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Chapter 1.  

Introduction 

1.1 Motivation and objectives 

The unstoppable explosion of Internet traffic due to the increase of multimedia 
services such as video conferencing, HDTV, or IP telephony is rapidly consuming 
capacity resources in optical transport networks. Nowadays operators are looking 
for technology solutions for near future to deal with such traffic increase in a cost-
effective way. Recently proposed flexgrid optical networks are presented as the 
most promising solution to deal with the expected high volumes of data traffic. In 
flexgrid optical networks, optical connections (i.e. lightpaths) use as frequency 
spectrum as they need, tightly fitting the allocated capacity with the bandwidth 
requirements. In contrast, current fixed grid networks allocate the same amount of 
spectrum to each lightpath, thus leading to a notorious waste of usable capacity. 

In flexgrid optical networks, the problem of finding unoccupied spectrum resources 
so that to establish a lightpath is called the Routing and Spectrum Allocation 
(RSA) problem. RSA concerns assigning a contiguous fraction of frequency 
spectrum to a connection request subject to the constraint of no frequency 
overlapping in network links. Moreover, it is commonly assumed that the same 
piece of spectrum is used in all links traversed by a lightpath (i.e. spectrum 
continuity). To solve the RSA optimization problem, which is proven to be NP-hard, 
efficient integer linear formulations have been proposed. However, when facing 
real instances involving thousands or even millions of integer variables, solving the 
RSA problem by means of such formulations becomes unaffordable. 

To deal with those instances with a large set of variables, decomposition methods 
can be derived to improve their tractability. Column generation is one of these 
optimization decomposition methods which allows reducing the amount of 
variables (referred to as columns) in linear formulations. This technique, based on 
iteratively solving a master problem that grows at each iteration and a pricing 
problem in charge of finding good columns to feed the master problem, is also 
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referred as path generation in the context of network flow problems (since variables 
to find are paths over a network). 

In this work, we present the novel lightpath generation algorithm (called LIGERO 
algorithm) for RSA-based formulations. This algorithm derives from path 
generation theoretical basis but adapted to optical paths with a specific and unique 
assigned piece of spectrum. The presented method uses the notation and primal 
formulation proposed in [Ve12]. To the best of our knowledge, this is one of the first 
works concerning the application of column generation methods for solving RSA-
based problems in flexgrid optical networks. It is worth mentioning that this large 
scale optimization technique has been deeply studied in the context of fixed grid 
optical networks, for example, in [Ja09]. However, the formulations and algorithms 
proposed in [Ja09] are not applicable to our case since the adaptable spectrum 
allocation in flexgrid optical networks differs from rigid spectrum assignment in 
fixed grid networks. 

1.2 Report organization 

The remainder of this document is organized as follows: 

Chapter 2 introduces some background on optical networks, network flows, and 
column generation methodology, needed for a better understanding of the 
contributions in this work. In Chapter 3 the LIGERO approach is presented for 
solving a generic RSA problem, detailing the different algorithm versions designed 
and implemented. The performance evaluation of LIGERO, putting special 
attention on the selection of the best version, is done in Chapter 4 by means of 
medium-size and large-size instances over a real operator optical network. To 
illustrate the utility and applicability of our method, Chapter 5 presents a use case 
where the proposed RSA problem applies and where LIGERO could be applied to 
obtain good-quality solutions. Finally, Chapter 6 concludes the report and opens 
new branches to extend the contributions here presented. 

 



 
 
 
 
 
 
 
 
 

Chapter 2.  

Background 

In this chapter, the necessary concepts of optical networks and operations research 
are introduced in order to simplify the understanding of the contents of this project.  

Firstly, some concepts on optical networks are introduced, including their 
components and their formal representation. After this, high-capacity networks 
and specially flexgrid networks are described and the main problem of the thesis, 
the Routing and Spectrum Assignment (RSA) problem is defined. Secondly and 
regarding network flows, the link-path formulation is detailed, as well as the 
shortest path algorithms that will be derived and used in LIGERO. Finally, the 
general column generation procedure for linear programming problems and its 
application to network flows, called path generation, are illustrated in details. 
Moreover, two techniques to obtain integer solutions after applying the column 
generation method are described. 

2.1 Optical Networks 

2.1.1 Basic Concepts 

An optical network can be defined as a network topology with its representative 
equipment based on a certain optical technology. In general, it is represented by an 
undirected graph where the edges are fiber optic links and the vertices are nodes 
capable of routing traffic, establishing, and deleting optical connections between 
source and destination nodes. The optical technology is limited within a range of 
frequencies of the total frequency spectrum, the so called Optical Spectrum (OS). 
The OS defines a certain capacity within the fiber optic link and it is measured in 
Gigahertz (GHz). In addition, this capacity depends on other factors like the 
equipment utilized in the nodes or the spectral efficiency of established 
connections. 
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Basically, a demand is a petition of bandwidth (or bitrate) to be transported 
between the source node (sd) and the termination node (td), usually expressed in 
Megabits per second (Mbps or Mb/s) or Gigabits per second (Gbps or Gb/s). 
Hereafter, we consider that every demand requests for bitrate between a minimum 
and a maximum value. If the minimum cannot be ensured, then the demand will 
become blocked (i.e. not served at all), whereas if the minimum bandwidth can be 
served but there is not enough resources to serve the maximum one, then the 
demand will be accepted but partially un-served. When a demand is accepted, an 
optical connection in the network is established between the source and the 
termination nodes; these optical connections are called lightpaths since they allow 
the data transmission as a light wave. Moreover, a fiber optic can transport more 
than one lightpath at the same time, since each of them is allocated in different 
parts of the available OS. 

2.1.2 High Capacity Networks 

In order to establish an optical connection to serve a demand, it is necessary to 
solve the problem of finding a route with available free spectrum to support the 
lightpath. In Dense Wavelength Division Multiplex (DWDM) networks (i.e. fixed 
grid optical networks) [G694], this problem is known as routing and wavelength 
assignment (RWA) problem. These networks divide the OS in wavelengths and 
each one of them can transport at most one lightpath at the same time. This OS 
multiplexing allows very high capacity for transporting data in the network and 
represents the most accepted current solution to carry with high volumes of traffic. 
Moreover, DWDM networks are a sort of rigid optical networks, since the occupied 
spectrum width for all optical connections is the same. Contrarily to this definition, 
a flexible optical network can adapt the OS width assigned to each optical 
connection to the required bandwidth of the demands. This improves the network 
performance and the usage of the resources due to their adaptability in relation 
with the spectrum width and the spectrum allocation. 

2.1.3 Flex-Grid Networks 

In [G964] standardization, it has been included the definition of a flexible grid 
(flexgrid) (previously introduced in [Li11]). In a flexgrid optical network, the OS is 
divided into slots, which are portions of the OS with a fixed width of few GHz (e.g. 
6.25 GHz). The central frequency (CF) defines where the assigned spectrum is 
centred and thus it allows positioning the slots within the whole OS. Moreover, a 
subset of contiguous (adjacent) slots is called channel and it is characterized by its 
CF and the number of slots that contains. In order to illustrate the concepts 
introduced above, Figure 2-1 represents the spectrum of a fiber optical link within 
an elastic optical network using the flexgrid technology. 
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Figure 2-1 Logical representation of a fiber optic link 

Similarly to the RWA problem, the Routing and Spectrum Allocation (RSA) 
problem is solved in flexgrid networks. The objective of the RSA problem is to find 
a route with enough free spectrum width to serve the required bandwidth for traffic 
demands. The spectrum allocation (SA) of an optical connection consists of finding 
a certain channel which must accomplish the contiguity and continuity constraints; 
that is, all slots in a lightpath must be one next to the other (contiguity constraint) 
as well as the assigned channel must be placed in the same part of the OS (i.e. 
using the same CF) for all links conforming that optical connection (continuity 
constraint). 

As an example of the RSA problem and for illustrating the continuity and 
contiguity constraints, Figure 2-2 shows the routing and spectrum allocation for 
serving a demand with a required bitrate equivalent to 2 slots from the source node 
B to the destination node D. In a first approach, illustrated in Figure 2-2a, it seems 
that the route B-A-D would be the one to choose as it is the shortest one. But when 
looking in detail, it can be seen that the links from B-A and A-D do not have two 
contiguous slots in the same portion of the OS and therefore the continuity and 
contiguity constraints are not satisfied if the route B-A-D is chosen. Because of 
this, another route must be selected, that is the shortest route satisfying the 
contiguity and continuity constraints. This is the case illustrated in Figure 2-2b, 
where the selected route is B-A-C-D and the assigned channel uses the slots {S5, 
S6} for this connection. 
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Figure 2-2 RSA, continuity and contiguity constraints 

2.2 Operational Research 

2.2.1 Formulations of Network Problems 

The problem we are dealing with is a multi-commodity flow problem: multiple 
unitary flow demands between different source and destination nodes must be 
routed. It can be formulated using either the node-link or the link-path 
formulations. The node-link formulation considers every link as a choice for every 
demand flow and keeps the continuity of the flows by means of degree and sub-tour 
elimination constraints. On the other hand the link-path formulation uses a set of 
pre-computed routes between every pair of nodes origin-destination corresponding 
to a demand [Ah93]. 

In order to explain with more details the link-path formulation, which is used to 
formalize the RSA problem, we are going to introduce a multi-commodity flow 
problem involving continuous variables and express it using a link-path based 
formulation. Let us consider an undirected graph G = (E,V) and a set of demands D 
to be satisfied. For every d in D we have to assign a flow demand hd throughout a 
pre-computed set of paths between the source and destination nodes Pd. Suppose 
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that there exist link capacities ce for every link e in E and we want to minimize the 
total un-served flow. Let us consider the set of non-negative real variables zd for 
every d in D, which represents the un-served bandwidth for demand d. Consider 
also the set of non-negative variables xdp for every d in D and p in Pd, whose values 
are the amount of flow that path p serves for demand d. Then, the problem can be 
formalized as follows: 

 ( ) d
d D

MP Minimize z

   (2.1) 

Subject to:  

[ ]
d

d dp d d
p P

x z h d D


     (2.2) 

:

[ 0]
d

e dp e
d D p P e p

x c e E
  

      (2.3) 

0 ,dp dx d D p P     (2.4) 

0dz d D   (2.5) 

Constraint (2.2) jointly with objective function (2.1) ensures that the un-served 
demand is minimized by serving demands with paths, while constraint (2.3) does 
not permit to excess link capacities. Finally constraints (2.4) and (2.5) are non-
negativity constraints. 

It is important to notice that in the link-path formulation the amount of routes 
increases exponentially. Hence it is necessary to consider only a subset of routes in 
order to reduce the computational complexity. Unfortunately, this might result 
that the reached solution is not optimal. However, this set of routes can be 
carefully chosen to guarantee that the optimal solution (or almost optimal) is 
reached, for instance using an algorithm to find the k-shortest routes between two 
nodes such as the Yen algorithm [Ye70]. 

Finally, remember that the RSA involves integer (i.e. binary) variables. In the 
literature several alternative Mixed Integer Programming (MIP) formulations of 
RSA problems can be found (e.g. see [Kl11], [Ch11], [Wa12], and [Ve12]). Among 
them, the link-path MIP formulation proposed in [Ve12] appears to be the most 
effective since both continuity and contiguity constraints are removed from the 
MIP by using both pre-computed paths and channels. 

2.2.2 Shortest Path Algorithms 

As we will see in section 2.2.3, we need to find the shortest path between several 
pairs of nodes in the pricing problem. In this section we are going to present two 
shortest-path methods: the Dijkstra and the Floyd-Warshall algorithms. The 
Dijkstra algorithm finds the shortest route between a source and every other node 
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in the network, whereas the Floyd-Warshall algorithm computes the cost of the 
shortest route between every pair of nodes but does not return any route explicitly. 

The Dijkstra algorithm [Di59] starts setting to infinity the distance of every node 
except the origin which is initialized as 0. A list V’ contains the nodes whose 
neighbours have not been explored (in the first iteration V’ is equal to V). While at 
least one node has not been visited (i.e. V’ is not empty), the node with the 
minimum distance is taken (in the first iteration this is the source node) and the 
distances of all its neighbours are updated if the current routes from the source is 
shorter than the preceding ones. Every time the distance of a node is updated the 
previous node in the new route is saved. When all the neighbours of a node are 
visited the node is erased from the list V’. Table 2-1 shows a pseudo-code of the 
Dijkstra Algorithm. 

Observe that for a connected undirected graph all nodes are visited before the 
algorithm is finished. Nevertheless a directed graph may have some nodes which 
are not accessible from the source and then the distance remains as infinity along 
the algorithm. In that case, when V’ only contains the non-reachable nodes, lines 8 
and 9 of Table 2-1 stops the algorithm ensuring the shortest path from source to 
any other accessible node have been found.  

