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Resumen 

 

Este documento tiene por objetivo recoger la información relativa al proyecto 
sobre la  creación de un algoritmo para Start-and-End point detection de una 
señal pregrabada.  

La intención inicial del desarrollo de este algoritmo es que pueda ser utilizado 
en  la entrada de una aplicación de reconocimiento de voz. En términos 
generales, el resultado de este trabajo es un algoritmo que puede detectar el 
comienzo y el fin de una señal previamente grabada basado en un algoritmo 
de detección de la actividad de la voz previamente desarrollado por la Czech 
Technical University, Faculty of Electrical Engineering. 

Hay dos temas principales de estudio en este proyecto: detección de la 
actividad de la voz (VAD algorithm) y determinar el punto de inicio y fin de la 
señal (Start-and-End point detection). El primer paso para la construcción del 
algoritmo final es ser capaz de identificar la actividad de la voz en una señal 
mediante el VAD algorithm para después ser capaz de detectar el inicio y final 
de la actividad de la voz y descartar los silencios de la señal mediante el Start-
and-End point detection algorithm. 

Con el fin de demostrar el modo de funcionamiento de dicho algoritmo se ha 
creado una aplicación en MATLAB que permite ver gráficamente una señal 
previamente grabada y posteriormente su punto inicial y final después de 
aplicar los algoritmos.  

Por último,  para proporcionar resultados más gráficos y dar al proyecto un 
valor añadido y con vistas a convertirse en una futura aplicación posible se ha 
añadido el reconocimiento de dígitos basado en de un algoritmo DTW 
(Dinamic Time Warping). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Overview 

 

 

This document collects information on the proposed creation of an algorithm for 
Start-and-End point detection of a pre-recorded signal. 

The initial reason for developing this algorithm is so it can be used at the input 
of a voice recognition application. Overall, the result of this work is an algorithm 
that can detect the beginning and end of a previously recorded signal based on 
a detection algorithm of the voice activity previously developed by the Czech 
Technical University, Faculty of Electrical Engineering. 

Two main issues are studied in this project: Detecting the Voice Activity (VAD 
algorithm) and determining the start and end point of the signal (Start-and-End 
point detection). The first step to develop the final algorithm is being able to 
identify the voice activity in an audio signal by the VAD algorithm. The next 
step is to detect the beginning and end of activity and silence suppression by 
Start-and-End point detection algorithm. 

To demonstrate the mode of operation of the algorithm, I have created an 
application in MATLAB to show graphically the process for a previously 
recorded signal and then the start and end points after applying the algorithms. 

Finally, to provide better graphic performance and provide added value to the 
project, I have added a digit recognition algorithm based on a DTW (Dynamic 
Time Warping). 
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INTRODUCTION 

Speech processing is present in many applications of our day. It is an 
element in our daily lives of which we are often unaware. It is present in areas 
as useful for us as mobile communications, in which many advances have been 
developed that allows compressing the digital waveform representation of 
speech into a lower bit-rate representation, i.e., coding or speech compression. 
The mobile telephony field is seeing increasing  use of smartphones, in which 
text-to-speech synthesis or voice-to-text is integrated into many current 
applications. More achievements are taking place in echo, noise or 
reverberation suppression, and speech recognition to make voice 
communication from human to human more realistic.  

This report recounts the development of an application for voice 
detection in Matlab, exploring all aspects that relate to the project. 

The starting point of this project is speech processing. The fundamental 
purpose of communication is the transmission of messages. Any message can 
be encoded as a set of bits in a waveform that can be treated to transmit, 
record, manipulate, and in the latter case, decoded by a receiver. 

The achievements of the speech recognition field have been 
concentrated in different fields, including voice control of devices and 
transcription systems. For optimum results, it is necessary to process the audio 
signal. This processing can be performed by different algorithms. A voice 
recognition algorithm consists of several stages, including feature extraction 
and pattern recognition. In feature extraction, presented algorithms are best 
zero crossing rate, permanent frequency, cepstrum coefficient and liner 
prediction coefficients. Through a combination of these, we  have developed the 
algorithm that we will use throughout the project: Voice Activity Detection. 

VAD algorithm can detect when there has been voice activity and once 
voice is detected, the silences will be deleted. The work for this project involved 
taking an initial algorithm as a starting point and making improvements to 
optimize it, according to the type of audio signals that the algorithm will work 
with to obtain best results. Once it has detected voice activity in a given signal, 
the silences were deleted based on the end point detection algorithm, resulting 
in a signal without absence of voice to be stored in a buffer. Finally, the new 
signal is passed to the speech signal recognition and sets up voice patterns for 
comparison with the signal we want to process. Through comparison with these 
patterns, the application is able to return results in a written sequence of the 
audio signal. 

The purpose of this project is to separate the active parts of the voice 
from an audio signal and then to establish recognition of known patterns. The 
objective is to acquire a deeper understanding of signal processing and speech 
recognition. On the other hand, the work requires a good understanding of the 
principles the VAD algorithm is based on and how to apply these concepts to 
achieve optimal results. Finally, the method for the recognition of patterns must 
be identified to make the full application work. 

The last issue that we address in this introduction is the organization of 
this document. First, the paper will examine several theoretical concepts that 



  

are essential for understanding the development of the project. This discussion 
will be divided into three main sections. The first will explain the basics of 
speech signals. Second, it will analyze the basics of speech processing signals 
that are relevant to this project. Finally, it will discuss speech recognition 
concepts and models that will be applied later to the algorithm. 

The second chapter will discuss the Voice Activity Detection algorithm. 
First theoretical, issues will be addressed, including the cepstral analysis and its 
applications and the general principles of the algorithm. Then, it will discuss 
Start-End point detection, reveal the algorithm developed for the project, and 
explain its mode of operation. 

The third chapter will explain how the development and integration of 
these algorithms. It will also show how it works. 

Finally, the report will illustrate the operation of the application, the 
testing phase that has been carried out to check for proper operation, and the 
results obtained.  

CHAPTER 1. THEORETICAL ASPECTS OF SPEECH 
PROCESSING 

This chapter will describe theoretical aspects related to subsequent investigations. 
It is important to know how audio signals are produced to treat them in the proper 
manner. 

This chapter will first explore concepts of speech signal, including how these 
signals are produced, their technical characteristics, and models of speech 
production. The next section will explain concepts of speech signal processing and 
their current applications in different fields. Finally, it will generally describe speech 
recognition and a linear predictive coding (LPC) model. 

1.1. Basic Concepts of Speech Signal 

This chapter intends to discuss how the speech signal is produced and 
perceived by humans. This first chapter is an introductory section that must be 
considered before one can understand what strategy is followed for voice 
recognition.  

1.1.1. Speech Production 

Speech sounds are produced when air from the lungs passes first over 
the glottis and then out of a person’s throat and mouth. Depending on the sound 
articulate speech, the speech signal can be excited in three possible ways [1]. 

• Voiced excitation: Air pressure forces the glottis to open and close 
periodically, generating a periodic pulse train (in a triangle). This 
"fundamental frequency" is generally in the range of 80Hz to 350Hz. 

• Unvoiced excitation: Keeping the glottis open, air passes into a narrow 
passage in the throat or mouth. This results in turbulence that generates 
a noise signal. The noise spectral shape is determined by the location of 
the stricture. 
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• Transient excitation: A temporary closing of the throat or mouth will 
increase the air pressure. When the closure is opened suddenly, the air 
pressure drops immediately ("blast blast"). 

In most cases, the emission of sound results from a combination of these three 
type s of excitation. The spectral shape of the voice signal is determined by the 
shape of the voice tracks (the tube formed by the throat, tongue, teeth, and 
lips). Changing the shape of the pipe (and also opening and closing the airflow 
through the nose) changes the spectral shape of the voice signal, so that 
different speech sounds are articulated. The following chart shows the process 
of speech production. 

It is important to know how to produce audio signals then can treat them in the 
proper manner. This is the reason why in this chapter are being exposed to the 
basic principles of speech signal. 

 

Figure 1. Speech production. 
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1.1.2. Simple Model for Speech Production Signals

The production of speech can be separated into two parts: producing the 
excitation signal and forming the spectral shape. Figure 2 shows a simplifi
model of speech production.

Figure 

To analyze the speech signal, it is necessary to know that the direct 
computation of the power spectrum from the speech signal results in a 
spectrum containing “ripples” caused by the excitation spectrum X(f). “Ripple” 
refers to periodic variation in insertion loss with frequency of a filter. Not all 
filters contain ripples; some, such as the Butterworth filter, monotonically 
increase insertion loss with f
periodic, as can be seen in the example plot in Figure 3. 

