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Facultat d’Informàtica de Barcelona
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Abstract

The aim of this project is to implement a system for the automatic verifica-
tion of digital circuits written in a high-level hardware description language
(Verilog), to be potentially used to assist a electronic design automation
course.

It is desirable for students to be able to acquire experience with any given
HDL by trying to design actual, but low complexity, circuits. However, it
might not be feasible for teachers to evaluate all of the students exercises. On
the other hand, giving sample test inputs and outputs is not an exhaustive
method of verification that might allow hidden defects in the circuit design
to go by undetected. And publishing working model circuit designs for each
of the problems defeats the purpose of allowing the students to be creative
in their solutions.

Therefore, we present a system where the course teachers or adminis-
trators will publish a list of problems (specifications for either sequential or
combinational circuits – What should the circuit do? What are its inputs?
Outputs? ), along with sample correct HDL implementations of such speci-
fications (that will not be shown to the student). Students will be able to
log into the system, search for a suitable problem adjusted to their current
skill level, download its specification, and try to implement it, using their
favorite environment and simulation tools for the selected HDL. They might
test their designs with their own test benches.

When they are comfortable enough with their design, they will be able to
submit it to the system, which will model an automaton of both the student
circuit and the teacher provided working one, and then compare them both,
in a few seconds time. The student will then be able to see instantly if their
circuit matches the specification, or if it does not. In the latter case, the sys-
tem might provide an example input signals trace that causes the student’s
circuit to fail, at the discretion of the course administrator.

In order the reduce the scope of the work, Verilog has been selected as
the HDL of choice for the project. We will not support any other HDL. Also,
we will use the existing Icarus Verilog software and Jutge.org platform.
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Chapter 1

Background

1.1 Hardware Description Languages

A Hardware Description Language (HDL) is basically a computer language
whose main mission is to convey the description of an electronic circuit.

Hardware description languages are older than what usually expected.
It is widely regarded that the first language considered an HDL was the
Instruction Set Processor (ISP) [1], in use since the early 70s. It was created
as a way to describe the design of existing commercial processors, and, in
fact, the PDP-11/45 Processor Handbook had such description in ISP [2].
Processors were becoming increasingly complex with time and old school
schematics failed to provide a way to understand the design through all the
meaningless noise.

Thus, the main goal of ISP was to allow for easier human comprehension
of the design of larger processors. The language had many different layers
of detail so that, by looking at the higher levels, what the processor did was
clear to human readers. But by looking at the lower level, repetitive details,
it was possible to unambiguously implement a machine identical to the one
described up to the gate level.

There is no mention at all at how the actual addition is done on the
counter described in listing 1.1: just an addition operator. However, clarity
has improved greatly, and the intentions of the circuit designer are more clear
to the reader. When the Start switch is pressed, since its on the right side
of an evoke (⇒) operation, the evaluation of the action sequence at its right
side is started, and the accumulator register A is cleared. Analogously, the
counter is incremented when the Increment switch is pressed.

4
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Reg i s t e r Dec l a ra t i on s
A\Accumulator <0:7>

Console Switches
Star t . on ;
Increment . on ;

I n t e r p r e t e r
Console . a c t i v i t y := ( Star t . on ⇒ A← 0) ;

( Increment . on ⇒ A← A + 1) ;

Listing 1.1: An eight-bit digital counter in ISP

The counter snippet is also an example of why existing imperative lan-
guages could not really be used without modification as HDLs, as seen on
listing 1.2.

char a ;
for ( ; ; ) {

i f ( Sta r t ) {
a = 0 ;

}
i f ( Increment ) {

a = a + 1 ;
}

}

Listing 1.2: Same counter in C99

On the C version, detection of both the Start and Increment buttons is
sequential, that is, pressing both switches at the same time has a well-defined
behavior. That is not the case on real hardware, which is essentially fully
parallel. Therefore, HDLs have to take into account concurrency as a core
feature of the language.

In fact, on the ISP example, the ; operator is actually a parallel com-
position operator: both statements happen at the same time. Accordingly,
if the operator manages to press both front console switches at the same
time, both action sequences will run, and the counter will try to reset and
increment itself at the same time: the result is undefined 1.

This is a fundamental concept of HDLs. In effect, the following is also

1A physical design implementing such counter using a multiplexer would probably have
a defined behavior though (it would either Reset or Increment). However, both designs
would be valid according to what was specified in the HDL.
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well defined on ISP, and virtually any HDL:

A← B ; B ← A

On a classical imperative language, one would expect both A and B to
get the original value of B. On ISP, the A and B registers contents would
be swapped. If one really desires to get the imperative behaviour back, the
following ISP construct would cause it:

A← B ; NEXT B ← A

With ISP-like languages, a computer instruction set could be described
in a quite high level:

Branches and Subrout ines Ca l l i ng :
JMP ⇒ (PC ← D) ;
BR ⇒ (PC ← PC + o f f s e t ) ;
BEQ ⇒ (Z ← (PC ← PC + o f f s e t ) ) ;
. . .

Listing 1.3: Snippet from the PDP-11 manual[2]

Of course, it was soon realized that by adding a bit of computer-parsable
structure to the language, it could be fed to simulation software and simulate
the computer. In fact, the description of a processor in ISP already looked
much like a software implementation of an interpreter for the instruction set
from such processor – and there were already such simulators. Statements
concerning the delays of gates were added to the language, so that simulation
was more realistic (see the PREVIOUS function at [1]).

From that, the next logical step would have been for the ISP to be actu-
ally used as source to build the computer it represented, by an automated
process instead of a laborious manual process. Such a process was already
envisioned for at least “limited design activities” [1] in the 70s, but not for
the entire circuit.

However, this changed in the 80s, with the introduction of several new,
more well-defined HDLs (Abel, Verilog, VHDL, ...) as well as synthesis tools
for some of them.

These days, both VHDL and Verilog share a first place in developer mind
share, with many other recent additions far behind but slowly gaining ac-
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ceptance (like SystemC). Most commercial synthesis tools provide support
for both VHDL and Verilog, with the differences between each of them dis-
appearing after new versions of the languages appear. Despite that, Verilog
is usually regarded as a less verbose language, easier to become acquainted
with than VHDL.

1.1.1 Verilog

Like ISP, Verilog was also initially designed as a simulation language by then
Automated Integrated Design Systems 2 in the early 80s. It was quickly
marketed with the introduction of the Verilog-XL simulator in 1985. At
around the same time, however, the United States Department of Defense was
busy designing another HDL (VHDL) they would use to precisely describe the
many ASICs they were sourcing from external companies, as reconstructing
them from the technical manuals when the original company was long gone
started to become unfeasible.

Since the Department of Defense planned to release the language specifi-
cations to the general public without any usage restrictions, Gateway believed
designers would quickly favor it versus then proprietary Verilog. Therefore,
on 1991 the Verilog language specification was also made freely available,
and on 1994 it was proposed as the IEEE standard 1364.

Verilog has a syntax that is clearly modeled upon C’s, except for the
Pascal-influenced Begin, End used as block delimiters instead of the C curly
brackets.

Structural Verilog

On Verilog, the core concept is the module, which can be seen as something
akin to a digital circuit component. Much like a real world component, a mod-
ule can contain other modules – even many copies of a single module, each
of them called instances. Also, like a real world component, modules have
ports, wires that connect the internals of the module with other components
outside the module. In order to instance a component, the programmer has
to indicate which wires each to connect to each of the ports in the component.

2now Gateway Design Automation, one of the largest EDA companies
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out

in1
in2
in3

module nor3 ( out , in1 , in2 , in3 ) ;
input in1 , in2 , in3 ;
output out ;
wire o r o f 123 , o r o f 1 2 ;
not f i n a l n o t ( out , or123 ) ;
or or 123 ( o r o f 123 , o r o f 12 ,

in3 ) ;
or or 12 ( o r o f 12 , in1 , in2 ) ;

endmodule

Figure 1.1: An implementation of a 3-input NOR gate using two OR and
one NOT gate.

As seen on the above figure, the syntax actually resembles that of the
original K&R C[3]. It is declaring a module named nor3, with out, in1, in2,
in3 as ports. Where on a K&R function declaration one would write the type
information for each of arguments, on a Verilog we declare whether the ports
are inputs or outputs, a restriction that will be enforced by the synthesizer
to both users of the module as well as its internals.

The nor3 module is built using one instance of the not module (the in-
stance being called final not), and two instances of the or module (called
or 12 and or 123), as per the following diagram:

or_of_12
in3 in2 in1

or_of_123

out

final_not

or_123
or_12

Figure 1.2: An example synthesized circuit for the NOR3 module.

The module also contains two wire declarations, or of 12 and or of 123.
While the first or has the 1st and 2nd inputs connected directly, there would
be no way to connect the output of that or with the or 123 that has the 3rd
module input and the result of the previous or gate as inputs. Therefore,
we need to declare an intermediate wire, internal to the module, that will
connect both pins.

Buses are a way to aggregate multiple related wires so that many of
them can be connected easily (same way a designer would combine them
on a diagram instead of drawing many wires). On Verilog, this is done by
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specifying both the least and most significant indexes of the bus in the wire
declaration:

module bus ( in , out ) ;
input [ 1 : 0 ] in ; // A two−b i t bus
output [ 1 : 0 ] out ; // Another two−b i t bus

and and1 ( out [ 0 ] , in [ 0 ] , in [ 1 ] ) ;
or or1 ( out [ 1 ] , in [ 0 ] , in [ 1 ] ) ;

endmodule

Listing 1.4: A sample module with buses

Buses should not be confused with arrays, which are another kind of
aggregation. Arrays are often used to implement memories, as most syn-
thesizers allow for selection of individual items inside an array to be made
with non-constant indices (i.e. using addresses coming from outside the mod-
ule). Such restriction is though usually applied to buses. On the other hand,
buses allow for selection of more than one item simultaneously, a feature not
available while using arrays.

The language also offers an alternate syntax to implement the nor3 mod-
ule (seen at figure 1.1), where instead of explicit module instantiations, we
use a shorter continuous assignment expression to instantiate all the required
gates and realize the necessary connections:

module nor3 ( out , in1 , in2 , in3 ) ;
input in1 , in2 , in3 ;
output out ;
assign out = ˜( in1 | in2 | in3 ) ;

endmodule

Listing 1.5: A less-verbose implementation of a 3-input NOR

Expressions inside continuous assignments can use the standard set of C-
like operators (see table 1.1 on page 10), as well as numeric literals with a spe-
cific syntax (<size>’<base=d(ec),h(ex),b(in),o(ct)><number> – 3’d10

is decimal number 10 represented using 3 bits).

Care must be taken while using continuous assignments as a very short
expression can be synthesized into thousands of gates, e.g. an arithmetic di-
vision of 64-bit buses. Moreover, undriven nets (not connected to the output
of any gate) have the value x (unknown), which is propagated along each
operand using such value as input, causing problems if not accounted for.
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Operator Description Example
[] Bit access (to individual bits

from a bus)
wire = bus[2];

bus2 = bus[1:0];

{} Bit concatenation (aggregates in-
dividual wires to create a bus)

bus = {wire1,
wire2};

+ - * / % Unsigned arithmetic (can work
on buses; output is a bus of the
same width)

bus = bus1 + bus2;

> >= < <= Unsigned relational (can work on
buses but returns a single bit)

wire = bus1 <=

bus2;

! && || Logical (treat buses as true if any
of its bits is 1; return a single bit)

flag = flag1 ||

flag2;

~ & |

^(xor)
Bitwise operations busres = bus1 |

bus2;

== != Equality tests wire = bus1 ==

bus2;

& | ~& ~| Reduction (works on each of the
bits of a vector, returning a single
bit)

nand = ~& bus;

<< >> Logical shift buso = busi << 3;

<<< >>> Arithmetic shift buso = busi >>> 1;

? : Conditional (ternary operator) res = cond ?

iftrue : iffalse;

Table 1.1: List of Verilog operators[4]

Behavioral Verilog

Verilog is divided into two subsets: structural and behavioral Verilog. All
of the above examples have been about structural Verilog, which virtually
maps 1:1 to a gate-level description of a circuit. The other subset, behavioral,
greatly simplifies the design of sequential circuits. While designers could
model such circuits using flip-flop modules alone, Verilog offers an higher-
level way to do it, the always block (called an always process in technical
terminology).

An always block contains a set of instructions that are to be executed
continually and perpetually. Commonly, this set of instructions starts with
a list of events to wait for (like the rising edge of the clk signal in listing 1.6)
plus a block of instructions to be executed when the event is signaled.
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module d f f ( c lk , q , d ) ;
input c lk , d ;
output q ;
reg r ;
always @(posedge c l k ) begin

r <= d ;
end
assign q = r ;

endmodule

Listing 1.6: A simple D flip-flop implementation

Nevertheless, this is not mandatory, and an always process could have
no conditions to wait on – thus always executing continually –, or could even
have multiple secondary sets of events to wait after the primary one is sig-
naled.

Assignments (<=) can appear on those instructions, but only regs can
appear on the left side. All Verilog operators (see table 1.1) can be used on
the right side – only bit access and concatenation can be used on the left side.

Similarly to ISP (see section 1.1 on page 4), such assignments are done in
parallel: firstly, all of the right sides are evaluated, then the results written.

Like ISP, Verilog has a way to force an assignment to be done sequentially,
by using the = operator instead of <=. However, this is usually frowned upon
as it makes synthesis harder and the synthesized circuit larger.

