

MASTER IN COMPUTING

MASTER OF SCIENCE THESIS

Analysis of alternatives to store

genealogical trees using Graph Databases

Lucía Pasarin Perea

Advisor/s: Enrique Mayol Sarroca, Pablo Casado Arias

June the 21st, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41809594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1 Introduction

1.1 Definition of the problem

1.2 Definition of the goals

2 History of Graph DB and NoSQL in general

 2.1 Introduction

 2.2 Relational Database Management Systems

 2.3 The emergence of NoSQL systems

2.4 Graph NoSQL Database Management Systems

 2.4.1 Overview

 2.4.1 Justification

3. State of the art

 3.1 Analysis of previous works about graph DB comparison

4 The domain. Genealogical trees

5 Methodology and strategies to solve the problem

6 Planning of the work in tasks

7 Technical development: Selection and Evaluation processes

 7.1 First selection of tools

 7.1.1 Design of initial comparison criteria

 7.1.2 Evaluation and Comparison

3

7.1.3 Selection

 7.2 Final comparison of Graph Databases

 7.2.1 Design of comparison criteria

 7.2.2 Evaluation and Comparison

8 Technical considerations for the prototype

9 Final Evaluation and Comparison in more detail

 9.1 Evaluation and Comparison

 9.1.1 Dex

 9.1.2 HyperGraphDB

 9.1.3 Neo4j

 9.1.4 OrientDB

 9.2 Final Selection

9.2.1 Feature viewpoint comparison

9.2.2 DBMS viewpoint comparison

10 Discussion and conclusions

11 Bibliography and other references

4

1 Introduction

This master thesis is expected to give solutions to a current and open problem. Different

aspects related to the genealogical tree storage using advanced databases are considered in

this thesis. The first important point of the work is the application of software selection

techniques to find the best DBMS or the most suitable to be used for a concrete domain. The

next point is the use of current graph DBMS, some of which are still in early phases.

Furthermore, the main purpose for this thesis is to state different alternatives to store this

kind of information and to overview the previous contexts from which we depart.

Consequently, it is important to give a previous context for genealogical trees storage, on one

side, but also an evolution of database management systems in a general way. This last

approach allows for a better understanding of how graph DBMS emerge, in which context,

with which needs and the same for older DBMS kinds, such as the relational one.

In this thesis the advantages of graph NoSQL databases for storing genealogical data will be

defended. After that, one of the most important topics of the thesis will be tackled. This

relevant topic is the implementation of some operations using some graph NoSQL databases

applied to this problem. This will permit carrying out a comparison between all these systems

that will be already used and then drawing conclusions about the operations’ results in each

of them. This last part will be interesting to support our decision of the best possible solution

to this open problem.

1.1 Definition of the problem

Storing genealogical or family history data has been present since many years ago and

still exists. The concrete problem that is tackled in this thesis and, then, motivates it

is the one of finding the most suitable storage, in terms of DBMS comparison. This

comparison will be done according to the performance of some operations, the effort

for deploying, DBMS functionalities, etc.

5

Graph databases have been used since only a few years ago and they have been

presented as a good alternative to store data whose structure is similar to a graph. In

this context, they seem to be a better choice than a relational database for many

reasons.

First of all, in a graph database, the performance of the system is improved as the data

is participating in more relations. For a graph database, relating data is just following

links from nodes, which is more efficient than joining tables as it is done in RDBMS.

This is just the structure we are looking for, when storing family history data.

Concretely, for this domain, using a relational DBMS, we would need to first split the

data into tables to later on putting it again in a graph structure. With graph DBMS,

instead, we keep all the time the original graph structure without the need of a

transformation. This, and more advantages like that, will be described and justified in

the corresponding section (concretely, the one about databases history).

After considering some advantages of graph databases, what is aimed is to find the

concrete DBMS that achieves these properties in the best possible way among some

that will be first picked.

Finally, we would like to conclude that the main aim of this work consists of what

follows. Originally family trees were stored in relational models in spite of being

actually shaping a graph. As a consequence of this fact, these systems don’t work in a

way as efficient as it should be. Now, with the emergence of graph NoSQL DBMS, we

see a clear opportunity for trying a new system that better suits our concrete domain

needs.

6

1.2 Definition of the goals

The objectives we propose to solve the problem we address with this thesis are:

- Analyze the limitations of the relational model and the opportunities of Graph

NoSQL model to store data structured in a similar way as a graph.

- Perform a first analysis of graph DBMS to select a subset of them and compare.

- Define adhoc comparison criteria for the selected graph DBMS in a detailed way.

- Build a prototype of each system in order to improve our comparison.

- Evaluate the systems according to the criteria in order to be able to recommend

a good solution in this field.

Now we give a more detailed description of the main goals we expect to achieve:

- Analyze the limitations of the relational model and the opportunities of Graph

NoSQL model to store data structured in a similar way as a graph.

We have already noticed that relational database management systems have

many disadvantages for storing this kind of data and query it. Then, the idea is

finding the graph NoSQL DBMS whose features are the most appropriated. We

will perform a concrete analysis applied to storing genealogical data. This process

of finding the most suitable database will be based on the evaluation and

comparison of several systems and based on criteria properly defined.

- Perform a first analysis for getting some graph database management systems

to compare.

This first analysis will be based on the first impressions and information of systems

available on the Internet, without considering a prototype implementation.

Concretely, we will base on social networks, graph database management

7

systems’ official web pages, etc. At the end, we will select a subset of graph DBMS

to compare in more detail.

- Define the comparison criteria to be used to compare the DBMS’s in a detailed

way.

In order to get these criteria to compare the DBMS already picked, we will use

some tools and techniques of a specific software selection methodology that will

be explained later. We consider that using specific indicators applied to the

genealogical domain to classify graph DBMS may help us get a much fairer result.

- Build a prototype of each system in order to be able to compare.

Another important goal is being able to build a prototype of genealogical tree

storage, based on each one of these graph DBMS picked in the initial selection.

One of the most important motivations of this thesis is finding a justification or

proof that the graph DBMS that are finally chosen are the best ones. Therefore, a

practical point of view with the implementation of such systems for storing this

data using each DBMS was considered appropriated and necessary for the thesis.

- Evaluate the systems according to the criteria in order to find the best possible

solution.

We aim at drawing some conclusions about the suitability of the graph NoSQL

database model to store genealogical tree information. Then, we will be able to

defend which of the evaluated systems is the most appropriated. This is the

reason why the comparison criteria are so important. With this thesis, it is

intended to provide a solution to this open problem with a fixed context (mainly,

a fixed data type to work with, i.e. genealogical data), using fixed comparison

8

criteria. In this way, the result is a concrete solution and we reduce the future

effort for getting an implementation given a concrete domain. Here the context is

already set and this allows for getting relevant and concrete results.

9

2 History of Graph DB and NoSQL in general

 2.1 Introduction

Database management systems have evolved over the years according to the industry

concrete needs. Nowadays, we are in a moment in which the quantity of data and

information to be managed by the enterprises has considerably increased and also

these companies start realizing that their systems are slow, big and expensive.

Additionally, the need of performing analysis on data has become more important in

the last years. Moreover, the use of this data put together with information from

social networks became relevant too. All these facts must also be seen in the context

of an important evolution of the Big Data1 and Cloud Computing2 trends.

In this context, NoSQL databases appear and present a way of storing data, which is

cheaper than the relational, smaller, more flexible in many senses and faster. Many

startups observed big companies’ experiences with positive results (Google, Amazon,

Facebook, etc.) and decided joining.

Among all these database trends, a small subgroup of these “new“ NoSQL DBMS called

Graph Databases emerges. Then, it also starts growing slowly with the support of such

big companies as Twitter, Deutsche Telekom or Cisco. Graph databases arise as a good

option for storing social network, routing and recommendation data and, what is

better for us, also genealogical data.

1 Big Data refers to large datasets used to keep derived information including analysis, visualization and

several operations over the data.

2 Cloud Computing consists of storing many users’ data in remote servers in accordance with a Software

as a Service (SaaS) business model.

10

2.2 Relational Database Management Systems

Relational systems appeared around the 1970’s when database researchers such as E.

F. Codd [CODD] were willing to find a good way of storing and querying data according

to a very concrete needs. First of all, they required a system that permits querying

maintaining an adequate independence of the way the data was stored. A clear

example of this is the fact that they wanted a differentiation of a physical ordering

from a non-physical one. That means, being able to present a result sorted without

needing to physically move records. This was really important to guarantee an

efficient retrieval of the ordered data since physically moving records depending on

the queries has a high cost in I/O and, therefore, in time.

Another important and needed separation between physical storage and application

was in the use of indexes. This means that database clients should not change their

way of querying the data depending on the existence or not of indexes. Indexes should

make queries faster but applications or clients themselves should not directly use

them. Also regarding indexes, they were required to be “non-essential” for the

database, i.e. if they are removed, the database could still exist and be working. Then,

indexes are seen as mere chains of indexed values copied from the database values.

Relational database management systems, then, contributed with an important

concept that would be later on one of the basic ideas in the databases field. That

relevant concept was the separation between logical and physical schema. This was,

as has been said, an important evolution, since it allowed people working with

databases not worry about the way the data was stored and work at a higher

abstraction level.

Furthermore, the relational model, as its own name suggests, was intended at

providing a new, different way of using the data: the relationships. Data relationships

are defined as mathematical relations in which the sets that are related represent

database domains, aka attributes. This implied an important evolution in the database

11

fields since until that moment the data was queried as data files, in a tree structure.

The previous approaches, for example, didn’t provide effective ways to treat data

redundancy and consistency that this new representation did.

There are many database management systems based on the relational model. Some

of them are Oracle Database, MySQL, PostgreSQL, Microsoft SQL Server, MariaDB, etc.

According to the ranking presented in [DBRANK], the most popular relational database

management systems are Oracle Database and MySQL. So, we consider relevant

explaining some main features about them.

Oracle Database was the first commercial relational DBMS using the SQL language

which came on the scene in 1980. It is implemented in C and C++ and it is available to

be run on many operating systems and using some different programming language

like Java, C or C++. For managing an Oracle Database using these programming

languages, the well-known JDBC (Java Database Connectivity) and ODBC (Open

Database Connectivity3) access methods are available, among others. Oracle Database

also permits server-side scripts using its own language, the PL/SQL or Procedural

Language/Structured Query Language, considered as an extension for the SQL

language. [ORACLEDB] [ORACLETIME]

MySQL, instead, is an open source project that was born in 1995 with the aim of

obtaining a database system to access low-level routines. That initial database

management system was called mSQL and they realized, after testing it, that it didn’t

meet the required need for being too slow or lack of flexibility. However, they still

kept the syntax used for this older system to ease migrations to what we nowadays

know as MySQL. In comparison with Oracle Database, MySQL provides compatibility

for more programming languages that Oracle Database does not support, especially

3 ODBC is a C middleware API. JDBC can be seen as a concrete implementation of ODBC for accessing a

database from the Java programming language.

12

some script languages. Some examples of this fact are languages like Ruby, Python,

PHP or Perl. [MYSQL] [MYSQLHIST].

To end up with this part about relational database management systems, we would

like to summarize the main limitations they have to store and manage genealogical

data. These limitations are, especially, the fact of being oriented to relations and the

need for a data transformation into table. In the next point we revisit the

characteristics and limitations cited here to talk about how they are treated in NoSQL

systems.

2.3 The emergence of NoSQL systems

NoSQL databases have been used since only a few years ago, approximately at the

end of the 1990’s. They were born to deal with new technological needs and,

concretely, with the fact that companies now have huger amounts of data to store in

their systems, but they still need an efficient retrieval of this information.

The term NoSQL first appeared in 1998 to refer to some databases that were working

without using the SQL language. Later on, on 2009, when Last.fm developer Jon

Oskarsson organized a meetup in San Francisco, people attending the event could

hear that term again. Little by little, NoSQL started to be used for systems, created by

some startups, to deal with some problems that relational DBMS could not solve.

With the emergence of Amazon’s Dynamo and Google’s BigTable, some other

companies also started creating their own systems to response their concrete needs.

It is important to keep in mind that NoSQL systems were born in a moment when

some other alternatives to the use of relational DBMS had been proposed before.

Some examples of these previous approaches trying to be the alternative to RDBMS

are object oriented DBMS or XML storages. However, in both cases, none of them

achieved a minimum acceptance as NoSQL later on did [NOSQL].

13

We know that relational databases as MySQL or Oracle fulfill a set of properties called

ACID (Atomicity, Consistency, Isolation and Durability) that guarantee that the

database transactions can be executed in a reliable way. NoSQL databases instead

break a little bit with this databases tradition and propose what is called eventual

consistency, i.e. that the database will be consistent at some point if enough time

passes. Note, however, that some NoSQL database systems fulfilling ACID properties

also exist. An example of this is graph DBMS Neo4j.

Additionally, NoSQL systems provide better ways than RDBMS to scale in a horizontal

direction. That means, they make it easy to add new machines to a database cluster

and don’t rely in highly available hardware. As we know hardware can fail, the system

must be able to send requests to other nodes of the cluster that are available when a

response is needed.

NoSQL databases can be classified into three main families according to the way they

store the data: document store, key-value and graph. Furthermore, an additional

category for DBMS implementing Google’s BigTable system is sometimes included; as

well as a category for column-store systems.

In key-value systems, data is kept by pairs of key-value in a map structure with the

characteristic of being schema-less. Records are indexed and queried by key to

retrieve the value and the system cannot respond to queries by values. Consequently,

only one disk access is required, allowing fast data lookup. Some examples of key-

value systems are Cassandra (developed by Facebook), Voldemort (used by LinkedIn)

and Riak.

In document store systems aka document-oriented DBMS, data is stored in

documents (records) that are part of a collection (the equivalent to a relational

database table) and physically stored as JSON, BSON, XML, etc. Document-oriented

DBMS provide, as an advantage with respect to key-value systems, the possibility of

querying by a different value than the key or record identifier [COMPDOCKEY]. Some

14

examples of document store systems are MongoDB, CouchDB, CouchBase and

ArangoDB. We can consider, according to [TOPBIG], MongoDB as one of the leading

big data storages together with Hadoop.

We also have graph database management systems, in which data is stored by nodes

connected by relations. We talk about these DBMS in more detail in next section,

where we give an overview of the features considered as the most important ones.

Advantages with respect to both relational DBMS and other NoSQL systems are also

provided.

There also exist column-based NoSQL databases which store data in tables as the

relational ones but instead of doing it by rows, they store the data by columns. This is

a good approach for retrieving data, since only the needed attributes (rows) are

retrieved. However these databases are not suitable for insertions or updates of the

data because they require multiple accesses for inserting/updating each attribute

[CST]. Some examples of column-based DBMS are HBase, MonetDB and Vertica

Analytic Database. The last one, Vertica Analytic Database, was acquired by Hewlett

Packard in 2011 [HPACQ]. HBase is the most popular among them and is an Apache

project that can run on top of Hadoop.

2.4 Graph NoSQL Database Management Systems

 2.4.1 Overview

As we said in last section, now we are going to give some main ideas about

graph database systems. This includes some features and properties that also

derive in advantages with respect to other systems.

First of all, as we know, graph DBMS store data in a graph structure in which

the information is kept in nodes or vertexes that relate to each other by means

of edges or relations. They provide, then, an efficient retrieval for highly

15

connected data, which is an advantage with respect to both relational DBMS

and document store systems.

Basic terminology for labeled property graphs. Source: [INFOQ]

With regard to document store systems, we have to note that, even though

the graph approach is better for data that participates in many relations,

document is better for storing JSON documents [GOODFOR].

Moreover, graph DBMS provide an additional advantage which is a good

support to tackle recursion. This is an important feature that is missing in

relational DBMS and that is essential for retrieving all data that participate in

a graph structure.

When storing graph data, a typically required operation is getting, given an

initial node, all its data and, recursively, all the data of each target node

obtained by navigating from the initial one. This is seldom supported by

relational systems and, in case they provide it, it is not in a natural way.

Modelsoft Consulting Corporation member Michael Blaha describes this

RDBMS problem in [GVSSQL] as “Relational databases have poor handling of

recursion. I will note that the vendor products have extensions for this but they

aren’t natural and are an awkward graft onto SQL. Graph databases, in

contrast, are great with handling recursion. This is a big advantage of graph

databases for applications where recursion arises.”

16

Finally, we can summarize this comparison between graph databases and

other NoSQL systems with the following diagram. We can clearly observe how

graph NoSQL DBMS are good for building complex systems or domains. They

are, however, worse than other NoSQL DBMS at dealing with many database

entries, but database sizes they are able to handle are of billions of nodes and

relationships.

 NoSQL data models compared in terms of Size and Complexity. Source: [INFOQ]

2.4.2 Justification

We focus this thesis on graph NoSQL databases, as for the kind of data to be

stored (genealogical trees) is adequate. This is due to the fact that many

relations between data are present and we know that graph databases are

suitable for joining data.

17

First of all, in a graph database, the performance of the system is improved as

the data is participating in more relations. This is just the contrary to a

relational database and exactly the structure we are looking for when storing

family history data.

Furthermore, if we used a relational database, a structure or format

conversion should be carried out and this would be a loss of efficiency for

many operations and, especially, for queries. Finally, relational database

expected times for queries are affected as the database grows, which is

expected not to be happening when using a graph database [APSTGC].

We also choose graph databases because they provide a flexible schema that

would be interesting for modeling family relations. We have to take into

account that some people have two brothers but some other don't have any,

for example, and this is allowed in these systems.

Furthermore, we have to keep in mind that a family tree does not represent a

tree structure. In fact, family trees are modeled as generic graphs since

starting from a node we may have more than one way to arrive to a given

ancestor. An example of this last fact could be going from a node to his father

vs. going from a node to his uncle and then navigating to this last node’s

brother. Thus, the brother of someone’s uncle may be the same as someone’s

father. In conclusion, the fact of representing family trees as graphs may be

an indicator that graph databases are adequate for storing this information.

