

MASTER THESIS

TITLE: Evaluation and monitoring of wireless community networks

MASTER DEGREE: Master in Science in Telecommunication Engineering &
Management

AUTHOR: Sergi Madonar Soria

DIRECTOR: Roc Meseguer Pallarès

DATE: July 1st 2013

Títol: Avaluació i monitorització de xarxes inalàmbriques comunitàries

Autor: Sergi Madonar Soria

Director: Roc Meseguer Pallarès

Data: 1 de juliol de 2013

Resum

En les darreres dècades s’han produït molts canvis en l’àmbit de les
telecomunicacions, gran part d’aquest canvi ha estat propiciat per l’aparició
d’Internet, la “xarxa de xarxes” capaç de connectar usuaris a gairebé qualsevol
punt del món.

Inicialment totes les infraestructures eren cablejades, però en els darrers anys
ha anat avançant l’electrònica permetent reduir la mida dels dispositius
terminals. Això ha afavorit i facilitat la mobilitat d’usuaris amb els seus
terminals, pel que les tecnologies inalàmbriques han evolucionat conjuntament
per oferir-los connectivitat.

Diversos projectes per tot el món han aparegut amb l’objectiu de desplegar
xarxes inalàmbriques obertes creant comunitats d’usuaris, empreses i entitats;
l’exemple més proper a Catalunya és la fundació Guifi-net.

Degut a la dificultat d’administrar aquest tipus de xarxes ja que són
completament obertes i qualsevol usuari s’hi pot afegir lliurement, l’objectiu
d’aquest projecte és proporcionar orientació i eines per tal de fer-ho. Altres
factors com l’entorn poden alterar el correcte funcionament de la xarxa degut
al medi inalàmbric, això en complica encara més la gestió.

Amb totes les eines i mesures descrites dins d’aquest projecte, un
administrador d’una nova xarxa inalàmbrica comunitària seria capaç d’avaluar
l’estat d’aquesta i, així, mantenir i millorar el seu rendiment.

Title: Evaluation and monitoring of wireless community networks

Author: Sergi Madonar Soria

Director: Roc Meseguer Pallarès

Date: July, 1 st 2013

Overview

In the last decades there have been many changes in the telecommunications
sector, much of this change has been brought by the creation of the Internet,
the "network of networks" that can connect users to almost any point in the
world.

Initially all infrastructures were wired, but in recent years electronics has
advanced allowing to reduce the size of the terminal devices. This has
encouraged and facilitated the users’ mobility with their terminals, so wireless
technologies have evolved together to offer connectivity.

Several projects around the world have emerged with the aim of deploying
open wireless networks composed by user communities, companies and
organizations; the closest example in Catalonia is the Guifi-net foundation.

Due to the difficulty of managing such networks because they are completely
open and anyone can freely joain, the aim of this project is to provide guidance
and tools to do so. Other factors such as the environment can alter the proper
functioning of the network due to the wireless medium, it further complicates
the management.

With all the tools and measures described within this project, a new wireless
network administrator of a community would be able to evaluate its status and
maintain and improve their performance.

INDEX

INTRODUCTION .. 1

CHAPTER 1. WIRELESS COMMUNITY NETWORKS 3

CHAPTER 2. WCN NODES AND TOOLS ... 5

2.1. OpenWrt .. 5

2.2. snmpd .. 5

2.3. ntop .. 7
2.3.1. nProbe ... 7

2.4. bandwidthd ... 7

2.5. nmap .. 8
2.5.1. Zenmap .. 8

2.6. LinSSID .. 9

CHAPTER 3. LIST OF MEASUREMENTS .. 11

3.1. Active links. Links used by routes in the network .. 11

3.2. All links that receive at least one beacon in a measurement interval 13

3.3. Total amount of data transferred by clients .. 13

3.4. Traffic shape ... 14

3.5. Latency and Jitter ... 16

3.6. Signal parameters .. 17

3.7. Discover the network devices ... 18

3.8. Device information and configuration ... 20
3.8.1. lspci .. 20
3.8.2. modinfo .. 22
3.8.3. hwinfo .. 23

3.9. Transfer rates ... 24

3.10. Application classes .. 25

3.11. Frame Error Rate (FER) and Deliver probability ... 26

3.12. Network topology ... 27

3.13. List of available wireless networks .. 28

CHAPTER 4. USING THE TOOLS .. 29

4.1. Where ... 29

4.2. What ... 31

4.3. When .. 31

4.4. How .. 33

CHAPTER 5. CONCLUSIONS ... 35

REFERENCES ... 37

ANNEXES .. 39

1. Active links script source code.. 39

2. Link that receive a beacon receive script source code ... 41

3. Amount of traffic sent by clients script source code .. 43

4. Latency and jitter script source code .. 45

5. Deliver probability and Frame Error Rate script source code 47

LIST OF FIGURES

Fig. 1 Wireless mesh network topology example ... 3

Fig. 2 Guifi.net project logo... 3

Fig. 3 Links and nodes representation over Google Maps 4

Fig. 4 OpenWrt logo ... 5

Fig. 5 MIB structure example .. 6

Fig. 6 ntop logo ... 7

Fig. 7 bandwidthd logo ... 8

Fig. 8 nmap logo ... 8

Fig. 9 Zenmap interface ... 9

Fig. 10 LinSSID logo .. 9

Fig. 11 Output of the route links script .. 11

Fig. 12 List of localhost interfaces and routes .. 12

Fig. 13 Output of the active links .. 13

Fig. 14 Output of the amount of data script .. 13

Fig. 15 Traffic graph from the “Bandwidthd” tool .. 14

Fig. 16 ntop traffic graph in different time periods .. 15

Fig. 17 ntop traffic graph separated by protocols ... 15

Fig. 18 Ping command example to Google website ... 16

Fig. 19 Output of the latency and jitter script .. 16

Fig. 20 Output of the iwconfig command .. 17

Fig. 21 Devices discovered by nmap in the network .. 18

Fig. 22 Devices and their open ports discovered in the network 19

Fig. 23 lspci output for the wireless device ... 20

Fig. 24 lspci wireless driver information .. 21

Fig. 25 modinfo output for the wireless kernel module 22

Fig. 26 hwinfo output for the wireless interface .. 23

Fig. 27 Main screen of the “iftop” command ... 24

Fig. 28 Configuration screen of the “iftop” interface .. 24

Fig. 29 ntop and nProbe output view for application classification 25

Fig. 30 iw command output for the wireless interface 26

Fig. 31 Output of the FER and delivery probability script 26

Fig. 32 Network topology graphic from Zenmap software 27

Fig. 33 Evaluation of the near WiFi networks over time 28

Fig. 34 Evaluation of the near WiFi networks by channels 28

Fig. 35 Wireless Community Network example schema 29

INTRODUCTION 1

INTRODUCTION

Internet is the biggest and more heterogeneous network, formed by
uncountable personal computers, connecting devices, servers… connecting
thousands of millions of people around the world.