Apart from the assignment instruction, control structures like if and
while are found in the language, with the usual C syntax (except the use of
Begin and End instead of curly braces). Of special interest is Verilog’s case

control structure,

Non synthesizable Verilog

Verilog has also many other features that do not map nicely to physical cir-
cuits, and are thus usually used to enhance the use of Verilog as a simulation
language. For example, the initial statement, which runs code as soon
as the simulation is started; or delays, which prolong the time between the
evaluation of the right part and the record of the result on the left part and
can be used on the same places the syntax allows wait for event (@) controls
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(it is, after all, an event – x time has passed).

For example, this functionality is used to implement a module that sim-
ulates both the reset and clock signals:

module c lkgen ( c lk , r s t ) ;
output c lk , r s t ;
reg c lk , r s t ;
// A l t e r n a t e the c l o c k every s i m u l a t i o n c y c l e
always #1 c lk <= ˜ c lk ;
i n i t i a l begin

c l k <= 0 ;
r s t <= 0 ;
// Delay 50 s i m u l a t i o n c y c l e s , then r a i s e r s t
#50 r s t <= 1 ;
// Delay 50 e x t r a sim . c y c l e s , then c l e a r r s t
#50 r s t <= 0 ;

end
endmodule

Listing 1.7: A clock generation simulation-only module

Many extensions have been made to the language since its IEEE standard-
ization on 1995. On 2001, the more modern ISO C-like syntax for declaring
modules was adopted by the IEEE standard (as on listing 1.8), along with
signed arithmetic operators and many additions to the system tasks library
(which could be described as a set of functions and procedures useful in a
simulation environment, like fprintf).

module nor3 (output out , input in1 , input in2 , input
in3 ) ;
assign out = ˜( in1 | in2 | in3 ) ;

endmodule

Listing 1.8: The nor3 module in even shorter Verilog-2001 accepted syntax

1.1.2 Icarus Verilog

Icarus Verilog is one of the many available simulation and synthesis tools
for the Verilog language. It is free and open source software, licensed under
the GPL and openly developed under the guidance of its original designer,
Stephen Williams, who started it around the 1990s. [5]
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The design of the application is heavily modular. The frontend applica-
tion (iverilog) accepts a backend as a command line configuration parameter.
The frontend application will virtually only parse the source code. The back-
end has to do any synthesis work or code generation if required. Therefore,
Icarus Verilog is both able to handle synthesis work, for example by using
the fpga backend, or simulation, by using the vvp backend (a lower-level sim-
ulation program that is also included with the Icarus Verilog distribution).

The process used by the software is well-defined:

1. Source preprocessing : done by ivlpp. Handles all the Verilog language
preprocessor statements.

2. Source parsing : done by the ivl frontend using the well-known Flex
and Bison parser generators. Generates an abstract syntax tree.

3. Design elaboration: the syntax tree is converted into an elaborated de-
sign. This is a tree-like representation of the program itself, not the
source. A Module root class would have each of its ports, wires, always
and initial blocks as direct children.

4. Functors: from this point on, the process is guided by the user selected
backend, which contains a set of functors – small graph filters, whose
input is a graph and each generate a slightly modified graph. For
example, a synthesis backend might want to use the synth2 functor,
that, among many other functionalities, generates a D flip-flop for each
assignment inside an always block with a inferred clock signal, then
removes such assignment from the tree.

On the other hand, a simulation backend might want to use the cprop
functor, which, as its name indicates, implements a constant propaga-
tion optimization pass.

5. Code generation: the backend is once again called after all processing
has been done so that it can massage the resulting graph into an appro-
priate format. If all the synthesis functors have been called, the graph
could now be printed in order to get a gate-level diagram of the design.

Backends, called targets in Icarus Verilog, are composed of both a text
file indicating the functors to be run as well as the actual executable code (in
the form of a standard shared object or dynamic link library) to run at the
code generation stage. A public C API is available so that the targets can
explore the elaborated design tree (after functors have been applied): it is a
simple object-oriented set of accessor functions to opaque pointers to nodes
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from the graph.

/∗ Opaque p o i n t e r to a b u i l t i n l o g i c / g a te d e v i c e . ∗/
typedef struct i v l n e t l o g i c s ∗ i v l n e t l o g i c t ;
/∗ A l l o f the b u i l t i n l o g i c t y p e s . ∗/
typedef enum i v l l o g i c e {

IVL LO AND = 1 ,
IVL LO NAND = 6 ,
IVL LO NOR = 8 ,
IVL LO NOT = 9 ,
IVL LO OR = 12 ,
. . .

} i v l l o g i c t ;
/∗ Gets the type o f a l o g i c d e v i c e . ∗/
extern i v l l o g i c t i v l l o g i c t y p e ( i v l n e t l o g i c t net ) ;
/∗ Gets the d e v i c e connected to a c e r t a i n pin o f t h i s
∗ l o g i c d e v i c e . ∗/

extern i v l n e x u s t i v l l o g i c p i n ( i v l n e t l o g i c t net ,
unsigned pin ) ;

Listing 1.9: A brief snippet of the public target API

Since this project implements a Icarus Verilog target, this API will be
used extensively.

While the current stable release of Verilog, at the time of writing this
document, is 0.9.3, from the 0.9.x series of releases, we have decided to use
0.8.7 for this project instead because:

• The 0.8.x series is an evolution of the older Icarus Verilog codebase,
which has mostly working synthesis support. However, it lacks support
for most features from the newer language standards as well as some
less used functionality from the current standard [6]. There will be no
new features developed for this branch, only bugfixes. In spite of that,
there is still some unofficial work done on it.

• The 0.9.x series are an huge improvement on language support and
performance over the older series. Unfortunately, compatibility with
the existing 0.8.x targets was broken, as well as the synthesis features,
which did not work as well as with the 0.8 series.

• The future 0.10.x was initially expected to have mostly new features,
like SystemVerilog, Analog Verilog or even VHDL support in the fron-
tend. Nonetheless, no new work in the synthesis backend due to lack
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of interest. However, the recent increasing interest in the 0.8.x series
might change that.

A typical simulation session with the Icarus Verilog toolchain might be
the following:

Verilog source code iverilog -t vvp file.v VVP Simulator file vvp file.vvp

Figure 1.3: An example simulation session with Icarus Verilog

1.2 Model checking

When testing a complex concurrent system, for example, a large circuit de-
signed using Verilog, and save for basic human evaluation which is slow and
prone to errors, virtually the only other method that has been used is simu-
lation, as described on the previous section.

However, simulation has its own share of problems. It is not exhaustive;
it largely depends on the skill of whoever writes the test cases, which means
it still largely requires human intervention. Thus, it is a lengthy process, and
does not usually achieve 100% coverage of the system functionalities under
test.

This is not desirable; we want to develop a system that is as automated
as possible.

There is an alternate way. A circuit can be modeled as a finite state
machine; after all, a idealized logical digital circuit has a few elements stor-
ing actual state information, like latches and flip-flops. All those elements
compose the state variables of the model, and from the combinational logic
we can deduce the rules that control transitions between states.

After such state machine model has been created, and since it is a finite
model, we can verify certain properties. For example, we can ask if on all
possible states, property P holds. Or if it holds only on states that can be
directly reached from state S, and property ¬P holds on all others, where
such property can be, in a example related to the state machine show on
figure 1.4, ‘is the counter zero?’.

We can easily implement a system checking such properties by repre-
senting the state machine as a graph like the one in 1.4, and from then on,
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Figure 1.4: A two-bit counter modeled as a state machine

enumerating all the states, checking if property P applies to all of them. Enu-
merating all the states directly reachable from state S as well as indirectly
reachable is just a matter of examining the graph connectivity.

If the system can reach a state T where property P does not hold but
should according to what was described by the user, it is also easy by the
checker to emit the path it had to take to reach from the initial state to
T . In consequence, the user not only knows the system does not satisfy the
properties it was asked for, but also the chain of states that brings it to the
error condition.

Thus, one could check correctness of a system by specifying the right set
of properties or specifications to check for, and then run the automated model
checker. As a subbranch of such verifications, we find equivalence checking,
where the correctness of a system is asserted by comparing it with a system
that is known to be correct.

Even so, the checker system has to build a graph with all of the states of
the system, which means the problem quickly gets out of hand as the number
of the states increases. On a digital circuit, the maximum number of states
is usually 2n where n is the accumulated size of all the state-storing elements
in the circuit (flip-flops and latches).

As a consequence, while 2 bits of information means the system has 4
states (as the counter described on figure 1.4), 16 bits of information means
the system has 65, 536 states, and more than four billions for a mere 32 bits of
information – the well-known powers of two sequence, appropriately named
the state explosion problem.
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1.2.1 Symbolic Model Checking

On 1992, SMV [7] was introduced, which pioneered Symbolic Model Check-
ing: an approach to model checking that was to solve the state explosion
problem by using boolean formulas to represent sets and relations between
states and avoid ever having to construct the entire state graph.

This was mostly accomplished by the use of Binary Decision Diagrams.
Those structures are used to represent boolean functions (of the kind {True,
False}k → {True, False}, i.e. functions that work over a vector of boolean
values and return a single boolean result, like AND, OR, . . . gates) in an
efficient form.

For example, if we were to build a (non-optimized) decision diagram for
a classical AND-gate (defined as and : a, b→ a ∧ b):

a

b

a = true

b

a = false

true

b = true

false

b = false

false

b = true

false

b = false

Figure 1.5: Binary decision diagram for the AND function

It can be seen that evaluating the and function from the diagram is just
a matter of starting from the root and taking the proper path. However, the
interesting aspect of BDDs is that they can be reduced into Shared Reduced
Ordered Binary Decision Diagrams, like the one on figure 1.6.

After reduction, the diagrams are more efficiently stored. However, doing
the actual reduction is a hard problem by itself (in truth, NP-Complete[8]),
as it might require finding the proper ordering of all the decision branches
so as to be able to create the minimal canonical version of it.
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a

ba = true

false
a = false

b = false

trueb = true

Figure 1.6: Reduced binary decision diagram for the AND function

A state model can be represented with boolean functions – whether the
system is in a certain state or not can be modeled as vector of booleans, and
in fact, if we are modeling a logical circuit, the entire state information from
the sequential circuit is actually this vector of booleans. With that in mind,
transitions between states can be modeled by a boolean function that takes
two such state boolean vectors (and the current input state), and returns a
boolean value indicating whether from the first state and with that input the
system will jump to the second.

Kenneth L. McMillan’s PhD. thesis[7] concentrated on developing a work-
ing model checker (SMV ) that was capable of handling many more states
than traditional checkers of the era – by using BDDs – and introduced al-
gorithms to perform many operations on boolean functions represented as
BDDs, like the union and intersection operations, allowing much of the prop-
erty checking that was previously done on the state graph to be calculated
without such an expensive data structure.

1.2.2 Computation Tree Logic

When defining properties to be checked on a state model, it was proposed
that a formal logic system – like the ones used by philosophers – could be
used to represent properties such as the ones described on section 1.2: ‘do
all the states reachable from S hold property P?’.

Computation Tree Logic (CTL) is one of the existing temporal logics,
whose usage was introduced by Pnueli[9] in 1977 and which we will use ex-
tensively during this project as it is enough for our requirements.

On CTL, apart from the usual logical operators (∧, ∨, ¬, . . . ), one can
find a series of operators formed from combining a set of affixes (see table
1.2) forming a finite set of operators with a well defined meaning.
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Prefix Meaning Description
A Always For all the transitions from the current state S . . .
E Exists At least in one transition from the current state S

. . .

Suffix Meaning Description
G Globally . . . P is true in all reachable states
X neXt . . . P is true in all directly reachable states
F Finally . . . P is true in a reachable state

Table 1.2: The main affixes forming CTL operators

For example, a specification consisting of AG P would mean that the spec-
ification we want to check is that “for all the transitions from the current
state S, P is true in all reachable states”, where S, the current state, is the
initial state. Thus, we want to check that P holds for all the states.

On the other hand, EF (P ∨ Q) would mean that “At least in one tran-
sition from the current state S, P ∨ Q is true in a reachable state”. That
is, from the initial state, there is at least one path to a state T where either
property P or Q will be true.

Many more advanced combinations can be created using those operators.
For instance, AG (P ∧ (EX Q)) would mean that for all states, property P
holds and a way exists to directly reach a state where property Q also holds.

One could think for example that P is a safety enforcement property (‘the
system is not stuck’ and that Q would mean ‘the system is off’. We would
be enforcing that there is no state where the system is stuck and that from
every state we can immediately reach a state where the system is off – after
model checking, we can now be sure we would be able to shut such a complex
system down.

A description on how to implement CTL checking in a symbolic model
checker can be found at [7].

1.2.3 NuSMV

NuSMV[10] is a descendant of the original SMV tool developed in 1992 by
Kenneth McMillan[7]. Thus, it is a Symbolic Model Checker implementation
as described on section 1.2.1. One of the best known and fastest model
checkers, it is under continuous development, and since the release of version
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2 of the program, also open source software under the copy-left LGPL 2
license.

The latest stable version as of the writing of this report was 2.5.2 .

Like most other model checking tools, it defines its own language by which
to define the finite state model. The language is much more featured than a
simple states list plus a dump of the state transitions, as the easiness of how
complex systems where converted into finite state models was greatly priced.

On the NuSMV language, like on Verilog, the core concept is the mod-
ule. Inside modules, state variables can be find – those represent the actual
state information, and are defined under the VAR section inside the NuSMV
module.

