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ABSTRACT 
 

Title Comparison of destructive and nondestructive methods of material properties testing with 

focus to historical building materials – masonry (ceramics and stone), mortars and plasters  

 

Author Ivan Acosta Collell  
Tutor Jan Zatloukal 

Co-tutor Joan Ramon Casas Rius 
 

The present document is about the realization of nondestructive test and destructive test with 
different types of materials and the comparison of the obtained results for both methods.  
 

The nondestructive methods (NDT) are characterized for not to change permanently the  
physical, chemical, mechanical or dimensional properties of the materials, that is involving a 
zero or negligible damage. Different methods of nondestructive testing are based on the  

application of physical phenomena such as electromagnetic waves, elastic emission of 
subatomic particles, capillary absorption and any evidence that does not involve damage to 

the sample examined. 
 

The aim of NDT is to detect discontinuities in materials without destroying them, determ ine  

the location, orientation, size and type of discontinuities and establish the quality of the  

material, based on the study results and the severity of the defects. The main disadvantage is  

that in general, the NDT provide less accurate data variable that destructive measuring 

method (DT).  

 

The aim of DT is to determine the value of certain material properties such as mechanical 

strength, toughness or hardness. The execution of destructive tests involve the destruction of 

the material, so the DT can be considered as direct physical methods that change permanently  

the physical, chemical, mechanical and dimensional properties of the subject analyzed. The  

main disadvantage is that these tests cannot be applied to all components of the building to 

check if the material characteristics fulfills the specified during design, because that would be  

destroyed and would lose their utility 

 

In order to reach a direct relation between the parameters obtained by nondestructive testing 

those obtained with the parameter obtained with destructive methods, an experimental  

campaign, that is part of a long-term project, was made. 

 

This thesis presents the works of the author about the preparation and realization of the 

different test done in this course and of the comparative s tudy of the obtained results, along 

with a study of the nondestructive test and a summary of how to obtain resistance parameters  

of materials using destructive test. 
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RESUMEN 
 

Titulo Comparación de ensayos destructivos y no destructivos de propiedades de materiales 

con especial atención a materiales usados en edificios históricos– mampostería (cerámicas y  
piedras), morteros y yesos.  

 

Autor Ivan Acosta Collell  

Tutor Jan Zatloukal 
Co-tutor  Joan Ramon Casas Rius 
 

El presente documento trata de la realización de ensayos no destructivos y de ensayos 
destructivos sobre diferentes tipos de materiales y de la comparación de los resultados 
obtenidos por ambos métodos.  

 

Los ensayos no destructivos (END) se caracterizan  por no alterar de forma permanente las  

propiedades físicas, químicas, mecánicas o dimensionales de los materiales, es decir que  

implican un daño imperceptible o nulo. Los diferentes métodos de ensayos no destructivos se  

basan en la aplicación de fenómenos físicos tales como ondas electromagnéticas, elásticas, 

emisión de partículas subatómicas, capilaridad, absorción y cualquier tipo de prueba que no 

implique un daño a la muestra examinada.  

 

Los END tienen como objetivo detectar discontinuidades en materiales sin destrucción de los 

mismos, determinar la ubicación, orientación, tamaño y tipo de discontinuidades y establecer  

la calidad del material, basándose en el estudio de los resultados y en la severidad de los 

defectos. La principal desventaja es, que en general, los END proporcionan datos menos 

precisa de la variable a medir que los métodos destructivos (ED).  

 

En referencia a los ED, cabe decir que tienen como objetivo principal determinar el valor de  

ciertas propiedades de los materiales como la resistencia mecánica, la tenacidad o la dureza. 

La ejecución de las pruebas destructivas involucra la destrucción del material, por lo que los ED 

se pueden considerar como métodos físicos directos que alteran de forma permanente las  

propiedades físicas, químicas, mecánicas o dimensionales del sujeto analizado. La principal  

desventaja es que estas pruebas para la comprobación de si las características del material  

cumplen con lo especificado durante el diseño , no se pueden aplicar a todos los componentes  

del edificio, debido a que serían destruidos y perderían su utilidad. 

 

Con la intención de llegar a una relación directa entre los parámetros obtenidos con ensayos 

no destructivos y con los obtenidos con ensayos destructivos, se realizó una campaña 

experimental que es parte de un proyecto a largo plazo. 

 
En esta tesina se presentan los trabajos realizados por el autor de preparación y realización de  

los diferentes ensayos realizados sobre el curso y del estudio comparativo de los resultados 

obtenidos, junto con un estudio de los diferentes ensayos no destructivos existentes en la 

actualidad y un resumen de la obtención de parámetros relacionados con la resistencia de  

materiales mediante ensayos destructivos.  
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1. INTRODUCTION 

 

 
13 

1 INTRODUCTION 
 

1.1  General information 
 

This thesis is based on the comparison of nondestructive methods and destructive methods of 

material properties testing with focus to historical building materials – masonry (ceramics and 

stone), mortars and plasters.  

 

The nondestructive methods will include rebound tests and ultrasonic measurements. 

Destructive methods will include test on drill cores and specifically fabricated test specime ns. 

These tests are realized in the Experimental Center laboratory located in the building D of the  

faculty of Civil Engineering in the Czech Technical University in Prague.  

 

With this study it would be possible to obtain relations of the parameters obtained with the  

non destructive methods with the parameters obtained with the destructive methods.  These  

relations are obtained for each type of material tested.  

 

1.2 Non destructive methods 
 

Nondestructive testing (NDT) is the process of inspecting, testing, or evaluating materials,  

components or assemblies for discontinuities, or differences in characteristics without  

destroying the serviceability of the part or system.  In other words, when the inspection or test  

is completed the part can still be used.  

 

In contrast to NDT, other tests are destructive in nature and are therefore done on a limited 

number of samples, rather than on the materials, components or assemblies actually being put  

into service.  These destructive tests are often used to determine the physical properties of 

materials such as impact resistance, ductility, yield and ultimate tensile strength, fracture  

toughness and fatigue strength, but discontinuities and differences in material characteristics  

are more effectively found by NDT.  

 

Today modern nondestructive tests are used in manufacturing, fabrication and in-service 

inspections to ensure product integrity and reliability, to control manufacturing processes, 
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lower production costs and to maintain a uniform quality level.   During construction, NDT are  

used to ensure the quality of materials and joining processes during the fabrication and 

erection phases, and in-service NDT inspections are used to ensure that the products in use  

continue to have the integrity necessary to ensure their usefulness and the safety of the  

public.  

 

1.3 Destructive methods  
 

Destructive testing (DT) includes methods where your material is broken down in order to 

determine mechanical properties, such as strength, toughness and hardness.  

 

These properties can’t be examined with nondestructive methods, as specimens of the 

material must be extracted. Destructive testing is generally most suitable and economic for 

mass produced objects, as the cost of destroying a small number of pieces is negligible. The  

samples are put under different loads and stress. That way we can analyze in which point your 

material eventually gives up and cracks. The results gained are then compared to regulations  

and/or quality guidelines. 

 

Destructive tests are best when used together with nondestructive methods: this combination 

gives the best information on materials and welds. Nondestructive tests show if cracks, 

corrosion or other faults exist. Destructive tests in turn indicate how and when the objects are  

in danger of breaking down or failing.  

 

Some of the benefits of destructive testing are the verification of the properties of a material,  

the determination of the quality of welds, reduction of failures, accidents and costs and ensure  

compliance with regulation.  

 

1.4 Objective 
 

In general, the NDT provides less accurate data about the measured variable than the DT. 

Despite of it, sometimes it is not possible to use them (when the material can’t be destroyed) 

and is when the NDT are useful. This is more visible in historical buildings. 

 

So, the main objective of this thesis is to compare the NDT with the DT in order to obtain a 

correlation between the parameters that can be obtained with both techniques. The idea is  
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that knowing some correlation, it would be possible to evaluate in a proper way properties like  

resistance, durability or strength of a historical building without the needed of doing 

destructive tests. And, moreover, it would be helpful to rely more in the results obtained with 

NDT when there is the needed of evaluating the condition of a building and to do the required 

corrective actions only with the NDT data.  

 

1.5  Contents  
 

In the first chapter of this thesis is given a brief introduction about why it has been done and 

what topics are covered in it.  

 

In the second chapter it is explained the non destructive methods in a general way and then an 

explanation method by method. The most interesting methods for this thesis are explained 

deeper, for the others are only given a short description. Finally is presented a table where all  

the NDT are summarized. 

 

In the third chapter it is explained the destructive methods in a general way and then it is  

explained those test that provide interesting parameter for this thesis, which are: the  

compressive strength, the tensile strength and the Young’s modulus. 

 

In the fourth chapter are detailed the works and procedures done during this academic course  

such as the non destructive test and the destructive test of the materials.  

 

In the fifth and last chapter is done a brief general conclusion of this thesis and about the work 

developed through the academic year. Moreover, it is made an assessment about the work 

that, from the point of view of the author of this thesis, it should realize during the next  

academic year.  
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2 NONDESTRUCTIVE METHODS 
 

2.1 Introduction to nondestructive methods 
 

 

The nondestructive testing (NDT) methods are a wide group of analysis techniques used to 

evaluate the physical, chemical, mechanical or dimensional properties of a material. These  

tests produce an imperceptible or null damage to the material, meaning that without  

interfering in any way with the integrity or its suitability for service the material can be  

evaluated. Because of this NDT provides an excellent balance between quality control and 

cost-effectiveness. 

 

The application of NDT methods to the solution of civil engineering problems has sometimes  

been disappointing. This has arisen because, in general, the nondestructive methods provide  

less accurate data about the variable to measure than the destructive or because of the  

method is inappropriate to the problem under consideration.  In some cases, these problems 

could have been avoided by taking expert advice before initiating the survey. Nevertheless  

they are often cheaper because of it doesn’t imply the destruction of the sample.  

 
It is often advisable to undertake a feasibility study on the structure to assess the suitability of 

the proposed NDT techniques for the investigation of the structural problem. An example of a 

procedure is given below: 

 

- Phase 1 Visual inspection. 

- Phase 2 Analysis of load carrying capacity. 

- Phase 3 Review need for further investigation - if none, then revert to visual inspection 

schedule. If further investigation required, then proceed to Phase 4. 