18

3 State of the art

3.1 Analysis of previous works about graph DB comparison

Many studies have been carried out on the topic of trying to find the most adequate

graph NoSQL databases. We can cite, for example, Survey of Graph Database

Performance on the HPC Scalable Graph Analysis Benchmark [DPHSGAB]. It is a

survey by some people from DAMA-UPC research group in which Neo4j, Jena,

HypergraphDB and DEX graph databases are compared. Then, the conclusion is that

Neo4j and DEX are the ones that, according to the experimental results, are more

efficient than the other two databases.

Another interesting previous work comparing graph databases is A Comparison of

Current Graph Database Models by Renzo Angles from the University of Talca in Chile

[ACCGDM]. In this work the following graph databases are compared: AllegroGraph,

DEX, Filament, G-Store, HyperGraphDB, InfiniteGraph, Neo4j, Sones and vertexDB.

They are compared in terms of “Data storing features“, “Operation and manipulation

features“ and “Graph data structures“ compatible with each system.

Furthermore, the query language, API and data representation (nodes, relations,

properties), as well as the presence of certain graph queries are compared. The result

of this work is that, in terms of “Data storing features”, the best database is

HyperGraphDB. However, regarding “Operation and manipulation features”, they

prefer AllegroGraph and Sones.

Then, comparing “Graph data structures”, the one with the biggest quantity of

structures supported is Sones. When comparing the “Representation of entities and

relations”, the two DBMS considered as winners are DEX and InfiniteGraph. But, in

terms of query support, AllegroGraph is the one supporting all the points considered,

and only one of them with partial support. Finally, regarding the “Comparison of

integrity constraints”, DEX was the best positioned in this study. An important

19

conclusion of this work is that, as the results obtained are based in a non-empirical

study, they leave as future work the development of an implementation.

The same author of the last study coauthored with Claudio Gutiérrez also compares

many ways of storing graph information in a theoretical point of view in Survey of

Graph Database Models [SGDM]. In this work, the authors consider some models

different from Graph NoSQL model, like GROOVY4, XML5, RDF6 or OEM7. Some of the

conclusions or results extracted from this study are that XML could be adequate for

storing graphs as their structure is hierarchical. Furthermore, RDF is considered as a

good model because of its “ability to interconnect resources in an extensible way”.

Looking at all these previous works or studies we can observe one common thing. This

is, that all of them are context-less and so the databases can only be compared in a

theoretical way or without a concrete need for using them. Considering this, this

thesis is aimed at analyzing some graph databases in the same way as it was done in

previous studies. However, this time we try to get more useful and applicable results

by making the context (data, operations, etc.) more concrete.

Consequently, in this work we don't use exactly the same graph DBMS as in the

previous studies, and this is because here they have been picked according to our

particular needs. We have noticed the importance of the kind of data and the

operations to be performed over the data and then we have proceed according to it.

4 GROOVY is an object-oriented database model that uses hypergraphs.

5 XML format stands for eXtended Markup Language.

6 RDF stands for Resource Description Framework, a format used for the semantic web.

7 OEM means Object Exchange Model and it is used to exchange data between object-oriented

databases.

20

4 The domain. Genealogical trees

As it has been said before, we consider that this thesis differs from some other previous

studies because of including a concrete domain. Thus, this domain should be explained before

starting with the main topic. In this way, we make sure that we are taking into account all the

features and properties of these trees that will determine, later on, the selection criteria.

Genealogical trees are the graphical representation of a family relationships. One of the most

popular representations is the ascendant or descendent tree, where oldest family members

or ancestors are on the top of the tree, while descendants are in the bottom, hierarchically

organized. Family trees have been built since long time ago, for example for representing

members of a kings’ dynasty.

From a graph theory point of view, we should highlight that family trees are not exactly trees,

but graphs. This is due to the fact that there may be more than one path to arrive from a node

to another one. However, we have to note that family trees have some tree properties: being

acyclic (a person’s descendant cannot be at the same time his/her ancestor) and directed

(relationship directions are semantically important).

Another peculiarity of family trees is not having a regular or fixed structure: a family member

can have whatever number of children. Thus, it may not be a good idea to represent them for

example as binary trees. So, we may think about the need of a schema-less storage.

We also have to note that family trees can be of any size: we may include only the living

members of a person’s family which in general would be a rather small tree. However, we

could also draw a family tree representing a whole dynasty of Chinese emperors which are

usually quite large.

In this study we observe a previous context in which genealogical data is stored in a format

called GEDCOM. GEDCOM is an acronym that stands for GEnealogical Data COMmunication

and consists of storing the data in a plain text using certain tags or labels. These tags are used

to represent people or individuals (INDI), families (FAM), some people properties like the

21

name (NAME), sex (SEX), birth date (DATE), etc. GEDCOM files are written by lines and by

hierarchical levels indicated with a number as a first character (e.g. “1 NAME Bob /Cox/”).

They use the “.ged” extension and represent a standard for the exchange of genealogical data

between different software.

Although GEDCOM is a standard format, we have to note that many genealogical software

don’t make this treatment to it. As we can read in [GEDCOM_SYNC], there are genealogical

programs that adapt GEDCOM in many different ways. Some of them may not use all the tags

that are accepted by the standard or even add new tags that will be unknown by other

programs. They may also interpret the same tags in different ways, assigning a different

meaning compared with other genealogical software.

All these problems of not correspondence respect to the language being used have a direct

influence in data migration. Migrating from a specific software to another one will possibly

imply many compatibility problems even using both programs the GEDCOM “standard”.

Considering these issues related with the use of GEDCOM, it would also be interesting if, with

this current work we could draw some conclusions about this topic applied to the resultant

implementation. It would be relevant to point out if some standard storing language, possibly

based on XML, is found for the storage and/or export/import is found for some of the

implementations for each technology. It would be interesting to know about some storage

alternatives or evolutions to other formats, such as XML. However, we should keep in mind

that nowadays GEDCOM is still the most used and standard format in this field and this is why

we base export/import operations on it. I.e., whatever new format different from GEDCOM

found for storing data should be more or less easily convertible to GEDCOM, to guarantee a

compatibility with previous family tree storage systems.

22

5 Methodology and strategies to solve the problem

The methodology followed to solve the problem is oriented to Software Selection [QMSSE].

This methodology provides guidelines to face the task of selecting software to be used e.g. by

a company. It is important to remark the relevance of a good selection of the software since

a bad selection is translated into a loss of performance or time. Performance can be lost as a

result of the choice of an inefficient system and time wastage because of the choice of a too

complex system. In a company, a bad selection will generally imply an important waste of time

and money.

The steps to be followed to find the solution to this problem and according to the Software

Selection methodology are:

- Pick some software options that we could be finally choosing:

To do so, we pick these software options based on the technical specifications

provided by the vendors. This represents the product/component technical

specifications approach. We use this to create a list of them according to these

criteria: completeness, technological features (e.g. operating system) and availability

of a full version. We also consider the easiness to obtain information about them: use

of them, publicity, existing comparisons or surveys.

- Establish a set of comparison criteria to evaluate these software options:

To complete the selection methodology, the approach described in [UQMSPS] has

been used for picking the comparison criteria that are used to evaluate the software

options. These criteria are: functionality, reliability, usability, efficiency,

maintainability and portability. They will be later explained in more detail.

23

- Draw a Decision Analysis Spreadsheet to visualize the comparison in a graphical

way:

For doing this evaluation, a Decision Analysis Spreadsheet is used, since it is a useful

tool that allows for comparing different items. In this case, the items to be compared

are software options and they are compared according to the score that they have on

each of the comparison criteria. Additionally, a Decision Analysis Spreadsheet also

allows for assigning a weight (in percentage) to each criterion to represent its

importance. In this way, we can translate the comparison problem into a quantitative

problem.

24

6 Planning of the work in tasks

Here the work tasks are broken down, planned and presented in the following Gantt diagram.

We can observe that the beginning of the project is the 9th of February and the expected

ending of it is the 14th of June. We can also see that the tasks expected to take most of the

time are the ones about deploying and installing. We consider that this part and also the final

comparison are the most important ones. The reason of this is that they decide how to store

the data and implement the operations using each one of the graph NoSQL DBMS.

Consequently, they are crucial for getting the final results about which DBMS performed in

the best way among them. Later, in this thesis, each one of the tasks will be validated to

indicate if they were completed in the expected time or not.

This is the separation and planning of tasks represented as a Gantt diagram:

We can also see below the list of tasks again, but this time including the tasks in “1 Initial

decisions” expanded:

25

26

7 Technical development: Selection and Evaluation processes

7.1 First selection of tools

In this section four database management systems are selected in order to be

compared in the next section 7.2. First, the comparison criteria to be used to pick

these four DBMS are described. Then, the comparison process is carried out and also

explained. Finally, we talk about which are the chosen options.

7.1.1 Design of initial comparison criteria

In order to choose the databases that will be involved in the comparison about

which is the best possible storage for genealogical data, we use the following

selection criteria:

- The availability of both community and commercial editions.

We would like to use a community edition for this thesis as we will work

with sample data just for test and comparison purposes. So, we want to

make it as cheap as possible. However, we know the interest of a

company for using a full version in some cases: when the free version is

not complete or to have certain services, like support.

- The suitability for the kind of data that we want to store.

We know the context (basically, genealogical data with many relations

and without a fixed schema) and we should decide according to it.

- The reputation or support among nowadays companies towards the

database management system.

Choosing already used and tested software that big companies use is

interesting as, in this way, the probability of finding support and help in

27

case of being in trouble increases. However, we should not forget the

context: a really good DBMS used by many companies may be very bad

for us if the data to be stored and the operations required are not the

same.

The fact of being multiplatform was not considered as relevant for the

selection of a DBMS. We consider that having either a Windows version or a

Linux one is enough since both (especially the Linux) can be obtained in an

easy way.

7.1.2 Evaluation and Comparison

The database management systems that are used in this initial comparison

are all the ones that have been found investigating through Internet. We have

excluded in this initial selection the databases having a proprietary license,

since with these ones we would not be able download them to test them for

the final comparison. The graph DBMS first used are:

- Neo4j: It’s a leading graph database that fulfills ACID properties and

stores the data in Property Graphs. It is considered as thousands of times

faster than relational databases and it used by many successful

companies such that Deutsche Telekom, Telenor, Mozilla, Cisco, etc.

[NEO4J]

- InfiniteGraph: Distributed graph database that allows choosing between

ACID fulfillment and a more relaxed consistency of the data. It also allows

for physically keeping together elements that are frequently accessed.

However, we don’t choose it because the free version is only available for

60 days. [INFGRAPHDB]

28

- FlockDB: It is a graph database used by Twitter and created inside this

company. It allows horizontal partitioning and also permits out of order

and repeated writing to guarantee that the data is not lost. Although it is

a database for storing graph data, it is not optimized for graph-traversal

operations. This last indication, taken from the official web-site makes us

discard this DBMS option. For keeping genealogical data, several

traversals will be needed to know the ancestors/descendants or family

relatives of a person [FLOCKDB].

- Phoebus: Implementation in Erlang of Google’s Pregel graph DBMS

[PREGEL]. As in Erlang distributed systems happens, vertices

communicate between them through message passing [PHOEBUS]. No

community support for this project has been observed, so this makes us

think about better DBMS options than this one.

- JPregel: Quite new project also consisting of an implementation of Pregel

[PREGEL], but this time in Java. It has been tested for problems like

PageRank and Dijkstra’s Shortest Path but it is a DBMS that is not very

used at this moment. So, we keep looking at more supported options

[JPREGEL].

- ArangoDB: A quite interesting DBMS option, since it allows for storing

using a document model or a graph one. Additionally, it is starting to get

some fame through social networks. However, this support is not very

important for the graph version. In fact, there are only a few people

talking about this DBMS in terms of graph data storage. [ARANGODB].

- HyperGraphDB: it is a database management system that allows for

modeling data as hypergraphs (permitting N-ary relations/edges between

vertices), which is quite interesting for this project. In this thesis we may

need to keep more edges connecting not only two vertices but more (e.g.

29

a relation containing both ‘being son of’, and ‘being grandson of’). They

also provide an interesting property when writing and reading the data:

lock-free. This means that we can have concurrent writes and reads

performed without locking data [HYPGRADB].

- InfoGrid: it’s a web graph DBMS with many components or projects that

can be used together or separately. It allows for many graph database

advantages as better scalability than relational ones. However, there is

only few documentation about it and also few people talking about it on

the Internet at this moment. It seems, simply looking at the official web

page, like it is out of maintenance [INFOGRID].

- DEX: it is a database management system developed by Sparsity

Techonlogies, a company associated with the UPC (Universitat Politècnica

de Catalunya) implemented in C++ and Java. It is expected to allow for a

high performance in both ideal and stress situations and it has

mechanisms for minimizing I/Os. Moreover, it requires less space as it

uses bitmaps for storing the data internally. As it seems to be a very

efficient system in many senses, we are including it in our future analysis

[DEX].

- Bigdata: it is a graph database management system that provides many

graph DBMS features: high performance, horizontal scalability, etc.

However, it is a DBMS without a notable support in the community. It was

possibly difficult to find information about it because its name coincides

with the Big Data movement for manipulating and visualizing huge

quantities of data [BIGDATA].

- OrientDB: it is a graph DBMS that represents a mixture of both graph and

document approach. We observe a particularly important support

30

through social networks about this DBMS. Then, it could be thought as a

good choice in this sense. Additionally, we notice that it has support for

SQL queries, which can be an interesting feature in terms of usability, and

concretely learnability for development. Moreover, there are many big

companies using OrientDB in production environments (e.g. Sky, Spielo,

etc.). [ORIENT] [ORIENT_SLIDES].

- Titan: it is a scalable graph DBMS optimized both for queries and store of

a lot of vertices and edges and supporting both ACID and eventual

consistency. It is typically used with Cassandra, HBase or Oracle

BerkeleyDB as backend storage, so it is not a “pure” graph database

management system, but requires for a non-graph system to work

[TITAN].

- VertexDB: it is a graph DBMS written in C, that supports automatic

garbage collection and uses JSON as response data format. It is the DBMS

for which less information about use and support was found [VERTDB].

7.1.3 Selection

After having seen all these database management systems and, concretely,

the properties of each one, we didn't pick some database management

systems for many reasons. Some of them are because of their lack of

correspondence with the domain for storing this kind of data (e.g. FlockDB).

We also didn't include some other because of a poor support (e.g. VertexDB,

Phoebus and JPregel). The support was evaluated through presence in social

networks and how much they are used by companies, observed in the official

web page of the DBMS and/or other official or specialized web pages

31

As a summary of this discard phase, we can illustrate this process with the

following table:

Technology Support in social

networks

Support in

specialized pages

and forums

Correspondence

with the domain

Neo4j Yes Yes Yes

InfiniteGraph Yes Yes Yes, but limited free

version.

FlockDB Yes Yes No

Phoebus Not too much. A little bit. Yes

JPregel Almost nothing. No Yes

ArangoDB Yes No Yes

HyperGraphDB Yes Yes Yes

InfoGrid Not currently. Not currently. Irrelevant

DEX Yes Yes Yes

Bigdata No No Yes

OrientDB Yes Yes Yes

Titan Yes Yes Yes, but under-layer

implementation is

not graph.

VertexDB Almost nothing. Almost nothing. Yes

For the “Support in social networks” we mainly based on Twitter [TWITTER]:

presence or not of the corresponding hashtag and number of results when

searching.

32

For the “Support in specialized pages and forums” we mainly based on the

result of StackOverflow [STACKOVER]: presence or not of the

corresponding tag and number of results retrieved in the search.

Additionally, the results of these web pages were contrasted by searching in

Google [GOOGLE] to check that the conclusions taken from them were

correct.

Then, as we can see in the table, the final decision is that we will keep Neo4j,

considering all the enterprises using it successfully and so supporting it. We

also keep DEX, as it's a promising project expected to be providing a good

efficiency with the use of bitmaps. OrientDB is also included in this partial

selection, for all the community supporting it through social networks. Finally,

we are including HyperGraphDB with the possibility of storing hypergraphs.

7.2 Detailed comparison of Graph Databases

Once we have picked the four database management systems to be exhaustively

compared, it’s time for starting this exhaustive comparison. First of all, the comparison

criteria are given, then the DBMS are evaluated and compared according to the

criteria and, to end up, the final decision is pose and explained.

7.2.1 Design of comparison criteria

The points or functionalities that have been chosen for the comparison are,

as explained in the methodology part and according to [UQMSPS]:

functionality, reliability, usability, efficiency, maintainability and portability.

For the case of functionality, we consider, among others, some data export

operations. For these concrete operations, it would be interesting to

33

determine if we could use GEDCOM or a format easily convertible to

GEDCOM.

Then, let’s explain in more detail each one of these points:

- Functionality:

o Suitability: if the DBMS is adequate in terms of the operations that

we need for our system and the ones that the DBMS offers. For

this particular case we consider the following operations:

 Create family tree: create node/relationship.

 Modify family tree: change node/relationship properties.

 Remove family tree: delete node/relationship.

 Create different relationship types (son, daughter,

nephew, niece…) and get all relationship types.

 Traverse family tree to get all the members and

relationships.

 Determine the relationship between two nodes (shortest

path).

 Get all data about a single node or a subset of all the data

(e.g. birth date and place, gender, etc.).

 Data about a given node’s ancestors (e.g. father,

grandfather, etc.).

 Data about a given node’s descendants (e.g. son,

grandson, etc.).

34

 For the two previous cases we have to set the maximum

distance between the node and the

descendant/ancestor. For example, we consider son as

distance 1 and grandson as distance 2.

 Number of descendants and ancestors of a given node.

 Export the whole family tree.

 Export of only a branch of the family tree.

 Import data from an input file.

 Query by one or more node/person field/s (e.g. all nodes

with age greater or equal than 16).

 Query for all the nodes corresponding to alive people.

 Query for a list of all distinct surnames.