MODULE counter ( i , r s t )
VAR

c : 0 . . 3 ;
ASSIGN

init ( c ) := 0 ;
next ( c ) := case

r s t : 0 ;
i : c + 1 ;
TRUE : c ;

esac ;

Listing 1.10: The model whose state graph is show on figure 1.4

In the example on listing 1.10, we have defined a counter model with a
state variable c whose type is a integer in the range between 0 and 3 inclusive.
This is syntactic sugar for hiding the actual state machine: NuSMV will
convert this type into raw boolean variables representing the states behind
the scenes.

NuSMV has a handful of built-in types, listed in table 1.3.

State transitions are represented in the ASSIGN sections, with two clauses.
The init(var) := value statement assigns the initial state for the state
variable – otherwise, it is left undefined, and the checker will have to consider
all states as potential initial states. In the example, the initial state for the
counter is zero.

The next(var) := expr statement is the one that models the actual
transition, by indicating that the value of var in the next state will be the
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Type
boolean

a..b (ranged integer)
item1, item2, ... (enumeration)
word[n] (boolean vector of size n)
array a..b of (vector of any type)

Table 1.3: NuSMV language built-in types

result of evaluating expr – which can reference var so that the value in the
current state can be used (as well as the values of all other state variables
and inputs).

In the example, one of NuSMV’s most complex operators is used: the
case switch. It checks each of the conditions on the left side, and returns a
value that is the result of evaluating the right side of the first condition that
is true.

Thus, the model will return to the initial (zero) state when rst is true,
increment the counter when i is true and do not switch state at all if none
of the previous conditions was true.

We have referenced the rst and i identifiers, which are from input param-
eters of the module – declared on the module header, and must be assigned
actual values when instantiating the module.

To understand how those work, we must first know how NuSMV handles
modules during the loading of the state machine model: NuSMV merges all
of the module instantiations into a single flat one, as seen on the following
snippet:

−− Source
MODULE main ( )
VAR

b : boolean ;
i : 3 . . 4 ;
i n s tance1 :

mymodule (b) ;
i n s tance2 :

mymodule ( i ) ;
MODULE mymodule ( in )
VAR

t : boolean ;
ASSIGN

next ( t ) := in ;

−− F l a t
MODULE main ( )
VAR

b : boolean ;
i : 3 . . 4 ;
i n s t a n c e 1 t :

boolean ;
i n s t a n c e 2 t :

boolean ;
ASSIGN

next ( i n s t a n c e 1 t ) :=
b ;

next ( i n s t a n c e 2 t ) :=
i ;
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Thus, formal module arguments get textually replaced with the actual
argument, like if modules were a convoluted form of C-like macro expansion.
While this means we have polymorphic modules for free, whose arguments
are dynamically typed, care must be taken not to do type-specific opera-
tions on the formal parameters if we can not guarantee callers will always
pass in the correct type (in the above snippet, a type error will appear on
next(instance2 t) because i, an integer, cannot be casted implicitly into
a boolean.

NuSMV also offers one last piece of syntactic sugar: the DEFINE state-
ment. This acts much like an actual macro, except it is scoped to the module
where it was defined. Defines are sometimes used as a output parameters,
as parent modules can reference to such macros via the usual module.name
notation.

1.3 Jutge.org

From the Jutge.org homepage [11]:

“Jutge.org is an educational online programming judge where
students can try to solve more than 600 graded problems using 20
different programming languages. The verdict of their solutions is
computed by the Judge using exhaustive data sets run with time,
memory and security restrictions. Moreover, instructors can use
it to create their own courses, attaching documents, creating lists
of problems, assignments, contests and exams, as well as roasting
their students and tutors.”

The software was created by Jordi Petit, Salvador Roura, and other re-
searchers from the Technical University of Catalonia (UPC), initially as a
way to help the evaluation tasks for the UPC Programming Contest, where
around 200 contestants enrolled.

However, the idea of using the Jutge.org codebase to change the way the
existing UPC introductory programming course was handled soon appeared.

Before Jutge.org, students were evaluated by their ability to write algo-
rithms in a pseudo-code partially defined by the course staff. Since it was
thought that a programming course should be graded by letting students
actually program, in front of a computer, the evaluation model was changed
with more frequent tests and an automated evaluation system behind the
scenes allowing students to get feedback from their code as soon as possible.
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Up to 250 simple C++ introductory problems were created for the use with
the Jutge.org system [12].

Later on, Jutge.org was made available to a greater audience by publish-
ing it on the www.jutge.org site. Thus, the current system was born, used
widely at more than six programming courses from UPC [11]. It is also freely
available to use by both students from other colleges – with a public set of
problems from some of the UPC courses –, as well as interested instructors
willing to allow their students use the Jutge.org system.

Use of the web application requires prior registration – name, email ad-
dress, and birth year. This way, users get personalized views after logon,
with the system remembering problems they have already successfully solved,
their favorite compiler, enrolled courses, and so on. However, for quick checks
there is a demo account everyone can use.

Verdict Description
Accepted (AC ) Program is correct and output matches that

of known-good solution.
Wrong Answer (WA) The program output does not match the

known-good solution.
Execution Error (EE ) The program crashed or was too slow.
Compilation Error (CE ) The compiler failed to build the program.
Internal Error (IE ) Verification failed in some unspecified way.

Table 1.4: The important Jutge.org verdicts

The Jutge.org system is written mostly using the PHP3 language. How-
ever, some maintenance scripts are written in Python 4. The system uses
public, open source compilers to support each of the many available lan-
guages (for example, it uses the GNU Compiler Collection5 to support C and
C++).

The main web server uses the Apache6 HTTP Server running under
Ubuntu7. Corrections (which might involve running completely untrusted

3http://www.php.net
4http://www.python.org/
5http://gcc.gnu.org/
6http://www.apache.org/
7http://www.ubuntu.com/
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Figure 1.7: A typical Jutge.org student interaction
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executable code coming from the student) are made in virtual machines,
of which there might be several (up to four) per physical machine. Each
virtual machine is rebooted after a few corrections are made, so that poten-
tially unwanted state information – like compiler generated temporary files
– is deleted. Submissions are evenly distributed between each of the virtual
machines.

master

slave1 slave2 slaveN

vm11 vm12 vm13 vm14 vm21 vm22 vm23 vm24 ...

Figure 1.8: The Jutge.org architecture.

Driver

judge(srcfile, compilerId): veredict

Compiler

compile(srcfile): bin
execute(bin): result

Compiler_GCC

compile(srcfile): bin
execute(bin): result

Compiler_GXX (g++)

compile(srcfile): bin
execute(bin): result

Compiler_Python

compile(srcfile): bin
execute(bin): result

Checker

compare(result1, result2): veredict

Standard

compare(result1, result2): veredict

Figure 1.9: Jutge.org’s Standard driver high-level class diagram

So far, Jutge.org was mostly used for imperative languages, like C, C++,
Java, Python, or Perl. The support for each of these languages is abstracted
under what is called a Compiler – a Python script that wraps the necessary
scripts to launch the compiler and execute the compiled program. After the
program is executed, its results are compared using a special Checker – that
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can ensure the execution results of the student submitted program match
that of the teacher made program. The entire process is wrapped under
what is called a Driver, as seen on figure 1.9.

Compilers can thus reuse the testing functionality by providing the generic
layer with the execution results (its standard output). At the same time, we
can reuse most of the existing web user interface while discarding the code
that assumes programs are executable and its textual output is to be com-
pared – our circuit models are not.

Thus, it makes sense for Jutge.org to be used in this project.

1.4 Previous work

While there has been work done in the context of this project, we do not
know of any public similar web environment. However, we will briefly look
at similar Verilog formal verification tools.

Automatic formal verification of Verilog is not a new concept. In fact,
there are already many available commercial solutions that implement formal
equivalence checking, as listed on Xilinx’s 8 commercial support site [13] for
interested customers:

Synopsys Formality http://www.synopsys.com

Cadence Conformal http://www.cadence.com

Prover eCheck http://www.prover.com

Obviously, a commercial solution was not of interest since we would not
be able to adapt it to our needs. All of the solutions are more oriented to
verification as part of the development process during the different stages
of a typical Field-Programmable Gate Array (FPGA) implementation flow,
while on the other hand our solution must concentrate on a single implemen-
tation stage and should instead verify equivalence between different HDL
implementations made by different authors.

While we did not have access to any of these tools, it is expected that such
tools can do equivalence checking of multi-million gate designs in a fraction
of the time needed for simulation[13] – from days or weeks to mere hours –

8Xilinx is one of the biggest FPGA manufacturers, with a large stake on the electronic
circuit design tools market

http://www.synopsys.com
http://www.cadence.com
http://www.prover.com
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while also providing 100% testing coverage.

Confluence

Among the fewer free tools, specially interesting is InFormal, a open source
tool developed by Confluent (no longer in existence) as part of their Conflu-
ence HDL language.

Confluence was a new HDL that would fix many of the limitations in
Verilog and VHDL. However, it was not fully intended to replace Verilog,
and in fact, one of the features Confluence had was its ability to emit Verilog
code from a hardware description on its own language.

This was done by the fnf tool[14], which would work on the output of
the Confluence synthesizer (thus, it would work on a list of nets) and from
that output a structural Verilog equivalent – in a very low level fashion, as
all of the high-level information that could be used to build a easier-to-read
behavioral Verilog equivalent was already lost in the synthesis process.

In order to be able to do different kinds of formal verification, fnf was
also able to write a NuSMV model file the same way it could output a Verilog
source file: from a netlist.

Considering that and the fact that a conversion process from the Icarus
Verilog synthesized output and the format used by fnf exists, this software
also presented a way to transform Verilog source files into NuSMV models,
which is what was packaged under the InFormal name as a way to aid formal
verification of existing designs.

However,

• The software is no longer being maintained and is hard to find, and it
worked only with older versions of NuSMV and Icarus.

• Since it works on a netlist level, the NuSMV models it generated would
be hard to read as many of the high-level information that cannot be
conveyed into a netlist is lost.

For example, all Verilog instantiations would be combined into a single
large module in the destination NuSMV file, with all of the state vari-
ables merged in between with random names. Even the simplest of the
circuits would generate into a enormous source file virtually impossible
to understand by a human.
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As verification of what the converter does is clearly one of our goals, our
project shall integrate more with Icarus itself so that the system is able to
access more information about the original Verilog source file, thus producing
more readable NuSMV models that can be understood by a human, and even
reused into other NuSMV models.



Chapter 2

Design

2.1 Goals

The main objective of the project, as stated on the abstract, will be to im-
plement a software system for the automatic verification of circuits written
in Verilog, comparing their behavior to that of a known-good circuit using
model checking.

This requires:

1. A system where teachers can store problem definitions and known-good
circuits and students can download problem statements and upload
their own answers in Verilog.

2. Automatic conversion of Verilog source files into equivalent state ma-
chine models.

3. Verification of whether the known-good model and the student’s model
behave equally.

We have decided that:

• We will use the existing Jutge.org environment as the website where
teachers will upload problems and students will get its statements from,
as well as the system where students will submit their solutions.

As per section 1.3 on page 22, Jutge.org has well-tested support for
a very similar use case (exchanging Verilog circuits for computer pro-
grams in imperative languages) and is modular enough for the require-
ments of this project.

29



30 CHAPTER 2. DESIGN

• NuSMV (see section 1.2.3 on page 19) will be used to perform the
symbolic checking of the models.

• For the conversion of Verilog source files into models, we will develop
our own Verilog to NuSMV solution, using Icarus Verilog (section 1.1.2
on page 12) as frontend. Icarus will do the parsing and initial synthesis
of the design, greatly simplifying the work to be done.

Jutge.org system

Problem preparationCorrection

Jutge.org website

Known-good circuit (Verilog)

Tgt-NuSMV

Known-good model (NuSMV)

NuSMV

Problem statement (Latex)

Problem statement (PDF)

Student’s circuit (Verilog)

Tgt-NuSMV

Student’s model (NuSMV)

Verdict

Student

Teacher

Figure 2.1: A brief look at the entire process

Following is thus the resolved list of project objectives:

1. Implement a Icarus Verilog 0.8 synthesis target that generates a NuSMV
model (tgt-nusmv item on figure 2.1).
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• The most common features of the synthesizable subset from the
Verilog language should be supported. We believe such a subset
will allow for the most interesting problems to be solved.

• The generated models should be readable to improve verifiability
by a human. Ideally, it might keep a bit of the structure from the
original Verilog source file.

• The converter must be reasonably fast so that it can be used
interactively, in a typically configured server machine.

• The generated models should also be able to be validated automat-
ically in a reasonable time. The converter should avoid statements
or NuSMV features that cause delays in the validation.

2. Implement a Jutge.org driver to allow for the upload and verification
of Verilog circuits using the models generated by the previous tool (
(the correction system as seen on figure 2.1), as well as the necessary
problem preparation routines required for the correct function of the
driver (problem preparation on figure 2.1).

• The system should be fully integrated under the existing Jutge.org
infrastructure. All involved components should be able to work on
its servers, and the end user interface should be similarly usable.

• Human intervention in the entire student submission process should
be kept to a minimum.

• Allow for integration with other languages in the future, like VHDL.

• The system will be available online so it has to be safe and reliable.

3. Create a small set of sample problems to test the system.

• A problem should consist of a brief statement and a known-good
circuit to formally compare it to student submitted circuits.