Figure 

Depending on the implementation of the acoustic preprocessing, 
however, special transformations are used to separate the excitation spectrum 
X(f) from the spectral shaping of the vocal tract H(f). Thus, a smooth spectral 
shape (without the ripples), which represents H(f), can be estimated from the 
speech signal. Most speech
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frequency cepstral coefficient (MFCC) and its first (and sometimes second) 
derivative in time to better reflect dynamic changes. [3] 

The following sections will explain what are and its influence in this 
project for the MFCC.  

1.1.3. Characteristics of Speech Signal 

Any signal can be characterized as follows: 

• Speech signal is quasi-stationary. 

• The bandwidth of any signal is 4 kHz. 

• Fundamental frequency is between 80 and 350 Hz. 

• It is periodic for voiced signal. 

• There are peaks in the spectral distribution of energy at �2� − 1� ∗500	��; � = 1,2,3… 

• The envelope of the power spectrum of the signal decreases with 
increasing frequency (-6dB per octave). 

These characteristics are generally present in any audio signal, but 
where those features come from varies. For instance, audio signals have a 
bandwidth much greater than 4kHz. However, for analog phones, a bandwidth 
of 4 kHz for the speech signal is sufficient for understanding the human voice. 
Many of the applications for speech signal processing are related to phone 
usage, so we will take this bandwidth as the baseline assumption. 

1.2. Basics of Digital Signal Speech Processing 

The fundamental purpose of speech is communication, i.e., the 
transmission of messages. According to Shannon’s information theory, a 
message represented as a sequence of discrete symbols can be quantified by 
its information content in bits, and the rate of transmission of information is 
measured in bits/second (bps). That transformation into a sequence of known 
symbols allows us to treat the signal and process it. 

In speech production, as well as in many human-engineered electronic 
communication systems, the information to be transmitted is encoded in the 
form of a continuously varying (analog) waveform that can be transmitted, 
recorded, manipulated, and finally decoded by a human listener. In the case of 
speech, the fundamental analog form of the message is an acoustic waveform, 
the speech signal.  

 

Figure 4. A speech waveform.
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1.2.1. Basic Characteristics of Speech Processing: Frame 
Energy 

A fundamental principle of speech processing is the calculation of the 
energy of a signal; in terms of this project specifically, we must calculate the 
energy of a frame. The sign is to be broken down into frames of 32 ms, and 
each frame is processed each time. Each frame is comprised of 256 samples 
with a 50% overlapping of the foregoing. These values have been selected after 
several tests that determined that those specific values obtained optimized 
results. The results of those tests and the choice of selected values will be 
examined in later chapters.  

The energy will be calculated thus: 

Let x�i� be the i�� sample of speech. If the length of the frame were k 

samples, then the j�� frame can be represented in a time domain by a sequence 
as f� = �x�i���������� ���

 

• 0 ≤ K ≥ 256	samples  
We associate energy E� with the j�� frame as: 

E� =	1k - x.�i���
�������� �  

where:  

• /0 is the energy of the 123 frame 

1.2.2. Linear Predictive Coding (LPC) Model 

Linear predictive coding (LPC) is a digital method for encoding an 
analogue signal in which a particular value is predicted by a linear function of 
the past values of the signal. Human speech is produced in the vocal tract, 
which can be approximated as a variable diameter tube. The linear predictive 
coding (LPC) model is based on a mathematical approximation of the vocal 
tract represented by this tube of varying diameter. At a particular time, t, the 
speech sample s(t) is represented as a linear sum of the previous samples. The 
most important aspect of LPC is the linear predictive filter, which allows the 
value of the next sample to be determined by a linear combination of previous 
samples. Since there is information loss in linear predictive coding, it is a lousy 
way of compression. 

1.2.2.1. Linear Prediction Model 

Linear prediction is a good tool for analysis of speech signals. Linear 
prediction models the human vocal tract as an infinite impulse response (IIR) 
system that produces the speech signal. For vowel sounds and other voiced 
regions of speech, that  have a resonant structure and high degree of similarity 
over time shifts that are multiples of their pitch period, this modeling produces 
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an efficient representation of the sound. Figure 5 shows how the resonant 
structure of a vowel could be captured by an IIR system. [4] [5] 

 45�6 = 178 �98:5�6 + 9�:5� − 16 +	…+	9<:5� − =6 − 7�45� − 16 −	7.45� − 26−	…−	7>45� − ?6 

 

 where: 

• p  is the feedforward filter order 

• 9@ are the feedforward filter coefficients 
• q is the feedback filter order 

• 7@ are the feedback filter coefficients 
• :5�6 is the input signal 
• 45�6  is the output signal 

Figure 5. Linear Prediction (IIR) model of speech. 

The linear prediction problem finds the coefficients a� which results in the 
best prediction (by minimizing mean-squared prediction error) of the speech 
sample s[n] in terms of the past samples A5� − B6, B = �1,… , C�. The predicted 

sample A5�6D  is then given by Rabiner and Juang: Â5�6 = ∑ 7GHG�� A5� − B6     

where P is the number of past samples of s[n] that we wish to examine. 

Next we derive the frequency response of the system in terms of the 

prediction coefficients 7G. In the previous equation, when the predicted sample 
equals the actual signal we have: Â5�6 = ∑ 7GHG�� A5� − B6     A��� = ∑ 7GHG�� A�����G     

A��� = 11 − ∑ 7GHG�� ��G 



8 Voice Activity Detection at the input of speech recognition application 

The optimal solution to this is Rabiner and Juang [8]: 7 = �7�7.…7H� 7 = I��J 
Due to the Toeplitz property of the R matrix (it is symmetrical with equal 

diagonal elements), an efficient algorithm is available for computing a without 

the computational expense of finding  I��. The Levinson-Durbin algorithm is an 
iterative method of computing the predictor coefficients a Rabiner and Juang 
[8]. 

 Initial step:  /8 = JKK506, L = 1 for i=1... P 

 Steps: 

• B@ = �MNOP(JKK5L6 − ∑ �Q0,@��JKK5|L − 1|6�@��0�� � 
• Q0,@ = Q0,@�� − B@Q@�0,@��; j=[1,..., k-1] 
• Q@,@ = B@ 
• /@ = �1 − B@.�/@�� 

 J = �JKK516	JKK526… JKK5C6�S      

I = T JKK506 JKK516 ⋯ JKK5C − 16JKK516 JKK506 … JKK5C − 26⋮ … ⋱ ⋮JKK5C − 16 JKK5C − 26 ⋯ JKK506 X 

     

To reduce the discontinuity between segments, we do not clear the 
states of the IIR model from one segment to the next. Instead, we load the new 

set of reflection coefficients, k�, and continue with the lattice filter computation. 

Understanding this model will make it possible to understand the 
workings of the autoregressive model (AR) that will be used to calculate the 
coefficients. The LPC is arguably a precursor to these coefficients. 

1.2.3. Autoregressive Model (AR) 

The AR model plays an important role in the development of the project. 
Which is used for computation of the cepstral coefficients from the AR 
coefficients for the implementation of VAD will be determined later.  

An autoregressive model depends on a limited number of parameters 
that are estimated from measured noise data. Several methods exist for 
estimating the autoregressive parameters, such as least squares, Yule-Walker, 
and Burg’s method. For large data samples, these estimation techniques should 
lead to approximately the same parameter estimates. [13] 
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1.2.3.1 Theory of Autoregressive Model 

The successive samples 42 of an autoregressive process linearly depend 
on their predecessors: 42 + 7�42�� + 7.42�. +⋯+ 7<42�< =	Y2 

Where: 

• 7@: autoregressive coefficients 

• Y2: stationary purely random process with zero mean 

The autocovariance function I2 for delays from 0 to p is related to the 

autoregressive coefficients 7@ through the Yule-Walker equation for the 
autoregressive process: 

Z I8 	⋯ I<��⋮ ⋱ ⋮I<�� ⋯ I8 [T
7�7.⋮7<X = −T

I�I.⋮I<X 

 An estimated autoregressive model of the same order p can be written 
as: 42 + 7�\42�� + 7.\42�. +⋯+ 7<\42�< =	Y2]  

 Where: 

• 7]̂ : autoregressive coefficients estimated 

• Y2] : estimated innovations 

 

The difference between the autoregressive process and corresponding 
autoregressive model (first and third equation) should be taken into account.[5] 
By using the last one, each data sample can be predicted from its 
predecessors: 

y�] = −-a]̀a
��� y��� 

Since the samples y� cannot be predicted exactly, a residue is 
introduced, which is defined as the difference between the measured value and 
the estimated value: residue = y� − y�] = η�]  

which means that the residue is equal to the estimated innovations. 

It is assumed in these equations that the autoregressive model order p is 
known. In practice, the model order has to be estimated as well, which is 
usually done using Akaike’s criterion. [15] 

 Suppose that the estimation realization y consists of N data points 
(an estimation realization contains those data points that are used for parameter 
estimation). Three methods of autoregressive-coefficients estimation from these 
data samples shall be considered here: the least-squares approach (LS), the 
Yule-Walker approach (YW), and Burg’s method (Burg). 