 Query for a list of all distinct birth cities.

o Security: Analyze if there are effective mechanisms for

guaranteeing that the data will be kept in a secure way.

Concretely, we require for having:

 Password authentication capability.

 Backup of the database data and structure feature and

consequent restore.

 Possibility to define different levels of privacy for the

data. This consists of being able to set some information

(nodes and/or relations) as public and some others as

private by some means. This is particularly important

considering data protection legislation (e.g. LOPD in Spain

35

or DPA in United Kingdom). We have to bear in mind that

we can only publish data of people that had died at least

50 years ago, so we would need this differentiation.

- Reliability:

o Maturity: the state of development of the DBMS.

 If when developing the database we find problems

related with features or operations still not available in

the current version. This also includes the use of low-level

elements and not support for higher ones, for example.

We also include here, if any, the case of bugs caused by

the DBMS.

o Fault tolerance: the capability of recovering from an error in an

elegant way.

 We require our database to have mechanisms for a fast

recovery after a failure occurs: e.g. ability to switch from

one database to another.

- Usability:

o Understandability: the easiness to understand how the DBMS

works.

 We evaluate this by comparing the time spent to read,

understand and learn using the documentation resources

available for each technology.

o Learnability: how much time takes learning how to deploy it and

implement operations.

36

 We evaluate this by observing if the required time for

implementing the database was according to the initial

planning or not.

o Attractiveness: although it is generally a subjective point, we

measure it by the quality of the tools available for working with

the DBMS.

 Here we see if the system provide different types of query

languages.

 We also measure the quality, if they exist, of visualization

tools.

o About usability, we finally remark that we assume that the final

user will not be aware of the graph DBMS used in a final

application for managing family tree. This is particularly important

for this domain, since these final application’s users will be

frequently people without technical knowledge and few

experience using computers. Therefore, we assume this user

oriented usability is fulfilled but, if we observed any case in which

the desired DBMS transparency for the user is violated, we would

document it here.

- Efficiency:

o Time behavior: how much time performing some needed

operations takes (contrasted with the frequency with which the

operation will be used or the importance of it).

 We will evaluate the operations listed in the Suitability

point inside the Functionality part of this section. Then,

the indicators for these operations will be the presence

37

or not of the operation. Additionally, in some cases

talking about the degree of inclusion of the operation

would make sense. An example of this would be the

number of export formats.

o Resources utilization: measured in terms of memory consumed.

We measure both memory used for queries (in general RAM

memory) and memory to store data (in general disk memory), but

we only use RAM measurement as relevant information to

compare. This is due to the fact that RAM memory is still more

expensive than hard disks, so we should try to make good use of

it.

 This will also be measured for each one of the operations

in the list.

- Maintainability:

o Analyzability: if we can analyze the database to extract statistics

or relevant data about how it is working.

 Concretely, we care about storage size, total number of

nodes, relationships and indexes as general database

features. We are also interested in knowing about

compaction operations. Since we will be deleting and

adding nodes in the database, we would like to guarantee

that we can reuse the space occupied by a node that was

deleted. Additionally, some mechanisms to guarantee

that, in general, the data is occupying as little space as

possible are required. This is due to the fact that, as we

mention in the domain part, family trees can be of any

size.

38

o Changeability: if it is possible to change the database structure

once it is built without hurting it too much.

 We are interested in knowing whether it is possible to

change (extend) for example the relationship types or to

add new indexes once the database has been built and/or

started. This is particularly interesting in our context and

allows us to check about the database flexibility. After all,

we know some people can die and some other can be

born. Thus, we cannot have a static immutable structure

having, e.g. an exact number of indexed values.

o Stability: measured by observing the number of times each DBMS

fails. In this way, we can use an approximated failure rate as a

stability measure.

 We include here errors related with the DBMS itself (e.g.

if it returns a wrong result for any operation or if an

operation returns a DBMS-specific error).

 In this point we can also evaluate the quality of log data

that can be extracted from the database.

o Testability: how easy the testing tasks are when using the DBMS.

 We observe if the database management system

provides or is compatible with some tools for debugging.

In this way, we can find errors in the database operations

in an easier way.

 We also see if the system is compatible with some testing

frameworks, such as JUnit and other DBMS-specific

39

frameworks that ease the task of testing the database

operations.

- Portability:

o Install-ability: how easy the installation and deployment tasks are.

For doing this, we simply keep the time that we spent installing

and deploying each DBMS and compare it with the initial

prevision. We split these tasks into the following parts:

 Time spent for downloading. Specially, we describe if a

registration was required before starting the download.

 Time required for installing the database.

 Finally, we measure the time for getting the DBMS

running to be able to execute a first simple operation.

o Portability compliance: the easiness for exports and imports of

the database.

 We look at the tools or operations available for exporting

and importing the database data: different formats, such

as CSV, and time spent for doing the task. Here is when

we also study the possibility of importing and exporting

from/to GEDCOM format.

7.2.2 Evaluation and Comparison

Now we explain how this final comparison, evaluation and results display are

going to be done. We explain all this in terms of e.g. how the different

comparison elements will be split and auxiliary elements like tables that will

40

be used. The information explained in this point will be later on useful,

especially for point 9, in which we develop the comparison and evaluation.

First of all, we separate by technology used (Dex, HyperGraphDB, Neo4j and

OrientDB). Then, for each technology, we compare each comparison point

(functionality, reliability, usability, efficiency, maintainability and portability)

splitting them correctly as explained in last section (Suitability, Security,

Maturity, Fault tolerance, Understandability, Learnability, Attractiveness,

Transparency for the user, Time behavior, Resources utilization, Analyzability,

Changeability, Stability, Testability, Install-ability, Portability compliance).

Concretely, we want to use a table in the form of the following one for the

“Suitability” point:

 Feature 1 Feature 2 …………… Feature N

Weight or

Importance

(1, 2 or 3)

Presence (%)

Table 1. Sample Suitability table.

In the table above we can observe that we measure the weight or importance

of the feature that is being evaluated with the following values: 1 means that

the feature is a little bit important, 2 represents a feature that is more or less

relevant and 3 represents a very important or crucial feature. The last value

should be seen as the adequate for operations whose omission would make

the whole system “useless”. We have to note here that, of course, the first

row (the weight one) will be the same in all Suitability tables. We just repeated

these values to have them together with the specific technology results and

41

get the overall punctuation. We also assign a specific color to each technology

to make the task of finding the information about each DBMS visually easier.

For the other comparison points a part from the Suitability, we have to

remember that some of them were subdivided again. Then, we consider a

table like the one above for each one of these subcategories if there are more

than one. However, we sometimes group comparison points according to the

group they belong (first separation: functionality, reliability, etc.).

42

8 Technical considerations for the prototype

In this section we are going to explain some design and implementation decisions that have

been taken into account in order to develop the prototype for the current thesis. We talk

about tools or technologies to be used, class format, method signatures, etc.

First of all, the DBMS that are used in the comparison are accessed via the Java programming

language. Among many available options, this was the best one to be chosen especially

because of the previous knowledge about this programming language and because all four

DBMS support it.

The class structure to be used consists of a PersonDao class that implements an IPersonDao

interface. Then, there are as many PersonDao subclasses as database management systems

used, that is four. That means, we have the following classes extending PersonDao:

DexPersonDao, HyperGraphDbPersonDao, Neo4jPersonDao and OrientDbPersonDao.

Next, we can see the method signatures to know the parameters they use, the type they

return and a little bit of their semantics in correspondence with the previous definition of the

required operations in section 7.2.1.

For understanding the following signatures we have to note that some Generic types are used

[GENERIC]: NI stands for Node Identifier, RI means Relation Identifier and RT refers to Relation

Type. What is then done is creating each one of the classes specifying the type for NI, RI and

RT for each one of them. The reason for doing this is that node or person ids may be (and in

some cases are) of different types according to the DBMS used, and the same for the other

generic types used.

Create node/ relation:

NI createPerson(long personId, String name, String surname, Date

birthDate, String birthPlace, Gender gender, boolean alive);

RI createRelation(RT relationType, NI firstPerson, NI secondPerson);

Modify node/ relation:

void modifyPerson(NI personId, String name, String surname, Date

43

birthDate, String birthPlace, Gender gender, boolean alive);

RI modifyRelation(RI oldRelationId, RT newRelationType,

 NI firstPerson, NI secondPerson);

Remove node/ relation:

void removePerson(NI personId);

void removeRelation(RI relationId);

Create relation type:

(We don’t include this operation here because it is only implemented

as a Java method in DexPersonDao)

All relation types:

Map<Integer, String> getRelationTypes();

Traverse tree:

Map<String, Map<String, String>> getFamilyTree();

Shortest path:

Map<String, Map<String, String>> getPath(NI firstPerson, NI

secondPerson, int maxDepth);

All node’s data:

Map<String, String> getAllData(NI personId);

Get ancestors/ descendants:

Set<String> getAllDescendants(NI personId, int level);

Set<String> getAllAncestors(NI personId, int level);

Number of descendants/ ancestors:

int getNumberOfDescendants(NI personId);

int getNumberOfAncestors(NI personId);

Export tree:

void exportFamilyTree(ET exportType, String fileName);

Export tree’s branch:

void exportFamilyBranch(ET exportType, String fileName, NI

startPerson);

Import data:

void importFamilyTree(String fileName);

44

Query by field (age):

List<String> getPeopleOlderThan(int years);

Get alive people:

List<String> getAlivePeople();

Get distinct surnames:

Set<String> getPeopleSurnames();

Get all birth cities:

Set<String> getPeopleBirthPlaces();

One of the tools that are used to develop this prototype is yEd program from yWorks

[YWORKS]. yEd is a tool that allows for data visualization and both import and export. It is very

useful here for importing family tree files from GEDCOM format (.ged) to GraphML format

(.graphml). As we mentioned before, GEDCOM is the standard format for representing family

trees. GraphML is an XML based format used by many of the current graph NoSQL database

management systems to import and export data. In this way, they provide compatibility

between different systems.

Furthermore, tools like Maven [MVN] and Subversion [SVN] were used to ease the prototype

development. Maven was used as a way to “install” the DBMS by including them in the current

project letting Maven resolve dependencies. Subversion was used through the Subclipse

[SUBCLIPSE] plugin for the Integrated Development Environment (IDE) Eclipse [ECLIPSE]. As

Maven plugin for Eclipse, m2e [M2E] was the one used.

We also have to note that the tests were made with the current last stable versions of each

DBMS. Consequently, the results are completely conditioned to that fact: we cannot be sure,

for example, if a feature not currently supported by a DBMS will or won’t be included in the

future.

Regarding the database that will be used, it contains 997 nodes and 1005 relations between

nodes or edges. This database size was considered as adequate to test the features to be

45

analyzed, since it was thought as a medium one. It is important to keep in mind this

information when doing the comparison, especially when talking about performance or

response time.

The data contained in the database comes from a GEDCOM file that was transformed into

GraphML format. Then, this last file is read by importFamilyTree(…) database operation. In

this operation we extract the information according to some properties or fields contained in

the file. In order to perform this operation we use Tinkerpop Blueprints, which is a kind of

driver (an analogous to JDBC, used for SQL databases with the Java programming language).

Blueprints allows for performing graph operations on top of many current NoSQL databases,

such as Neo4j, OrientDB, Dex, InfiniteGraph, Oracle NoSQL8, Titan and MongoDB.

For the memory consumption measurement, the tool that was used is Java VirtualVM

[JVIRTUALVM], which is a monitoring tool that provides a lot of information about the current

execution. It shows the memory usage in both Java Heap and PermGen, CPU usage, total

number of classes involved (including libraries), Garbage Collector activity and number of

currently live threads. VirtualVM also provides a useful feature that consists of detecting and

giving information about Java processes not running in console but in an Integrated

Development Enovironment (IDE) such as Eclipse.

A final consideration that was seen as important for the comprehension of the next points is

the way of measuring the resources utilization and performance. For doing this we chose a list

of the main operations that were implemented for which we saw the signature before. We,

however, excluded from this list the import and export operations, considering them as too

long or slow to perform a fast measure and comparison.

We followed the same execution order for all DBMS and the same parameters whenever it

was possible (except for the cases in which, e.g., the identifiers were of a different type). We

are aware there are some systems that don’t support some operations and thus they have

8 A key-value database created by Oracle Corporation. [ORACLENOSQL]

46

one or more methods less than the others. However, our results show, in general, a big

difference between systems so we consider these missing operations as not relevant. A good

example to justify this situation is the case of HypergraphDB, as we will see in the next point.

47

9 Final Evaluation and Comparison in more detail

 9.1 Evaluation and Comparison

In this part of the thesis, the experimental results obtained with the implementation

of the prototype are presented.

With regard to the weights representing the level of importance for the operations,

we would like to explain the reason why 1, 2 or 3 is assigned to each one of them.

First of all, for the Suitability operations the following is considered. A punctuation of

3 is assigned for the operations of create nodes and relations because it is considered

that their omission would mean not being able to build the family tree. We also use a

punctuation of 3 for modifying nodes and relations because we have to keep in mind

that, for example, an error could be introduced in the previous operations (the create

ones) and we have to be able to correct it. We have to note that the DBMSs that

support modify operations without the need of deleting and creating a new node or

relation will receive a better punctuation. We, of course, prefer implementations of

the modify operations that change the existing nodes or relations.

Likewise, 3 is also used for representing the importance of the remove operations for

nodes and relations. This is due to the same reason as the modify operations: we may

make a mistake creating a person. Thus, the remove operation is useful for correcting

errors in which, for example, we didn’t want to create a node because it is not present

in the current family (e.g. we looked at the wrong family tree or we received false

information).

The operation of creating different relation types receives a punctuation or weight of

3 because we need these different types to represent the family tree. Without types

we may not be able to differentiate, for example, a relation of type MARRIED from a

relation of type COUSIN. Furthermore, we consider different node types are not

required for this specific domain since we only represent nodes of type PEOPLE.

48

Traversing the family tree is also considered as a crucial or very important operation.

We give a punctuation of 3 to this operation because we understand that being able

to display the tree is a basic feature. Otherwise, we would have an adequate structure

to store the data that we want, but for which we would not be able to see its content

in a given moment.

Furthermore, as with the traverse operation we only would like to get people names

and surnames and the relation types between them, we also consider an operation

for getting all data. This is why get all data operation is also thought as a crucial

operation with, thus, a punctuation of 3.

Getting the shortest path, the ancestors, descendants and the count of both are

operations with a punctuation of 2. This is due to the fact that they are not crucial

operations because the system would still work if we didn’t have them. However, they

are quite important because, even though the information they provide can be

retrieved from the output of the traverse operation, this information is not so

immediate. Thus, we would say they are not crucial, but the information they provide

is really useful for the system.

For the query and projection operations (i.e. query for older that a certain age, get

alive people, people surnames, birth cities and all relation types) we assign a weight

of 1. With this low value we wanted to represent that the information provided by

these operations can be obtained, more or less easily, using the “traverse operation”.

So they are not completely necessary.

Finally, for both export operations, we have to say that they deserve a punctuation of

2 because although the system can work without them, they are really necessary. This

importance relies on the fact that the system is intended to provide compatibility with

the standard family tree format (GEDCOM). Thus, a good way to migrate this

information to GEDCOM is making sure that our system can support data exports to

at least one format.

49

The same can be said with regard to the import operation: we need it to make the

use of GEDCOM as much compatible as possible. As it is explained in the technical

considerations section, we use yEd tool for that. Furthermore, we have to note the

import operation is also important because it allows for having a minimum quantity

of people in the system. Without the import operation the system could work but

probably with a small size and/or with unreal data.

Regarding the Security comparison elements, we have considered what follows. All

three comparison elements receive a punctuation of 2 because they represent

important capabilities. However, they are not elements whose exclusion could mean

an impossibility for working with the system.

For the Reliability part we consider negative weights or punctuations. This is due to

the fact that these points are stated in a negative way. That means, we do not write

them as the results we expect to maximize (e.g. lack of operations still not available),

but in terms of what we want to avoid or minimize (e.g. presence of operations still

not available).

Then, for the reliability table we consider a punctuation of -3 for points which, in case

of being fulfilled, would make the system not able to work correctly or as expected.

A weight of -2 represents something relevant, but not essential for the system, that

is wrong. Finally, using a weight of -1 we mean that something not very relevant is

missing or wrong.

For the Usability table we consider a weight of 2 for the following comparison points:

time to read and understand, adequate implementation time and different query

languages. This is due to the fact that they are important features to save time,

considering that the development phase should be as fast as possible, in order to get

the comparison data as soon as possible. However, they are not basic features whose

omission would cause the impossibility to work with the system.

50

In the Usability table we also have the visualization tools quality comparison point. It

receives a weight of 1 because it is a feature that is interesting to have, but not too

relevant for the development process. Finally, the user transparency feature is the

most important among the Usability points. It is important since it allows for making

the users unaware of low level complexities that have no interest to them.

Time and resource utilization are the only points in the Efficiency table. They both

receive a punctuation of 2 because they are both important to be taken into account

as a general property for all or almost all projects. However, minimizing them is not a

main aim of this work, this is rather a functional study. I.e. a work for trying to

determine the functionalities that can be supported by certain systems in a given

context.

For the Maintainability table, all its points except for two are weighted as 2 because

they are general database features that we should provide. However, they are not

crucial for this concrete work. The points that receive a punctuation of 3 are the

possibility of changing relation types after having been defined and the absence of

specific errors directly related with the DBMS being used.

The first one of them is important in order to guarantee that the system developed

will be flexible and will allow modifications after creation, such as e.g. including the

relation brother-in-law. The second one, instead, is relevant for having a minimum

quality and adequate support for the features that are expected to be offered.

The same can be said, finally, for the last table, i.e. the Portability one. In this one, we

also consider that most of its points or functionalities are considered as general

database features that should be offered. In this case, we only assign a weight of 3 to

the format compatibility capability, whereas the resting ones have a punctuation of

2. This is due to the fact that data import and export are important for the system

since we want to provide GEDCOM compatibility in the easiest possible way.