4. Write the required project documentation and the project report.

The project work is clearly structured in two separate parts: the conver-
sion process, and the integration with the existing Jutge.org infrastructure.
We will keep this distinction for the rest of this report.
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2.2 Verilog to NuSMV conversion

The most important part of this project is the software converting a Verilog
circuit into a NuSMV model. That is, convert something like this:

module counter ( c lk , r s t , i , r ) ;
input c lk , r s t ;
input i ;
output reg [ 1 : 0 ] r ;

always @(posedge c l k )
i f ( r s t )

r <= 0 ;
else i f ( i )

r <= r + 1 ;
endmodule

Listing 2.1: A 2 bit counter with reset

Into something like this, which is very similar to the counter example in
the NuSMV tutorial[15], albeit slightly optimized and with a reset signal:

MODULE counter ( i , r s t )
VAR

value : word [ 2 ] ;
ASSIGN

next ( va lue ) := case
r s t : 0 ;
i : va lue + 1 ;
TRUE : va lue ; −− D e f a u l t case

esac ;

Listing 2.2: Manually generated model for circuit in listing 2.1

2.2.1 Analysis

During the first part of the analysis, we will evaluate the work Icarus Verilog
is doing before invoking our target, as described at section 1.1.2 on page 12,
assuming its input source file is the one on listing 2.1.

After the design elaboration stage, without any synthesis done at all (just
parsing and initial elaboration), the generated graph (figure 2.2 on page 33)
looks very much like an Abstract Syntax Tree (AST) – a tree representing the
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Figure 2.2: Counter module elaborated design (without synthesis)

syntactic structure of the source code – and far from a real circuit. Working
from this stage would require to handle all kinds of Verilog processes, prim-
itives and operators by ourselves, which would be a huge amount of work.

Therefore, we will also configure Icarus Verilog do synthesis before invok-
ing our target.

After enabling the synth2, synth and syn-rules functors, the graph that
comes out from the synthesis process (figure 2.3 on page 34) looks quite
different – resembling an actual circuit.

It is actually an hypergraph, where edges can connect an unlimited num-
ber of nodes – the same way a single cable can connect multiple electronic
components – but represented as a multigraph, with each hyperedge being
represented as a new node (a nexus) where all of the vertices the hyperedge
connected are instead connected to the nexus.

• The ellipse shaped nodes are signals – the name Icarus Verilog gives
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Figure 2.3: Counter module elaborated design (with synthesis)

for named nets on a module. All of the input and output ports in the
original module appear as signals on the design graph.

Therefore, it is possible to accurately known what each input and out-
put port is connected to.

• The box nodes are parametrized modules (from a Library of Parametrized
Modules or LPM, thus usually known as LPMs). This is a quite impor-
tant concept. The library contains already synthesized modules that
do from the simplest of the tasks (like a multiplexer, or a decoder) to
encapsulate some of the more difficult components (multipliers, divi-
sors...). All sequential circuits synthesized by Icarus are based on two
key LPMs: the D flip-flop and the D Latch.

The modules are said to be parametrized in that each of them has a set
of configurable parameters – for example, a half-adder LPM will have
a width configurable parameter that specifies the size of its operands.
As many LPMs as required can be instantiated for any given design.
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LPMs are expected to be synthesized by the code generation stage be-
cause it is assumed an usual FPGA will have some builtin components
that will match with those of the Library. In which case, it is clearly
desirable to use those versus a fully synthesized version that might ex-
pand to hundreds of gates. As NuSMV has lots of operands that nicely
match some of the LPMs, this is also useful to us.

See table 2.1 on page 42 for the full list of LPMs used in Icarus Verilog
0.8.

• The diamond shaped nodes are constants. Since this a digital circuit,
there is only two of them: 1 and 0. If a port from a component is
always set to 1, or to 0, it will be connected to the adequate constant
node.

• Not appearing in the example graph – logic gates. Those are like
LPMs except they are simpler and only have one output port (but can
have 1, 2, or more input ports, as required).

As they store no information, logic gates can be represented with truth
tables.

• The small circles are the nexus. Those are circuit interconnection
points. Each of the edges connected a to a nexus convey that the
correspondent electronic component pins are all of them interconnected
via a cable.

These vertices are the way Icarus Verilog represents hyperedges on the
elaborated design graph.

To continue with the example, we can find two LPMs on figure 2.3, which
for clarity we have created a gate-level diagram of it on figure 2.4.

1. A half-adder, LPM ADD, with three two-bit ports:

Name Description Connected to
A1, A0 First operand To the current value of the counter (r).
B1, B0 Second operand To digital 0, 1 respectively.
Q1, Q0 Result To the input (D) of the flip-flop.

It is obvious that the half-adder is the component that increments the
counter value – adding 01 to it.
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2. A D flip-flop, LPM FF, with the following ports:

Name Description Connected to
clk Clock To the clk signal.
Enable Chip Enable To the i signal. Therefore,

the flip-flop only gets set as
long as i is raised.

Sclr Synchronous clear: for every
clock cycle this pin is active,
the flip-flop resets to zero.

Connected to the rst input
port of the main module.

D1, D0 Flip-flop input To the output of the half-
adder module.

Q1, Q0 Flip-flop output To one of the inputs from
the half-adder, as well as the
r signal.

+

clk

01

CE

i

Sclrrst

r

Q’

QD

Figure 2.4: Gate-level diagram of the synthesized counter module

The amount of features a target would have to handle at this level is much
smaller than with previous stages: the size of the library of parametrized
modules size is reasonably small, and there are not many other kinds of
nodes to be handled.

In fact, one important aspect stands up at this point from the elaborated
design: in a sequential circuit, all of the circuit state information will be
stored in either Flip-flop or Latch LPMs, easing the task of extracting this
information in order to build the state machine model.

Thus, this is the point at the pipeline where the converter implemented
in this will start its work.
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2.2.2 Data model

In order to improve readability, we would like the modules in the generated
models to map 1:1 to Verilog modules (including input and output ports).
Therefore, we need a data model to store the module definition and port
structure, as well as store instances of both other modules, LPMs and logic
gates.

This model will be built from information given by Icarus, and will be
used to perform fast lookups of required data – owners of signals, all instances
of a module, etc – which will be required during the conversion process.

Module

name: string

Port

name: string
width: int
direction: {in,out}

LpmTemplate

name: string

ModuleInstance
Signal

width: int
Lpm

LpmAdd

width: int

LpmSub

width: int

is a

1

1..*

is a

1

1..*

is a

1

1..*

owned by

1..* 1

owned by

1 1..*

owned by

1..* 1

owned by

1 1..*

contained by
1..* 1

{incomplete}

Figure 2.5: High-level class diagram of the data model

As seen on figure 2.5, we will keep the Module as the most important
component of the model. However, we will keep a distinction between a
definition Module and its potentially multiple instances ModuleInstancies.

A module definition will have links to the definitions of its ports (Port),
its referenced LPM definitions (LpmTemplate), and to the module defini-
tions referenced as part of the instance declarations inside it. Analogously,
a module instance (ModuleInstance) will link to the actual port instances
(Signals, as seen on the elaborated design graph), LPM instances (Lpm),
and each of the instantiated submodules.

Lpm is an abstract class. Each of the different LPMs from the library will
have its own specialization in order to handle the differences between port
configurations among the different LPMs.
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The actual logical connections between LPMs, instances, etc. will be
known by keeping references from our data model to the Icarus elaborated
design graph.

2.2.3 Algorithm

With all in mind, we can start building the NuSMV model.

For each Verilog module m in the input source file:

1. Create a new NuSMV module m′, whose identifier will be the same as
the name of m.

2. Enumerate the input ports of m – those will be the input variables of
the NuSMV module m′ 1.

3. Enumerate all the child module instances of m and owned LPMs and
instantiate them as state variables in the NuSMV module m′.

When writing the definition of module m′, we have to provide the actual
input parameters for each module instantiated by m. In the synthesized
Verilog module m, connections were made for each of the ports (both
input and output) that appear on the elaborated design graph.

Therefore, to generate expressions for the actual parameters the algo-
rithm will need to traverse the elaborated design graph, starting from
the input port edge until we find a device that is driving this signal
and that we can express as a NuSMV expression. For example, a con-
stant value (a literal), or a input signal of the module m – for which we
can generate the expression “signalname” since we can safely assume
NuSMV will know how to evaluate it as the signal name will be a valid
identifiers in the scope of the module m′. We just introduced them as
input parameters of m′ in the previous step.

A more detailed explanation of the above process is as follows.

Assuming that:

• m is the Verilog module instance from which we are currently
trying to create its equivalent NuSMV module m′.

1Clock signals are handled separately – see section 5.3.3 on page 80
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• a is the edge in the design graph representing the input signal
corresponding to the parameter we want to generate an expression
for.

The expression generation algorithm we will use is:

(a) Let A be the set of all the other edges a’s nexus is directly con-
nected to (not a itself). Abstractly, A is now the set of all edges
that used to represent a single hyperedge from the elaborated de-
sign graph.

(b) If any b in A is:

• Connected to a const/literal.

• An input signal of m.

• An output signal from any of the direct child instances of m
(including LPMs).

Then we are done. We know that the expression is either a literal
or a trivial one in the form of childmoduleinstance.port or
inputsignalname, both being valid in the scope of m′.

(c) If any b in A is connected to the output of a logic gate l, then the
result is an expression of the form x1 op x2 op . . . op xn where

• xi is the result of recursively applying this algorithm but with
a being the node correspondent to input i of l.

• op is the NuSMV operator equivalent to l (i.e. if l is an and
gate, the equivalent operator would be &).

(d) Otherwise, this port was not connected to any component driving
it. This is most probably a mistake in the input Verilog circuit,
so the system should warn the user.

4. Enumerate all the output ports and add them as NuSMV defines in
the DEFINE section of m′.

Use the same expression generator algorithm as described above to
construct the correct expressions for each of the output ports, but using
this output port as starting edge a.

The elaborated design graph of the Verilog module that is the source of
the NuSMV module generated in listing 2.3 can be seen in figure 2.3.

As an example, we will describe the steps made by the algorithm for the
conversion of this module:
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MODULE counter ( i , r s t ) −− The input p o r t s
VAR

−− Chi ld module i n s t a n c e s and LPMs
f f : l pm f f ( add .Q, i , r s t ) ;
add : lpm add ( f f .Q, 0 b2 01 ) ;

DEFINE
−− Output p o r t s
r := f f .Q;

Listing 2.3: Sample of module generated using the above rules

1. The algorithm creates the NuSMV module counter from the Verilog
module counter, the input parameters being the input ports of the
Verilog module.

MODULE counter ( i , r s t )

2. It also creates the ff and add instantiations, as they are instanced by
the source Verilog module.

3. The ff instance of lpm ff has three input ports:

• D 2: If we follow the D edge on graph in figure 2.3, we see that
it is connected directly to the Q output of the half-adder module.
This is the output port of a direct child of counter, and thus,
according to the algorithm, we generate the expression add.Q and
use it as actual parameter for the ff instance.

• Enable: connected to the i signal, which is an input port of
counter. Therefore, the expression is i.

• rst : connected to the rst input port. The expression is rst.

After all the actual parameters have been determined, the state variable
definition is written into the NuSMV file:

f f : l pm f f ( add .Q, i , r s t ) ;

2In the design, both D and Q are a two bit buses. Since D0 and D1 are symmetrical,
the same reasoning works for any of them. For simplicity we will consider them both as
single-digit only.
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4. The add instance of lpm add has two input ports:

• A: by the elaborated design graph, we can see that there are two
other ports with connectivity to this signal: Q of ff, and A of add.
The latter is discarded as it is not a literal, input of counter,
output of a child of counter, or a logic gate – it is an input of a
child module, add. The former is accepted as it is an output port
of the child module ff.

Thus, the algorithm chooses ff.Q as expression.

• B : connected to a const. We convert the literal into the appropri-
ate NuSMV literal expression: 0b2 01.

The resulting state variable is defined as follows:

add : lpm add ( f f .Q, 0 b2 01 ) ;

5. In the DEFINE section, we list the output ports of the counter module.
There is only one output port, r, which, per the elaborated design
graph, is connected to both add.A and ff.Q. As in the previous step,
the expression generation algorithm decides to use ff.Q.

r := f f .Q;

Note thus that the modules generated by this algorithm will follow a set
of rules:

• Each of the Verilog module input ports will be mapped to a NuSMV
module parameter.

• Each Verilog module output port will be mapped to a NuSMV module
definition/alias. Thus, parent modules can refer to those by using the
very readable instancename.port syntax that was referenced in the
above algorithm.

Assuming the lpm ff and lpm add modules are already defined some-
where else (which they can entirely be done manually, considering the entire
library consists of a handful of such modules – see table 2.1), the model
on listing 2.3 is already a perfectly working equivalent of that we shown on
listing 2.2 on page 32.

Ergo, the conversion process is done.
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LPM Description
ADD Full/Half-Adder
CMP EQ,GE,GT,NE Comparators
DECODE Decoder
DEMUX Demultiplexer
DIVIDE Divider
FF Flip-flop
LATCH Latch
MOD Modulus
MULT Multiplier
MUX Multiplexer
SHIFTL,SHIFTR Shifters
SUB Subtracter
RAM Memory

Table 2.1: List of LPMs

2.3 Jutge.org driver

The other half of this project is to build a Jutge.org driver for Verilog circuit
verification, as stated on the goals. By building a driver, we will be able to
leverage the work done by the Jutge.org authors and obtain a complete web
frontend that satisfies our requisites – and we can concentrate on the actual
verification part instead of creating Web frontend code managing problem
lists, queuing, submitting solutions, etc.