10 Voice Activity Detection at the input of speech recognition application 

1.2.3.2 Autoregressive coefficients calculation 

 

• LS: the total squared residue over the data samples p+1 to N is 
minimized, leading to a system of linear equations: 

fc�� 	⋯ c�a⋮ ⋱ ⋮ca� ⋯ caahT
a�]a.\⋮aai X = −T

c8�c8.⋮c8aX 

in which the matrix elements 

c�� = 1N − p - y���k
��a � y��� 

form and unbiased estimate of the autocovariance function for delay i-j. 

• YW: The first and last p data points are also included in the summation of l@0 resulting in: 

Z R8D 	⋯ Ra��n⋮ ⋱ ⋮Ra��n ⋯ R8D [Ta�]a.\⋮aai X = −op
qR�DR.D⋮RaDrs

t
 

in which the matrix elements R�D constitute a biased estimate of the 
autocovariance function. [16] 

The Levinson-Durbin algorithm provides a fast solution to a 
system of linear equations containing a Toeplitz-style matrix such as YW. 

• Burg: This method is currently regarded as the most appropriate. Unlike 
the other methods, which estimate the autoregressive coefficients 
directly, Burg’s method first estimates the reflection coefficients, which 
are defined as the last autoregressive coefficient estimate for each model 
order p. From these, the parameter estimates are determined using the 
Levinson-Durbin algorithm. The reflection coefficients constitute 
unbiased estimates of the partial correlation coefficients. 

Usually, these estimation methods lead to approximately the same results 
for the autoregressive parameters. Once these have been estimated from the 
time series y, the autoregressive model can be applied to an independent 
prediction realization x of the same stochastic process. In terms of x, the 
autoregressive process can be written as: x� + a�x��� + a.x��. +⋯+ aax��a =	 ε� 
in which the innovation process v2 is statistically identical to the innovation 

process Y2 . The corresponding autoregressive model can be written as: x� + a�] x��� + a.\x��. +⋯+ aa\x��a =	 ε�]  
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in which a]̀  are the autoregressive coefficients estimated from realization y and ε�]  are the estimated innovations. Each data sample can be estimated from its 
predecessors: 

x�] = −-a]̀a
��� x��� 

The difference between the measured value and the estimated value is 
now defined as the prediction error: residue = x� − x�] = ε�]  

The prediction error is therefore equal to the estimated innovation. Each 
prediction error can be calculated once the actual value of the data point is 
measured. 

A clear distinction should be made between the residue and the 
prediction error and their variances. [14] The residual variance var(Y2]  )t is a 
measure for the fit of the autoregressive model to data that have been used for 
estimating the autoregressive parameters, and can be estimated from the 
realization y, which is used for the parameter estimation: 

var\ �η�]� = 1N − p - �y� − y�]�.k
��a �  

For the prediction of future data, instead of the residual variance, the 

variance of the prediction error var(ε�]) is essential. If the independent prediction 
realization x contains N’ data samples, the prediction error variance can be 
estimated from the sample variance: 

var\ �ε�]� = 1N′ − p - �x� − x�]�.ky
��a �  

The LS parameter estimation is based on the minimization of the residual 
variance. However, such a minimization does not imply that the variance of the 
prediction error is minimized as well. Since the minimization of the prediction 
error variance is usually our goal, the LS estimation of the autoregressive 
parameters is not necessarily superior to YW or Burg’s method. 

Burg’s algorithm is really related to the algorithm designed for the project 
as the main tool for computation of the AR model. Through his method, we find 
one of the input parameters for the computation of the cepstral coefficients from 
the AR coefficients. The main reasons to select the Burg algorithm are because 
it is robust and has an efficient computation, so it gives our VAD algorithm 
robustness and efficiency. 

This section clarifies theoretical aspects of Burg’s algorithm to further 
elucidate his contribution to the project. 

1.2.3  Cepstral Analysis 

Cepstral analysis is a key concept  in the development of the algorithm. This 
analysis will lead to the cepstral distance that is the basis of the algorithm for 
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Voice Activity Detection. This section will describe fully all these concepts and 
how to calculate them. 

A signal comes out of a system due to the input excitation and also the 
response of the system. From the signal processing point of view, the output of 
a system can be treated as the convolution of the input excitation with the 
system response. At times, it is necessary to identify each of the components 
separately for study and/or processing. The process of separating the two 
components is called deconvolution. 

In the first case, if we know the input excitation, then the system component 
can be separated /constructed by exciting the system with the inputs and 
collecting its responses. This is what is done in same channel estimation 
problems. In the second case, if we know the system response, then the input 
excitation can be recovered using the inverse filter theory concept, For instance, 
via the Linear Prediction (LP) analysis of speech to recover excitation. There is 
yet another type of deconvolution in which the assumption is that both input 
excitations and system responses are unknown. 

Speech is composed of an excitation source and vocal tract system 
components. To analyze and model the excitation and system components of 
the speech independently and then use that result in various speech processing 
applications, these two components have to be separated from speech. The 
objective of cepstral analysis is to separate speech into its source and system 
components without any a priori knowledge about source and/or system. 

According to the source filter theory of speech production, voiced sounds 
are produced by exciting the time-varying system characteristics with periodic 
impulse sequence. Unvoiced sounds are produced by exciting the time-varying 
system with a random noise sequence. The resulting speech can be considered 
the convolution of the respective excitation sequence and vocal tract filter 
characteristics. If e(n) is the excitation sequence and h(n) is the vocal tract filter 
sequence, then the speech sequence s(n) can be expressed as: s�n� = e�n� ∗ h�n� 

This can be represented in frequency domain as: S�ω� = E�ω� ∙ H�ω� 
The second equation indicates the multiplication of excitation and system 

components in the frequency domain for the convolved sequence of the same 
time domain. The speech sequence has to be deconvolved into the excitation 
and vocal tract components in the time domain. For this, multiplication of the 
two components in the frequency domain has to be converted to a linear 
combination of the two components. Cepstral analysis is used to transform the 
multiplied source and system components in the frequency domain to linear 
combination of the two components in the cepstral domain. [5][6][7] 

1.2.3.1 Basics Principles of Cepstral Analysis 

From the last equation, the magnitude spectrum of given speech sequence 
can be represented as: |S�ω�| = |E�ω�| ∙ |H�ω�| 
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To linearly combine the E(ω) and H(ω) in the frequency domain, logarithmic 
representation is used. The logarithmic representation of last equation will be: log|S�w�| = 	 log|E�w�| + log|H�w�| 

As indicated in the previous equation, the log operation transforms the 
magnitude speech spectrum in which the excitation component and vocal tract 
component are multiplied into a linear combination of these components, i.e., 

log operation converted the ∗ operation into ∙ operation in the frequency domain. 
The separation can be done by taking the Inverse Discrete Fourier Transform 
(IDFT) of the linearly combined log spectra of excitation and vocal tract system 
components. It should be noted that IDFT of linear spectra transforms back to 
the time domain, but the IDFT of log spectra transforms to frequency domain or 
the cepstral domain, which is similar to the time domain. In the frequency 
domain, the vocal tract components are represented by the slowly varying 
components concentrated near the lower frequency region and excitation 
components are represented by the fast varying components at the higher 
frequency region. 

1.2.3.1.1 Linear prediction cepstral coefficients: LPC 
cepstrum 

There are other options for calculating cepstrum parameters besides 
IDFT. It is possible to make the calculations based on LPC model. Linear 
Prediction Cepstrum Coefficients (LPC) are represented in the cepstrum 
domain. The idea of LPC is based on the speech production model in which the 
characteristics of the vocal tract can be modeled by an all-pole filter.  

LPC is simply the coefficients of this all-pole filter and is equivalent to the 
smoothed envelope of the log spectrum of the speech. LPC can be calculated 
either by the autocorrelation or covariance methods directly from the windowed 
portion of speech. The LPCC [18][19] were acquired from the LPC as: 

LPCC = LPC� +-k− ii���
��� LPCC���LPC� 

LPCC have been widely used for a few decades and have been proven 
to be more robust and reliable than LPC. However, LPCC also inherited the 
disadvantages of LPC. One of the main disadvantages is that LPC 
approximates speech linearly at all frequencies. This is inconsistent with the 
perception of human hearing. Also, LPC includes the details of the high 
frequency portion of a speech that contains mostly noise. This inclusion of noise 
information may affect the system’s performance. 

