) — Escola Técnica Superior d'Enginyeria
l BCN]| de Telecomunicacié de Barcelona

UNIVERSITAT POLITECNICA DE CATALUNYA

251658240

PROJECTE FINAL DE CARRERA

Assignacioé de serveis amb estalvi d'energia
i emissions de CO2 per a Data Centers
basada en el Dynamic Bin Packing Problem

(Energy and Carbon emissions aware service
allocation for Data Centers based on the Dynamic
Bin Packing Problem)

Estudis: Enginyeria de Telecomunicacio

Autor: Bernat Guillén Pegueroles

Directors: Xavier Hesselbach-Serra, Xavier
Munoz Lopez

Supervisora: Sonja Klingert (Universitat
Mannheim)

Any:
2013

ABSTRACT

This project endeavours to develop strategies to allocate services in
Data Centers in a collaborative relationship between the Data Centers
and its users and Energy Providers. We study the implications of
allowing service delays and short-term prevision of the energy mix
when allocating services in a Data Center.

The project aims to propose heuristics and analyze them with the
background framework of All4Green, a european FP7 project which
aims to foster the relationship between all the partners of the ecosys-
tem Energy Providers - Data Centers - End Users by the use of special
contracts between each part that include flexibility and collaboration
clauses.

To that end, the theoretical framework of problem tractability, prob-
lem complexity, online decision problems theory and metaheuristics
will be studied and fully explained in order to find the best way to
model and develop approximation algorithms that allocate services
in a Data Center taking into account the Carbon Emissions Factor.
Finding the model is an arduous task and it will be through various
modifications, simplifications and attuning of parameters that we will
find the most suitable one. We will see that the final model of the sys-
tem is a modified version of a very famous decision problem called
the Bin Packing Problem.

Later on, a family of heuristics will be proposed, studying thor-
oughly a couple of them and confirming the expectations: If we allow
collaboration via the possibility of delaying and anticipating services
we can obtain a huge benefit both economical and environmental
when allocating services. Moreover we found a relationship between
the level of collaboration a Data Center reaches (reflected in the ad-
vice and the possibility to delay) and the benefit.

We can conclude that we have succeeded in reaching the origi-
nal objectives of the project and we provide useful strategies, guide-
lines and recommendations to be used in the frame of the All4Green
project or other similar projects.

ii

CONTENTS

ii

THEORETICAL INTRODUCTION

THE TECHNOLOGICAL FRAMEWORK: ALL{GREEN
1.1 Goals of the project
1.2 Structure of the project

1.3 DC Model . . .

1.4 Agents, Connectors, GreenSLA, GreenSDA
1.4.1 Agents and Connectors
1.4.2 GreenSLA,GreenSDA
1.5 The implementation

OO I O oUW

11

COMBINATORIAL OPTIMIZATION: BIN PACKING PROBLEM 13
2.1 Tractability of Optimization Problems
2.1.1 Algorithms, encoding and asymptotic notation

2.1.2 NP-completeness

2.1.3 Tractability Theory: Polynomial time approxi-
mation, asymptotic approximation

2.2 Online decision problems
2.3 Bin Packing Problem and variations
2.4 Metaheuristics: Genetic Algorithms

PRACTICAL WORK

MODELLING A DATA CENTER

3.1 Mathematical model of the problem
3.1.1 StaticModel oo
3.1.2 Discrete Dynamic Model
3.1.3 DealingwithPac.

PROPOSED HEURISTICS AND RESULTS

4.1 Should we allow consolidation?

4.2 Heuristics proposed
4.2.1 Strictheuristic.o 0L
4.2.2 Dynamic Heuristic

4.3 Simulations and visual demonstrations
4.3.1 Simulating CEF(t) and requests
4.3.2 Consolidation is important
4.3.3 Delaying the services
4.3.4 Anticipating service execution
4.3.5 Air Conditionate power
4.3.6 Further requests fromthe EP
4.3.7 A Genetic Algorithm proposal

4.4 Final comments
CONCLUSIONS

13
14
16

20
23
25
28

33
35

38
39
42
45
45
46
46
48
50
50
51
55
56
59

63
64
67

vi

CONTENTS

iii APPENDIX
A PROOFS FOR THE RESULTS
A.1 NP-completeness and tractability

BIBLIOGRAPHY

69
71
71

75

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Figure 20

DC Data model seenin WP3. 8
A standard DC model

Overview of the All4Green system 10
Different states of the DC 10
Two different versions of CEFused 51
Poisson arrivals, regard the "period" (daily) . . 52
FF vs. FFD, note the peaksin FF 53
FF vs. FFD, Poisson requests 53
Notice that, apart from being higher, Prrp is

also smoother when E(t) =6h. 54
Notice that for short duration processes the

difference is bigger 54
2 slots, H1 is a 0.27% better than H2 56
4 slots, H1 is a 0.37% better than H2 57
6 slots, H1 is a 0.42% better than H2 57
4 slots, Pq =04 instead of 0.1 58
4 slots, note the big leap that H1 gives 58
Consolidation vs. non-consolidation in both

HiandH2 59
Adding anticipation, note that we use more en-

ergy when CEF increases 60
Note that even when anticipating, it uses less

weighted energy than FF 62
Note that the first peak causes a decrease in

the performance later 62
Surprisingly, it is a linear function differing by

aconstant8% 63

vii

LIST OF TABLES

Table 1 Policies and actions taken in each state of the DC 11
Table 2 Parameters involved in the All4Green System . 37

viii

LISTINGS

Listing 1
Listing 2
Listing 3
Listing 4
Listing 5
Listing 6

Next Fit Algorithm 26
First Fit Algorithm 26
GeneticFirst Fit 29
Crossing Operator 29
Mutation Operator 30
Example of the crossing operator 30

ix

ACRONYMS

DC Data Center

EP Energy Provider

ITC Information Technology Consumer
A4G All4Green

GreenSLA Green Service Level Agreement
GreenSDA Green Supply Demand Agreement
BPP Bin Packing Problem

FF First Fit

FFD First Fit Decreasing

INTRODUCTION

The problem of energy efficiency and optimization, and CO; emis-
sions in Data Centres (DC) has been worrying the scientific and tech-
nical community for some time, inspiring many solutions and ap-
proaches to it. Until now, the approaches try to minimize the energy
consumption by either improving the hardware efficiency or the soft-
ware efficiency, but none of them aims to optimize the overall effi-
ciency in a hollistic way, taking into account the relations between
the DC and the End Users (ITC) or DC and the Energy Provider (EP).
All4Green’s approach considers the whole environment as the key to
reduce the energy consumption and the CO, emission.

One of the key aspects of All4Green is enforcing a collaboration
between EP, DC and ITC. This collaboration consists in agreeing to
delaying or pausing some services (DC-ITC) in order to fulfill some
requests by the EP (EP-DC) and not abuse of expensive and polluting
energy sources.

The goal of this project is to develop a model that is suitable for
the study of the viability of different heuristics and strategies related
to this collaboration that is pursued by the project All4Green, as well
as proposing strategies and studying them to give a qualitative idea
of which might be the best approach. The rationale for this thesis is
to give strength to the belief that a world where all the members of a
society collaborate is a better world. And that this world is possible
even with the current social point of view, i.e.collaboration is prof-
itable for everybody. We firmly believe that economical benefit is not
at odds with being concerned in the environment, and by pursuing
this thesis we want to prove that it is possible. We want to help other
researchers and workers that share this belief with us to give one step
further in the race for environmental sustainability. Not only this, but
we want to do our bit in showing that mathematics can, and should
be in service of improving all the society and that they can be used
for more things than only generating money.

To that end, a rigorous mathematical analysis of the problem is
needed, which will lead to the conclusion that it is indeed possible
to ensure a profitable collaboration not only for the environment but
for all the parties. A lot of theoretical background will be required
to further study the problem. That theoretical background will be
presented as well in this memoire. Many problems will arise when
trying to produce a model of the whole EP-DC-ITC relationship and
they will be solved more or less succeedingly. But in the end, it will be
shown that there are ways to be environmentally and economically

2 Energy and Carbon Emissions aware service allocation on Data Centers

efficient, and these ways will be presented in form of a family of
heuristics.

STRUCTURE OF THE PROJECT

In order to achieve the goals posed before, the project will first consist
of having a clear idea of how the All4Green project is working and
what their objectives are. The first chapter will treat the ideas exposed
by the All4Green project and try to find a way to synthetize them in
order to use them as mathematical objects.

In the second chapter, a brief introduction to the theory of prob-
lem tractability and online decision problems, which will be key to
the development and further study of the mathematical model of the
problem, will be presented. Several works regarding the theoretical
study of tractability, NP — completeness, online decision problems
and Genetic Algorithms will be studied and selected summaries of
these works will be shown in this chapter, hence allowing the reader
(and the writer) to become familiar with the terminology of these
fields.

In the third chapter, the practical work will begin by using what-
ever mathematical objects can be obtained from the first chapter and
developing several mathematical models. These models will follow
the chain of thoughts of the writer during the development of the
final version, in order to clarify the reasons for each choice.

Finally, in the fourth chapter, a family of solutions to the model
will be explained and two heuristics will be posed and thoroughly
studied, reaching the conclusion that it is indeed possible to achieve
both environmental and economical efficiency through collaboration
between these three parts of the ecosystem. Some improvements,
guidelines and recommendations will be given for future work re-
lated inside the project All4Green or other projects of similar expen-
diture.

The thesis is structured and written this way in the hope of convinc-
ing the reader that these strategies are not only useful, but necessary,
if we want to live in an environmental-friendly world.

@ te'eﬁ%".]

Part1

THEORETICAL INTRODUCTION

The first part of the project consists in an introduction to
the theoretical framework in which the thesis will develop.
On one hand the All4Green project is used as the tech-
nological background and some assumptions that will be
made later come from this project. On the other hand,
the study of the tractability of problems, online decision
problems and a brief introduction to metaheuristics will
be the mathematical basis needed to proceed later with
the model. Furthermore a specifical problem called Bin
Packing Problem will be explained in detail.

THE TECHNOLOGICAL FRAMEWORK: ALL4GREEN

INTRODUCTION

To be able to develop the necessary tools and solve the problem posed
in this thesis, we will need a technological framework inside which
we will work. As it would have no sense to solve the motion of a
fluid without establishing the laws that rule it, we must be aware of
the restrictions of this particular problem before trying to solve it.
The project All4Green (A4G) will take into account the relationships
between the Energy Provider (EP), the Data Center (DC) as the cus-
tomer of the EP, and an IT Customer (ITC) as the end user of the
services offered by a Data Center. Let us read a short description of
the goals of each partner:

¢ IT Customer/ITC. Each ITC represents demand for a DC. A4G
focuses in those ITC that would appreciate savings in energy
and energy cost. Its objective is to minimize the price paid to
the DC for the computing services, and the total time in which
its generated workload is executed by the DC.

* Energy Provider/EP. It represents the energy supply side for
the DC. It needs to homogenize the energy load delivered to
the DC, and to keep the amount of emissions controlled ("Green
Quota").

¢ Data Center/DC. It is at the same time the provider of comput-
ing services for one or various ITC and the demand side of the
EP. Its goal is to be able to perform all the computing requests
within some given guarantees of performance, while keeping
inside the restrictions in Energy Consumption given by the EP.
In this report in particular, the objective is to minimize the Ener-
gy/Emission consumption caused by the computational work-
load. Thus, in this report in particular, we are not focusing in
the economical aspects of the relationship between EP/DC and
DC/ITC.

Each of the partners has different motivations and goals and they
do not always overlap. The project A4G establishes a common goal
for all of them — Energy and Carbon Emission efficiency — and aims
to create new approaches to the whole ecosystem EP-DC-ITC.

6 Energy and Carbon Emissions aware service allocation on Data Centers

1.1 GOALS OF THE PROJECT

Electricity consumed in Data Centers (DC), air cooling devices (AC)
and uninterruptable power supply systems (UPS), is foreseen as a ma-
jor contributor to the electricity consumed in the commercial sector
in the near future, especially with the cloud computing trend still on
the rise .

The project All4Green analyses the relationship between the IT Cus-
tomer (ITC) and DC or DC federation in conjunction with the relation-
ship between the different parts of the DC seeking a hollistic way of
improving energetical efficiency and CO; emissions.

Instead of focusing on the energy optimization of single ICT el-
ements, or subsets of the ICT elements making up a data centre,
All4Green broadens the scope of energy savings to the full ecosys-
tem in which data centres operate, fostering collaboration between
all entities in this ecosystem with the common goal of saving energy
and emissions through special contracts between them, following the
work in [1, 2, 3].

With the proposed technology, energy savings generated in the
data centre through the new relation with ICT users are magnified
at the very source of the electricity transformation process through
the coordinated collaboration of all the actors inside the ecosystem.

This collaboration is not only beneficial for the environment, but
also economically sustainable, and therefore not limited to customers
with a strong green/ecological conscience.

The main benefits of the envisioned ecosystems results from the
interplay between data centres and energy providers. On the one
hand, data centres, as important customers of energy providers, can
have a great impact on the emergence and avoidance of energy usage
peaks, and on the other hand, energy providers can reduce the impact
of such peaks by using the optimal balance of energy sources based
on their flexibility and COz2 emissions, including renewable energy
sources like solar or wind, which have traditionally been difficult
to be fully integrated into the electricity grid due to their long-term
unpredictability.

The european FP7 All4Green project addresses this problem by co-
ordinating energy supply and demand by encouraging extensive col-
laboration between energy providers and data centres as major en-
ergy consumers.

1.2 STRUCTURE OF THE PROJECT

The project is divided in 8 Work Packages that are run by different
people and are coordinated by one of them (WP1). WPz is the one in
charge of making the baseline and target scenarios for the technical
aspects of the project and receive a feedback from the final simula-

Energy and Carbon Emissions aware service allocation on Data Centers 7

tion and implementation. WP3 is the technical WP in charge of the
relationship between DC and EU, WP4 focuses on the EP-DC rela-
tion and WP5 includes the DC federation into the ecosystem (DCs
can federate and reallocate workload between them). WP6 provides
a simulation environment and is where the first tests will be made,
and WP7 is the final real-world implementation. Finally, WP8 ded-
icates to dissemination of the work done in All4Green and tries to
reach to the maximum number of potential users.

1.3 DC MODEL

A model of the DC behaviour and topology is found in the first de-
liverable of WP3. However, I will introduce shortly the data model
and focus in the physical model which will be the object of our main
attention during the course of this report.

* Multi-tier model: Servers are deployed in a hierarchical manner.
The frontend consists in the web servers, that are connected
to the application servers (that are used in case a specialized
service is needed). The application servers are connected to
storage, database and backup servers.

» Server Cluster Model: Often used in grid environments. There is
no (or little) hierarchy: The requests are concurrently served.

The interconnection network consists (not necessarily) in three tiers:
The core layer, the aggregation layer and the access layer. UPS and
cooling systems are also part of the physical model of a DC.

Servers, Network Elements, Storage (divided in Direct-attached Stor-
age, Network-attached Storage and Storage Area Network), UPS and
the AC are the sources of power consumption in the DC.

The data model of the DC can also be found in WP3. Fig. 1 illus-
trates the relations between DC, EP, ITC, and the Federation. It also
shows the relation between the physical devices and the software and
IT Services (VM, software, server entities). Finding a proper model
is very important and it will be necessary to do accurate predictions
and efficient algorithms to be energy-aware efficient.

1.4 AGENTS, CONNECTORS, GREENSLA, GREENSDA

The whole All4Green project is sustained by three pillars: Energy
Saving, Flexibility and Collaboration. Amongst other tools, the most
important ones are Agents, Connectors, and the contracts between
EP-DC and DC-ITC (GreenSLAs and GreenSDAs).

@ elogen

8 Energy and Carbon Emissions aware service allocation on Data Centers

__ITcontract
L
E

Customer

ITservice

Application
System

__---Infrastructure

ITservice E

EP EP contract

Iy federation
~||

agreement

ITservice E

N
NetworkDevice

[-
ITservice E j{!

EX X

methods

resource- @ rstatus 0@

capability 5o

Figure 1: DC Data model seen in WP3

1.4.1 Agents and Connectors

Agents are autonomous software that monitor the state of each of
the members of the ecosystem (DCs, EPs, ICTs) and they also are
in charge of the communication between each of them (requests, ac-
cepting or rejecting offers, etc.). The connectors (DC or EP) are in
charge of connecting the high-level decisions made by the agents to
a low-level technology-dependent decision, made in two steps, the
first ““translating" the high-level decision to a low-level technology-
non-dependent decision, and then again to a decision specific to the
DC/EP control system.