In fact, the input to the driver will be the student’s raw submitted code,
and the output will be a verdict that the Jutge.org frontend will properly
format and display to the student.

Thus, the external user interaction with the system will be exactly that
of the original Jutge.org (see figure 1.7 on page 24), albeit with the necessary
modifications to problem presentation (as for obvious reasons the statements
from circuit problems will be formatted differently) as well as results viewing
(since we have both different potential verdicts along with different diagnos-
tics for each verdict).

The driver will, from two Verilog source files, one coming from the stu-
dent, and the other a known-good circuit coming from the teacher, run the
Verilog-to-NuSMV converter on both source files to get two NuSMV mod-
els. Then, the two NuSMV models will be combined so that a unique state
machine with a single “outputs match” output is created, and the NuSMV
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application will be run on this model to perform the verification using CTL
logic. Depending on the result of each of these stages, a verdict is given back
to the student.

See figure 2.1 on page 30 for a visual representation of the internal work-
flow.

We will call this driver cv, which stands for circuit verifier. The class
structure of it will be mostly identical to that of the existing Jutge.org driver,
std – whose class diagram can be seen on figure 1.9 on page 25.

Unlike the std driver, which has to compare the outputs after running
both the student and the known-good programs, our driver will always use
NuSMV to check if both models match and has no need to perform any
additional checking on them. Therefore, all of the different Checker classes
have been removed from the structure.

On the other hand, we might want to add support for future languages
(and thus synthesizers) in the future, so we decided to add an abstraction
similar to the Compiler class from the original driver: the Synthesizer class,
with one single realization – the one for Icarus Verilog 0.8, which we will call
IVL08. The class diagram detailing all the relationships can be seen on figure
2.6.

Driver

judge(srcfile, compilerId): veredict
compare(model1,model2): veredict

Synthesizer

synthesize(srcfile): model

Synthesizer_IVL08

synthesize(srcfile): model

Figure 2.6: cv driver architecture overview

The process for the main judge function shall be (assuming the selected
compiler is IVL08 ):
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1. Launch Icarus Verilog with tgt-nusmv as target for both circuit files.
Use result error codes to check if there was a synthesis error in the
student file. If there was, verdict is Compilation Error : output the
compilation error messages.

We have now built the equivalent NuSMV model for both circuits.

2. Ensure that both the the student’s and the known-good circuit exter-
nals interface is consistent: that is, both have the same inputs, outputs,
module names, etc. If they are not consistent, verdict is also Compila-
tion Error. An error message should tell the student what the correct
interface is.

3. Combine both generated circuit models into a single model so that

• All inputs by the same name are connected to the same source in
both models (both the known-good and the student circuit will
received the same stimulus during verification).

• A comparator on the output will output whether the output from
both circuits matches or not, as in the following figure:

Inputs
good

= Ok

Known−

Student

Figure 2.7: Modeled circuit

The definition of what exactly is considered a match is left open
depending on the problem definition, as described on the next
section.

4. Use NuSMV to check if, in the combined circuit model built above,
there is a sequence of input signals that will cause Ok to be zero.

If such input sequence exists, verdict is Wrong Answer – emit the full
sequence that causes the student circuit to produce an output that is
not equal to that of the known-good.
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5. Otherwise, verdict is All Correct.

Hence, our project has four potential causes for emitting a negative ver-
dict – notwithstanding internal errors – which we have mapped into three
existing Jutge.org verdicts 3 to minimize the amount of work to do on the
Web frontend. Also, as per the goals, our project will give different informa-
tion back to the student for certain verdicts as listed on table 2.2.

Verdict Description Extra information
Accepted Source file was synthesized

and the synthesized circuit
matched the required spec-
ifications.

–

Compilation
Error

Source file was not valid
Verilog.

List of error messages from
the synthesizer.

or
The interface of the Verilog
module did not match that
of the known-good one.

List of differences from the
known-good interface.

Wrong Answer Source file was synthe-
sized, but resulting cir-
cuit did not match prob-
lem specifications.

Example of input signals se-
quence causing the circuit
to give an output that does
not match the output the
known-good circuit would
give.

Table 2.2: All possible verdicts from the circuit verifier driver

2.3.1 Circuit equivalence checking

We have seen that as part of the evaluation process, both generated NuSMV
models have to be combined into a single one that can be used to check
whether the two original models describe circuits that behave identically
when given the same set of inputs.

This combination is one important step of the process, as the construc-
tion of the circuit and verifier module as envisioned on figure 2.7 on page 44
will determine how we actually define whether a circuit is equivalent to the
known-good one.

3A list of all Jutge.org possible verdicts can be seen at table 1.4 on page 23.
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Within this project, we will use a trivial comparator as verifier that will
ensure that all of the outputs with the same name are always equal to those
from the known-good circuit. This comparator module model will have to
be generated from the known-good Verilog source file (in order to get port
names, directions, and widths). An example is shown in listing 2.4.

MODULE t e a c h e r h a l f a d d e r ( a , b )
−− The known−good c i r c u i t model

MODULE s t u d e n t h a l f a d d e r ( a , b )
−− The s t u d e n t submi t ted one

MODULE main ( ) −− The comparator module
VAR

a : word [ 2 ] ; −− Input por t A
b : word [ 2 ] ; −− Input por t B
t : t e a c h e r h a l f a d d e r ( a , b ) ;
s : s t u d e n t h a l f a d d e r ( a , b ) ;

DEFINE
ok := ( t . r = s . r ) ;
−− ok i s on ly t r u e i f r the output from both
−− t e a c h e r and s t u d e n t modules are e q u a l .

Listing 2.4: Example manually generated comparator NuSMV module

Missing from the previous example is the actual specification, to be
checked using NuSMV. We would obviously like to ensure that ok is always
true for every possible state. Such a specification is good enough for purely
combinational circuits, and is very easy to develop using CTL:

SPEC (AG ok ) ;

However, such an specification would not acceptable for sequential circuits
because it can not be assumed that outputs will be equal on the initial states,
before a reset has been signaled. Nonetheless, we can trivially reduce the
specification to take this into account by forcing that the ok signal has to
be true for every possible combination of inputs only after at least one cycle
following the falling edge of the designated reset signal:

SPEC (AG ( r s t negedge −> AG ok ) ) ;
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The rst negedge flag can be modeled by a simple module with one bit
of state that stores the status of rst at the previous state. Such module
can be implemented manually and all the driver will have to do is to add its
definition to the generated source file as required.

The specificactions described on this section mean that the system will
guarantee, from a correct student circuit, that all of its outputs will exactly be
those of the known-good one for each clock cycle after reset. Less restricted
specifications will be discussed in section 5.3.4 on page 81.



Chapter 3

Implementation

From the two larger parts of the project described in the previous chapter,
the Verilog to NuSMV converter was started first because it was a required
dependency which was expected to take most of the available time.

When the converter was reasonably finished and well-tested, work was
started on the Jutge.org driver.

The development process of both components will be documented in this
chapter.

3.1 The tgt-nusmv converter

The language of choice for this part was C++. A language compatible with
C calling conventions was mandated due to the target module having to be
loaded by the Icarus Verilog (and also having to use Icarus C Target API).
Having object oriented support was a plus.

Icarus Verilog itself also being coded in C++ and using the Standard Tem-
plate Library (STL), the build and runtime dependencies of the converter are
a subset of those from Icarus itself. No external dependencies where deemed
required apart from the usual STL containers.

Any Icarus target, being a shared object that will be loaded at runtime,
has to export two required publicly visible function symbols: target design

– the entry point, where the target module receives the handle for a start
node in the elaborated design graph – and target query, which Icarus can
call to query the capabilities of the target. Currently, it is only used to ask
for the target plugin version number.

Backends also need to define the list of functors that will be applied to

48
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the elaborated design before actually passing control to the target design

function. As we argued on the design, it is best for our converter to start
from a synthesized design. Therefore, we will use the same functors as the
other Icarus synthesis backends. The entire list along with the shared object
path containing the target module have to be specified in a config file in

/usr/local/lib/ivl-0.8/backendname.conf.

f unc to r : synth2
func to r : synth
func to r : syn−r u l e s
func to r : cprop
func to r : nodangle
−t : d l l
f l a g :DLL=nusmv . tg t

Listing 3.1: nusmv.conf file

When our generator is finally invoked by Icarus, we can divide the work
it does into three large steps:

1. Walk the elaborated design graph and build from it a database whose
model was detailed on section 2.2.2.

2. Process the design.

3. Write the output NuSMV file.

The implementation is actually pull-driven instead of push. This means
values, expressions and lists are calculated only as soon as the the last step
during conversion needs them – that is, when the NuSMV file is being written,
in the same order they appear in the output file. The only exception are
checks required for the proper emission of certain warnings like the one for
when multiple clock signals are involved in the circuit. Those constraints are
forcefully checked during the processing stage.

3.1.1 Data layer

During the design, it was decided that a small data set from information ob-
tained by scanning the elaborated design graph would be built, so that some
operations that would otherwise need to traverse the graph again could be
performed faster by having the results cached in such data set. The initial
model of this data set was described in figure 2.5 on page 37.
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This database does not need persistence of any kind. Therefore, the
abstract model classes where implemented as C++ classes. Relationships
between instances of items in the database where implemented using STL
containers, guided by the performance requirements of the operations the
database was required for. Such requirements and the resulting implementa-
tion decisions are detailed in the table 3.1.

It was also determined that several times we would need to map an opaque
Icarus handle into a signal, LPM or module instance from our database. For
this reason, a singleton class named DB that would store handle → instance
dictionaries for each class of object was envisioned.

For simplicity and to ease the memory management problems that tend
to plague C programs, we decided that the DB class would be the owner of all
the object allocations made as part of the data layer described in this section
– deallocation of an object happening only when its own DB dictionary entry
is removed.

The construction of the actual database happens by walking the elab-
orated design graph, starting from the root module instance, noticing all
the handles involved – each time a new signal, LPM, or module instance is
found, the DB object is queried, a new entry being created for it if it did
not exist previously. Thus, after no new paths are left to be explored in the
graph, the database contains all entries for all reachable objects in the circuit.

3.1.2 Main processing

Filtering

During the process stage, our implementation currently applies a few filters
before starting to write the NuSMV file. Filters where thought to be analo-
gous to functors from Icarus Verilog, except for being run inside our backend
which means they can use all of the database information described on the
previous section.

Only two such filters were implemented: one that ensures all flip-flops
share a single clock source, and one that generates a prototype of the root
module in a .txt file. Both are specialitzacions of a generic Filter class (see
figure 3.1), and both are optionally enabled with command line arguments
that will be seen on section 4.1.
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Operation Example functionality requiring it
Data structure used

Get a list with all input
ports from a module

When building a NuSMV module definition, to
lookup the signals whose expressions need to be
generated.
Add a vector of strings with all input port
names to the Module class.

Get a list with all
output ports from a
module

When building a NuSMV module definition list
of DEFINEs.
Add a vector of strings with all output port
names to the Module class.

Get a sample instance
of a given module

In order to build a definition for such module,
a sample instance is needed.
Keep a list of the instances in the Module

class, then grab the first one when requested.
Find a instance signal
by name

When building a NuSMV module definition, to
lookup the signals whose expressions need to be
generated after the names have been retrieved
from the module definition.
The ModuleInstance ↔ Signal relation was
implemented as a map with the signal names as
keys.

Test if a given signal is
owned by a module
instance

When generation an expression, to check if a
certain signal is owned by a module that is a
child of the current one.
The ModuleInstance↔ Signal relation imple-
mentation was extended with an owner field in
the Signal class.

Get a list of the childs
of a instance

When generation an expression, to check if a
certain signal is owned by a module that is a
child of the current one.
The ModuleInstance ↔ ModuleInstance re-
lation was implemented as a list of child in-
stances in the parent one.

Table 3.1: Functionality required and data structures used
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<<interface>>

Filter

apply()

EnforceSingleClock

apply()

WritePrototype

apply()

Figure 3.1: Filters class diagram

Since we keep a list of all LPM instances in the database, the Enforce-

SingleClock filter only has to enumerate all flip-flop LPMs and check if the
nexus their clock signals are connected to is the same.

NuSMV module definitions

After filters are applied, the implementation starts writing the NuSMV des-
tination file, by instancing the Writer class with the output file stream as a
construction parameter.

Initially, each module in the database is processed according to the algo-
rithm described in section 2.2.3 on page 38. This process is guided by trying
to fill in the blanks in the following module definition template:

MODULE modulename ( inputport1name , inputport2name , . . . )
VAR

childinstance1name = childinstance1module
(childinstance1inputport1expr ,
childinstance1inputport2expr , . . . ) ;

childinstance2name = childinstance2module ( . . . ) ;
. . .
childlpm1name = childlpm1templatename

(childlpm1inputport1expr ,
childlpm1inputport2expr , . . . ) ;

childlpm2name = childlpm2templatename ( . . . ) ;
. . .

DEFINE
outputport1name := outputport1expr ;
. . .

• modulename is the module name of the generated NuSMV module. It
comes from the source Verilog module that is being converted. How-
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ever, the sets of valid identifiers as defined in the Verilog and NuSMV
language definitions, while overlapping, do not exactly match. For this
reason, care is taken by the implementation to sanitize Verilog identi-
fiers not valid in NuSMV.