From its origins fifty years ago, Internet has evolved significantly in terms of
usage and performance. Several infrastructures have been built in order to
widely offer access to this network and nowadays it’s seen as a basic service
for the citizen; a service that is billed to the user by the telecommunication
operators in function of its performance.

The access to the Internet has been wired through static desktop computers;
but in the last years the wireless connections have spread their presence due to
the increasingly users‘ mobility with their laptops, tablets and smart phones.
However the backbone links which connect the major networks are still wired
because of their significantly higher capacity compared with the wireless ones.

Due to the facility and the lower cost of installing a wireless mesh network1, this
solution has been well accepted in some regions and environments. A wireless
mesh community network can be seen as a connectivity solution for towns far
from the cities or a performance improvement for users who have a poor quality
wired connection.

Many projects have been created worldwide with the common goal to deploy an
open wireless network available for the citizens. These are very interesting
projects because they promote the cooperation between individuals, companies
and different kind of entities converging into a common goal. Also they are
usually closely related to the open source initiative2.

This project is aligned with this initiative with the aim to help the administrators
of this wireless mesh networks. The inherent wireless part of the networks
makes their topology constantly changing; their links unreliable and their
performance oscillate through time depending also on environmental factors.

Due to all of these network characteristics, it’s difficult to manage a network of
this kind. In this project a set of measurements and tools are defined to obtain
feedback about the status of the network, so being able to detect and maybe
correct problems in it.

A wireless community network has no any single administrator (person or
organization), it belongs to the community and any person in it can take an
active role in the network management. It would be a nonsense trying to design
a centralized management system for this kind of network, so it’s not the
objective of the project.

1
 http://en.wikipedia.org/wiki/Wireless_mesh_network

2
 http://opensource.org/

http://en.wikipedia.org/wiki/Wireless_mesh_network
http://opensource.org/

2 Evaluation and monitoring of wireless community networks

Smaller communities can be connected to the community network and they
usually have a technical responsible for this link establishment and aftercare.
This person or organization would require certain tools to evaluate the status of
this connection and the users’ behavior inside this new piece of the whole
network.

The main objective of this project is to provide a set of tools to this entity in
order to evaluate the piece of the network that administrates. Te evaluation
zone will be defined from the terminal user devices until the entrance point to
the community network which is usually a gateway owned by the organization
or user that joined it.

All the set of tools can be very useful to determine the behavior of the piece of
network that is administrated. The administrator could obtain traffic statistics,
hardware information of the devices connected in the network, discover the
network topology, some characteristics of the environment… All these
measurements would help the administrator to improve the performance of the
network by the detection of possible malfunctions in it.

It will be described how to obtain each measurement and what conclusions can
be extracted from its possible results.

WIRELESS COMMUNITY NETWORKS 3

CHAPTER 1. WIRELESS COMMUNITY NETWORKS

In wireless community networks (WCN) there isn’t a single traditional
telecommunications operator behind, usually the users are who share their
Internet connections. The only constraint to access to the network is to have Wi-
Fi equipment and use it as a node of the network too, so other traffic flows from
different users can be routed through it.

An open IEEE 802.113 standard wireless mesh network is an easy way to share
bandwidth among several users in a certain community. Instead of the classical
station bases, are used fixed wireless nodes. In a mesh network topology there
are usually two kind of different links between nodes: point-to-multipoint links
with omnidirectional antennas and point-to-point links using unidirectional
antennas.

Any mobile device with a WiFi interface could be connected to this kind of
network (with the administrator permission) and also fixed ones directly wired
connected to the routing devices as it can be seen in the figure.

Fig. 1 Wireless mesh network topology example

The Guifi.net4 project is the most representative example and the biggest open
wireless community network in Catalonia. The network is built by its users so
they are also its owners, who can be individuals, companies and public
administrations.

Fig. 2 Guifi.net project logo

3
 http://standards.ieee.org/about/get/802/802.11.html

4
 http://guifi.net/

http://standards.ieee.org/about/get/802/802.11.html
http://guifi.net/

4 Evaluation and monitoring of wireless community networks

It’s an open network because all the configuration files are published to allow to
anyone to improve and maintain it. There isn’t any central entity that applies
restrictions like contents or bandwidth bounding, which is the main limitation,
directly related with the users’ fees in the traditional operators’ networks.

The Guifi.net foundation was created in 2008 and in the mid-2013 there are
more than 32.000 nodes. In the following map it can be seen all the links and
nodes represented over the Catalonia region.

Fig. 3 Links and nodes representation over Google Maps

WCN NODES AND TOOLS 5

CHAPTER 2. WCN NODES AND TOOLS

This project is aimed to be used majorly on routing devices with open source
operating systems, but also there are software or measurements that have to
be done in the users’ computers.

In this chapter are defined how the device should be configured to obtain all the
measurements defined in chapter 3. It’s specified the operating system and a
set of software programs that need a special installation, usually more
complicated that just install the package.

2.1. OpenWrt

OpenWrt5 is the chosen embedded open source operating system because
allows a full custom configuration to the administrator, working as an almost
complete Linux command interface with a package manager to upgrade it.

It’s a freeware software and the operating system image can be downloaded
from the website; it’s an empty image, so there isn’t any pre-configuration, all
must be done by the administrator.

It’s the trade-off of this solution, the owner can enjoy a full customization but, in
the other hand, even the simplest configuration must be done. Also there’s a lot
of documentation and forums in the Internet devoted to this solution and the
possible issues.

This operating system will be installed in the wireless community network nodes
allowing to install all the required software and to execute the scripts to evaluate
the network status.

Fig. 4 OpenWrt logo

2.2. snmpd

The SNMP6 (Simple Network Management Protocol) is an application protocol
that stores at the device databases called MIBs (Management Information
Base). MIBs are focused on a singular topic; for example there’s a MIB devoted
to the network interfaces, other to the BGP7 routing protocol…

5
 https://openwrt.org/

6
 http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

7
 https://en.wikipedia.org/wiki/Border_Gateway_Protocol

https://openwrt.org/
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://en.wikipedia.org/wiki/Border_Gateway_Protocol

6 Evaluation and monitoring of wireless community networks

The snmpd8 is the service that manages all of these databases in the system
and manages its access from remote systems. The MIBs are hierarchical
databases composed by objects identified with a unique identifier called OID.

Fig. 5 MIB structure example

Required packages:

 snmpd

 snmp-mibs-downloader

The first package installs the SNMP daemon to obtain all the service in the
device but it’s empty at the beginning, there aren’t any MIBs. The second one
downloads all the supported MIBs and installs them; there are more than 340
available at this moment.

The real-time data obtained from the node via the SNMP service is used in
some measurements specified in chapter 3 like the link status.

8
 http://www.net-snmp.org/

http://www.net-snmp.org/

WCN NODES AND TOOLS 7

2.3. ntop

ntop9 is a network traffic analyzer based on libpcap10 and has a web-based
interface, so it’s needed also a web server to work with it. It allows classifying
traffic by protocols and other criteria and allows storing the captured packets.