51

 9.1.1 Dex

After implementing the operations we got the results that are reflected in the

following Suitability table belonging to the Functionality group:

Create

node/

relation

Modify

node/

relation

Remove

node/

relation

Create

relation

type

All

relation

types

Trave

rse

tree

Weight or

Importance

(1, 2 or 3)

3 3 3 3 1 3

Presence

(%)
70 80 100 90 70 60

The Create node and Create relation operations receive a score or percentage

of inclusion for Dex system of 70%. This is due to the fact that they have to

use an object belonging to com.sparsity.dex.gdb.Value class. This is a coupling

to a technology specific class that could be easily avoid by providing higher

level methods. Therefore, we can say that the way this functionality is

supported is good but improvable.

For the Modify node and Modify relation operations the same can be said. The

difference is that we give a little bit extra score to this modification ones

because the system supports it without the need of removing the old object

and creating a new one.

The Remove node and Remove relation operations represent examples of

perfectly supported functionalities. They consist of just calling

com.sparsity.dex.gdb.Graph drop(…) method with the node or relation id,

respectively.

52

The Create relation type operation is supported in one of the best possible

ways. In order to create a new relation type we need to call

com.sparsity.dex.gdb.Graph newEdgeType(…) method, having checked

previously that the type doesn’t exist. However, as we consider that it could

be improved a little bit, as we will see later on in Neo4j implementation, it

receives a score of 90 out of 100.

For the operation for getting All relation types we consider a score of 70%

because we have to iterate over all relation types identifiers. Then, we need

to access the database as many times as relation types are, in order to retrieve

the actual type using the identifier. Consequently, we can say that, from a

performance point of view, this operation could considerably improve.

The Traverse tree operation receives a percentage of inclusion of 60% because

it is fully supported but it could be better in terms of both performance and

easiness. According to the implementation that we were able to find, what we

need to do here is not a very efficient nor intuitive process. That process

consists of iterating over the relation type identifiers to be able to search

neighbors of each node of each type, so we end up having too many nested

loops.

53

The Shortest path operation receives the maximum punctuation, i.e. of 100

out of 100. The reason for that score is the fact that this operation is

completely supported via a SinglePairShortestPath abstract class and

SimplePairShortestPathDijkstra implementing class.

The Get all data operation has a score of 80% since it is supported but we need

to use that Value class to get each one of the values. As we already penalized

an operation implementation for this DBMS for the same reason, the penalty

now is slightly below last time.

For Get descendants and Get ancestors operations, as also happened with a

previous operation, we need to iterate over all edge types that exist in the

system. The penalty assigned for that reason is less than before because it was

already given.

The Get number of ancestors and Get number of descendants operations

receive a rather good score, concretely 80%. This is due to the fact that it can

be implemented like summing without the need of getting all values and

counting them after that. I.e. the operation can be done without traversing

the values twice, but only once. However, we note there is a small penalty

because of having to iterate over all edge types in the system and then getting

the neighbors of the starting node, for the edge type at each iteration.

Shortest

path

All

node’s

data

Get

ancestors/

descendants

Number of

descendants/

ancestors

Export

tree

Weight or

Importance

(1, 2 or 3)

2 3 2 2 2

Presence (%) 100 80 80 80 100

54

For Exporting the whole family tree the score is 100 out of 100. Dex provides

compatibility with multiple export types (i.e. GraphML, Graphviz and

YGraphML) natively but none is useful. During the implementation process,

we could observe that GraphML seems to be the most used and, then, a kind

of “standard” for graph NoSQL DBMS. However, GraphML obtained with an

export operation in Dex differs quite a lot in terms of format, compared with

other DBMS used that support GraphML (i.e. Neo4j and OrientDB). However,

Dex is compatible with Tinkerpop Blueprints as all these DBMS are too.

Blueprints allows us to use some graph operations from many different

systems and the export operation to GraphML format is one of them.

For Export tree’s branch operation the required support was found. The

actions required to export only a branch with all systems compatible with

Tinkerpop Blueprints are three. The first one is creating an empty

com.tinkerpop.blueprints.Graph object. Next, we have to get all descendants

(using getAllDescendants(…) operation from PersonDao) of the initial node for

which we want to export a branch. And, finally, add all nodes, i.e. the initial

node and all its descendants, to the empty graph.

Export

tree’s

branch

Import

data
Query by

field (age)

Get alive

people

Get

distinct

surnames

Get all

birth

cities

Weight or

Importance

(1, 2 or 3)

2 2 1 1 1 1

Presence

(%)
100 100 80 80 90 90

55

Import data operation receives a score of 100% because it is one of those

systems that support Tinkerpop Blueprints to perform graph operations.

Blueprints allows for importing and exporting graphs (in this case the family

tree) from or to, respectively, GraphML format.

The operation for querying by age receives a score of 80%, because it is

supported, but it could be improved in at least two ways. The first one

corresponds to the already cited problem with coupling to Value class. The

second problem of this operation implementation is that we need to get the

fields or attributes to be projected (i.e. people names) one by one, by iterating

over the returned values. We cannot just indicate the fields that are

interesting for us.

Get alive people operation has also the problem of having to iterate over the

returned values to get the required results and the coupling to Value class.

Get people surnames operation and Get all birth cities operation have also the

“extra iteration” problem to get the fields. But this is the only improvable thing

that was found for these implementations.

Now we present the Security table to finish with all the Functionality tables.

Password

authentication

Backup of the

database

Different privacy

levels

Weight

(1, 2 or 3)
2 2 2

Presence (%) 0 100 100

As far as it could be found, Dex seems not to be compatible with Password

authentication. This is why this database feature receives a score of 0%.

56

Dex supports the Backup feature by the following two methods in the

following two different classes. The first one corresponds to the

com.sparsity.dex.gdb.Graph.backup(…) method to get the

“DatabaseFile.backup” file. After the backup we can restore from the previous

file using com.sparsity.dex.gdb.Dex.restore(…).

Finally, Dex supports both node and edge type definition. Then, Different

privacy levels could be implemented by just creating, for example, some

nodes/edges of type “private”, some “public”, etc.

The following table corresponds to the Reliability table, containing both

comparison points corresponding to Maturity and Fault tolerance. Concretely

all points are Maturity ones except for the last one (Ability to switch from one

database to another) which is a Fault tolerance one.

Operations

still not

available

Use of

low-level

elements

Bugs

caused by

the DBMS

Ability to

switch between

databases

Weight

(-1, -2 or -3)
-3 -2 -2 -1

Presence (%) 0 30 0 0

For this table we must recall we aim at getting as least punctuation as possible

as they punctuate in a negative way, i.e. using negative weights.

The Operations still not available point receives a score of 0 because we found

0 operations that were not supported by Dex. That means, all operations to

be implemented were present.

57

For the Use of low-level elements we already indicated that this DBMS

includes the use of a specific low-level element. This element consists of an

object of the class com.sparsity.dex.gdb.Value. This is needed for assigning

values in some operations, as it was said before when talking about each

operation.

For the last two points, we would like to say that no Platform specific bugs

were found when developing. Furthermore, no Problem for switching

between different Dex databases was found.

The Usability table, containing Understandability (Time to read, understand

and learn), Learnability (Adequate implementation time), Attractiveness

(Different query languages and Visualization tools quality) and User

transparency, is shown below.

Time to

read, and

understand

Adequate

implementa

tion time

Different

query

languages

Visualizati

on tools

quality

User

transparen

cy

Weight

(1, 2 or 3)
2 2 2 1 3

Presence

(%)
80 70 60 0 100

For this DBMS, the Time to read, understand and learn the documentation

was considered adequate. The documentation is complete and can be

downloaded in pdf from the official web page.

The Implementation time was considered as adequate. The only thing that

was found as improvable was the API. Many of the method names were

58

considered not self-explanatory enough and this slows the development

down.

The presence of Different kinds of query languages has a rather low score

because only two query languages were found. The first one is Dex API itself,

which is quite complete and permits most of the required operations. The

second one is the already cited Tinkerpop Blueprints API. In our case,

Blueprints is only used for the import and export operations, but we have to

note that many others are supported too.

Finally, the Visualization tools point receives a score of 0 because none was

found for this system.

The Efficiency table only contains the comparison points that can be observed

below:

Time

behavior

Resources

utilization

Weight

(1, 2 or 3)
2 2

Presence

(%)
100 100

For the Time behavior, Dex was considered as the fastest with a rather big

difference from the second fastest one.

Dex is the system among the ones being compared that consumes the

minimum quantity of Java heap memory. In this case, this can be seen as a

consequence of the fact of being the fastest system too. Below we can see the

VisualVM screenshot for the heap memory consumption while executing the

system with Dex:

59

The Maintainability table is split according to its subparts as follows. There

are two Maintainability tables where the first one corresponds to Analyzability

and Changeability; then the second one contains Stability and Testability.

This is the first Maintainability table where all points, except for the last two,

are Analyzability points.

Stora

ge

size

Number of

nodes, relations

and indexes

Compaction

operations

Data

occupying as

little space

Change

relation

types

Add

new

indices

Weight

(1, 2 or 3)
2 2 2 2 3 2

Presence

(%)
100 66.67 0 0 90 100

For Dex, an operation for getting information about the Storage size is

included. This operation is called getData() and belongs to

com.sparsity.dex.gdb.DatabaseStatistics class. The result of calling it is a long

number indicating the size of the database in KBytes.

For getting the Number of edges and nodes, the two methods in

com.sparsity.dex.gdb.Graph class were found; they are countEdges() and

countNodes(), respectively. However, for getting the total number of indexes,

60

no method was found. Consequently, we can say that 2 out of the 3 features

were present, and this is why we have a score of 66.67 ≈ 2/3.

Regarding the Compaction operation, no support for it was found in this

system, so a score of 0 is given to it. For the presence of mechanisms to

guarantee that the Data is occupying as less space as possible, no possibility

in this sense was found.

We consider that Changing the current relation types is possible. We simply

need to use createRelationType(…) method in DexPersonDao class, created

for this system. Another possibility to edit the system relation types is using

PersonDao methods to manage relations (createRelation(…),

modifyRelation(…) and removeRelation(…)). However, these methods are only

valid if, apart from editing relation types, we also want to change relations.

For Adding indexes feature we found the required support. The process

consists of changing the attribute or field definition, i.e. transform it into an

Indexed one. Then, to do that, we should call indexAttribute(…) method inside

com.sparsity.dex.gdb.Graph class.

This is the second Maintainability table where the first two points are Stability

ones and the resting ones are Testability capabilities.

Lack of DBMS

specific errors

Quality of

log data

Tools for

debugging

Testing

frameworks

Weight

(1, 2 or 3)
3 2 2 2

Presence

(%)
100 100 70 70

61

As far as this DBMS was tested, no Errors specific of this technology were

detected, so we consider it 100% free of DBMS specific errors.

With regard to Log data quality, there is a file auto-generated with the

execution of the system using Dex database. This file is called dex.log and

contains information about each error or warning that occurred during all

executions, i.e. it is an incremental file. Moreover, using

com.sparsity.dex.gdb.LogLevel enumeration, we can set the log level to Off or

disable, Fine to log everything that happens, etc.

No specific Dex Debugging tools were found. However, this is not a problem

since it is compatible with all debugging tools that the Java programming

language is, such as the Eclipse IDE debugger.

For the Testing tools or frameworks, it is the same situation as for the

debugging tools. No specific Dex tools were found, but all testing systems

compatible with Java are suitable to be used, e.g. JUnit.

To end up with all the tables, we have the Portability one containing both

Install-ability and Portability compliance features. In the following Portability

table we can see the first three points as Install-ability ones and the resting

ones related with the Portability compliance:

Time for

downlo

ading

Time for

installing

Time to

get it

running

Format

compati

bility

Fast

import

and export

Weight

(1, 2 or 3)
2 2 2 3 2

Presence

(%)
70 80 90 100 70

62

For this DBMS, the Time for downloading it was adequate. The only things that

were required to be specified were, mainly, the database size that we require

and the purpose of its usage (commercial, research, etc.). This previous step

to download the DBMS could be thought as an extra time to start installing it.

The Time for installing the DBMS was fairly short. The only needed action was

using the .jar file available from the official web page. This .jar was able to be

used with Eclipse IDE, just adding it as an external library. We have to note,

however, that adding the dependency using m2e Maven plugin for Eclipse was

not possible, so the installation was slightly longer than for other DBMS.

The Time to get the system running was adequate. We cannot mention any

special important difficulty found during the first steps using the DBMS.

Regarding the Format compatibility, Dex was able to show a good support.

Apart from the already cited GraphML compatibility via Tinkerpop Blueprints,

Dex also supports exports to CSV format.

Considering that the Export and import operations are generally not very fast,

we would say that this is not the exception. The time for these operations in

this case was not too long, but we have to keep in mind the size of the sample

with which we performed the tests is not too big.

63

9.1.2 HyperGraphDB

Create

node/

relation

Modify

node/

relation

Remove

node/

relation

Create

relation

type

All

relation

types

Trave

rse

tree

Weight or

Importance

(1, 2 or 3)

3 3 3 3 1 3

Presence (%) 100 80 80 80 70 70

For the operation of Creating a node or a relation, we consider a score of 100%

because it is completely supported. Furthermore, creating a node we can

specify whatever kind of node created by us, i.e. it is like the domain layer is

contained in the persistence one.

This has many advantages like, for example, that we avoid converting objects

retrieved from the database into domain ones. Another important advantage

is that we know exactly what we are storing at each moment and we can

extend or remove the attributes stored whenever we want it by simply

changing the class.

For creating relations we also have as an advantage the possibility of creating

new kinds of relations by simply creating a class that implements

org.hypergraphdb.HGLink interface.

Regarding the operations for Modify a node or a relation, we split it into two

parts to analyze both node and relation support. For modifying a node we

consider the same advantages seen for the create operation. In this case we

can use the node class setter to change an object values. Consequently, it is

fully supported and thus it receives a punctuation of 100%.

64

For the modify relation operation we also have the advantage of using a class

implementing the HGlink interface, which can be adapted to our concrete

needs. However, for this operation we consider a score of 60% because of the

presence of an important problem. This problem is the fact that no support

for this operation without removing the old relation was found. This means,

in order to modify an existing relation we need to remove the old one and

create a new one.

Finally, the punctuation of 80% that we see for this operation as a general one

is the result of the average of both sub-operations. Then, 80% could be

obtained by summing 100% for the node operation and 60% for the relation

operation and then dividing this result by 2.

For the Remove node and relation operations, we consider a punctuation of

80% because they are completely supported. However, we include a penalty

for removing a node because a problem with this operation was found that

didn’t allow us to perform it correctly. As this error seems to be a platform

specific error, it will be explained in more detail in the adequate point, i.e. the

one about maturity and, concretely, when talking about bugs.

For Creating relation types we assign a score of 80 out of 100 because it can

be done by creating a new relation. For example, if we use the HGValueLink

class, the value of the relation or relation types is an element of type Object

that is given as a first parameter of the constructor. However, a small penalty

is assigned to this operation’s score since it doesn’t support creation of

relation types without creating relations.

The operation for getting All relation types receives a score of 70% because it

is supported but the implementation that was achieved is not very efficient.

This implementation consists of getting all identifiers for both nodes and

relations and then filtering them.

65

The operation for Getting the family tree has the same problem that the

previous one also has. In this case, what our implementation does is filtering

to obtain just relations and then getting the relation extreme points.

Shortest

path

All

node’s

data

Get

ancestors/

descendants

Number of

descendants/

ancestors

Export

tree

Weight or

Importance

(1, 2 or 3)

2 3 2 2 2

Presence (%) 0 100 80 90 0

No support was found for the operation of getting the Shortest path between

two nodes. There is a method provided by the DBMS API that is called

dijkstra(…) and belongs to org.hypergraphdb.algorithms.GraphClassics class.

But the problem with this method is that it only obtains the distance between

the two nodes as a numerical value and what we want is the list of nodes and

edges in the path.

The operation for getting All node’s data is fully supported by using getter

methods of the node class.

The Get ancestors and get descendants operations are supported in a more or

less good way. The only problems or improvements that were detected are

two. The first one is the lack of support for setting a maximum level at which

the ancestors/descendants search should stop. The second one consists of an

implementation improvement in which we get all relations from a given node

66

and so on recursively, but we need to filter inside the loop to get only

descendants or ancestors, respectively.

The operations for Getting the number of ancestors and descendants have

one of the problems that the previous ones had. This problem consists of the

retrieval of all relations from a given node and all of them recursively, but

without a filter to get only ancestors or descendants. We have to note that

the problem observed before (of not supporting a maximum level) is not

present now as we don’t require it for getting the total number of

ancestors/descendants.

Finally, no support for the Export operation was found using this DBMS. No

way for implementing this operation was found looking at both native API and

Tinkerpop Blueprints. In fact, the last one is not even compatible with

HyperGraphDB.

Export

tree’s

branch

Import

data

Query

by field

(age)

Get

alive

people

Get

distinct

surnames

Get all

birth

cities

Weight or

Importance

(1, 2 or 3)

2 2 1 1 1 1

Presence (%) 0 0 100 100 90 90

The Export tree’s branch operation is not supported as explained in the last

operation in the last table. For the Import operation we can say the same since

this DBMS is not compatible with Tinkerpop Blueprints, which is the system

that provides support for GraphML format import.

67

The Query for people older than some age operation was fully supported by

using hg.lt(…) (lt = less than) operator to query objects of the node class using

hg.getAll(…) method. The same was done to implement the Query for alive

people with the only difference that the operator used in this case was

hg.eq(…) with “alive” value as a parameter.

The queries for Getting people surnames and Getting people birth places

receive a score of 90% because they are fully supported in a similar way as the

last ones but they could be improved. The way that was thought to improve

them is a support that was not found for getting just the attributes or fields

that are meant to be projected.

Now we present the Security table to finish with all the Functionality tables.