Communicating and monitoring in an efficient way, and finding an
optimal way of connecting high-level decisions to low-level decisions
might probably be the key to an efficient way of reducing the energy
consumption and the CO2 emission.

"y

1.4.2 GreenSLA,GreenSDA

The contracts made between DC-ITC are different from the traditional
SLAs (Service Level Agreement). A traditional SLA states a QoS for
some defined services. The QoS includes performance parameters,
availability parameters, other parameters and, of course, the pricing.
All of these are static and don’t depend on anything, and work as can
be seen in Fig. 2.

Energy and Carbon Emissions aware service allocation on Data Centers 9

Pawor Supply Unit

Contracts: Customer 1
(SLA-1)

ramework Contract

Customer 2
(SLA-2)

Customer 4
(SLA-4)

JCAN

Figure 2: A standard DC model

A GreenSLA includes flexibility into this equation; the parameters
and the pricing will depend on the context and will include some re-
duction of the general performance, in exchange for a reward in the
pricing. The GreenSLA inside the All4Green project also fosters col-
laboration, and includes special rewards for the ITC that collaborates
with the DC. The GreenSLA guarantees certain QoS but in a context-
depending way.

Similarly, there is a GreenSDA between the DC and the EP, which
also fosters collaboration towards a green ecosystem. Both GreenSLA
and GreenSDA also define some GreenKPIs that will be monitored
by the agents and will be indicators of the ecological efficiency of the
situation. This KPIs will be used by the system to decide the actions
to be taken by the DC.

The GreenSLA and GreenSDA have to be designed to ensure fairness
to all the partners and should help to make All4Green attractive to
as much possible stakeholders as possible, while providing a way to
reduce CO; emissions and energy consumption. Therefore, they are
one of the key elements of All4Green. It is very important to design
them well, but from a technical point of view, their most important
aspects are the parameters established by them (GreenKPIs and the
Flexibility terms) because they will be used by the Agents and the
Connectors. A summarizing image of the whole All4Green environ-
ment can be seen in Fig. 3. The part of the image in grey includes the
federation of DCs which will not affect this thesis.

@ te'eﬁ%’ﬂ

10 Energy and Carbon Emissions aware service allocation on Data Centers

m - _EnergyProvider]

EP control system

oL ER connector 1 i EP control system
XMLREST 3 ___EP connector _ }
1 o TS ~
pOEP o {oer
| agent { agent !
*****) Saans maaaeeseeny A S
I
IT service -
I
o) & 1 DataCenter
> —— ‘ T P l,D,a,t,a,,C,er,\,tgr
N ! . S A B :
4 Is '] [o’ '] : : s ‘l :
g o i i DC i ;L bc i
_agent ;T et o0 i aEent P
1T customer oot S S S, SN
DC connector ! {___DCconnector 1
DC control system . |_DCcontrol system |
AANN -

Figure 3: Overview of the All4Green system

1.4.2.1 States of the DC

The approach of the project to the problem involves categorizing the
possible situations a DC can be in. This situations, or states of the DC,
will change according to EP’s demands and the availability of the ITC
end users. In one of the deliverables of the project All4Green (WP3)
we find a classification of the different states of the DC (Fig. 4).

DC in Extra

Energy mode
Accepted “Energy

Increase Request”
(by EP)

Completed “Energy
Increase Request”

DC in Regular
mode

Accepted “Energy
Reduction Request”
(by EP)

Completed “Energy
Reduction Request”

DC in Energy
Saving mode

Figure 4: Different states of the DC

Energy and Carbon Emissions aware service allocation on Data Centers 11

Each DC state comes with suggestions on policies and actions, as
can be seen in Table 1, which has some minor changes to the one that
appears in the project adapting to the necessities of this work.

Table 1: Policies and actions taken in each state of the DC

DC(Agent) Actions Regular Energy Sav- Extra Energy
Mode ing Mode Mode

Allocation of new IT Ser- Local DC Local DC Local DC

vice Requests

Flexibility GreenSLAs: YES YES YES

generic context dependent

SLA value settings

Energy context dependent YES YES

SLAs

Collaboration GreenSLAs YES YES

user/system job shifting regular postpone anticipate

pause, resume, or start ex- resume pause extra services

tra services

AC tuning Regular Increase tem- Reduce tem-

perature perature

1.5 THE IMPLEMENTATION

WP6 is developing a simulator, and it will be a bench for testing
models and strategies proposed in WP3, WP4 and WPs5. The way it
is done isn’t a major concern in this work (understanding it as the
"“PEC"), but it will be web-based and will use a Tomcat server + Java

+ WS-agreements.

13

COMBINATORIAL OPTIMIZATION: BIN PACKING
PROBLEM

INTRODUCTION

Most of the real world problems can be modeled as a mathematical
problem that will be more or less accurate depending of the amount
of information provided. Mathematical modelling is a very extensive
field and arguably one of the oldest fields at least in applied Math-
ematics. As a field, its importance has grown exponentially with
the arrival of the computers that allow massive calculations in few
time. Therefore many different approaches have been derived, be-
tween three distinct branches: Continuous modelling, discrete mod-
elling and statistical modelling (specially important nowadays with
Big Data). Most problems are better suited for only one kind of mod-
elling but some allow different approaches and even mixtures.

In this chapter we will discuss the nature of optimization and deci-
sion problems and the diverse ways to approach a solution. First we
will define what an optimization problem is in rigurous terms and we
will describe a (very famous) way to achieve an idea of its difficulty.
Two main references will be used during this part of the chapter: [4]
and [5]. In the second part of the chapter a problem very related
to this project and its variations will be presented, together with the
different algorithms that try to solve it and a small analysis.

The algorithms in pseudocode will be presented in the course of
the chapter, however those that can be found in the references will
not be proven and only the new results will.

2.1 TRACTABILITY OF OPTIMIZATION PROBLEMS

The first step is to understand what is an optimization problem. In
plain words, in an optimization problem we receive some data, that
we would divide in cost coefficients and restriction terms. Each possi-
ble input data is associated with a set of possible solutions and each
pair input data, solution has a certan value defined by a function. The
final objective is to maximize or minimize this value. Formally, a
definition (seen in [4]) is as follows.

Definition 2.1.1. An optimization problem Q

is a 4-tuple <IQ, Sq.fg, oth> where g is the set of input instances,
Sq is a function such that for each input x € Ig, Sg(x) is a set of
solutions to x, fg is an integer-valued function that evaluates each

14 Energy and Carbon Emissions aware service allocation on Data Centers

par x € Ig and y € Sqg(x), and optg € {max,min} specifies the
problem to be a maximum problem or a minimum problem.

A very famous example of an optimization problem is, for example,
the MINIMUM SPANNING TREE (MSP), where we must find the
cheapest subnetwork in a network that connects all nodes. 1q would
be here the set of all weighted graphs G, thus G € IQ would be a
weighted graph, Sq (G) is the set of all spanning trees of the graph G,
fo (G, T) is the weight of the spanning tree T of G, and the objective
optgq is to minimize.

A special sort of optimization problems are called decision problems.
In this kind of problems each input instance only admits one of the
two possible answers —yes or no. An input taking the ‘yes” answer
will be a yes-instance for the problem and an input taking the 'no” an-
swer will be a no-instance for the problem. The most famous decision
problem is known as SAT (Satisfiability). A formulation is: ‘Given a
boolean formula F in the conjunctive normal form, is there an assign-
ment to the variables in F so that the formula F has value TRUE?".

A decision problem can be formed from an optimization problem
by adding a parameter C. Then the question changes to: ‘Given an
instance x € Iq is there a solution y € Sq(x) such that fg(x,y) — Cis
positive/negative (according to optqg)?’

2.1.1 Algorithms, encoding and asymptotic notation

The big issue with optimization problems and what makes them so
difficult is that the objective is not to solve a given problem, i. e.solve
the problem for a given instance x € Ig, but we want a way of finding
the solution for any x € Ig. We want an algorithm.

An algorithm is a step-by-step specification of a procedure for solv-
ing a given problem. Each step of an algorithm consists of a finite
number of operations. The algorithms in this thesis will be written
in pseudocode with certain flexibilities. We say that an algorithm A
solves the problem Q if, for any x € I the algorithm produces a solu-
tion A(x) =y € Sq such that fgo (x, A(x)) = opto{fo(x,yllz € Sq(x)}
L e., it produces an optimal solution for each input instance.

In a computer, everything is encoded, i.e.given as a sequence of
symbols of a finite alphabet . For example, an input instance of
the problem MSP would be given by the adjacency matrix of the
weighted graph (organized by rows, for example). The alphabet of
a computer is {0, 1} and everything is encoded in a finite sequence
of 0 and 1. Therefore, if the alphabet X has n elements, then each
element can be encoded into a distinct binary sequence of [log(n)]
bits. If a sequence of elements of the alphabet has length m, then
it can be encoded with m[logz(n)]. Usually n is not a big number
and therefore the binary representation is not much larger than the

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 15

original sequence. From now on, the length of an object w is [w| and
it refers to the length of its binary encoding.

To know the complexity of an algorithm A we must study how
many operations does it take for it to solve a problem depending
on the ‘size’ of the problem. In general it is difficult to find this
complexity, but several asymptotic bounds to it can be found more
easily. The notation is as follows, given t(n) : IN — IR:

* We define O(t(n)) such that f € O(t(n)) if, and only if, there
exists a constant c¢ such that Vn > ng c¢f(n) < t(n).

e We define o(t(n)) such that f € o(t(
. f
hmn_mtgrj =0

n)) if, and only if,

e We define Q(t(n)) such that f € Q(t(n)) if, and only if, there
exists a constant c¢ such that Vn > ng c¢f(n) > t(n).

* We define w(t(n)) such that f € w(t(n)) if, and only if,

1 ttn)
1mn_>ooTTl) =
* We define ©(t(n)) such that f € O(t(n)) if, and only if, f €
O(t(n)) NQ(t(n)).

With these notations, we can define the time complexity of an algo-
rithm A. If we define the running time of an algorithm as the number
of basic operations during the execution of the algorithm, then:

Definition 2.1.2. Let A be an algorithm solving an optimization prob-
lem Q and f(n) a function. The time complexity of A is O(f(n)) if
there is a function f’(n) € O(f(n)) such that for every integer n > 0,
the running time of A is bounded by f’(n) for all input instances of
size n.

Definition 2.1.3. An algorithm A is said to be a polynomial time algo-
rithm if there is a fixed constant ¢ > 0 such that the time complexity
of Ais O(n®). An optimization problem can be solved in polynomial
time if it can be solved by a polynomial time algorithm.

Due to the fact that the binary encoding only multiplies by a con-
stant factor, the time complexity of an algorithm does not depend on
how its solutions are encoded.

It is important to remark that this analysis of the time complexity
of an algorithm is always based on a worst-case situation. I.e., the last
part of Def. 2.1.2 indicates that for all input instances of size n, the
running time is bounded by f’(n). Usually in most of the problems
the instances will have a probability distribution and will not reach
the boundary. In this case, average analysis or smoothed analysis of
algorithms arises as the best tool. However it requires knowledge of

the statistics of the problem.
@ »)) ’ telecom
. BCN

16 Energy and Carbon Emissions aware service allocation on Data Centers

2.1.2 NP-completeness

The NP-completeness theory studies decision problems

and their tractability. Although the final objective is to study opti-
mization problems as well, decision problems are easier and there-
fore, if the decision problem version is very hard, it is to be expected
that the optimization problem will be very hard.

An algorithm A is said to accept a decision problem Q if on every
yes-instance x € Ig the algorithm stops at a “yes’ state, while on all
other instances (including those that do not encode a correct input
x € Ig) the algorithm stops at a 'no” state (rejects x).

Definition 2.1.4. A decision problem is said to be in the class P if it
can be accepted by a polynomial time algorithm.

The same definition is correct for optimization problems as well.

It is, in general, "easy’ to see if a problem is in P once an algorithm
has been found. However, not finding a polynomial time algorithm
does not prove that the problem is not in P. It is very difficult to prove
that there is no polynomial time algorithm that accepts a problem. In
fact, a very hard branch of computer science and mathematical logic
is ‘decidability” or ‘computability’, where the question is: 'Is there an
algorithm at all that will accept the problem?’. This subsection will
cover the discussion about seeing if a problem is or not in P.

For some problems it has not been possible to prove that they don’t
belong to P and yet a polynomial time algorithm that accepts them
has not been found. There is a definition for this class of problems
(or at least a part of it).

Definition 2.1.5. A decision problem is said to be in the class NP if
there is a polynomial time algorithm A that accepts it in the following
manner. There is a fixed polynomial p(n) such that

1. If x is a yes-instance for the problem Q, then there is a binary
string y of length bounded by p([x|) such that on input (x,y)
the algorithm A stops at a yes state.

2. If x is a no-instance for the problem Q, then for any binary
string y of length bounded by p(|x|), on input (x,y) the algo-
rithm A stops at a no state.

It is easy to see that if a decision problem is in P, then it is in NP
if we choose p(n) = 0. Two important remarks must be done about
this definition. First, a problem in NP can be easily checked by an
algorithm A. This means that the algorithm A can solve the decision
problem if a hint is given. Proof checking is a suitable analogy for
this: The algorithm accepts a theorem if the ’short” proof given is
valid (the algorithm checks the proof) but it has no way of proving
itself the theorem. This is the reason why this class of problems is

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 17

said to be able to be solved by non-deterministic machines that can
‘guess’ the aforementioned y.

Another important remark is that this algorithm has no way to
determine for sure if the instance is a no-instance, because no matter
how many hints” we give it, we can not say for sure that there is no
hint that would result in a "yes’ instance.

This definition is not as easy to extend to optimization problems as
P.

Definition 2.1.6. An optimization problem Q = (Ig,Sq,fq,0ptq)
is an NP optimization (NPO) problem if there is a polynomial p(n)
such that for any instance x € Ig, there is an optimal solution y € Sg
whose length |y| is bounded by p(|x).

Most optimization problems are in NPO. For example the famous
Travel Salesman Problem (TSP) or the aforementioned MSP are NPO.
It is easy to see that a NPO problem has a decision version which is
in NP (just give as a hint y € Sg and all yes-instances will return yes
and all no-instances will return no).

One more definition is needed to ‘order” problems in terms of dif-
ficulty.

Definition 2.1.7. Let Q1 and Q2 be two decision problems. Problem
Q7 is polynomial time (many-one) reducible to problem Q> (written
as Q1 <h, Q) if there is a function r computable in polynomial time
such that for any x, x is a yes-instance for Q1 if and only if r(x) is a
yes-instance for Q.

Some natural results follow from this definition, for example if a
problem Q; is in class P and there is a problem Q1 such that Q; <},
Q2, then Q; is in P as well (this will not be proved as it is not relevant
to the development of this thesis). This gives us an idea that this
‘order’ is a way of determining which problems are harder. There is
also a theorem whose prove will not be essential to the development
of this thesis but the theorem itself will be essential to understand the
theory of NP-completeness.

Cook’s Theorem. Every decision problem in the class NP is polynomial
time many-one reducible to the SATISFIABILITY problem.

This theorem shows us that no decision problem in class NP is
'harder’ than the SAT problem. It leads us to the following two defi-
nitions about problem complexity.

Definition 2.1.8. A decision problem Q is NP —hard if every problem
in the class NP is polynomial time many-one reducible to Q.

Definition 2.1.9. A decision problem Q is NP —complete if it is NP —

hard and it is in NP.
@ »)) ’ telecom
. BCN

18 Energy and Carbon Emissions aware service allocation on Data Centers

In particular, SAT is NP — complete (it is easy to show that it is in
NP). According to what has been shown, if a NP —hard problem can
be solved in polynomial time, i.e.it is in P, then all problems in NP
are as well in P. However there are very hard problems and during
the last decades many mathematicians and computer scientists have
tried to show that they are in P without any success. This leads to the
generalized opinion that not all problems that are in NP (in particular,
the NP — complete problems) are in P as well.

Two important results for the development of the thesis are needed.

Lemma 2.1.1. Let Qq, Q2 and Q3 be three decision problems. If Q1 <h
Q2 and Q2 <%, Q3 then Q1 <K Q3

Proof. Let t1 be the polynomial-time (O(n9')) computable function
that reduces instances from Q; to instances for Q,. Let v, be the
(O(n92)) function that reduces instances from Q. to instances for
Q3. Let r = 13 ory. It is also polynomial time computable: It needs
O(n9' 4n92) = Q(nmax(d1.42)) operations. It reduces instances from
Q1 to Q3: x is a yes-instance for Q; if and only if x’ = r1(x) is a
yes-instance for Q;, if and only if m2(x’) = r2(r1(x)) = r(x) is a yes-
instance for Q3. This shows that Q1 <h, Q3. O

Corollary. Let Qq and Q; be two decision problems. If Q1 is NP —hard
and Qq < Qy then Q is also NP — hard.