1.2.3.1.2 Mel Frequency Cepstral Coefficients (MFCC): 
mel-cepstrum 

In sound processing, the mel-frequency cepstrum (MFC) is a 
representation of the short-term power spectrum of a sound, based on a 
linear cosine transformation of a log power spectrum on a nonlinear mel 
scale of frequency. Mel-frequency cepstral coefficients (MFCCs) collectively 
make up an MFC. 
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The motivation for using Mel-Frequency Cepstrum Coefficients is the fact 
that the auditory response of the human ear resolves frequencies non-
linearly. The mapping from linear frequency to mel-frequency is defined as: 

f��� = 2595 ∗ log�8�1 + f700� 
 

 

Figure 6. Filters for generating MFCCs with band-limiting between 300 to 3400Hz. 

 The MFCC were computed using the Discrete Cosine Transform: 

����@ = �2�-�0�
0�� cos	��L� �1 − 0.5�� 

 

where N is the number of bandpass filters and �0 is the log bandpass filter 

output amplitudes.  

It has the benefit that it is capable of capturing the phonetically important 
characteristics of speech. Also band-limiting can easily be employed to make it 
suitable for telephone applications. A small drawback is that MFCCs are more 
computationally expensive than LPCC due to the Fast Fourier Transform (FFT) 
at the early stages to convert speech from the time to the frequency domain. 
[19][20] 

1.2.3.1.3 Computation Cepstrum  

• Computation of DFT based on cepstral coefficients 

 

• Computation of LPC cepstral coefficients 
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This final option is the selected for the computation of AR coefficients in the 
project: 

• Computation of MEL cepstral coefficients 

 

1.2.3.2 Cepstral Analysis Applications 

The next two concepts are the fundamental principles of the 
implementation of the algorithm. The cepstral distance is what determines 
whether the frame is active or inactive. Cepstral distance is calculated and 
entered a previous frame and greater distance between them, implying a 
greater difference and therefore the voice activity detection. The way to 
calculate it is: 

1.2.3.2.1 Spectral Distance 

This is a distance measurement (expressed in dB) between two different 
spectra [8]. 

�. = � �� �����0��.|�.��0�|.�
�� �� 

 

Figure 7. Spectral distance 

1.2.3.2.2 Cepstral Distance 
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�� = ��lK506 − l 506�. + 2-�lK5B6 − l 5B6�.¡
G��  

 

Figure 8. Cepstral distance 

1.3 Speech Recognition 

 A speech recognition system, at its most elementary level, is comprised 
of a collection of algorithms drawn from a wide variety of disciplines, including 
statistical pattern recognition, communication theory, signal processing, 
combinatorial mathematics, and linguistics, among others. Although each of 
these areas relies on different recognizers to varying degrees, perhaps the 
greatest common denominator of all recognition systems is the signal-
processing front end, which converts the speech waveform into some type of 
parametric representation (generally at a considerably lower information rate) 
for further analysis and processing. [4] 

A wide range of possibilities exists for parametrically representing the 
speech signal, including the short time energy, zero crossing rates, level 
crossing rates, and other related parameters. Probably the most important 
parametric representation of speech is the short time spectral envelope. 
Spectral analysis is therefore generally considered the core of the signal-
processing front end in a speech-recognition system. Two of the most dominant 
methods of spectral speech recognition system are the filter-bank spectrum 
analysis model and the linear predictive coding (LPC) spectral analysis model, 
which will be used to implement the algorithm. 

As previously mentioned, a digit recognizer has been added to give more 
value to the project. This is Dynamic Time Warping (DTW) algorithm is a time 
series alignment algorithm developed originally for speech recognition. It aims 
at aligning two sequences of feature vectors by warping the time axis iteratively 
until an optimal match (according to a suitable metric) between the two 
sequences is found.  

The algorithm implemented for the final application is one of the simplest 
DTW algorithms. It is mainly based on the calculation of mel-frequency 
cepstrum computation for each of the digits of the pattern available previously 
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recorded and the cepstrum computation of the input signal. The next step is to 
calculate the distance between the cepstrum computation of each digit and the 
input signal. These distances are evaluated, and the smallest distance 
corresponds to the digit that contains the signal. 
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CHAPTER 2. VOICE ACTIVITY DETECTION 

This chapter describes the basics for implementation to the final algorithm 

developed for the project. The algorithm is based on Voice Activity Detection 

and Start-End-Point detection algorithms. Finally, the peculiarities of the 

algorithm designed for this project and how it works will be detailed. 

2.1. Designing Algorithms 

An important point of signal processing that is relevant for the project is 
voice activity detection. A Voice Activity Detection algorithm that can detect 
active and inactive frames has been used for this purpose. This section will 
describe the basic principles for a general design; details of the algorithm will be 
described in the next chapter. 

2.1.1. Basics of VAD Algorithm 

The process of separating conversational speech and silence is called 
voice activity detection (VAD). It was first investigated for use on Time Assigned 
Speech Interpolation (TASI) systems. VAD is an important enabling technology 
for a variety of speech-based applications, including speech recognition, speech 
encoding, and hands-free telephony. 

The variety and varying nature of speech and background noise make it 
challenging. Earlier algorithms for VAD are based on the Itakura LPC distance 
measure, energy levels, timing, pitch, zero crossing rates, cepstral features, 
adaptive noise modeling of voice signals, and the periodicity measure. 
Unfortunately, these algorithms have some problems for low SNR values, 
especially when the noise is non-stationary. An acceptable accuracy cannot be 
achieved since most algorithms rely on a threshold level by comparison. This 
threshold level is often assumed to be fixed or calculated in the silence (voice-
inactive) intervals. 

Differentiation of the voiced signal into speech and silence is done on the 
basis of speech characteristics. The signal is sliced into contiguous frames. A 
real-valued non-negative parameter, the average energy content, is associated 
with each frame. If this parameter exceeds a certain threshold, the signal frame 
is classified as ACTIVE; else it is INACTIVG. We also refer to these INACTIVE 
frames as noise frames. [10][11]  

2.1.2. VAD Based on Adaptive Threshold 

2.1.2.1. Choice of Frame Duration  

To develop a better method to process the signal, we divide it into frames 
of equal size. The specifications for our detection speech algorithm are:  

• 16 kHz sampling frequency single channel (mono) recording; 

• 256 levels of linear quantization (8 Bit PCM); 

• single channel (mono) recording; 
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• frame duration of 32 ms. An audio signal is constantly changing, so to 
simplify processing, we assume that on short time scales, the audio 
signal does not change much (meaning statistically, i.e., statistically 
stationary, although obviously the samples are constantly changing on 
even short time scales). This is we have chosen to frame the signal into 
32ms frames. If the frame is much shorter, we do not have enough 
samples to get a reliable spectral estimate; if it is longer, the signal 
changes too much throughout the frame; 

• 16.000 samples/second*32ms=512 samples/frame. 

2.1.2.2. Initial Value of Threshold 

Obtaining the threshold is considered the first two inactive frames that 
are referenced in the background noise level. The initial estimate of energy is 
obtained by taking the mean of the energies of each frame as: [21] 

E¢ = 1v - E�£
��8  

where: 

• /¤ is initial threshold estimate; and 

• ¥ is the number of model background noise frames: 2. 

2.1.2.3. ACTIVE or INACTIVE 

The energy of a frame is a reasonable parameter for classifying frames 
as ACTIVE or INACTIVE. The energy of ACTIVE frames is higher than that of 
INACTIVE frames. The classification rule is: IF	E� > BE¢		where	k > 1 → �J7��	LA	ª�«¬/ELSE																						Frame	is	INACTIVE  

In this equation, E¢, represents the energy of noise frames, while kE¢, is 
the threshold used in the decision-making.  

Because it has a scaling factor, k allows a safe band for the adaptation of E¢, and hence, the threshold.   

2.1.2.4. Adaptive Threshold 

Since background disturbance is non-stationary, an adaptive threshold is 
more appropriate. The rule to update the threshold value can be found in: /¤±²³ = �1 − =�/¤´µ¶ + =/¤K@µ²±·² 

where, 

• /¤±²³ is the updated value of the threshold 

• /¤´µ¶ is the previous energy threshold 

• /¤K@µ²±·² is the energy of the most recent noise frame 

• 0 < = < 1 parameter p is chosen to consider the impulse response 
of previous equation as a first order filter. 
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2.1.2.5. VAD Based on Cepstral Analysis 

VAD can be based on applying the cepstral analysis to detection of 
voice. To do this, the cepstral distance is calculated between the current and 
background frames. The detection method is based on having greater distance 
between the two frames, meaning there is a greater difference between the two 
and therefore there is voice activity. 

 

Figure 9. Cepstral distance in VAD. 