- Phase 4 Before undertaking any more detailed field study, research needs to be  

undertaken of the origins: who designed and built it and the possible style of 

construction. 

- Phase 5 Cost effectively chooses the most suitable strategy for further investigation. 

An NDT method may be chosen for one of two reasons: (a) when a direct 

physical measurement strategy was inadequate or too expensive; and (b) 

when there is a need to extend a limited physical investigation. 

- Phase 6 Implement the investigation technique. 
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Advantages of the NDT 

The NDT can be used in every step of a productive process, as for example:  

 

- During the reception of raw materials arriving at the warehouse: to check the homogeneity, 

the chemical composition and evaluate some mechanical properties.  

 

-  During the different steps of the fabrication process: to check if the component is free of 

defects. 

 

- In the final inspection: to ensure that the piece fulfill the acceptance requirements.  

 

- In the inspection and the checking of the parts and components in service: to verify that they  

can still be used safely or to know the remaining life time.  

 

Due to there is no alteration of the material properties and for this reason there is no wastes, 

with the NDT only there are loses when deficient pieces are detected. 

 

 

Limitations of the NDT 

The first limitation is that in some occasions the initial investments of these type of test are  

high, but can be justified if it is rightly analyzed the cost-benefit relation.  

 

Another limitation is that the physical property to control is measured in an indirect way, 

moreover is evaluated qualitatively or by comparison. This limitation can be overcome if there  

are appropriate comparative or referral patterns that allow a good calibration of the  

inspection systems.  

 

When there aren’t inspections procedures properly prepared or when there aren’t appropriate  

comparative or referral patterns, a same indication can be evaluated in a different way by  

different inspectors.  

 

Although the NDT are relatively easy to apply, the personal that make them have to fulfill  

some requirements: they have to be properly trained and qualified and they have to have the  

necessary experience due to get a correct interpretation and evaluation of the results and due  

to avoid material waste or time waste. 
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Benefits of using NDT 

A combination of NDT with a statistical analysis contributes to improve the manufacturing 

process control of a component and to improve the productivity of a plant.  

 

When the NDT are used as a part of a prevention inspection it reduces significantly the repair  

costs, in the direction of saving time and resources with the reparation. 

 

A combination of NDT with other activities of the quality control helps to ensure and maintain 

a uniform level of quality of the final product.  

 

Another benefit is that using the NDT as an auxiliary tool of the industrial maintenance, there  

is a better evaluation of the components in service, so it allows optimizing the corrective  

maintenance planning.  

 

 

NDT techniques 

There are many NDT techniques, each based on different theoretical principles, and producing 

as a result different sets of information regarding the physical properties of the structure. 

These properties, such as compression and shear wave velocities, electrical resistivity and so 

on, have to be interpreted in terms of the fabric of the structure and its engineering 

properties. Inevitably, this interpretation involves some degree of assumption about the  

structure, and the use of calibration measurements is an essential feature of most  

nondestructive surveys. Furthermore, many structural problems will be best studied by a 

particular NDT method, depending upon which physical properties of the construction 

materials offer the best chance of being reliably determined.  

 

In general there are two classes of nondestructive test methods for concrete and masonry. The  

first class consists of those methods that are used to estimate strength of the material: the  

surface hardness, penetration resistance, pullout, break-off, pull-off, and maturity techniques  

belong to this category. Some of these methods are not truly nondestructive because they  

cause some surface damage, which is, however, minor compared with that produced by  

drilling a core. The second class includes those methods that measure other characteristics of 

the material such as moisture content, density, thickness, resistivity, and permeability. Also 

included in the second class are such methods as stress wave propagation, ground probing 

radar, and infrared thermography techniques, which are used to locate delaminations, voids, 
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and cracks. In addition, there are methods to provide information on steel reinforcement such 

as bar location, bar size, and whether the bars are corroding.  

 

There is a wide range of NDT methods, which are used in the civil engineering industry. Some 

of the nondestructive methods are described, emphasizing in those most important and those  

that are used in the research, in the following subchapters.  

 
 
 

2.2 Ultrasonic methods: pulse velocity method 
 

 

This method can be used for detecting internal cracking and other defects as well as changes in 

the material such as deterioration due to aggressive chemical environment and freezing and 

thawing. One of the ultrasonic methods more used is the pulse velocity method. By using the  

pulse velocity method it is also possible to estimate the strength of test specimens and in-

place concrete.  

 

The pulse velocity method is a truly nondestructive and noninvasive method, as the technique  

uses mechanical waves resulting in no damage to the material element being tested. A test  

specimen can be tested again and again at the same location, which is useful for monitoring 

concrete undergoing internal structural changes over a long period of time.  

 
Figure 2.1 Pulse velocity instrument (James Instruments, Inc.) 
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The test instrument (Figure 2.1) consists of a means of producing and introducing a wave pulse  

into the material (pulse generator and transmitter) and a means of sensing the arrival of the 

pulse (receiver) and accurately measuring the time taken by the pulse to travel through the  

material.  

 

 
Figure 2.2 illustrates different ways of the ultrasonic transmission: 

 

Figure 2.2 Transmission modes for ultrasonic tests: (a) direct; (b) semidirect; (c) indirect. 

 

 

This form of testing is used successfully at ultrasonic frequencies for the detection of flaws in 

metal castings and is the first nondestructive technique that was developed for the testing of 

concrete. However, it is much less practical in concrete and masonry, which have much higher 

attenuation characteristics and hence lower frequency signals are required to obtain a 

reasonable penetration. In addition, the numerous material boundaries in these materials  

result in scattering of both incident and reflected waves. Despite this fact, it has been 

successfully used for identifying and locating specific flaws in concrete and is also applicable to 

the investigation of small defects within masonry walls.  

  
The pulse velocity method has been applied successfully in the laboratory as well as in the  

field. Furthermore, it can be used for quality control, as well as for the analysis of 

deterioration.  

 

The pulse velocity method may provide a means of estimating the strength of both in situ and 

precast concrete although there is no physical relation between the strength and velocity. The  

strength can be estimated from the pulse velocity by a pre-established graphical correlation 

between the two parameters.  
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The pulse velocity method is suitable for the study of homogeneity of concrete, and, therefore, 

for relative assessment of quality of concrete. Heterogeneity is defined as interior cracking, 

deterioration, honeycombing, and variations in mixture proportions. Heterogeneities in a 

concrete member will cause variations in the pulse velocity. 

 

Although it is relatively easy to conduct a pulse velocity test, it is important that the test be  

conducted such that the pulse velocity readings are reproducible and that they are affected 

only by the properties of the concrete under test rather than by other factors. The factors 

affecting the pulse velocity can be divided into two categories: Factors resulting directly from 

concrete properties and other factors. Examples:  

 

- Cement type: As the degree of hydration increases, the modulus of elasticity will increase and 

the pulse velocity will also increase 

 

- Water-cement ratio: Kaplan, M.F. studied the effect of water/cement (w/c) ratio on the pulse  

velocity. He has shown that as the w/c increases, the compressive and flexural strengths and 

the corresponding pulse velocity 

 

- Age of concrete: The effect of age of concrete on the pulse velocity is similar to the effect on 

the strength development of concrete. Jones, R. reported the relationship between the pulse  

velocity and age. He showed that velocity increases very rapidly initially but soon flattens  

 

- Temperature: Temperature variations between 5 and 30ºC have been found to have an 

insignificant effect on the pulse velocity (Jones, R. and Facaoaru, I.). For temperatures beyond 

this range, the British Standards Institution recommends some corrections.  

 

- Level of stress: Pulse velocity is generally not affected by the level of stress in the element  

under test. However, when the concrete is subjected to a very high level of static or repeated 

stress, say, 65% of the ultimate strength or greater, microcracks develop within the concrete, 

which will reduce the pulse velocity considerably (Popovics, S. and Popovics, J.S., and Wu, T.T 

and Lin, T.F.) 
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2.3 Rebound methods 
 

The rebound methods or surface hardness methods for nondestructive testing are based on 

the rebound principle.  The increase in the hardness of concrete with age and strength has led 

to the development of test methods to measure this property. These methods consist of 

measuring the rebound of a spring driven hammer mass after its impact with concrete.  

 

2.3.1 Rebound Hammer by Schmidt 

 
In 1948 Schmidt, E. developed a test hammer for measuring the hardness of concrete by the  

rebound principle. The Schmidt rebound hammer is principally a surface hardness tester with 

little apparent theoretical relationship between the strength of concrete and the rebound 

number of the hammer. However, within limits, empirical correlations have been established 

between strength properties and the rebound number. 

 

The Schmidt rebound hammer is shown in Figure 2.3. The hammer weighs about 1.8 kg and is  

suitable for use both in a laboratory and in the field.  

 
 

 

Figure 2.3  Schmidt rebound hammer 

 

 

A schematic cutaway view of the rebound hammer is shown in Figure 2.4. The main 

components include the outer body, the plunger, the hammer mass, and the main spring. The  

rebound distance is measured on an arbitrary scale marked from 10 to 100. The rebound 

distance is recorded as a “rebound number” corresponding to the position of the rider on the  

scale. 
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Figure 2.4 A cutaway schematic view of the Schmidt rebound hammer. 

 

 
Although the rebound hammer provides a quick, inexpensive means of checking the uniformity  

of the material, it has serious limitations and these must be recognized. The results of the  

Schmidt rebound hammer are affected by:  

 

- Smoothness of test surface: The tougher is the surface, the more accurate are the results  

(Kolek, J and Greene, G.W.)  

 

- Size, shape, and rigidity of the specimens: If the section of test specimen is small, any  

movement under the impact will lower the rebound readings. In such cases the member has to 

be rigidly held or backed up by a heavy mass (Mitchell, L.J. and Hoagland, G.G.).  

 

- Age of test specimens: It has been confirmed by Zoldners, N.G and Victor, D.J.  that for equal 

strength, higher rebound values are obtained on 7-day-old concrete than on 28-day-old 

concrete. 

 

- Surface and internal moisture conditions of the concrete: The degree of saturation of the 

concrete and the presence of surface moisture has a decisive effect on the evaluation of test  

hammer results. Zoldners, N.G has demonstrated that well-cured, air-dried specimens, when 

Soaked in water and tested in the saturated surface-dried condition, show rebound readings 5  

points lower than when tested dry.  
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- Type of coarse aggregate: It is generally agreed that the rebound number is affected by the  

type of aggregate used. According to Klieger, P. et al. , for equal compressive strengths, 

concretes made with crushed limestone coarse aggregate show rebound numbers  

approximately 7 points lower than those for concretes made with gravel coarse aggregate, 

representing approximately 7 MPa difference in compressive strength. 

