield(Data,'ES',ES);
Data=setfield(Data,'nvar',nvar);
Data=setfield(Data,'varID',varID);

channelSizes=zeros(demands,slots);
channelSizes(:,1)=1;
Data=setfield(Data,'channelSizes',channelSizes);
end

function [ES, LE, LS, exito] = valid_rute_v3(ruta, ns, ES, LE, LS, ID, ruta1,
intentos, nrutas)
% [valid, capac] = valid_rute(ruta, nslots, capac)
%
%INPUT
% ruta <- ruta que debe ser validada
% ns <- numero de slots que se tienen que aï¿½adi

62 David Rebolo Pérez

% LS <- matriz lightpath-slot que hay que modificar
% LE <- Matriz lightpath-Link
% lightpaths <- numero de lightpaths (sin contar el que se genera en esta
fciï¿½n)
% Matrix node node with the identity of the link instead of 1's
%
%OUTPUT
% ES <- Matriz link-slot
% LE <- Matriz Lightpath-Link (con el nuevo lightpath)
% LS <- matriz lightpath-slot modificada

exito=0;
slots=size(ES',1);
links=size(LE',1);
if max(LE(1,:))<=0.001
 lightpaths=0;
else
 lightpaths=size(LE,1);
end

%Convertimos la ruta en vector path con 1's en los links del path
path=zeros(1,links);
for i=1:length(find(ruta))
 if ruta(i+1)~=0
 path(ID(ruta(i),ruta(i+1)))=1;
 end
end

%Vemos que slots estï¿½n disponibles a lo largo de toda la ruta
nodisp=zeros(1,slots); %slot no disponibles en algun link de la ruta = 1
for e=1:links
 if path(e)==1
 nodisp=nodisp+ES(e,:);
 end
end

%Recorremos nodisp para ver si hay algun espacio que nos valga.
%Lo pondremos lo mï¿½s a la izquierda posible.
%Si no cabe en ningun sitio lo pondremos lo mï¿½s a la derecha posible.
vls=zeros(1,slots);
for i=1:(slots-ns+1)
 if max(nodisp(i:(i+ns-1)))<=0.001 %Si es cero
 exito=1;
 for e=1:links
 if path(e)==1
 ES(e,i:(i+ns-1))=ones(1,ns);
 end
 end
 vls(i:(i+ns-1))=ones(1,ns);
 break;
 elseif intentos==nrutas
 exito=1;
 path1=zeros(1,links);
 for j=1:length(find(ruta1))
 if ruta1(j+1)~=0
 path(ID(ruta1(j),ruta1(j+1)))=1;
 end
 end
 for e=1:links
 if path1(e)==1
 ES(e,slots-ns+1:slots)=ones(1,ns);
 end

Apendix A 63

 end
 vls(slots-ns+1:slots)=ones(1,ns);
 break;
 end
end

%Construimos matriz PE
if exito==1
 LE(lightpaths+1,:)=path;
 LS(lightpaths+1,:)=vls;
end

end

References

[Ah93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms and Applications, Prentice Hall, 1993.

[Ba98] C. Barnhart, E. Johnson, G. Nemhauser, G. Savelsbergh, and P.
Vance, “Branch-and-Price: column generation for solving huge integer
programs,” Operat. Res., vol. 46, no. 3, pp. 316–329, 1998.

[Ca12] A. Castro, L. Velasco, M. Ruiz, M. Klinkowski, J. P. Fernández-
Palacios, and D. Careglio, "Dynamic Routing and Spectrum
(Re)Allocation in Future Flexgrid Optical Networks," Elsevier
Computers Networks, 56, 2869-2883, 2012.

[Ch07] X. Chu, T. Bu, and X. Li, “A study of lightpath rerouting schemes in
wavelength-routed WDM networks,” in Proc. IEEE Int. Conf.
Communications, Glasgow, UK, 2007.

[Ch11] K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Elastic
bandwidth allocation in flexible OFDM based optical networks,”
IEEE J. Lightw. Technol., vol. 29, no. 9, pp. 1354–1366, 2011.

[CPLX] IBM ILOG CPLEX, http://www-01.ibm.com/software/integration
/optimization/cplex-optimizer/

[Di59] Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numerische Mathematik 1, 269–271, 1959.

[Fl62] Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345.
DOI 10.1145/367766.368168, 1962.

[G694] Spectral grids for WDM applications: DWDM frequency grid. ITU-T
G.694.1 (ed. 2.0) (2012)

[Ja09] B. Jaumard, C. Meyerb, and B. Thiongane, “On column generation
formulations for the RWA problem,” Discrete. Appl. Math., vol. 157,
pp. 1291–1308, 2009.

[Kl11] M. Klinkowski and K. Walkowiak, “Routing and spectrum
assignment in spectrum sliced elastic optical path network,” IEEE

66 David Rebolo Pérez

Commun. Lett.,vol. 15, no. 8, pp. 884–886, 2011.

[Kl13] M. Klinkowski, M. Ruiz, L. Velasco, D. Careglio, V. Lopez, and J.
Comellas, "Elastic Spectrum Allocation for Time-Varying Traffic in
FlexGrid Optical Networks," IEEE Journal on Selected Areas in
Communications (JSAC) 31, 26-38, 2013.

[Li11] Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in
wavelength switched optical network,” IETF RFC Draft, Jul. 2011.

[MLB] Matlab®, Mathworks® http://www.mathworks.es/products/matlab/

[Pi04] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in
Communication and Computer Networks. Morgan Kaufmann, 2004.

[UA09] Memoria Universidad de Alicante 2008-09

http://web.ua.es/es/memoria08-09/vr-tecnologia/informatica.html

[Ve12] L. Velasco, M. Klinkowski, M. Ruiz, and J. Comellas, “Modeling the
routing and spectrum allocation problem for flexgrid optical
networks,” Phot. Netw. Commun., vol. 24, no. 3, pp. 177–186, 2012.

[Wa12] Y. Wang, X. Cao, Q. Hu, and Y. Pan, “Towards elastic and fine-
granular bandwidth allocation in spectrum-sliced optical networks,”
IEEE/OSA J.of Opt. Commun. and Netw., vol. 4, no. 11, pp. 906–917,
2012.

[Ye70] Yen, Jin Y, "An algorithm for finding shortest routes from all source
nodes to a given destination in general networks", Quarterly of
Applied Mathematics, 27, 526–530, 1970.