2.1.3. Start- and End-Point Detection 

Once it has been implemented, the VAD separates the signal into parts in 
which the voice is detected separately from the silences. The next step is to 
identify the beginning and end of the signal. A criterion should be implemented 
to determine the start-of-speech (SOS) and end-of-speech (EOS) points.   
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2.2. Algorithm Implemented for the Project 

 

Figure 10. Designed algorithm. 
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Figure 10 shows the operation of the final algorithm that has been used 
to implement the application for the voice activity detection. 

2.2.1. Reading and Saving Process 

As shown in Figure 10, the algorithm can be divided into two phases. The 
first is concerned with the Voice Activity Detection algorithm depicted in blue. 
The second reflects the start-and-end point detection. 

The first step is to record a signal during a given time. In this case, we 
decided to set this time in 8 seconds, because the final application will be a 
voice recognizer based on patterns that contain digits 0 to 9. Therefore, 8 
seconds of time is sufficient for subsequent signal processing. The measured 
signal is stored in a file that is open later for processing. The reason for saving 
the signal is that it should be continuously stored in a buffer and therefore could 
be processed continuously and indefinitely. For this occasion, a definite time of 
8 seconds was chosen.  

2.2.2. VAD Algorithm 

 

Figure 11. VAD Algorithm designed for the project. 

Once the signal is in a file, it is going to read slowly with each length of 
time equaling wlen/2, where wlen = 256 points. The first two readings obtain 
frame 1 and frame 2, which will be used to obtain the reference values with 
which to compare the following frames. In this step, we used the Burg model for 
the computation of AR model and A2C function for computation of cepstral 
coefficients from AR coefficients. We also calculated the maximum (Dmax) and 
minimum (Dmin) distance and the difference (Dyn) between them. We will 
define forgetting parameters of maximum and minimum distance (case of 
increase and decrease) (qmax1, qmax2, qmin1, qmin2). 

After calculating these parameters, we will choose the cycle for the 
algorithm to calculate the entire signal. A while loop with the new data of each 

Audio 

signal 
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read (wlen/2) are new data and previous samples old data, will be used. Each 
frame will consist of old data + new data (i.e., by 256 points). Then, we will 
calculate Dmax, Dmin and Dyn for each, which determine whether the frame 
being evaluated is the voice activity (if D> Dyn & Dp> 0.25) or not (otherwise). 

2.2.3. Start and End Point Detection  

At the end of the foregoing process, outsig signal is obtained, which is a 
signal formed by a sequence of 0 and 1 with frames of 32 ms.  

 

Figure 12. Start-and-End point detection algorithm implemented. 

The next step is to build frames of 0.25 seconds, so 15 frames are a new 
frame. At this point, start-end point detection begins.  

We set a decision threshold of 30%. If the mean of 1 to 15 frames is less 
than 0.3 frame, we identify it as an inactive frame; otherwise voice is detected, 
so it will designated a active frame. The next step is to check whether the 
sequence is 0111, because this is considered the beginning of the signal. The 
sequence 11100 determines the end. As a final step, we determine that the 
results are optimized if the marked departure of the signal after subtracting 
1000 points and at the end point has 2500 points.  

Once it is obtained, only the voiced signal is clipped and saved in another 
file. 
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CHAPTER 3. IMPLEMENTATION 

The third chapter will describe the process of the application deployment. First, 
some important implementation issues in MATLAB and will be described and the 
tools that are necessary for this project will be identified. Second, we will explain the 
process for online processing. Third, we will analyze real-time speech processing. 
Finally, we will describe my application. 

3.1. General Issues of MATLAB Implementation 

The application has been fully developed in MATLAB, as were the algorithm 
and the application. 

To carry out the project, we had to install of the  MATLAB program (version 
R2011b, compatible with Windows operating system of 32 bits). We also 
installed the signal processing toolbox, since we will need certain functions it 
contains for further signal processing. 

In additions, some functions have been necessary for the development of 
the algorithm. The described functions had been previously developed to the 
beginning of the project and provided to me by my tutor for my thesis. These 
are useful for developing the VAD algorithm that can detect the voice activity 
and silence periods. 

• Function A2C: is included for computation of cepstral coefficients from 
AR coefficients. 

o l = 72l�7, =, l<� 
� a: vector of AR coefficients ( without a[0] = 1 ) 

� p: order of AR  model ( number of coefficients without a[0] ) 

� c: vector of cepstral coefficients (without c[0] ) 

� l<: order of cepstral model ( number of coefficients without 

c[0] ) 

• Function BURG: is used for computation of AR model using Burg's 
algorithm. 

o 57, Q, J·6 = 9¹Jº�:, =� 
o Input parameters: 

� x: processing frame 

� p: order of LPC model 

o Output parameters: 

� a: autoregressive coefficients  

� Q: forward prediction error 

� J·: reflection coefficients 

• Function CD1: is used for calculations of cepstral distance between two 
spectra using cepstral coefficients. 

o � = l���l�, l., =� 
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� l�:vector of cepstral coefficients of the first spectrum 
(without c[0]) 

� l.: vector of cepstral coefficients of the second spectrum 
(without c[0]) 

� =: number of cepstral coefficients. 

• Function LOADBIN: is responsible for loading binary integer data files to 
vector. Data are normalized in <-1,1> range. 

o y=loadbin(filename[,channels,len]) 

� filename: name of binary data file  

o Optional parameters:                               

� channels: number of channels of signal                         

� len: desired length of ALL data 

• Function MEL: conversion from linear frequency into mel-frequency 
scale. 

o melf=mel(f) 

o Input parameter: 

� f: frequency in Hz (vector or scalar) 

o Output parameter: 

� melf: frequency in mel (vector or scalar) 

• Function SAVEBIN: Saving vector as INTEGER binary data file. 

o savebin(filename,x) 

o filename: desired name of binary data file  

o x: vector with data to saving 

3.2. Specific Issues for Continuous Processing 

Initially, the project aimed to achieve an algorithm that could apply 
continuous VAD. This means that an algorithm must be continuously recording 
an audio signal. This signal would be the entrance to the Voice Activity 
Detection algorithm. 

By having a continuous signal of non-specific length, it should be a 
continuous signal processing. After obtaining the signal to be processed, we 
apply the algorithm to detect the areas that are activity voice detection and 
which are not, based on the algorithm described in the previous section. 

When the VAD result is ready, the next step is to apply the start-and end-
point detection. We take into account that parameters have been set for this 
part of the algorithm and make the necessary decisions to detect the point of 
beginning and end of each voice part of the signal. 

Finally, the last requirement for the detection of activity is to save the parts 
of the signal that are voice activity detection in a buffer and discard the other. 
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As already stated, this project was designed for online data processing, so 
the entire process should be done online. 

To fulfill the requirements of the project, we had to test several options that 
are described below. 

• Waverecord: records the sounds using the Windows audio input device. 
The user can specify the number of samples (N), sample rate (fs), and 
the number of channels (CH). When we tested this function, we found 
that it is mandatory to specify the duration (in terms of the number of 
samples) of the signal to be recorded. A negative point was that every 
time one uses waverecord, this information is removed, so it does not 
allow continuous recording. 

• Audiorecorder: works similarly to Waverecord, but it allows the user to 
save information in an object that is being recorded, thus allowing access 
to the data at any time. The user can also change the properties to suit 
the work. We provided access to information through the object, but the 
program would not let us process the data until it had finished recording. 
Thus, continuous processing of the data was not possible. 

• Data Acquisition Toolbox: allows the user to select the audio input device 
used for data acquisition. With it, the user can get the audio signals 
during the specified time and then can process them. But as in the 
previous cases, it is necessary to obtain the data and then process it, so 
the toolbox does not provide the initial solution to the problem. 

Because of these limitations, we looked for an alternative to meet the initial 
requirements of the project. 

The solution was proposed to record an fixed-time audio signal and save it 
to a file. 

• Once this action is completed, the two processes can be started 
simultaneously. On the one hand, the user can record a new signal file, 
which would resolve the loss of information from the input audio signal 
because the computation time is very low (0.011 seconds).  

• On the other hand, the program could start processing the information 
from previously saved file at the same time. 

We determined to set data process in frames of 256 points, and to read 128 
new samples each time. First, we had to open the required file and then start 
reading until we reached the end of the cycle. 

Latency is the time necessary to record the first piece of signal (for the 
demo, application is 8 ms signal) and save the file; computation time for the first 
piece of signal should be taken into account. Thus, latency of the process is: latency = t¼ + t¢ + t½ 

where: 

• ¾K: signal established time (8 seconds for demo application); 

• ¾¤: recording and saving time: 8.3 seconds (8 seconds relatives to ¾K);  
• ¾·: 11 ms. 
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This makes it possible to make a continuous recorded audio signal and at 
the same time process the signal, which would result in the application of VAD 
algorithm into the continuous signal required for the project. 

3.3. Analysis of Speech Processing 

As noted, the first step is to record the audio signal to save it as a file. To 
make this recording, we used the waverecord function because it involves little 
computation time and therefore can record continuously. 