Table 2-1 Dijkstra Algorithm Pseudo-code 

INPUT: Network G(V,E), source 
OUTPUT: dist[], previous[] 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

for each node v in V do 
   dist[v] ← infinity 
dist[source] ← 0 
V’ ← V (set of all nodes)                        
while V’ is not empty do                          
   u := argmin{dist[v] : v in V’ }  
   V’=V’\{u}   
   if dist[u] = infinity 
      break  
   for each neighbour v of u in V’ do             
      aux ← dist[u] + weight(u, v)  
      if aux < dist[v] then                       
         dist[v] ← aux  
         previous[v] ← u  

  

 

The Floyd-Warshall algorithm [Fl62], shown in Table 2-2, computes the distance 
between every two nodes of a graph. It starts setting the distance between each 
pair of nodes as following. The distance of a node with itself is 0. If an edge between 
two different nodes exists, the distance is the weight of this edge. If there does not 
exist any edge between two different nodes, the distance is infinity. Then, chosen 
an intermediate node w, the algorithm checks for every pair of nodes whether using 
intermediate node w reduces the current route distance. If the distance is lower 
when the route visits w then the distance between these nodes is updated.  
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Table 2-2 Floyd-Warshall Algorithm Pseudo-code 

INPUT: Network G(V,E) 
OUTPUT: dist 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

for each pair of nodes u and v do
   dist(u,v) ← infinity 
   dist(v,u) ← infinity 
for each node v 
   dist(v,v) ← 0 
for each edge (u,v) 
   dist(u,v) ← weight(u,v) 
for each w in V do               //half-way node 
   for each s in V-{w} do        //source node 
      for each t in V-{s,w} do   //target node 
         if dist(s,t) > dist(s,w)+dist(w,t) then 
            dist(s,t) ← dist(s,w)+dist(w,t)

  

2.2.3 Column Generation Procedure 

Column generation (CG) is a decomposition method for solving large-scale linear 
programming problems and it can be regarded as an application of the Dantzig-
Wolfe decomposition [Ba98]. This technique solves iteratively two simpler problems 
in order to obtain a solution of the original one, which is usually called master 
problem (MP). The restricted master problem (RMP) is exactly as the MP, besides it 
contains only a subset of variables (columns), which makes possible to solve it in 
practice time using, for instance, the simplex algorithm or interior point methods. 
If the current solution obtained by the RMP is not optimal (since it does not contain 
all the variables), the pricing problem (PP) finds new columns to provide a better 
solution. We will see later how it works and why this technique provides the 
optimal solution for linear programming problems. An illustration of the 
interaction between the RMP and the PP is shown in Figure 2-3. 

 

Figure 2-3: Column Generation Diagram 
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For the sake of clarity, let us consider a general formulation of a linear 
programming problem and the derivation of its pricing problem. We call the master 
problem of this linear programming problem (L-MP). 

  TL MP Minimize c x  (2.6) 

Subject to: 

  

[ ] Ax b   (2.7) 

 

0, nx x   (2.8) 

where m  are the dual variables of restriction set (2.7). 

As we said before, the restricted master problem (L-RMP) has the same structure 
as the L-MP problem but only considering an initial subset of r variables xR 

indexed by  1, 2,...,R n  and their corresponding cost and constraint coefficients 

cR and AR. The L-RMP is shown below. 

  T
R RL RMP Minimize c x  (2.9) 

Subject to: 

 

[ ] R RA x b   (2.10) 

 

0, r
R Rx x   (2.11) 

Thus, the dual problem (L-DP) of the restricted master problem is the following: 

  TL DP Maximize b   (2.12) 

Subject to: 

 

[ ] R
T

R Rx A c   (2.13) 

 

0, m    (2.14) 

If there exists a Ck R such that the variables xk and the corresponding constraint 
makes the current solution of the dual problem to become not feasible, then the 
corresponding primal solution is not optimal for the L-MP. Hence, in order to find 
the necessary variables to reach the optimum, we must be able to solve the pricing 
problem (L-PP) which consists of finding the minimum value of the reduced costs 
for each potential variable in RC. If this value is negative, then the corresponding 
constraint is violated and thus, the current optimal solution for the L-RMP is not 
optimal for the L-MP. Contrarily if this value is positive, then the current optimal 
solution for the L-RMP is also the optimal solution for the L-MP. 

 ( ) :  
C k k k

k R
L PP Minimize c a a k th column of matrix A


    (2.15) 
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This pricing problem is NP-hard, especially when the number of non-considered 
variables is large, which is the scenario that we are considering to apply the 
column generation algorithm. For this reason this problem is usually solved by 
means of a heuristic approach. 

In Table 2-3 we show a pseudo-code of the general column generation algorithm: 

Table 2-3: General Column Generation Algorithm  

INPUT: R 
OUTPUT: x* 
 

1: 
2: 
3: 
 

4: 
 

5: 
 

6: 
7: 

(x*,π*) ← Solve the RMP with columns R 
z* ← Solve the PP 
while z* < 0 (new columns are found) do  
   k ← Argument of PP: z* = ck - π* ak 
   R ← R ∪ {k} 
   (x*,π*) ← Solve the RMP with columns R 
   z* ← Solve the PP  

2.2.4 Path Generation Procedure 

When column generation method is applied in a network flow problem it is called 
path generation [Pi04]. We are going to see how to apply the column generation 
method for the problem formulated in section 2.2.1, considering only a subset of 
columns (paths) P’.  

In order to state the pricing problem and get a better understanding of the path 
generation method, the dual problem of the RMP is formulated below. 

( ) d d e e
d D e E

DRMP Minimize h c 
 

   (2.16) 

Subject to:  

[ 0] 'dp d e d
e p

x d D p P 


     (2.17) 

[ 0] 1d dz d D    (2.18) 

                    

0e e E     (2.19) 

Once the RMP is solved, we have an optimal solution for the primal (x*,z*) and the 
dual (λ*,π*) problems. Even though, it might result that this solution is not the 
optimal solution for the MP since we did not consider the full set of routes. Thus we 
would like to know whether the current solution is optimal and otherwise how to 
find out which of the non-considered routes are necessary to reach the optimal 
solution. 

Observe that the set of constraints (2.17) force the value λd* (where (λd*)d = λ*) to 
be the shortest path of Pd’ with respect to link metrics induced by π*. Now suppose 
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that there exists a route pd for a demand d of D outside the list Pd’ that is sharply 
shorter with respect to metrics π* than λd*. Adding this route to the list Pd’ and the 
corresponding constraint (2.20), we can see that the current optimal dual solution  
becomes non-feasible as a consequence of adding this new constraint, opening the 
possibility to decrease the optimal dual objective and at the same time decreasing 
the optimal primal objective.  

d

d e
e p

 


     (2.20) 

Hence, we could search for the shortest route between source and target nodes of 
the demand d and check whether the new possible constraint (2.20) would be 
violated in the current solution. If it is violated, in other words, if equation (2.21) is 
satisfied, then the current solution is not optimal and pd is one of the missing 
routes for the demand d. Moreover, if for every demand d in D the new constraint 
is not violated means that the solution is optimal for the master problem.  

( , ) : 0
d

d d e
e p

Q    


      (2.21) 

Notice that we can try to find few new route for every demand d in D and add as 
many columns (routes) as desired in each iteration of the procedure. In the next 
path-generation algorithm one route for each demand is added as long as new 
useful routes are found. 

Table 2-4: Path Generation Algorithm  

INPUT: P’ 
OUTPUT: x* 
 

1: 
2: 
3: 
 

4: 
 

5: 
 

6: 
7: 

(x*,z*,λ*,π*) ← Solve the RMP with columns P’ 
for each d in D do 
   pd ← Shortest path with metric π* 
while Q(λd*,π*)> 0 (new routes are found) do  
   for each d in D do 
      Pd’ ← Pd’ ∪ { pd } 
   (x*,z*,λ*,π*) ← Solve the RMP with columns P’ 

2.2.5 Column Generation for MIP’s 

The column generation procedure is a method for linear programming problems. 
Despite this, the problems we are to solve evolve integer variables; for this reason 
we present some techniques that can be used after solving the relaxed integer 
problem by means of column generation in order to derive a heuristic MIP solution 
as similar as possible to the relaxed solution. 

One technique is to apply branch-and-bound (B&B) to the restricted master 
problem with the restricted set of variables including the added columns. This 
technique is often called Price and Branch (P&B) and differs from Branch and 
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Price (B&P) on when the columns are added. Specifically, the P&B procedure 
applies the pricing to add new columns only in the root node of the B&B method, 
whereas the B&P technique applies the pricing in each node of the branching tree. 
The benefit of proceeding this way instead of applying B&B directly to the original 
problem is that probably the original problem could not be solved by means of B&B 
method or it can take too long. However, after applying column generation the 
number of variables should be much smaller than the original one and hence 
possible to solve (or solve it faster) by B&B.  

Another technique that can be applied is the so called rounding method, which, at 
each iteration, sets few variables rounding their values to integers and solves the 
restricted master problem using (iteratively) the column generation procedure until 
an optimal solution is reached. Since few variables are set as integer at each 
iteration of the rounding method, it finishes providing an integer solution. 

2.3 Summary 

In this section the main concepts of optical networks and operation research were 
presented. First, the necessary definitions such as node, link, optical spectrum and 
demand were introduced. Then the concept of lightpath and the RWA were 
presented. The highlight was focused on flex-grid optical networks defining what 
slices, slots and channels are. Moreover the RSA problem and the continuity and 
contiguity constraints were stated. 

In the operations research background, network problems and the way they can be 
formulated, the node-link and the link-path formulations were introduced, Then, a 
general procedure of the column generation method for linear programming 
problems was explained. The path generation procedure was described with more 
details stating the restricted master, the dual and the pricing problems as well as a 
detailed pseudo-code of the path-generation algorithm. Since a shortest-path 
algorithm is needed in order to solve the pricing problem, Dijkstra and Floyd-
Warshall algorithms and pseudo-codes were explained in detail. Finally, two 
techniques to obtain integer solutions after applying the column generation method 
were described. 

In the following chapter, the details of the LIGERO algorithm, using some of the 
concepts described in this chapter, will be exposed. 

 





 
 
 
 
 
 
 
 
 

Chapter 3.  

Lightpath Generation Algorithm 

This section is devoted to the LIghtpath GEneRation algOrithm (LIGERO). To this 
aim, the problem statement of the considered RSA problem is presented in the 
context previously defined. A mixed integer formulation of the problem is proposed 
and the derivation of the dual and pricing problems are introduced for a complete 
understanding of the proposed methodology. Then, two path-generation based 
algorithms are proposed. Finally, three strategies to start our approach with an 
initial set of lightpaths are defined. 

3.1 Problem statement and formulation 

3.1.1 Problem Statement 

The problem we aim to solve is briefly defined as follows: for each demand, we want 
to find the route over the flexgrid optical network and the spectrum allocation to 
minimize the number of rejected demands (primary objective) and the amount of 
un-served bitrate (secondary objective). The served bitrate of each demand is a 
value between the minimum and the maximum bitrate respectively. The detailed 
problem statement is the following: 

Given: 

 A network topology represented by a graph G(V,E), being V the set of nodes 
and E the set of bidirectional fiber links connecting two nodes. 

 A set S of available slots of a given spectral width for each link in E. 

 A set of allowable channels Cd for each demand d of D. 

 A set D of demands to be served. Each demand d is defined by its source 
node (sd), its target node (td), its minimum (hd) and maximum (Hd) bitrates. 



16  David Rebolo Pérez 

 An initial set of allowable lightpaths Pd for every demand d. The full set of 
lightpaths is denoted by P. 

Output: 

 The lightpaths used to serve the demands. 

 The set of blocked demands 

 The amount of un-served bandwidth. 

Objective:  

 Primary objective: minimize the number of blocked demands.  

 Secondary objective: minimize the total amount of un-served bandwidth. 

Constraints: 

 Spectrum contiguity: the subset of slots, that joined with a route, perform a 
lightpath have to be contiguous (adjacent). Channels are defined and used 
with this purpose. 

 Spectrum continuity: the spectrum frequency should be the same along all 
the links on the route. In other words, the same channel must be used 
throughout every link on the route. 

 Channel capacity: a channel cannot serve a bitrate higher than its capacity, 
which is proportional to the number of slots that compose it. 

 Slot capacity: a slot in a link can be allocated, at most, to one demand. 

3.1.2 Notation 

In this section a list with the sets and the parameters is given in order to 
summarize all the input information necessary to formulate the mathematical 
programming problem. Later the decision variables used in the model are listed. 

Parameters: 

D Set of demands 

hd Minimum volume of demand d ∊ D (in Gbps) 

Hd Maximum volume of demand d ∊ D (in Gbps) 

E Set of network links 

S Set of spectrum slots at a link 

B Bandwidth carried by one slot 

nd = ⎾hd /B⏋ Number of slots required to carry hd, d ∊ D  

Nd = ⎾Hd /B⏋ Number of slots required to carry Hd, d ∊ D 
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C Set of channels 

mc Number of slots used by channel c ∊ C 

S(c) Set of (contiguous) slots composing channel c 

Cd⊂C Channels allowable for demand d ∊ D 

c∊Cd ⇿ nd ≤ mc ≤ Nd 

Pd Set of allowable lightpaths for demand d ∊ D 

P =∪d∊D Pd Set of all allowable lightpaths 

Qdes ⊆ Pd Set of lightpaths of d using slot s ∊ S on link e ∊	E 

E(p) Set of links traversed by lightpath p ∊ P 

gp Bandwidth carried on lightpath p ∊ P, computed as 
follows: 
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Decision Variables: 

Xd, d ∊ D binary, Xd = 1 when d is blocked 

xdp, d ∊ D,p ∊ Pd binary, xdp = 1 when route p carries its demand d 

Yd, d ∊ D continuous, un-served bandwidth of demand d 

3.1.3 Primal ILP formulation 

The primal formulation of the above-stated problem (RSA-P) is as follows: 
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The objective function (3.1) minimizes the number of rejected demands, using a 
weight factor A, and the amount of un-served bitrate. Each constraint form set (3.2) 
either assigns a lightpath or blocks the demand. Moreover, it guarantees that at 
most one lightpath will be assigned per demand. Constraints (3.3) make sure that 
capacity of slots is not violated, by ensuring that the number of used routes sharing 
one specific slot is at most equal to 1. Constraints (3.4) set Yd as the un-served 
bitrate. Finally constraints (3.5) define the type of decision variables and limit 
their range. 