 Password

authentica

tion

Backup of

the

database

Different

privacy

levels

Weight

(1, 2 or 3)
2 2 2

Presence (%) 0 0 100

For the Password authentication feature, no support was found using this

DBMS. Also, no support for performing a Backup of the database was found

too. Finally, for the compatibility with Different privacy levels, we could

implement then system using different node and relation types which would

be suitable to support this feature.

The following table corresponds to the Reliability table, containing both

comparison points corresponding to Maturity and Fault tolerance. Concretely

68

all points are Maturity ones except for the last one (Ability to switch from one

database to another) which is a Fault tolerance one.

 Operations

still not

available

Use of

low-level

elements

Bugs

caused by

the DBMS

Ability to

switch between

databases

Weight

(-1, -2 or -3)
-3 -2 -2 -1

Presence (%) 20 0 30 0

Among all the operations that are supposed to be supported by all systems,

approximately the 20% are Operations still not available for this concrete

DBMS. These non-supported operations are the import and export features

(including both exporting the whole tree and only one branch) and the

shortest path.

Regarding the Use of low-level elements in the implementation, no example

of this fact was found while developing. The level at which the development

was done was adequate to what we previously expected using Java

programming language.

The Bug that was found during the development phase and that was

mentioned before in one of the operations’ explanation is with the feature to

remove a node. The problem with this operation is that the operation seems

to be done correctly for removing the internal DBMS identifier for the node

but, however, the node object still exists and is available to be retrieved. This

issue seemed to be occasioned by the DBMS itself and the workaround we

used to solve it was adding a boolean attribute in the node class called

removed.

Finally, with respect to the support for Being able to switch between different

databases, no problem that would make this feature impossible was found.

69

The Usability table, containing Understandability (Time to read, understand

and learn), Learnability (Adequate implementation time), Attractiveness

(Different query languages and Visualization tools quality) and User

transparency, is shown below.

Time to

read, and

understand

Adequate

implementati

on time

Different

query

languages

Visualizati

on tools

quality

User

transparen

cy

Weight

(1, 2 or 3)
2 2 2 1 3

Presence

(%)
50 60 0 70 100

The Time to read and understand HyperGraphDB documentation doesn’t

receive a good mark because there is only few documentation and only a few

examples. Regarding pdf documentation, only a slides were found

[HYPER_SLIDES], but no official documentation to be downloaded.

The Implementation time was affected by the lack of documentation and

support for many operations. Also, a difficulty for fitting the domain in the

storage system was found. This last fact is due to a not adequacy of the

domain with hypergraphs, i.e. graphs containing hyperedgess; an interesting

feature that we finally could not take advantage of.

With regard to the Support for different kinds of query languages,

HyperGraphDB is not compatible with any query language apart from the

native API itself.

For the Visualization tools, we have to note that this system includes some

classes belonging to a package called “viewer” that allow for creating a system

70

for visualizing HyperGraphDB graphs. This is a good option to have a graphical

representation of our graph, in this case a family tree. However, this support

for visualization could be improved by having a system already created for

having this graphical representation of our graph.

When developing using this graph DBMS, we didn’t note any case in which the

User transparency would be violated. It doesn’t require for having a specific

software system, for example, in the client side.

The Efficiency table only contains the comparison points that can be observed

below:

Time

behavior

Resources

utilization

Weight

(1, 2 or 3)
2 2

Presence

(%)
80 80

HyperGraphDB receives a score of 80% for the Time behavior feature as it is

the third fastest DBMS among the ones that are compared. This can be seen

as almost the worst but we don’t consider it like this because HyperGraphDB

obtained time is rather closed to the second best one and really far from the

forth one.

Here we can see an example of why we didn’t consider a disadvantage or

advantage the fact of measuring performance for different systems with the

same operations, some of them not supported. Here we can note that

HyperGraphDB is a system with many unsupported operations and it is not

the fastest one.

For the Resources utilization, we have to say that in the case of HyperGraphDB

it was very low, as we can see in the following VisualVM screenshot

71

(HyperGraphDB value is the one on the right side). However we know

HyperGraphDB’s consumption must be greater than Dex one because

HyperGraphDB is slower. In fact we can observe this too in this picture since

the value on the left side corresponds to Dex.

The Maintainability table is split according to its subparts as follows. There

are two Maintainability tables where the first one corresponds to Analyzability

and Changeability; then the second one contains Stability and Testability.

This is the first Maintainability table where all points, except for the last two,

are Analyzability points.

Stora

ge

size

Number of

nodes, relations

and indexes

Compaction

operations

Data

occupying as

little space

Change

relation

types

Add

new

indices

Weight

(1, 2 or 3)
2 2 2 2 3 2

Presence

(%)
0 90 40 0 80 100

No mechanism for getting the Total current storage size of the database was

found. This is the reason why this operation receives a score of 0%.

For both Getting the number of nodes and Getting the number of relations,

we can use count(…) method from org.hypergraphdb.HyperGraph class.

72

However, for Getting the number of indexes there is no direct support. We

should get all indexes either by type or by value using, respectively,

getIndexByType(…) or getIndexByValue(…), both from

org.hypergraphdb.HGIndexManager class. Then with this result, we could

count the number of indexes.

There was no support found for a Data compaction operation. However, there

exists an operation for executing maintenance tasks, but the API doesn’t

specify if it fulfills our requirements. It is a method called runMaintenance()

and is part of org.hypergraphdb.HyperGraph class.

Furthermore, no operation for guaranteeing that the Data is occupying as few

space as possible was found. Then we consider this feature as a not supported

one (at least in the current version).

In order to Change the existing relation types we need to use the relation

methods in PersonDao. These relation methods are: createRelation(…),

modifyRelation(…) and removeRelation(…). No way to change the existing

relations types without changing a relation was found.

Finally, the Addition of new indexes is fully supported in HyperGraphDB by

means of HGIndex interface and, concretely, the addEntry(…) method.

This is the second Maintainability table where the first two points are about

Stability and the resting ones are Testability capabilities.

73

Lack of DBMS

specific errors

Quality of

log data

Tools for

debugging

Testing

frameworks

Weight

(1, 2 or 3)
3 2 2 2

Presence

(%)
70 50 70 70

With regard to DBMS specific errors, we can say that the system is 70% free

of them. The only error apparently caused by the DBMS itself is the already

cited problem with the implementation of the removePerson(…) method in

HyperGraphDbPersonDao class.

For the Log data we only found a reference to them in HGLogger class. This

class contains methods for exception(…), warning(…), etc. However, no way of

automatically keeping a file with this log data was found. This is the reason

why this feature receives a low score for this concrete system.

No specific HyperGraphDB Tools for debugging nor Testing frameworks were

found. However, this DBMS supports the use of all both debugging tools and

testing frameworks compatible with the Java programming language.

Consequently, this last fact would be the required response to our needs.

To end up with all the tables, we have the Portability one containing both

Install-ability and Portability compliance features. In the following Portability

table we can see the first three points as Install-ability ones and the resting

ones related with the Portability compliance:

74

Time for

download

ing

Time for

installing

Time to get

it running

Format

compati

bility

Fast import

and export

Weight

(1, 2 or 3)
2 2 2 3 2

Presence

(%)
100 100 90 0 0

The Time for downloading HyperGraphDB was really fast. Both the .jar file and

Maven dependency can be obtained from the official web page.

For installing, it was fast too because of having both the .jar file option and

Maven dependency.

For the Format compatibility capability, we were not able to find any format

with which this system would be compatible for neither import nor export

operations.

Finally, as no support for import nor export operations was found, we cannot,

of course, consider that the required Fast import and export capability is fulfill.

75

 9.1.3 Neo4j

Create

node/

relation

Modify

node/

relation

Remove

node/

relation

Create

relation

type

All

relation

types

Trave

rse

tree

Weight or

Importance

(1, 2 or 3)

3 3 3 3 1 3

Presence

(%)
90 80 100 100 100 90

The Create node and Create relation operations are completely supported, so

they receive a high punctuation. The reason why they don’t receive the

highest possible mark is that they could be improved by allowing, as

HyperGraphDB does, for using different kinds of node and relation objects.

For the Modify node operation we consider a score of 100% since it is fully

supported and we don’t require for removing the old node and creating a new

one, we can just modify the existing one. For the Modify relation operation

we consider a punctuation of 60% since the only possible way of modifying it

that was found consists of removing the old relation and creating a new one.

Both Remove node and Remove relation operations are fully supported using

Neo4j DBMS. Moreover, we couldn’t find any problem nor improvement for

the obtained implementation with this system.

For Creating new relation types, Neo4j provides an interface called

org.neo4j.graphdb.RelationshipType that we can use to implement our own

relation types. Then, the result would be an enumeration in which we can add

as many values as relation types we want our system to have. It is a good

system for many reasons. First of all, the use of an enumeration has the

76

advantage, compared with Strings, of preventing from possible typos.

Furthermore, it avoids having to guess all relation types that we have or having

to ask the DBMS each time we want to know it. Finally, another positive point

for this system is the possibility of managing relation types independently of

relation management.

For Getting all relation types we use an implementation for which we couldn’t

find any problem nor improvement. It consists of calling

getAllRelationshipTypes() method inside GlobalGraphOperations class and

iterating over the RelationshipType objects to get their name value.

Finally, the Get family tree operation is fully supported by retrieving all

relation types, iterating over them and, for each relation, getting the start and

end nodes, a part from the relation type name.

Shortest

path

All

node’s

data

Get

ancestors/

descendants

Number of

descendants/

ancestors

Export

tree

Weight or

Importance

(1, 2 or 3)

2 3 2 2 2

Presence

(%)
100 100 100 80 100

The Shortest path operation is fully supported with Neo4j by means of the

shortestPath(…) method inside org.neo4j.graphalgo.GraphAlgoFactory class.

It allows us to provide all necessary conditions before iterating without

requiring for filtering anything inside the loop.

77

The Get all data operation is provided by the getPropertyKeys() method inside

org.neo4j.graphdb.Node class. It allows us to get all properties, fields or stored

values for a given node by only one query.

The operation for Getting all ancestors and the one for Getting all descendants

of a given node or person is completely supported. The way of implementing

them is using org.neo4j.kernel.Traversal class and then applying different

methods to get an org.neo4j.graphdb.traversal.TraversalDescription object.

Then we use this object to call traverse(…) method and nodes() using the

resultant object. Finally, the last object is an Iterable<Node> which we can use

to iterate over all descendants to get the required properties, such as their

names.

The main advantages of this implementation is the fact of using a clear API

with many different options to apply over the Traversal and, especially, the

fact of avoiding filtering inside the final loop. We start iterating with only the

needed information and this reduces the total number of iterations and thus

increases performance.

For the Number of descendants and the Number of ancestors operations, we

have almost the same implementation than for getting the descendants,

respectively. The only difference is that, instead of keeping some

ancestor/descendant properties, what we do is counting them. However, the

clear improvement that was detected for this implementation is the lack of an

operation that just returns the count or sum of them and not the whole

org.neo4j.graphdb.Node objects.

Finally, for the Export operation, it is the same case as for Dex. As Neo4j is also

compatible with Tinkerpop Blueprints, the export can be done in an adequate

way using GraphML format.

78

Export

tree’s

branch

Import

data

Query by

field

(age)

Get

alive

people

Get

distinct

surnames

Get all

birth

cities

Weight or

Importance

(1, 2 or 3)

2 2 1 1 1 1

Presence

(%)
100 100 90 90 90 90

The Export tree’s branch operation is compatible with this system as it can be

implemented using Blueprints in the way already described for Dex DBMS in

the corresponding section.

Importing data from a GraphML file is the same case as the export operations.

They all three can be implemented in an adequate way since the current

analyzed system is compatible with Tinkerpop Blueprints.

Finally, for all Query operations in general, we observe an adequate support

but that could be improved for all of them in the same way. It is a small

improvement that consists of supporting for only getting the required field/s

or properties which is a basic feature that we expect and have using SQL

language but that we couldn’t find here.

79

Now we present the Security table to finish with all the Functionality tables.

 Password

authentication

Backup of the

database

Different

privacy levels

Weight

(1, 2 or 3)
2 2 2

Presence (%) 60 20 100

For the Password authentication feature we have to say that it is not

completely supported yet, as it could be found. What exists right now is a

support for protecting the web server with a password by using a proxy, as

can be seen in [SERVER_INSTALL] or use an extension for authentication

[AUTHENTICATION_EXT]. Apart from that, there is another security feature

which is quite useful and consists of allowing or banning access to certain

servers [SECURITY_SERVER].

To be able to perform the Database backup operation, we would need to use

an Enterprise version of the system. However, as we are using the Community

version, we are not allowed to use this feature. For this reason, it receives a

very low punctuation.

Finally, to have Different privacy levels, we didn’t find any problem that could

make this requirement impossible to be done. We would need to create

different node types, which is an available feature when using Neo4j.

The following table corresponds to the Reliability table, containing both

comparison points corresponding to Maturity and Fault tolerance. Concretely

all points are Maturity ones except for the last one (Ability to switch from one

database to another) which is a Fault tolerance one.

80

 Operations

still not

available

Use of

low-level

elements

Bugs

caused by

the DBMS

Ability to

switch between

databases

Weight

(-1, -2 or -3)
-3 -2 -2 -1

Presence (%) 0 0 20 0

With regard to Operations still not available for this system, we have to say

that none of them were found. All operations that were required to be

implemented were finally achieved.

For the Use of low-level elements, we didn’t find any case of it, so we consider

a score of 0% as the minimum one in a positive sense (for negative points, a

low score ends up being positive).

For the Bugs occasioned by the platform or system itself, we only found a

small one that was possibly because of Neo4j or maybe because of the lack of

experience using it. The problem was an error that appeared after changing

some data elements (e.g. node fields, etc.) that make the system not work

until we create a new empty database and start working with the new one.

We are aware this may be a DBMS maturity problem, but it can also be a

misunderstanding of the system.

Finally, for the Ability to switch between different databases, we didn’t find

any problem that makes this requirement impossible to be provided. We

would just need to add a condition to use one database in some cases and

another in other cases, for example.

The Usability table, containing Understandability (Time to read, understand

and learn), Learnability (Adequate implementation time), Attractiveness

81

(Different query languages and Visualization tools quality) and User

transparency, is shown below.

Time to

read, and

understand

Adequate

implementa

tion time

Different

query

languages

Visualizati

on tools

quality

User

transparen

cy

Weight

(1, 2 or 3)
2 2 2 1 3

Presence

(%)
100 100 100 100 100

About the Time to read, understand and learn the documentation, we have to

say it was really short due to the inclusion of a lot of examples, as well as pdf

documentation and many extensive documentation sections. Therefore, as

the documentation was really complete, this phase was seen as easier as if we

have had worse documentation.

For the Implementation time, we consider that it was also short. Everything

we needed was supported and Neo4j API is very complete and clear. Another

helpful fact is that it includes support for many different ways of doing

operations (query languages, classes, extensions such as Lucene indexes, etc.).

Then, this last fact makes the development phase easier.

For the support of Different kinds of query languages, Neo4j provides the

maximum support among all DBMS compared here. Apart from Neo4j native

API, we can query by using Gremlin language, which is a graph traversal

scripting language [GREMLIN]. Furthermore, developing with Neo4j we can

also use Cypher graph query language [CYPHER]. Finally, we can also use the

already cited Tinkerpop Blueprints driver for graph operations such as

importing and exporting from/to GraphML format, etc.

82

With regard to the Visualization tools, Neo4j Web UI provides a visualization

environment to display the nodes, properties and relationships added in the

system throughout the time. The server can be accessed by executing the

Neo4j.bat file in Windows or the neo4j one in Linux and Mac, all of them in

the bin directory of the corresponding version. Then, after executing it with

the “start” option, we can access the UI in a web browser by typing

http://localhost:7474/. It is a really good tool for both visualization and also

query or statement execution.

A part from the Web UI, for visualizing Neo4j data we can also use Gephi,

which is an open source visualization software that can be used together with

Neo4j [GEPHI].

Finally, for the User transparency, we didn’t find anything that would

compromise it. No need for having, for example, a specific software or

operating system installed was found.

The Efficiency table only contains the comparison points that can be observed

below:

Time

behavior

Resources

utilization

Weight

(1, 2 or 3)
2 2

Presence

(%)
40 50

During the execution of the obtained implementations for all systems, Neo4j

was seen as the slowest one. Comparing the time that each one was taking to

execute the same list of operations, we observed Neo4j’s response time was

http://localhost:7474/

83

approximately 3 times slower than the second slowest system. And it was 10

times slower than the fastest among all four systems.

Neo4j is the DBMS that consumed the maximum quantity of Java heap

memory. We can observe in the following screenshot how it is arriving to its

maximum value (100 MB) and it is maintained for quite long time. We can see

Neo4j’s value on the right side of the screen and we can also see how it

compares with Dex (the first value starting from the left) and HyperGraphDB

(the one in the middle).

The Maintainability table is split according to its subparts as follows. There

are two Maintainability tables, where the first one corresponds to

Analyzability and Changeability; and the second one contains Stability and

Testability.

 This is the first Maintainability table where all points, except for the last two,

are Analyzability points.

Stora

ge

size

Number of

nodes, relations

and indexes

Compactio

n

operations

Data

occupying as

little space

Change

relatio

n types

Add

new

indices

Weight

(1, 2 or

3)

2 2 2 2 3 2

84

No way of Getting the total storage size of the system was found. We are

aware this could be because it doesn’t exist, but it can also be because of not

having found it although it exists.

For the Number of nodes and the Number of relations we found the methods

getAllNodes() and getAllRelationships(), both inside GlobalGraphOperations

class would allow us to obtain them by iterating over the Iterable returned by

calling the methods and increasing a counter. The operation for getting the

Number of indexes would be supported by calling both nodeIndexNames() and

relationshipIndexNames() both in IndexManager class. Then we would need

to get the length of both String[] returned with the method calls and, finally

sum both values.