Proof. Let Q be any decision problem in NP. Then by the definition of
NP —hard problems, Q <h Q1. Using this and the previous lemma,
we have that Q <}, Q; and thus Q; is NP — hard. O

This leads to a way of determining the hardness of a problem. If we
suspect that a problem is very difficult, we might want to try to find a
NP —hard problem and see if that problem is polynomial time many-
one reducible to our problem. If it is, then our problem is as well
NP — hard and thus it will be wise to stop looking for polynomial
time algorithms that will solve it. Of course this is all based in the
following conjecture that has already been mentioned previously.

Conjecture. P # NP, i. e.there are problems in NP that are not in P.

So far it has been impossible to prove this, however it is strongly be-
lieved by most of the computer scientists and it has a lot of evidencial
support.

The next step is to extend these definitions and results to optimiza-
tion problems.

Definition 2.1.10. A decision problem D is polynomial time reducible
to an optimization problem Q = (Ig,Sq,fq,0ptq) if there are two
polynomial time computable functions h and g such that:

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 19

1. Given an input instance x for the decision problem D, h(x) is
an input instance for the optimization problem Q.

2. For any solution y € S (h(x)), g(x, h(x),y) = 1 if and only if y
is an optimal solution to h(x) and x is a yes-instance for D.

If a decision problem can be polynomial time reduced to an opti-
mization problem, then the decision problem can not be much harder
than the optimization problem.

Lemma 2.1.2. Suppose that a decision problem D is polynomial time re-
ducible to an optimization problem Q. If Q is solvable in polynomial time,
then so is D.

Proof. Let h and g be two polynomial time computable functions as
seen in def 2.1.10 for the reduction from D to Q. Let A be a poly-
nomial time algorithm that solves the optimization problem Q. Now
a polynomial time algorithm for the decision problem D can be de-
rived as follows: given an instance x for D, we construct h(x) for Q
and apply y = A(h(x)) to find the optimal solution for h(x). x is a yes-
instance for D if and only if g(x, h(x),y) = 1. By definition, all the
calculations are polynomial time computable. Thus, this algorithm
runs in polynomial time and correctly decides if x is a yes-instance
for D. O

Definition 2.1.10 leads to a definition of NP — hardness in terms of
optimization problems.

Definition 2.1.11. An optimization problem Q is NP —hard if there is
an NP — hard decision problem D that is polynomial time reducible

to Q.

If a decision problem derives from an optimization problem and it
is NP — hard, then the optimization problem itself is NP — hard as
well (h only needs to be the identity except the parameter, and g a
simple comparison between the optimal solution and the parameter).
An example of an NP —hard optimization problem is Integer Linear
Programming (Integer LP). A similar definition to being polynomial
time many-one reducible can be made for optimization problems as
well.

Definition 2.1.12. An optimization problem Q; is polynomial time
reducible (or p-reducible) to an optimization problem Q if there are
two polynomial time computable functions x and 1 such that:

1. For any instance x € Ig,, X(x) € Ig,.

2. For any solution y; to the instance x(x1), P(x1,x(x1),y) is a
solution to x7 such that y; is an optimal solution to x(x1) if and
only if P(x1,%x(x1),y) is an optimal solution to x;.

@ elogen

20 Energy and Carbon Emissions aware service allocation on Data Centers

From this definition two lemmas come naturally. The proof is very
similar to the proofs already written and will therefore be included
only in the appendix.

Lemma 2.1.3. Suppose that an optimization problem Qq is p-reducible to
an optimization problem Q3. If Q3 is solvable in polynomial time then so is

Q1

Lemma 2.1.4. Suppose that an optimization problem Qq is p-reducible to
an optimization problem Q. If Q1 is NP —hard, then so is Q5.

Some optimization problems have subproblems that are easier to
identify than by p-reducibility. This is what the next definition states.

Definition 2.1.13. Let Q = (Ig,Sq,fq,0ptq) be an optimization
problem. An optimization problem Q’ is a subproblem of Q if Q' =

<I/Q,SQ,fQ,O‘p‘tQ> where I,Q C IQ.

Note that in a subproblem every input instance is also an input
instance of the problem, and every input instance in the subproblem
has the same set Sg(x). We could say that the only difference be-
tween a problem and its subproblem is the number of instances that
we allow to be settled as input (for example, forbidding the more
pathological input instances). The next theorem arises naturally from
the definition.

Theorem 2.1.5. Let Q be an optimization problem and Q' be a subproblem
of Q. If the subproblem Q' is NP —hard, then Q is NP — hard.

2.1.3 Tractability Theory: Polynomial time approximation, asymptotic ap-
proximation

Once we have convinced ourselves that some problems are probably
too hard to find the optimal solution in a fast and efficient way, the
next natural step is to try to relax the requirement that we always find
the optimal solution, and find an "almost optimal” solution instead.
Sometimes we even would have enough finding a solution for the
problem.

Definition 2.1.14. An algorithm A is an approximation algorithm for
a problem Q = <IQ,SQ,fQ,oth> if on any input x € I, the algo-
rithm produces an output A(x) € Sg(x).

This is of course a very lax definition and it does not help us to
know how good is this algorithm, for that we will use the approxima-
tion ratio of the algorithm.

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 21

Definition 2.1.15. An approximation algorithm A for an optimization
problem Q = <IQ,SQ,fQ, oth> has an approximation ratio r(n) if
on any input instance x € I, the solution A(x) satisfies

Opt(x) ‘)
'fQ(X,A(X))‘ < v(Ix]) if optg = max
’W < r(]x]) if optg = min

Where Opt(x) is defined to be max{f(x,y)ly € Sq(x)} if optg = max
and to be min{f(x,y)ly € Sq(x)} if optg = min.

It is important to not confuse this definition with the competitive
ratio definition that will be explained in detail later. Note that r(n) is
always at least as large as 1 (being 1 if A solves the problem Q).

Definition 2.1.16. An optimization problem Q can be polynomial
time approximated to a ratio r(n) if it has a polynomial time approx-
imation algorithm whose approximation ratio is r(n).

There is a class of NP —hard optimization problems, most of them
coming from scheduling problems, can be polynomial time approxi-
mated to a ratio 1+ ¢, for any e. The running time of the algorithms
that approximate these problems grow with %, but in a polynomial
way, i.e.O(;—n). These families of algorithms are called fully poly-
nomial time approximation schemes for the NP — hard optimization
problems. The first step is to study the pseudopolynomial running
time algorithms and for this it is necessary to take into account not
only the length of the input but also the maximum value of it.

Definition 2.1.17. Suppose Q = (Ig, Sq, fo, 0ptg) is an optimization
problem. For each input instance x € I we define:

¢ length(x) = the length of a binary encoding of x.

* max(x) = the largest number that appears in the input x. If no
numbers appear in the input, then max(x) = 1.

Definition 2.1.18. Let Q be an optimization problem. An algorithm
A solving Q runs in pseudopolynomial time if there is a two-variable
polynomial p such that on any input instance x of Q, the running
time of the algorithm A is bounded by p(length(x), max(x)). In this
case, we also say that the problem Q is solvable in pseudopolynomial
time.

The positive aspect of depending on max(x) is that sometimes
it makes sense and it is possible to rescale the problem to reduce
max(x) convert a problem to a problem solvable in pseudopolyno-
mial time. For example, if max(x) can be scaled to be bounded by a
polynomial of length(x) then the problem can be solved in polyno-

mial time.
@ . ﬂtelecom
BCN

22 Energy and Carbon Emissions aware service allocation on Data Centers

Definition 2.1.19. An optimization problem Q has a fully polynomial
time approximation scheme (FPTAS) if it has an approximation algo-
rithm A such that given (x,e) where x € Ig and € > 0, A finds a
solution for x with approximation ratio bounded by 1+ € in time
polynomial in both n and <.

There is an important theorem that shows that having a
pseudopolynomial time algorithm for a problem is usually a neces-
sary condition for the existence of a FPTAS.

Theorem 2.1.6. Let Q = (I1g,Sq, fq,0ptq) be an optimization problem
such that for any x € Ig we have Opt(x) < p(length(x), max(x)) for a
given polynomial p. If Q has a FPTAS, then Q can be solved in pseudopoly-
nomial time.

There are ways to improve the time complexity of the algorithms
that solve problems. Apart from the aforementioned rescaling of the
problem, we can reduce the number of parameters, for example stor-
ing values that are to be reused. Or we can reduce the search space
by running first a worse but faster algorithm that will give rough
boundaries to the solution (a similar method called cutting planes is
used in Mixed Integer Programming). Another popular technique is
to separate items by size, establishing a threshold and dividing the
items in two groups (the big and the small elements).

Unfortunately, there are problems that have no FPTAS, and alas
the problem that will be the cornerstone of this thesis is one of those.
There is a result that allows us to easily determine so and we need a
few more definitions to that end.

Definition 2.1.20. Let Q = (Ig,Sqg,fg,0ptq) be an optimization
problem. For each input instance x € I define

Optq(x) = optalfo(x Yy € Sq(x)}

The following theorem will erase all hope for our problem to have
a FPTAS.

Theorem 2.1.7. Let Q = (I, Sq, fo,0ptq) be an optimization problem.
If there is a fixed polynomial p such that for all x € 1, Optqg(x) is bounded
by p(Ix]), then Q does not have a FPTAS unless Q is in P.

Theorem 2.1.7 shows that it will be common that a problem does
not have a FPTAS. Some problems don’t even have a polynomial time
approximation algorithm for any € < ¢ for some given c. However,
some problems can have an approximation ratio as close to 1 as we
want when the solution is large enough, i. e.asymptotically. The next
definitions and theorems will lead us to the asymptotic approxima-
tion schemes and algorithms. These will be based on minimization
problems although it is easy to extend them to maximization prob-
lems as well.

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 23

Definition 2.1.21. Let Q = <IQ, Sq.,fqg, oth> be a minimization

problem and let A be an approximation algorithm for Q. The asymp-
totic approximation ratio of A is bounded by 1¢ if for any r > 19
there is an integer N such that for any input instance x € Ig with

Opt(x) < N, the algorithm A constructs a solution to x satisfying
A(x)
Opt(x)

<.

Definition 2.1.22. An optimization problem Q has an asymptotic
fully polynomial time approximation scheme (AFPTAS) if it has a
family of approximation algorithms {Acle > 0} such that for any
e > 0, A¢ is an approximation algorithm for Q of asymptotic ap-
proximation ratio bounded by 1+ € and of running time bounded by
a polynomial of the input length and %

Finally, two more simple definitions that will appear later in the
thesis are presented.

Definition 2.1.23. An optimization problem Q admits a polynomial
time approximation scheme (PTAS), if for every € > 0, there is an
algorithm A of running time bounded by a polynomial of the input
lengthe such that the approximation ratio for Ais 1+ €.

Note that this definition does not mention €, so usual running times
of such algorithms could be, for example, O(n(17eh),

Definition 2.1.24. An optimization problem Q is in APX if it allows
polynomial time approximation algorithms with approximation ratio
bounded by a constant o.

2.2 ONLINE DECISION PROBLEMS

This section is mostly based on [5], where more thorough definitions
can be found. An online decision problem is a decision problem in
which we do not know the whole I but it is updated in real time.

Definition 2.2.1. In an online decision/optimization problem, the in-
put data that arrives between t and t + At for a given At is x(t, At).
The possible input instances that will have arrived until the instant t’
knowing that in instant t < t’ the data received is x(t) is Iq(¢)x(t)
and all its elements are of the form x(t,t" —t) € I (¢/)x(1)-

Remark. An online optimization problem
Qt) = <IQ(t),SQ(t),fQ(t), oth(t)> is an optimization problem with
the following restrictions:

1. For all t,t" with t < t/, every element x(t') € Ig(y, is of
the form x(t)[[x(t,t" —t) for some x(t) € Iq(), x(t,t' —1t) €
Io(¢/)x(t) Where || is the concatenation of symbols of the alpha-
bet. This means that we are allowed to store information of all
events in the past (it can be modified if we don’t want to store
all events in the past).

24 Energy and Carbon Emissions aware service allocation on Data Centers

2. If x(t) = x(t) for t # t’ then Sq (1) (x(t)) = Sq () (x(t)), i. e.the
solutions don’t change if the input instance doesn’t change, in-
dependently of the moment. One could argue that the solution
in a future is depending on the solution in the past but that is
not always like that. However the solution in t usually imposes
restrictions on the solution in t’.

3. The same can be said for fq (), we only can assure that if the
pair ‘input, solution’ is the same, fo(y will be the same no
matter t.

4. optq(y) is constant.

An algorithm that solves an online decision problem must make a
decision, i.e.find a
solution y € Sqy)(x)If x € Ig,x = {constraints, data}, we could
say that in the online version of the problem the constraints change
in time and data is added and removed systematically. Therefore, an
algorithm that solves the online version of a problem will make the
decision based only in the data received until that moment and the
current constraints. There is a very important concept related to on-
line decision problems: The competitive ratio. For x € Ig let OPT(x)
be the offline optimal solution of a problem, that is if all the data was
known at the beginning. Let A(x) be the output of the algorithm that
tries to solve the online problem for that data. Then (Eq. 1), the com-
petitive ratio is the worst-case relation between the offline optimal
solution and the solution given by the online algorithm.

Definition 2.2.2. Let Q(t) be an online decision problem and A an
approximation algorithm for the online decision problem. Then the
competitive ratio c(A) is:

A(x)

c(A) = SUPxelqg W(X) (1)
Note that x € Ig represents all the data received in a ’significant in-
terval” of time. For example in the paging problem it would represent
all the data until the cache memory is restarted.

Here, worst-case is the keyword. There is another way of analyzing
the outcome of the algorithms (offline or online) in an average situa-
tion [6], but it requires further probabilistic and statistic study (com-
pared to the combinatoric approach of a worst-case study). However,
some problems that appear to be very hard and have very bad bound-
aries on the worst-case scenario, might admit a polynomial time algo-
rithm that will give the optimal solution in an average scenario.

Energy and Carbon Emissions aware service allocation on Data Centers 25

2.3 BIN PACKING PROBLEM AND VARIATIONS

A very famous NP-hard [4, p. 210] problem is the so-called Bin Pack-
ing Problem (BPP). Using the formal definition, the problem is for-
mulated as:

e Ig: the set of tuples & =< s1,...,8n; T >€ I, with s; < TVi,
si € Zand T € Z. Sometimes it can be seen as s; € (0,1] and
T=1.

* Sg(a): the set of partitions (“packings”) Y = (By,...,By) of
{s1,...,sn} such that Zsiij si < T forallj

¢ fo(e, Y): the number of subsets (“packs”) in the partition Y of
o

* optg = min

The items s; are the items that we pack in bins of size B. Our objective
is to minimize the number of bins used (or the total waste in the
used bins). This problem has been used for stock cutting (using the
least possible bars of longitude 1 and cut them into different sizes),
transport scheduling (packing trucks with boxes), and job scheduling,
which will be the main intention in this thesis.
The decision version problem of BPP is
NP — complete, more specifically:

Theorem 2.3.1. It is NP —complete to decide if an instance of BPP admits
a solution with two bins.

BPP is also a NPO problem.
Lemma 2.3.2. BPP is NPO, furthermore BPP does not have a FPTAS.

Proof. 1If « consists in n elements, then the optimal solution will have
at most n subsets. This is a polynomial that bounds Opt(«) < |af. [

In fact, there is no approximation algorithm for the BPP that has a
better approximation ratio than 1.5.

Theorem 2.3.3. BPP is in APX, being 1.5 the boundary for its approxima-
tion ratio, unless P = NP.