 

-  Type of cement: According to Kolek, J., the type of cement significantly affects the rebound 

number readings. 

 

- Carbonation of the concrete surface: The rebound numbers can be up to 50% higher than 

those obtained on an uncarbonated concrete surface 

 

 

2.4 Penetration resistance methods 
 

Penetration resistance methods are based on the determination of the depth of penetration of 

probes (steel rods or pins) into a material. This provides a measure of the hardness or  

penetration resistance of the material that can be related to its strength.  

 

The measurement of concrete hardness by probing techniques was reported by Voellmy, A. in 

1954. Two techniques were used. In one case, a hammer known as Simbi was used to 

perforate concrete, and the depth of the borehole was correlated to the compressive strength 

of concrete cubes. In the other technique, the probing of concrete was achieved by Spit pins, 

and the depth of penetration of the pins was correlated with the compressive strength of 

concrete. 

 

2.4.1 The Windsor probe 
 

A device known as the Windsor probe was developed for penetration testing of concrete in the  

laboratory as well as in situ. The device was meant to estimate the quality and compressive  

strength of in situ concrete by measuring the depth of penetration of probes driven into the  

concrete by means of a powder-actuated driver. 

 

The Windsor probe, like the rebound hammer, is a hardness tester, and its inventors’ claim 

that the penetration of the probe reflects the precise compressive strength in a localized area 
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is not strictly true. However, the probe penetration relates to some property of the concrete 

below the surface, and, within limits, it has been possible to develop empirical correlations  

between strength properties and the penetration of the probe.  

 

The Windsor probe consists of a powder-actuated gun or driver (Figure 2.5), hardened alloy-

steel probes, loaded cartridges, a depth gauge for measuring the penetration of probes, and 

other related equipment.  

 

 

Figure 2.5 A view of the Windsor probe equipment. (A) Driver unit. (B) Probe for normal-weight 

concrete. (C) Single probe template. (D) Calibrated depth gauge 

 

 

The probe test has limitations that must be recognized. These limitations include minimum 

size requirements for the member to be tested. The minimum acceptable distance from a test 

location to any edges of the member or between two given test locations is of the order of 150 

to 200 mm; while the minimum thickness of the members is about three ti mes the expected 

depth of penetration. Distance from reinforcement can also have an effect on depth of probe  

penetration especially when the distance is less than about 100 mm.  

 

 

2.5 Pull-off test  

 

The pull-off test is based on the concept that the tensile force required to pull a metal disk, 

together with a layer of concrete, from the surface to which it is attached, is related to the  

compressive strength of the concrete. There are two basic approaches that can be used. One is  

where the metal disk is attached directly to the surface and the stressed volume of material  
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lies close to the face of the disk, and the other is where surface carbonation or skin effects are 

present and these can be avoided by the use of partial coring to an appropriate depth. Both 

these approaches are illustrated in Figure 2.6.  

 

 

Figure 2.6 Schematic of the pull-off test showing the two procedures that can be used. 

 

 

To convert the pull-off tensile strength into a cube (or cylinder) compressive strength, a 

previously established empirical correlation chart is used; one such typical chart is shown in 

Figure 2.7: 

 

Figure 2.7 Example of compressive strength correlation for the pull-off test. (From Murray, 

A.McC.) 

 

 

The main advantage of the pull-off test is that it is simple and quick to perform. The entire  

process of preparing the surface and bonding the metal disk should take no more than 15 min. 

Another advantage is that the damage caused to the surface after a test is not severe. The 
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main limitation of the method is the curing time required for the adhesive. In most situations, 

it is normal practice to apply the disks one day and complete the test the next day. There is,  

however, a potential problem by doing this in that, if the surface preparation has not been 

completed in the correct way or if the environmental conditions are unfavorable, then this  

may cause the adhesive to fail. Thus, the test result is meaningless; however, this will not be  

discovered until after the test has been completed. To compensate for this type of problem, it  

is recommended that at least six disks be used to estimate the compressive strength and, if  

necessary, one of the individual test results can be eliminated if an adhesive failure has  

occurred. However, with the advances that have taken place in the development of adhesives  

for the construction industry, this particular limitation is becoming less of a problem.  

  

2.6 Others methods 
 

 

There are more nondestructive methods to evaluate the properties of the material, like the  

methods to evaluate corrosion of reinforcement or the combined methods. Following text 

introduces a small concept of some of them.  

 

Visual Methods: Visual methods of surface examination, using naked eyes or with optical aid 

(Figure 2.8), tend to be neglected by NDT personnel but are, nevertheless, important. It is  

considered as the oldest and cheapest NDT method. It is also considered as one of the most  

important NDT method and applicable at all stages of construction or manufacturing  

sequence. In inspection of any engineering component, if visual inspection alone is found to be  

sufficient to reveal the required information necessary for decision making, then other NDT  

methods may no longer considered necessary.  

 

 

Figure 2.8 Visual inspection of an object 
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Many of the most serious defects, from the strength point of view, are surface-breaking that  

can often be seen by careful direct visual inspection. Moreover, optical aids to visual  

inspection should be used whenever practicable. Industrial endoscopes, usually known as  

borescopes, enable internal surfaces inaccessible to the naked eye to be seen. Although 

considered as the simplest method of NDT, such an inspection must be carried out by  

personnel with an adequate preparation and experience 

 

 

Impact-echo: The impact-echo is an impact method for testing of thin concrete structures  

developed by Sansalone and Carino. A pulse generated by impact is composed of low-

frequency waves that have the ability to penetrate concrete. Sansalone an Carino used this  

methods to detect various types of interfaces and simulated defects in concrete slab and wall  

structures, including cracks and voids in plain and reinforced concrete, the depth of surface-

opening cracks, voids in prestressing tendon ducts, honeycombed concrete, the thickness of 

slabs and overlays, and delaminations in slabs with and without asphalt concrete overlays.  

 

 

Figure 2.9 Principle of the impact-echo method 

 

The principle of the impact-echo technique is illustrated in Figure 2.9. A stress pulse is  

introduced into a test object by mechanical impact on the surface. The stress pulse propagates  

into the object along spherical wave fronts as P- and S-waves. In addition, a surface wave (R-

wave) travels along the surface away from the impact point. The P- and S- stress waves are  

reflected by internal interfaces or external boundaries. The arrival of these reflected waves at  
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the surface where the impact was generated produces displacements that are measured by a 

receiving transducer and recorded by a data acquisition system. Because of the radiation 

patterns associated with P- and S-waves, if the receiver is placed close to the impact point, the  

waveform is dominated by the displacements caused by P-wave arrivals. The success of the  

method depends, in part, on using an impact of the correct duration. 

 

An impact-echo test system is composed of three components: an impact source; a receiving 

transducer; and a data acquisition system with appropriate software for signal analysis and 

data management 

 

The selection of the impact source is a critical aspect of a successful impact-echo test system. 

The force-time history of an impact may be approximated as a half-cycle sine curve, and the  

duration of the impact is the “contact time”. The contact time determines the frequency 

content of the stress pulse generated by the impact. The shorter the contact time, the higher is  

the range of frequencies contained in the pulse. Thus, the contact time determines the size of 

the defect that can be detected by impact-echo testing. As the contact time decreases and the  

pulse contains higher-frequency (shorter-wavelength) components, smaller defects can be  

detected. In addition, short-duration impacts are needed to accurately locate shallow defects. 

The stress pulse must have frequency components greater than the frequency corresponding 

to the flaw depth. As an approximation, the highest frequency component of significant  

amplitude in a pulse equals the inverse of the contact time.  

 

In summary, the impact-echo method uses mechanical impact to generate a high-energy stress  

pulse. Surface displacements are measured near the impact point. The stress pulse undergoes  

multiple reflections between the test surface and the reflecting interface, and results in a 

periodic surface motion. This permits frequency analysis of the recorded surface displacement  

waveforms. The dominant frequency in the amplitude spectrum is used to determine the  

depth of the reflecting interface from the known wave speed. The amplitude spectra along a 

scan line can be used to construct a cross section of the structure, which displays the location 

of the reflecting interfaces. The ability of the method to detect a variety of defects has been 

demonstrated.  
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Pull-out Test: The pullout test (Figure 2.10) measures the force required to pull an embedded 

metal insert with an enlarged head from a concrete specimen or a structure. The pullout test is  

used during construction to estimate the in-place strength of concrete to help decide whether 

critical activities such as form removal, application of post-tensioning, or termination of cold 

weather protection can proceed.  

 

 

 

 

 

 

 

 

 

 

 

 

Break-Off Test Method: In-place concrete strength is not the same as cylinder concrete  

strength because the in-place concrete is placed, compacted, and cured in a different manner 

than the cylinder specimen concrete. The Break-Off test (Figure 2.11) consists of breaking off 

an in-place cylindrical concrete specimen at a failure plane parallel to the finished surface of 

the concrete element. The BO stress at failure can then be related to the compressive or 

flexural strength of the concrete using a predetermined relationship that relates the concrete  

strength to the BO strength for a particular source of concrete. Determination of accurate in-

place strength is critical in form removal and prestress or post-tension force release operation.  

 

 

Figure 2.11 Schematic of the break-off test. 

Figure 2.10 Schematic of the pull-out test. 
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Maturity Method: The maturity method is a technique for estimating the strength gain of 

concrete based on the measured temperature history during curing. The combined effects of 

time and temperature on strength gain are quantified by means of a maturity function. 

Maturity functions are used to convert the actual temperature history of the concrete to a 

factor that is indicative of how much strength has developed. 

 

 

Resonant Frequency Methods: An important dynamic property of any elastic system is the  

natural frequency of vibration. For a vibrating beam of given dimensions, the natural  

frequency of vibration is mainly related to the dynamic modulus of elasticity and density. 

Hence, the dynamic modulus of elasticity of a material can be determined from the  

measurement of the natural frequency of vibration of prismatic bars and the mathematical 

relationships existing between booth parameters.  