We didn’t find information about Compaction operations nor mechanisms to

guarantee that the Data is occupying as few space as possible.

The way of Changing relation types is quite simple and is done through an

Enum implementing Neo4j interface RelationshipType.

Finally, for Adding new indexes and index entries we need to use

org.neo4j.graphdb.Index<T extends PropertyContainer> interface. Basically,

we can have both Relationship and Node objects indexed.

This is the second Maintainability table where the first two points are Stability

ones and the resting ones are Testability capabilities.

Presenc

e (%)
0 70 0 0 100 100

85

Lack of DBMS

specific errors

Quality of

log data

Tools for

debugging

Test

frameworks

Weight

(1, 2 or 3)
3 2 2 2

Presence

(%)
100 90 70 80

For Neo4j we didn’t detect any DBMS specific error. Furthermore, the Quality

of the log data seemed to be right. The system allows for keeping in a

“messages.log” file everything that occurred in the system during the

execution.

For the Debugging tools we can say the already cited Gephi project is also

suitable for Java class debugging. Apart from that, Neo4j also provides options

for remote debugging sessions using Neo4j server. More information on that

can be found in [REMOTE_DEBUG].

We didn’t find any Neo4j specific Tools for testing. However, as also happens

with the other systems, it is compatible with all test frameworks that the Java

programming language is. Additionally, Neo4j provides a small tutorial about

how to use JUnit or Hamcrest in the official web page [BASIC_UNIT_TEST].

To end up with all the tables, we have the Portability one containing both

Install-ability and Portability compliance features. In the following Portability

table we can see the first three points as Install-ability ones and the resting

ones related with the Portability compliance:

86

Time for

downloading

Time for

installing

Time to get

it running

Format

compatibility

Fast import

and export

Weight

(1, 2 or 3)
2 2 2 3 2

Presence

(%)
100 100 100 90 70

Using Neo4j, the time for both Downloading and Installing it was really short.

For the download part we didn’t have to register and we only needed to get

the package with all files. For installing it we had both .jar file version and

Maven dependency options, so it was quite easy. The same can be said for the

Time to get the system running, especially because of the simplicity and

clearness of the API.

For the Format compatibility, we can say Neo4j is compatible with GraphML

format to perform both import and export operations through Tinkerpop

Blueprints driver. No other compatible format was found, but this one ends

up being more than enough as it is the standard for graph NoSQL DBMS.

For the Fast import and export operations point we have to say that the import

operation was quite slow for the quantity of nodes to be retrieved and the

export one was quite fast.

87

 9.1.4 OrientDB

Create

node/

relation

Modify

node/

relation

Remove

node/

relation

Create

relation

type

All

relation

types

Trave

rse

tree

Weight or

Importance

(1, 2 or 3)

3 3 3 3 1 3

Presence

(%)
90 60 100 80 100 100

For the Create node and the Create relation operations we consider a

punctuation of 90%, which is a high value, since we consider they are fully

supported.

For both Modify node and Modify relation operations we consider a score of

60% which is not very high. This is due to the fact that both are supported but

by removing the old node and creating a new one. No option for modifying

the existing node was found.

Both Remove operations are fully supported by means of an adequate

implementation, so they receive a 100% score.

For Creating relation types, the only way that was found was by using the

methods to manage relations (create, modify and remove relation

operations). No way of managing relation types in an independent way than

relations was found. This is not a big problem, but the fact of having this

feature allows us for a more flexibility because of having more options for

developing.

The operation for getting All relation types is considered as 100% supported

as it can be implemented in a single query and without having to filter results

inside the loop that fills the result object. Concretely, in this implementation

88

we used an OSQLSynchQuery<ODocument> object that permits creating a

query in an OrientDB SQL language. This language is like standard SQL but with

some language extensions for working with graphs. In this case the query that

was used is "select distinct(label) as label from E", where E represents all the

edges in the system.

Finally, the Traverse tree operation is also fully supported. For this operation

we use browseEdges() method inside OGraphDatabase class. Then, iterating

over the results which is an Iterable<ODocument> we can get relation labels

or types and the relation extreme nodes.

 Shortest

path

All

node’s

data

Get

ancestors/

descendants

Number of

descendants/

ancestors

Export

tree

Weight or

Importance

(1, 2 or 3)

2 3 2 2 2

Presence

(%) 0 100 80 80 100

In OrientDB the Shortest Path operation is not supported at all. Then, it

receives a punctuation of 0%.

The Get all data operation is completely supported by using the field() method

applied to an ODocument object. This ODocument can be obtained by using

the Node identifier.

For both Get all ancestors and Get all descendants operations, we assign a

high value because both are supported, including the maximum level

parameter. However, we include a small penalty due to a performance

89

improvement due to the fact that the current implementation consists of

getting all nodes and edges without filtering.

For the Number of Ancestors and Descendants operations, we achieved an

implementation that is quite similar to the get all ancestors/descendants

operations, respectively. The only difference is that for getting the number or

count what we do is increasing a counter, instead of adding results to a result

Set.

The Export tree operation is fully supported by using Tinkerpop Blueprints in

the same way as Neo4j and Dex. So, it receives a score of 100%.

Both Export tree branch and Import data operations are fully supported by

means of the Tinkerpop Blueprints driver for performing graph operations, as

it was already explained for Dex and Neo4j.

For the operations for Getting all elements fulfilling a certain query we have

the same situation that was observed before. They are 100% supported but

they receive a small penalty for having to retrieve the whole Node and then

Export

tree’s

branch

Import

data

Query by

field

(age)

Get

alive

people

Get

distinct

surnames

Get all

birth

cities

Weight or

Importance

(1, 2 or 3)

2 2 1 1 1 1

Presence

(%)
100 100 90 90 90 90

90

filtering to get the required field/s. This is the reason why they receive a

punctuation of 90%.

Now we present the Security table to finish with all the Functionality tables.

 Password

authentication

Backup of the

database

Different

privacy levels

Weight

(1, 2 or 3)
2 2 2

Presence (%) 100 90 100

OrientDB has 100% Support for authentication by means of a name and

password. This is done by indicating it as parameters to the open(…) method

applied to a OGraphDatabase object.

For the Backup of the database, what is recommended in OrientDB Google

Groups is just copying the whole database folder. We can see the discussion

in the following link: [ORIENT_BACK]. We can also perform an automatic

backup as it is explained in [ORIENT_AUTO_BACK].

Finally, for the Different privacy levels, we didn’t find anything that could

make this operation incompatible. What we could do is simply create different

node types or, what is the same, with different labels. In the current

implementation we only have nodes with label “PERSON”, but we could have,

for example, “PUBLIC” and “PRIVATE” nodes.

The following table corresponds to the Reliability table, containing both

comparison points corresponding to Maturity and Fault tolerance. Concretely

all points are Maturity ones except for the last one (Ability to switch from one

database to another) which is a Fault tolerance one.

91

 Operations

still not

available

Use of

low-level

elements

Bugs caused

by the

DBMS

Ability to

switch between

databases

Weight

(-1, -2 or -3)
-3 -2 -2 -1

Presence (%) 5 0 5 0

For OrientDB only one operation out of 22 was found as Not available

operations. This operation was the one for getting the shortest path between

two nodes to know the relationship between them. Then, 1 out of 22

represents approximately 5%.

No Use of low-level elements was found for this DBMS, so we consider a

“negative” score of 0% for this point.

The only Bug due to the DBMS itself was the one that caused the not

availability of the shortest path operation. The method for getting this exists

in the documentation but the operation is not working. It was expected to be

supported by using the SQL language for OrientDB with extensions for working

with graphs. The query for the shortest path would be something like "select

flatten(shortestpath("+ firstNode + ", " + secondNode + ").out)" but this didn’t

work.

For Being able to switch between databases with OrientDB, we didn’t find any

limitation. We would simply need to add a condition in order to use one

database for some cases and another/s for other cases.

The Usability table, containing Understandability (Time to read, understand

and learn), Learnability (Adequate implementation time), Attractiveness

(Different query languages and Visualization tools quality) and User

transparency, is shown below.

92

Time to

read, and

understand

Adequate

implement

ation time

Different

query

languages

Visualizati

on tools

quality

User

transpa

rency

Weight

(1, 2 or 3)
2 2 2 1 3

Presence

(%)
80 70 90 80 100

The Time to read, understand the documentation was quite short. Although

there is not too much documentation and only some slides as pdf

documentation, it was quite easy to understand.

The Implementation time was considered as adequate. The only special

problem that made implementation slower was when the problem in the

operation for getting the shortest path was detected. Many different queries

were tried and none of them worked, also many forums and specialized pages

were consulted.

OrientDB has support for many Different kinds of query languages. First of all,

developing with the graph version of OrientDB we can use the native API or

GraphDatabaseRaw with classes such as OGraphDatabase, etc. Also, we have

support for OrientDB’s SQL extended language by using an

OSQLSynchQuery<ODocument> object, indicating the query as a String

parameter. Finally, as we said before, OrientDB is compatible with Tinkerpop

Blueprints for performing graph operations such as import and export

database tasks.

Regarding the Visualization tools for OrientDB, a visualizer called OrientDB

Studio is provided. The first step to get it is installing the OrientDB server that

uses the OrientDB HTTP REST protocol and is able to respond REST JSON

requests. After having the server, we can open it to visualize by typing

http://localhost:2480/ in a web browser as explained in [ORIENT_STUDIO].

http://localhost:2480/

93

For the User transparency requirement, we didn’t find any limitation or

situation for which this wouldn’t be possible.

The Efficiency table only contains the comparison points that can be observed

below:

Time

behavior

Resources

utilization

Weight

(1, 2 or 3)
2 2

Presence

(%)
90 80

OrientDB response time was seen as the second shortest after Dex which is

the fastest. Then, the punctuation for this system is 90 out of 100.

OrientDB resources utilization seems to be quite similar to HyperGraphDB one

or even better. We can see its graphical representation in the following

VisualVM screenshot and, concretely, the value on the right. We have to keep

in mind that here the picture is more expanded than it was before. We can

appreciate it uses approximately 100MB or a little bit less for less than a

minute. That is, as we said, quite similar to HyperGraphDB.

94

The Maintainability table is split according to its subparts as follows. There

are two Maintainability tables where the first one corresponds to Analyzability

and Changeability; then the second one contains Stability and Testability.

This is the first Maintainability table where all points, except for the last two,

are Analyzability points.

Stor

age

size

Number of

nodes, relations

and indexes

Compactio

n

operations

Data

occupying as

little space

Change

relatio

n types

Add

new

indices

Weight

(1, 2 or

3)

2 2 2 2 3 2

Presenc

e (%)
100 95 70 10 80 100

For Getting the storage size in OrientDB we simply need to call getStorage()

method applied to an OGraphDatabase object. Then, with the OStorage

object obtained we call getSize() method.

For the Number of nodes and Number of edges, we found 100% support by

calling countVertexes() and countEdges() methods, respectively. For the

Number of indexes, we found that it was supported but we needed to get the

OIndex objects and then use size() method, because no operation for directly

getting the size was found. This last case represents a semantic improvement

although not a performance one.

For the Compaction operation, only the following information was found.

They said some time ago that it was in general not required because OrientDB

automatically recycles holes. However, a defragmentation operation was

supported but in alpha version. The source of this information can be found

in [ORIENTDB_COMPACT].

95

For the possibility of having Data occupying as little space as possible, we

didn’t find it exactly. The only thing that was found was an operation for

indicating the “data segment strategy” to be used. This can be done by calling

the method setDataSegmentStrategy(…) applied to an OGraphDatabase

object. This allows for indicating, for example, an

ODefaultDataSegmentStrategy object with which we can call

assignDataSegmentId(…) method. In this way, we can indicate in which data

segment we want the new record to be located.

For Changing the relation types we can only do it by changing the relations

with the already implemented and explained methods to manage relations.

These methods are createRelation(…), modifyRelation(…) and

removeRelation(…). No way of changing relation types without changing

relations was found.

For Adding indexes and index entries we found full support by using the index

manager that can be obtained by calling

db.getMetadata().getIndexManager() where db is an OGraphDatabase

object. With this manager we can call createIndex(…) method to create a new

one or getIndex("name") to get an existing one on field “name”. Then, in the

last case we can call put(…) method to add new entries to the existing index.

This is the second Maintainability table, where the first two points are

Stability ones and the resting ones are Testability capabilities.

Lack of DBMS

specific errors

Quality of

log data

Tools for

debugging

Test

frameworks

Weight

(1, 2 or 3)
3 2 2 2

96

Presence

(%)
90 70 70 70

The only OrientDB specific error that was found is the one about the shortest

path operation. Then, it receives a punctuation of 90%, i.e. we include a

penalty of 10% because of this error.

OrientDB uses java.util.logging.Level java class to specify the logging level that

is required (i.e. WARNING, FINE, INFO, etc.). Then, Log data can be configured

in a configuration file using Java syntax. However, there is not exactly an

OrientDB specific mechanism for this task.

For the Tools for debugging, OrientDB doesn’t provide specific tools for doing

it. It is compatible with Gephi, which is a visualization tool that also allows for

debugging. Besides, in the documentation an explanation on how to configure

it together with the Integrated Development Environment (IDE) is provided

[DEBUG_SERVER].

For the Testing frameworks, as already happened for other DBMS, OrientDB

doesn’t provide its own, but it is compatible with all testing frameworks that

can be used with the Java programming language. Some of them are JUnit,

Hamcrest, etc.

To end up with all the tables, we have the Portability one containing both

Install-ability and Portability compliance features. In the following Portability

table we can see the first three points as Install-ability ones and the resting

ones related with the Portability compliance:

97

Time for

downloa

ding

Time for

installing

Time to get

it running

Format

compati

bility

Fast

import

and export

Weight

(1, 2 or 3)
2 2 2 3 2

Presence

(%)
100 100 90 90 70

The Time for downloading OrientDB was adequate. No registration was

required and we had options for each operating system.

The Time for installing was really short, we had both .jar file and Maven

dependency options.

The Time to get the system running was considered as adequate. No relevant

problem was found during this phase.

For the Format compatibility in export and import operations, we found that

OrientDB can work with GraphML by using the Tinkerpop Blueprints export

and import operations.

For the consideration of the Fast import and export operations we can say the

same as before. These operations don’t require a really long time for the size

for which we tested them, but they are not extremely fast. This is why we

assign a score of 70% to it.

98

9.2 Final Selection

First of all, we would like to clarify that we are not going to give a final, absolute

answer about which is the best system. What we are aimed to do is at analyzing as

much points as possible to get a conclusion or selection of the best systems according

to different criteria. An example of this could be the fact of having a really good system

in terms of performance but very bad for functionality.

We would like to give, just as a reference, the final scores of each system. They are

computed as the sum of each individual score multiplied by its corresponding weight.

Then, we finally divide by the sum of the maximum value the weights can have and

also divide by 3 to obtain the number expressed as a percentage. We divide by three

to have the weights expressed as a 1 base. With maximum weight we only mean that

for the negative weights we consider a value of 0, as it is the best or maximum value

for them. The formula would be:

𝐹𝑖𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒𝑠 ∈ 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 =
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑠 ×𝑓 ∈ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑐𝑜𝑟𝑒𝑓𝑠

3 × ∑ max (𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑠)𝑓 ∈ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

And the table containing these values, where each row represents an “s”, is shown

below:

System Final Score

Dex 20134 / (3*88) = 76.26%

HyperGraphDB 5180 / (3*88) = 19.62%

Neo4j 7230 / (3*88) = 27.39%

OrientDB 7395 / (3*88) = 28.01%

99

We can observe a really big difference between Dex, the one with the highest final

score, and the other ones. However, we have to compare systems according to

specific criteria.

What we do now is performing a comparison according to two points of view. The first

one consists of comparing by features or criteria in order to decide which system or

systems was/were seen as the best one/s for a specific point. The second viewpoint

refers to comparing each DBMS on its own, without caring about other systems’

results, but just which point or category is the strongest one for the system.

9.2.1 Feature viewpoint comparison

For the first comparison, we build the following tables. We remind each table

corresponds to a comparison point and this allows for having a picture of the best

system for each feature.