There are many algorithms that approach the BPP and we will not
attempt to give them all, only a short description and their approxi-
mation ratios. More information about them can be found in [7]. For
commodity we will use the following notation:

Definition 2.3.1. We will write the approximation ratio, and asymp-
totic approximation ratio of the BPP for a given algorithm A as Ra
and RY. If the size of the elements in the problem is bounded by
o, then we will write Ra () and RY («) the approximation ratio and
asymptotic approximation ratio, respectively, of the algorithm work-

ing on lists with size bounded by «.
@ »)) ’ telecom
. BCN

26 Energy and Carbon Emissions aware service allocation on Data Centers

2.3.0.1 Online algorithms

The first algorithm that comes to mind is Next-Fit. It always has only
one bin open, (this is called bounded space algorithm), and it works
as can be seen in Listing 1

Listing 1: Next Fit Algorithm

Input: o:(S1,...,sn;T)
Output: A packing of the items si,...,sn into bins of size T

0. Suppose that all bins By,B,,... are empty, start by B,
1. for 1 =1 to n do

2 if Bj free space is greater than s;

3. put the item s; in B;

4 else open Bj,q, put the item s; in Bj,;, close B;
5. end for

This algorithm runs in O(n) (linear time), it is online (we don’t need
to know the future comings) it has an approximation ratio Rng = 2
which is a tight bound because the list L = (3, ﬁ, S ﬁ> with
this algorithm is put in NF(L) = 2 OPT(L) — 1. Therefore R} = 2.
Further results shown in [7] prove that Ry («) = 2 for all o« > % and
for alpha 0 < o < T/2 RYp(ax) = ﬁ

The second algorithm that tried to solve the problem is called First-
Fit: for each s; from i = 1 to n, put the item s; in the first bin it
fits.

Listing 2: First Fit Algorithm

Input: o:(s1,...,sn;T)
Output: A packing of the items si,...,sn into bins of size T

0. Suppose that all bins Bq,B,,... are empty, start by B;
1. for i =1 to n do

2 j=1

3. while Bj free space is lesser than s;i, increase j

4 Put the item s; in the first B; it fits.

5. end for

This algorithm is also online, it runs in 0O(n?) (O(nlogn) if a proper
data structure is used), and it has an approximation ratio Rng = 1.7.
In fact FF(L) < [1.7OPT(L)]. Furthermore, it can be shown that:

Theorem 2.3.4 ([7]). Let m € Z such that %ﬂ <a< %

1. Form =1, R} () = }—

2. Form > 1, R (x) =1 +]H'

There are many algorithms that work similarly and it can be proven
that they behave similarly to NF and FF. We will call Any Fit (AF)
those algorithms that will not pack an item in a new bin unless all
the partially filled bins do not have enough space for the item to fit,

Energy and Carbon Emissions aware service allocation on Data Centers 27

and Almost Any Fit (AAF) those algorithms that will not pack an
item into a partially filled bin with the lowest level (meaning: being
the least filled) unless there is more than such bin — or that bin is the
only one to have enough room. Then we have the following result:

Theorem 2.3.5. Forall x € (0,1]
1. If A is an AF algorithm, then R¥: () < RY () < RYp(x).
2. If Ais an AAF algorithm, then RY () = RP}:(x).

There are another type of algorithms (also on-line) called Harmonic
algorithms Hy, where the interval of possible data is divided into k
subintervals and each item is classified. These algorithms can break
the 1.7 barrier when k > 6,7 (depending on which version is used),
but they can not go further than 1.69103..., and they add complexity
to the calculations. Furthermore, no algorithm that has a bounded-
space restriction, i.e.having at most N open bins each time, can do
better than 1.69103.... However there is an algorithm (and a sub-
sequent chain of slight improvements) that is online and breaks the
1.7 barrier. It is called Refined First Fit (RFF) and it also divides the
items’ sizes into various possibilities, and then packs them according
to a special strategy. It has a ratio of Ry = 1.6666. ... Currently the
best known online algorithm for the BPP has a ratio Ry = 1.588 and it
has been proved that no online algorithm can have a ratio Ry = 1.540.
Even in randomized online algorithms it has been proved that there
are lists that yield ratios of E(A(L))/OPT(L) approaching 1.536....

One particular interesting variation of the online BPP is the so-
called Dynamic Bin Packing Problem (DBPP), where the items depart
at some time (leaving empty space) and the algorithm is not allowed
to repack items. In [8] a lower bound for this kind of online algo-
rithms is found at 2.5, although if the input data is simple enough
(can be written as fractions of the form 1) then there is an algorithm
that solves it in 2.4985.

2.3.0.2 Semi-online algorithms

Semi-online algorithms for the BPP are those that admit repacking
of the items when a new item arrives. Usually they put a limit on
the repacking (otherwise it would simply be offline), for example, a
linear delay. They admit several algorithms, but it is more interest-
ing to focus on the variation Fully Dynamic Bin Packing Problem
(FDBPP) where items also depart and they can be repacked every
time an item arrives or departs. [9] shows an algorithm that runs in
O(logn) for each item arrival and has an asymptotic competitive ratio
of 2 (asymptotic in the usual sense, i. e.it tends to this ratio when the
optimal solution is large enough).

@ elogen

28 Energy and Carbon Emissions aware service allocation on Data Centers

2.3.0.3 Offline algorithms

Offline algorithms can also be applied to Online situations when a
full repacking of the items can be applied each time there is a new
item arrival/departure. The most famous and simple one is the First
Fit Decreasing algorithm. The First-Fit-Decreasing (FFD) algorithm is
the same as the First Fit (FF) algorithm but it sorts the items first from
biggest to smallest has a worst-case performance of 1.22- OPT 44 and
runs in O(nlog(n)) (if a proper data structure is used). Its approxi-
mation (not asymptotic) ratio is 1.5, so it is the best approximation
algorithm possible for the BPP. However it is not the best asymptoti-
cally approximation algorithm possible for the BPP. Indeed, the BPP
admits an AFPTAS [4]. Moreover, if we restrict the BPP to having
at most 7t different sizes (bounded by 6) then there is a polynomial
algorithm that solves the problem and finds the optimal solution. It
consists in finding all the possible combinations of elements that fit
into a single bin, and then find the best combination of such bins.
Given 7 and 6, the number of combinations is a polynomial in n.
However both the AFPTAS and this exact algorithm are not practical
due to the degree of the polynomial.

Fortunately, an average-case analysis of the FFD algorithm shows
that it behaves in average as well as an optimal algorithm [10]. In fact,
when comparing the results of the FFD with a metaheuristic, it is true
that in 66% of the cases, they give the same result, and the other 34%
situations only differ by 1 bin. Of course this does not prove anything,
but it is a way to show and give confidence in the FFD algorithm.

2.4 METAHEURISTICS: GENETIC ALGORITHMS

A metaheuristic is [11] a solution method that orchestrate an interac-
tion between local improvement procedures and higher level strate-
gies to create a process capable of escaping from local optima and
performing a robust search of a solution space.

In this thesis we will focus on Genetic Algorithms (GA) and will
follow the work in [12]. Genetic algorithms try to work as natural
selection and genetics. It is one of the most robust metaheuristics,
being its only handicap that a proof for its convergence to an optimal
solution has not been made until now, which puts it under the Sim-
ulated Annealing metaheuristic in a comparison. However, GA are
very robust and tend to find a good, if not the best, solution for a
problem without as many tuning needed as in Simulated Annealing.
Genetic Algorithms try to find the best solution in Sq(x) by trying
many different solutions and choosing in a smart way between them.
A thorough explanation can be found in [12], but we will give here a
summary and an example for the BPP.

In order for a Genetic Algorithm to work, we first must find a good
way of encoding the parameters. Based upon that, we create a number

Energy and Carbon Emissions aware service allocation on Data Centers 29

of different guesses (possible/feasible solutions). These guesses are
random and from them we start creating more solutions. In each step
we first do a crossover between the solutions from the last step. This
crossover operator must be chosen accordingly to the encoding and
will create new solutions. After this crossover we perform a mutation
to the solutions created by the crossover. This mutation is thought to
be necessary to guarantee that the GA will find an optimal solution,
because it 'scrambles’ the solutions and allows them to flee from a
local optimum. When we have crossed and mutated the solutions,
we study the fitness function (i.e.fg). and apply a selection operator
that will select some of the solutions. From these solutions we cre-
ate new ones by crossing, mutating and selecting again. We repeat
this process until a number of iterations has been performed or un-
til the fitness function does not improve during a certain number of
iterations.

The problem with a Genetic Algorithm is that sometimes the cross-
ing or mutation of a solution could give as a result a non-feasible
solution. This could be solved with a good notation (not likely) or
making the fitness function oo if a restriction is broken. Fortunately,
for the BPP a smart way of avoiding unfeasible solutions has been
found in this thesis, using a similar strategy to that of the Travelling
Salesman Problem explained in [12, p.63].

Next, we present a Genetic Algorithm for solving the BPP in List-
ings 3, the G-First Fit.

Listing 3: Genetic First Fit

Input: o:(s1,...,sn;T)

Notation: s =(sy,...,Sn)

Output: A packing of the items si,...,sn into bins of size T
0.1. Encode the solution by giving a permutation of n elements

o€Sy.

0.2. Create 2K possible random permutations.

1. Do

2. Select the 2K~ best solutions from applying FF to oi(s).

3. Apply the crossing operator to 2k—2 pairs of solutions to
generate 22 pairs more.

4. Mutate them.

5. N times

Listing 4: Crossing Operator

Input: Two permutation vectors 07,02 € Sn

Output: Two permutation vectors 03,04 € Sn

0. Inicialize o3 =07, 04 =07

1. Select two random numbers i< j

2. for 1 from i to j do

3. 03(l) = 02(1), o4(l) = 0o1(1)

4. end for

5. Exchange elements that appear twice in o3, 04.

30 Energy and Carbon Emissions aware service allocation on Data Centers

Listing 5: Mutation Operator

Input: A permutation vector o
Output: A permutation vector o
1. Swap two random elements of o

The crossing operator seems a bit strange, but it is the same as the
one used in [12, p.63]. Let us see an example of how it works. Note
that 0 = (1432) means that o(1) =1, 0(4) =2, ¢(2) =4 and ¢(3) = 3:

Listing 6: Example of the crossing operator

01 =(231465) =03
0, =(354621) =04
i=3,j=4

03 =(234665)

o4 = (351421)

These are not valid permutations!

6 is repeated in o3, 1 is repeated in o4, we exchange them
03 =(2341625)

o4 =(356421)

It is easy to see that with this method we will always end up having
two correct permutations.

Theorem 2.4.1. The crossing operator always returns two correct permuta-
tions.

Proof. Let
w=(o1(1),...,01(i=1),020),...,02(), 01G+1),..., 01(n))
and
v={(02(1),...,020—1),01(),...,01(), 02+ 1),..., 02(n))

If there is any pair 1 € Ij; = {{,i+1,...,j}, v € {1,...,n} =L
such that u, = uy then there is no number m € {1,...,n} such that
Vm = U, (because that number appeared once in o7 and once in o3).
But having v n elements between 1 and n, this means that v has at
least a pair of elements repeated (by the pigeonhole principle). One
of the elements of the pair must be in I;; (because o, was a correct
permutation), and again this element does not appear in u. Therefore
there as many pairs of repetitions in u as in v, and if we exchange
them we do not incur in a new repetition. O

Once we have proven that the method is correct, we must prove
that it can lead to an optimal solution.

Energy and Carbon Emissions aware service allocation on Data Centers 31

Theorem 2.4.2. Let (s1,...,sn; T) be an input instance of the BPP. Then,
there is a permutation o of the elements (sy,...,sn) such that the FF algo-
rithm applied to the instance (Sq(1),Sx(2),---+So(n)) gives an output that
uses a minimum number of bins.

Proof. The BPP has an optimal solution, i.e.it attains its minimum
because there is a finite number of possible solutions given an input
instance. Let By,..., By be such an optimal solution, with the items
divided in the following way:

{ain ...ahm} € B,

{Clim] e aimnm} € Bm

Clearly n; > 0 and ZJ"; n; = n for all j. We create now a permuta-
tion o in the following way:

o(1) =in

O—(n1) —11n1

oni+1) =17

o(ny +nz) =1ion,
m—1

G(n) = i-Tnnm

We will now prove that, using the FF algorithm, for every |l €
{1---n}, ag() fits in the same bin as in the optimal solution. ILe.,

ifl e (Z}‘:] nj,z;(:ﬂ] n;] then ay(y fits in the bin k + 1. We will
prove it by strong induction.

First, it is clear that ay(7) fits in the bin By: That bin is empty
because a4 (1) is the first item to place. It is also clear that as(y) fit in
the bin B; for all | < ny: The optimal solution from where we come
has the items as(1),...,ag(n,) in the bin By.

Let us assume that for every item lesser than r = Z}‘:1 n; + 1, that
item was able to be placed in its ‘corresponding’ bin, can the item
Qg(r) = Qn,,,1 be placed in the bin By, 1? The answer is clearly yes,
because all the previous items fitted in their bins (which were before
than By 1) and the FF algorithm will have placed them in the first

32 Energy and Carbon Emissions aware service allocation on Data Centers

bin they fitted. Therefore when the algorithm FF tries to place aq(y)
it is clear that By 1 is empty at that moment.

Let us assume now that for every item lesser than r = Z}‘:] n; +1,
1 < 1 < ng4 its corresponding bin had enough space to hold it.
Because of the FF algorithm, this means that those items could not
have been put in a bin posterior to that that corresponded to them in
the optimal assignment. But this means that only the | — 1 previous
items admit the possibility to have been put into the bin By 1. Those
items are a(x41)1,--.,a(k+1)1—1) and the optimal solution had those
items plus a1y, (plus more), so there is at least enough space to
put a1y in bin By with the FF algorithm (it could be placed in a
bin j < 1 of course).

This means that every item will be placed at most in its correspond-
ing bin, and therefore no item will be placed in any bin B,,, with
m’ > m. O

Therefore the GFF can achieve the optimal solution for the BPP if it
"hits” one of the correct permutations. Note that this does not alter the
complexity of the problem, notwhitstanding that we cannot be sure
that we have found the optimal solution unless we try them all. There
are n! possible permutations (which is less than the original O(Z“Z)
feasible solutions), and for each solution such as the one used in the
proof of Theorem 2.4.2, there are m!nq!...ny,! possible permutations
that give an optimal solution. It seems reasonable that the larger the
elements are, the more bins an optimal solution will use and there-
fore the more probable will be to find an optimal permutation of the
elements, but then again the smaller they are, the more elements will
fit each bin and each n; will be bigger, thus increasing the probability
(furthermore it will be more likely than some items could be moved
from bin to bin therefore adding new optimal solutions). A possible
way to see if the algorithm GFF has found an optimal solution is to
compare its outcome with that of a regular FF or a FFD algorithm.
However, the ‘optimal” average performance of the FFD makes it un-
realistic to follow this guideline. Finally, it is important to note that
the GFF algorithm is an offline algorithm.

With the proof of this theorem we conclude this chapter. We have
presented a means to analyse the different decision and optimization
problems and a very special problem called the Bin Packing Prob-
lem. We have presented many approximation algorithms for it and
a whole family of algorithms called metaheuristics, from which we
have centered in the Genetic Algorithms and provided a Genetic Al-
gorithm for solving the offline BPP. The next chapter will relate the
real world problem with the BPP with a mathematical model.

Part II

PRACTICAL WORK

The second part of the project consists in the practical
work done in order to give advice on the development of
strategies for the assignation problem with delaying. First
a mathematical model will be procured and afterwards
two heuristics and some improvements will be proposed
and thoroughly studied. Finally, some guidelines and rec-
ommendations for future use will be posed as well.

35

MODELLING A DATA CENTER

INTRODUCTION

Giving a whole mathematical model of a DC and the processes that
take place in it is an enormous task and it can mislead to unprofitable
results. Therefore, some hypothesis must be made when modelling
the DC in order to simplify the problem, while not losing information
about itself.

The EP has a contract with the DC called Green Supply Demand
Agreement or GreenSDA. In this contract there are “green clauses”
such as:

¢ Maximum amount of power consumption reduction per request
Bmax < 1,e.8. PBmax = 0.1 implies that the EP can ask a reduc-
tion in the power consumed of maximum 10% (it must be spec-
ified if it is with respect to the hired power or to the previously
used power).

¢ Maximum number of energy consumption reduction requests
per month.

* Rate of CO; emissions prediction.
Plus the “regular clauses”, e.g.:
¢ Maximum power hired P,.

These are the clauses important to this paper. For example, the DC
will always have a prediction in the CO, emission factor for the next
hour given by the EP, namely CEF(t) (Carbon Emissions Factor as a
function for the next hour). The EP will also provide (3(t), i.e. the
reduction in power consumption requested for the next hour.

The DC network forms a graph V, each of its elements being a
server. The set of all the users is U and the set of all possible services
is 8. The set of all possible pairs user-service (allowed by each user’s
contract)is D C U x 8.