Once the file was ready, we read it in the manner described above to carry 
out the speech processing. Each time there is an interaction in the loop to read 
the full signal, it will obtain a vector with full signal and the other with the output 
of the VAD (outsig). The latter signal consists of frames of 32 ms. Once the loop 
has been performed completely, it will construct a new vector outsig with frames 
of 0.25 seconds, so outsig 15 frames constitute a new frame of outsig2. This 
new signal is used to process the start-and-end point detection. When this 
process is finished, this new signal will be saved in the buffer, and the process 
begins again. 

3.4. Target Application Implementation 

We have developed an application for showing the performance of the 
project graphically. This application will be based on applying an audio signal to 
the Voice Activity Detection algorithm. The results will show the start-and-end 
point detection to cut the signal. As a final step, an integrated digit recognizer 
has been added. 

All results are displayed separately to better illustrate how the whole project 
has been developed. 

3.4.1. Voice Activity Detection Algorithm Implementation 

As a major part of the application, the VAD algorithm has its own 
implementation. Its operation has already been described. Its fundamental 
principles are based on the cepstral distance and adaptive threshold, as shown 
in Figure 13. 

The starting point of this algorithm is analysis of the two first frames, 
Then, we discuss the entire cycle in terms of these frames. This computes the 
ambient noise, and it can detect which parts of the audio signal voice activity 
exists and which does not. The next step is to analyze a cycle in which the 
cepstral distance and adaptive threshold for the entire signal are calculated and 
then we determine, based on a pre-established criterion, which frames are 
active and inactive. 

Figure shows the input audio signal and the cepstral distance threshold, 
and finally the voice detection expressed in frames within 0 and 1 sequence. 
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Figure 13. VAD implementation. 
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3.4.2. Start-and-End Point Detection Implementation 

The purpose of start-and-end point detection is to detect when a signal 
starts and to identify just the active part of an audio signal. To make these 
decisions, we need a previously set criteria with which to optimize the results. 
Many parameters can be varied to get the best results. 

The first problem posed by this part of the project is that the VAD output 
signal consists of frames of 32 ms, which is considered too short a time to 
implement the start-and end-point detection. We decided to build new frames of 
15 VAD output signal frames each. 

The next step is to decide how to determine if a frame is the beginning of 
the signal. We considered several options (described in the next chapter), but 
finally decided that the start sequence is marked by the end of 0111 and 0011. 

The final step is to determine the range of samples to be taken to ensure 
a margin of error. We decided to take 1000 samples for the beginning and 2500 
for the end. The reasons for these decisions will be explained in the next 
chapter. Figure 14 shows the final results. 

  

 

Figure 14. Start-and-End point detection implementation. 

 Figure 14 shows the output of the demo application. The first 
signal is the original 8 second-audio signal recorded to process with our final 
algorithm. The second signal is cut signal waveform after applying the start-and-
end algorithm, resulting in a 1.35 seconds audio signal comprised of only the 
voiced part of the original signal. 

3.4.3. Digit Recognizer 

To give added value to the project, we decided to incorporate a 
simulation of speech recognition. This application is one of the most common in 
speech processing. 
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The application consists of a single digit recognizer between 0 and 9. It is 
needed to simulate the keypad of a mobile phone. 

The main basis of this recognition is the previously recorded voice 
patterns for each digit. Using the DTW algorithm, we obtained a measure of 
similarity between the input audio signal and each of the patterns that had 
previously been recorded. The digit containing the audio signal is used to 
calculate the distances and the shortest distance. 

Figure 15 shows how the digit recognizer is integrated into the final 
application. 

 

Figure 15. Digit Recognizer. 

3.4.4. Final Application Implementation 

New figure shows the final application: 

 

Figure 16. Final application. 

The implementation of this application has been created entirely in 
MATLAB. It has been developed using a tool called GUIDE, an interface that 
simulates the development environment for deploying applications in MATLAB 
and Simulink. 

It is a simple application that shows the results of the project graphically. 
It consists of two parts, the activity of the voice and speech recognition. It has 
two push buttons that are responsible for running both sides. 
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The voice activity detection portion has two graphics showing the original 
audio signal and cut signal after applying the VAD and start-and-end-point 
detection algorithm. In the speech recognition, a display shows the digit that has 
been spoken. 

Figure shows 17 the final result after running the application. 

 

Figure 17. Performance application. 

The application is operated via these steps. By activating the record 
button, the user should record a signal of 8 seconds containing at least one digit 
from 0 to 9. After confirming that the signal has been recorded correctly, a 
display appears that informs the user of that fact. Otherwise, the application will 
ask the user to repeat the recording. 

The next step is to process the signal. This opens the file where the input 
signal has been recorded and it starts processing as has already been 
described. Once it identifies the start and end point signal, the result is 
displayed with the portion of the signal containing the digit. 

If it is a signal that contains no voice activity, i.e., containing only noise. 
the application asks the user to repeat the process. 

The other part of the application, the digit recognizer, is operated 
separately, as described above. If we recognize the digit that has been 
pronounced, we simply press the application button and it will show that digit. 

The application has an approximate computation time for an 8-second 
audio signal: 

• activity voice detection: 1.87 seconds;  

• digit recognizer: 2.8 seconds. 

The current design of the application can experience problems such as 
the detection of the voice at the very beginning of a file. This depends on the 
position of the active signal. This could be a problem if the active period takes 
place before the additional point that sets the default algorithm as the start 
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signal (1000 samples). This means that if the active signal begins in sample 
100, the algorithm cannot detect the onset of this signal. 

A possible improvement for such a situation would be to introduce an 
initial 8-second signal with no active part, containing only noise, when storing 
the continuous signal. The next signal would be the first to be processed with 
the start-and-end point detection algorithm and would be stored with the 
previous signal, and so on. Frames in which the beginning and end of the signal 
could not be detected would be stored intact. Therefore, frame n becomes 
frame n +1 of the newly stored signal. This new signal may be processed again 
with the algorithm to discard the non-active parts of the signal with a frame size 
multiplied by 2. This new process would solve the initial problem. Other possible 
situations could be resolved if the digit is between 2 files or the end of a file. 
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CHAPTER 4. TESTS AND RESULTS 

This chapter will describe all the tests made to verify the correct 
operation of the application. We tested the algorithms and the application 
performance. The chapter will also include statistics of the results to draw 
the final conclusions of the project. 

4.1. Tests 

Tests in this chapter are purely illustrative. Many figures are shown to 
illustrate the variation in results and to indicate why we chose specific values for 
each parameter. The final choice of values was much more complex than will 
be illustrated in this report. 

4.1.1. VAD Performance Tests 

• The first parameter in the algorithm with large variations in results is q, 
the forgetting factor for background cepstrum forgetting.  

This factor influences mainly the detection of the next frame when the 
frame that is currently being assessed does not show voice activity. The 
greatest variations in results can be seen in the output of the start-and-
end point detection, because if the sample is not properly adjusted, we 
cannot successfully complete the end point and there will be too many 
samples at the end of the clipped signal. The chosen value for the final 
implementation is 0.999. 

In terms of formulas and their dependence on the final algorithm, the 
choice of output signal affects the cycle of each frame. 

%Cycle 
[newdata, count]= fread(F, wlen/2, 'int16'); 
frame=[olddata;newdata]; 
  ai=burg(frame,cp);    
  ci=a2c(ai(2:cp+1),cp,cp); 
  
  D=pp*D+(1-pp)*sqrt(sum((c0-ci).^2)); 
  Dv=D; 
  
  if ( D > Dmax ) 
    Dmax = qmax1*Dmax + (1-qmax1)*D ;  
  else 
    Dmax = qmax2*Dmax + (1-qmax2)*D ; 
  end 
  
  if ( D < Dmin ) 
    Dmin = qmin1*Dmin + (1-qmin1)*D ; 
  else 
    Dmin = qmin2*Dmin + (1-qmin2)*D ; 
  end 
  
  Dyn=Dmax-Dmin ; 
  Dp=Dmin+perc/100*(Dmax-Dmin); 
  Dpv=Dp; 
  Dmaxv=Dmax; 
  Dminv=Dmin; 
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  if ( D>Dp & Dyn > 0.20), 
    out=1; 
    okdata=[okdata;newdata]; 
    outsig=[outsig;out]; 
  else 
    out=0; 
    outsig=[outsig;out]; 
    c0=q*c0+(1-q)*ci; 
  end;    
   signal=[signal;newdata]; 
   olddata=newdata; 
   end; 
   %End cycle 

 

• The following parameter affects whether a frame is active or inactive. 
The result is reflected in the blue line in the following figures. If the 
respective red line is greater than the blue one, the frame is marked as 
active.  