3.2 The LIGERO algorithm 

In this section, the LIGERO algorithm is presented in the context of the problem 
previously defined. Before that, the derivation of the pricing problem is introduced 
for a complete understanding of the proposed methodology. Two approaches for 
solving LIGERO are presented and few improving techniques are explained 
afterwards. Finally, three different strategies to generate an initial set of 
lightpaths are defined. 

3.2.1 Master Problem  

The Master Problem (RSA-M) formulation is the same as RSA-P besides that 
integrity of variables has been relaxed by continuity in the real domain, becoming 
thus a LP formulation. Equations (3.6) to (3.10) show the RSA-M with the 
associated dual variables for each constraint (in square brackets at left side of 
constraints). A second linear problem with the same algebraic form can be defined, 
the Restricted Master Problem (RSA-RM), that contains a subset of those variables 
present in the RSA-M problem. More specifically, we consider that RSA-RM 
contains the whole set of X and Y variables and a subset of all admissible x 
variables (i.e. routes). Since there are no appreciable differences between RSA-M 
and RSA-RM algebraic formulations, we specify the following for both: 
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From the dual variables specified in the above-defined RSA-M formulation and 
applying a common technique based on Lagrangean Relaxation (see [Pi04] for more 
details), we obtain the dual formulation (RSA-D). Specifically, we first obtain the 
Lagrangean function L of the RSA-M problem, which combines primal and dual 
variables as denoted in equation (3.11). 
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Then, from equation (3.11) the derivation of the RSA-D formulation is 
straightforward: 
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3.2.2 Pricing Problem  

At this point, we recall that the reduced cost of a variable xdp derived from equation 
(3.15) must be non-positive at the optimal solution. The reduced cost of variable xdp 
is defined as zdp in equation (3.17). 
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When the RSA-RM is solved, if we want to improve the reached optimal solution, 
new variables with positive reduced costs must be found. Thus, given a demand d 
and a new lightpath p* not included in current Pd set, the lightpath p* could be 
useful to improve the current solution if and only if its reduced cost zdp* is greater 
than 0. Equation (3.18) shows which condition concerning dual variables must be 
met to include the new lightpath. 

 

*
( *) ( *)
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      (3.18) 

In fact, in order to obtain the lightpath p that most improves the current solution; 
we want to find the reduced cost with the maximum value. This is, indeed, the 
pricing problem for our LIGERO procedure, whose model is shown in equation 
(3.19). Note that the pricing problem is independent for each demand d in D, so we 
can find a best improving p not included in Pd for each d in D. 

 

 (RSA-PP)   Maximize {
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      } (3.19)  

Note that the pricing problem has three distinguishable components. The dual 
variables λd only depend on the chosen demand; the parameter gp takes the same 
values for lightpaths with a same number of slots; whereas the factor evolving π 
variables depends on the route and the specific slots. Hence, for a given demand 
and a given channel size (between nd and Nd) the lightpath with the maximum 
reduced cost is the one with the shortest route in terms of the metric induced by π. 
This metric assigns to the link e the cost fe(c) given by equation (3.20). 

Eecf
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3.2.3 Main Algorithm 

Before presenting the LIGERO algorithm in more detail, we define the main 
procedure that iteratively executes our algorithm and which is common for any 
path generation method. This main algorithm (detailed in Table 3-1) starts 
generating an initial set of lightpaths and solves the RSA-RM linear formulation. 
Then the LIGERO algorithm is iteratively executed as long as it finds new 
lightpaths to be added to the RSA-RM. Every time a subset of new routes is found, 
it is added to the set of existing routes and the problem is re-solved. When no more 
routes are found, we can ensure that the last solution is optimal not only for the 
RSA-RM but also for the RSA-M. 
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Table 3-1 Main Algorithm Pseudo-code 

INPUT: Network G(V,E), Demand set D 
OUTPUT: Solution 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
 

Define an initial set Pd of lightpaths, d ∊ D 
P ← ∪d∊D Pd 
P’← P  
while P’ ≠ Ø do 
    Solution ← Solve RSA-MR with lightpaths in P 
    P’← Solve LIGERO 
    P ← P ∪ P’ 

 

In the following section two versions of LIGERO are presented: the Dijkstra-based 
(D-B) version and the Floyd-Warshall-based (FW-B) version. The first one, as it 
names suggests, applies several Dijkstra algorithm computations for each demand 
(one for each possible channel size and allocation in the spectrum) in order to find 
the most suitable lightpath to be added to the RSA-RM. With the aim to provide a 
less complex version, the FW-B version computes Floyd-Warshall to obtain the cost 
of shortest paths between all node pairs for each possible channel allocation. With 
this action, the detection of those demands needing new variables (with the 
reduced cost associated to them) should be obtained faster than using an 
exhaustive search like the proposed in D-B version. Then, only for those demands 
for which a suitable new lightpath is found, the Dijkstra algorithm is afterwards 
applied to obtain the explicit route. 

3.2.4 Dijkstra-Based Version 

Table 3-2 shows the pseudo-code of the D-B version. This algorithm finds, for each 
demand, the lightpath with the highest positive reduced cost, which is the one that 
would provide the highest improvement on the quality of the solution. To this aim, 
the shortest route over the network with metric links depending on π dual 
variables is found. Since π variables are related with single slots in links, the 
metric of a given link (fe) depends on the selected channel and is computed as 
defined in equation (3.20). Since link metrics depend on the channel selected, it is 
necessary to compute several shortest routes (one for all possible channels whose 
number of slots is between nd and Nd) in order to find the best lightpath to enter. 
However, this search can be early stopped when some conditions are satisfied 
ensuring that the best route has been found (if it exists). These conditions to 
improve the algorithm are explained later. 

Given a certain channel size, we know before route computation whether it is 
necessary to explore channels of such size. Thus, we define zmax as the largest value 
that z can reach for a given demand d and any channel of n slots. This zmax value is 
computed from those elements that do not depend on the route and assuming that 
a route with the minimum cost over the current network is found. Although we can 
assume that this minimum cost for a route can be equal to 0, we can slightly 
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improve zmax by subtracting the value of the lowest π variable. If this zmax is lower 
than 0, we can conclude that no better routes than existing ones can be found for 
this size and, therefore, we avoid computing a significant number of routes. In case 
of obtaining a positive zmax bound, this size should be explored until either all 
possible channels have been studied or a route with z*= zmax is found. 

Table 3-2 D-B LIGERO Algorithm Pseudo-code 

INPUT: G(V,E),D, Solution 
OUTPUT: P’ 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 

P’= Ø 
λ, π, γ ← get duals from Solution 
πmin ← min(πes), e ∊ E, s ∊ S  
for each d in D do 
   z* ← –inf 
   newPd=Ø 
   for (n=Nd; nnd; n--) do 
       g’← carried bandwidth in a n-slot channel for d 
        zmax ← λd + g’ - πmin 
        if zmax0 ||z*zmax then 
            break 
        Create C with all channels of n slots 
        for each channel c ∊ C do 
            Update link metrics f using equation (3.20) 
            rd ← Shortest route of demand d over G (Dijkstra) 
            z ← λd – g’ – dist(r) 
            if z � 0 and z > z* then 
                z* ← z 
                Add pd = (rd,c) (r with cost z) to newPd  
                if z* α zmax then 
                    break 
    if newPd≠Ø then 
        pd = {p ∊ newPd | maximum z} 
        P’=P’ U pd 

 

In addition to the previous condition, we can also ensure that when zmax is either 
worse than the incumbent z* or non-positive for a given channel size, then we can 
skip searching remaining channels sizes. For the sake of clarity, let g(n) and g(m) 
be the served bitrate in a channel of n and m slots respectively. Assuming that 
n<m, then by definition of parameter g, we can conclude that g(n)≤ g(m). Thus, the 
value of zmax for channels of size n will be lower than those of size m. This condition 
allows stopping lightpath search when zmax ≤ 0 or zmax ≤ z* for a given channel size. 
Note that this property is useful if and only if channel sizes are explored from 
highest to lowest size. 

Aiming at reducing even more the complexity of route search, we could assume 
that if a new lightpath is found with z* accomplishing that z*  α zmax, where α 
belongs to the interval [0,1], then that channel size will be explored no more. In our 
studies, however, we consider that α = 1. 

Finally and in order to compute the complexity of this LIGERO version, let us 
consider the case when all demands have the same size and, therefore, the set of 
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possible channels to serve a demand (i.e. C) is equal for all demands. Additionally, 
we consider that the complexity of Dijkstra algorithm can be assumed as O(|V|2), 
where |V| is the cardinality of the node set (i.e. the number of nodes). Then, the 
complexity of D-B algorithm is |D|·|C|·O(|V|2). 

3.2.5 Floyd-Warshall-Based Version 

The FW-B version of LIGERO, shown in Table 3-3, computes, for each channel size 
and for every channel of the considered size, the cost of the shortest routes over the 
network with metric given by equation (3.20) for every demand using Floyd-
Warshall algorithm. Recall that Floyd-Warshall algorithm computes the costs of 
the shortest route but does not return explicitly the route. Then for each demand it 
computes the reduced cost z following the equation (3.17); if z is as good as the 
incumbent value z* then the corresponding demand and channel are added into the 
list T. It is important to emphasize that if a better solution is found, then all the 
elements in T are removed and only the new pair demand-channel is kept. When z 
has been computed for all channels of every size, we iterate over all the demands in 
order to randomly choose a channel from  [ ', ] : 'dT d c T d d   . This channel is 

used to update the metric of the network according to equation (3.20) and the 
shortest route of the considered demand is computed using the Dijkstra algorithm. 
This pair channel-route performs the lightpath that LIGERO algorithm provides to 
the RMP for the considered demand. 

Table 3-3 FW-B Algorithm Pseudo-code 

INPUT: G(V,E),D,Solution 
OUTPUT: P’ 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 

P’= Ø 
λ, π, γ ← get duals from Solution 
for each d in D do 
   zd* ← –inf 
nmin ← min{nd : d in D} 
Nmax ← max{Nd : d in D} 
for (n=nmin; nNmax; n++) do 
   for each channel c ∊ Cn do 
      Update link metrics f using equation (3.20) 
      Solve Floyd-Warshall Algorithm 
      for each d in D do 
         Cd ← Cost of shortest route for demand d (F-W) 
         bc ← min(nB, Hd) 
         z ← λd – µd + bcγd – Cd 
         if z0 || z zd* then 
            z* ← z 
            T = Ø 
         if z= zd* then 
            T ← T U [d,c] 
for each d in D do 
   c ← channel randomly selected from Td 
   Update link metrics f using equation (3.20) 
   rd ← Shortest route of demand d over network (Dijkstra) 
   pd ← [rd,c] 
   P’=P’ U pd 
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For analyzing the complexity of this algorithm, we take the same assumption than 
for D-B and also assume that the complexity of Floyd-Warshall is O(|V|3). Thus, 
the complexity is |C|· O(|V|3) + |D|· O(|V|2). Since in real networks we can 
state that |V| <<|D| (we will see the examples in next chapter), then the 
following comparison can be done: 

O(FW-B)= |C|· O(|V|3)+ |D|· O(|V|2) < |D|·|C|· O(|V|2) = O(D-B) 

Nevertheless, we will see the performance of both versions when solving real 
instances before taking conclusions about the complexity of the algorithms.  

3.2.6 Initial Sets of Lightpaths 

For evaluating the impact of the initial set of lightpaths P on the LIGERO 
performance, we have used three initialization procedures, referred to as MaxLeft, 
GreedyRSA, and MinAll. For the sake of clarity, a detailed example over the 
network depicted in Figure 3-1 is performed to give a better understanding about 
how these three methods proceed. This network has to supply two demands whose 
routes concur in the fiber link A-D, so that the corresponding channels have to 
share resources appropriately. Let us assume that the slot width and the spectral 
efficiency are such that the optical spectrum is divided in 10 slots. Suppose that the 
minimum and maximum bandwidth for the first demand corresponds to 2 and 5 
slots respectively; whereas the minimum and maximum bitrate for the second 
demand need an amount of 1 and 4 slots. 

 

Figure 3-1 Example of a network with two demands 

The MaxLeft procedure assigns the channel with the first Nd slots to each demand. 
Table 3-4 shows the algorithm used in order to get this initial solution. Note that 
this initial solution is the same as what LIGERO would do if the initial set of 
variables was empty. However it is necessary an initial set of dual variables for the 
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first iteration of the algorithm so that it is necessary a first solution of the relaxed 
problem. 

Table 3-4 MaxLeft procedure 

INPUT: G(V,E),Demands 
OUTPUT: P 
1: 
2: 
3: 
4: 
5: 
6: 

for each d in Demands 
   Nd ← Necessary number of slots to satisfy Hd 
   srd ← Shortest route using Dijkstra algorithm 
   cleft ← First channel of size Nd 
   pd  ← (srd ,cleft) 
   P  ← P U {pd}  

 

For the example explained above, the MaxLeft initial procedure offers for each 
demand the most left channel. Thus, since they share a fiber link and they cannot 
use the same slots, for the solution at the first iteration one of them has to be 
chosen. The channel for demand 1 is preferred since it provides a higher bandwidth 
(more slots). Figure 3-2 depicts the explained example. 