At the same time, the ITC has a contract with the DC called Green
Service Level Agreement, or GreenSLA. In this contract there are reg-
ular clauses (QoS, price per service, etc.) as in a regular SLA and
“green clauses”:

* Agreeded possible reduction in the QoS time-depending (for
example, reducing the availability of a web server in weekends)
and reward.

36 Energy and Carbon Emissions aware service allocation on Data Centers

* Agreeded possible reduction in the QoS state-depending (for
example, reducing the availability of a web server if the DC is
in “Energy Saving State”) and reward.

¢ Agreeded possible reduction in the QoS after negotiations,
meaning that the DC can negotiate with the ITC for a reduction
in some special moments (for example, if the EP has asked a
reduction in the energy consumption) and reward/penalty.

¢ Agreeded maximum amount of times per month a DC can ne-
gotiate with an ITC for a reduction in the QoS.

* Agreeded maximum amount of times per month a DC can de-
lay or pause the execution of a service or VM for an ITC wu:
dmax (u)‘

¢ Agreeded maximum amount of delays a user can suffer given a
particular state of the DC or moment, according to the
GreenSLA, e.g. “Every weekend or when the DC is in Energy
Saving State the user can see at most two of his services” execu-
tions delayed”: dmax(u,t)

Each service in D will consume an instantaneous amount of CPU
workload, memory usage and hard drive space. However, it will be
summarized as a percentage of “computer usage”: 0 < a(y5)(t) <1
is this average of the relative workload (relative to using 100% of a
server) in the instant t. Each service will also have assigned a dura-
tion Ty, s). This duration will be also known in the offline version of
the problem. W(t) € D is the set of services that could be running in
the instant t, i. e.it includes the services that are delayed.

A server that is online but idle will consume power, namely Pigie,
and a server at maximum utilization will consume Py a x. Moreover,
the air conditioning (AC) consumes Pac(t). A service consuming
Q(y,s) “workload” will give a power consumption given by Eq. 2.

Pservice(w,s)(t) = (Pmax _Pidle)a(u,s)(t) (2)
The DC can choose between two actions regarding the execution of a

service:

¢ Run the service instantaneously.

¢ Pause or delay the execution of the service.

The objective is to choose the one that will result in less energy con-
sumed and CO; emitted overall, i.e. at the end of the month/year.
A few more assumptions must be made from services:

¢ A service will always use less or equal than a server (no re-
dundancy or services that require more than one server to be
run). Otherwise, the heuristics proposed would not change sig-
nificantly but the analysis of the algorithm would increase in
complexity.

Energy and Carbon Emissions aware service allocation on Data Centers 37

Table 2: Parameters involved in the All4Green System

Parameter Defined by Constraints
Pidle Hardware
PMAX Hardware
At Design
Pac Variable T(1) limit and Pyyax
G Geometry
CEF({) GreenSDA / EP
Ph GreenSDA
Bmax GreenSDA
B (1) EP
dimax(u) GreenSLA GreenSLA
dmax(u,1) GreenSLA / DC state
Q(w,s) Hardware / Design <1
Tmin/Tmax Hardware
ATmax Hardware

e Even in the online version, it will be known (or at least esti-
mated) whether the service execution will end in the near time
or not.

Finally, it is assumed that the consolidation of the services does not
consume any extra energy, and a simplified equation for calculating
the Temperature in the room in the slot i can be seen in Eq. 3

T(t) = GJ T(T)dT+C1 (Pservers(t)) _CZPAC(t) (3)

The terms in Eq. 3 are defined as follows.

T(t) is the average temperature of the room in the instant t. The
integral goes from t — A(t) to t (it resembles an average). Pservers(t)
is the power consumption of the servers in the instant t, PA ¢ (t) is the
power consumption of the AC in the instant t. cj,c, are constants
related to the temperature in the past. G is a geometrical constant
depending on the structure of the room. There are intrinsecal bound-
aries to T’(t) and P/, (t) but we will not go deeper into them because
the final model will be discrete.

The model of the temperature might as well be changed, this is only
a simple version for academic purpose only. The restriction imposed
by the DC structure is that Tinin < T(t) < Timax at all times.

A summary of the parameters involved in this chapter can be seen
in Table 2.

38 Energy and Carbon Emissions aware service allocation on Data Centers

About the temperature

The temperature model is a very simple and generalized model. It is
clear that the temperature at each moment will depend on the servers
open, the power given to the AC and the geometry of the room, and
that it is a smooth function.

3.1 MATHEMATICAL MODEL OF THE PROBLEM

The objective is to minimize the total energy consumption and CO;
emissions in a period of time. It can be a day or a month, let it be
called T. We will have a weighting factor CEF(t) > 0 according to
the carbon emission produced by a kWh consumed in t. Let 5% (1)
be a binary variable that indicates whether the service (u,s) € D is
running in the server v € V in the instant t. Let O, (t) be a binary
variable that indicates whether the server v € V is open or not in the
instant t. The formula for calculating the power consumption of the
server v in the instant t is the one seen in Equation 4. The function fy
that we try to minimize is shown in Equation 5.

Py(t) = Pia1eOv(t) + (Pmax — Piate) Z 5\(»u's)(t)a(u,s)(t) (4)
(u,s)eD

L (3 Py(t) + Pac(t))CEF(t)dr 5)

0 yev

Before going deeper into this equation, we should realize that it
is very difficult and more when we do not know which will be the
function CEF(t), or which and how many services will be requested
(Py(t) is a steplike function). It is unpractical, and some simplifica-
tions must be made.

3.1.1 Static Model

First we will assume that a,,) is a fixed value for each pair (u,s) €
D. Furthermore, all the services will arrive in the beginning and will
never depart. We will not be able to delay any of them. Therefore in
the instant ty we will receive n services that will use at most a server
(a(y,s)) and have to be placed into servers, altogether with deciding
the Pac(t) function. Now it is obvious that, Vt,

YooY a™Waps = Y aug

veV (u,s)eD (u,s)€D

Energy and Carbon Emissions aware service allocation on Data Centers 39

This means that there is a constant factor in fy that can not be mini-
mized. Equation 6 shows the function to minimize now:

J CEF(1)()_ Oy(1) +Pac(T))dr (6)
vev

Note that the factor } |y O, (t) will also not change in time in
an optimal solution: If it changed it would be to add 1 or to sub-
stract 1 (or more) for some time T. The first case would contribute
in ft”LT CEF(t)dt which would result in a non-optimal situation,
and the second one would imply that this substraction could have
been done earlier thus resulting in a smaller solution (remember
CEF(t) > 0). This means that at the beginning the number of open
servers would be fixed, and therefore the way to minimize Pac(t)
will be to keep T(t) = Tmax during the whole time, leaving Pac =
Tm“X(GAFC]zHC‘ Pservers (of course, c1, c2, G must be consistent in a way
that Pac must only depend on Ty qx and Pgervers). This leaves us
with only having to minimize ([,E; CEF(T)dT is a constant) what can

be seen in Equation 7.

3 0(to) ?)

vev

The restrictions are that each service must be in one and only one
server and that no server can hold services that sum up to more than
a 100% of the server capacity. This is clearly the Bin Packing Problem
explained in the previous chapter. We will not go into further detail,
as any offline algorithm that solves the BPP will solve this one as well.
This model is, however, very simplified and therefore not realistic at
all. We need to add the time factor.

3.1.2 Discrete Dynamic Model

We will try to simplify the first model seen in Equation 5 by giving a
discretization of the time. We will divide the time in slots of duration
At (the same that we use for calculating the temperature). We will
name slot i = tg + iAt. Therefore O, (tg + 1At + t) will be a constant
for all t € (0, At) and we will write O,,(1). The same with 6&“’5)&),
Pac(i), CEF(i) and W(i). We will still assume that a,, s) is a constant.
Therefore, the model would try to minimize Equation 8

AtZ > Py(i)+Pac(i))CEF(i) (8)

i=0 veVv

Where P, (i) is given by Equation 9

P =0, + > 8 Dap)

(u,s)eD
@ teleggrn

40 Energy and Carbon Emissions aware service allocation on Data Centers

This is a simpler model, however it still assumes too much knowl-
edge. Knowing that the objective is to reduce the overall energy con-
sumption and Carbon Emissions of the DC, it is reasonable to assume
that NAt is going to be big (in the order of weeks or months). And
it is reasonable as well to assume that neither the EP nor the DC will
have a monthly predition on the CEF(t) function or the whole service
request schedule. Furthermore, we are only able to delay the execu-
tions of some services at most 2 hours (and usually not that long). In
order for this model to work, At should be smaller than that. Other-
wise we cannot delay a service and expect 5*%) to be constant at the
same time. We will delay the service a time multiple of At. We will
also assume that CEF(i+1) = CEFi+ 1)Vl > 1,¥i, i.e.CEF(i+ 1) will
give an approximate idea of the trend of the carbon emission factor
in the near future. In this case the function to minimize can be seen
in Equation 10

CEF()(D Py(i)+Pac(i)) + CEF({i+T)(Z () Pv()+Pac(i)
veV j=i+1 veV

(10)

Now, given the fact that all the future request events are constant,
and that we can not delay them, we can remove them from the for-
mula. But this is not totally realistic, as even delaying a service in the
slot i can result in a total different service assignation in the future,
and therefore more servers used in the future. Furthermore, if a ser-
vice that was going to start in the slot i and finish in the slot N was
delayed, the model would mislead to think that it is better to delay.
To fix this we will use a new variable: d(,)(i) that will indicate if
the service (u,s) € W(i) has been delayed or not. Also, a variable
dy (i) indicating how many times has the user u € U been delayed.
Now, on the one hand, Equation 11 holds for all (u,s) € W(i) and
for all i, implying that a service is either assigned in the slot i or de-
layed. This implies that the second summand of P, will become a
constant once it has been added for all v € V and for all j > i. This
allows to reduce the problem to Equation 12 (we have normalized by
CEF(i)Pigie without loss of generality).

Zé“s)+ ds)(i) =1 (11)

vev

Z Oy (1)+

vev
FCEFE+) —EMAX gy 7 g Dape+
idle (w,5)EW(i) (12)
N
+CEF(i+1)) > Oy(i+1)
1=1veVv

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 41

There is a big problem here and it is basically that we have no
way of knowing how the delaying of services will affect the open
servers in the future. Even if we restrict the maximum duration of
the execution of a service to N(,, 5), we still would have to add all
the terms up to max(, s)ew(i) and we have no way of knowing the
service requests of the future. Thus, apparently we are in a blind
alley. However — and we will come to it later — there are assumptions
we can make and different heuristics will come from there.

WHY HEURISTICS? The problem BPP is polynomial-time reducible
to this problem, we only have to think that if CEF(i) was constant, and
there was no restriction on temperature and it was impossible to delay
any service we would be in front of a BPP. But a BPP is NP —hard and
therefore so it is our problem (even the off-line version). Otherwise, if
we could find a solution for our problem in polynomial time for any
instance, we could find a solution in polynomial time for the BPP.

The restrictions are written in the following equations. Eq. 14 refers
to the maximum workload of a server (it can not exceed 100%). Eq. 15
refers to the natural impossibility of running the same service more
than once. Eq. 16 and Eq. 17 refer to the restrictions in temperature
(see Eq. 13). Note that, in Equation 13, G, ¢7 and c, are constants
that depend on the previous value of the temperature. This means
that, for example, if the temperature in the previous slot was different
than the temperature in the exterior (Ten,) and everything was shut
down, then the temperature would tend to Ten,. This coefficients are
adaptive and should be calculated in each DC, however as it has been
mentioned before, it is likely that each DC has its own temperature
model depending on the power spent on the AC and the servers, and
small modifications of the heuristics here proposed should still prove
useful.

TA)=G(TA—=1) = Teny)TE—1)+

+er(Ti-1) Y Py@) —ca(TE—1))Pacl) (13)
vev

Y a8 i)apy <O weV (14)
(u,s)EW (1)
A1)+ Y 80 (1) =1V(y,s) € A(D) (15)

vev

Tmin < T(l) < Tmax (16)
T(l) - T(l -]) < ATﬂlax (17)

42 Energy and Carbon Emissions aware service allocation on Data Centers

More restrictions involving delays and power limits follow in Eq. 18,
Eq. 19 and Eq. 20, and Eq. 21 restricts the number of consecutive
delays of a service (it is written as an example, the number of consec-
utive allowed delays will be left to designers).

> d™I[A) +d (1) < dmax(w) (18)
{s:(u,s)eA (i)}

> d™Y() < dmax(w i) (19)

B < B (20)
dws)(1—1)+dws) (i) <1 (21)

In this sense, the approach is obviously online, the immediate fu-
ture is relevant because the model needs to know whether CEF(i +
1) > CEF(i) or not, or if there is any service about to end in the slot
i+ 1, but it should be blind to what services requests will come in
next slots and whether they will be delayed or not.

3.1.3 Dealing with Pac

Regarding Pa c, clearly only three restrictions affect its value. On the
one hand, the power limit (Eq. 20) limits the maximum power that
can be spent in Pac(i) given the power spent on the servers. On
the other hand, the temperature restrictions (Egs. 16 and 17) limit the
minimum power that can be spent in Pac(i) in order to keep the
temperature between some limits.

If the approach were to be hollistic the problem faced would be
treated as a Mixed Integer Programming (MIP) problem, with some
binary variables and some real valued variables. These problems tend
to be very complex.

However, we can study further this problem to see to what extent
it requires MIP techniques.

First of all, notice that objective is to minimize the total energy
consumption and therefore, it is to be expected that Eq. 20 is accom-
plished always, and if it does not follow, the heuristical approach will
try to solve it. The only way to not being able to accomplish Eq. 20
is either by not delaying any service and having a very small (i) in
the slot i, or delaying too many services and having this request in
the slot i + 1. Nevertheless if 3(i) or 3(i+ 1) are very small, it is rea-
sonable to expect low or high values of CEF(i + 1), respectively, thus
being improbable that many services will be not delayed or will be

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 43

delayed, respectively. The point is that the problem formulation and
heuristics themselves should avoid solutions in which Eq. 20 does not
follow.

Moreover, it is clear that T(i) depends on all the previous temper-
atures, server power usage and Pac. lLe., if we wanted to solve
the problem formulated as in Equation 12, the only way to decide
Pac(n) for all n > i would be knowing all the service requests and
assignations, and as we have said, this is impossible in this online
approach. What we will do in order to try to solve the online prob-
lem is to approximate the function to minimize by only counting un-
til N = i+ 1. That is, we will see the problem in a 'myopic” way
only taking into account the present slot and the inmediate future
one. In layman terms, we are going to try to minimize the function
Pac(i) + CEF(i+1)Pac(i+ 1) (normalizing by CEF(i)), given the re-
strictions on power and temperature.

One can distinguish two major situations, between many others:

e 1> CEF(i+1): Apparently the best solution is to delay as many
services as possible. However, sometimes not delaying can be
better (in terms of Pac if, for example, it implies using less
servers). Moreover, using less servers might change the strategy
of AC usage.

e 1 < CEF(i+1): The inverse situation takes place. Again, the
best solution is not always that which does not delay any ser-
vice.

The heuristics proposed should take into account these and more
different conclusions that can be reached from simple manipulation
of the equations. In the next chapter the necessary conditions will re-
veal and be used in one or several heuristics, in order to give bound-
aries or at least a flair of what the competitive ratio of the algorithms
would be.

Why the CEF?

One question that might come to our minds after all these presenta-
tions is: Why are we adding this CEF and weighting the power con-
sumption by it? Why don’t we just limit ourselves to try to minimize
the overall energy consumption?

On one hand, solving the problem for any CEF, we can solve it for
a constant CEF = 1 which would minimize the overall energy con-
sumption. On the other hand, the CEF accounts for the collaboration
between the DC and the EP as much as the delays account for the col-
laboration between the DC and the ITC. If we only try to minimize
energy consumption from the DC, we can fall into delaying services
and using, for example, coal fuelled energy in the future thus sacri-
ficing the collaboration.

45

PROPOSED HEURISTICS AND RESULTS

4.1 SHOULD WE ALLOW CONSOLIDATION?

In this section we are going to study the consequences of allowing
consolidation vs. not allowing consolidation of services.

We will begin by the ’easiest’ configuration possible: We are al-
lowed to migrate as many services as we want each time a service has
to be assigned or a service is retired from duty. Note that if no de-
laying was allowed, this would be the Fully Dynamic BPP adding the
AC, therefore the Fully Dynamic BPP can be considered a subprob-
lem of this one. This means that this problem is NP —hard and there-
fore we should not expect a polynomial time algorithm that solves
the problem, even in its offline version. The Fully Dynamic BPP has
an asyntotic approximation ratio of 2 while the offline BPP has an
asyntotic approximation ratio of & with FFD algorithm, which is a
little better.