Dp=Dmin+perc/100*(Dmax-Dmin); 

Figures 18  value show how this affects the final result set of VAD. 

o Perc=20: 

 

Figure 18. Percentage=20. 
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o Perc=50: 

 

Figure 19. Percentage =50. 

o Perc:80 

 

Figure 20. Percentage = 80. 

The final value chosen is 20, since it achieved the best results.  

• The next parameter is compared with the previous one. This is indicated 
by the red line, which shows results obtained for different values. Its 
optimal value is 0.86. 

  D=pp*D+(1-pp)*sqrt(sum((c0-ci).^2)); 

o pp=0.6 

 

Figure 21. pp= 0.6. 

o pp=0.99 
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Figure 22. pp=0.99. 

• The following parameters are the forgetting parameters of maximum and 
minimum. They are used to calculate the minimum and maximum range 
of each frame (black and green lines respectively) and to calculate the 
difference between them that if greater than 0.25 implies that the frame is 
active. 

if ( D > Dmax ) 
    Dmax = qmax1*Dmax + (1-qmax1)*D ;  
  else 
    Dmax = qmax2*Dmax + (1-qmax2)*D ; 
  end 
  
  if ( D < Dmin ) 
    Dmin = qmin1*Dmin + (1-qmin1)*D ; 
  else 
    Dmin = qmin2*Dmin + (1-qmin2)*D ; 
  end 

The chosen values are: 

o qmax1=0.7: forgetting parameter of maximum distance ( in case of 
increase) 

o qmax2=0.95: forgetting parameter of maximum distance ( in case 
of decrease) 

o  qmin1=0.995: forgetting parameter of minimum distance (in case 
of increase)  

o qmin2=0.9995: forgetting parameter of minimum  distance (in case 
of decrease) 

Figure 23 shows the result for the chosen values: 
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Figure 23. Forgetting parameters for optimal results. 

These values should be between 0-1, so it was interesting to see the 
extreme situations when we were checking the influence of these 
parameters when these values are almost 1 and how that influences into 
the final results of VAD: 

 

o qmax1=0.999 

 

Figure 24. qmax1=0.999. 

o qmax2=0.999 

 

Figure 25. qmax2=0.999. 
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o qmin1= 0.999 

 

Figure 26. qmin1=0.999. 

 

o qmin2= 0.95 (test from 0.795) 

 

Figure 27. qmin2=0.95. 

4.1.2. Start-and-End Point Detection Tests 

The tests in this section are primarily based on three main parameters. 

• The parameter is responsible for whether one frame formed by other 
frames with different values of 0 and 1 should be finally identified as 
active or inactive.  

i=1; 
outsig2=[]; 
while i<= wnumf, 
    if mean(outsig(i:i+14))<0.3, 
        newframe=0; 
        outsig2=[outsig2;newframe]; 
         
    elseif mean(outsig(i:i+14))>0.3, 
        newframe=1; 
        outsig2=[outsig2;newframe]; 
       end; 
        i=i+15;     
end; 
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Final choice is: 0.3. 

o If mean>0.3: 

 

Figure 28. mean>0.3. 

o Mean>0.7 

 

Figure 29. mean>0.7. 

o Mean>0.9 

 

Figure 30. mean>0.9. 

• Another important decision is related to 0 and 1 sequence: 

o 000111: there were problems with the signal that started close to 
0; 

o 111000: there were problems determining which signal finished 
close to the end of the recorded signal. 
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%Definition beginning and end signal 
for e=2:(l_o2-2), 
    if outsig2(e)==1 && outsig2(e+1)==1 && outsig2(e+2)==1 && 
outsig2(e-1)==0 , 
        begin=(e-1)*128*15; 
        beginmat=[beginmat;begin]; 
    
    end; 
    if outsig2(e)==0 && outsig2(e+1)==0 && outsig2(e-1)==1 && 
outsig2(e-2)==1 , 
        ends=(e-1)*128*15; 
        endsmat=[endsmat;ends]; 
  
    end; 
end; 

• The last parameter that influences the final results is the number of 
margin samples requires  to assure that the clipped signal is completed: 

if length(beginmat)>0, 
%l_begin=length(beginmat); 
begin=beginmat(1)-1000; 
else 
    set(handles.mostrar2, 'String', 'Please, record a new 
signal') 
    return; 
end; 
%l_ens=length(endsmat); 
if length (endsmat)>0, 
ends=endsmat(1)+1500; 
else 
    set(handles.mostrar2, 'String', 'Please, record a new 
signal') 
    return; 
end; 

o Beginning: 

� 8000 

 

Figure 31. Beginning+8000 samples. 
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� 4000 

 

Figure 32. Beginning +4000 samples. 

� 1000 

 

Figure 33. Beginning +1000 samples. 

o End: 

� 16000 

 

Figure 34. End + 16000 samples. 

� 8000 

 

Figure 35. End + 8000 samples. 
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� 1500 

 

Figure 36. End+ 1500 samples. 

 The values chosen are 1000 samples for the beginning and 1500 for the 
end. 

4.1.3. Digit Recognizer Tests 

The evidence in this phase focused on two main elements. 

• The first part of the tests was to identify the optimal microphone for 
proper functioning of the application. The microphone had to be able to 
record patterns so they were recognizable later. We tested the 
microphone that incorporates the PC and a Logitech headset. After 
several tests, we determined that the results were better with the 
microphone that incorporates the computer because it does not interfere 
as much with effects like breathing or pitch of the signal. 

• Second, we identified the signal margin. The results are optimal for 
cases in which an input signal obtained was from the amplitude margins 
of 0.5 and -0.8. 

4.2. Statistical Results 

4.2.1. Activity Detection Performance Results 

The option implemented return better results.  

These tests have been done on the final algorithm and were carried out 
both manually and automatically. The idea is to manually check where the 
signal begins and ends and then check the same occurrences through the 
application. 

The tests were performed in two environments, a loud noisy one and one 
that was quiet, to determine if differences were found in the results. The tests 
were repeated 40 times for both cases to obtain reliable results. 

To show the results statistically, several tests have been made. 

• These first results are in a quiet environment: 

Table 1 shows some values for the beginning and end for each signal. 
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  Manual Automatic 

# Begin End Begin End 

1 7500 14700 2840 21200 

2 9000 14000 9600 17360 

39 15800 24200 14360 28880 

40 24000 32000 23960 34640 

Table 1. Example of start and end point of the tests. 

 

In this series (see the appendix for the complex tables), the difference 
has been calculated manually and automatically to determine the beginning and 
end of each signal. Figures 37 and 38 illustrate the data. 

 

Figure 37. Histogram of beginning difference. 
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Figure 38. Histogram of ending difference. 

Table 2 shows the relationship between the start and end point of the 
signal, as well as the differences, mean, and standard deviation for all samples. 

 

 Manual Automatic       

# Begin End Begin End ¿¿¿¿ 

Begin 

¿¿¿¿				EndEndEndEnd 

σσσσ				
begin 

Mean 

Begin 

σ	σ	σ	σ	end Mean 

End 

1 7500 14700 2840 21200 4660 6500 820,44

8048 

1025 1743,2

3 

3731,5 

2 9000 14000 9600 17360 -600 3360   

3

9 15800 24200 14360 28880 1440 4680 

4

0 24000 32000 23960 34640 40 2640 

 

Table 2. Non noise Start-and-End point detection tests. 
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• In a noisy environment: 

 

Figure 39. Beginning difference in noise environment. 

 

Figure 40. End difference in noise environment. 
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 Manual Automatic       

# Begin End Begin End ¿¿¿¿ 

Begin 

¿¿¿¿				EndEndEndEnd 

σσσσ				
begin 

Mean 

Begin 

σ	σ	σ	σ	end Mean 

End 

1 10900 19000 10520 23120 380 4120 752,80 678 2088,7 2838,5 

2 10800 16700 10520 19280 280 2580 

3

9 25000 31000 23960 34140 1040 3140 

4

0 16000 25500 14360 28380 1640 2880 

 

Table 3. Noisy environment Start-and-End point detection tests. 

The general conclusions are that to detect the end point, more samples 
have to be used for the beginning point. This is because the start-and-end point 
detection algorithm is designed with a greater insertion of samples at the end of 
the detected signal to provide a greater margin and avoid leaving the signal 
incomplete. 

On the other hand, we achieved very similar results in both media, so it can be 
said that the algorithm is independent of the conditions in which it is used. 

4.2.2. Digit Recognizer Results 

Another way to check the algorithm and the expected results is to use the 
complete application, which recognizes the digit containing the signal. Although 
this is not the main purpose of the project, it is part of the final application. 
Correct recognition also confirms that the algorithm is functioning properly. 

We tested digit recognizer by testing each of the numbers to be recognized 
10 times and then examining the results. Tests have been performed for 3 
different speakers, and each has made a series of 10 samples for each digit. 
Table 4 shows the average results. 