 

Figure 3-2 MaxLeft illustrative example 

The second method, called GreedyRSA, is similar to MaxLeft except because the 
assigned lightpath is not the leftmost one. Instead the demands are previously sort 
in the decreasing order of H(d) and processed sequentially in this order. Then a 
simple first-fit is applied in order to find (in the shortest route) enough capacity to 
serve Hd. The first demand is assigned to its shortest route sr(d1) and the leftmost 
channel cleft as in MaxLeft (since all the slots are still free) and the slots used by 
this channel are permanently deleted from the links of sr(d1). Next, for d2 we find 
the shortest route and checks whether a channel of size Nd is available in all the 
links of the route. If there is a free channel of size Nd in the shortest route then 
they are assigned to d2, otherwise it searches a free channel of the same size in the 
second shortest route. It searches for a free channel in at most the K shortest 
routes; if any of them could not be used then it assigns the demand to the shortest 
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route with the left channel of size Nd. The algorithm to perform this procedure is 
shown in Table 3-5. 

Table 3-5: GreedyRSA procedure 

INPUT: G(V,E),Demands 
OUTPUT: P
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
 

Demands set is sorted in the decreasing order of H(d) 
for each d in Demands 
   Nd ← Necessary number of slots to satisfy Hd 
   ksrd ← K-shortest routes using Dijkstra algorithm. 
   for each route in ksrd  (from shortest to longest) 
      for each channel c of size Nd 
         if c is not used by any link of route 
            pd  ← (route,c) 
            P  ← P U {pd}  
            break 
      if  pd  ≠ ø 
         break 
if  pd = ø 
   cfirst ← First channel of size Nd 
   pd  ← (srd ,cfirst) 
   P  ← P U {pd} 

 

In our illustrative example, the GreedyRSA initial procedure, has enough number 
of slots to supply both requested demands from the beginning in the shortest route 
(the ones we are considering). Then it provides channels that do not share any slot, 
so the final solution can serve both demands and no further iterations would be 
needed. This is depicted in Figure 3-3. 

 

Figure 3-3 GreedyRSA illustrative example 

The two above described procedures assign the maximum number of slots to the 
selected demand lightpaths. Hence, using lightpaths P produced by MaxLeft or 
GreedyRSA will result in a solution with two groups of demands: those with 
maximum bandwidth allocation and those not realized at all (blocked). Since the 
objective function strongly penalizes (through A big enough) the presence of 
demands of the latter group, we consider the third initialization procedure, MinAll, 
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that aims at alleviating this penalization. This initialization procedure provides, 
for each demand, all the lightpaths which are a combination of the shortest route 
and a channel of size nd. Namely, the set of lightpaths for each demand is given by 
the equation (3.21) 

 

 ( , ) : ,d d d c dP sr c c C m n    (3.21)   

Note that the number of initial variables that are obtained with this method is 
much larger than the obtained with the other two initial solutions. Table 3-6 shows 
the pseudo-code of the initial procedure explained above. 

Table 3-6 MinAll procedure 

INPUT: G(V,E),Demands 
OUTPUT: P 
1: 
2: 
3: 
4: 
5: 
6: 
  

for each d in Demands  
   nd ← Necessary number of slots to satisfy hd 
   srd ← Shortest route using Dijkstra algorithm 
   for each channel c with size nd do 
      pd  ← (srd,c) 
      P  ← P U {pd}  

 

The example for the MinAll procedure shows that, for each of the demands, it 
provides all the possible channels of minimum size; it is 2 and 1 slots respectively. 
This is a total amount of 9 channels of 2 slots for the first demand and 10 channels 
of 1 slot for the second demand. The final solution provides any combination that 
supplies both demands with their minimum bandwidth, since the model contains 
all the lightpaths with these channels. In order to illustrate a solution, demand 1 
uses its second channel and demand 2 choses channel number 8. From this point, 
each iteration applying LIGERO will add lightpaths with more capacity than the 
minimum in order to decrease the un-served bandwidth. 

 

Figure 3-4 MinAll illustrative example 
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3.3 Summary 

In this section we have studied the problem statement and a proposed mixed 
integer linear programming problem formulation. Then, the derivation of the dual 
and pricing problems have been given and linked with the proposed lightpath 
generation methodology. After that, two lightpath generation algorithms have been 
shown highlighting the difference between them. Finally, three strategies to start 
the LIGERO approach with an initial set of lightpaths have been proposed with 
emphasis in the different objectives they have been geared toward. 

The numerical evaluation of the algorithm here presented will be done in the 
following chapter. 

 



 
 
 
 
 
 
 
 
 

Chapter 4.  

Numerical Results 

In this chapter we study and compare the two versions of the LIGERO method and 
the three techniques used to generate initial set of lightpaths. In order to choose 
the best version of LIGERO and the most suitable initial procedure, an analysis 
with different loads is performed. Hereafter a large-scale evaluation of the 
LIGERO algorithm is made for a large number of demands and channels. For the 
sake of comparing the quality of the generated variables by the LIGERO procedure, 
a stochastic approach to generate variables is eventually performed with the aim to 
produce the same number of lightpaths than LIGERO. 

4.1 Reference Scenario 

For numerical evaluation we consider the 21-node Spanish Telefónica optical 
network (detailed in Figure 4-1) [Ca12]. For this network we created instances 
consisting in sets of randomly generated demands. For each one of these demands, 
first a random source/destination pair is selected, being each possible pair chosen 
with the same probability. Then, a class of the traffic profile defined in Figure 4-1 
is assigned with a certain probability. Each class is defined by its specific values of 
minimum and maximum bitrate and required number of slots. For computing the 
number of required slots, we assumed a slot width of 12.5 GHz and a spectral 
efficiency of 2bit/s/Hz, so that the bitrate that a single slot can carry is up to 25 
Gbps. To refer us to the size of an instance we will use equally the number of 
demands or the total load of bitrate to serve (in Tbps). 

We implemented the LIGERO algorithm in Matlab [MLB] and making use of the 
linear solver engine in CPLEX 12.2 [CPLX]. We run all experiments on a 2:4GHz 
Quad-core machine with 8GB RAM running Linux. 
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Figure 4-1 Evaluated Network and Traffic Characteristics 

Aiming at providing a reference for the later performance evaluation of our 
LIGERO approach, we generated medium instances which were solved to primal 
optimality by applying CPLEX. To solve ILP formulations we generated sets of pre-
computed lightpaths as proposed in [Ve12]. Specifically, for each demand we 
computed the K shortest routes (with K=5) and, for each one of them, we created 
one lightpath for any possible channel with capacity ranging from nd to Nd slots. In 
this work, we will call this method K-PreComputed Lightpaths (K-PCL). We set a 
10 hours limit to CPLEX in order to find the optimal integer solution; otherwise the 
best integer solution and the optimality gap were returned. Although this time 
could seem short for a network planning problem, in the next section we will show 
(with a real application) that the execution time is a limiting factor in real optical 
network problems. Table 4-1 show the obtained average values of 5 randomly 
generated independent runs per traffic load. 

Table 4-1 ILP solutions for small/medium instances 

Total load 
(in Tbps) 

# demands 
(|D|) 

# routes
(|P|) 

linear 
relax. 

integer upper 
bound 

Time to 
solve(in sec.) 

optimality 
MIP gap 

2.5  40 27230 0 0 59.20  0 

3  48 32666 0 0 2,280  0% 

3.5  56 38122 0 6.67 8,502  20%(1)

4  64 43568 220 334 36,000(2)  42% 

(1) – Only one instance exceeded 10 hour time limit, with gap = 100% 
(2) All instances exceeded 10 hour limit (36,000 seconds) 

 

For loads 2.5 and 3 Tbps, both the relaxed and the integer solutions reach 0 as 
optimal objective value. This indicates that these requested loads are low enough to 
be fully served. Contrarily, loads between 3.5 and 4 Tbps show positive integer 
objective functions, which implies that some instances had few demands which 
have been blocked or partial un-served. Although it is not visible in the 
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summarized table, the amount of rejected demands and/or un-served bandwidth in 
these higher loads represent common and accepted values in real in-operation 
working networks [Kl13]. Note that 4 Tbps instances exhausted the 10 hour limit 
without reaching the optimal. Hereafter, we will put special attention to these 
latter instances since, finding high-quality solutions requires much effort than 
instances with lower loads. 

4.2 Analysis of proposed algorithms 

For the instances described in the previous section, we applied our two LIGERO 
versions with all initial lightpath set generation procedures. Table 4-2 and Table 
4-3 show the number of initial lightpaths and final (i.e. initial + generated) ones; 
the number of LIGERO iterations; the value of the relaxed objective function, and 
the time to reach such optimal relaxation. The comparison of the detailed 
experiment leads to the main following observation: the value of the optimal 
relaxation is met for all initial strategies and both LIGERO versions (compare with 
relaxation values in Table 4-1). This allows validating our LIGERO algorithms 
since the optimal relaxation of the original problem is always met and, 
consequently, this convergence is dependent neither on the version nor on the 
initial set of lightpaths. 

Table 4-2 LIGERO Dijkstra Performance (medium instances) 

MaxLeft  MinAll  GreedyRSA 

Total 

load 

Tbps 

init. 

var 

final 

var 
iter. 

linear 

relax. 

time 

sec. 

init. 

Var 

final 

var 
iter. 

linear 

relax. 

time 

sec. 

init. 

var 

final 

var 
iter. 

linear 

relax. 

time 

sec. 

2.5  40  1025  27  0  33.9  1530  2527  27  0  35.9  40  374  8  0  6.3 

3.0  48  1512  32  0  66.1  1836  3255  31  0  68.4  48  963  20  0  38.8 

3.5  56  1639  28  0  76.1  2142  3787  30  0  85.5  56  1009  17  0  34.6 

4.0  64  2639  46  220  361.3  2448  4314  30  220  146.1  64  2375  42  220  440.2 

Table 4-3 LIGERO Floyd-Warshall Performance (medium instances) 

MaxLeft  MinAll  GreedyRSA 

Total 

load 

Tbps 

init. 

var 

final 

var 
iter. 

linear 

relax. 

time 

sec. 

init. 

Var 

final 

var 
iter. 

linear 

relax. 

time 

sec. 

init. 

var 

final 

var 
iter. 

linear 

relax. 

time 

sec. 

2.5  40  295  6  0  9.36  1530  1824  7  0  11.06  40  236  5  0  7.99 

3.0  48  506  9  0  17.12  1836  2299  9  0  17.87  48  423  9  0  16.12 

3.5  56  657  9  0  20.78  2142  2748  10  0  24.29  56  651  10  0  20.71 

4.0  64  1653  24  220  66.25  2448  3381  13  220  37.07  64  1177  23  220  62.82 
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Focusing on the differences between LIGERO versions, we can see that the FW-B 
version converges in less iterations and faster than the D-B one. Specifically, the 
reductions in terms of execution time and number of iterations of the FW-B version 
in comparison with the D-B are in the range of [50%, 75%].  

Going into a detailed analysis of the differences among initial procedures, it can be 
seen that both the total execution time and the number of LIGERO applications 
are strongly dependent on the set of previously existing lightpaths. For loads 
between 2.5 and 3.5 Tbps both LIGERO versions show lower number of iterations 
and execution times with the GreedyRSA procedure whereas for the 4.0 Tbps 
instances the MinAll strategy is the one that reaches lower values in the same 
terms. Even though the FW-B version does not show such significant differences, in 
relative terms the execution times and the number of iterations of this version has 
the same behaviour than the D-B one. 

To complement the previous analysis, Figure 4-2 shows the execution time of 
LIGERO as a function of the load. In view of the figure, different behaviours are 
recognizable. While the time increases linearly with the load for the MinAll 
approach in both LIGERO versions, the performance of MaxLeft and GreedyRSA 
strategies is clearly worse since the time sharply increases with the highest load. 
Thus, the MinAll algorithm provides an initial set of variables that affects 
positively to the scalability of LIGERO when the size of the instances increases. 

 

Figure 4-2 Effect of the initial set over LIGERO performance: time vs load for a) D-
B, b) FW-B 

Let us focalize now on load 4 Tbps, where similar values for MaxLeft and 
GreedyRSA strategies are observed, whereas MinAll provides significantly lower 
values (reductions of almost 50% in time and number of iterations). These 
differences are detailed in Figure 4-3 where the value of the relaxed optimal 
solution is depicted as a function of time for a representative single run of 4 Tbps. 
In view of the curves, we can see the high disparity of solutions before applying the 
LIGERO algorithm (the first marker of each curve) and how this initial solution is 
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improved along consecutive LIGERO iterations. As explained in previous results, 
MinAll provides the fastest solution in both LIGERO versions. More precisely, the 
convergence of MinAll approach to the optimal relaxation when the incumbent 
solution is near-optimal is faster than in the other cases. To support this 
conclusion, Table 4-4 shows, using the same example, the time needed to reach a 
near-optimal solution (whose objective function is 300) and the time needed for 
reaching the optimal (objective function equal to 200), as well as the time elapsed 
between both solutions (in seconds and in percentage with respect to the total 
execution time). As can be observed, the time to converge to the optimal when the 
incumbent is approaching is the shortest when MinAll is used. In relative terms, 
MinAll consumes around 35% of time in improving the near-optimal solution, 
whereas with the other strategies, this time raises up to 84%. Therefore, we 
conclude that the MinAll approach provides the best LIGERO performance 
independently of the version used, although we can also see that running times for 
FW-B version are remarkably smaller than times for D-B version. 

 

Figure 4-3: Effect of the initial lightpaths over LIGERO performance: o.f. vs time 
* The time needed is out of the range of the figure 

Table 4-4  Convergence from near-optimal to optimal 

  D‐B  FW‐B 

Initial Strategy  MaxLeft  MinAll 
greedy 
RSA 

MaxLeft  MinAll 
greedy 
RSA 

Time to Near‐Optimal Solution (=300) 
(sec.) 