If the configuration is such that does not allow us to consolidate
services, then we are, proceeding with a similar reason as before, in
front of a variation of the Dynamic BPP, which has no better approx-
imation ratio than 2.5, while an online algorithm without repacking
but without departures will have a ratio of approximately 1.6.

These results suggest that in general it will be better to allow con-
solidation than not allowing it. Let us focus now on another keystone
of Equation 12: Should we assume that delaying a service will result
in using one server more ‘later” or not?

Let us reason intuitively as follows: Given a Poisson distribution
of service requests and an exponential discrete distribution of service
durations (with memory, because we can know for how long a ser-
vice has been running in the slot i), how can a service be actually
using one more server in the future? An example would be (for both
options) as follows:

A service that last two slots arrives in the slot i and fits into an
already open server. However we decide to delay it. But all the
services that were running in the slot i end in the slot i+ 1, so this
service will be using a server for itself in the slot i+ 2, and we could
have avoided that if we had placed the service in the slot i in the first
place. Now, intuitively speaking this is very difficult to happen but
it can happen nevertheless that we decide to delay a service s and
place it in the slot i+ 1 in the server v, but all the services that are
running in the server v will stop before our service. And if we can not
repack and consolidate, this is quite likely to happen and therefore

46 Energy and Carbon Emissions aware service allocation on Data Centers

we will have a situation in which we will use one more server more
often. This gives us a new insight when solving the problem and
adds empirical evidence (it is not a proof) of the benefit that comes
from being able to consolidate and repack the services.

4.2 HEURISTICS PROPOSED

We need to define heuristics and analyze them. The heuristics here
proposed have the following structure:

1. Decide whether to delay or not one/a group of/all services, es-
timating whether delaying or not will be better with the knowl-
edge present at the moment.

2. Assign the services in such a way that optimality (or the nearest
form) is achieved.

3. Calculate Poc(i),Pac(i+ 1) minimizing the cost function ex-
plained at the end of the last chapter.

These steps can be clearly separated or interleaved between them,
but in any case they allow us to separate the big problem into smaller,
easier problems. The critical steps are the first and the third. The sec-
ond step is always a BPP (one of its variants — online, offline, dynamic,
fully dynamic).

The heuristics will come from different interpretations of the poli-
cies proposed by A4G, see Table 1. We will understand anticipate as
the following: If we have a request in the slot i + 1, we will have the
possibility to put it now, thus considering it the same as having a
service request in the slot i. On the other hand, we will add some
special services (antivirus programs, updates) not as a request and
neither being able to delay them, this is extra services. We can pause
them if the conditions change. We will understand postpone as delay-
ing or pausing some service executions.

The definition of three different states of the Table 1 seems to sug-
gest that only three different values for CEF(i + 1) may be possible.
However this is not completely true, because (citation may be re-
quired) the EP can be in more states, depending on the mixture of
different energy sources it uses, and can send as information differ-
ent CEF(i+ 1) that will give us information about whether it is better
to delay a service even if it requires using more servers later or not.

4.2.1 Strict heuristic

The first heuristic proposed, Hy, will follow strictly the policies men-
tioned in the Table 1. Thus, we will distinguish three cases:

1. CEF(i+ 1) < 1: This means that the near future is expected
to be better in terms of CO, emissions and DC State than the

Energy and Carbon Emissions aware service allocation on Data Centers 47

present. We will postpone as many and as big services as we
can, i. e.if a user can have n services delayed in the slot i and has
m > n services susceptible to postponing in the slot i, we will
postpone the services that consume more energy. In a similar
fashion, we will pause the extra services that we might have
started previously. We will place all the services that we must
put in the slot i and the slot i + 1 using a fully dynamic BPP
algorithm or an offline BPP algorithm.

. CEF(i+ 1) = 1: This means that we do not expect the near

future emissions or state to change much from the present. We
will not postpone any service nor anticipate any. We will not
start any extra service nor pause any.

. CEF(i+1) > 1: This means that the near future is expected to

be worse than the present. We will try to anticipate as many
services as we can and start extra services.

After delaying and assigning the services, as if no new petitions were
to be made in the slot i+ 1 we will calculate the P ¢ finding the op-
timal values of Pac(i,i+ 1) given that assignment. This can be done
by brute force, considering that Pa ¢ has some limits given by the fab-
ricant. This heuristic is called H;. It is the first heuristic that comes
to mind. It is clearly not the best and we will enumerate possible
problems that it may pose.

Some times it is better to not delay or delay a service if it results
in using one server less.

Some times it is better to not delay or delay a service even if it
does not result in using one server less because the Pa ¢ combi-
nation can change and the overall function be smaller. This is
because some times we can use more power in the AC in the
slot 1, thus reducing the temperature and being able to use less
power in the slot i+ 1.

The limit on delays can be tight, thus leaving very little options
at the end of the month if all delays have been used already.

If CEF is constant, this heuristic will not attempt to delay or
anticipate any service at all, thus not solving the problem of
minimizing total energy consumption.

For the aforementioned reasons, we can not expect a very good
outcome from this heuristic.

More precisely, imagine the following chain of events:

We have N servers full up to — € of their total capacity. The
servers are about to finish in a slot. N services that use % + € arrive
that will last only one slot, but CEF(i+ 1) < T and therefore using the

48 Energy and Carbon Emissions aware service allocation on Data Centers

heuristic we will delay them. Assuming there is no other income in
the servers, the result of the heuristic would be as seen in Equation 22,
while the optimal result would be N. We are not calculating the
AC here, although it would improve a little bit the result, in order
to understand fully the problem of the heuristic. As can be seen,
the result can be as bad as twice the optimal (if CEF(i+1) — 1).
From now on for conciseness we will have o = @ > 1. However

as CEF(i+ 1) is smaller it is clear that the heuristic would give an
(x—1) 1+2e
T+ (x—1)ﬁ%'
For example if we accept that « ~ 1.42 (Pig1e =~ 0.7Pmax then CEF(i+
1) > 0.3 would guarantee that the solution given by the heuristic is

worse than the optimal solution.

optimal solution. The limit would be in CEF(i+ 1) =

N(1+ CEF(i+1))— (i’f;" 1) —CEF(H]))M (22)

Can we find a situation in which H; is worse than the optimal no
matter what CEF(i+ 1)? Not exactly, but we can find a situation in
which CEF(i+ 1) = 1 and the solution is far from optimal. Imagine
there are N servers full with two classes of services, one that fills
I + € and the other that fills T — €. The services that fill - + e will be
gone in the slot 14 1 and the other services still need m slots to finish.
In the slot 1, N services arrive that use % + € and need m — 1 slots to
finish. We don’t delay any service and therefore we use 2N servers in
the slot 1 and 2N servers in the slotsi+1,...,i+m—1 and N servers
in the slot 1 + m if we do not allow consolidation, or N servers from
the slot i 4 1 until the slot i + m if we do. If we delayed we would
have used only N servers from the slot i until the slot i+ m. This
leads to an approximation ratio of znT;ﬂ (it can be as big as we want)
if we can not consolidate or ﬁ—m (reaches a maximum of 1.5 when
m = 1) if we can. Therefore H; has an unbounded approximation
ratio if we are not allowed to consolidate, and an approximation ratio

of at least 1.5 if we are allowed to consolidate.

4.2.2 Dynamic Heuristic

The previous reasoning leads us to a second heuristic H,: For each
service we compare the weighted power function Pgery (i) + CEF(i +
1)Pserv(i+ 1) delaying (if we can) and not delaying the service, and
we choose the best option. This heuristic brings the problem of de-
ciding whether delaying a particular service might affect negatively
or positively, it really can not be known, so some empirical improve-
ments may be devised:

e If we allow to consolidate, it is to be expected that delaying will
not incur in using one more server later. If we don’t consolidate,
it is the opposite way. For example we could consider that the

Energy and Carbon Emissions aware service allocation on Data Centers 49

probability of incurring in using one more server later is pcons
and pncons for each case, and calculate the mean value.

e If it is better to delay even if we incur in using one more server,
then we will delay. If it is better not to delay even if we do
not use one more server, then we will not delay. For the other
situation, we can randomize the algorithm and decide to delay
or not with probability T —pcons and 1 —pncons-

This algorithm is more complex and looks better. It is less probable
that Eq. 20 does not follow. However, it is not perfect, and it has
similar problems to the offline algorithm First Fit. The order matters.
For example, if CEF(i+4 1) < 1, imagine there are N servers with
€ < J space. Then 2N services arrive that will only last 1 slot. The
first N have size €, the other 1 —e. The servers are going to be all
free in the slot i + 1. For the first N services, H, decides to place
them now, if a condition on CEF(i+ 1) holds: CEF(i+ 1) > L.HLH

€P,
(Where Py = Piiax — Pidte). For the second N services, it is bettér to
put them later. However the optimal solution is to delay them all. In
the worst case situation, namely € < % and C < the ratio of

>
Tigle 1
the two solutions is the one displayed in Eq. 23. As can be seen, it is
smaller than the ratio in Hy as long as Ppmax < 2Pigie. Notice that in

this scenario, Hy would give a better performance.

Pmax _

1 s — (23)

We have seen that it is more difficult to find worse-case situations
for H, than for H;. We have seen however that Hy can be better than
H, in some situations and H, can be better than H; in some other
situations.

Here are some proposals for other heuristics before we enter in a
qualitative discussion between the two first (that have been studied
more thoroughly)

¢ Sorting the items that can be delayed (or anticipated) in H; be-
fore actually choosing in which slot can we put them should
increase the performance of H;.

¢ Calculating P ¢ in each iteration of H; can also increase the per-
formance of H;, (this way we would avoid situations in which
delaying a service even using one more server can be useful
because then we can use more Pac to lower the temperature,
etc.).

¢ Instead of decide on delaying all services or just one by one, we
could pack the services (by size, by sum of sizes) and decide to
delay or not these packs (in a similar fashion to the harmonic
algorithm for the BPP).

50 Energy and Carbon Emissions aware service allocation on Data Centers

As for the competitive ratio, there are also some observations to be
made:

* Due to the fact that there is a limit to the possibility of delaying
services, one must choose wisely when to delay them in order
to save as much as possible. However, deciding to delay only
when a particular CEF(i + 1) is holding, might lead to problems
(because it might never happen during a month).

* Choosing to delay the services too early might result in not
having possible delays in the end, while waiting for too long
might cause to not delay a service when it is needed. A good
recommendation would be to try to limit the number of delays
per day, ensuring that every day (CEF(t) is easier to predict each
day) we can delay some services yet we do not burn our boats
to soon.

4.3 SIMULATIONS AND VISUAL DEMONSTRATIONS
4.3.1 Simulating CEF(t) and requests

Unfortunately, for this project no reliable data on the overall carbon
emissions coefficient from an EP has been given. The same has hap-
pened with a statistic of the service requests given by the users. There-
fore, we have to try to implement a few realistical scenarios that in-
clude some of the worst-case situations as well.

What is a worst-case scenario in terms of CEF(t) and requests?
Well, if there are many requests but CEF(t) is very low, then we have
no problem, we can even anticipate services if we have information,
or advise, about the future. On the other hand if CEF(t) is very high
but there is a very low demand of services (or running services at
the moment), we can just pause whatever service we have to pause
and keep on going with the others. But if we have a huge amount of
requests and running services and at the same time CEF(t) has a very
high value, then we are in problems. The worst of them when we are
peaking in both CEF(t) and requests.

For the sake of simplicity we have assumed that CEF(t) is a smooth,
daily periodical function that has one, two or three local maxima per
period. We are not adding any randomness for two reasons: First, it is
unlikely that the EP will account for small perturbations in the value
of CEF(t). Second, the heuristics proposed are weak in front of small
perturbations (and we will propose at the end of the section some
improvements). Concretely, we will interpolate using cubic splines
a series of data given at certain hours, and we will have the two
different graphs for two days that can be seen in Figure 5.

On the other hand, the assumption for the service requests is a bit
different. We assume that each half an hour of each working day

Energy and Carbon Emissions aware service allocation on Data Centers 51
Two different versions of CEF(t)

201

181

161

141

Adimensional

0 1 1 1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40 45 50

Time (h)

Figure 5: Two different versions of CEF used

(in reality it would change, as well as CEF, for festive days) receives
service requests following a Poisson distribution. We generate then
random data following this distribution. A result for two days can be
found in Figure 6.

These are the conditions for our future simulations. Probabilistic
study has been made regarding the different distribution of arrivals
for the processes, and we will not go into detail with that.

4.3.2 Consolidation is important

We already know that, but let us show some related results. In a
MATLAB simulation we will compare the energy consumption (un-
weighted) using a FF (no consolidation) algorithm for a dynamic BPP
and using a FFD (thus migrating every single service in each slot).
The code for the simulations can be found in an attached file. We
do not include Pac in the calculations, in order to show clearly the
differences between the two methods. We can not compare with the
optimal algorithm for obvious reasons, but as has been commented in
Chapter 2, we can assume that the FFD algorithm will give in average
an optimal solution.

Figure 7 shows us the difference when every 30 minutes arrive 10
services with a size uniformly distributed between 0.1 and 0.9 that
last at most 12 hours (the duration of a service is defined by a geo-
metric distribution of mean 6 that is truncated in 12). The simulation
represents 48 hours to reach a stable situation. We assume Piqie to
be 115W, using the results in [13] and Pigie = 0.7Pmax. In this situa-

52 Energy and Carbon Emissions aware service allocation on Data Centers

Number of requests
200 T T T T T T T

1801

1601

1401

1201

1001

Units

801

601

401

201

0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Time(h)

Figure 6: Poisson arrivals, regard the "period" (daily)

tion, but extending the simulation to 100 days, the FFD was an 11.8%
better than the FF on average.

Now, assuming that the services come in a Poisson distribution, we
simulate three days and we obtain Figure 8 where we can see both
FE, FFD results and the number of requests. In this situation, the FFD
also improves the FF algorithm in a 11.2% on average.

How does affect the duration of the services to this improvement?
Some Data Centers put a limit on the number of hours of execution
of a VM. For example, UPC’s Virtual Machines run for about 2 hours,
and usually less. At first glance one can understand that the power
consumption will be smoother the longer the services last. For ex-
ample, in Figure 9 we show the difference between having services
that last 6 hours on average and services that last 2 hours on average,
always using a FFD algorithm. In Figure 10 we see how the improve-
ment changes when we change the average time of the service. This
is relevant because the DC can choose a limit for the duration of the
services they offer. As we can see, the improvement of the FFD ver-
sus the FF goes in average around a 12% except when the services
last around 1 — 2 hours, which can be quite the common case.

Studying these differences we would see that they lie on using
more servers, which is clear because the services are the same al-
ways both for FFD and FFE. It is only fair to assume that, including
the delaying to the mix, the differences would be greater. And it is
indeed the case here, as will be seen later.

Energy and Carbon Emissions aware service allocation on Data Centers 53

Comparing the power consumption of FF and FFD

12000
Prr (W)
Prrp (W)
10000
8000
s
& 6000-
2
o
o
40001
20001
0 1 1 1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40 45 50
Time (hours)
Figure 7: FF vs. FFD, note the peaks in FF
x 10* Comparing the power consumption of FF and FFD
15
Prr (W)
g 10+ Peep (W) |1
o
S
a 5 i
0 | |
0 10 20 30 40 50 60 70 80
Time (hours)
Requests
200 ——
%) Number of requests
3 150F -
=)
o
2
s 100f 1
3
Q
E 50r .
=)
z
0 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Time (hours)

Figure 8: FF vs. FFD, Poisson requests

54 Energy and Carbon Emissions aware service allocation on Data Centers

x 10* Differences between long and short services
15
—E(t) = 6h
g 101 E(t)= 2h]
o
2
g s 1
O 1
0 10 20 30 40 50 60 70 80
Time (hours)
Requests
200
2
4
$ 150 .
o
2
%5 100r b
3
€ 50f :
=
z
0 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Time (hours)

Figure 9: Notice that, apart from being higher, Prrp is also smoother when
E(t) =6h

Improvement from FF to FFD

— Improvement (%)|

17

16

15

Improvement in % of FFD vs FF

12 I I I I I I I I J
0 2 4 6 8 10 12 14 16 18

Average running time of a service (in hour halves)

Figure 10: Notice that for short duration processes the difference is bigger

Energy and Carbon Emissions aware service allocation on Data Centers 55

4.3.3 Delaying the services

Following the guidelines in the previous sections, we will limit the
number of delays per day, thus making it possible to assume that
every time a service request arrives, there is a fixed probability P4
that it can be delayed. In these first simulations we will not allow for
anticipation of any kind of service, nor we will include calculations
for P C.