Required packages:

 Apache211

 Ntop

Fig. 6 ntop logo

2.3.1. nProbe

nProbe12 is an extension for the ntop traffic analyzer, its main functionality is to
classify traffic also by layer 7 information such as the used application, like
Facebook or Mozilla Firefox.

The ntop software is used to plot the node traffic shape and the nProbe allows
classifying it with layer 7 parameters.

2.4. bandwidthd

This is a web based software with the purpose to plot into graphs the bandwidth
usage. Bandwidthd13 captures the host traffic using the libpcap library [X] and
stores it into SQL databases, so a part of the main package it’s necessary to
install before the web server (Apache) and the SQL (PostgreSQL14 in this case)
daemon to make it work.

Required packages:

 Postgresql

 Apache2

 Bandwidthd

9
 http://www.ntop.org/

10
 http://www.tcpdump.org/

11
 http://httpd.apache.org/

12
 http://www.ntop.org/products/nprobe/

13
 http://bandwidthd.sourceforge.net/

14
 http://www.postgresql.org/

http://www.ntop.org/
http://www.tcpdump.org/
http://httpd.apache.org/
http://www.ntop.org/products/nprobe/
http://bandwidthd.sourceforge.net/
http://www.postgresql.org/

8 Evaluation and monitoring of wireless community networks

After all these packages have been installed, the default access to the website
will be at “http://[HOST_ADDRESS]/bandwidthd” where [HOST_ADDRESS] is
the IP address of the device where the software has been installed.

The bandwidthd software is used to view the traffic shape that passes through
the wireless network node.

Fig. 7 bandwidthd logo

2.5. nmap

Nmap15 is an open source tool used to tasks related to network discovery and
security auditing. It allows not only discovering which devices are online in the
network, also it’s able to scan all the available open ports and which service is
running through it.

Many other features can be performed by this software but the mentioned
before are the most useful ones for this project purpose.

Fig. 8 nmap logo

2.5.1. Zenmap

Zenmap16 is the graphical interface for the nmap software, making easier to use
the command line features. Also the scan results can be saved and viewed
later.

15

 http://nmap.org/
16

 http://nmap.org/zenmap/

http://nmap.org/
http://nmap.org/zenmap/

WCN NODES AND TOOLS 9

Fig. 9 Zenmap interface

The nmap software is used in this project to discover online network devices in
the network and to list their open ports with security purposes. The Zenmap
interface allows the administrator to plot the discovered network devices in a
graphical and more intuitive way.

2.6. LinSSID

LinSSID17 is an open source program equivalent to the inSSIDer18 software for
Windows and can be downloaded easily with the Linux package manager. Its
functionality is to scan all the near WiFi networks and display it to a graphical
interface.

Fig. 10 LinSSID logo

The LinSSID software will be used to detect all the WiFi networks available near
the host and to analyze their signal power and operating channel.

17

 http://sourceforge.net/projects/linssid/
18

 http://www.metageek.net/products/inssider/

http://sourceforge.net/projects/linssid/
http://www.metageek.net/products/inssider/

10 Evaluation and monitoring of wireless community networks

LIST OF MEASUREMENTS 11

CHAPTER 3. LIST OF MEASUREMENTS

The main objective of this chapter is to define a set of useful measurements and
tools for a wireless mesh network administrator to evaluate, maintain and
improve it. This list of measurements based in different software solutions is the
best approximation because there isn’t any open source software that covers all
the measurements described below.

For each measurement it will be described its purpose, the output obtained and
the deductions that can be extracted from them.

3.1. Active links. Links used by routes in the network

Have all the interfaces information can be very useful to detect if any interface is
down for any reason. The status of the router interfaces can be determined by
the properties of the SNMP object ifEntry inside the IF-MIB19:

 ifAdminstatus: integer value that indicates the status of the interface,
three different values, testing (3), down (2) and up (1).

 ifOperStatus: Seven different values for the current operational state of
the interface. Up(1) ready to pass packets, down(2), testing(3) in some
test mode, unknown(4) status can’t be determined for some reason,
dormant(5), notPresent(6) some component is missing,
lowerLayerDown(7) down due to state of lower-layer interface(s).

Only if both integer values are 1, it can be deduced that a link is active. So the
script used in this case gets via SNMP these couple of values for each
interface, shows them grouped by interface like in the following picture.:

Fig. 11 Output of the route links script

19

 http://net-snmp.sourceforge.net/docs/mibs/interfaces.html

http://net-snmp.sourceforge.net/docs/mibs/interfaces.html

12 Evaluation and monitoring of wireless community networks

Other way to list all the available interfaces together with the host routes is to
execute the “nmap --iflist” command:

Fig. 12 List of localhost interfaces and routes

LIST OF MEASUREMENTS 13

3.2. All links that receive at least one beacon in a
measurement interval

Having this information can be useful to determine low quality or unused links,
which don’t process any data due to the lack of users or the poor quality of the
medium.

To detect if an interface has received any packet, the ifInOctets property can be
obtained for each interface (ifEntry) and after the desired period of time,
measure it again and compare the values. All the data can be found inside the
IF-MIB. Then the active interfaces will be the ones where the property has
changed.

Fig. 13 Output of the active links

3.3. Total amount of data transferred by clients

Having the total volume of data transferred in a given time period can be used
to determine the network load, for example. So the total amount of data
transferred through each interface can be a key factor to correct punctual
problems like bottlenecks in the network, which produce packet losses and a
bad performance.

The amount of data transferred of each interface can be measured in the field
ifOutOctets from all the ifEntry objects in the IF-MIB, then after a time period, it’s
measured again. Adding all the difference between the two measurements in
the output bytes, the total data transmitted in the network during this period is
obtained. It could be measured also the input packets but only input or output
must be measured, otherwise the data is counted double.

Fig. 14 Output of the amount of data script

14 Evaluation and monitoring of wireless community networks

3.4. Traffic shape

Measuring the total amount of data transmitted for a given period in different
instants during the day, the traffic shape can be obtained. Also it can be done
for different periods like a week or a month.

For this measurement the bandwidthd and the ntop softwares can be used.
Both show a graph of the network traffic; it can be seen for different periods of
time.

The traffic can also be separated depending on the protocol, making easier to
measure and quantify the amount of traffic compared with the others.

Having this graphical view of the network load over time have a different
purpose that the previous measurement, the total amount of data transferred by
clients. The previous measurement is an average estimation of the total data
transferred in a certain period, but in this case the traffic bursts are taken into
account, so the peaks can be detected and located in time. The peaks can be
predicted like the increment of traffic at the evening when the users arrive home
after work or at the weekends. Having this information, the administrator can
detect when are more used the network resources and if there’s necessary any
upgrade.