119.74  109.20  103.45  40.08  29.71  42.02 

Time to Optimal Solution (=200) 
(sec.) 

355.19  170.17  653.12  98.92  43.66  106.24 

Elapsed Time (sec.)  235.45  60.97  549.67  58.84  13.95  64.22 

Elapsed Time vs Total Time (%)  66.3%  35.8%  84.2%  59.5%  32.0%  60.4% 
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4.3 Quality of integer solutions 

The previous results and conclusions concern to the quality of the proposed 
algorithms for obtaining optimal solutions for the linear relaxation of the problem. 
Aiming at evaluating the quality of the integer solutions obtained by applying the 
B&B algorithm after solving LIGERO, we have performed two different 
experiments. 

Firstly, we have obtained the best integer solution after 10 hours of the 4 Tbps 
instances for all the possible combinations among LIGERO algorithm versions and 
initial procedures. The average results are shown in Table 4-5. In light of the 
results we can conclude that MinAll procedure provides the best values in terms of 
quality of the integer solution (see the accumulated values in the last row of Table 
4-5). However, although the D-B LIGERO version presents a worse convergence 
and higher execution times and number of generated variables than FW-B one 
(shown in previous results), the quality of the integer solutions provided by D-B is 
better (as summarized in the last column of Table 4-5). This could be mainly due to 
the total amount of variables that this version contains after being applied, which 
is significantly higher than in FW-B version. Therefore, after comparing the 
performance of the LIGERO algorithm and the quality of the best integer solutions, 
we cannot conclude which version is better from this set of medium-size instances. 

Table 4-5 Quality of Integer Solutions for medium instances 

 
MaxLeft  MinAll  GreedyRSA 

MaxLeft + 

MinAll + 

GreedyRSA 

D‐B  717.00  454.00  872.00  2043.00 

FW‐B  672.00  570.00  1029.00  2271.00 

D‐B + FW‐B  1389.00  1024.00  1901.00   

 

Secondly, we compared our LIGERO versions initialized using the MinAll 
procedure against other solutions with also a reduced number of variables. In this 
regard, the most direct way to reduce the number of lightpaths of the problem to 
solve consists of considering a lower number of pre-computed lightpaths for the 
RSA-P. This can be done by reducing the value of K for the K-PCL when computing 
different routes for each demand. Figure 4-4 depicts, for a given instance with 3 
Tbps load, the objective function of the integer solution and the number of 
lightpaths obtained with both LIGERO methods and the K-PCL algorithm with K 
from 1 to 5. Note that we selected such load to ensure that the K-PCL method find 
the optimal integer solution in a reasonable time (not possible with higher loads).  
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In a first look to these results, we can also see how for the K-PCL method the 
number of variables increases drastically for larger values of K. Specifically, we 
stated that to obtain a solution as good as the one obtained by our methods, it is 
necessary to pre-compute all lightpaths from the shortest 4 routes. This represents 
a number of variables close to 27000, which is over an order of magnitude higher 
than the number of variables generated by our LIGERO approaches (lower than 
2000 lightpaths). In view of this, we propose to use one of our methods to generate 
good sets of lightpaths instead of the commonly used K-PCL method. 

 

Figure 4-4: Quality of generated paths for LIGERO with MinAll and K-PCL 

After this numerical evaluation, the selection of MinAll procedure as the best 
initial algorithm is clearly supported by the results (LIGERO performance and 
quality of integer solutions). Regarding the LIGERO version, the convergence of 
LIGERO is faster and better scalable with respect to the instance size for the FW-B 
version than for the D-B one. However, the quality of the obtained integer solutions 
(at a given B&B execution time) is better for the latter. In order to definitely decide 
which the best algorithm version is, we will illustrate the performance of LIGERO 
when solving large-scale instances in the next section. Recall that our goal is to 
provide an efficient method to solve instances involving thousands or millions of 
variables. 

4.4 Performance Evaluation with Large Instances 

To illustrate the applicability of this proposal, we generated large instances based 
on the same network topology but with large number of demands and spectrum 
slots. By also considering a large K value (equal to K=10, to practically ensure that 
optimal solutions will be reached), the number of variables rises to un-tractable 
values. Table 4-6  shows meaningful results for these large instances. In both cases 
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(K-PCL and LIGERO), the time limit set to CPLEX to return the best integer 
solution was 10 hours. Since FW-B adds some randomness in the final set of 
selected variables and this can affect to the quality of the integer solution, we 
repeat 5 times each load, showing in the table the average values. As can be 
observed, our methods provide, with up to 2 orders of magnitude less number of 
variables, better integer solutions in the same running time that simply applying 
CPLEX with pre-computed lightpaths. Moreover, in such cases when the number of 
variables is too large to allow generating the problem by CPLEX (out-of-memory 
messages appear), our LIGERO approaches provide an affordable way to obtain 
feasible and good-quality solutions. Furthermore, even though the integer upper 
bounds for both LIGERO versions are similar, the FW-B version clearly 
outperforms the D-B version in terms of number of lightpaths and integer objective 
values. For this reasons, we definitely chose the FW-B version of LIGERO as the 
best of our methods to solve the RSA problem with large instances. 

Table 4-6  LIGERO Performance (Large instances) 

 

Finally, we compare the FW-B version of LIGERO against a random selection of 
lightpaths. Specifically, we performed a stochastic approach of the K-PCL (with K 
from 1 to 4) algorithm. This approach consists of a random selection of the 
lightpaths generated by the K-PCL algorithm, selecting exactly the same number 
of lightpaths than the LIGERO procedure generates. Table 4-7 exposes the 
average, the minimum and the maximum values of 5 repetitions of the same 
instance. It shows the number of lightpaths obtained with the FW-B version of 
LIGERO algorithm and the objective values for the relaxed and the incumbent 
solutions found running the LIGERO and the K-PCL (K=1, 2, 3 and 4) algorithms 
with a limit of 10 hours.   

 Table 4-7  LIGERO vs Stochastic Approach of K-PCL (7 Tbps) 

Pre‐Computed Lightpaths D‐B LIGERO  FW‐B LIGERO 

Total 
BW 

|D|  |S|  |P| 
linear 
relax. 

integer 
upper 
bound

|P| 
linear 
relax.

integer 
upper 
bound

|P| 
linear 
relax. 

integer 
upper 
bound

4  64  40  132400  520  1895  4176  520  670  3287  520  775 

7  112  68  269640  0  7420  11017 0  835  9338  0  785 

10  180  96  8675190  out‐of‐memory 22750 0  1020  17203  0  857 

LIGERO  K=1  K=2  K=3  K=4 

#  |P| 
linear 
relax. 

integer 
upper 
bound 

linear 
relax. 

integer 
upper 
bound 

linear 
relax. 

integer 
upper 
bound 

linear 
relax. 

integer 
upper 
bound 

linear 
relax. 

integer 
upper 
bound 

avg.  9338  0  785  1913.64 2110 1186.35 1790 1181.26 1850  1337.54  2025

min  9300  0  755  1893.75 2100 1180.44 1770 1151.40 1760  1254.56  1920

max  9409  0  820  1949.48 2115 1195.61 1820 1233.96 1935  1416.07  2180
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As can be observed, the average of the relaxed objective function is 0 for the FW-B 
LIGERO algorithm, which means that for all the repetitions the optimal relaxed 
solution is reached. Contrarily for the relaxed K-PCL, the minimum value obtained 
is 1151.4, and thus none of the repetitions reached the optimal relaxed solution by 
means of this method. Furthermore, the integer solutions achieved with the FW-B 
version of LIGERO are, in all the cases, better than the obtained by the K-PCL. 
Actually, in the worst case, the FW-B LIGERO objective value decreases in a 53% 
with respect to the obtained solution with the K-PCL algorithm. 

4.5 Summary 

In this chapter a real network was chosen in order to study and compare the two 
versions of the LIGERO method and three initial set of lightpath generators. First 
the network performance and capacity was studied solving the K-PCL method 
(with K=5). Then an analysis with different loads for both versions and the three 
initial procedures was performed. This analysis leads to the conclusion that the 
FW-B version converges in a lower number of iterations, and acquires better 
execution times than the D-B version. Namely, D-B needs 80% more iterations and 
70% more time to converge to the linear optimal than FW-B. The MinAll initial 
procedure was chosen as the most consistent, since the execution times obtained 
applying this initial method before the LIGERO algorithm increase smoothly with 
the load than using other initial procedures. Moreover for medium loads (4 Tbps) 
GreedyRSA needs 3 times the number of iterations and 3.6 times the execution 
time that MinAll procedure does. Hereafter a large-scale evaluation was made 
comparing the LIGERO and the K-PCL (with K=10) algorithms for larger number 
of demands (high loads) and larger number of channels. The number of variables 
with LIGERO was dramatically lower and the upper bound of the integer objective 
function that the LIGERO algorithm reached in 10 hours of execution time was 
almost an order of magnitude (9.5x) lower than the reached by the K-PCL 
procedure. Finally an examination of the LIGERO algorithm was made in order to 
compare the quality of the generated variables. With this goal, a stochastic 
approach of the K-PCL (with K=5) algorithm was performed so that it generates 
the same number of lightpaths than the LIGERO procedure. The results show that 
CGA outperforms the stochastic approach by returning a set of lightpaths that 
provides results a 40% better on average than the results obtained using the set of 
lightpaths returned by the stochastic approach. Table 4-8 summarizes the main 
results. 
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Table 4-8 Summary of obtained results 

Compared methods  Comparison  Compared methods  Comparison 

 D‐B vs FW‐B: 
 iterations (2‐4 Tbps)  

80% 
D‐B vs FW‐B:              

exec. time (2‐4 Tbps)  
70% 

GreedyRSA vs MinAll: 
iterations (4 Tbps)  

3x 
GreedyRSA vs MinAll:   
exe. time (4 Tbps)  

3.6x 

10‐PCL vs LIGERO:       
integer upper bound 

(7 Tbps)  
9.5x 

Random (avg) vs LIGERO:   
integer upper bound  

(7 Tbps)  
2.6x 

 

 



 
 
 
 
 
 
 
 
 

Chapter 5.  

Illustrative Use Case 

In this section, a specific real scenario of application of our LIGERO algorithm is 
presented, highlighting the integration of the method in the architecture of an 
operational real optical network. 

5.1 Periodical Network Re-optimization 

While in static traffic environments the optimal RSA solution can be computed 
beforehand during the planning phase, the optimal use of spectrum resources is a 
challenging problem when dynamic traffic scenarios are considered. Subsequently 
to the network design, some strategies of resources re-optimization should be 
applied to periodically adapt the network to traffic fluctuations. Lightpath 
Rerouting consists of rerouting an existing lightpath from its original route to a 
different one, changing neither the source nor the destination (e.g. see [Ch07]). The 
rerouting procedure, designed for improving the performance of the network by, for 
example, reducing the amount of un-served traffic, follows a scheme like this: 

1) The network operator triggers the network re-optimization, by launching an 
ad-hoc implemented procedure in the planning tool. Without entering into 
details, the planning tool is a network element that contains the hardware 
and software needed for solving all the optimization problems related with 
the planning, configuration, and re-optimization of the network. A 
component of the software implemented is the LIGERO algorithm explained 
in this project. 

2) The planning tool gets the information of the current state of the network 
from the Network Management System (NMS). The NMS, in charge of 
managing the core network and implementing fault, configuration, 
administration, performance and security (FCAPS) functions, returns the 
information of the current set of routed lightpaths used to serve the set of 
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demands, as well as the needs (minimum and maximum bitrates) of such 
demands. 

3) The planning tool solves the re-optimization problem with the desired 
configuration (e.g. total execution time). Finally, returns the solution to the 
operator. 

4) The operator decides if the obtained solution substantially improves the 
current RSA. If it does, then the solution is provided to the NMS and its 
distribution to the engineering department is done. The engineering 
department is in charge of doing the manual operations to perform the 
changes provided by the planning tool. When the manual operations start, 
the traffic is partially/totally interrupted. 

5) Once all changes have been performed and tested, the traffic is restored 
again. 

Figure 5-1 shows the considered network architecture with all the elements 
described above. 

Planning Tool

Engineering Department

NMS

Working Optical Network

Operator

User

Inter
face

RSA algorithms

Configuration
algorithms

LIGERO 
Algorithm

……

 

Figure 5-1 Considered Network Architecture 

As previously anticipated, rerouting entails the temporary interruption of current 
optical connections and this represents a high cost for the provider. However, it is 
well known that during night hours the traffic carried is much lower than during 
the day. To illustrate this, Figure 5-2 shows the network traffic evolution along the 
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day (based on [UA09]), which can be also assumed equal for the effective bitrate 
fluctuations on a single lightpath. Thus, during night time, the percentage of 
lightpath bitrate that is used to transport data decreases remarkably. Therefore, 
this fact opens the possibility to perform the traffic re-optimization during such 
night period to avoid high revenues penalization. 
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Figure 5-2 Daily evolution of traffic load 

In a dynamic scenario like the one introduced here, new lightpaths could appear to 
serve new clients or extend the service to already served ones. From time to time, 
the operator receives new connections requests which will be established if the 
network contains enough free resources. To compute the best RSA for a single 
lightpath over a network with existing traffic, a kind of online RSA algorithm can 
be solved to obtain the solution (e.g. see [Ca12]), which will be also implemented in 
the planning tool. However, the operations for establishing and testing a new 
optical connection require from a manual action and, without loss of generality, we 
can assume that new lightpaths are created only during central working hours. At 
this point, we can consider that a single day could be split in three time frames (as 
illustrated in Figure 5-2): 

 Low-Activity Period (T1): characterized by low effective loads carried in 
lightpaths and the absence of set-up of new optical connections. 