 

 

Combined Methods: In order to determine the strength of in situ concrete more accurately, it  

is usual to apply more than one nondestructive method at the same time. The benefit of the 

small additional reliability of a combined test versus a single nondestructive test should be  

assessed against the additional time, cost, and complexity of combined techniques. During this  

research it will be used the SONREB Method: By knowing the rebound number and pulse  

velocity, the compressive strength is estimated (Figure 2.12).  

 

 

 

 

 

 

 

 

 

Figure 2.12 ISO-strength curves for reference concrete in SONREB method 
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Magnetic/Electrical Methods: Magnetic and electrical methods (Figure 2.13) are used in a 

number of ways to evaluate structures. These methods are used to (1) locate reinforcement  

and measure member thickness by inductance; (2) measure the moisture content of concrete  

and salt content in the masonry associated with moisture content; (3) measure the corrosion 

potential of reinforcement; (4) determine the thickness of a pavement or of a masonry wall;  

and (5) locate defects and corrosion in reinforcement by measuring magnetic flux leakage.  

 

 

Methods to Evaluate Corrosion of Reinforcement: A critical step in selecting the most  

appropriate repair strategy for a distressed concrete structure is to determine the corrosion 

status of reinforcing bars. The evaluation of the corrosion is a quantitative method through  

which the effective of the control and preventive techniques of the corrosion can be evaluated 

and provide the information needed to optimize them (Figure 2.14). 

 

Figure 2.14 Apparatus to measure surface potential associated with corrosion current. 

Figure 2.13 A meter used to locate reinforcement and meter designed to measure moisture content 
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With techniques for corrosion monitoring it could be possible: (1) Provide an advanced alarm  

of the potential damages that would occur in the structures of production, in case to maintain 

the existing corrosive conditions; (2) Study a correlation of the changes in the parameter  

during the process and their effect into the system; (3) Diagnose a particular corrosive  

problem, identify their causes and the control parameter of the corrosion, such as the  

pressure, the temperature, pH, etc; (4) Evaluate the effectiveness of a preventive/control 

technique of the corrosion.  

 
 

 

Radioactive/Nuclear Methods: The methods are based on directing ionizing radiation from 

sources such as radioisotopes and X-ray generators against or through fresh or hardened 

concrete samples. The radiation collected after interaction with the concrete provides  

information about physical characteristics such as composition, density, and structural  

integrity. The radioactive and nuclear methods are fast and accurate, but their use has been 

limited by the often complex technology involved, high initial costs, and training and licensi ng 

requirements.  

 

 

Short-Pulse Radar Methods: Short-pulse radar (Figure 2.15) is a powerful diagnostic tool with a 

wide range of applications in the testing of concrete. It is gaining acceptance as a useful and 

rapid technique for nondestructive detection of delaminations and other types of defects in 

bare or overlaid reinforced concrete decks. It also shows potential for other applications — 

such as monitoring of cement hydration or strength development in concrete, study of the 

effect of various admixtures on curing of concrete, determination of water content in fresh 

concrete, and measurement of the thickness of concrete members.  

 

 

Figure 2.15 Components of a typical short-pulse radar system 
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Infrared Thermographic Techniques: Infrared thermography, a nondestructive, remote sensing 

technique, has proved to be an effective, convenient, and economical method of testing 

concrete (Figure 2.16). It can detect internal voids, delaminations, and cracks in concrete  

structures such as bridge decks, highway pavements, garage floors, parking lot pavements, and 

building walls. As a testing technique, some of its most important qualities are that (1) it is  

accurate; (2) it is repeatable; (3) it is not annoying; and (4) it is economical. By measuring 

surface temperatures under conditions of heat flow into or out of the material, one can 

determine the presence and location of any subsurface anomalies.  

 

 

Figure 2.16 Infrared thermographic radiometer. 

 

Acoustic Emission Methods: Acoustic emissions, which occur in most materials, are caused by  

irreversible changes, such as dislocation movement, twinning, phase transformations, crack 

initiation, and propagation, debonding between continuous and dispersed phases in 

composite materials, and so on. In concrete acoustic emission is due primarily to: 1. Cracking 

processes; 2. Slip between concrete and steel reinforcement; 3. Fracture or debonding of 

fibers in fiber-reinforced concrete.  Acoustic emission techniques may be very useful in the  

laboratory to supplement other measurements of concrete properties. However, their use in 

the field remains problematic.  

 

2.7 Summary 
 

In Table 2.1 are show a summary of all the non destructive methods: 
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Table 2.1 Summary of nondestructive methods 

Inspection 

method 

Parameter 

measured 

Parameter 

obtained 
Advantages Disadvantages 

Visual 
Surface 

 condition 
- 

Cheapest NDT method 
Instantaneous results 

Superficial or little depth 

(using borescopy or 
endoscopy) 

Load test 
Load carrying 

capacity 

Strength of  

the specimen 
Definitive 

Very  slow  

and possibly dangerous 

Coring 
Specific 
internal 

dimensions 

Strength of  

the specimen 
Definitive dimensions 

Measurement only 

 at test point 

Ultrasonic 
Wave velocity 

through 

structure 

Strength of  

the specimen 
Relatively quick 

Only works on individual 
masonry blocks due to signal 

attenuation; no information 
on major elements 

Rebound 
Mode shapes 

(Rebound 
number) 

Hardness of  
 concrete 

Gives some indirect 
measure of current 

condition 

Difficult to  
quantify data 

Penetration 

resistance 

Depth of 

penetration 

Hardness or 

 penetration 
resistance 

The method of testing  

is relatively simple 

Limitations in the size of  

the specimen 

Pull-off 
Tensile force  

to pull 
Strength  

of concrete 
Simple and quick 

 to perform 
Limitations in the size of  

 the specimen 

Impact-echo 

Pulse 

composed of 
low-frequency 

waves 

Defects of thin 
concrete structures 

Simple and quick 
 to perform 

The detection of the effect 
depends on the contact time 

Pull-out 
Force required  

to pull 
In-place strength 

 of concrete 
Simple and quick 

 to perform 
Is a semi-destructive test 

Break-off 
Force required 

 to pull 
In-place strength 

 of concrete 
Simple and quick 

 to perform 
Limitations in the aggregate 
size and member thickness 

Maturity 

Temperature 

history during 
curing 

Strength gain 
 of concrete 

Relatively fast method 

to know continuously 
the concrete strength 

Calibration curves for every 
type of concrete are needed.  

Resonant 

frequency 

Natural 

frequency of 
vibration 

Dynamic modulus 

 of elasticity 

Provide an excellent 
means for studying the 

deterioration of  
concrete specimens 

Small-sized specimens 
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Combined 

Rebound 

number and 
pulse velocity 

Compressive 

 strength 
More accurately 

Correlations between the  

parameters are needed 

Magnetic/ 
Electrical 

- 
Location of bars, 

moisture content, 

corrosion, etc.  

Simple and quick 
 to perform 

Only superficial analysis 
No precision 

Evaluate 

Corrosion of 
Reinforcement 

Corrosion 
status of 

reinforcing 
bars 

Corrosion status 

 of reinforcing bars 

Relatively simple 

measurement 

Requires skill to 

 interpret data 

Radioactive/ 
Nuclear 

Radioisotopes  
and X-ray 

Physical 
 characteristics 

Generally fast 
 and accurate 

Complex technology involved, 
high initial costs, and training 
and licensing requirements 

Short-Pulse 
Radar 

Short-pulse  
radar 

Detection of 
delaminations and 

other types of 

defects in bare 

Quick: can give good 
penetration; can give 

good image of internal 

structure 

Poor penetration through clay. 
Requires skill to understand 

data 

Infrared 
Thermographic 

Surface 
temperatures 

Detect internal 

voids, delaminations, 
and cracks 

Effective, convenient, 
and economical 

It cannot be determined if a 

subsurface void is near the 
surface 

Acoustic 
Emission 

Acoustic  
emissions 

Cracking 

Very useful in the 

laboratory to 
supplement other 

measurements 

Their use in the field 
remains problematic  
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3  DESTRUCTIVE TESTING METHODS 
 

3.1 Introduction 
 

In the destructive testing, tests are carried out to the specimen's failure, in order to 

understand a specimen's structural performance or material behavior under different loads. 

These tests are generally much easier to carry out, yield more information, and are easier to 

interpret than nondestructive testing. Destructive testing is most suitable, and economic, for 

objects which will be mass-produced, as the cost of destroying a small number of specimens is  

negligible.  

 

So, comparing with nondestructive methods, the destructive tests provide more accurate data 

to determine the properties of the material under load. Despite of it, sometimes it is not 

possible to use them (when the material can’t be destroyed) and is when the NDT are useful.  

 

In this research, the destructive methods are focused in obtain three parameters: the  

compressive strength, the tensile strength and the modulus of elasticity. 

 

Concrete and ceramics typically have much higher compressive strengths than tensile  

strengths. Composite materials, such as glass fiber epoxy matrix composite, tend to have  

higher tensile strengths than compressive strengths.  

 

 

 

3.2 Compressive strength testing 
 

By definition, the ultimate compressive strength of a material is that value of 

uniaxial compressive stress reached when the material fails completely. The compressive  

strength is usually obtained experimentally by means of a compressive test (Figure 3.1).  

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Nondestructive_testing
http://en.wikipedia.org/wiki/Compressive_stress
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Specimens are loaded to failure in a compression testing machine conforming to EN 12390-4. 

The maximum load sustained by the specimen is recorded and the compressive strength of the  

concrete is calculated. Compressive stress and strain are calculated and plotted as a  stress–

strain curve is plotted by the testing machine and would look similar to the Figure 3.2. This  

diagram is used to determine elastic limit, proportional limit, yield point, yield strength and, 

for some materials, compressive strength. 

 

 

Figure 3.2 Stress-strain curve of a compressive test 

 

Figure 3.1 Compressive testing machine in the laboratory 

http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
http://www.instron.com.es/wa/resourcecenter/glossaryterm.aspx?ID=49
http://www.instron.com.es/wa/resourcecenter/glossaryterm.aspx?ID=118
http://www.instron.com.es/wa/resourcecenter/glossaryterm.aspx?ID=180
http://www.instron.com.es/wa/resourcecenter/glossaryterm.aspx?ID=182
http://www.instron.com.es/wa/resourcecenter/glossaryterm.aspx?ID=25
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The apparatus used for this experiment is the same as that used in a tensile test. However, 

rather than applying a uniaxial tensile load, a uniaxial compressive load is applied. As can be  

imagined, the specimen is shortened as well as spread laterally.  