Fig. 15 Traffic graph from the “Bandwidthd” tool

LIST OF MEASUREMENTS 15

Fig. 16 ntop traffic graph in different time periods

Fig. 17 ntop traffic graph separated by protocols

16 Evaluation and monitoring of wireless community networks

3.5. Latency and Jitter

The latency can be defined as the time that a packet reaches the other side of
the communication or the time that lasts the packet to arrive again to the origin.
Usually and in this case, the second approach is taken into account because
the measurement equipment only has to be allocated in one network
equipment. The jitter is the variance of the different latency measurements
obtained.

The latency to a concrete device can be used to determine how congested the
network between the two points is. The jitter can be used to deduce the status
of the physical medium of transmission, if it’s high, significant changes over time
in it can be deduced. For a single latency measurement it would be enough
making a ping to the desired destination.

It can be seen below the output of a PING20 command, in this case to Google
website. The latency is the parameter called “time” and it can be extracted and
processed easily. Also at the end of the command the minimum, maximum,
average and maximum deviation values can be found and there's no need to
calculate them.

Fig. 18 Ping command example to Google website

An example output of the script communicating with Google website and 10
different iterations could be:

Fig. 19 Output of the latency and jitter script

20

 http://en.wikipedia.org/wiki/Ping_(networking_utility)

http://en.wikipedia.org/wiki/Ping_(networking_utility)

LIST OF MEASUREMENTS 17

3.6. Signal parameters

It can be interesting to measure the link quality to guess the performance that
the user could experiment. A bad physical link quality would derive directly in a
poor connection increasing the transmission errors and a throughput decrease.

The medium interferences can’t be detected with the network routers because
the hardware devices are not designed to evaluate or measure them. On the
other hand, the routers can measure the signal power from their own interfaces.

A set of wireless parameters can be observed for each wireless interface using
the “iwconfig”21 command, the more interesting for an administrator:

 Name of the network where it’s connected (ESSID).

 Frequency.

 Bit rate.

 Transmission power.

 MAC address of the access point.

 Link quality.

 Signal level.

Fig. 20 Output of the iwconfig command

21

 http://www.linuxcommand.org/man_pages/iwconfig8.html

http://www.linuxcommand.org/man_pages/iwconfig8.html

18 Evaluation and monitoring of wireless community networks

3.7. Discover the network devices

The amount of hosts and connection devices is a very important factor in terms
of congestion and scalability of the network, it’s not the same to have 10
devices transmitting in the network that 100. The nmap software was created
for this purpose, but only a couple of measurements among the large list of
available ones have sense in this context. It can be used also to detect intruders
that are connected to the network without any authorization.

First of all a host discovery by “Ping” command (ping scan) can be used. It’s a
very simple mechanism to detect the network devices, it consists in send a ping
request to every possible IP address in the network. If the address sends a
response, it will be considered as an online device. The main problem here is
that some devices could have the ICMP22 requests like ping blocked for security
reasons so these devices wouldn’t be detected.

The command to execute this scan in the network is “nmap –sP
[NETWORK_IP/MASK]”.

Fig. 21 Devices discovered by nmap in the network

22

 https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

LIST OF MEASUREMENTS 19

The previous scan could be very simple and lack of extra information a part of
the existence of a device that answers pings behind the address. Also the open
ports and the service which is devoted to could be very useful information in
terms of security, for example.

So the command to obtain also the open ports for each device is “nmap –T5
[NETWORK_IP/MASK]”.

Fig. 22 Devices and their open ports discovered in the network

20 Evaluation and monitoring of wireless community networks

3.8. Device information and configuration

The network administrator may require deep knowledge about the network
adapter configuration, not only about layer 2 and 3, more about physical layer.
For discover its capabilities, performance configuration or driver updates all this
information can be taken into account.

UNIX operating systems have already a set of commands to access to all the
hardware components in the system.

3.8.1. lspci

lspci23 command is used to get all the information about the PCI24 buses and
the devices. There are several arguments to obtain different information about
the hardware selected.

First the wireless device must be identified, it’s only necessary to list all the PCI
components and search for the correct one. To reduce the output and make it
simpler, showed information has been filtered by the word “wireless” so only the
wireless device appears.

Fig. 23 lspci output for the wireless device

In the previous output, the device identifier can be seen at the beginning
(03:00.0) and with it, more information about its driver can be obtained.

23

 http://www.linuxcommand.org/man_pages/lspci8.html
24

 http://en.wikipedia.org/wiki/Conventional_PCI

http://www.linuxcommand.org/man_pages/lspci8.html
http://en.wikipedia.org/wiki/Conventional_PCI

LIST OF MEASUREMENTS 21

Fig. 24 lspci wireless driver information

22 Evaluation and monitoring of wireless community networks

3.8.2. modinfo

The modinfo25 command allows obtaining information about kernel modules26.
In the previous lspci measurement, in the last line, the wireless module can be
obtained as the “Kernel driver in use” value, “ath9k” in this example.

Fig. 25 modinfo output for the wireless kernel module

25

 http://www.linuxcommand.org/man_pages/modinfo8.html
26

 https://en.wikipedia.org/wiki/Loadable_kernel_module

http://www.linuxcommand.org/man_pages/modinfo8.html
https://en.wikipedia.org/wiki/Loadable_kernel_module

LIST OF MEASUREMENTS 23

3.8.3. hwinfo

The hwinfo27 is not included by default in the UNIX operating systems so this
package must be installed a part. The functionality of this command is to display
a very complete set of hardware parameters.

Fig. 26 hwinfo output for the wireless interface

27

 http://www.hwinfo.com/

http://www.hwinfo.com/

24 Evaluation and monitoring of wireless community networks

3.9. Transfer rates

Also if there’s a need to go deeper in information about the users’ traffic, it can
be used the “iftop”28 command, a real-time traffic analyzer. It shows in a table
the current bandwidth usage by pair of hosts in a single interface.

This information can be useful for the administrator to detect in real time which
are the most relevant connections (in terms of bandwidth consumption) passing
through the device.

Fig. 27 Main screen of the “iftop” command

Fig. 28 Configuration screen of the “iftop” interface

28

 http://www.ex-parrot.com/pdw/iftop/

http://www.ex-parrot.com/pdw/iftop/

LIST OF MEASUREMENTS 25

3.10. Application classes

In order to define the clients’ behavior and improve the network features
according to its type of usage, can be very interesting to determine which the
data flow types are.

The ntop software with the nProbe update, the traffic captured at the device can
be more effectively identified and not only by the port, also by the layer 7
application as it can be seen in the picture below.

Actually there are 150 applications identified like Facebook, Twitter, Skype.
Whatsapp, WindowsUpdate, Grooveshark, Warcraft 3… So the administrator is
able to detect for example if many users connect to social networks and can
take the decision to forbid its access. On the other hand, it could be seen that
some applications have a great presence in the network and a configuration
adaptation could be applied to benefit them.