For example, SPEC (NuSMV is case-sensitive) is a valid identifier in
Verilog, but not in NuSMV because it is a reserved language keyword.
The implementation fixes this by suffixing such identifiers with a #, a
character that is not allowed in Verilog identifiers (so that unfortunate
identifier collisions are prevented). For this task, a list of reserved
NuSMV keywords was embedded in the converter source code.

• NuSMV requires us to name the formal arguments to a function on its
header. As per the algorithm, those are the input ports of the source
Verilog module (inputport1name, . . . ).

• Each of the child instances of the source Verilog module is mapped to
a NuSMV state variable (VAR), with the name of the variable the same
of the instance name given in Verilog1: childinstance1name, . . . .

As per the algorithm, the actual parameters passed to the instantia-
tions of those NuSMV modules correspond to expressions generated by
traversing the elaborated design graph.

• Each of the LPMs instanced by the module are also mapped to NuSMV
state variables like if they where child modules. In fact, they are child
modules because as we will see latter each LPM will have its own
NuSMV module definition.

• After the state variables, we alias certain expressions to identifiers (out-
putport1name, outputport2name, . . . ) scoped to the module being gen-
erated.

The Eval module

When a expression needs to be generated as per step 3 of the algorithm ref-
erenced in 2.2.3, the Eval module is called, which takes a starting point of
the graph as parameter and starts the exploration from it.

One of the issues that where brought early during implementation is that
sometimes there can be two plausible expressions for a given entry point. For
instance, in the following Verilog source file:

1Verilog allows for unnamed instances: Icarus gives autogenerated names for those.
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module eva ldua l ( i , o ) ;
input i ;
output o ;
passthrough p( i , o ) ;

endmodule
module passthrough ( i , o ) ;

input i ;
output o ;
assign o = i ;

endmodule

Trying to generate an expression for the output port o of the evaldual

module generates two semantically valid expressions:

• o := i

• o := p.o

Technically, the latter expression is more correct. Yet, our current imple-
mentation, when given such a choice, always decides in favor of the simplest
one, defined as the one that was found to have the least amount of circuitry
(nodes in the elaborated design graph) between.

This is implemented simply by discarding results during exploration with
an higher distance from the start node than the current best result.

In the case at hand, the simplest option is obviously the first one, so the
generated NuSMV file ends up like this:

MODULE eva ldua l ( i )
VAR

p : passthrough ( i ) ;
DEFINE

o := i ;

MODULE passthrough ( i )
DEFINE

o := i ;

which looks as if the converter had applied a trivial optimization (it
is indeed what it has done) by removing an unneeded connection to the
passthrough module – yet it did not remove the now unrequired module
definition.
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3.1.3 Library of Parameterized Modules

During analysis (section 2.2.1) we found out that Icarus has a library of
already synthesized modules that it can use to avoid having to synthesize
this common functionality each time (for example, the library contains half-
adders, flip-flops, etc.). During the design, we decided we would create
NuSMV module definitions for each of these modules manually, as there
is not many of them and more importantly there is no Verilog source for
them.

In the normal conversion process, after all of the module definitions have
been written into the NuSMV file, the implementation starts writing the
definitions for all the LPMs that have been used in the previous module
definitions. This is obviously desirable versus simply dumping all the LPM
module definitions we have in the library, and is implemented simply by
having a global dictionary of LpmTemplates in the data layer where the key
is the actual definition text of the involved LPM.

This way, each time the system needs to instantiate an Lpm object, it cre-
ates its definition, but then checks if the same definition (and thus, the same
LPM) was not in the LpmTemplates dictionary. If it was, the Lpm instance
just references that LpmTemplate object. If it was not present, a new unique
LpmTemplate is created that will be emitted later on the NuSMV file.

In the original class diagram (figure 2.5 on page 37), we described multi-
ple specializations of the Lpm class for each kind of LPM. This is because each
module has different port configurations. Also, we simplify the implementa-
tion of the generation of the LPM module definition by using polymorphism.
The Writer class just asks the Lpm object for its definition, and each special-
ization will take care of loading and returning the right definition.

Also, many modules have parameters (i.e. width for a half-adder). Each
specialization will properly take care of reading its instantiation parameters
from Icarus and to consider them when creating the correspondent definition.

As an example, one specialitzacion is LpmAlu that implements most arith-
metical (adders, substractors, multiplier, . . . ) and logical (shifters, . . . ) with
the following template:

MODULE lpm ( Data , DataB)
−− Library : 〈name of the operation〉 〈signedness〉
DEFINE

Q := Data 〈equivalent NuSMV operand〉 DataB ;
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For instance:

MODULE lpm ( Data , DataB)
−− Library : Adder
DEFINE

Q := Data + DataB ;

Note that NuSMV handles the width automatically due to type inference,
so there is no need for the converter to generate different definitions of this
LPM for different widths.

D Flip-flop

There are two special LPMs in the library: flip-flops and latches. During
analysis, we found that for a synthesized circuit, all state information is
stored on instances of these two LPMs. Therefore, those two modules are
the only ones in generated NuSMV design that will have state variables.

The Icarus definition for a D Flip-flop includes all the following function-
ality:

• Asynchronous clear (Aclr)

• Asynchronous set (Aset) to a value that is preset in the flip-flop con-
struction.

• Synchronous clear (Sclr)

• Synchronous set (Sset)

• Chip Enable signal (Enable)

Those features are modeled based on the module described in listing 3.2.
A few integer → word[〈width〉] type casts have been omitted for clarity.

Since our converter currently only supports one clock source for all flip-
flops, the implementation of the asynchronous and synchronous functionality
is exactly identical. However, the distinction is kept for potential future
expansion (see section 5.3.3 on page 80).
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MODULE lpm ( Clk , Data , Aclr , Aset , Sc l r , Sset , Enable )
−− Library : D Fl ip−f l o p
VAR

Q : word [ 〈width〉 ] ;
ASSIGN

next (Q) := case
Aclr : 0 ;
Aset : 〈presetValue〉 ;
S c l r : 0 ;
Sset : 〈presetValue〉 ;
Enable : Data ;
TRUE : Q;

esac ;

Listing 3.2: Idealized full template instantation of a D Flip-flop

Gated D Latch

The implementation of the latch is much simpler, again, due to the assump-
tions the converter makes about the clock.

MODULE lpm ( Gate , Data )
−− Library : Gated D l a t c h
VAR

Q : word [ 〈width〉 ] ;
ASSIGN

next (Q) := Gate ? Data : Q;

Listing 3.3: Idealized full template instantation of a gated D latch

3.2 The Circuit Verifier Jutge.org driver

3.2.1 Problem preparation

For performance reasons – not having to do the tgt-nusmv conversion ev-
ery time a student submits a design –, models have to be prepared on the
teacher’s machine before being uploaded to the Jutge.org platform. This
is done by a script called cvproblems.py, analogue to one that was already
existing on the Jutge.org servers (problems.py) that did a handful of similar
tasks like updating the expected outputs from the test vectors using a sample
implementation provided by the teacher and running LATEX on the problem
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statement sources.

During design (section 2.3), we determined that we would need a way
to check whether the interfaces of the root modules from both the student
and the known-good circuit matched. This was implemented by adding a
special mode into the Verilog to NuSMV converter that would also write the
prototype of such root module into a special file – a task that is very easy to
do for the converter, because of the database it creates as a natural part of
the conversion process.

Since, as said, we do not want to run the converter for the known-good
problem each time, we also generate this prototype information during prob-
lem preparation.

Known-good circuit
problem.v

Known-good model
model.smv

Comparer modules
checker.smv

Known-good prototype
proto.txt

Stored model
problem.smv

Problem statement
problem.tex

Problem statement
problem.pdf

Figure 3.2: Input and outputs for the problem preparation process

The second task to be done during problem preparation is to create the
comparer module (as shown on figure 2.7 on page 44).

By reading all the output port names from the prototype information, a
very simple Python script can create the comparer module definition.

In order to decide whether the circuit is a combination or sequential one,
so that it can determine if the specific CTL specification that must consider
reset signals into account has to be written, the implementation reads the
prototype information and checks for the presence of either the clock (clk)
or reset (rst) signals. If any of them is detected, we assume it is a sequential
circuit and use the extended specification as well as the reset detect mod-
ule that was described during the design and implemented manually as seen
on listing 3.4.
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MODULE r e s e t d e t e c t ( r s t )
VAR

o l d r s t : word [ 1 ] ;
ASSIGN

init ( o l d r s t ) := r s t ;
next ( o l d r s t ) := r s t ;

DEFINE
negedge := bool ( o l d r s t & ! r s t ) ;

Listing 3.4: reset detect module definition

The comparer module as well as the reset detect are then merged with
the known-good model, which is then stored in the Jutge.org system along
with the problem statement and the known-good module prototype (see fig-
ure 3.2). Combining this stored NuSMV file with the student’s NuSMV
model will result in a valid NuSMV input file.

3.2.2 Submission and correction process

As mentioned in section 1.3, the correction process in Jutge.org is handled
by what is called a driver. While Jutge.org does not require drivers to be
written in any specific language (communication between the main system
and drivers is done via temporary files), the original std driver was written
in Python and therefore we will use Python for the implementation in order
to keep consistency.

Known-good prototype
proto.txt

Verdict

Stored model
problem.smv

Combined model
checker.smv

Student circuit
program.v

Student model
program.v

Student prototype
proto.txt

Figure 3.3: Input and outputs for the correction process
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The actual steps the driver implementation runs every time a student
uploads a solution are:

1. /usr/local/bin/iverilog-0.8 -t nusmv-user

-pwrite-prototype=proto.txt -penforce-single-clock=1

-pmodule-prefix=s\_ program.v -o program.smv

2> compilation1.txt

This runs the conversion process of the student’s circuit into a model.
The interface of the detected root module is also dumped to proto.txt,
while error messages, if any, are written in compilation1.txt.

2. diff ../problem/proto.txt proto.txt

This checks for differences between the known-good and the student’s
root module interfaces. The exit code is used to check if diff found any
differences.

3. cat program.smv ../problem/solution.smv > checker.smv

Both the known-good NuSMV model (including all the necessary com-
parer modules definitions) and the student model files are combined
into a single one.

4. NuSMV checker.smv > verification.txt

NuSMV is run on the combined file. Exit code and parsing of its
standard output are used to check if all specifications were satisfied.

NuSMV generates the following output when a specification is true:

−− s p e c i f i c a t i o n AG ( rd#.negedge −> AG equal#) i s t rue

And generates a countertrace when a CTL specification is false, an ex-
ample of which can be seen on listing 3.5.

Mapping a trace generated by NuSMV on a model generated by the con-
verter implemented in this project back into a Verilog trace is trivial, as the
NuSMV structure accurately follows that of the Verilog source modules. Vir-
tually, the only differences between a NuSMV trace and a trace that would
be understandable to someone who only knows Verilog is to remove the dec-
orations (#) from the identifiers, and convert NuSMV-style literal constants
(0ud1 0) into Verilog ones (1’d0).



3.2. THE CIRCUIT VERIFIER JUTGE.ORG DRIVER 61

−− s p e c i f i c a t i o n AG ( rd#.negedge −> AG equal#) i s f a l s e
−− as demonstrated by the f o l l o w i n g execut ion sequence
Trace Desc r ip t i on : CTL Counterexample
Trace Type : Counterexample
−> State : 1 . 1 <−

c l k = 0ud1 0
i = 0ud1 0
r s t = 0ud1 1
. . .

−> State : 1 . 2 <−
r s t = 0ud1 0
rd#.negedge = TRUE

−> State : 1 . 3 <−
. . .

Listing 3.5: NuSMV generated counterexample

This is all handled by the Python script, which generates such a Verilog-
style trace and passes it back to the web interface via a file named errorreport.

txt.
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Results

4.1 Use of the converter

The Verilog to NuSMV converter is an Icarus Verilog backend. In order to
invoke it, Icarus must be launched with the following arguments:

$ iverilog-0.8 -t nusmv -o <outputfile.smv> <inputfile.v>

The -S argument, used to indicate whether synthesis is wanted or not, is
ignored by the tgt-nusmv converter, as it always enables synthesis.

The backend has several other optional arguments:

Argument Effect
-penforce-single-clock=1 Causes tgt-nusmv to enforce that all flip-

flops share a single clock source and edge.
See section 5.3.3 on page 80 for the ratio-
nale behind this functionality.

-pfatal-warnings=1 Causes tgt-nusmv to stop if any warnings
were found during conversion.
For example, unconnected nets will by de-
fault emit a warning but will otherwise be
considered as grounded signals by the con-
verter – which creates circuit models that
have a clearly defined behavior when the
real ones would not. If more strict eval-
uation is required, this flag will cause the
conversion process to fail when any such
unconnected net is found.

Table 4.1: tgt-nusmv optional flag arguments
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Argument Effect
-pwrite-prototype=<file> Writes the prototype of the root module

from the source circuit into <file>.
This was implemented so that the cv driver
did not had to do parsing on its own.

-pmodule-prefix=<string> The converter will try to name generated
NuSMV modules the same as the original
Verilog modules those came from. If this is
not desired, setting this option will cause
all of the generated module names to be
prefixed with <string>.

Table 4.2: tgt-nusmv other optional arguments

Icarus Verilog forces the source circuit to have a single root module, that
is, at least one Verilog module that is not instantiated by any other mod-
ule in the source file. If there is more than one (not really a established
good practice), you can specify which one you want to use with the -s

rootmodulename argument. Icarus might discard modules that are not used
by the selected module or its instantiated children modules.