 Medium-Activity Period (T2): consists in that period when, although new 
connection setup is not allowed, the volumes of traffic dissuade from 
perform traffic interruptions (in order to avoid high penalization costs). 

 High-Activity Period (T3): characterized by high volumes of traffic in 
lightpaths and the possibility of establishing new connections or releasing 
active ones (i.e. changes in the set of demands). 
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Therefore, the best moment to start with the re-optimization is at the beginning of 
T2, since we can assume that the pool of established connections will remain static 
for a long time period (T2+T3). Moreover, the solution of the re-optimization 
problem must be obtained and sent to the engineering department during (the 
latest) T1, to guarantee that manual actions will be done in the most appropriate 
time period (i.e. affecting as less as possible to the current service). Therefore, from 
the values of Figure 5-2, the best moment to start the re-optimization is at hour 18, 
while the application of the changes must be done before hour 6. This represents a 
time frame of 12 hours for computing and implementing the re-optimization. 
Considering that manual actions require some time (e.g. 2 hours), the algorithm 
computation time should not exceed 10 hours. 

Finally, note that in a dynamic scenario the continuous changes in the set of routed 
demands make that, if the optimal solution of a re-optimization problem is found, 
this becomes suboptimal after few incomes/outcomes of connections. For this 
reason, our LIGERO algorithm becomes a good method for solving this problem 
since the need of obtaining optimal solutions is not a necessary condition. This is in 
line with works like [Ca12] where heuristics for even simpler re-optimization 
problems are presented. 

 



 
 
 
 
 
 
 
 
 

Chapter 6.  

Concluding Remarks 

6.1 Contributions and work impact 

In this work we have developed a lightpath generation algorithm (named LIGERO) 
to solve a RSA problem for flexgrid optical networks. The designed procedure is 
divided in two phases: first an algorithm in used to find a reasonable set of 
lightpaths to be used as starting point of the second phase, consisting in a 
specifically designed column generation algorithm. The method aims at improving 
current approaches consisting of using large sets of pre-computed lightpaths that 
lead to excessively many optimization variables in the MIP formulations when 
applied to realistic network instances. 

To consider different alternatives, we have developed two different versions of the 
LIGERO algorithm, based on different known routing algorithms which allow an 
efficient search of variables suitable to improve the solution of the RSA problem. 
Moreover, different criteria to produce initial set of variables have been designed 
and implemented. 

Our numerical results for small, medium, and large network instances show that 
the proposed LIGERO algorithm remarkably reduces the number of variables in 
the MIP formulation of RSA (up to 2 orders of magnitude) and maintains (or even 
improves) the solution quality as compared with other approaches. It is worth 
mentioning that although our approach is heuristic, it performs better than other 
reasonable ways of approaching the considered problem. 

Part of the work here presented has been included in the journal paper titled 
“Column Generation Algorithm for RSA Problems in Flexgrid Optical Networks” 
which has been recently accepted for publication in Photonic Network 
Communications journal (indexed in the Journal Citation Reports). 
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6.2 Personal Evaluation 

For the achievement of this project, I was introduced to the optical networks field 
by means of reading specific papers and the valuable help of my advisors. I also 
studied the column generation method to deeply understand the idea and how it 
can be applied. Particularly I brought into focus the path generation algorithm and 
how it can be put into practise for optical networks. Finally I learnt how to 
implement a mathematical programming problem in Matlab making use of the 
linear solver engine in CPLEX 12.2. 

The knowledge that I had to use for the contents of the project, are absolutely 
related with the courses I attended in the MIEIO master degree. Along the project 
I had to model a mixed integer mathematical programming problem. I also had to 
build its dual problem by means of its Lagrangean relaxation. Since the column 
generation algorithm is a decomposition method, I used my knowledge in large-
scale optimisation where many techniques divide the original problem in few 
simpler problems. It is remarkably necessary to be familiar with networks since 
the RSA problem is a multi-commodity flow problem. It was especially important to 
be able to interpret the relaxed solutions and how the B&B method works. Finally, 
since the LIGERO algorithm does not provide optimal solutions, being able to 
discern the similitudes and the differences with other heuristic methods was 
notably important.  

Personally, working with a group of professional and competitive researchers was a 
great experience for my career. Moreover, I was part of a research project from the 
development of the idea. I worked on it during its process, its implementations as 
well as the study of the results and the possible improvements. Finally I 
contributed on the writing of the paper which helped me to realize how a research 
report must be structured and explained. 

I also attended to an international meeting of the IDEALIST European project. 
There, besides living a great personal experience, I learnt what international 
research groups and companies meet for. For instance I could see how the different 
groups put their ideas and objectives in common and take the relevant decisions 
together. 

Last but not least, I would like to highlight the constant and significant dedication 
that this project requires and the enormous effort that it meant as my first step in 
research. 
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6.3 Future Work 

To continue the work already done, some extensions have been considered: 

 Enhancement of the proposed procedure (LIGERO + Branch & Bound) by 
strengthening linear formulations with problem-specific valid inequalities. 

 Development of a Branch & Price Algorithm for solving the RSA problem to 
optimality. When the optimal solution is really necessary (offline RSA 
planning), this method could improve the common used Branch & Bound 
algorithm with a large set of pre-computed lightpaths. 

 Development of specific and more complex use cases that are attracting 
research interest in the context of flexgrid optical networks. Two of them 
are: 

o Multi-Hour RSA: In this problem, demands vary the required 
bandwidth on time and, although changes of spectrum allocations for 
lightpaths are allowed between consecutive time periods, the route 
must remain invariant [Kl13]. 

o After Failure Repair Network Re-optimization: in this problem, some 
new resources (i.e. fiber links) appear after a previous failure has 
been repaired. Then, the traffic can be re-optimized to use new 
capacity resources but all the re-routings are forced to use part of the 
new capacity. 

 





 
 
 
 
 
 
 
 
 

Apendix A.  

Implemented Code 

This appendix shows a part of the code implemented in this work, specifically the 
main Matlab function for executing the initial procedures and the chosen version of 
the LIGERO algorithm. Then both LIGERO versions codes and the three initial 
procedures are included. 

Main Algorithm 

function [nvar,nvarIni,nconst, fvalrelCG, iteCG, CGTime_alg,CGTime_cplex, 
fvalILP,unsDemandsILP,unsBandILP, fvalHEU, unsDemandsHEU,unsBandHEU,ILPTime, 
HEUTime, mipgap] = CG_MAIN_FW(network, OD, parameters, outSol, inisol,FW) 
  
%Solution = RSA_MAIN(network, sw, ss, OD) 
%  network <- Matrix with [idLinks, Node, Node, Distance] 
%  OD <- [origin destination bandwidth_min bandwidth_max] 
%  paramters <- Struct with all the parameters 
%  outSol <- binary. 1=print the solution;   0= no print 
%  inisol <- 1=smallest channel; other=channels for maximum demand 
  
% Initial parameters 
  
demands=size(OD,1); 
T=[0 0]; 
  
% Initial set of variables 
  
if inisol==1        %Demanda mÃ-nima, 1 channel heurÃ-stica 
    [Data]=RSA_inisol_minmax1(network, OD, parameters, outSol, 0); 
elseif inisol==2    %Demanda maxima, 1 channel heurÃ-stica 
    [Data]=RSA_inisol_minmax1(network, OD, parameters, outSol,1); 
elseif inisol==3    %Demanda mÃ-nima, 1 channel Izquierda 
    [Data]=RSA_inisol_minmaxleft(network, OD, parameters, outSol, 0); 
elseif inisol==4    %Demanda mÃ¡xima, 1 channel Izquierda 
    [Data]=RSA_inisol_minmaxleft(network, OD, parameters, outSol, 1); 
elseif inisol==5    %Demanda mÃ-nima, Todos channels Izquierda 
    [Data]=RSA_inisol_minmaxall(network, OD, parameters, outSol, 0); 
elseif inisol==6    %Demanda mÃ¡xima, Todos channels Derecha 
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    [Data]=RSA_inisol_minmaxall(network, OD, parameters, outSol, 1); 
elseif inisol==7    %Demanda mÃ-nima, 1 channels, HEURÃ?STICA_PRO 
    [Data]=RSA_inisol_minHeuristica(network, OD, parameters, outSol, 0); 
elseif inisol==8    %Demanda mÃ¡xima, 1 channels, HEURÃ?STICA_PRO 
    [Data]=RSA_inisol_minHeuristica(network, OD, parameters, outSol, 1); 
end 
  
nvarIni=Data.('nvar'); 
  
CGclock=clock; 
CGTime_alg=0; 
CGTime_cplex=0; 
  
[cplex]=RSA_ROW(Data, parameters); 
T(1,2)=etime(clock,CGclock); 
  
  
%Initialization of parameters 
file=fopen('Solution.txt','w'); 
STOP=0; 
ite=0; 
status=1; 
checkMax=0; 
checkMin=0; 
checkSum=0; 
tries=0; 
maxtries=10; 
  
cplexTimeRem=0; 
algTimeRem=0; 
lastIteTime=0; 
newvar=0; 
% Add columns while necessary 
while STOP~=1 
    ite=ite+1; 
    % Solving restricted linear relaxation 
    if status==1 
        clockIni=clock; 
        [status,fvalPrel,xPrel,duals,fvalD, 
redCosts,intsol,usedlpaths]=RSA_SOLVER_RELAX(Data,cplex,outSol); 
     
        cplex_etime=etime(clock,clockIni); 
        CGTime_cplex=CGTime_cplex+cplex_etime; 
        T(ite+1, 1)=etime(clock,CGclock); 
        maxIte=max(usedlpaths); 
        minIte=min(usedlpaths); 
        sumIte=sum(usedlpaths); 
    end 
     
    if (checkMin==minIte && checkMax==maxIte && checkSum==sumIte) 
         
        tries=tries+1; 
        cplexTimeRem=cplexTimeRem+cplex_etime; 
        algTimeRem=algTimeRem+lastIteTime; 
        nvarRem=nvarRem+newvar; 
        if tries==maxtries 
            STOP=1; 
            continue 
        end 
        
    else 
        checkMin=minIte; 
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        checkMax=maxIte; 
        checkSum=sumIte; 
        tries=0; 
        cplexTimeRem=0; 
        algTimeRem=0; 
        nvarRem=0; 
    end 
         
        if  fvalPrel>0 
            fprintf(file,'Iteration %i:\n',ite); 
             
            % Computing new weights for network links and adding a new column 
            if outSol==1 
                fprintf('\n COLUMN GENERATION (iteration: %i) \n\n', ite) 
            end 
             
            clockIni=clock; 
            if FW==1 
                [STOP, Data]=RSA_CG_vFW(duals, network, parameters, OD, Data); 
            else 
                [STOP, Data]=RSA_CG_v2(duals, network, parameters, OD, Data); 
            end 
            CGTime_alg=CGTime_alg+etime(clock,clockIni); 
            lastIteTime=etime(clock,clockIni); 
             
            nvar=GETFIELD(Data,'nvar'); 
            newvar=GETFIELD(Data,'newvar'); 
            fprintf('Iteration: %i Var: %i (+%i)\n',ite,nvar-newvar,newvar); 
             
            if newvar==0 %If we did not add any column 
                STOP=1; 
            else %If we added columns 
                clockIni=clock; 
                [cplex]=RSA_COLUMN(Data,cplex); 
                CGTime_cplex=CGTime_cplex+etime(clock,clockIni); 
                T(ite+1,2)=etime(clock,CGclock); 
            end 
        else 
            STOP=1; 
        end 
%    end 
end 
  
fvalrelCG=fvalPrel; 
  
CGTime=etime(clock,CGclock); 
fclose(file); 
  
  
% Storing solution 
nvar=length(xPrel); 
nvar=nvar-nvarRem; 
fileaux=fopen('nvarLimit.txt','w'); 
fprintf(fileaux,'%i\n',nvar); 
fclose(fileaux); 
nconst=length(duals); 
  
CGTime_cplex=CGTime_cplex-cplexTimeRem; 
CGTime_alg=CGTime_alg-algTimeRem; 
  
iteCG=ite-tries; 
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intsol=0; 
ILPclock=clock; 
  
% Solving ILP 
fvalPilp=-1; 
if (status==1 && intsol==0) 
     
    fprintf('\n\n SOLVING ILP \n\n') 
    cplex.Model.ctype = char(ones(1,length(xPrel))*'I'); 
    [status,fvalPilp,xPilp, egap]=RSA_SOLVER_ILP(Data,cplex,outSol); 
else if status==1 && intsol==1 
        xPilp=xPrel; 
        egap=0; 
    end 
end 
  
fvalILP=fvalPilp; 
ILPTime=etime(clock,ILPclock); 
  
% Storing solution 
nconst=length(duals); 
unsDemandsILP=sum(xPilp(1:demands)); 
unsBandILP=sum(xPilp(demands+1:2*demands))/sum(OD(:,4)); 
mipgap=egap; 
  
HEUclock=clock; 
  
[ SolHeu , MSS] = HeurPostCG_Marc_v1( Data, parameters, xPrel, OD ); 
HEUTime=etime(clock,HEUclock); 
% % Storing solution 
A=GETFIELD(parameters,'A'); 
  
fvalHEU=A*(SolHeu(:,1)'*OD(:,3))+sum(SolHeu(:,2)); 
unsDemandsHEU=sum(SolHeu(:,1)); 
unsBandHEU=sum(SolHeu(:,2))/sum(OD(:,4)); 
  
clear cplex 

 