Fig. 29 ntop and nProbe output view for application classification

26 Evaluation and monitoring of wireless community networks

3.11. Frame Error Rate (FER) and Deliver probability

From these measurements the administrator can deduce information like how
congested is the network or if any link has a bad performance due to
environmental conditions. These are only deductions that can be made by
knowing in advance the error ratio in the link, but it’s not a direct consequence.

With the “iw”29 command, the administrator can obtain all the parameters to
calculate the Frame Error Ratio (FER) and the Deliver probability.

Fig. 30 iw command output for the wireless interface

The following formulas explain how to calculate both parameters, there’s only
need to get the packets transmitted, the failed ones and the bit rate:

totalTx

failedTx
rateBitbpsRateErrorFrame

totalTx

failedTx
yprobabilitDeliver

_

_
*_][__

100*]
_

_
1[[%]_





Fig. 31 Output of the FER and delivery probability script

29

 http://wireless.kernel.org/en/users/Documentation/iw

http://wireless.kernel.org/en/users/Documentation/iw

LIST OF MEASUREMENTS 27

3.12. Network topology

In a wireless community network where it grows with no structure and usually in
a decentralized way, it can be very interesting to know how it’s the topology in a
given instant. Also the network won’t preserve the same topology due to the
lack of reliability in the wireless links and the facility to establish new ones.

The Zenmap software which is based in nmap, software used below in other
measurements to scan the network looking for connected devices, allows
collecting all the nmap information and plotting it into a more intuitive graph.
From this graphical view, it can be deduced which devices are terminals
connected to the access points and the links established between devices.

Fig. 32 Network topology graphic from Zenmap software

28 Evaluation and monitoring of wireless community networks

3.13. List of available wireless networks

Using the LinSSID software the administrator can scan the available WiFi
networks and check if there could be interferences by other networks
transmitting in the same channel or the adjacent ones, for example.

The interference detection with this tool is limited to the ones coming from other
networks, other sources wouldn’t be detected.

Basically there are two modes of networks visualization, one seeing the power
variation over time and the other one over the channels available. It can be
useful to detect other WiFi networks transmitting in the same or near channels,
so the administrator could change the transmission channel to avoid the
interferences.

Fig. 33 Evaluation of the near WiFi networks over time

Fig. 34 Evaluation of the near WiFi networks by channels

USING THE TOOLS 29

CHAPTER 4. USING THE TOOLS

To create a wireless community network is not the purpose of this project; it’s to
define methodologies, measurements and tools to administrate a part of it in an
efficient way. It has been defined also that the lack of stability in terms of
performance and topology in this kind of networks which adds an extra difficulty
to its management.

Before offering network connectivity to the users, it’s necessary to configure all
the routing protocols allowing the internal and external communications. This
feature is performed by the internal and external routing protocols; usually
OSPF30 and BGP31 are implemented. At this point, the users are able to access
to the network and have full connectivity to Internet and inside the community
network itself.

In this chapter is explained the way to implement and use all the measurements
defined in the previous chapter. It must be explained how to deploy this
monitoring toolkit because if it’s bad implemented, the results can become
meaningless or incorrect.

4.1. Where

A wireless mesh community network is usually composed by other networks, so
it’s decentralized. There isn’t any central device in charge of the management of
the whole network and, in addition, all of these networks usually have different
administrators and most probably would share their administration to other
users.

Fig. 35 Wireless Community Network example schema

30

 http://en.wikipedia.org/wiki/Open_Shortest_Path_First
31

 https://en.wikipedia.org/wiki/Border_Gateway_Protocol

http://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/Border_Gateway_Protocol

30 Evaluation and monitoring of wireless community networks

Taking all this facts into account, let’s focus on one of these wireless mesh
networks that are part in the whole community network. The networks obtain
connectivity to other networks, thus establishing the community, through
gateway devices in charge of redirect the mesh network traffic in both
directions.

A part of the gateway acting as a border to the external world for the network,
there could be more routing devices (routers) working internally and redirecting
the traffic inside the network (before reaching the gateway).

Depending on the administrator needs and on the network topology, it could be
interesting to configure certain devices a part from the gateway with the
OpenWrt operating system in order to configure all the tools and exploit all the
advantages and the potential of the device. The gateway is a key point to
configure because it’s where all the traffic created by the network users passes
through.

So the choice of the desired devices to monitor depends strictly on the
administrator of the network and its topology; but it’s almost mandatory to select
the gateway for the reasons explained above.

There are a couple of measurements that can’t be installed in the OpenWrt
operating system because they require a graphical user interface. The
mentioned measurements are:

 Network topology: This measurement requires installing and launching
the Zenmap software, which could be defined as a graphical extension
for the nmap.

 List of available networks: To detect the available wireless networks it’s
needed the LinSSID software, that is also a software with a graphical
interface for the user.

These measurements should be performed in a device different from the
OpenWrt routing devices or the gateway. Both could be installed in personal
computers but maybe the LinSSID software would be more useful in a laptop
device, allowing the administrator to go to any desired point and check the
available wireless networks.

USING THE TOOLS 31

4.2. What

Having all the selected devices to monitor, it has to be decided what
measurements want the administrator to perform depending on the needs and
in which device make sense to be implemented.

Knowing that the gateway is the traffic concentration point of all the network, all
the measurements that involve all the users must be implemented in this
device. They can be also implemented in other routing device but it must be
taken into account that the results would be incomplete because not all the
users would be taken into account. The recommended measurements applied
in the gateway are:

 Total amount of data transferred by clients: The volume of data would be
more accurate if it’s measured in the gateway because it passes all
through this point, in both directions.

 Traffic shape: The software is measuring the bandwidth usage in
background, but most probably it’s important to measure the whole
network usage instead of only a restricted network zone.

 Application classes: Like in the traffic shape, the applications used by the
users should be measured in the gateway where all the traffic passes
through, else maybe some traffic fluxes couldn’t be monitored.

 Transfer rates: The data could be sent by different paths inside the
network but it will pass through the gateway for sure.

The other measurements described in the project have not such a direct
dependency on the users as the previous ones; so they don’t have any
restriction of where should be performed, can be done in the gateway, in other
routing devices or in both places.

4.3. When

Once the desired tools are installed in the chosen devices, the next step is to
know when or how often a measurement has sense to be done. For example,
it’s pointless to check the status of a link based on a measurement done one
week ago; it should be checked in real time.

The measurements that must be allocated in the gateway are based on
statistics that are stored periodically so there’s no need to execute any
command to make the measurement; the administrator only has to view the
evolution of this saved data.

Some measurements are designed with the purpose of detect errors in the
network:

32 Evaluation and monitoring of wireless community networks

 Active links: A set of users could notice that there’s no connection and
the wireless network disappeared, a reason could be a malfunctioning in
the device causing the wireless interface to become down. Also a non-
operative link could cause the isolation of a whole zone, that could be of
different sizes, leaving several users without connectivity.

 All links that receive at least one beacon in a measurement interval:
Executing this measurement, links with low usage or none could be
detected, this could indicate a problem in the environment or that there
aren’t any users using this access. Taking this into account, the
administrator should verify if the link is working properly and if there are
users connected to it.