4.1.1 Examples

We tested the converter with around a hundred samples coming from a selec-
tion of Verilog learning books, as well as a handful of hand-made tests that
exploited certain patterns we found interesting.

The following is a very simple Verilog implementation of a two-bit ALU
(from [16]):

module ALU(Op, A, B, Z) ;
input [ 1 : 0 ] Op;
input [ 1 : 0 ] A, B;
output reg [ 1 : 0 ] Z ;

parameter ADD = ’ b00 ,
SUB = ’ b01 ,
MUL = ’ b10 ,
DIV = ’ b11 ;

always @(Op or A or B)
case (Op)
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ADD : Z = A + B;
SUB : Z = A − B;
MUL : Z = A ∗ B;
DIV : Z = A / B;

endcase
endmodule

Along with the NuSMV model the converter tool generated:

MODULE ALU(A, B, Op)
VAR

s 7 : lpm 0 ( (A[ 1 : 1 ] ) : : (A[ 0 : 0 ] ) ,
(B [ 1 : 1 ] ) : : (B [ 0 : 0 ] ) ) ;

s10 : lpm 1 ( (A[ 1 : 1 ] ) : : (A[ 0 : 0 ] ) ,
(B [ 1 : 1 ] ) : : (B [ 0 : 0 ] ) ) ;

s12 : lpm 2 ( (0 b1 0 ) : : (0 b1 0 ) : :
(A[ 1 : 1 ] ) : : (A[ 0 : 0 ] ) ,
(0 b1 0 ) : : (0 b1 0 ) : :
(B [ 1 : 1 ] ) : : (B [ 0 : 0 ] ) ) ;

s16 : lpm 3 ( (A[ 1 : 1 ] ) : : (A[ 0 : 0 ] ) ,
(B [ 1 : 1 ] ) : : (B [ 0 : 0 ] ) ) ;

s 4 : lpm 4 ( (Op [ 1 : 1 ] ) : : (Op [ 0 : 0 ] ) ,
( s 7 .Q[ 1 : 1 ] ) : : ( s 7 .Q[ 0 : 0 ] ) ,
( s10 .Q[ 1 : 1 ] ) : : ( s10 .Q[ 0 : 0 ] ) ,
( s12 .Q[ 1 : 1 ] ) : : ( s12 .Q[ 0 : 0 ] ) ,
( s16 .Q[ 1 : 1 ] ) : : ( s16 .Q[ 0 : 0 ] ) ) ;

DEFINE
Z := ( s4 .Q[ 1 : 1 ] ) : : ( s 4 .Q[ 0 : 0 ] ) ;

MODULE lpm 0 ( Data , DataB) −− Library : Adder
DEFINE Q := Data + DataB ;

MODULE lpm 1 ( Data , DataB) −− Library : S u b s t r a c t e r
DEFINE Q := Data − DataB ;

MODULE lpm 2 ( Data , DataB) −− Library : M u l t i p l i e r
DEFINE Q := Data ∗ DataB ;

MODULE lpm 3 ( Data , DataB) −− Library : Div ider
DEFINE Q := Data / DataB ;

MODULE lpm 4 ( Sel , D0 , D1 , D2 , D3)
−− Library : 8−to−2 M u l t i p l e x e r

DEFINE
Q := case

Se l = 0ud2 0 : D0 ;
Se l = 0ud2 1 : D1 ;
Se l = 0ud2 2 : D2 ;
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Se l = 0ud2 3 : D3 ;
esac ;

It can be clearly seen that s4 (a synthesizer generated name) is the
multiplexer that chooses between the different ALU functions (the Op bus
being the selector key). The output of the ALU module (Q) is the output of
the multiplexer, and its inputs are the outputs of the four arithmetic LPM
instances.

The model is easily verified to be accurate by plain eyesight. Note how-
ever that Icarus Verilog instantiated a 4-bit multiplier ( s12) when a 2-bit
would have been enough. Yet, since the upper bits are ignored, the result is
truncated and thus matches the semantics of the original circuit.

The above was a purely combinatorial circuit. We also show a sample of
a sequential circuit, from [16]:

module SyncFlipFlop (ClkB , Reset , Set , CurrentState ,
NextState ) ;
input ClkB , Reset , Set ;
input [ 1 : 0 ] CurrentState ;
output reg [ 1 : 0 ] NextState ;

always @(negedge ClkB )
i f ( ! Reset )

NextState <= 0 ;
else i f ( ! Set )

NextState <= 2 ’ b11 ;
else

NextState <= CurrentState ;
endmodule

MODULE SyncFlipFlop (ClkB , CurrentState , Reset , Set )
VAR

s 2 : lpm 0 (ClkB , ( s15 .Q[ 1 : 1 ] ) : : ( s15 .Q[ 0 : 0 ] ) ,
! ( Reset ) ) ;

s15 : lpm 1 ( ! ( Set ) , ( CurrentState [ 1 : 1 ] ) : :
( CurrentState [ 0 : 0 ] ) , (0 b1 1 ) : : (0 b1 1 ) ) ;

DEFINE
NextState := ( s2 .Q[ 1 : 1 ] ) : : ( s 2 .Q[ 0 : 0 ] ) ;

MODULE lpm 0 ( Clk , Data , S c l r )
−− Library : D f l i p −f l o p ( wi th Synchronous c l e a r )

VAR
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Q : word [ 2 ] ;
ASSIGN

next (Q) := case
bool ( S c l r ) : 0ud2 0 ;
TRUE : Data ;

esac ;

MODULE lpm 1 ( Sel , D0 , D1)
−− Library : 4−to−2 M u l t i p l e x e r

DEFINE
Q := case

Se l = 0ud1 0 : D0 ;
Se l = 0ud1 1 : D1 ;

esac ;

In this case, the synthesized flip-flop has both a synchronous clear – Sclr

and synchronous preset that is implemented by multiplexer at the input of
it. The rest of the flip-flop features that where seen in listing 3.2 are auto-
matically removed from the generated NuSMV flip-flop module.

4.1.2 Performance and resource usage

During the goals we established that it was within our interest to perform a
system that is fast enough to be used interactively.

We were able to run a part of the testsuite composed of 42 Verilog source
files totaling 420 lines in less than 0.26 seconds 1, all while using a maximum
of 9 Kibibytes of system memory – including time spent reading and writing
disk files. Intuitively, the converter can indeed be used interactively.

it is expected, however, that the time used by both the converter and the
model checker will increment exponentially as the number of bits of state in
the logical circuit increases, specially for the latter.

A 128 bits RAM, instantiated in a few lines in Verilog, would innocently
be converted into a model that has over 300 undecillion possible states (2128).

Such a model would obviously not be fully verifiable by a model checker,
unless some higher-level simulation technique is applied. This is usually
known as the state explosion problem.

1Measured on a 3.33Ghz Intel Clarkdale core
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To check for this, we have designed a very simple RAM implementation
in Verilog with 8 bit word sizes, and tried to do equivalence checking for
different numbers of words.

module ram( clk , iv , ia , oa , ov ) ;
// Clock s i g n a l
input c l k ;
// Write address , Read address
input [ 7 : 0 ] ia , oa ;
// Value to w r i t e
input [ 7 : 0 ] i v ;
// Read v a l u e
output [ 7 : 0 ] ov ;

reg [ 7 : 0 ] m [ ramSize : 0 ] ;

assign ov = m[ oa ] ;

always @(posedge c l k )
m[ i a ] <= iv ;

endmodule
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Figure 4.1: CPU time by individual components

As seen on figure 4.1, NuSMV’s time increases much more quickly than
that of the converter (note the different scales used in the figure). It is
expected, as the converter’s job pales in comparison of the algorithmic costs
of symbolic checking.

The time spent by NuSMV explodes as soon as the total state size ap-
proaches 64 bits, because that is the word size of the computer the test was
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run on, and certain optimizations NuSMV is otherwise able to do are dis-
abled. As a matter of fact, by default, NuSMV will not accept, for a single
state variable, words larger than the word size of the computer it is being
run on.

While we could workaround this during the test, we had to cancel the
execution after half an hour had passed. More than one minute is way too
much for interactive use and thus it was not felt necessary to continue with
the testing.

Since the Jutge.org computers are 32 bit, it is to be expected that only
checking for circuits with up to 32 bits of state will be reasonable.
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Figure 4.2: Memory usage by individual components

As for memory usages, plotted on figure 4.2, they are clearly not a concert
for the normal usage of our project. NuSMV starts using up to a few hundred
megabytes on the larger ones, but by then the CPU times required to perform
the checking on such big models already makes their verification virtually
impossible on lesser powerful machines.

4.2 Sample student interaction

In this section we will evaluate the external use of the system by an student,
and compare it to that of the original Jutge.org platform as shown on figure
1.7 on page 24.
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The first step a student has to do is to login.

Figure 4.3: Login

After login, the student is able to enroll into courses, and list the problems
available for each course. However, there is not yet a HDL course created on
the system, so we will skip this interaction and assume the student already
knows the problem identifier or URL.
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Once a problem is selected, we can download the statement (as a PDF)
and any other attached files, if any.

Figure 4.4: Reading the problem statement
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After carefully reading the statement, the student writes its proposed
implementation. For testing purposes, we have deliberately created invalid
Verilog code (-+! is not an operator):

module suma( a , b , r ) ;
input [ 1 : 0 ] a ;
input [ 1 : 0 ] b ;
output [ 1 : 0 ] r ;

assign r = a −+! b ;
endmodule

that we will submit to the system.

Figure 4.5: Submit form
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The synthesizer detects the invalid submitted design and a few seconds
after submission, we get a Compiler Error verdict.

Figure 4.6: Compiler error
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If we try to submit a circuit that produces wrong output:

module suma( a , b , r ) ;
input 1:0 a ;
input 1:0 b ;
output 1:0 r ;

assign r = a - b ;
endmodule

NuSMV detects the invalid output and creates a different verdict:

Figure 4.7: Wrong answer

We not only get the error message, but also an example of inputs that
cause our circuit to fail.
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If we submit the proper answer, we rightfully get an Accepted message:

Figure 4.8: Accepted

4.3 Creating a new problem

The process to add a new problem to a course is yet to be fully automated
– we expect a reasonable way to do it in the future.

However, Jutge.org uses a standardized directory structure for problems.
Each problem has its own directory, and once the full structure is created,
adding the problem is a matter of a few minutes of work.

1. The directory created for a problem is by convention called

name-of-the-problem.pbm.

2. Each problem must have two files inside this directory. The first one
is handler.yml and must contain the following, which indicates to the
system this problem is to be handled by the cv driver developed on
this project.

handler: cv

3. The second one is problem.yml, which must contain the problem name,
and author contact information at a minimum.

email: author@example.com

title: Two bit half-adder

author: Example Author

If localization is necessary, additional problem.*.yml files can be cre-
ated, where * is an standard ISO 639-1 code for the language (for
instance, problem.en.yml).
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4. The problem statement can be written, in multiple languages, into
problem.*.tex.

5. The known-good circuit has to be written into a solution.v file.

6. Finally, cvproblems.py must be run within the problem directory. It
generates the PDF files that will be displayed to the student (see figure
4.4), as well as the model files required by the driver by analyzing the
solution.v file. If there are any synthesis errors on the known-good
circuit, those will be shown now.
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Conclusions

We have developed a system for the exhaustive verification of circuits that
is simple to use and works for a large set of simple Verilog circuits.

The converter component satisfies its requisites: it can be used interac-
tively on a modern computer with reasonable complexity circuits, and the
models it generates are at least understandable by humans. It is conceivable
that models generated by this converter could later be reused as part of the
construction of another NuSMV model.

The developed system has been successfully integrated with the existing
Jutge.org platform in a way that does not substantially modify the user
interaction patterns.

These patterns have been tested by thousands of students that the Jutge.org
platform has been in use by the Technical University of Catalonia, and thus
we can reasonably say that it is easy to use as we required in the project goals.

However, it is evident that there are many areas for expansion available
for this project. A few will be detailed in section 5.3.

5.1 Personal conclusions

This project represented my first contact with the HDL world. Thus, I spent
the first few months of the project getting used to the the Verilog language
and the specifics of HDL design.

Also, thanks to my project’s supervisors I had access to a Xilinx FPGA
which, while not being strictly required for the development of this project,
allowed me to view the later stages of a typical HDL design cycle and test

76
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my Verilog designs in hardware, which helped me get enthusiastic about the
language.

There are only two courses in the official informatics engineering curricu-
lum from the Barcelona School of Informatics that even mention Verilog,
and none of them are compulsory, while it is clear that it is a topic that is
been gaining importance for the last decade up to the point I strongly believe
basic knowledge of the area should be mandatory for any engineering degree
minimally related to electronics.

Thus, anything that could aid in the development of a HDL course is in
my opinion a very interesting contribution.

This project is one small step in this direction, as it should help interested
students increase the speed by which they learn the language allowing them
to solve and test exercises in a more efficient manner. I am fully confident
that the system developed in this project, within its limitations, will work
well enough for at least introductory Verilog exercises.

During the project, I learned many languages far from the traditional
imperative models – like Verilog and NuSMV –, and I was introduced to
electronic design automation as well as model checking, all along while testing
the most used open source software system in both areas.

5.2 Cost study

The topic for this project was known by January 2010. The first months
where spent learning the Verilog language itself, as well as getting used to
the specifics of FPGA based development.

During Summer 2010 I was unfortunately not able to work on the project
due to external work reasons.