The first heuristic and second heuristic follow a different strategy
when it comes to delay services. The first heuristic does not delay
any service until the prediction for CEF starts to lower, while the sec-
ond heuristic is constantly checking if delaying a service can locally
improve the result. We have already discussed some worst-case situa-
tions for both heuristics, however let us do a qualitative probabilistic
analysis.

If the services were to last 1 slot at most, the second heuristic would
be indubitably better, because we would never have the problem of
using less servers now but more later. So all we have to do is check
whether delaying the service will help or not and do it. Of course
we are not pretending this will be an optimal solution: An optimal
solution should check all the subsets of delayable services and select
the subset that gives a better solution in the slots i,i+ 1. But the
thing is that each slot is independent, i.e.services that start in slot
i finish in slot 1, so the optimal solution for the slots i,i+ 1 would
give, in this case, an optimal solution as well for all the slots. The
tirst heuristic would lose a lot of opportunities to delay services thus
will be probably worse. This is confirmed by simulations (the graphs
are not very clearly different), where the average improvement given
by the first heuristic is roughly a 0.5% and the average improvement
given by the second heuristic is around 0.6%. In these simulations
there is no advise on the future requests and therefore the second
heuristic is not performing as well as it could, but still it is better
than the first heuristic as we wanted to show. We are doing all the
simulations allowing for consolidation of services.

Now, as the services last longer, the first heuristic starts to improve
considerably for the following reason: If each slot arrive on average
A(i) services, that last on average m slots, we can expect that at the
slot 1+ m we will have Z;’;I A(j) services, of which a 100P3% can
be delayed. This means that more services can be delayed and the
first heuristic will delay them all when the opportunity rises, while
the second heuristic not only will have already delayed a few in the
past but delaying locally one by one service will show smaller im-
provement (because the other services will still be adding up to the
total power consumption). In layman terms, the more services we
can delay, the bigger the “packs” of services to delay.

56 Energy and Carbon Emissions aware service allocation on Data Centers

Power and CE

— 4000 T T T T T T T
s \N\ /\
= | \ /A Prz ||
g 2000 / \) \ /
5 e \ S \ y Pr1
0. 0 7 IS I I S —
0 10 20 30 40 50 60 70 80
Time(h)
Requests
200 T T ;
2
€ 100f 1
=)
0 1 1 1 1 i 1 1
0 10 20 30 40 50 60 70 80
Time(h)
CEF
g 20 T T T T T T T
-
£ 10t i
£
© 0 L L 1 L L L L
<
0 10 20 30 40 50 60 70 80
Time(h)

Figure 11: 2 slots, H1 is a 0.27% better than H2

So what the first heuristic does is trivially select all the services
that can be delayed and delay them, while the second heuristic tries
all the services one by one and decides whether to delay that one or
not. The optimal solution should be in the middle, delaying a subset
of all the delayable services. But, as a first attempt, we see that the
first heuristic behaves better than the second heuristic, at least under
the conditions given in the simulation’, when the services last long
enough. As an example we will see Figures 11, 12 and 13. We can
see in Figure 14 that if we can delay more services (P4 = 0.4), then
the difference is even larger. It can be also observed in Figure 15
that before the peak Hz2 is already delaying services, which slightly
improves the energy consumption but prevents the big reduction in
the peak (note that the first heuristic gives the same result as FFD
until it delays services). Note also the difference between being able
to consolidate or not in Figure 16, in both cases consolidating leads to
an 11% of improvement to not consolidating. All in all, it seems that
the second heuristic is more robust and smoothens better the function
of total energy, but we are not interested in smoothing it.

4.3.4 Anticipating service execution

Now we add the possibility to anticipate service executions from ser-
vices that will come in the slot i 4+ 1.We assume that we can anticipate
all of them and we know all that will come. It is a bald assumption

Note that the service requests are not as relevant as the CEF function, because the
delaying decision does not depend on the requests, and the assigning algorithm
(which depends on it) is solving a simple BPP. That is the reason why two different
CEF functions have been given, in both of them a peak coinciding with a peak in
requests

Energy and Carbon Emissions aware service allocation on Data Centers 57

Power and CE

10000 T T T T . . :
% V Ph2
g 5000¢f
<) J\/ Ph4
D' 0 1 L 1 T
0 10 20 30 40 50 60 70 80
Time(h)
Requests
200 . . . : : ; ;
.
c 100f i
)

©
c
kel
2
[9)
£
<
0 10 20 30 40 50 60 70 80
Time(h)
Figure 12: 4 slots, H1 is a 0.37% better than H2
x 10% Power and CE
2
% P2
2 1 - .
! /(/\ il
n‘ 0 L L L L 1
0 10 20 30 40 50 60 70 80
Time(h)
Requests
200 T T T T T T r
s
‘€ 100} N
)
0 1 1 1 1 H 1 1
0 10 20 30 40 50 60 70 80
Time(h)
_ CEF
g 20 T T T T T T T
£
e 0 L L L L L L L
<
0 10 20 30 40 50 60 70 80
Time(h)

Figure 13: 6 slots, H1 is a 0.42% better than H2

58 Energy and Carbon Emissions aware service allocation on Data Centers

Power and CE

Time(h)
Requests
200 T T T T T T T
2
‘€ 100F b
]
I
c
S
[2}
=
[0]
£
<
0 10 20 30 40 50 60 70 80
Time(h)
Figure 14: 4 slots, P4 = 0.4 instead of 0.1
Power and CE
8200t Pus [
8150} Pus H
81001 4
80501 7

_. 8000} b

=

@ 7950F 4

2

[e]

Q- 7900} b
78501 4
78001 b
77501 b
77001 ‘ b

1 1 1 ‘ 1 1 1

1 1 L 1 1
15 155 16 165 17 175 18 185 19 195
Time(h)

Figure 15: 4 slots, note the big leap that H1 gives

Energy and Carbon Emissions aware service allocation on Data Centers 59

Welghted power

10000 T
P2
s PH2 (consolidating)
g 5000f N \ d
[e]
o
ol——
0 10 80
T|me
Welghted power
10000 T
PH1
g Ph 1 (consolidating)
g 5000r /J \ d
[e]
a
0 1
0 10 80

Tlme

Figure 16: Consolidation vs. non-consolidation in both H1 and Hz2

but it is the opposite extreme to the previous section. In anticipating
the execution of a service we don’t increase the times the service may
be delayed. Amazingly, the ability to anticipate services is increas-
ing the performance ten times in the case of the first heuristic, to a
5% when the probability of having a delayable service is 0.1. But in
the case of the second heuristic it makes almost no difference. This
is because the second heuristic treats the anticipating possibility as
adding the services now and deciding whether to delay or not them,
one by one. And because it is, ironically, more myopic than heuristic
1. The cornerstone is that the first heuristic will anticipate as many
services as it can, thus reducing the impact on the comeback after the
delaying, as can be seen in Figure 17. By doing so it might use more
weighted power than a simple FFD or than the second heuristic in the
slots where it anticipates, but the overall consequence is reducing the
total weighted energy consumption. It is at first surprising that the
results change so drastically between being able to anticipate and not
being able to, and that the difference is so big between the first and
second heuristic, but yet we will try to explain it later.

4.3.5 Air Conditionate power

First of all, we must remember that finding the optimal solution to
the problem is not the same as finding the optimal solution to the
delay+assignment problem and then the optimal solution to the AC
problem given such an assignment: It can be that we use more server
weighted power but less AC weighted power and the sum is lower.
However, there is an interesting result in Lemma 4.3.1, that says that
if by any chance we found an assignment that lead to the optimal

60 Energy and Carbon Emissions aware service allocation on Data Centers

Weighted Power with anticipation
90001

Power, FFD

8000+ Power, H1

70001

60001

50001

Power(W)

40001

3000F

20001

10001

30 40 50 60 70 80
Time(h)

Figure 17: Adding anticipation, note that we use more energy when CEF
increases

overall solution, then finding the optimal Pac for that assignment
means finding an optimal overall solution.

Lemma 4.3.1. Given an input instance of the problem for two slots i and
i+ 1, if the optimal solution is such as By,...,Bm,Pac(i),Pac(i+1),
then Pac(i),Pac(i+ 1) is an optimal solution for a problem in which
B1,..., B were already given to us.

Proof. It is inmediate, if P} ~ is a different solution, then the com-
bination By,...,Bm,Pa (i), Pac(i+ 1) is a different solution for the
initial problem, using at least as much weighted power as the original
one. 0

Furthermore, if we reduce our scope to the slots 1,1+ 1, then, disre-
garding the limit on the maximum power (because Pac is already
limited between 2300 and 3489 Watts), given a fixed Pgery(i) and
Pserv(i+ 1), whatever it is the optimal value for Poc (i) and Pac(i+
1), it must be that Pac(i+ 1) ensures that the temperature is T ax >
(see Lemma 4.3.2). This means that we can express Pac(i+ 1) as a
function of Tnax, Pservers and Pac(i). This PAoc(i+ 1) is only useful,
of course, to make sure that the solution is feasible for the future, but
it will be changed in the next slot.

Lemma 4.3.2. Let Q be the problem with inputs CEF(i), CEF(i+1), T(i—
1), Timin, Tmax and the coefficients needed to calculate T(i) (that depend on
T(1—1)). We want to minimize

CEF(i)Pac(i)+ CEF(i+ 1)PAc(i+1)

2 Or 2300 Watts if no matter what, the temperature is already lower than T ax

Energy and Carbon Emissions aware service allocation on Data Centers 61

subject to3
Tmin < GT(i—1) 4+ ¢1Pserv(i) —c2Pac(i) = T(1) < Tmax
Tmin < GT(1) + c1Pserv(i+ 1) —c2Pac(i+ 1) < Tmax
Then, whatever the optimal solution is, we have that

GT(i)+c1Pserv(i+ 1) — Tinax
C2

Pac(i+1) =

Proof. 1t is also simple, if Paoc(i+ 1) was bigger than that, the func-
tion would be bigger and we would be below Ty, qx, we could lower
Pac(i+1). If it was lower than that, the solution would not be feasi-
ble. Paoc (14 1) does not affect the restriction on Pa ¢ (i) and therefore
we can change it freely without affecting Pac(1i). O

The only thing left to know is how to calculate T(i). As has been
said in the first chapters, this is only for academical purposes and
each DC should have its own formula, the results given here should
not change substantially.

In our case, we approximate the coefficients the following way:

G(Ta—-1) = 3 T(Tij]). This means that if no server or AC was
operating, the temperature would stabilize at an ‘environment’ tem-
perature given by us (we will use 25°C) in one hour. For c¢; and c;

we will not use formulas but the following approximation:

¢ For c1, we will assume that a DC will go from T in up to Trmax
in half an hour if AC is closed and 20 servers are working at a
100%. We will assume that it will go from Ten, up to 1.2Tax
in the same time in the same situation, and it will go from Ty ax
up to 1.4T, qx in the same conditions.

* For c; we will do the opposite. The DC will go from Tyqx to
Tmin in half an hour if AC is consuming 3000W and no servers
are on, from Teny to 0.8Tmin and from T in to 0.6T1in In the
same conditions.

Rough as this approximation is, it has proven to be both useful and
fast when doing calculations. In order to find the best solution we
simply try them all for the range of possible values of P ¢ (increasing
a parameter A), and take the value of Pac that gives the minimum
weighted power. We show a couple of examples in Figures 18, 19. We
only show the examples for the first heuristic because it is the one
that has proven to be better as we have been seeing. The temperature
in both cases does not go far beyond or above Tey, due to the way
we have defined the coefficients.

As a final remark, in Figure 20 we can see how the first heuristic
improves both FFD and FF with respect to the probability of having
a service delayed Pgq.

3 This is not a linear problem! c; might depend on T(i — 1) and thus on Poc(i—1)

@ elogen

62 Energy and Carbon Emissions aware service allocation on Data Centers

x 10° H1vs FF
10 T T T T T T T
S
g 5 1
)
a
0
0 30 40 50 60 80
Time(h)
x 10° H1vs FFD
8
~ 6 i
=
g4 1
c
2 L -
0
0 10 20 30 40 50 60 70 80

Time(h)

Figure 18: Note that even when anticipating, it uses less weighted energy

than FF
x 10° H1vs FF
15 T T T T T T T
S 10f
@
3
o 5f
0
0
Time(h)
x 10° H1 vs FFD
10 T T T T T T T
g
g 5¢ T
(o]
o
0 1
0 10 20 30 40 50 60 70 80

Time(h)

Figure 19: Note that the first peak causes a decrease in the performance later

Energy and Carbon Emissions aware service allocation on Data Centers 63

Improvement in % of the total weighted energy respect H1
18 T T T T T T T T

—©&— Improvement of H1 to FF
—©— Improvement of H1 to FFD

16

141

12

Improvement in %
-
o
1

L L

1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability of receiving a delayable service

2 L

Figure 20: Surprisingly, it is a linear function differing by a constant 8%

4.3.6 Further requests from the EP

The EP can request the DC to apply some tight restrictions on the
power consumption, e.g.consume less than a 90% of what was con-
sumed in the last hour. Being the objective to minimize the total
weighted energy consumption, and assuming that these requests will
usually come in moments of high-valued CEF, it is fair to assume that
the optimal solution should follow this request.

However, if the solutions here proposed failed to achieve this re-
striction, the only thing that could be done would be trying to delay
more or less services (or anticipate less or more, respectively). This
can be easily done by listing all the delayable services, ordering them
from bigger to smaller and change their state from delayed to not-
delayed depending on the objective. If even then the solution is not
feasible, we will have to reject the request made by the DC.

4.3.7 A Genetic Algorithm proposal

A proposed way to improve the second heuristic is using the meta-
heuristic known as Genetic Algorithms, that has been explained in
Chapter 2. The idea here is to find which subset of all the delayable
services is better to actually delay.

The guidelines for this method would be:

1. Encode all the delayable services as a binary string: bit j is 1 if
and only if the delayable service in the position j is going to be
delayed.

64 Energy and Carbon Emissions aware service allocation on Data Centers

2. The fitness function is the same function (minimizing the Pa ¢
as has been explained previously). We select the best options.

3. The crossing operator is very simple, select two random posi-
tions and exchange the bit string in the middle between solu-
tions.

4. Mutation is also simple, P[b; <— b;XOR1] = p for each bit in the
string.

Genetic Algorithms have proved to be very robust, and thus this
proposal will probably be more robust even than the second heuristic.
However, it probably would have the same problem because it will
still be myopic with respect to CEF and service requests.

4.4 FINAL COMMENTS

We have seen that, although in theory the second heuristic is more
robust, in the practice the first heuristic delivers better results at least
for the situations specified in the simulations. However, it is true
that the second heuristic is, in general, more robust, although it is
not so effective. It is important to note that these robustness and
effectiveness are a problem of the online situation we are dealing
with, i. e.the lack of knowledge of the future CEF and requests.

Note as well that the second heuristic can be extended to an of-
fline heuristic, where the “only’ thing that has to be done is studying
the ramifications of each decision regarding each service that comes
in the slot i. This is comparable to having a tree for each service
that starts with two leaves and then ramificates for each service in
the future; in the second heuristic the decisions made with the other
services in the slot i do not affect.

Actually the optimal solution can also be understood as finding a
branch of a tree: For each delayable service, we study all the possi-
bilities that result from delaying/non-delaying that service (plus the
optimal chain of Pac) and find the ‘optimal” in a recursive way. By
optimal we mean the best combination of delaying/non-delaying for
all services from 1 until N assigning the services with a FF/FFD algo-
rithm or another BPP algorithm.

Another way would consist in encoding the delayed services in the
manner of the Genetic Algorithm. Then we would have a tree with
2Del(1) Jeaves in each level where Del(i) is the set of delayable ser-
vices, that might include the ones that are susceptible of anticipation.
Be careful with this way of understanding the delaying because in
the FF case, the order in which we delay and place them later matters
(but we can avoid the problem just by sorting the delayed services
anyway). Note that the genetic algorithm proposed in the previous
section would also be extendable in this manner to the offline prob-
lem, giving a robust approximation to the ‘optimal” solution.