Specimen preparation and positioning 

Wipe the excess moisture from the surface of the specimen before placing in the testing 

machine. 

 

Wipe all testing machine bearing surfaces clean and remove any loose grit or other extraneous  

material from the surfaces of the specimen that will be in contact with the platens. 

 

Do not use packing, other than auxiliary platens or spacing blocks (see EN 12390-4) between 

the specimen and the platens of the testing machine. 

 

Position the specimens so that the load is applied perpendicularly to the direction of casting.  

 

Centre the specimen with respect to the lower platen to an accuracy of ± 1 % of the designated 

size of cube or designated diameter of cylindrical specimens.  

 

If auxiliary platens are used, align them with the top and bottom face of the specimen. 

 

With two-column testing machines, cubic specimens should be placed with the trowelled 

surface facing a column. 

 

 

Loading 

Select a constant rate of loading within the range 0.2 MPa/s to 1.0 MPa/s. Apply the load to 

the specimen without shock and increase continuously, at the selected constant rate ± 10 %, 

until no greater load can be sustained.  

 

When using manually controlled testing machines, correct any tendency for the selected rate  

of loading to decrease, as specimen failure is approached by appropriate adjustment of the  

controls. 

 

Record the maximum load indicated. 

 

http://en.wiktionary.org/wiki/lateral
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Assessment of type of failure 

Examples of the failure of specimen showing that the tests have proceeded satisfactorily are  

given in Figure 3.3 for cubes and in Figure 3.5 for cylinders. Examples for unsatisfactory failure  

of specimens are shown in Figure 3.4 for cubes and in Figure 3.6 for cylinders.  

 

If failure is unsatisfactory this shall be recorded with reference to the pattern letter according 

to figure 3.4 or 3.6 closest to that observed. For cylindrical specimens, failure of the capping 

before the concrete is an unsatisfactory failure. 

 

 Unsatisfactory failures can be caused by:  

- Insufficient attention to testing procedures, especially positioning of the specimen;  

- A fault with the testing machine.  

 

 

Results 

The compressive strength is given by the equation:  

    
 

  
 

Where: 

   is the compressive strength, in megapascals (newtons per square millimeter).  

  is the maximum load at failure, in Newtons. 

   is the cross-sectional area of the specimen on which the compressive force acts, in square 

millimeters.  

 

The compressive strength shall be expressed to the nearest 0.5 MPa (N/mm2). 

 

 

Figure 3.3 Satisfactory failures of cube specimens 
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Figure 3.4 Some unsatisfactory failures of cube specimens 

 

 

Figure 3.5 Satisfactory failure of cylinder specimen 

  

 

 

Figure 3.6 Some unsatisfactory failures of cylinder specimens 

 
 
 

 

3.3  Flexural strength testing 
 

 

Flexural strength, also known as modulus of rupture, bend strength, or fracture strength, a 

mechanical parameter for brittle material, is defined as a material's ability to resist  

deformation under load. The flexural strength represents the highest stress experienced within 

the material at its moment of rupture.  
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Principle 

Prismatic specimens are subject to a bending moment by the application of load through 

upper and lower roller. The maximum load sustained is recorded an the flexural strength is  

calculated 

 

Apparatus 

The device for applying loads (Figure 3.7) shall consist of: 

-  two supporting rollers 

- two upper rollers carried by and articulated cross member, which devices the load applied by  

the machine equally between the two rollers.  

 

Three rollers, including the two upper ones, shall be capable of rotating freely around their axis  

of being inclined in a plane normal to the longitudinal axis of the test specimen.  

 

Figure 3.7 Arrangement of loading of test specimen (two-point loading) 

 

Key:  

1. Loading roller (capable of rotation and of being inclined) 

2. Supporting roller 

3. Supporting roller (capable of rotation and of being inclined) 

 

 

Specimen preparation and positioning 

For specimen stored in water, wipe excess moisture from the surface of the specimen before 

placing in the testing machine.  
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Wipe clear all testing machine bearing surfaces and remove any loose grit or other material  

from the surface of the specimen that will be in contact with the rollers.  

 

Place the test specimen in the machine, correctly centered and with the longitudinal axis of 

the specimen at right angles to the longitudinal axis of the upper and lower rollers.  

 

Ensure that the reference direction of loading in perpendicular to the direction of casting of 

the specimen 

 

 

Loading 

Do not apply the load until all loading and supporting rollers are resting evenly against the test  

specimen. 

 

Select a constant rate of stress within the range 0.04 Mpa/s to 0.06Mpa/s. Apply the load 

without shock and increase continuously, at the selected constant rate ± 1 %, until no greater  

load can be sustained.  

 

The required loading rate on the testing machine is given by the formula: 

   
        

 

 
  

Where: 

R is the required loading rate, in Newtons per second 

s is the stress rate, in Megapascals per second  

d1 and d2 are the lateral dimensions of the specimen, in millimeters. 

l is spacing of the lower rollers, in millimeters 

 

Record the maximum load indicated 

 

 

 

Results 

The flexural strength is given by the equation:  
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Where: 

    is the flexural strength, in Megapascals.  

  is the maximum load, in newtons. 

l is distance between the supporting rollers, in millimeters  

d1 and d2 are the lateral dimensions of the specimen, in millimeters (Figure 3.7) 

 

 

CASE OF LOADING BY A CENTER-POINT LOAD 

In the case where a center-point load is used, the method of test shall be changed in 

accordance with the following information:  

 

Apparatus 

The loading arrangements shall consist of one load-applying roller at mid-span as indicated in 

Figure 3.8. The load-applying roller shall be free to rotate 

 

Figure 3.8 Arrangement of loading of test specimen (centre-point loading) 

 

Key:  

1. Loading roller (capable of rotation and of being inclined) 

2. Supporting roller 

3. Supporting roller (capable of rotation and of being inclined) 
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Loading 

The required loading rate shall be determined in accordance with the formula:  

   
        

   

   
  

Where: 

R is the required loading rate, in Newtons per second 

s is the stress rate, in Megapascals per second  

d1 and d2 are the lateral dimensions of the specimen, in millimeters. 

l is is spacing of the lower rollers, in millimeters 

 

 

Results 

The flexural strength is given by the equation:  

     
      

       
  

Where: 

    is the flexural strength, in Megapascals.  

  is the maximum load, in newtons. 

l is is distance between the supporting rollers, in millimeters 

d1 and d2 are the lateral dimensions of the specimen, in millimeters (Figure 3.7) 

 

Express the flexural strength to the nearest 0.1 MPa  

 
 

3.4  Modulus of elasticity 
 

The static modulus of elasticity or Young Modulus is a measure of the stiffness of 

an elastic isotropic material. It means a measure of the resistance of a material to elastic 

deformation under load 

 

It is defined as the ratio of the stress along an axis over the strain along that axis in the range  

of stress in which Hooke's law holds. The tangent modulus of the initial, linear portion of a 

stress–strain curve is called Young's modulus (Figure 3.7). It can be experimentally determined 

from the slope of a stress–strain curve created during tensile tests conducted on a sample of 

the material.  

 

http://en.wikipedia.org/wiki/Stiffness
http://en.wikipedia.org/wiki/Elasticity_(physics)
http://en.wikipedia.org/wiki/Isotropy
http://en.wikipedia.org/wiki/Stress_(mechanics)
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Strain_(materials_science)
http://en.wikipedia.org/wiki/Hooke%27s_law
http://en.wikipedia.org/wiki/Slope
http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
http://en.wikipedia.org/wiki/Tensile_test
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For testing E it is use the same compression testing machine as the compression and tensile  

strength. And it can be calculated by dividing the tensile stress by the extensional strain in the  

elastic (initial, linear) portion of the stress–strain curve: 

 

   
 

 
 
    

     
 

Where 

E is the Young's modulus (modulus of elasticity), in Megapascals 

F is the force exerted on an object under tension, in Newtons. 

A0 is the original cross-sectional area through which the force is applied, in millimeters.  

ΔL is the amount by which the length of the object changes.  

L0 is the original length of the object, in millimeters.  

 

In Figure 3.7 is shown some habitual values of E for different kind of materials 
 

 

Figure 3.9 Range of E for different types of material

http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Strain_(physics)
http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
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4 EXPERIMENTAL PHASE 
 

4.1 Introduction 
 

 
The experimental phase is based in doing the nondestructive testing to obtain the values that  

are interesting for this Thesis and to collect the data from destructive testing in order to 

compare the results.  

 

The range of materials tested is extensive, from stones to plasters, concrete or bricks. The  

detailed list of specimens materials tested is presented in the following tables (Tables 4.1, 4.2  

and 4.3).  

 

Table 4.1 List of concrete specimens  

Concrete specimens 

Code Specimen material 

C8 Normal concrete, lower class - C16/20 

C9 HPC (High Performance Concrete) 

C10 HPC - fine aggregate + brick powder 

UHP I Ultra High Performance Concrete 

UHP II Ultra High Performance Concrete 

 

 

In Figure 4.1 are shown an example of the UHP specimens tested in the laboratory.  

 

Figure 4.1 Example of concrete specimens 
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Table 4.2 List of plaster specimens 

Plaster specimens 

Code Specimen material 

CE1 Plaster containing pozzolan admixture - type Roubíček 

CE2 Baumit MPA 35 - lime/cement plaster 

CE3 Baumit GrobPutz Maschinell - core plaster  

CE4 Baumit - Thermo Putz - light plaster with perlite 

CE5 Baumit Sanova plaster W - restoration plaster 

CE6 Baumit Sanova puffer plaster - restoration plaster - support layer 

CE7 Baumit MVR Uni  - (Porobeton/APC) 

CP1 Plaster type I 

CP2 Plaster type II 

CP3 Plaster type III 

CP4 Plaster type IV 

CP5 Plaster type V 

CP6 Plaster type VI  

 

 

In Figure 4.2 are shown an example of the plasters specimens tested in the laboratory.  