1. Create

node/relation:

System Score

Dex 70

HyperGrDB 100

Neo4j 90

OrientDB 90

2. Modify

node/relation:

System Score

Dex 80

HyperGrDB 80

Neo4j 80

OrientDB 60

3. Remove

node/relation:

System Score

Dex 100

HyperGrDB 80

Neo4j 100

OrientDB 100

100

4. Create

relation type:

System Score

Dex 90

HyperGrDB 80

Neo4j 100

OrientDB 80

5. All relation

type:

System Score

Dex 70

HyperGrDB 70

Neo4j 100

OrientDB 100

6. Traverse tree:

System Score

Dex 60

HyperGrDB 70

Neo4j 90

OrientDB 100

7. Shortest path:

System Score

Dex 100

HyperGrDB 0

Neo4j 100

OrientDB 0

8. All node’s

data:

System Score

Dex 80

HyperGrDB 100

Neo4j 100

OrientDB 100

9. Get ancestors

/descendants:

System Score

Dex 80

HyperGrDB 80

Neo4j 100

OrientDB 80

101

10. Nbr. descs.

/ancestors:

System Score

Dex 80

HyperGrDB 90

Neo4j 80

OrientDB 80

11. Export tree:

System Score

Dex 100

HyperGrDB 0

Neo4j 100

OrientDB 100

12. Export tree’s

branch:

System Score

Dex 100

HyperGrDB 0

Neo4j 100

OrientDB 100

13. Import data:

System Score

Dex 100

HyperGrDB 0

Neo4j 100

OrientDB 100

14. Query by field

(age):

System Score

Dex 80

HyperGrDB 100

Neo4j 90

OrientDB 90

15. Get alive

people:

System Score

Dex 80

HyperGrDB 100

Neo4j 90

OrientDB 90

102

16. Get distinct

surnames:

System Score

Dex 90

HyperGrDB 90

Neo4j 90

OrientDB 90

17. Get all birth

cities:

System Score

Dex 90

HyperGrDB 90

Neo4j 90

OrientDB 90

18. Password to

authenticate:

System Score

Dex 0

HyperGrDB 0

Neo4j 60

OrientDB 100

19. Database

backup:

System Score

Dex 100

HyperGrDB 0

Neo4j 20

OrientDB 90

20. Different

privacy levels:

System Score

Dex 100

HyperGrDB 100

Neo4j 100

OrientDB 100

21. Operations

not available:

System Score

Dex 0

HyperGrDB 20

Neo4j 0

OrientDB 5

103

22. Low-level

elements:

System Score

Dex 30

HyperGrDB 0

Neo4j 0

OrientDB 0

23. DBMS specific

bugs:

System Score

Dex 0

HyperGrDB 30

Neo4j 20

OrientDB 5

24. Switch

databases:

System Score

Dex 0

HyperGrDB 0

Neo4j 0

OrientDB 0

25. Time to read &

understand:

System Score

Dex 80

HyperGrDB 50

Neo4j 100

OrientDB 80

26. Implementati

on time:

System Score

Dex 70

HyperGrDB 60

Neo4j 100

OrientDB 70

27. Query

languages:

System Score

Dex 60

HyperGrDB 0

Neo4j 100

OrientDB 90

104

28. Visualization

tools quality:

System Score

Dex 0

HyperGrDB 70

Neo4j 100

OrientDB 80

29. User

transparency:

System Score

Dex 100

HyperGrDB 100

Neo4j 100

OrientDB 100

30. Time

behavior:

System Score

Dex 100

HyperGrDB 80

Neo4j 40

OrientDB 90

31. Resources

utilization:

System Score

Dex 100

HyperGrDB 80

Neo4j 50

OrientDB 80

32. Storage size:

System Score

Dex 100

HyperGrDB 0

Neo4j 0

OrientDB 100

33. Nbr. of nodes,

rels. & indxs.:

System Score

Dex 66.67

HyperGrDB 90

Neo4j 70

OrientDB 95

105

34. Compaction

operations:

System Score

Dex 0

HyperGrDB 40

Neo4j 0

OrientDB 70

35. Data occ. little

space:

System Score

Dex 0

HyperGrDB 0

Neo4j 0

OrientDB 10

36. Change

relation types:

System Score

Dex 90

HyperGrDB 80

Neo4j 100

OrientDB 80

37. Add new

indexes:

System Score

Dex 100

HyperGrDB 100

Neo4j 100

OrientDB 100

38. Lack of DBMS

spec. errors:

System Score

Dex 100

HyperGrDB 70

Neo4j 100

OrientDB 90

39. Log data

quality:

System Score

Dex 100

HyperGrDB 50

Neo4j 90

OrientDB 70

106

40. Tools for

debugging:

System Score

Dex 70

HyperGrDB 70

Neo4j 70

OrientDB 70

41. Test

frameworks:

System Score

Dex 70

HyperGrDB 70

Neo4j 80

OrientDB 70

42. Time for

downloading:

System Score

Dex 70

HyperGrDB 100

Neo4j 100

OrientDB 100

43. Time for

installing:

System Score

Dex 80

HyperGrDB 100

Neo4j 100

OrientDB 100

44. Time to get it

running:

System Score

Dex 90

HyperGrDB 90

Neo4j 100

OrientDB 90

45. Format

compatibility:

System Score

Dex 100

HyperGrDB 0

Neo4j 90

OrientDB 90

46. Fast import and export:

System Score

Dex 70

HyperGrDB 0

Neo4j 70

107

OrientDB 70

With these tables we can clearly see that for dimension 1. (create node and relation),

system HyperGraphDB deserves being the best one because of the use of domain

objects to be stored in the database. Dex, instead, is seen as the more limited for this

dimension because of the, already cited, use of low-level elements.

For dimension 2. (modify node and relation) we cannot see any system especially

better than the others. The only remarkable thing is the fact that OrientDB is the most

limited one, due to the need of removing the old node or relation and creating a new

one.

For dimension 3. (remove node and relation) we can see most of the systems support

it correctly. The only limited system in this sense is HyperGraphDB due to the bug that

we saw before.

For creating relation types (dimension 4.) we can see Neo4j is the best system, as it

uses the already cited Enums. There is no system completely bad for this dimension;

we can only observe HyperGraphDB and OrientDB are the most limited ones, as they

require for changing a relation for changing a relation type.

For getting all relation types (5. dimension), Neo4j and OrientDB were seen as the

best ones as they allow for building a query before iterating and, then, we don’t need

to filter inside the loop. An implementation like this one couldn’t be obtained for the

other systems.

For the traverse tree dimension (6.) we can see that the best support is provided by

OrientDB and the worst by Dex. For OrientDB we can do this by using more or less

only one instruction, and for Dex it is limited, as we said, in terms of performance and

easiness.

108

For the shortest path dimension (7.), we can identify two systems (Dex and Neo4j) for

which it was completely supported by using a specific API method. And we can also

see that for the other systems, this operation was not supported correctly.

For the all node’s data dimension (8.) we cannot see any remarkable system. We can

identify Dex as the most limited one, because of the use of low-level elements (Value

object).

Neo4j was the best system for the get ancestors and descendants dimension (9.). The

implementation obtained with this system allows us to specify a maximum level value

and it has no limitations.

For the 10. dimension, i.e. the number of descendants and ancestors, we found

HyperGraphDB was the best one, as it allows for creating a traversal from the node

and then iterating over it. Neo4j also allows for the same, but we have to iterate over

an Iterable<Node>, so we have to get a value that we are not finally using.

For the export tree or 11. dimension we can see it is fully supported for most of the

systems. The only system that doesn’t support it is HyperGraphDB, since it is not

compatible with Tinkerpop Blueprints. The same can be said for the export tree’s

branch or 12. dimension and the import data or 13. dimension.

The system that best suits for the query for age dimension (14.) and the query for

alive people (15.) one is HypergraphDB. This is due to the fact of supporting domain

objects as part of the persistence layer, which eases this operation.

For both get distinct surnames (16.) and get all birth cities (17.) dimensions, we can

observe an almost complete support for all systems, with the only problem of not

allowing for field projections.

The best system for password authentication (18. dimension) was OrientDB. Neo4j

more or less supports it, but is a little bit limited; and the resting ones don’t support

it at all.

109

For the database backup (19. dimension) we saw the best system was Dex, as it

provides both backup and restore operations or methods. For the resting ones, they

either not support it (HyperGraphDB) or they give support but in a rather artificial way

(e.g. copying the whole database folder).

For all DBMS, we found the same support for different privacy levels (20. dimension).

For all of them we didn’t find any problem for being able to guarantee this.

The best systems in terms of operations support (21. dimension) are Neo4j and Dex,

with all the required operations supported. The worst in this sense was HyperGraphDB

with 20% of the required operations unsupported (concretely, the import and exports

and the shortest path).

For the use of low-level elements (22. dimension) we found that Dex was the only

one violating this point, especially with the use of Value objects and also other low-

level elements that made the development a little bit more difficult.

For the DBMS specific bugs dimension (23.) we found that Dex is the only system

100% free of errors. The system with highest presence of this kind of errors was

HyperGraphDB, especially the already cited problem with the remove node operation.

The ability to switch between databases (dimension 24.) was seen as completely

supported by all systems. We couldn’t find any problem for which this wouldn’t be

possible.

Neo4j was seen as the system for which the time for reading and understanding

(dimension 25.) was the shortest one, for the reasons already cited (basically quantity

and variety of documentation). The system that was seen as the most limited in this

sense is HyperGraphDB; for it, few documentation was found and almost nothing to

be downloaded as a pdf. Exactly the same happens with the implementation time

(dimension 26.).

110

For the presence of different query languages (27.), the best system was Neo4j, as it

provides the API, CYPHER and GREMLIN languages and also support for the Tinkerpop

Blueprints driver. The most limited system in this sense was HyperGraphDB, only

providing the native API.

For the visualization tools dimension (28.) we found Neo4j as the best one, with all

the capabilities of the web server, accessible through a web browser. Dex, instead,

was the system for which we couldn’t find support in this dimension.

For the user transparency dimension (29.) we found it is fully supported for all

systems. I.e., we didn’t find any problem for guaranteeing that the final user is

unaware of the DBMS used.

In the time behavior dimension (30.) we detected Dex as the fastest system and Neo4j

as the slowest one, by executing the same list of operations. Here we can observe the

results are fair, as these are precisely the systems for which all operations were

supported too. The same result can be observed in the resources utilization

dimension (31.).

Dex and OrientDB were the only systems for which we found support for getting

information about the current storage size (32. dimension). For the resting systems

this operation was seen as unsupported or inexistent.

The best support for getting the number of nodes, number of relations and number

of indexes (dimension 33.) in the system was found using OrientDB, as it provided

support for all of them. The worst case in this sense was seen in Dex, since it didn’t

support the indexes part.

The best information about compaction operations (34. dimension) was found for

OrientDB. For the other ones, no information or very few was found.

Almost no support was found for all DBMS, in the 35. Dimension, i.e. the guarantee

of having the data occupying as little space as possible.

111

For changing the relation types (36. dimension) we found the best support using

Neo4j, i.e. with a Java Enum containing all possible relation types. For Dex, the API

provided a method for doing this. Finally, the most limited in this sense were the

resting ones (i.e. HyperGraphDB and OrientDB) because of not allowing relation type

edition without changing relations.

Add new indexes operation (37. dimension) was seen as fully supported by all systems

in an adequate way.

For the DBMS specific errors (38. dimension) we saw, as we said, Neo4j and Dex were

the ones free of errors. Then, the one with the highest quantity of errors was

HyperGraphDB, as already cited.

The best system in terms of log data (39. dimension) was Dex, as it supports it in an

automatic way, just starting the system, and it is configurable. HyperGraphDB is the

DBMS for which we found the minimum quantity of information about this point.

For the debugging tools (dimension 40.) we saw the same situation for all DBMS: some

are supported, but no DBMS specific tools, only the ones in general compatible with

Java programming language. More or less the same can be said for the testing

frameworks (dimension 41.); we only assign a little bit more punctuation to Neo4j

since, for it, this is officially documented, by a JUnit and Hamcrest tutorial.

The time for downloading (dimension 42.) and the time for installing (dimension 43.)

was adequate for all systems. The only system with a small penalty in these

dimensions is Dex, because a registration for downloading was needed, and also

because we couldn’t use Maven for installing it, only the .jar file.

All DBMS provided an adequate time to get them running (44. dimension). This was

especially good in the case of Neo4j and we remark this is due to the documentation,

examples, etc. provided for it.

112

The format compatibility dimension (45.) was fully supported by Dex, with the

possibility of exporting to CSV and GraphML formats. The worst case in this dimension

was seen when using HyperGraphDB, as it seems like not supporting export

operations at all.

Finally, for the last dimension (i.e. 46. or fast import and export) we saw all systems

provide an adequate support, except for HyperGraphDB, for which we couldn’t find

an implementation of the import operation.

9.2.2 DBMS viewpoint comparison

Now we are going to show the tables split by DBMS, i.e. the comparison among all

features of each system without mixing or comparing the results with other systems.

We note this table is just like the ones seen before in each DBMS section, but now we

want to put all together in only one table to get the better results for each system.

We can see in violet the operations that are the best ones defined in a positive way;

and in yellow the best ones, among the ones defined in a negative way (with maximum

value as 0).

Dex table:

Feature or operation Score

1. Create node/relation 70

2. Modify node/relation 80

3. Remove node/relation 100

4. Create relation type 90

5. All relation types 70

6. Traverse tree 60

113

7. Shortest path 100

8. All node’s data 80

9. Get ancestors/descendants 80

10. Number of descendants/ancestors 80

11. Export tree 100

12. Export tree’s branch 100

13. Import data 100

14. Query by field (age) 80

15. Get alive people 80

16. Get distinct surnames 90

17. Get all birth cities 90

18. Password authentication 0

19. Backup of the database 100

20. Different privacy levels 100

21. Operations still not available (negatively defined) 0

22. Use of low-level elements (negatively defined) 30

23. Bugs caused by the DBMS (negatively defined) 0

24. Switch between databases (negatively defined) 0

25. Time to read and understand 80

26. Adequate implementation time 70

27. Different query languages 60

28. Visualization tools quality 0

114

29. User transparency 100

30. Time behavior 100

31. Resources utilization 100

32. Storage size 100

33. Number of nodes, relations and indexes 67

34. Compaction operations 0

35. Data occupying as little space 0

36. Change relation types 90

37. Add new indexes 100

38. Lack of DBMS specific errors 100

39. Quality of log data 100

40. Tools for debugging 70

41. Testing frameworks 70

42. Time for downloading 70

43. Time for installing 80

44. Time to get it running 90

45. Format compatibility 100

46. Fast import and export 70

This means that the operations or features that are best supported for Dex are:

“Format compatibility”, “Quality of log data”, “Lack of DBMS specific errors”, “Add

new indexes” and so on.

115

HyperGraphDB table:

Feature or operation Score

1. Create node/relation 100

2. Modify node/relation 80

3. Remove node/relation 80

4. Create relation type 80

5. All relation types 70

6. Traverse tree 70

7. Shortest path 0

8. All node’s data 100

9. Get ancestors/descendants 80

10. Number of descendants/ancestors 90

11. Export tree 0

12. Export tree’s branch 0

13. Import data 0

14. Query by field (age) 100

15. Get alive people 100

16. Get distinct surnames 90

17. Get all birth cities 90

18. Password authentication 0

19. Backup of the database 0

20. Different privacy levels 100

116

21. Operations still not available (negatively defined) 20

22. Use of low-level elements (negatively defined) 0

23. Bugs caused by the DBMS (negatively defined) 30

24. Switch between databases (negatively defined) 0

25. Time to read and understand 50

26. Adequate implementation time 60

27. Different query languages 0

28. Visualization tools quality 70

29. User transparency 100

30. Time behavior 80

31. Resources utilization 80

32. Storage size 0

33. Number of nodes, relations and indexes 90

34. Compaction operations 40

35. Data occupying as little space 0

36. Change relation types 80

37. Add new indexes 100

38. Lack of DBMS specific errors 70

39. Quality of log data 50

40. Tools for debugging 70

41. Testing frameworks 70

42. Time for downloading 100

117

43. Time for installing 100

44. Time to get it running 90

45. Format compatibility 0

46. Fast import and export 0

In HyperGraphDB table we can observe it is a system suitable for e.g. getting “All

node’s data” and also for “Creating new nodes and relations”.

Neo4j table:

Feature or operation Score

1. Create node/relation 90

2. Modify node/relation 80

3. Remove node/relation 100

4. Create relation type 100

5. All relation types 100

6. Traverse tree 90

7. Shortest path 100

8. All node’s data 100

9. Get ancestors/descendants 100

10. Number of descendants/ancestors 80

11. Export tree 100

12. Export tree’s branch 100

13. Import data 100

118

14. Query by field (age) 90

15. Get alive people 90

16. Get distinct surnames 90

17. Get all birth cities 90

18. Password authentication 60

19. Backup of the database 20

20. Different privacy levels 100

21. Operations still not available (negatively defined) 0

22. Use of low-level elements (negatively defined) 0

23. Bugs caused by the DBMS (negatively defined) 20

24. Switch between databases (negatively defined) 0

25. Time to read and understand 100

26. Adequate implementation time 100

27. Different query languages 100

28. Visualization tools quality 100

29. User transparency 100

30. Time behavior 40

31. Resources utilization 50

32. Storage size 0

33. Number of nodes, relations and indexes 70

34. Compaction operations 0

35. Data occupying as little space 0

119

36. Change relation types 100

37. Add new indexes 100

38. Lack of DBMS specific errors 100

39. Quality of log data 90

40. Tools for debugging 70

41. Testing frameworks 80

42. Time for downloading 100

43. Time for installing 100

44. Time to get it running 100

45. Format compatibility 90

46. Fast import and export 70

For Neoj4 we can observe a good support for e.g. “Different kinds of query languages

supported” and “Visualization tools”, among others.

OrientDB table:

Feature or operation Score

1. Create node/relation 90

2. Modify node/relation 60

3. Remove node/relation 100

4. Create relation type 80

5. All relation types 100

6. Traverse tree 100

120

7. Shortest path 0

8. All node’s data 100

9. Get ancestors/descendants 80

10. Number of descendants/ancestors 80

11. Export tree 100

12. Export tree’s branch 100

13. Import data 100

14. Query by field (age) 90

15. Get alive people 90

16. Get distinct surnames 90

17. Get all birth cities 90

18. Password authentication 100

19. Backup of the database 90

20. Different privacy levels 100

21. Operations still not available (negatively defined) 5

22. Use of low-level elements (negatively defined) 0

23. Bugs caused by the DBMS (negatively defined) 5

24. Switch between databases (negatively defined) 0

25. Time to read and understand 80

26. Adequate implementation time 70

27. Different query languages 90

28. Visualization tools quality 80

121

29. User transparency 100

30. Time behavior 90

31. Resources utilization 80

32. Storage size 100

33. Number of nodes, relations and indexes 95

34. Compaction operations 70

35. Data occupying as little space 10

36. Change relation types 80

37. Add new indexes 100

38. Lack of DBMS specific errors 90

39. Quality of log data 70

40. Tools for debugging 70

41. Testing frameworks 70

42. Time for downloading 100

43. Time for installing 100

44. Time to get it running 90

45. Format compatibility 90

46. Fast import and export 70

OrientDB’s table shows it is a good system for having “Password authentication” and

also for “Traversing the tree”, among others.

122

10. Discussion and conclusions

After comparing all DBMS in many different ways we can get some conclusions that we state

in this part.

The first conclusion is that even though Dex was the DBMS with the biggest global or average

punctuation, this doesn’t mean it is the best one of them. Dex, for example is a system having

not the best punctuation for “Create node/relation” nor “Modify node/relation” that are

important operations with a weight of 3 (the maximum one).