Energy and Carbon Emissions aware service allocation on Data Centers 65

However, going back to the online problem, this whole strategy has
a big handicap: The knowledge of CEF. By not knowing it, we are
fooled to think that sgn(CEF(i+ 2) — CEF(i+ 1)) will be the same
as sgn(CEF(i+ 1) — CEF(i)), or that CEF(i+j) = CEF(i+ 1) for all
j, depending on how we analyze it, and that is where the heuristics
make a mistake. For example, if CEF(i) is a non-descending linear
function, then the second heuristic is better than the first if we tune
correctly the assumption for the probability of using one unnecessary
server in the future, which empirically has been found to be equal
to the size of the service. But while the second heuristic has been
delaying some services when CEF was increasing, as soon as the CEF
starts to lower, the first heuristic gains a massive advantage. Probably
if the ‘extended’ offline version knew more about the future (or had
more advice, in the online decision problems’ jargon), it would decide
not to delay the services that would be running until a certain peak
in number of requests weighted by CEF.

However, the first heuristic is also not perfect: It is easier to "deceive’
it with a small peak in CEF which will cause it to delay services and
lose the chance to delay them later. Even a big peak in CEF that
does not coincide with a big peak in the current available services
(meaning the ones that are working plus the requested) will deceive
the first heuristic and the second heuristic. How can we avoid this
problem?

The proposal for continuing the work done in this project is to
try to add a hysteresis to the first heuristic in terms of the power
consumption obtained by a simple FFD. If a FFD algorithm is not de-
creasing "too much’, or “above variance’, then assume that the peak
is just some random noise, however if the FFD algorithm starts de-
creasing the power consumption in a very fast manner, then that is
the moment to delay as many services as possible. This is similar
to what a predictor in stock markets does, it tries to decide whether
the stock price has really reached a peak or it is only under normal
perturbations.

The knowledge of the statistics of CEF and the number of requests
can also help to predict this peak, thus increasing the improvement of
these heuristics with respect to the original situation, in which Data
Centers use a FFD, FF or even give low priority to energy consump-
tion in front of makespan of the services.

67

CONCLUSIONS

We have presented the problem of energy consumption and carbon
emissions in a DC, and the objective of fostering a collaboration be-
tween all the members of an ecosystem DC-EP-ITC introduced by
the project All4Green. The collaboration is enforced by some special
'Green’ contracts

(GreenSLA, GreenSDA) that introduce flexible QoS parameters as
well as some collaboration clauses. The goal of the project is not
only to reduce the energy consumption and carbon emissions, but
to show that this is possible and economically sustainable for all the
parties involved.

Focusing precisely on the collaboration, the cornerstone lies on the
ability to receive requests from an EP and negotiate with the ITC for
being able to delay or pause their services. This project tries to study
this particular aspect of the approach of All4Green by modeling the
problem and studying its mathematical properties.

To this end, first we have studied the tractability of different math-
ematical problems and the theory of complexity and tractability of
optimization and online decision problems. We have presented the
added complexity of online decision problems and the metaheuris-
tics that attempt to be global solvers for any kind of problem. Finally
we have studied in depth the famous problem BIN PACKING PROB-
LEM (BPP). The BPP consists in assigning different items to different
bins using as few bins as possible. More precisely we have seen the
Dynamic BPP in which services last for a finite time and leave after
that.

The Dynamic BPP has been the basis of the model that we have
built trying to explain and understand the behaviour of a DC. We
only had to add the Air Conditioning and the possibility to delay or
anticipate services. This model is not completely precise nor rigorous,
but it allows us to develop some intuition in how we should manage
the delays and assignation of services. Even though this model is
simple enough for us to manage it safely, the problem beneath it
(BPP) is already too difficult to solve (it is NP —hard and it can not
be easily approximated).

For the aforementioned reasons, we have introduced a modification
to the Dynamic BPP by adding delay, and provided two different
heuristics and possible future improvements to the problem. The
different heuristics can be summarized as follows:

1. The first heuristic follows to the letter the specifications given
by the project All4Green. It delays as many services as it can

68 Energy and Carbon Emissions aware service allocation on Data Centers

while the prediction for carbon emissions is lowering (Energy
Saving State), and it anticipates services as the prediction for
carbon emissions is increasing (Extra Energy Mode), thus trying
to counter the effect of the rest of the demand to the EP. Then
it assignates the services as if two different BPP were going on,
and finds the optimal value for the power spent on the AC.

2. The second heuristic is completely dynamic: In each moment
it decides whether to delay or anticipate each service it can,
trying to see for each service whether it is better to delay it or
not. Then it assignates each of these services as in a BPP (one for
the delayed and one for the non-delayed), and finds the optimal
value for the power spent on the AC.

These two heuristics can be viewed as the two different extremes
of a whole chain of different heuristics, and we give a first theoretical
analysis to both of them, showing that the second is more robust than
the first. We have tried to explain the differences between both heuris-
tics and showed some results of simulations in realistic scenarios for
both. We have presented a genetic algorithm and we have related the
heuristics and the genetic algorithm to an offline optimal algorithm.

We have seen that both of them do better than non collaborating al-
gorithms, which was one of the objectives of the project, and we have
observed that the first heuristic behaves better in general than the sec-
ond. We have tried to explain the reasons and find improvements to
both of them.

We have seen that one of the biggest issues of these approaches is
that we do not know in advance the service requests and the CEF,
which jeopardizes all the calculations and can mislead to bad results.
A solution that we have proposed consists in losing sensitivity to
small changes in service requests weighted by CEF (actually, compar-
ing it to a non-collaborating algorithm), trying to emulate the finan-
cial algorithms that decide whether a stock price is starting to lower
or on the contrary it is just under minor perturbations.

All in all, we believe we have given more than enough reasons
to be convinced that the approach taken by All4Green can lead to
a major success if the guidelines given here are followed. We have
only focused on a very small aspect of All4Green, namely the collab-
oration, and still we have reached considerable improvements in the
most conservative situations. It yet remains to include the flexibil-
ity clauses and the possibility to migrate services to another DC in a
federation.

Further experimental investigations are needed to attune the pa-
rameters and the model to the reality and give more accurate solu-
tions, although even this rough model will probably give good results
in the end.

Part III

APPENDIX

71

PROOEFES FOR THE RESULTS

A.1 NP-COMPLETENESS AND TRACTABILITY

Lemma 2.1.3. Suppose that an optimization problem Q1 is p-reducible to
an optimization problem Q. If Q2 is solvable in polynomial time then so
is Q1

Proof. Suppose that Q1 is p-reducible to Q, via the instance function
x and the solution function 1, both computable in polynomial time.
Then an optimal solution to an instance x € Ig, can be obtained
from P (x,x(x),y2) where y; is an optimal solution to the instance

x(x) € Ig, and is supposed to be constructible in polynomial time.
O

Lemma 2.1.4. Suppose that an optimization problem Q1 is p-reducible to
an optimization problem Q2. If Q1 is NP —hard, then so is Q.

Proof. Suppose that Q1 is p-reducible to Q via the instance function
x and the solution function 1, both computable in polynomial time.
Since Q1 is NP — hard, there is a decision problem D that is poly-
nomial time reducible to Q1, let h and g be the two functions seen
in Definition 2.1.10. Define two functions h; and g as follows: for
any instance x of D, hy(x) = x(h(x)); and for any solution y to
hi(x), g1(x, h1(x),y) = g(x, h(x), P(h(x), hi(x),y)). It is clear
that these functions are polynomial time computable.

Let x be an instance of D. Then h(x) is an instance of Q; and
therefore h{(x) an instance of Q, following thus Definition 2.1.10.
Now, if x is a instance of D, then g(x, h(x),z) = 1 if and only
if x is a yes-instance for D and z is an optimal solution for h(x).
If z =P (h(x),hq(x),y) then clearly z is an optimal solution for
h(x) if and only if y is an optimal solution for x (h(x)) = hy(x).
Going backwards, y is an optimal solution to hj(x) € Q2 and x is
a yes-instance for D if and only if P (h(x), hi(x),y) is an optimal
solution for h(x), if and only if g(x, h(x), P (h(x), hi(x),y)) =
g1(x, h1(x),y) = 1 as we wanted to prove.

This proves that the NP — hard decision problem D is polynomial
time reducible to Q. Consequently, Q; is NP — hard.]

Theorem 2.1.5. Let Q be an optimization problem and Q' be a subproblem
of Q. If the subproblem Q' is NP — hard, then Q is NP — hard.

Proof. Being the problem Q' NP — hard, there is a decision problem
D that is NP — hard and is polynomial time reducible to Q' via
the two functions h and g. Now, if x is an instance for D, then

72 Energy and Carbon Emissions aware service allocation on Data Centers

h(x) € I/Q C Ig. Moreover, y € Sq(h(x)) is optimal to Q if and
only if it is optimal to Q' (because Sg: = Sg and fgo/ = fg). Now
it is straightforward to see that h and g also work to reduce D to Q,
and therefore Q is NP — hard. O

Theorem 2.1.6. Let Q = (Ig,Sq,fq,optq) be an optimization problem
such that for any x € Ig we have Opt(x) < p(length(x), max(x)) for a
given polynomial p. If Q has a FPTAS, then Q can be solved in pseudopoly-
nomial time.

Proof. Suppose that Q is a minimization problem, i.e.optg = min.
Since Q has a FPTAS, there is an approximation algorithm A for Q
such that for any x € Ig, € > 0 the algorithm produces a solution
A(x) € Sq(x) in time p1([x], %) (p1 is a polynomial) satisfying

f(x,y)

<1
Opt(x) e

1
p(length(x)max(x))

In particular, if € = —7 then the solution y satisfies

Opt(x)

fix,y) < Optlx) + p(length(x), max(x)) + 1

< Opt(x) +1

Given the fact that Opt(x) < f(x,y) and that f(x,y) and Opt(x) are
integers, then forcefully f(x,y) = Opt(x). Furthermore, the running
time of the algorithm A is in this case bounded by
p(x], p(length(x), max(x))), which is a polynomial in length(x) and
max(x). Therefore Q can be solved in pseudopolynomial time. [

Theorem 2.1.7. Let Q = <IQ, So,fq, oth> be an optimization problem.
If there is a fixed polynomial p such that for all x € 1g, Optq(x) is bounded
by p(Ix]), then Q does not have a FPTAS unless Q is in P.

Proof. Let A be an approximation algorithm that is a FPTAS for Q,
bounded by O(Z—;) for some fixed c and d larger than 0.

Let h be a fixed constant such that Optg(x) < n",

We will distinguish two cases: If optg = min, let x € Ig and
A(x) = fg(x, A(x)), by the definition we have that for any € > 0,
A constructs a solution in polynomial (O(z—;))) time a solution with

Alx)

approximation ratio G5y < 1+e. If € is set to € = ﬁ then:

1 AT
= Opt(x) nh+1

Or equivalently

Opt(x)

Opt(x) < A(x) < Optix) + —h

But the boundary on Opt(x) implies that Of}f) <1, and this to-

gether with the previous inequality proves that Opt(x) < A(x) <

@ te'eﬁ%".]

Energy and Carbon Emissions aware service allocation on Data Centers 73

Opt(x) + 1. Being both A(x) and Opt(x) integers, it is clear that
A(x) = Opt(x). The running time of A in this case is Omlc+d(h+
1))) which is a polynomial.

If optg = max then A(x) < Opt(x) < n", so in polynomial time
(if we choose the same € as before) the algorithm (A) constructs a
solution to x with the value A(x) such that

h

Opt(x) 1
AG) S TR

1<

which gives
A(x) < Opt(x) < A(x) +A(x)/mM]

Now since Tﬁ’ﬁ < T again we find Opt(x) = A(x). O

Theorem 2.3.1. It is NP —complete to decide if an instance of BPP admits
a solution with two bins.

Proof. Reduce from PARTITION which is known to be
NP — complete. The PARTITION problem is as follows:

e Io: An-tuple (cq,...,cn) € Z.

* Sq: Aset (if it exists) S C {1,...,n} such that

D ci=) c

i€s ig$

The problem consists in deciding if it exists. Given a PARTITION
instance, we create an instance for BIN PACKING by setting s; = c;,
T =) 5. By Corollary and because PARTITION is NP — hard, the
decision problem of a two bins BPP is NP —hard. It is in NP (give as
a hint the partition) and therefore it is NP — complete.]

Theorem 2.3.3. BPP is in APX, being 1.5 the boundary for its approxima-
tion ratio, unless P = NP.

Proof. First we prove that BPP is NP —hard. In the same line as
the previous proof, let (c1,...,cn,) € Z be an input instance for
the PARTITION problem (which is NP-hard). Let T = > c¢i. If T
is odd, then c; is a no-instance for the PARTITION problem, so we
construct the instance for the BPP in the following way: (T,T,T;T)
which obviously will use 3 bins. If T is even, then the instance for the
BPP is (c1,...,¢cn; T/2) as in the previous proof. Now if and only if
ci is a no-instance for the PARTITION problem, T is either odd and
the optimal solution for the BPP problem is 3 bins, or it is even and
the optimal solution still uses 3 bins. But if, and only if, c; is a yes-
instance for the PARTITION problem, then T is even and the optimal
solution will use 2 bins. Therefore PARTITION is reducible to BPP

and BPP is NP — hard.
@ »)) ’ telecom
. BCN

74 Energy and Carbon Emissions aware service allocation on Data Centers

Now, if there was an algorithm A running in polynomial time such
that A(x) < 1.50pt(«) for all « € Igpp (recall that A(«) is the value
of the objective function for the result given by A(«x)), we will prove
that we can solve the PARTITION problem in polynomial time: use
the same reduction as above and find the optimal solution for the BPP.
It will be solved in polynomial time and will find a solution with m
bins. If m > 3, since ﬁ < 1.5, we get that Opt(o) > 2 therefore
we can know that the instance is a no-instance for the PARTITION
problem (in polynomial time). Otherwise if m < 2 it must be m =
2, and therefore the instance is a yes-instance for the PARTITION
problem and we found it in polynomial time. This means that the
instance is a yes-instance for the PARTITION problem if and only if
the approximation algorithm returns a result which uses 2 bins. But
PARTITION is NP — complete, and therefore unless P = NP there
is no polynomial running time algorithm that solves it. Therefore
unless P = NP there can be no polynomial running time algorithm
that approximates BPP with an approximation ratio less than 1.5. [

@ te'eﬁ%".]

75

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

Jyrki Huusko, Hermann Meer, Sonja Klingert, and Andrey So-
mov, editors. Emnergy Efficient Data Centers, volume 7396 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

Sonja Klingert, Thomas Schulze, and C. Bunse. GreenSLAs for
the Energy-efficient Management of DCs. presented in 2nd In-
ternational Conference on Energy-Efficient Computing and Net-
working, Columbia University, New York, 2011.

Philipp Wieder, Ramin Yahyapour, and Wolfgang Ziegler, edi-
tors. Grids and Service-Oriented Architectures for Service Level Agree-
ments. Springer US, Boston, MA, 2010.

J ChEn. Introduction to Tractability and Approximability of Opti-
mization problems. Lecture Notes, Department of Computer Science,
..., 2002.

A Koster and Xavier Mufioz. Graphs and algorithms in communi-
cation networks. Springer, 2010.

W Szpankowski. Average case analysis of algorithms. 2010.

E. G. Coffman, Jr,, M. R. Garey, and D. S. Johnson. Approxima-
tion algorithms for np-hard problems. chapter Approximation
algorithms for bin packing: a survey, pages 46—93. PWS Publish-
ing Co., Boston, MA, USA, 1997.

Joseph Wun tat Chan, Prudence W. H. Wong, and Fencol C. C.
Yung. On dynamic bin packing: An improved lower bound and
resource augmentation analysis.

Z Ivkovic and EL Lloyd. Fully dynamic algorithms for bin pack-
ing: Being (mostly) myopic helps. SIAM Journal on Computing,
28(2):574-611, 1998.

E. G. Coffman, Jr.,, D. S. Johnson, P. W. Shor, and G. S. Lueker.
Probabilistic analysis of packing and related partitioning prob-
lems. In in Probability and Algorithms, 87-107, National Research
Council, 1999.

Michel Gendreau and Jean-Yves Potvin. Handbook of Metaheuris-
tics. Springer Publishing Company, Incorporated, 2nd edition,
2010.

76 Energy and Carbon Emissions aware service allocation on Data Centers

[12] DA Coley. An introduction to genetic algorithms for scientists and
engineers. 1999.

[13] R. Basmadjian, F. Niedermeier, and H. De Meer. Modelling and
analysing the power consumption of idle servers. In Sustain-
able Internet and ICT for Sustainability (SustainIT), 2012, pages 1—9,
2012.