 

Figure 4.2 Example of plaster specimens 

 

Table 4.3 List of stone and façade wood specimens 

Stone and facade wood specimens  

Code Specimen material 

CE12 Lime-sand brick 

CE15 (NA6) Sandstone-rough surface 

CE16 (NA4) Sandstone-fine surface 

CE17 (NA15) Claystone/Marlite 

CE18 Porobeton P1.8-300 

CE19 Facade wood - commercial  - cedar 

CE20 Facade wood - commercial  - spruce 



4. EXPERIMENTAL PHASE 

 

 
51 

In Figure 4.3 are shown an example of the stone specimens tested in the laboratory.  

 

 

Figure 4.3 Example of CE specimens 

 

In the family of concrete specimens are included in total 5 samples (normal, high performance 

and ultra high performance), in the family of plasters are included 7 specimens of plasters, 6  

specimens of Baumit (a type of external wall insulation) and a brick specimen, and finally in the  

family of stones are included in total 6 specimens (sandstones, claystones, porobeton and 

facade wood).  

 

The tasks realized during the course were the following. In first place it was realized the non 

destructive test: in some materials were tested by the rebound method and other materials  

were tested by the pulse velocity method. Then the materials were tested by destructive  

methods in order to obtain strength parameters. Finally it was made a comparison between 

the parameters obtained with the nondestructive test with the parameters obtained with the  

destructive test.  

 

 

4.2 Nondestructive test done 
 
 

As it was commented previously in some materials only was tested the pulse velocity method. 

This was because some materials, like CP or CE (Figure 4.2 and 4.3), were brittle and it was  

preferable to avoid the risk of breaking the material during the realization of the rebound test  

in order to be able to do destructive test. Only the hardest materials, like concrete specimens  

(Figure 4.1), were tested by both experiments.  
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4.2.1 Pulse velocity test  
 
 
For this test it was used a Proceq PunditLab+ (Figure 4.4). The instrument is composed by two 

transducers (cylinders) and an apparatus. One of the cylinders is a pulse generator and 

transmitter and the second one is the receiver. The apparatus is the responsible of producing 

and introducing a wave pulse into the material and to read the data w hen the pulse arrive to 

the receiver.  

 

 

Figure 4.4 Pulse Velocity Instrument 

 

 
The procedure of the test (Figure 4.5) was the following: 

 

1. Measure the length of the specimen on the direction that the pulse it will be transmitted. 

2. Introduce the length of the specimen in the apparatus  

3. In order to ensure the good contact of the cylinders with the specimen, the application of a 

special gel between cylinders and specimen is needed.  

4. Press the cylinders to the specimen and read the value from the screen. If the measure bar 

is under 50% the reading is not valid. In this case it is necessary to increase the scale and/or to 

press with more force to obtain a valid value. 

5. Write down the value and repeat the procedure with all the specimens of the material. 
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4.2.2 Rebound method 
 

For this test it was used a Proceq SilverSchmidt Type N (Figure 4.6). The main components  

include the outer body, the plunger, the hammer mass, and the main spring (Figure 2.4).  

 

 

Figure 4.6 Rebound Hammer 

 
 

The procedure of the test (Figure 4.7) was the following: 

1. Place the specimen in a suitable support in relation that it doesn’t create extra rebound.  

2. Push the hammer to different points of the surface of the specimen 10 times.  

3. With the electronic device it is possible to make an average of the values.  

4. Write down the value and repeat the procedure with all the specimens of the material.  

 
 
 

 
 

 
 

Figure 4.5 Procedure of the pulse velocity method 
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4.3 Destructive test done 
 

Once the specimens were tested by nondestructive methods the following step was tested 

them by destructive test (Figure 4.8). Some of the tests were realized by the author of this  

thesis and some others were realized by the workers of the laboratory. The parameters  

obtained in these experiments were the flexural strength, the compressive strength and Young 

Modulus. 

 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 

Figure 4.7 Procedure of the rebound method 

Figure 4.8 Destructive test done 
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4.4 Obtained values 
 

As it was explained during the test there were obtained different values for the material  

specimens. In this subchapter are presented them in the following tables of results. First are  

presented the results of concrete specimens, then the results of plaster specimens and finally  

the results of stones specimens. 

 

4.4.1 Concrete specimens 
 
In Table 4.4 are shown the results for the concrete specimen C8, C9 and C10 and in Table 4.5  

the results of Ultra High Performance Concrete specimens 

 

Table 4.4 Table of results Concrete Specimens C8-C9-C10. 

 

Table 4.5 Table of results Concrete Specimens UHP. 

UHP Specimens Nondestructive measurements  Destructive measurements  

Code 
nº 

specimen 
Pulse velocity 
method (m/s) 

Rebound method 
(MPa) 

Flexural strength 
(MPa) 

Compressive 
strength (Mpa) 

UHP I 

3.1 5125 75,5 11,8 123,8 

3.2 5310 73,0 11,6 122,4 

3.3 5440 72,5 11,4 119,8 

Average 5292 73,7 11,6 122,0 

UHP II 

3.-1 5065 64,5 11,1 116,3 

3.-2 5175 63,5 10,9 115,4 

3.-3 5225 58,5 10,5 112,1 

Average 5155 62,2 10,8 114,6 

C8-9-10 

Specimens 
Non destructive measurements  Destructive measurements  

Code 
nº 

specimen 
Pulse velocity 
method (m/s) 

Rebound method 
(Mpa) 

Flexural strength 
(MPa) 

Compressive 
strength (Mpa) 

C8 

1 1680 31,5 4,0 35,6 

2 1715 30,0 3,7 34,3 

3 1544 30,5 4,0 34,7 

Average 1646,3 30,7 3,9 34,9 

C9 

1 1239 83,0 8,4 87,2 

2 1203 66,5 8,8 89,4 

3 1224 59,5 8,3 90,5 

Average 1222,0 69,7 8,5 89,0 

C10 

1 1316 65,5 6,6 140,0 

2 1376 66,1 6,5 119,9 

3 1327 74,5 9,2 105,0 

Average 1339,7 68,7 7,4 121,6 
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4.4.2 Plaster specimens 
 
In Table 4.6 are shown the results for the plaster specimens CE and in Table 4.7 the results of 

plaster specimens CP 

Table 4.6 Table of results Plasters Specimens CE 

CE Specimens 
Non destructive 
measurements 

Destructive measurements  

Code 
nº 

specimen 

Pulse velocity 

method (m/s) 

Flexural strength 

(MPa) 

Compressive 

strength (Mpa) 

CE1 

1 1660 0,67 1,48 

2 1641 0,43 1,45 

3 1238 0,31 0,93 

4 1649 0,69 1,98 

5 1594 0,39 1,36 

6 1268 0,33 1,39 

7 1476 0,62 1,52 

8 - - - 

Average 1503,7 0,49 1,44 

CE2 

1 1907 1,92 2,69 

2 1760 1,40 1,94 

3 2003 1,66 2,72 

4 1759 0,60 1,87 

5 1702 1,05 1,67 

6 2041 1,52 2,34 

7 1953 1,12 1,92 

8 2067 1,34 2,26 

Average 1899,0 1,33 2,18 

CE3 

1 2325 1,56 2,87 

2 1978 1,31 2,23 

3 1965 1,40 2,29 

4 2081 1,09 2,50 

5 2028 1,20 2,85 

6 2259 1,42 2,65 

7 2081 1,21 2,42 

8 2273 1,32 2,60 

Average 2123,8 1,32 2,55 
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CE4 

1 1692 1,09 2,08 

2 1608 0,23 1,49 

3 1535 0,41 1,66 

4 1632 0,95 1,83 

5 1574 0,57 1,49 

6 1582 0,63 1,52 

7 1516 0,52 1,67 

8 1558 0,75 1,84 

Average 1587,1 0,64 1,70 

CE5 

1 1930 1,67 3,50 

2 2008 1,22 4,33 

3 2028 1,52 4,89 

4 1978 1,63 3,67 

5 1841 1,62 3,68 

6 1978 1,42 3,89 

7 2003 1,55 4,12 

8 1965 1,66 4,05 

Average 1966,4 1,54 4,02 

CE6 

1 2374 2,94 5,91 

2 2416 2,71 5,38 

3 2416 2,89 5,30 

4 2342 2,50 5,73 

5 2428 2,81 6,75 

6 2435 2,58 5,67 

7 2344 2,85 5,82 

8 2410 2,92 5,94 

Average 2395,6 2,77 5,81 

CE7 

1 1953 2,04 3,70 

2 1819 1,60 2,65 

3 1741 1,50 2,41 

4 1769 1,25 2,20 

5 1749 1,53 2,41 

6 1821 1,42 2,46 

7 1850 1,55 2,65 

8 1712 1,72 2,85 

Average 1801,8 1,58 2,67 
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Table 4.7 Table of results Plaster Specimens CP. 

CP Specimens 
Non destructive 

measurements 
Destructive measurements  

Code 
nº 

specimen 

Pulse velocity 

method (m/s) 

Flexural strength 

(MPa) 

Compressive 

strength (Mpa) 

CP1 

1 1680 0,35 1,19 

2 1715 0,43 1,22 

3 1544 0,32 1,32 

4 1590 0,52 1,33 

5 1660 0,28 1,06 

6 1689 0,43 1,26 

Average 1646,3 0,39 1,23 

CP2 

1 1239 0,29 1,43 

2 1203 0,35 1,41 

3 1224 0,29 1,31 

4 1249 0,34 1,26 

5 1212 0,38 1,18 

6 1205 0,29 1,15 

Average 1222,5 0,32 1,29 

CP3 

1 1316 0,47 1,91 

2 1376 0,48 1,88 

3 1327 0,35 1,85 

 4 1366 0,46 1,85 

 5 1322 0,40 2,09 

 6 1331 0,33 1,73 

Average 1339,7 0,42 1,88 

CP4 

1 1566 0,39 1,64 

2 1535 0,38 2,04 

3 1624 0,47 2,08 

4 1541 0,44 1,87 

5 1599 0,51 2,57 

6 1585 0,51 2,13 

Average 1575,0 0,45 2,05 

CP5 

1 1450 0,42 1,58 

2 1460 0,45 1,71 

3 1515 0,41 1,54 

4 1501 0,44 2,22 

5 1461 0,41 2,40 

6 1463 0,45 2,08 

Average 1475,0 0,43 1,92 
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CP6 

1 1487 0,26 3,53 

2 1524 0,31 3,11 

3 1428 0,21 3,56 

4 1530 0,25 3,89 

5 1470 0,29 3,75 

6 1439 0,46 4,04 

Average 1479,7 0,30 3,65 

 
 

4.4.3 Stones and facade wood specimens 
 
In Table 4.8 and 4.9 are shown the results for the stone and facade wood specimens CE.  