 Latency and Jitter: A bad performance in real time applications could be
caused by a high latency and jitter; and this could be caused by network
congestion. The solution to this problem could be to increment the
network bandwidth capacity or balance the network load applying routing
policies.

 Frame Error Rate (FER) and Deliver Probability: Having these two
factors elevated would cause connection problems so probably the user
would contact the administrator requesting a solution. The main possible
cause for this case could be the existence of interferences coming from
the environment, which are very difficult to eliminate for the administrator
because usually they become from external sources.

Other measurements don’t detect errors in the network, are thought to obtain
information and maybe provide an opportunity to the administrator to prevent
them:

 Traffic shape: The bandwidth used by the users measured over time can
be very useful for the administrator to detect problems of capacity in the
network if the graphic becomes saturated. Other use for this tool is to
define user behaviors in the traffic demand for a given period in order to
have a better resource management.

 Signal parameters: These are physical measurements like the signal
power, it could be used to detect any error in the device hardware, the
direct cause could be the loss of connectivity or the disappearance of the
network from the user device.

 Discover the network devices: In order to count the amount of users
connected to the network, this measurement can be very useful. If the
number of devices increases significantly, the bandwidth available will
decrease significantly.

 Device information and configuration: For more precise tuning
configuration, it can be necessary for the administrator to obtain
hardware and driver information about the devices. Some

USING THE TOOLS 33

incompatibilities could be solved and also upgrades to obtain a better
performance.

 Transfer rates: For a punctual network traffic overload, the administrator
could execute this real-time measurement and maybe discover if there’s
any connection that is consuming the major part of the bandwidth. The
source inside the network could be identified and perhaps ban it
forbidding its access to the network.

 Application classes: The administrator would like to obtain information
about the layer 7 applications used in the network to take some actions.
For example, some file exchange software should be blocked to avoid
high bandwidth consumption from a few users.

 Network topology: Wireless networks have the advantage of deploying
new network links, but it can become also an inconvenience if the
network starts to grow without any control. In the whole network it’s
almost impossible to control its growth, but in the piece of network
controlled by the administrator maybe could be possible. Detecting new
routing devices or access points without the administrator’s permission
could be one of the goals to obtain and, on the other hand, to check that
all the devices are working properly in the network.

 List of available wireless networks: A bad connection could be caused by
the interference caused by near wireless networks. There are a few
channels available and maybe all could become used in places like
apartment buildings where the population density is higher. This kind of
interference is hard to eliminate because it would suppose to turn off
another wireless owned by other user, but the source of the problem can
be detected at least.

4.4. How

It has been defined where the tools should be placed, what measurements have
more sense to monitor depending on the device location and also the periodicity
or the instant when the measurements must be done, the last issue to define is
how to perform the different measurements.

There are three kinds of methods to perform the measurements described in
the previous chapters:

 Secure Shell (SSH)32: All the command line and script-based
measurements should be executed using this protocol. This technique
allows the administrator to access remotely to the devices safely, the
main drawback of this mechanism is the lack of graphical interface but
it’s not necessary for this group of measurements.

32

 http://en.wikipedia.org/wiki/Secure_Shell

http://en.wikipedia.org/wiki/Secure_Shell

34 Evaluation and monitoring of wireless community networks

 Web: The traffic shape and the application usage are measurements that
a service is making periodically and is stored in the device. In order to
access to the data, the same service provides a web server so the
administrator only should have to put the IP address of the remote device
in a web browser.

 Laptop graphical interface: The measurements based on the Zenmap
and LinSSID software must be done in devices with graphical interfaces,
so the administrator would need a Linux operating system installed in a
laptop device, for example.

CONCLUSIONS 35

CHAPTER 5. CONCLUSIONS

The main goal of this project is to advise wireless community networks
administrators giving them a set of tools and measurements helping in their
management tasks. A brief study of wireless mesh networks behavior has been
necessary to define which measurements are interesting to perform.

In order to support open initiatives, in this project all the tools and solutions are
open source without any software cost to the possible users.

This project provides a set of tools and measurements but they don’t cover all
the needs for a wireless network. There are other sets of measurements like
more user-oriented like the session duration, the number of active clients, the
oscillations in network associations and mobility aspects.

Other group of possible measurements to take into account could be the routing
ones, it’s very important to maintain configured the routing protocols of the
network, they could suppose a great difference in terms of network
performance.

Possible improvements could be done in terms of group all the measurements
in a single software package; a unique software devoted to wireless networks
management. It could simplify the installation and configuration tasks and be
added also directly to the OpenWrt operating system.

The final result of the project has been positive increasing the initial knowledge
due to the necessity to go deeper in UNIX operating systems, discovering new
functionalities and also investigating further in WiFi technologies.

36 Evaluation and monitoring of wireless community networks

REFERENCES 37

REFERENCES

[1] Wireless mesh networks page on Wikipedia -
http://en.wikipedia.org/wiki/Wireless_mesh_network

[2] Open Source Initiative website - http://opensource.org/

 [3] IEEE 802.11 web page -
http://standards.ieee.org/about/get/802/802.11.html

[4] Guifi.net project website - http://guifi.net/

[5] OpenWrt project website - https://openwrt.org/

[6] SNMP page on Wikipedia -
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

[7] BGP page on Wikipedia -
https://en.wikipedia.org/wiki/Border_Gateway_Protocol

[8] snmpd software official page - http://www.net-snmp.org/

[9] Ntop project website - http://www.ntop.org/

[10] Tcpdump and Libpcap website - http://www.tcpdump.org

[11] Apache web server official website - http://httpd.apache.org/

[12] nProbe project website - http://www.ntop.org/products/nprobe/

[13] Bandwidthd project website - http://bandwidthd.sourceforge.net/

[14] PostgreSQL project website - http://www.postgresql.org/

[15] Nmap project website - http://nmap.org/

[16] Zenmap project website - http://nmap.org/zenmap/

[17] LinSSID project website - http://sourceforge.net/projects/linssid/

[18] inSSIDer project website - http://www.metageek.net/products/inssider/

[19] IF-MIB definition page -
http://netsnmp.sourceforge.net/docs/mibs/interfaces.html

[20] Ping page on Wikipedia -
http://en.wikipedia.org/wiki/Ping_(networking_utility)

[21] iwconfig command help page -
http://www.linuxcommand.org/man_pages/iwconfig8.html

[22] ICMP page on Wikipedia -
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

[23] lspci command help page -
http://www.linuxcommand.org/man_pages/lspci8.html

[24] PCI bus page on Wikipedia - http://en.wikipedia.org/wiki/Conventional_PCI

http://opensource.org/

38 Evaluation and monitoring of wireless community networks

[25] modinfo command help page -
http://www.linuxcommand.org/man_pages/modinfo8.html

[26] Kernel module page on Wikipedia -
https://en.wikipedia.org/wiki/Loadable_kernel_module