 
Number Success Failure Percentage 

0 10 0 100 

1 8 2 80 

2 8 2 80 

3 7 3 70 

4 10 0 100 

5 8 2 80 

6 10 0 100 

7 9 1 90 

8 10 0 100 

9 10 0 100 

Table 4. Digit recognizer statistics. 
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CHAPTER 5. CONCLUSIONS 

As has been stated, the motive for this project was the implementation of an 
algorithm that can detect the beginning and end of voice activity in a signal. 

The beginning of the project was based on a Voice Activity Detection 
algorithm. The main idea was to detect voice activity continuously. A signal is 
recorded continuously with the aim of analysing smaller sequences to 
determine whether there is voice activity. If activity is detected, this part of the 
signal is saved in a buffer. Otherwise, it is discarded. 

An application was developed to show the work of the project graphically. It 
is based on the algorithm for the clipped signal after performing speech 
recognition using a simple algorithm that allows recognition of the pronounced 
number. 

The major contributions of my work can be summarized as: 

• studying and understanding the operation of the Voice Activity 
Detection algorithm. Once it was understood, the next step was to 
adapt the algorithm and particularize it to obtain desired results for 
my project; 

• once the results of the VAD algorithm are ready, I designed a 
start-and-end point detection algorithm that can detect the 
beginning and end of the signal activity. An algorithm has been 
designed to optimize the results and allow us to obtain from the 
output a signal in which only the remaining part of the signal 
showed detected activity; 

• to show the results of the project, I implemented an application 
entirely in MATLAB. In this application, I integrated the VAD and 
the start-and-end point detection algorithm, and as a complement, 
I created a demonstrative simple digit recognizer based on a 
simple DTW algorithm;  

• the last step of the project has been to test the performance of the 
algorithm. Tests have been conducted in different environments to 
ensure that it operates independently of conditions. 

It is possible to say that work achieved the initial goal of the project, which 
was to develop an algorithm capable of returning a signal in which there is voice 
activity. It should be added that future work on this topic could focus on the 
possibility of using the Data Acquisition Toolbox for online listening and 
recording of data and further processing, without having to record small 
sequences of the voice as this project did. 
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Annexes 

4.3. Tests 

4.3.1. Algorithm tests 

4.3.1.1. Non noisy environment 

 Manual Automatic   

# Begin End Begin End Difference Begin Difference End 

1 7500 14700 2840 21200 4660 6500 

2 9000 14000 9600 17360 -600 3360 

3 17000 21000 16280 26960 720 5960 

4 12500 16500 12440 21200 60 4700 

5 24900 29400 23960 32720 940 3320 

6 21900 28100 20120 30800 1780 2700 

7 15800 23200 14360 26960 1440 3760 

8 11000 17200 10520 19280 480 2080 

9 17000 25100 16280 26960 720 1860 

10 6100 13000 4760 15440 1340 2440 

11 30000 40000 29720 42320 280 2320 

12 13900 21200 12440 25040 1460 3840 

13 15900 23000 14360 26960 1540 3960 

14 23000 28500 22040 32720 960 4220 

15 22900 31000 22040 34640 860 3640 

16 29000 35000 27800 38480 1200 3480 

17 33800 38100 33560 42320 240 4220 

18 18900 28100 18200 32720 700 4620 

19 10900 15100 10520 19280 380 4180 

20 21100 30000 20120 32720 980 2720 

21 23000 31000 22040 32720 960 1720 

22 23000 32100 22040 34640 960 2540 

23 27400 37000 25880 40400 1520 3400 

24 27900 34800 25880 38480 2020 3680 

25 35100 40000 33560 44240 1540 4240 

26 24700 29100 23960 32720 740 3620 

27 21000 28000 20120 30800 880 2800 

28 19100 24100 18200 26960 900 2860 

29 18800 27000 16280 30800 2520 3800 

30 12800 26000 12440 28880 360 2880 

31 17000 22000 16280 25040 720 3040 

32 21000 30000 20120 34640 880 4640 

33 21000 31100 20120 34640 880 3540 

34 23000 31100 22040 34640 960 3540 

35 12000 20000 10520 23120 1480 3120 
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36 20500 26100 20120 28880 380 2780 

37 14800 20000 14360 32720 440 12720 

38 25200 31500 23960 34640 1240 3140 

39 15800 24200 14360 28880 1440 4680 

40 24000 32000 23960 34640 40 2640 

Table 5. Tests non noise environment. 

4.3.1.2. Noisy environment 

 Manual Automatic   

# Begin End Begin End Difference 

Begin 

Difference 

End 

1 10900 19000 10520 23120 380 4120 

2 10800 16700 10520 19280 280 2580 

3 11000 18000 10520 19280 480 1280 

4 16800 24000 16280 26960 520 2960 

5 18000 24100 16280 28380 1720 4280 

6 15500 19100 14360 22620 1140 3520 

7 25000 30100 23960 32220 1040 2120 

8 22000 29200 22040 32220 -40 3020 

9 18000 23500 18200 26460 -200 2960 

10 10000 20000 8600 24540 1400 4540 

11 23000 34000 22040 37980 960 3980 

12 21000 28000 20120 30300 880 2300 

13 12100 22000 12440 24540 -340 2540 

14 16000 25500 16280 27260 -280 1760 

15 21000 27000 20120 30300 880 3300 

16 21000 27500 18200 42000 2800 14500 

17 12000 18500 12440 20700 -440 2200 

18 20000 30000 20120 32220 -120 2220 

19 30000 37000 29720 37980 280 980 

20 18000 28000 18200 30300 -200 2300 

21 25000 35500 23960 36060 1040 560 

22 27000 34000 25880 36060 1120 2060 

23 22000 32000 22040 34140 -40 2140 

24 19000 30000 18200 32220 800 2220 

25 15000 22500 14360 24540 640 2040 

26 21000 30000 20120 32220 880 2220 

27 36000 43000 35480 45660 520 2660 

28 23500 32500 22040 34140 1460 1640 

29 24500 30500 23960 32220 540 1720 

30 25500 37000 25880 37980 -380 980 

31 16500 25500 16280 28380 220 2880 

32 17500 25000 16280 26460 1220 1460 

33 19000 28500 18200 30300 800 1800 

34 18000 26500 16280 28380 1720 1880 
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35 21000 29500 22040 32220 -1040 2720 

36 18000 24000 16280 28380 1720 4380 

37 21000 27000 20120 30300 880 3300 

38 29000 36500 27800 39900 1200 3400 

39 25000 31000 23960 34140 1040 3140 

40 16000 25500 14360 28380 1640 2880 

Table 6. Tests noise environments. 

4.3.2. Digit Recognizer tests 

Digit Result OK 

0 0 yes 

0 0 yes 

0 0 yes 

0 0 yes 

0 0 yes 

0 0 yes 

0 0 yes 

0 0 yes 

0 0 yes 

0 0 yes 

1 1 yes 

1 1 yes 

1 1 yes 

1 1 yes 

1 1 yes 

1 9 no 

1 1 yes 

1 1 yes 

1 1 yes 

1 4 no 

2 2 yes 

2 2 yes 

2 2 yes 

2 0 no 

2 2 yes 

2 2 yes 

2 4 no 

2 2 yes 

2 2 yes 

2 2 yes 

3 3 yes 

3 3 yes 

3 8 yes 
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3 3 yes 

3 3 yes 

3 3 yes 

3 8 yes 

3 3 yes 

3 8 yes 

3 3 yes 

4 4 yes 

4 4 yes 

4 4 yes 

4 4 yes 

4 4 yes 

4 4 yes 

4 4 yes 

4 4 yes 

4 4 yes 

4 4 yes 

5 5 yes 

5 5 yes 

5 1 yes 

5 5 yes 

5 5 yes 

5 5 yes 

5 1 yes 

5 5 yes 

5 5 yes 

5 5 yes 

6 6 yes 

6 6 yes 

6 6 yes 

6 6 yes 

6 6 yes 

6 6 yes 

6 6 yes 

6 6 yes 

6 6 yes 

6 6 yes 

7 7 yes 

7 7 yes 

7 7 yes 

7 7 yes 

7 7 yes 

7 9 no 

7 7 yes 
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7 7 yes 

7 7 yes 

7 7 yes 

8 8 yes 

8 8 yes 

8 8 yes 

8 8 yes 

8 8 yes 

8 8 yes 

8 8 yes 

8 8 yes 

8 8 yes 

8 8 yes 

9 9 yes 

9 9 yes 

9 9 yes 

9 9 yes 

9 9 yes 

9 9 yes 

9 9 yes 

9 9 yes 

9 9 yes 

9 9 yes 

Table 7. Digit recognizer tests. 

 

 



 

 