This is an important conclusion, since it allows us to state that it is not possible to get a unique,

final answer about the best system. This analysis allowed us to get better results than without

a context, as previous studies did. However, the effectiveness and efficiency of the system

would depend on the concrete operation or feature we are analyzing.

We can draw many conclusions for each DBMS and each operation by analyzing the results.

Some of the most remarkable ones are what follows.

Dex is a really good system for performance, i.e. we can execute operations in a really fast

way and with the minimum resources or memory consumption. It is also very good in terms

of what we understand for maturity, i.e. Dex is one of the two systems, together with Neo4j,

for which we found an implementation for all required operations

The main point in which Dex was seen as not so good is the API, there were many methods

using a slightly unclear naming and the, already mentioned, use of low-level elements, such

as Value objects.

For HyperGraphDB, we found it as a good system for storing information directly as domain

objects. This was seen as very flexible and useful for many operations. Concretely, queries for

a specific field become easier and more efficient, since we don’t need to transform database

objects into domain ones, we can directly obtain domain objects as a result of the query.

123

One of the main downsides of HyperGraphDB is, however, the fact of not supporting right now

many operations, so we found here a rather important problem of maturity. Another relevant

problem, related to the previous one is the fact of not supporting data import nor export

operations. This represents a big problem, since we want this system to be compatible with

GEDCOM format and for that we need these operations.

Neo4j is a system that provides a really clear API, a lot of documentation, examples, a pdf

manual, etc. It also seems to have a rather good level of maturity for being, together with Dex,

one of the two systems being compatible with all the methods or operations required. It was

seen as a system with which we can start working in a quite fast way, because of all

documentation provided, the possibility of using a visualizer, a console browser and many

other tools provided by a web server. Compared with Dex, it was also seen as kind of “higher-

level” than it. Neo4j’s API was seen cleaner, without low-level elements and being able to

manage relation types as Java Enum values.

However, the biggest problem that was found for Neo4j is in performance. As it was said

before, Neo4j was seen as many times slower than the other DBMS.

OrientDB is the DBMS in which we achieved the best implementation of the traverse tree

operations and one of the best, together with Neo4j, for getting all relation types operation.

It is also a more or less good system, compared with the others, in terms of support for

maintenance operations, such as database compaction operations.

However, we saw a small problem of maturity for OrientDB because of not supporting the

shortest path operation, considering that, according to the official google groups, it is

expected to be supported.

Finally, according to this previous reflection, we would consider both Dex and Neo4j the

systems that best supported our requirements and, thus, could more probably work better

than the other two. We exclude from this group HyperGraphDB and OrientDB for all the

operations not supported by them. These operations are considered as necessary for a

genealogy system; we would need to get the shortest path to determine the relationship

124

between two people if any and this is not supported by OrientDB nor HyperGraphDB. The last

one also misses support for both import and export that are needed, as we explained before,

for guaranteeing GEDCOM compatibility.

Moreover, we have to remind that finding an alternative format for storing family trees with

graph NoSQL DBMS (a part from GEDCOM) was also one of the objectives of the thesis. Then,

although it was mentioned many times, we have to say that GraphML was the format found

for that and which is considered as a standard for storing graphs in many graph NoSQL DBMS.

We also need to make a short reference to the initial planning to conclude if it was adequate

or not. Our conclusion is that we were able to follow it correctly for most of the thesis parts.

The only exception, in which we could consider a small deviation, is the DBMS comparison

part. This part ended up being longer than expected and, thus, it took some days more than

what we initially planned.

Finally, we can state that one of our objectives was accomplished, i.e. the contribution to the

knowledge of graph NoSQL DBMS. Also, as expected, we were able to get conclusions with a

fixed domain. We have to note an interesting fact which is the coincidence in our conclusions

with one of the previous works (concretely, [DPHSGAB]), in which also Dex and Neo4j were

seen as the best ones.

125

11. Bibliography and other references

 [APSTGC] Neo Technology company. A pleasant stroll through general concepts, and Neo4j

particulars. [Video] http://www.neo4j.org/learn#graphdbIntro (minute 16:30).

[DPHSGAB] Domínguez-Sal, D.; Urbón-Bayes, P.; Giménez-Vañó, A.; Gómez-Villamor, S.;

Martínez-Bazán, N.: Larriba-Pey , J. L. Survey of Graph Database Performance on the HPC

Scalable Graph Analysis Benchmark. DAMA-UPC, Universitat Politècnica de Catalunya. [H.T.

Shen et al. (Eds.): WAIM 2010 Workshops, LNCS 6185, pp. 37–48], 2010.

[ACCGDM] Angles, Renzo. A Comparison of Current Graph Database Models. University of

Talca, Chile. icdew, pp.171-177, 2012 IEEE 28th International Conference on Data Engineering

Workshops, 2012

[SGDM] Angles, Renzo; Gutiérrez, Claudio. Survey of Graph Database Models. ACM Comput.

Surv. 40, 1, Article 1, 39 pages. 2008

[QMSSE] Bandor, Michael S. Quantitative Methods for Software Selection and Evaluation.

Carnegie Mellon University. 2006

[UQMSPS] Franch, Xavier; Carvallo, Juan Pablo. Using Quality Models in Software Package

Selection. Universitat Politècnica de Catalunya. 2003

[CST] Column-oriented Database Systems. Harizopoulos, Stavros (HP Labs), Abadi, Daniel

(Yale), Boncz, Peter (CWI). VLDB 2009 Tutorial. http://cs-

www.cs.yale.edu/homes/dna/talks/Column_Store_Tutorial_VLDB09.pdf. 2009

[NEO4J] Learn, Develop, Participate - Neo4j The World's Leading Graph Database.

http://www.neo4j.org/

[INFGRAPHDB] Product Objectivity. http://objectivity.com/products/infinitegraph/technical-

specifications

http://www.neo4j.org/learn#graphdbIntro
http://cs-www.cs.yale.edu/homes/dna/talks/Column_Store_Tutorial_VLDB09.pdf
http://cs-www.cs.yale.edu/homes/dna/talks/Column_Store_Tutorial_VLDB09.pdf
http://www.neo4j.org/
http://objectivity.com/products/infinitegraph/technical-specifications
http://objectivity.com/products/infinitegraph/technical-specifications

126

[FLOCKDB] Twitter Engineering Introducing FlockDB.

http://engineering.twitter.com/2010/05/introducing-flockdb.html

[PREGEL] Pregel. http://dl.acm.org/citation.cfm?id=1582716.1582723

[PHOEBUS] xslogic phoebus · GitHub. https://github.com/xslogic/phoebus

[JPREGEL] JPregel @ GitHub. http://kowshik.github.com/JPregel/index.html

[ARANGODB] ArangoDB - The universal free and open source nosql database.

http://www.arangodb.org/

[HYPGRADB] HypergraphDB - A Graph Database. http://www.hypergraphdb.org/index

[INFOGRID] InfoGrid Web Graph Database. http://infogrid.org/trac/

[DEX] Sparsity-technologies DEX high-performance graph database. http://www.sparsity-

technologies.com/dex

[BIGDATA] bigdata®. http://www.systap.com/bigdata.htm

[ORIENT] OrientDB Graph-Document NoSQL dbms. http://www.orientdb.org/

[ORIENTSLIDES] OrientDB-the-graph-database-2.0 http://2012.nosql-matters.org/cgn/wp-

content/uploads/2012/06/OrientDB-the-graph-database-2.0.pdf

[TITAN] Titan. http://thinkaurelius.github.com/titan/

[VERTDB] stevedekorte vertexdb · GitHub. https://github.com/stevedekorte/vertexdb

[TWITTER] Twitter. https://twitter.com/

[STACKOVER] Stack Overflow. http://stackoverflow.com/

[GOOGLE] Google. http://www.google.com/

http://engineering.twitter.com/2010/05/introducing-flockdb.html
http://dl.acm.org/citation.cfm?id=1582716.1582723
https://github.com/xslogic/phoebus
http://kowshik.github.com/JPregel/index.html
http://www.arangodb.org/
http://www.hypergraphdb.org/index
http://infogrid.org/trac/
http://www.sparsity-technologies.com/dex
http://www.sparsity-technologies.com/dex
http://www.systap.com/bigdata.htm
http://www.orientdb.org/
http://2012.nosql-matters.org/cgn/wp-content/uploads/2012/06/OrientDB-the-graph-database-2.0.pdf
http://2012.nosql-matters.org/cgn/wp-content/uploads/2012/06/OrientDB-the-graph-database-2.0.pdf
http://thinkaurelius.github.com/titan/
https://github.com/stevedekorte/vertexdb
https://twitter.com/
http://stackoverflow.com/
http://www.google.com/

127

[CODD] A Relational Model of Data for Large Shared Data Banks. Codd, E. F. IBM Research

Laboratory, San Jose, California. Communications of the ACM. Volume 13. Number 6.

June, 1970. http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

[GEDCOM_SYNC] Why GEDCOM Files are not in Sync with all Genealogy Programs.

ourFamilyology, Inc. http://www.family-

genealogy.com/downloads/GEDCOM_Sync_Issues.pdf

[DBRANK] DB-Engines Ranking - popularity ranking of relational DBMS. http://db-

engines.com/en/ranking/relational+dbms

[ORACLEDB] Oracle System Properties. http://db-engines.com/en/system/Oracle

[ORACLETIME] Oracle Anniversary timeline.

http://www.oracle.com/us/corporate/profit/p27anniv-timeline-151918.pdf

[MYSQL] MySQL System Properties http://db-engines.com/en/system/MySQL

[MYSQLHIST] MySQL MySQL 5.1 Reference Manual 1.3.3 History of MySQL.

http://dev.mysql.com/doc/refman/5.1/en/history.html

[NOSQL] NoSQL Databases Christof Strauch. Hochschule der Medien, Stuttgart.

http://www.christof-strauch.de/nosqldbs.pdf

[TOPBIG] Top Big Data skills MongoDB and Hadoop 10gen.

http://www.10gen.com/post/40021118238/mongodb-and-hadoop-are-top-big-data-

skills

[COMPDOCKEY] Comparing Document Databases to Key-Value Stores • myNoSQL.

http://nosql.mypopescu.com/post/659390374/comparing-document-databases-to-key-

value-stores

[GOODFOR] pstaender mongraph · GitHub.

https://github.com/pstaender/mongraph#whats-it-good-for

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.family-genealogy.com/downloads/GEDCOM_Sync_Issues.pdf
http://www.family-genealogy.com/downloads/GEDCOM_Sync_Issues.pdf
http://db-engines.com/en/ranking/relational+dbms
http://db-engines.com/en/ranking/relational+dbms
http://db-engines.com/en/system/Oracle
http://www.oracle.com/us/corporate/profit/p27anniv-timeline-151918.pdf
http://db-engines.com/en/system/MySQL
http://dev.mysql.com/doc/refman/5.1/en/history.html
http://www.christof-strauch.de/nosqldbs.pdf
http://www.10gen.com/post/40021118238/mongodb-and-hadoop-are-top-big-data-skills
http://www.10gen.com/post/40021118238/mongodb-and-hadoop-are-top-big-data-skills
http://nosql.mypopescu.com/post/659390374/comparing-document-databases-to-key-value-stores
http://nosql.mypopescu.com/post/659390374/comparing-document-databases-to-key-value-stores
https://github.com/pstaender/mongraph#whats-it-good-for

128

[HPACQ] HP News - HP Completes Acquisition of Vertica Systems, Inc.

http://www8.hp.com/us/en/hp-news/press-

release.html?id=907883&pageTitle=HP%20Completes%20Acquisition%20of%20Vertica

%20Systems,%20Inc.#.UYw3wrXIbw8

[GVSSQL] Graphs vs. SQL. Interview with Michael Blaha ODBMS Industry Watch.

http://www.odbms.org/blog/2013/04/graphs-vs-sql-interview-with-michael-blaha/

[GENERIC] Generic Types (The Java™ Tutorials Learning the Java Language Generics

(Updated)). http://docs.oracle.com/javase/tutorial/java/generics/types.html

[YWORKS] yEd - Graph Editor. http://www.yworks.com/en/products_yed_about.html

[MVN] Maven - Welcome to Apache Maven. http://maven.apache.org/

[SVN] subversion.tigris.org. http://subversion.tigris.org/

[SUBCLIPSE] subclipse.tigris.org. http://subclipse.tigris.org/

[ECLIPSE] Eclipse - The Eclipse Foundation open source community website.

http://www.eclipse.org/

[M2E] m2eclipse. http://eclipse.org/m2e/

[ORACLENOSQL] Oracle NoSQL Database Technical Overview.

http://www.oracle.com/technetwork/products/nosqldb/overview/index.html

[JVIRTUALVM] jvisualvm - Java Virtual Machine Monitoring, Troubleshooting, and Profiling

Tool. http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html

[HYPER_SLIDES] HyperGraphDB Data Management for Complex Systems. (Slides).

http://www.hypergraphdb.org/docs/HyperGraphDB-Presentation.pdf

[SERVER_INSTALL] 21.1. Server Installation. http://docs.neo4j.org/chunked/stable/server-

installation.html

http://www8.hp.com/us/en/hp-news/press-release.html?id=907883&pageTitle=HP%20Completes%20Acquisition%20of%20Vertica%20Systems,%20Inc.#.UYw3wrXIbw8
http://www8.hp.com/us/en/hp-news/press-release.html?id=907883&pageTitle=HP%20Completes%20Acquisition%20of%20Vertica%20Systems,%20Inc.#.UYw3wrXIbw8
http://www8.hp.com/us/en/hp-news/press-release.html?id=907883&pageTitle=HP%20Completes%20Acquisition%20of%20Vertica%20Systems,%20Inc.#.UYw3wrXIbw8
http://www.odbms.org/blog/2013/04/graphs-vs-sql-interview-with-michael-blaha/
http://docs.oracle.com/javase/tutorial/java/generics/types.html
http://www.yworks.com/en/products_yed_about.html
http://maven.apache.org/
http://subversion.tigris.org/
http://subclipse.tigris.org/
http://www.eclipse.org/
http://eclipse.org/m2e/
http://www.oracle.com/technetwork/products/nosqldb/overview/index.html
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html
http://www.hypergraphdb.org/docs/HyperGraphDB-Presentation.pdf
http://docs.neo4j.org/chunked/stable/server-installation.html
http://docs.neo4j.org/chunked/stable/server-installation.html

129

[AUTHENTICATION_EXT] neo4j-contrib authentication-extension · GitHub.

https://github.com/neo4j-contrib/authentication-extension

[SECURITY_SERVER] 31.1. Securing access to the Neo4j Server.

http://docs.neo4j.org/chunked/milestone/security-server.html

[GREMLIN] 22.18. Gremlin Plugin. http://docs.neo4j.org/chunked/stable/gremlin-

plugin.html

[CYPHER] 10.1. What is Cypher. http://docs.neo4j.org/chunked/stable/cypher-

introduction.html

[GEPHI] Neo4j Gephi, open source graph visualization software.

http://gephi.org/tag/neo4j/

[REMOTE_DEBUG] 21.3. Setup for remote debugging.

http://docs.neo4j.org/chunked/stable/server-debugging.html

[BASIC_UNIT_TEST] 4.4. Basic unit testing. http://docs.neo4j.org/chunked/stable/tutorials-

java-unit-testing.html

[ORIENT_BACK] What's the best way to backup an orientdb database - Google Groups.

https://groups.google.com/forum/?fromgroups#!topic/orient-database/IsLCmHZk50s

[ORIENT_AUTO_BACK] Automatic Backup · nuvolabase orientdb Wiki · GitHub.

https://github.com/nuvolabase/orientdb/wiki/Automatic-Backup

[ORIENT_STUDIO] OrientDB_Studio - orient - OrientDB Studio web application - NoSQL

document database light, portable and fast. Supports ACID Tx, Indexes, asynch queries,

SQL layer, clustering, etc - Google Project Hosting.

https://code.google.com/p/orient/wiki/OrientDB_Studio

[ORIENTDB_COMPACT] OrientDB and replication, scalability and fault-tolerance comments

please! - Google Groups. https://groups.google.com/forum/#!msg/orient-

database/ldWerjEgH18/KKbJSXLU_ckJ

https://github.com/neo4j-contrib/authentication-extension
http://docs.neo4j.org/chunked/milestone/security-server.html
http://docs.neo4j.org/chunked/stable/gremlin-plugin.html
http://docs.neo4j.org/chunked/stable/gremlin-plugin.html
http://docs.neo4j.org/chunked/stable/cypher-introduction.html
http://docs.neo4j.org/chunked/stable/cypher-introduction.html
http://gephi.org/tag/neo4j/
http://docs.neo4j.org/chunked/stable/server-debugging.html
http://docs.neo4j.org/chunked/stable/tutorials-java-unit-testing.html
http://docs.neo4j.org/chunked/stable/tutorials-java-unit-testing.html
https://groups.google.com/forum/?fromgroups#!topic/orient-database/IsLCmHZk50s
https://github.com/nuvolabase/orientdb/wiki/Automatic-Backup
https://code.google.com/p/orient/wiki/OrientDB_Studio
https://groups.google.com/forum/#!msg/orient-database/ldWerjEgH18/KKbJSXLU_ckJ
https://groups.google.com/forum/#!msg/orient-database/ldWerjEgH18/KKbJSXLU_ckJ

130

[DEBUG_SERVER] DBServer - orient - OrientDB Server - NoSQL document database light,

portable and fast. Supports ACID Tx, Indexes, asynch queries, SQL layer, clustering, etc -

Google Project Hosting.

https://code.google.com/p/orient/wiki/DBServer#Debug_the_server

[INFOQ] Graph Databases, NOSQL and Neo4j. http://www.infoq.com/articles/graph-nosql-

neo4j

https://code.google.com/p/orient/wiki/DBServer#Debug_the_server
http://www.infoq.com/articles/graph-nosql-neo4j
http://www.infoq.com/articles/graph-nosql-neo4j