Coding on what would become the current tgt-nusmv converter started
on late September 2010. On the other hand, the converter was finished by
March 2011. By then, design on the Jutge.org integration had started.

Using the frequency of commits to the version control system used during
development of the converter module (Git), we can estimate with reasonable
accuracy the number of hours employed for the development of this project.
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Month Work done Man-hours
February 2010

Learning Verilog
40 h.

March 2010 10 h.
April 2010 Converter design and prototyping 40 h.
October 2010

Converter implementation

100 h.
November 2010 100 h.
December 2010 40 h.
January 2011 40 h.
February 2011 100 h.
March 2011 Jutge.org integration 140 h.
April 2011 Finishing this report 100 h.

710 h.

Table 5.1: Time study

Assuming a fixed labor rate of 30e per man-hour, the total human cost
of the project is estimated at 21300e.

As for the tools used during the project, software-wise:

Software Cost
Gentoo GNU/Linux operating system Free
Icarus Verilog 0.8.7 Free
NuSMV 2.5.2 Free
TEX Live 2008 Free

Table 5.2: Software cost study

The computer used to run those tools is valued at 800e. A less powerful
computer and thus cheaper might also have been usable for the project. Yet,
we will use this figure as an approximation.

Cost
Engineering costs 21300e
Software costs 0e
Hardware costs 800e
Total project cost 22100e

Table 5.3: Total costs
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5.3 Future work

Some of the features that do not currently work in the tgt-nusmv converter,
as seen on the start of this chapter, would be quite easy to implement, but
have been deemed outside of the scope of this project.

5.3.1 Model readability enhancements

While readability of the generated models was one of the tgt-nusmv objec-
tives, there is still some work that could be done to greatly improve it with
minimal work. For example, a trivial Verilog module with a single continuous
assignment of a two-bit bus:

module bus ( input [ 1 : 0 ] i , output [ 1 : 0 ] o ) ;
assign o = i ;

endmodule

Generates the following model:

MODULE bus ( i )
DEFINE o := ( i [ 1 : 1 ] ) : : ( i [ 0 : 0 ] ) ;

Note that it generates two bit addressing operations as well as one con-
catenation.

The cause of such behavior is that the Eval module (section 3.1.2) works
on a bit per bit basis, calculating the expressions for each of the individual
bits in any given port, and then concatenating all of the generated expres-
sions – taking bit order into account – to obtain the entire bus expression.

Ideally, the generator would have simplified the entire module to:

MODULE bus ( i )
DEFINE o := i ;

This could be implemented by having the Eval module decide, when gen-
erating such bus expression, if the expression generated for the current bit
is equivalent 1 to the expression generated for the previous bus. Merging
them into one single direct access without any addressing or concatenation

1defined as being exactly identical as the previous one except the last addressing oper-
ation, which will select bit n + 1 if the current expression selected n
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operations when possible.

However, this will neither benefit nor hinder the efficiency of the generated
models in any way, because NuSMV will decompose them again and work
on a bit per bit basis.

5.3.2 Additional language features

As per the Language support table (appendix A on page 87), some features
of the language are not implemented.

Most of the unimplemented features come from limitations in the Icarus
0.8 tool, and from those, a big majority are constructions that make no
sense in a synthesis environment (and therefore, they are out of scope for
our project). Notwithstanding that, there are a few elements that are not
allowed for synthesis in Icarus 0.8 yet we found desirable:

• Repeat/For loops that can be unrolled at synthesis time because
they are either trivial or use fully constant values.

• Inferring multibit latches. Latches are usually inferred on Verilog
when any branch on a behavioral model flow allows for a reg to keep
its value between clock cycles. While Icarus correctly creates single bit
latches, it failed to create either a multibit latch or multiple latches
for a bus. This restriction was partially lifted for the scope of this
project by altering the Icarus source code, but a more generic solution
is desirable.

Many of those limitations may be removed in future versions of Icarus
Verilog, still, tgt-nusmv will require modifications in order to work with such
future versions.

On the other hand, tgt-nusmv also has language limitations that could
be improved, like support for named scopes.

5.3.3 Multiple clocks

The current implementation of tgt-nusmv does not handle more than one
common clock signal for all inferred flip-flops. It assumes all flip-flops are
always triggered on each simulation/verifier cycle.

This means it will (gracefully) fail to generate a model for the following
circuit:
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module mff ( input clk1 , input clk2 , input i ,
output reg a , output reg b) ;

always @(posedge c lk1 ) a <= i ;
always @(posedge c lk2 ) b <= i ;

endmodule

or even the following one, because each of the inferred flip-flops triggers
on a different clock edge:

module mff2 ( input c lk , input i , output reg a , output
reg b) ;
always @(posedge c l k ) a <= i ;
always @(negedge c l k ) b <= i ;

endmodule

It would be easy for tgt-nusmv to allow all of those special cases and
write proper models for them (in fact the feature had been implemented into
tgt-nusmv at one point during development). Yet it adds additional com-
plexity to the verification process. Models grow bigger and verification time
increases, for a feature that is rarely used on the simple designs we expect
students to work with. Also, problems arise in the verification of the interac-
tion of the different clock signals – how do we model them? A trivial answer
is to model them like a Verilog simulator would do: by having a “implicit”
clock signal whose frequency is the least common multiple of all the involved
clock signals, and use it to simulate each of the required extra clock signals
from the implicit one. However, while easy to model, that is not how real
clock signals on physical hardware interact – but it might be enough for less
accurate requirements.

Any future work willing to expand into this area will need to answer these
questions first.

5.3.4 More relaxed circuit specifications

The problem preparation scripts, responsible for generating the model for
the known-good circuit as well as the state machine that will embed both
models and check whether outputs match will currently always require that
outputs match during all clock cycles. Otherwise, the circuit will be consid-
ered invalid.

This works well enough for combinational and very simple sequential cir-
cuits. It is obviously desirable to allow for more relaxed specifications con-
senting a circuit to have undefined outputs – for a fixed amount of cycles, or
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until a ready signal fires – after a change in any of the inputs.

Since the system stores NuSMV models, it is already possible to write the
specifications with the full power from any of NuSMV supported logics (CTL,
LTL, ...). Nonetheless, it is enticing the automated tool would do that. Using
bounded model checking[15], we might even be able to ensure the outputs
from a student’s circuit become valid in less than or equal number of cycles
than the known-good circuit.

5.3.5 Better output messages

Given the traces the verification process generates on failure, it should be
trivial to generate a VCD 2 file from them and then plot it visually using
any existing waveform viewer tool.

5.3.6 VHDL support

VHDL is the other big language within the HDL world, and it is obviously
desirable to allow students program in this language if they desire so.

It was one of the objectives of this project to allow for inclusion, in the
future, of support for other languages. Thus, most of the components are
prepared to do so: the Jutge.org integration scripts allow for the definition
of new Synthesizers, and the fact that we used NuSMV itself as the language
problem specifications are defined in would allow for problems to be defined
in VHDL if required.

However, any alternative language support would require the implemen-
tation of a converter from that source HDL to NuSMV. This would be by
itself a project with a complexity level similar to this one. It is also worth
mentioning that there are plans to integrate VHDL support in Icarus Verilog
for the 0.10 series.

2Value change dump, a Verilog standardized format for waveform data exchange
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Glossary

AST Abstract Syntax Tree. 32

CTL Computation Tree Logic. 18, 43

driver Encapsulated component part of Jutge.org platform, handles the ac-
tual student code evaluation task. 26, 42

elaboration In Icarus Verilog, elaboration is the process where the syntax
tree is converted into a graph of interconnected components instanti-
ated as required by the design’s semantics. 13, 32

equivalence checking The use of model checking to validate if two system
are identical from an external point of view. 16

FPGA Field-Programmable Gate Array. 26

functor In Icarus Verilog, a functor is a program that has an elaborated
design as input and modifies it in a specialized way. 13

HDL Hardware Description Language. 4, 26

ISP Instruction Set Processor. 4

LPM Library of Parametrized Modules. 34, 55

nexus In a Icarus Verilog elaborated design graph, a nexus is a kind of
node which conveys that all nodes with direct connectivity to it are
electronically interconnected. 35

root module The root module in a Verilog circuit is the one that is not
instanced in any other module in the circuit; thus, when there’s only
one, it encompasses the entire circuit. 50, 58, 63
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STL Standard Template Library. 48

target In Icarus Verilog, a target is a loadable plugin that handles the actual
synthesis, optimization and code generation stages. Also known as a
backend . 13, 36, 48



Appendix A

Language support

Most of the Verilog language is supported except a few not very often used
or not synthesizable constructs. The following is a list of the constructs that
are known to work:

Lexical conventions

Operators, White Space, Comments, Numbers, Identifiers, Keywords.

Data Types

Value set, Registers, Nets, Vectors, Implicit Declarations, Net Types,
Memories, Integers, Parameters.

Expressions

Binary, Arithmetic, Relational, Equality, Logical, Bit-Wise, Reduc-
tion, Conditional, Shift and Concatenation Operators; Net and Reg-
ister bit Addressing, Memory Addressing; Expression Bit Lengths.

Assignments

Continuous, Procedural.

Gate and Switch Level Modeling

Gate and Switch Declaration Syntax, Implicit Net Declarations;
AND, NAND, NOR, OR, XOR, XNOR, NOT gates.

Behavioral Modeling

Procedural assignments; Always, Conditional (if) and Case State-
ments.

Hierarchical Structures

Modules, Top-Level Modules, Module Instantiation, Input and Out-
put Ports.

The following constructs will not be processed by the current implemen-
tation:
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Data Types

Strings Strings are not usually synthesizable.
Strenghts Wire strengths are ignored.

Gate and Switch Level Modeling

Delays Delays are ignored, as most synthesizers do.
BUFIF1, BU-
FIF0, NOTIF1,
NOTIF0 gates

Those are not implemented. While it would
not be hard to implement them within the
current code base, wires with multiple drivers
were not tested, which would limit its useful-
ness.

Behavioral Modeling

Looping State-
ments

While looping constructs are usually synthe-
sizable if they can be unrolled at synthesis
time (e.g. constant number of times in a
repeat statement), the Icarus Verilog version
used had no support for them.

Initial Statement Not generally synthesizable.
Named Block
Statement

Not supported, rarely used.

Any remaining language feature not mentioned here is not supported.
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Environment setup

During the deployment of this project, we had to install several pieces of
software into the virtual machines used by the Jutge.org environment (see
figure 1.8 on page 25 for a description of the architecture). The software
used, its license, where the source was downloaded and how it was build and
installed will be documented in this section for completeness.

Icarus Verilog 0.8.7

• Downloaded from:

ftp://icarus.com/pub/eda/verilog/v0.8/verilog-0.8.7.tar.gz

• GPLv2 license.

• Requires GNU Make, GCC, flex, bison and gperf.

• Unpacked, built and installed under /usr/local as follows:

$ ta r xz f v e r i l o g −0 . 8 . 7 . ta r . gz
$ cd v e r i l o g −0.8 .7
$ . / c o n f i g u r e −−p r e f i x=/usr / l o c a l
$ make −j 2
$ sudo make i n s t a l l

• Note that a few patches where applied to the unpacked Icarus Verilog
source. They might not be required, but we used them during our tests.
Those can be found under the verilog-0.8.7-patches directory.

– build-fixes implements changes that where requied to build
Icarus Verilog under gcc 4.4.
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– latches adds minimal support for synthesis of latches with width
> 1.

– anachronism fixes minor warnings that appear when running with
the stub driver that was heavily used during development.

Those patches can be applied by running the following snippet in the
Verilog source directory:

$ patch −p1 < /path/to/patchfile

NuSMV 2.5.2

• Downloaded from:

http://nusmv.fbk.eu/NuSMV/download/getting_src-v2.html

• Main library under the LGPLv2.1 license; some components under the
BSD-style Cudd license.

• MiniSat2 support was enabled. It is not strictly required for the project,
but potentially desirable in future modifications, as it improves NuSMV’s
bounded model checking performance. The MiniSat2 library has to be
downloaded and unpacked as part of the NuSMV setup. Recent ver-
sions of the library are released under a permissive BSD-style license.

The version we used was fetched from:

http://minisat.se/downloads/minisat2-070721.zip

• Unpacked, built and installed under /usr/local as follows:

$ ta r xvf NuSMV−2 . 5 . 2 . ta r . gz
$ cd NuSMV−2.5 .2
$ cp . . / minisat2 −070721. z ip MiniSat /
$ cd MiniSat
$ . / bu i ld . sh
$ cd . . / cudd−2 .4 . 1 . 1
$ make
$ cd . . / nusmv
$ . / c o n f i g u r e −−p r e f i x=/usr / l o c a l
$ make −j 2
$ sudo make i n s t a l l

http://nusmv.fbk.eu/NuSMV/download/getting_src-v2.html
http://minisat.se/downloads/minisat2-070721.zip
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tgt-nusmv

• Developed as part of this project.

• GPLv2 license.

• Built and installed as follows:

$ make −j 2
$ sudo make i n s t a l l PREFIX=/usr / l o c a l
# Required by the d r i v e r
$ sudo cp / usr / l o c a l / l i b / i v l −0.8/nusmv . conf

/ usr / l o c a l / l i b / i v l −0.8/nusmv−user . conf

cv driver

• Developed as part of this project.

• GPLv2 license.

• Installed as follows (on master computer only):

$ make
# Requires proper Jutge . org c r e d e n t i a l s in
# . ne t rc f i l e .
$ make push
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