LIGERO Dijkstra-Based Version 

function [stopCG, Data]=RSA_CG_v2(duals,network,parameters,OD, Data) 
  
% Add OS parameters to the struct parameters  
sw=GETFIELD(parameters,'sw'); 
ss=GETFIELD(parameters,'ss'); 
mf=GETFIELD(parameters,'mf'); 
prec=GETFIELD(parameters,'prec'); 
alfa=GETFIELD(parameters,'alfa'); 
LDold=GETFIELD(Data,'LD'); 
LEold=GETFIELD(Data,'LE'); 
LSold=GETFIELD(Data,'LS'); 
  
% Take parameters and dual variables 
demands=size(OD,1); 
slots=floor(ss/sw); 
nodes=max(max(network(:,2:3))); 
links=size(network,1); 
cardduals=length(duals); 
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duals_mu=-duals(1:demands); 
duals_lambda=duals(demands+1:2*demands); 
duals_pi=-duals(2*demands+1:2*demands+links*slots); 
duals_gamma=duals(cardduals-demands+1:cardduals); 
  
for i=1:length(duals_mu) 
    if abs(duals_mu(i))<=prec 
        duals_mu(i)=0; 
    end 
end 
  
for i=1:length(duals_lambda) 
    if abs(duals_lambda(i))<=prec 
        duals_lambda(i)=0; 
    end 
end 
  
for i=1:length(duals_pi) 
    if abs(duals_pi(i))<=prec 
        duals_pi(i)=0; 
    end 
end 
  
minpi=min(duals_pi); 
  
for i=1:length(duals_gamma) 
    if abs(duals_gamma(i))<=prec 
        duals_gamma(i)=0; 
    end 
end 
  
% Initialize the matrix to add new variables (columns) 
LD=zeros(1,demands); 
LE=zeros(1,links); 
LS=zeros(1,slots); 
betaL=0; 
newvar=0; 
Newvars=zeros(1,demands); 
stopCG=1; 
  
% For every demand 
for d=1:demands 
    zetaInc=-inf; 
    % Compute the number of slots of size maximum and minimum 
    csMax=ceil(OD(d,4)/(mf*sw)); % Formula to compute number of slots 
    csMin=ceil(OD(d,3)/(mf*sw)); 
    costDemand=duals_lambda(d)-duals_mu(d); % Constant part (for the same 
demand)of dual costs  
    % For eacch possible channel size (from max to min) 
    for cs=csMax:-1:csMin 
        % Compute dual variables for this size of channel 
        bc=min(OD(d,4),cs*mf*sw);  %bandwidth of the channel 
        costChannel=bc*duals_gamma(d); 
        zetaMax=costDemand+costChannel-minpi; 
        %%%%%%%% 
        if zetaMax<=0 || zetaInc>=zetaMax 
            break; 
        end 
        %%%%%%%% 
        % For each channel of this size 
        for cp=1:slots-cs+1 
            channel=zeros(1,slots); 
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            channel(cp:cp+cs-1)=1; 
            for e=1:links 
                % Set the link metrics using pi dual variables 
                network(e,4)=channel*duals_pi((e-1)*slots+1:e*slots); 
            end 
             
            [MATRIX, ID,DIST]= networkMatricesInf(network); 
            [RUTASAUX, costRoute] = dijkstra(DIST, OD(d,1),OD(d,2)); 
            RUTAS=zeros(1,3+nodes); 
            RUTAS(4:3+length(RUTASAUX))=RUTASAUX; 
  
  
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            %Compute  zeta 
            zeta=costDemand+costChannel-costRoute; 
             
            % If zeta >0 and better than the previous one 
            if zeta>0 && zetaInc<zeta % Candidate new variable 
                 
                % Save data of the candidate variable 
                zetaInc=zeta; 
                csInc=cs; 
                bcInc=bc; 
                channelInc=channel; 
                RUTASinc=RUTAS(1,:); 
                IDinc=ID; 
                if zetaInc>=alfa*zetaMax 
                    break; 
                end 
            end 
        end 
    end 
     
    if zetaInc>prec 
       % New variable found for demand d, save data. 
       stopCG=0; 
       newvar=newvar+1; 
       Newvars(d)=1; 
         
       LD(newvar,:)=zeros(1,demands); 
       LD(newvar,d)=1; 
        
       LE(newvar,:)=zeros(1,links); 
  
       for n=4:length(RUTASinc) 
           if RUTASinc(1,n+1)==0 
               break; 
           end 
           linkID=IDinc(RUTASinc(n),RUTASinc(n+1)); 
           LE(newvar,linkID)=1; 
       end 
        
       LS(newvar,:)=zeros(1,slots); 
       LS(newvar,:)=channelInc; 
        
       betaL(newvar)=bcInc; 
    end 
     
end 
  
% Merge old variables we the new ones 
LE=[LEold; LE]; 
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LD=[LDold; LD]; 
LS=[LSold; LS]; 
lightpaths=size(LE,1); 
  
% Add new variables to Data 
Data=SETFIELD(Data,'LD',LD); 
Data=SETFIELD(Data,'LE',LE); 
Data=SETFIELD(Data,'LS',LS); 
Data=SETFIELD(Data,'lightpaths',lightpaths); 
Data=SETFIELD(Data,'nvar',lightpaths); 
Data=SETFIELD(Data,'betaL',betaL); 
Data=SETFIELD(Data,'newvar',newvar); 
Data=SETFIELD(Data,'Newvars',Newvars); 
end 

  

LIGERO Floyd-Warshall-Based Version 

function [stopCG, Data]=RSA_CG_vFW(duals,network,parameters,OD, Data) 
  
lexicographical=1; 
  
if lexicographical~=1 
    multLex=-inf; 
else 
    multLex=1; 
end 
  
% Add OS parameters to the struct parameters  
sw=GETFIELD(parameters,'sw'); 
ss=GETFIELD(parameters,'ss'); 
mf=GETFIELD(parameters,'mf'); 
prec=GETFIELD(parameters,'prec'); 
LDold=GETFIELD(Data,'LD'); 
LEold=GETFIELD(Data,'LE'); 
LSold=GETFIELD(Data,'LS'); 
  
% Take parameters and dual variables 
demands=size(OD,1); 
slots=floor(ss/sw); 
nodes=max(max(network(:,2:3))); 
links=size(network,1); 
cardduals=length(duals); 
duals_mu=-duals(1:demands); 
duals_lambda=duals(demands+1:2*demands); 
duals_pi=-duals(2*demands+1:2*demands+links*slots); 
duals_gamma=duals(cardduals-demands+1:cardduals); 
  
for i=1:length(duals_mu) 
    if abs(duals_mu(i))<=prec 
        duals_mu(i)=0; 
    end 
  
end 
  
for i=1:length(duals_lambda) 
    if abs(duals_lambda(i))<=prec 
        duals_lambda(i)=0; 
    end 
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end 
  
for i=1:length(duals_pi) 
    if abs(duals_pi(i))<=prec 
        duals_pi(i)=0; 
    end 
  
end 
  
  
for i=1:length(duals_gamma) 
    if abs(duals_gamma(i))<=prec 
        duals_gamma(i)=0; 
    end 
  
end 
  
% Initialize the matrix to add new variables (columns) 
LD=zeros(1,demands); 
LE=zeros(1,links); 
LS=zeros(1,slots); 
betaL=0; 
newvar=0; 
Newvars=zeros(1,demands); 
stopCG=1; 
  
csMax=ceil(max(OD(:,4))/(mf*sw)); % Slots formula 
csMin=ceil(min(OD(:,3))/(mf*sw)); 
  
  
%a) 
newlpaths=struct; 
for d=1:demands 
    newlpaths.(['D' int2str(d)]).('width')=inf; 
    newlpaths.(['D' int2str(d)]).('hoplength')=inf; 
    newlpaths.(['D' int2str(d)]).('redcost')=-inf; 
    newlpaths.(['D' int2str(d)]).('channels').('number')=0; 
end 
     
for cs=csMax:-1:csMin 
    for cp=1:slots-cs+1 
            channel=zeros(1,slots); 
            channel(cp:cp+cs-1)=1; 
            I=ones(nodes).*inf; 
            for e=1:links 
                network(e,4)=channel*duals_pi((e-1)*slots+1:e*slots); 
                I(network(e,2),network(e,3))=network(e,4); 
                I(network(e,3),network(e,2))=network(e,4); 
  
            end 
%c)          
  
            [I,Ihop] = FastFloyd(I); 
            
             
            for d=1:demands 
                csMind=ceil(OD(d,3)/(mf*sw)); 
                csMaxd=ceil(OD(d,4)/(mf*sw)); 
                bc=min(cs*mf*sw,OD(d,4)); 
                if csMind>cs || cs>csMaxd                      
                    continue; 
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                end 
                 
                costRoute=I(OD(d,1),OD(d,2)); 
                costHops=Ihop(OD(d,1),OD(d,2)); 
                costDemand=duals_lambda(d)-duals_mu(d); 
                costChannel=bc*duals_gamma(d); 
                 
                zeta=costDemand+costChannel-costRoute; 
                redcost=newlpaths.(['D' int2str(d)]).('redcost'); 
                width=newlpaths.(['D' int2str(d)]).('width'); 
                hoplength=newlpaths.(['D' int2str(d)]).('hoplength'); 
                 
                if ((zeta>0 && zeta>redcost) || (zeta>0 && zeta==redcost &&  
cs<width) || (zeta>0 && zeta==redcost &&  cs==width && 
costHops<hoplength*multLex)) 
  
                    newlpaths.(['D' int2str(d)]).('width')=cs; 
                    newlpaths.(['D' int2str(d)]).('hoplength')=costHops; 
                    newlpaths.(['D' int2str(d)]).('bandch')=bc; 
                    newlpaths.(['D' int2str(d)]).('redcost')=zeta; 
                     
                    newlpaths.(['D' int2str(d)]).('channels')=[]; 
                    newlpaths.(['D' int2str(d)]).('channels').('number')=0; 
                     
                end 
                 
                if (zeta==newlpaths.(['D' int2str(d)]).('redcost') && 
cs==newlpaths.(['D' int2str(d)]).('width')) 
                    nch=newlpaths.(['D' 
int2str(d)]).('channels').('number')+1; 
                    newlpaths.(['D' int2str(d)]).('channels').('number')=nch; 
                    newlpaths.(['D' int2str(d)]).('channels').(['C' 
int2str(nch)])=channel; 
                end 
            end 
    end 
end 
  
  
for d=1:demands 
    if newlpaths.(['D' int2str(d)]).('channels').('number')>0 
       nch=newlpaths.(['D' int2str(d)]).('channels').('number'); 
       choice=ceil(rand*nch); 
       channel=newlpaths.(['D' int2str(d)]).('channels').(['C' 
int2str(choice)]); 
       
       for e=1:links 
           network(e,4)=channel*duals_pi((e-1)*slots+1:e*slots); 
       end 
       [MATRIX, ID,DIST]= networkMatricesInf(network); 
       [RUTASAUX, costRoute] = dijkstra(DIST, OD(d,1),OD(d,2)); 
       RUTAS=zeros(1,3+nodes); 
       RUTAS(4:3+length(RUTASAUX))=RUTASAUX; 
        
       newvar=newvar+1; 
       Newvars(d)=1; 
       LD(newvar,:)=zeros(1,demands); 
       LD(newvar,d)=1; 
       LE(newvar,:)=zeros(1,links); 
       for n=4:length(RUTAS) 
           if RUTAS(1,n+1)==0 
               break; 



56  David Rebolo Pérez 

           end 
           linkID=ID(RUTAS(n),RUTAS(n+1)); 
           LE(newvar,linkID)=1; 
       end 
        
       LS(newvar,:)=zeros(1,slots); 
       LS(newvar,:)=channel; 
        
       betaL(newvar)=newlpaths.(['D' int2str(d)]).('bandch'); 
        
       stopCG=0; 
    end 
     
end 
   
LE=[LEold; LE]; 
LD=[LDold; LD]; 
LS=[LSold; LS]; 
lightpaths=size(LE,1); 
  
%Add new variables to struct Data 
Data=SETFIELD(Data,'LD',LD); 
Data=SETFIELD(Data,'LE',LE); 
Data=SETFIELD(Data,'LS',LS); 
Data=SETFIELD(Data,'lightpaths',lightpaths); 
Data=SETFIELD(Data,'nvar',lightpaths); 
Data=SETFIELD(Data,'betaL',betaL); 
Data=SETFIELD(Data,'newvar',newvar); 
Data=SETFIELD(Data,'Newvars',Newvars); 
   

MaxLeft Initial Procedure 

function [Data]=RSA_inisol_minmaxleft(networkLinks, OD, parameters, outSol, 
minmax) 
  
sw=GETFIELD(parameters,'sw'); 
ss=GETFIELD(parameters,'ss'); 
mf=GETFIELD(parameters,'mf'); 
  
varID=[0 0 0]; 
nvar=0; 
slots=ceil(ss/sw); 
demands=size(OD,1); 
Data=struct(); 
  
[MATRIX,ID,DIST]= networkMatrices(networkLinks); 
links=size(networkLinks,1); 
  
lightpaths=0; 
LE=zeros(1,links);   % matrix lightpath-links  
LD=zeros(1,demands); % matrix lightpath-demands 
LS=zeros(1,slots);   % matrix lightpath-slots  
ES=zeros(links, slots); %Matrix slots-links  
  