[27] hwinfo project website - http://www.hwinfo.com/

[28] Iftop project website - http://www.ex-parrot.com/pdw/iftop/

[29] iw command help page -
http://wireless.kernel.org/en/users/Documentation/iw

[30] OSPF routing protocol page on Wikipedia -
http://en.wikipedia.org/wiki/Open_Shortest_Path_First

[31] BGP routing protocol page on Wikipedia -
https://en.wikipedia.org/wiki/Border_Gateway_Protocol

[32] Secure Shell page on Wikipedia - http://en.wikipedia.org/wiki/Secure_Shell

[33] Peer-to-peer page on Wikipedia - http://en.wikipedia.org/wiki/Peer-to-peer

http://www.ex-parrot.com/pdw/iftop/

ANNEXES 39

ANNEXES

1. Active links script source code

#!/usr/bin/perl

LIST OF OIDs USED

ifTable 1.3.6.1.2.1.2
ifNumber 1.3.6.1.2.1.2.1.0
ifDescr 1.3.6.1.2.1.2.2.1.2.[INTERFACE-INDEX]
ifAdminStatus 1.3.6.1.2.1.2.2.1.7.[INTERFACE-INDEX]
ifOperStatus 1.3.6.1.2.1.2.2.1.8.[INTERFACE-INDEX]

use Switch;

my $address = "localhost";

We obtain the number of interfaces via SNMP
my $line_numInt = qx/snmpget -v 2c -c public $address 1.3.6.1.2.1.2.1.0 ./;
my @aux_array = split(": ",$line_numInt);
my $numInt = @aux_array[1];
#print "Number of interfaces : $numInt\n";

my $i;
my @ifDescr;
my @adminStatus;
my @operStatus;
my @active;

We get all the SNMP information needed for each interface
for ($i=1;$i<=$numInt;$i++) {
 my $line_descr = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.2.$i ./;
 my $line_admin = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.7.$i ./;
 my $line_oper = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.8.$i ./;

 my @aux_array = split('"',$line_descr);
 @ifDescr[$i] = @aux_array[1];
 my @aux_array = split(': ',$line_admin);
 @adminStatus[$i] = @aux_array[1] + 0;
 my @aux_array = split(': ',$line_oper);
 @operStatus[$i] = @aux_array[1] + 0;

40 Evaluation and monitoring of wireless community networks

 if ((@adminStatus[$i]==1) && (@operStatus[$i]==1)) {
 @active[$i] = "ACTIVE";
 } else {
 @active[$i] = "INACTIVE";
 }

 # Switch to add more information to the AdminStatus of the interface
 switch (@adminStatus[$i]) {
 case(1) { @adminStatus[$i] = "up(1) -- ready to pass packets"; }
 case(2) { @adminStatus[$i] = "down(2)"; }
 case(3) { @adminStatus[$i] = "testing(3) -- in some test mode"; }
 else { @adminStatus[$i] = "error"; }
 }

 # Switch to add more information to the OperStatus of the interface
 switch (@operStatus[$i]) {
 case(1) { @operStatus[$i] = "up(1) -- ready to pass packets"; }
 case(2) { @operStatus[$i] = "down(2)"; }
 case(3) { @operStatus[$i] = "testing(3) -- in some test mode"; }
 case(4) { @operStatus[$i] = "unknown(4) -- status can not be
determined for some reason"; }
 case(5) { @operStatus[$i] = "dormant(5)"; }
 case(6) { @operStatus[$i] = "not present(6) -- some component is
missing"; }
 case(7) { @operStatus[$i] = "lowerLayerDown(7) -- down due to
state of lower-layer interface(s)"; }
 else { @adminStatus[$i] = "error"; }
 }
}

clear_screen();

We print on the screen all the information obtained above
for ($i=1;$i<=$numInt;$i++) {
 print ">>> INTERFACE \"@ifDescr[$i]\" [@active[$i]]\n";
 print "AdminStatus : @adminStatus[$i]\n";
 print "OperStatus : @operStatus[$i]\n\n";
}

Some auxiliar functions
sub clear_screen {
 system("clear");
}

ANNEXES 41

2. Link that receive a beacon receive script source code

#!/usr/bin/perl

All links that receive at least one beacon in a measurement interval

LIST OF OIDs USED

ifTable 1.3.6.1.2.1.2
ifNumber 1.3.6.1.2.1.2.1.0
ifDescr 1.3.6.1.2.1.2.2.1.2.[INTERFACE-INDEX]
ifInOctets 1.3.6.1.2.1.2.2.1.10.[INTERFACE-INDEX]

use Switch;

my $address = "localhost";
my $interval = 5; # In seconds

We obtain the number of bytes transferred from the device
my $line_numInt = qx/snmpget -v 2c -c public $address 1.3.6.1.2.1.2.1.0 ./;
my @aux_array = split(": ",$line_numInt);
my $numInt = @aux_array[1];
#print "Number of interfaces : $numInt\n";

my $i;
my @ifDescr;
my @beginBytes;
my @endBytes;

We get all the SNMP information needed for each interface
for ($i=1;$i<=$numInt;$i++) {
 my $line_descr = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.2.$i ./;
 my $line_inBytes = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.10.$i ./;

 my @aux_array = split('"',$line_descr);
 @ifDescr[$i] = @aux_array[1];
 my @aux_array = split(': ',$line_inBytes);
 @beginBytes[$i] = @aux_array[1] + 0;
}

We wait the interval specified to obtain again the information
sleep($interval);

42 Evaluation and monitoring of wireless community networks

We get again all the SNMP information needed for each interface
for ($i=1;$i<=$numInt;$i++) {
 my $line_inBytes = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.10.$i ./;

 my @aux_array = split(': ',$line_inBytes);
 @endBytes[$i] = @aux_array[1] + 0;
}

clear_screen();

We print on the screen all the information obtained above
print "The interface will be considered ACTIVE if it have received at least one
packet in $interval seconds\n";
for ($i=1;$i<=$numInt;$i++) {
 # print "@beginBytes[$i] - @endBytes[$i]\n";
 if (@beginBytes[$i]==@endBytes[$i]) {
 print ">>> INTERFACE \"@ifDescr[$i]\" --> INACTIVE\n";
 } else {

 print ">>> INTERFACE \"@ifDescr[$i]\" --> ACTIVE\n";
 }
}

Some auxiliar functions
sub clear_screen {
 system("clear");
}

ANNEXES 43

3. Amount of traffic sent by clients script source code

#!/usr/bin/perl

Amount of traffic sent by clients in a given time period

LIST OF OIDs USED

ifTable 1.3.6.1.2.1.2
ifNumber 1.3.6.1.2.1.2.1.0
ifDescr 1.3.6.1.2.1.2.2.1.2.[INTERFACE-INDEX]
ifOutOctets 1.3.6.1.2.1.2.2.1.16.[INTERFACE-INDEX]

use Switch;

my $address = "localhost";
my $interval = 10; # In seconds

We obtain the number of bytes transferred from the device
my $line_numInt = qx/snmpget -v 2c -c public $address 1.3.6.1.2.1.2.1.0 ./;
my @aux_array = split(": ",$line_numInt);
my $numInt = @aux_array[1];
#print "Number of interfaces : $numInt\n";

my $i;
my @ifDescr;
my @beginBytes;
my @endBytes;