Table 4.8 Table of results Plaster Specimens CE. 

Plaster CE Specimens 
Non destructive 
measurements 

Destructive measurements 

Code 
nº 

specimen 

Pulse velocity 

method (m/s) 

Flexural strength 

(MPa) 

Compressive 

Strength (Mpa) 

CE12 

1 3100 3,50 48,60 

2 3106 3,98 51,80 

3 3178 3,71 54,10 

Average 3128,0 3,7 51,5 

CE15 
(NA6) 

1 2442 1,18 8,75 

2 2277 1,31 8,59 

3 2356 1,33 8,85 

4 2384 1,28 8,79 

5 2442 1,30 8,75 

6 2236 1,27 8,72 

Average 2356,2 1,28 8,74 

CE16 

(NA4) 

1 3367 6,09 36,50 

2 3231 6,17 35,40 

3 3300 6,17 34,50 

4 3204 5,92 35,90 

5 3274 6,07 33,60 

6 3146 5,95 36,90 

Average 3253,7 6,06 35,47 

CE17 
(NA15) 

1 3578 13,2 46,8 

2 3515 10,0 46,0 

Average 3546,5 11,6 46,4 

CE18 

1 1935 0,506 1,4 

2 1992 0,534 1,6 

3 1907 0,549 1,8 

Average 1944,7 0,5 1,6 
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Table 4.9 Table of results facade wood specimens 

Wood Specimens 
Non destructive 
measurements 

Destructive measurements 

Code 
nº 

specimen 
Pulse velocity 
method (m/s) 

Flexural strength 
(MPa) 

Young Modulus 
(Gpa) 

CE19 

I 1949 78,7 10,7 

II 1962 99,3 11,8 

III  1937 62,7 9,1 

Average 1949,3 80,2 10,5 

CE20 

A 2109 70,8 10 

B  2024 96,8 11,4 

C 2045 91,2 13,9 

Average 2059,3 86,3 11,8 

 
 

4.5 Comparison of results 
 
 
The comparison is done by doing some graphs representation for each material. In each graph 

is represented in one of the axis one parameter obtained with nondestructive methods  

(rebound method or pulse velocity method) and in the other axis one parameter obtained with 

destructive methods (flexural strength, compressive strength or Young Modulus). Once the  

data is plotted in the graph the next step is draw the best approximation of the points with a 

trendline. In this investigation the only approximations that are taking into account are linear 

or polynomials of second degree to simplify the results and the conclusions.  

   

 

4.5.1 Concrete specimens 
 
 
UHP 

 
In the first place it is compared the flexural strength with the pulse velocity method (Figure  

4.9).  As it can be seen the best approximation with the obtained data is a polynomial function 

of second order. 
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In the comparison of compressive strength with the pulse velocity method (Figure 4.10) it is  

visible that the best approximation of the points it is again a polynomial function of second 

order.  

 

 

 

 

 

 

 

 

 

 

And in the comparison of rebound method with the flexural (figure 4.11) and compressive  

strength (Figure 4.12) it is shown that the best approximation is also a polynomial of second 

order.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 UHP-Comparison flexural strength vs pulse velocity method 

Figure 4.10 UHP-Comparison compressive strength vs pulse velocity method 

Figure 4.11 UHP- Comparison flexural strength vs rebound method 
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Figure 4.12 UHP- Comparison compressive strength vs rebound method 

 
 

As it can be seen the approximation of compressive strength with both nondestructive test  

respectively are similar for both specimen UHP. The differences are not so remarkable. In the  

other hand in the case of flexural strength the differences between both specimens are more  

significant. This is because there is a difference of almost 7Mpa in the flexural strength 

between the first sample UHP and the second one. This difference can be explained because of 

changes in the composition of both specimens or because of mistakes in the measurement  

procedure.  

 

So, it can be considered that the relation of compressive strength for Ultra High Performance 

Concrete is good enough and can be use for future investigation. Nevertheless in the case of 

flexural strength it would be necessary to do more test in order to obtain better  

approximations.  

 

Despite of these conclusions in followings measurement it would be better test more  

specimens of the material in order to have more points in the graphic representation of the  

comparison. With more points it would be possible to ensure that the relations obtained are  

correct and them are not an unreal approximation because of the lack of data. 
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C8 
 

In figure 4.13 are represented the results for the normal concrete specimen.  
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

Figure 4.13  Comparison of C8 specimens 

 

All the graphs follow a polynomial of second order relation except for the relation Compressive  

strength versus rebound method that follows a linear relation. 

 
 
 

C9 
 

In Figure 4.14 is represented the results for High Performance Concrete HPC.  
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

Figure 4.14  Comparison of C9 specimens 
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The relations of this specimens are the same than the before material: all the graphs follow a 

polynomial of second order relation except for the relation Compressive strength versus  

rebound method that follows a linear relation. But the differences are visible in the magnitude  

of the equations that are no equal in both materials. This is because the HPC specimen has  

around the double compressive strength than the normal concrete and around three times  

more flexural strength. 

 

 
C10 

 
In Figure 4.15 is represented the results for HPC + brick power specimen.  
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 

The remarkable difference between the results of this material C10 and the last two, C8 and 

C9, is that the relation of flexural strength and rebound method is not polynomial of second 

order anymore, in this case is a linear relation. This difference and the variance of the values of 

the equations it is explained because the composition of C10 (fine aggregate + brick power) 

increase the compressive strength over 37% 

 

Despite of the results make sense in the C8, C9 and C10 specimens happen the sa me as UHP 

specimens, with more points it would be possible to ensure that the relations obtained are 

correct and them are not an unreal approximation because of the lack of data.  

Figure 4.15  Comparison of C10 specimens 
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4.5.2 Plaster CE specimens 
 

In the next Figures (from Figure 4.16 to Figure 4.22) a re shown the comparison of flexural  

strength and compressive strength versus pulse velocity method for each type of CE specimen 

tested- As it was said in Table 4.2, CE1 is a plaster specimen and the others (C2 to C7) are 

different types of Baumit specimens.  For each type of material there were 7 specimens, so it is  

considered enough data to get a relation between the different parameters under 

consideration.  

 

CE1 

 

 

 

 

 

 

 
 

CE2 

 

 

 

 

 

 

 

 

 
CE3 

 

 

 

 

 

 

 

Figure 4.16  Comparison CE1 specimens 

Figure 4.17  Comparison CE2 specimens 

Figure 4.18  Comparison CE3 specimens 
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CE4 

 

 

 

 

 

 

 
 

CE5 

 

 

 

 

 

 

 
 

CE6 

 

 

 

 

 

 

 

 

CE7 

 

 

 

 

 

 

Figure 4.19  Comparison CE4 specimens 

Figure 4.20  Comparison CE5 specimens 

Figure 4.21  Comparison CE6 specimens 

Figure 4.22  Comparison CE7 specimens 
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As it can be seen in the previous figures some of the relations are linearly dependents and 

some others polynomial of second order.  

 

Relative to the Baumit specimens (C2 to C7) it is observed that there aren’t similarities of the  

relations of the parameters between the materials. This is because that different composition 

of the Baumit specimens changes the resistance parameters and, due to this, the relations  

found. So it is necessary to be sure which kind of Baumit is under investigation in order to use  

the correct relation, and not to use relation of materials with different resistance or strength 

characteristics.  

 

Relative to the other material tested (C1) has linear relation in both comparisons. Despite of 

that it is observed that the points are scattered and maybe a linear relation is not the best  

approximation. So two proposals are considered as the best ones for further investigation. The  

first one is to repeat the testing with other specimens of the material and to compare the  

results obtained. And the other is use the data presented in this report but use another 

approximation like for example a polynomial function of third order. 

 

 

4.5.3  Plaster CP specimens 
 
In the next Figures (from Figure 4.23 to Figure 4.28) are presented the comparison of flexural  

strength versus pulse velocity method and compressive strength versus pulse velocity method 

for each type of plaster specimen tested (CP1 to CP6). As it was said in Table 4.2, the  

specimens are different type of Plasters.  For each type of material there were 6 specimens, so 

it is considered enough data to get a relation between the different parameters under 

consideration.  

 
CP1 

 

 

 
 

 

 

 

 

 
Figure 4.23  Comparison CP1 specimens 
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CP2 

 
 
 

 
 

 

 

 
 

 

CP3 

 

 

 
 

 
 
 

 
 

 

CP4 

 

 

 

 

 

 

Figure 4.26  Comparison CP4 specimens 

CP5 

 

 

 

 

 

 

 
 

Figure 4.24  Comparison CP2 specimens 

Figure 4.25  Comparison CP3 specimens 

Figure 4.27  Comparison CP5 specimens 
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CP6 

 

 

 
 
 

 

 
 

 
 

As it can be seen in the previous Figures there are random relations for the obtained 

parameters.  

 

CP1 and CP2 have a polynomial of grade 2 relation but the approximations don’t pass through 

the points. In this specimens seem that a polynomial of grade 3 relation would be more  

suitable. In contrast CP3 and CP5 have good approximation with a polynomial relation of 

second degree. The last two materials CP4 and CP5 have a polynomial relation in the flexural  

strength graph and a linear approximation in the compressive strength. But all of them are not 

so good and another approximation like, for example, a polynomial function of third order  

would be more appropriate for the obtained data. 

 
 
 

4.5.4 Stone and facade wood specimens 
 
CE12 

In the figure 4.29 is shown the results obtained for the lime-sand brick. 

 

 

 

 

 

 

 
 

 
 

Figure 4.28  Comparison CP6 specimens 

Figure 4.29  Comparison CE12 specimens 
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For this type of material a linear relation is obtained for both comparisons. It would be also 

possible accept as a good approximation a polynomial of second order, but because of both of 

the results are very near from each other, it is considered in this case that the approximation 

showed in Figure 4.29 are the correct one. But as it happened in other type of materials, with 

only three points it is not possible to ensure that the approximation is accurate enough or if it 

is follow this relation. 