%For each demand, we add a path.  
for d=1:demands 
    [RUTAS]=SP(MATRIX,MATRIX,OD(d,1),OD(d,2)); %RUTAS only contains a route 
    for r=1:size(RUTAS,1) %This loop just do an iteration. 
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        if RUTAS(r,1)>0 
            if minmax==0 
                ns=ceil(OD(d,3)/(mf*sw)); %Number of slots to cover the 
minimum demand. 
            else 
                ns=ceil(OD(d,4)/(mf*sw)); %Number of slots to cover the 
maximum demand. 
            end 
            [ES, LE, LS] = lightpath_left(RUTAS(4:length(RUTAS(1,:))), ns, ES, 
LE, LS, ID); 
            lightpaths=lightpaths+1; 
            LD(lightpaths,d)=1; 
        end 
    end 
end 
  
  
%Create the set of variables x_l 
for d=1:demands 
    for l=1:lightpaths 
        if LD(l,d)==1 
            nvar=nvar+1; 
            varID(nvar,:)=[nvar d l]; 
        end 
    end 
end 
  
%Print Initial Solution (it might not be feasible) 
if (outSol==1) 
    fprintf('*** Initial Solution ***\n\n') 
    for v=1:nvar 
        d=varID(v,2); 
        l=varID(v,3); 
        fprintf('D %i -> LP %i (Slots: %i) \n\n',d,l,sum(LS(l,:))); 
        fprintf('\t \t Links') 
        disp(find(LE(l,:))) 
        fprintf('\t \t Slots') 
        disp(find(LS(l,:))) 
    end 
    fprintf('\n') 
end 
  
Data=setfield(Data,'links',links); 
Data=setfield(Data,'slots',slots); 
Data=setfield(Data,'demands',demands); 
Data=setfield(Data,'lightpaths',lightpaths); 
Data=setfield(Data,'minbw',OD(1:demands,3)); 
Data=setfield(Data,'maxbw',OD(1:demands,4)); 
Data=setfield(Data,'LE',LE); 
Data=setfield(Data,'LD',LD); 
Data=setfield(Data,'LS',LS); 
Data=setfield(Data,'ES',ES); 
Data=setfield(Data,'nvar',nvar); 
Data=setfield(Data,'varID',varID); 
  
channelSizes=zeros(demands,slots); 
channelSizes(:,1)=1; 
Data=setfield(Data,'channelSizes',channelSizes); 
end 
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function [ES, LE, LS] = lightpath_left(ruta, ns, ES, LE, LS, ID) 
% [ES, LE, LS] = lightpath_left(ruta, ns, ES, LE, LS, ID) 
% 
%INPUT 
%   ruta <- ruta que debe ser validada 
%   ns <- numero de slots que se tienen que añadir 
%   LS <- matriz lightpath-slot que hay que modificar 
%   LE <- Matriz lightpath-Link 
%   lightpaths <- numero de lightpaths (sin contar el que se genera en esta 
fciï¿½n) 
%   Matrix node node with the identity of the link instead of 1's 
% 
%OUTPUT 
%   ES <- Matriz link-slot 
%   LE <- Matriz Lightpath-Link (con el nuevo lightpath) 
%   LS <- matriz lightpath-slot modificada 
  
  
slots=size(ES',1); 
links=size(LE',1); 
if norm(LE(1,:))==0 
    lightpaths=0; 
else 
    lightpaths=size(LE,1); 
end 
  
%Convertimos la ruta en vector path con 1's en los links del path 
path=zeros(1,links); 
vls=zeros(1,slots); 
for i=1:length(find(ruta)) 
    if ruta(i+1)~=0 
        e=ID(ruta(i),ruta(i+1)); 
        path(e)=1; 
        ES(e,1:ns)=ones(1,ns); 
        vls(1:ns)=ones(1,ns); 
    end 
end 
  
%Construimos matrices LE y LS 
LE(lightpaths+1,:)=path; 
LS(lightpaths+1,:)=vls; 
  
end 

MinAll Initial Procedure 

function [Data]=RSA_inisol_minmaxall(networkLinks, OD, parameters, outSol, 
minmax) 
  
sw=GETFIELD(parameters,'sw'); 
ss=GETFIELD(parameters,'ss'); 
mf=GETFIELD(parameters,'mf'); 
  
slots=ceil(ss/sw); 
demands=size(OD,1); 
Data=struct(); 
  
[MATRIX,ID,DIST]= networkMatrices(networkLinks); 
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links=size(networkLinks,1); 
  
LE=zeros(1,links);   % matriz lightpath-links  
LD=zeros(1,demands); % matriz lightpath-demands 
LS=zeros(1,slots);   % matriz lightpath-slots  
ES=zeros(links, slots); %Matriz slots-links (Creo que son los channels en 
vertical) 
  
%Para each demand we add a path. 
for d=1:demands 
    [RUTAS]=SP(MATRIX,MATRIX,OD(d,1),OD(d,2)); %RUTAS solo contiene una ruta 
    if RUTAS(1,1)>0 
        ruta=RUTAS(1,:); 
        ruta(1:3)=[]; 
        [ LD, LE, LS ] = allchannels_minmax(d, ruta, LD, LE, LS, OD, ID, 
parameters, minmax); 
    end 
end 
  
links=size(LE',1); 
slots=size(LS',1); 
lightpaths=size(LE,1); 
  
Data=setfield(Data,'links',links); 
Data=setfield(Data,'slots',slots); 
Data=setfield(Data,'demands',demands); 
Data=setfield(Data,'lightpaths',lightpaths); 
Data=setfield(Data,'nvar',lightpaths); 
Data=setfield(Data,'minbw',OD(1:demands,3)); 
Data=setfield(Data,'maxbw',OD(1:demands,4)); 
Data=setfield(Data,'LE',LE); 
Data=setfield(Data,'LD',LD); 
Data=setfield(Data,'LS',LS); 
Data=setfield(Data,'ES',ES); 
  
channelSizes=zeros(demands,slots); 
channelSizes(:,1)=1; 
Data=setfield(Data,'channelSizes',channelSizes); 
end 
  
 
function [ LD, LE, LS ] = allchannels_minmax(d, ruta,LD, LE, LS, OD, ID, 
parameters, minmax) 
  
sw=GETFIELD(parameters,'sw'); 
mf=GETFIELD(parameters,'mf'); 
  
 %numero de slots necesarios para cubrir la demanda maxima. 
if minmax==0 
    ns=ceil(OD(d,3)/(mf*sw)); 
else 
    ns=ceil(OD(d,4)/(mf*sw)); 
end 
  
slots=size(LS',1); 
links=size(LE',1); 
  
if norm(LE(1,:))==0 
    lightpaths=0; 
else 
    lightpaths=size(LE,1); 
end 
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%Convertimos la ruta (cadena de nodos) en vector path (cadena de links) 
path=zeros(1,links); 
for i=1:length(find(ruta)) 
    if ruta(i+1)~=0 
        path(ID(ruta(i),ruta(i+1)))=1; 
    end 
end 
%Creamos un lightpath para cada posible channel con maxns slots  
for i=1:slots-ns+1 
    lightpaths=lightpaths+1; 
    LE(lightpaths,:)=path; 
    LS(lightpaths,i:i+ns-1)=ones(1,ns); 
    LD(lightpaths,d)=1; 
end 
  
end 

GreedyRSA Initial Procedure 

function [Data]=RSA_inisol_minHeuristica(networkLinks, OD, parameters, outSol, 
minmax) 
  
sw=GETFIELD(parameters,'sw'); 
ss=GETFIELD(parameters,'ss'); 
mf=GETFIELD(parameters,'mf'); 
  
varID=[0 0 0]; 
nvar=0; 
slots=ceil(ss/sw); 
demands=size(OD,1); 
Data=struct(); 
  
[MATRIX,ID,DIST]= networkMatrices(networkLinks); 
  
links=size(networkLinks,1); 
  
lightpaths=0; 
LE=zeros(1,links);   % matriz lightpath-links  
LD=zeros(1,demands); % matriz lightpath-demands 
LS=zeros(1,slots);   % matriz lightpath-slots  
ES=zeros(links, slots); %Matriz slots-links (Creo que son los channels en 
vertical) 
  
%Para cada demanda aÃ±adimos un path. A la vez construimos las matrices 
%path-link y path-demands. 
for d=1:demands 
    [RUTAS, nrutas]=KSP(MATRIX,MATRIX,OD(d,1),OD(d,2), 5); 
    ruta1=RUTAS(1,:); 
    nrutas=min(nrutas,5); 
    for r=1:nrutas 
        if RUTAS(r,1)>0 
            if minmax==0 
                ns=ceil(OD(d,3)/(mf*sw)); %numero de slots necesarios para 
cubrir la demanda minima. 
            else 
                ns=ceil(OD(d,4)/(mf*sw)); 
            end 
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            [ES, LE, LS, exito] = valid_rute_v3(RUTAS(r,4:length(RUTAS(r,:))), 
ns, ES, LE, LS, ID, ruta1(4:length(ruta1)), r, nrutas); 
            if exito==1 
                lightpaths=lightpaths+1; 
                LD(lightpaths,d)=1; 
                break 
            end 
        end 
    end 
end 
  
%Creamos el conjunto de variables x_l 
%i.e. Cada variable cual es su demanda(id) y que lightpath usa. 
for d=1:demands 
    for l=1:lightpaths 
        if LD(l,d)==1 
            nvar=nvar+1; 
            varID(nvar,:)=[nvar d l]; 
        end 
    end 
end 
  
if (outSol==1) 
    fprintf('*************** SoluciÃ³n Inicial ****************\n\n') 
    for v=1:nvar 
        d=varID(v,2); 
        l=varID(v,3); 
        fprintf('D %i -> LP %i (Slots: %i) \n\n',d,l,sum(LS(l,:))); 
        fprintf('\t \t Links') 
        disp(find(LE(l,:))) 
        fprintf('\t \t Slots') 
        disp(find(LS(l,:))) 
    end 
    fprintf('\n') 
end 
  
Data=setfield(Data,'links',links); 
Data=setfield(Data,'slots',slots); 
Data=setfield(Data,'demands',demands); 
Data=setfield(Data,'lightpaths',lightpaths); 
Data=setfield(Data,'minbw',OD(1:demands,3)); 
Data=setfield(Data,'maxbw',OD(1:demands,4)); 
Data=setfield(Data,'LE',LE); 
Data=setfield(Data,'LD',LD); 
Data=setfield(Data,'LS',LS); 
Data=setfield(Data,'ES',ES); 
Data=setfield(Data,'nvar',nvar); 
Data=setfield(Data,'varID',varID); 
  
channelSizes=zeros(demands,slots); 
channelSizes(:,1)=1; 
Data=setfield(Data,'channelSizes',channelSizes); 
end 

 

function [ES, LE, LS, exito] = valid_rute_v3(ruta, ns, ES, LE, LS, ID, ruta1, 
intentos, nrutas) 
% [ valid, capac ] = valid_rute(ruta, nslots, capac) 
% 
%INPUT 
%   ruta <- ruta que debe ser validada 
%   ns <- numero de slots que se tienen que aï¿½adi 
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%   LS <- matriz lightpath-slot que hay que modificar 
%   LE <- Matriz lightpath-Link 
%   lightpaths <- numero de lightpaths (sin contar el que se genera en esta 
fciï¿½n) 
%   Matrix node node with the identity of the link instead of 1's 
% 
%OUTPUT 
%   ES <- Matriz link-slot 
%   LE <- Matriz Lightpath-Link (con el nuevo lightpath) 
%   LS <- matriz lightpath-slot modificada 
  
exito=0; 
slots=size(ES',1); 
links=size(LE',1); 
if max(LE(1,:))<=0.001 
    lightpaths=0; 
else 
    lightpaths=size(LE,1); 
end 
  
%Convertimos la ruta en vector path con 1's en los links del path 
path=zeros(1,links); 
for i=1:length(find(ruta)) 
    if ruta(i+1)~=0 
        path(ID(ruta(i),ruta(i+1)))=1; 
    end 
end 
  
%Vemos que slots estï¿½n disponibles a lo largo de toda la ruta 
nodisp=zeros(1,slots); %slot no disponibles en algun link de la ruta = 1 
for e=1:links 
    if path(e)==1 
        nodisp=nodisp+ES(e,:); 
    end 
end 
  
%Recorremos nodisp para ver si hay algun espacio que nos valga.  
%Lo pondremos lo mï¿½s a la izquierda posible. 
%Si no cabe en ningun sitio lo pondremos lo mï¿½s a la derecha posible. 
vls=zeros(1,slots); 
for i=1:(slots-ns+1) 
    if max(nodisp(i:(i+ns-1)))<=0.001 %Si es cero 
        exito=1; 
        for e=1:links 
            if path(e)==1 
                ES(e,i:(i+ns-1))=ones(1,ns); 
            end 
        end 
        vls(i:(i+ns-1))=ones(1,ns); 
        break;  
    elseif intentos==nrutas 
        exito=1; 
        path1=zeros(1,links); 
        for j=1:length(find(ruta1)) 
            if ruta1(j+1)~=0 
                path(ID(ruta1(j),ruta1(j+1)))=1; 
            end 
        end 
        for e=1:links 
            if path1(e)==1 
                ES(e,slots-ns+1:slots)=ones(1,ns); 
            end 
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        end 
        vls(slots-ns+1:slots)=ones(1,ns); 
        break;  
    end 
end 
  
%Construimos matriz PE 
if exito==1 
    LE(lightpaths+1,:)=path; 
    LS(lightpaths+1,:)=vls; 
end 
  
end 
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