We get all the SNMP information needed for each interface
for ($i=1;$i<=$numInt;$i++) {
 my $line_descr = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.2.$i ./;
 my $line_outBytes = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.16.$i ./;

 my @aux_array = split('"',$line_descr);
 @ifDescr[$i] = @aux_array[1];
 my @aux_array = split(': ',$line_outBytes);
 @beginBytes[$i] = @aux_array[1] + 0;
}

We wait the interval specified to obtain again the information
sleep($interval);

44 Evaluation and monitoring of wireless community networks

We get again all the SNMP information needed for each interface
for ($i=1;$i<=$numInt;$i++) {
 my $line_outBytes = qx/snmpget -v 2c -c public $address
1.3.6.1.2.1.2.2.1.16.$i ./;

 my @aux_array = split(': ',$line_outBytes);
 @endBytes[$i] = @aux_array[1] + 0;
}

clear_screen();

We print on the screen all the information obtained above
print "Amount of data transferred in $interval seconds\n";
for ($i=1;$i<=$numInt;$i++) {
 $amountB = @endBytes[$i] - @beginBytes[$i];
 #print "BEGIN @beginBytes[$i]\n";
 #print "END @endBytes[$i]\n";
 #print "AMOUNT $amountB\n";
 if ($amountB > 1073741824) {
 $amountB = $amountB / 1073741824;
 $amountB = sprintf "%.3f", $amountB;
 $text = "$amountB GB";
 } elsif ($amountB > 1048576) {
 $amountB = $amountB / 1048576;
 $amountB = sprintf "%.3f", $amountB;
 $text = "$amountB MB";
 } elsif ($amountB > 1024) {
 $amountB = $amountB / 1024;
 $amountB = sprintf "%.3f", $amountB;
 $text = "$amountB KB";
 } else {
 $text = "$amountB B";
 }

 print ">>> INTERFACE \"@ifDescr[$i]\" : $text\n";
}

Some auxiliar functions
sub clear_screen {
 system("clear");
}

ANNEXES 45

4. Latency and jitter script source code

#!/usr/bin/perl

Latency and Jitter

We execute the PING command and store the output to a temporal file
my $file = "output.tmp";
my $num_pings = 10;
my $address = "www.google.es";
system("ping -c $num_pings $address > $file");
#system("cat " . $file);

We read the output file line by line
my $first_line = 0;
my @times;
open my $text, $file or die "Could not open $file: $!";

while(my $line = <$text>) {
 $last_line = $line;

 if (($first_line > 0) && ($first_line <= $num_pings)) {
 #print "$line\n";
 my @first_array = split(' ',$line);
 #print @first_array[7];
 my @second_array = split('=',@first_array[7]);
 #print "@second_array[1]\n";
 push(@times,@second_array[1]);
 #print "@second_array[1]\n";
 }
 $first_line++;
}

We close the output file
close $text;

#print "$last_line\n";
my @array = split(' ',$last_line);
my @values = split('/',@array[3]);
my $min = @values[0];
my $avg = @values[1];
my $max = @values[2];
my $mdev = @values[3];
my $mean = mean (\@times);
$mean = sprintf "%.3f", $mean;
my $variance = variance(\@times);
$variance = sprintf "%.3f", $variance;

46 Evaluation and monitoring of wireless community networks

We print the calculated information
clear_screen();
print "The latency parameters to reach [$address] with [$num_pings] iterations
are:\n\n";
print "Minimum value: $min ms\n";
print "Maximum value: $max ms\n";
print "Average value: $avg ms\n";
print "Maximum deviation: $mdev ms\n";
print "Mean: $mean ms\n";
print "Jitter/Variance: $variance ms\n\n";

We delete the output file
system("rm $file");

Some auxiliar functions
sub sum {
 my ($arrayref) = @_;
 my $result;
 foreach(@$arrayref) { $result+= $_; }
 return $result;
}

sub mean {
 my ($arrayref) = @_;
 my $result;
 foreach (@$arrayref) { $result += $_ }
 return $result / @$arrayref;
}

sub variance {
 return (sum [map { ($_ - $mean)**2 } @{$_[0]}]) / @{$_[0]};
}

sub clear_screen {
 system("clear");
}

ANNEXES 47

5. Deliver probability and Frame Error Rate script source code

#!/usr/bin/perl

Deliver Probability and Frame Error Rate

COMMAND --> iw dev wlan0 station dump

DP = 1 - (tx_failed / tx_packets)

MAL --> REVISAR
FER = (tx_failed / tx_packets) * Ttx_packet
Estimation Ttx_packet = L/BW

use Switch;

my $interface = "wlan0";
my $file = "output.tmp";

We obtain the output of the iw command
system("iw dev $interface station dump > $file");

open my $text, $file or die "Could not open $file: $!";

my $num_line = 1;
my @data;

while(my $line = <$text>) {
 # We delete the tabs
 $line =~ s/ //g;

 switch ($num_line) {
 case(1) {
 # MAC address
 my @aux_array = split(' ',$line);
 @data[0] = @aux_array[1];
 }
 case(5) {
 # TX Bytes
 my @aux_array = split(':',$line);
 @data[1] = @aux_array[1]+0;
 }
 case(6) {
 # TX packets
 my @aux_array = split(':',$line);
 @data[2] = @aux_array[1]+0;
 }

48 Evaluation and monitoring of wireless community networks

case(8) {
 # TX failed packets
 my @aux_array = split(':',$line);
 @data[3] = @aux_array[1]+0;
 }
 case(11) {
 # Bit rate
 print "$line\n";
 my @aux_array = split(':',$line);
 my @aux_array2 = split(' ',@aux_array[1]);
 @data[4] = @aux_array2[0]+0;
 }
 }

 #print $line;
 $num_line++;
}

We delete the temporal output file
system("rm output.tmp");

clear_screen();

We process and display the results
print("Data for the [$interface] interface:\n\n");
print("MAC address: @data[0]\n");
print("Transmitted bytes: @data[1] B\n");
print("Transmitted packets: @data[2] packets\n");
print("Transmitted failed packets: @data[3] packets\n");
print("Bit Rate: @data[4] Mbps\n\n");

Deliver probability
my $DP = 100*(1-(@data[3]/@data[2]));
$DP = sprintf "%.2f", $DP;
print("Deliver probability: $DP%\n");

Frame error rate
my $FER = @data[4]*1000*(@data[3]/@data[2]);
$FER = sprintf "%.2f", $FER;
print("FER: $FER Kbps\n");

Some auxiliar functions
sub clear_screen {
 system("clear");
}