 

 

CE15 & CE16 

Figures 4.30 and 4.31 are shown the obtained relations for the sandstone specimens. The first  

one is for sandstone with rough surface and the second one with fine surface. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

As it can be seen in Figures 4.30 and 4.31 for both type of sandstone are obtained polynomial  

relations of second order but the equations are not the same. This is because, as it can be seen 

in Table 4.6, in the sandstone with fine surface it had measured higher values of flexural and 

compressive strength than in the sandstone with tough surface: while in the flexural strength 

are observed a difference of 5 times more, in the compressive strength 4 times higher. 

Figure 4.30  Comparison CE15 specimens 

Figure 4.31  Comparison CE16 specimens 
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Although the approximation of polynomial function is accepted, in fact they are not very  

precise so, as it happens in C1 specimen, another type of approximation could be considered.  

 

CE17 

In Figure 4.32 are shown the relations in the case of the Claystone/Marlite specimens. 

 

 

 

 

 

 

 

 

 

CE18 

In the Figure 4.33 is represented the results for the testing of the specimen CE18. 

 

 
 
 

 
 
 

 
 

 
 
 

The representation of Figure 4.32 and 4.33 show a linear and polynomial of second degree  

respectively. But because of it was only tested 3 specimens it would be necessary make  

another testing for this type of materials in order to ensure that the relations are accurate  

enough and to obtain a more precise relation.  

 
 

 
 

CE19 & CE20 

In the Figure 4.34 and 4.35 are represented the relation obtained for the facade wood 

specimens.  

 

Figure 4.32  Comparison CE17 specimens 

Figure 4.33  Comparison CE18 specimens 
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For facade wood specimens the relations within the parameters are a polynomial of second 

order but there are some differences in the equations for both types of material. The reason is  

second one, spruce wood, have higher values of resistance characteristics than the first one, 

cedar wood. Despite of the approximations pass through the points it would be necessary to 

check with more number of specimens if the equations are still keeping the same magnitudes. 

 

 

 

 

 

 

 

 

Figure 4.34  Comparison CE19 specimens 

Figure 4.35  Comparison CE20 specimens 
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5 CONCLUSIONS AND RECOMMENDATIONS 
 

The objective of this thesis was obtain some relation between parameters obtained with 

nondestructive methods with parameters obtained with destructive methods in order to have  

some relation to compare both kinds of methods. The NDT used were the rebound method 

and the pulse velocity method. And the parameters obtained with DT were the flexural  

strength, the compressive strength and de Young Modulus. The relations considered were  

linear or polynomial of second degree approximations. 

 

After the work done during the course, plenty of setbacks, it is possible to say that this  

research has been successful. Despite of what was commented in chapter 4.5, that it has to be 

done some modifications in the approximations or some of the test have to be repeated with 

more number of specimens, some relations of nondestructive test and destructive test have  

been reached. 

 

With this research is it has become apparent again that it is possible to make direct relations of 

NDT parameter with DT parameters. In other words, knowing some parameters due to NDT it  

is possible to evaluate the strength and the resistance of a material like if a DT was done. Due  

to this, as it was commented in chapter 2 and 3, with NDT it is possible to, using the obtained 

relations, get an approximation of the real strength parameters without carrying out  

destructive test that in some cases, like historical buildings are impossible to be carried out. 

 

 

 

5.1 Recommendations for further work 
 

In this subchapter are commented the experiments and Works that from the point of view of 

the author of this thesis should be realized during the course 2014-2015 in order to complete  

the study done during the course 2013-2014 and to define a proper direct relatio n between 

the parameters obtained by nondestructive test with the parameters obtained by destructive  

for all type of materials.  
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 Relative to the materials tested 

 

In the present course were tested a wide range of materials: concrete, plasters, stones and  

wood specimens. So the investigation contemplated different kinds of materials in relation of 

historical buildings. Despite of that in order to complete the research it would be necessary to 

add other types of materials like ceramics or mortars.  

 

Moreover, there were some materials tested that as it was commented in the thesis it would 

be necessary to repeat the tests with more specimens in order to check if the obtained 

relations are accurate enough. In this situation are the UHP specimens, some stone materials  

and the façade wood specimens. 

 

 

 Relative to the relations obtained 

 

In this investigation it was only considered linear and polynomial of second order 

approximations in other to simplify the relations within the parameters. But in some cases it is 

visible that no one of these approximations is suitable with the obtained data. So, in future  

research it would be necessary to consider the option of using other types of approximation 

like polynomial of third order that have better adjust with the obtained data. In this situation 

are C1 specimens, Plasters CP materials and both sandstones specimens.  

 

 

 Relative to the destructive parameters obtained 

 

The parameters obtained with destructive test were compressive strength, flexural strength 

and Young Modulus. It is considered as enough data in order to know the conditions of a 

building when checking its resistance. 

 

No in all the specimens was obtained the three destructive parameters. In all of them the  

flexural and compressive strength was obtained, except for the facade wood specimens that  

instead of compressive strength it was obtained the Young Modulus. And specimens are the  

only one where the Young modulus was given. So for next test it would be necessary obtain 

the maximum number of destructive parameter for each type of material in order to have a 

more completed study. 
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 Relative to the nondestructive parameters obtained 

 

The test done with the specimens during the course was the rebound method and the pulse  

velocity method. The pulse velocity method was tested in all the materials but the rebound it  

was not possible because of some specimens were too fragile. So, in future experiments it  

would be necessary try to find a way to do the rebound method even in the fragile materials  

order to have a more completed study.  

 

For the same reason it is recommended to do other nondestructive methods  like penetration 

resistance methods, the pull-off test and combined methods. The penetration test provides a 

measure of the hardness or penetration resistance of the material that can be related to its  

strength, with pull-off test it is possible to obtain the compressive strength and about  

combined methods it can be used the SONREB Method: By knowing the rebound number and 

pulse velocity, the compressive strength is estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
76 

 

 



REFERENCES 

 

 
77 

6 REFERENCES 
 

 

British Standard 1881, Part 203, Recommendations for Measurement of Velocity of Ultrasonic 

Pulses in Concrete, British Standards Institution, London, 1986.  

 

British Standard EN 12390, Part 3 and 5, Testing hardened concrete, British Standards  

Institution, London, 2000. 

 

British Standard EN 12504, Testing concrete in specimens, British Standards Institution, 

London, 2000. 

 

Greene, G.W., Test hammer provides new method of evaluating hardened concrete, ACI J.  

Proc., 51(3), 249, 1954. 

 

Jones, R., Testing of concrete by an ultrasonic pulse technique, RILEM Int. Symp. on 

Nondestructive Testing of Materials and Structures, Paris, Vol. 1, Paper No. A-17 January 1954, 

137. RILEM Bull., 19(Part 2), Nov. 1954.  

 

Jones, R. and Facaoaru, I., Recommendations for testing concrete by the ultrasonic pulse  

method,Mater. Struct. Res. Testing (Paris), 2(19), 275, 1969.  

 

Henry, J.L, Optimización del control de la resistencia del hormigón de la obra de la depuradora 

del Besós mediante ultrasonidos. Minor thesis , Escola Técnica Superior d’Enginyers de Camins, 

Canals i Ports de Barcelona, 2003. 

 

Kaplan, M.F., The effects of age and water to cement ratio upon the relation between 

ultrasonic pulse velocity and compressive strength of concrete, Mag. Concr. Res., 11(32), 85, 

1959 

 

Klieger, P., Anderson, A.R., Bloem, D.L., Howard, E.L., and Schlintz, H., Discussion of “Test 

Hammer Provides New Method of Evaluating Hardened Concrete” by Gordon W. Greene, ACI 

J. Proc., 51(3), 256-1, 1954. 

 



REFERENCES 

 

 
78 

Kolek,  J.,  An appreciation of the Schmidt rebound hammer, Mag. Concr. Res. (London), 

10(28), 27, 1958.  

 

Kolek, J., Non-destructive testing of concrete by hardness methods, Proc. Symp. on Non-

destructive Testing of Concrete and Timber, Institution of Civil Engineers, London, June 1969, 

15. 

 

Malhotra, V.M. & Carino, N.J., Hand book on nondestructive testing of concrete. Second 

edition. CRC PRESS, 2004. 

 

Mitchell, L.J. and Hoagland, G.G., Investigation of the Impact Tube Concrete Test Hammer, 

Bull. No. 305, Highway Research Board, 1961, 14.  

 

Murray, A. McC., The Development and Application of the Pull-Out Test for Concrete Strength, 

Ph.D. thesis, The Queen’s University of Belfast, 1984.  

 

Popovics, S. and Popovics, J.S., Effect of stresses on the ultrasonic pulse velocity in concrete, 

RILEM Mater. Struct. , 24, 15, 1991.  

 

Schmidt, E., The concrete test hammer (Der Beton-Prufhammer), Schweiz. Bauz. (Zurich),  

68(28), 378, 1950. 

 

Schmidt, E., Investigations with the new concrete test hammer for estimating the quality of 

concrete (Versuche mit den neuen Beton Prufhammer zur Qualitatsbestimmung des Beton), 

Schweiz. Archivangew. Wiss. Tech. (Solothurn), 17(5), 139, 1951. 

 

Schmidt, E., The concrete sclerometer, Proc. Int. Symp. Non-destructive Testing on Materials  

and Structures, Vol. 2, RILEM, Paris, 1954, 310. 

 

Sistendca, Manual de Introducción a los ensayos no destructivos. 

http://www.sistendca.com/DOCUMENTOS/Manual%20Introduccion%20a%20los%20END.pdf  

 

Victor, D.J., Evaluation of hardened field concrete with rebound hammer , Indian Conc. J.  

(Bombay), 37(11), 407, 1963. 

 



REFERENCES 

 

 
79 

Voellmy, A., Examination of Concrete by Measurements of Superficial Hardness, Proc. Int. 

Symp. on Nondestructive Testing of Materials and Structures, RILEM Paris, 2, 323, 1954.  

 

Wu, T.T and Lin, T.F., The stress effect on the ultrasonic velocity variations of concrete under 

repeated loading, ACI Mater. J., 95(5), 519, 1998.  

 

Zoldners, N.G., Calibration and use of impact test hammer, ACI J. Proc., 54(2), 161, 1957.  

 
 

 


