
Final Project Report

Title: Latency estimation of IP flows using NetFlow
Author: Santiago Sebio Gallego
Director: Pere Barlet Ros
Co-Director: Josep Sanjuàs Cuxart
Department: Computer Architecture
Studies: Degree in Informatics Engineering (2003)
Date: 20th June 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41809513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents

I. Introduction... 5
1.1. Measuring QoS...6
1.2. The paper “Two Samples are Enough: Opportunistic Flow-level Latency Estimation using
NetFlow” ...7
1.3. Scope of the project..8

II. Technologies used by the method.. 9
2.1. Cisco's Netflow...9
2.2. Network Time Protocol...10

III. Technologies used for the simulation... 11
3.1. Discarded: The Common Open Research Emulator (CORE)...11
3.2. Graphical Network Simulator (GNS3)...13
3.3. Cisco 7200 router with IOS 12.3(22)..14
3.4. Archlinux..15
3.5. Linux kernel tools: tc, tc qdisc and tc filter..15

IV. Main software developed.. 16
4.1. Library..16
4.2. The rules..17
4.3. Relaxing or replacing the C3 rule...18
4.4. Make C5 more strict (including flows discarded by C1)..20
4.5. Using the initial sequence number and the TCP flags..21
4.6. Exported data..22

V. Software developed/modified for the simulation environment...23
5.1. Executable that calls the library (main)..23
5.2. Traffic-generating script (flowcreation.sh)...23
5.3. Traffic-shaping script (netemvariation.sh)..23
5.4. TCPDUMP and editcap..23
5.5. PCAP_DIFF..24
5.6. PCAP_DIFF-output compiling script...24
5.7. YAFSCII...24

VI. Main code documentation... 25
6.1. Main functions, for external call...25
6.2. Flow comparison functions...26
6.3. Flow management functions...27

VII. Evaluation.. 28
7.1. Evaluation methods...28
7.2. Compatibility tests with GNS3...28
7.3. Performance tests using the CAIDA traces...32

VIII. Schedule and costs... 40
 8.1. Schedule...40
 8.2. Costs...43

IX. Conclusion.. 44

X. Bibliography... 46

I. Introduction

Internet plays a big paper in the modern business. From common
services like chat, e-mail, VoIP and website browsing to more advanced ones
like remote PC access, shared repositories or GPS-tracking, they have all
become indispensable tools, to the point that Internet downtime translates to
an interruption of almost all work in some sectors.

But not only downtimes are to be accounted for, because troubles with
the Internet connection, even if it does not go down, can also mean a
slowdown on the workflow, and alter the mood of the workers. Websites
failing to load or loading corrupted, requiring multiple retries to perform one
task or suffering unreliable communications can all be infuriating and directly
decrease the productivity.

Because of that, measuring the quality of connection towards Internet or
even the connection between two places owned by the same entity (for
instance, the connection between the database server and the terminals
managed by the workers) has become an important task.

That quality of service is determined by how long network packets take
to go from the sender to the intended receiver, and if they actually do. In the
case of losses, it is obvious that the less the better, but it is not as easy for the
latency. A connection with higher average latency than another can be better
overall if that latency is consistent, instead of having a wide range of possible
packet latencies (jitter). But that heavily depends on the service.

For instance, VoIP/webcam communication deals nicely with losses
(since it will only mean a few frames skipped, or in the worse cases a few-
second freeze), but is terribly affected by latency (since it will force longer
stops while waiting for an answer). Jitter, specially if consistent through a few
seconds, can also become bothersome.

On the other hand, most other services are somewhat tolerant to
latency, and their tolerance to losses depends on the precautions taken by the
programmers. Some of the worst possible cases are unnoticed file corruption
and lost messages.

I. Introduction 6

1.1. Measuring QoS

But measuring quality of service is not an easy task. The most objective
data (the exact times at which each packet is sent and received) is virtually
unobtainable in anything other than closed environments, so any attempt to
measure it has to work with more abridged data. And even then, that data is
not necessarily easy to collect or use.

This project deals with QoS-measurement through flow-level reports,
mostly following the standards set by Netflow v9 and older, but also dealing
with the newer IPFIX, which has not been widely adapted yet and does not
have much software available. Netflow's latest version, v10, follows the
standards set by IPFIX.

These two protocols (Netflow and IPFIX) define a way to describe
network traffic as flows, saving a lot of resources while attempting to keep
relevant information for network diagnostic. An entry is created for every
combination of protocol, ports, source and destination, which also logs the
timestamp of the first and last packets, the total amount of packets, total
bytes...

Using the information provided by those protocols, this method
attempts to match the flows registered at two different places. If two flows
(one from each flow-reporting probe) seem to refer to the same collection of
packets, the four timestamps (two that mark the beginning and two that mark
the end) can be used to tell how long did those packets (the first and the last)
took to get from one probe to the other.

Using those matched timestamps, the method makes an estimation of
the network status at that time.

I. Introduction 7

1.2. The paper “Two Samples are Enough: Opportunistic Flow-level
Latency Estimation using NetFlow”

This paper [1], written by researchers of the Purdue University,
describes their implementation and results of a flow-level latency estimator,
and the results of their tests. The main contributions of this article are the
design of Consistent Netflow and their own Multiflow estimator.

Consistent Netflow explains how it would be possible to synchronize
Netflow probes in order to make the estimation relevant and accurate. It
mostly describes how to modify Sampled Netflow, a variation of Netflow that
only logs a subset of the possible flows. Using regular Netflow is not a
possibility when dealing with high-bandwidth connections, so Sampled
Netflow is used instead. But the current implementation of Sampled Netflow
chooses flows at random, making impossible to correlate flows from different
routers. Their design of Consistent Netflow chooses which flows to log
according to the hash of a few fields of the first packet of the flow, making
synchronization between the routers possible.

This section also talks about how important time synchronization is, and
how it can be achieved either by GPS or the modern IEEE 1588 protocol, that
allows synchronizations within microseconds.

Then there is the explanation of their Multiflow estimator, a group of
rules that match flows and then use the latency extracted from the delay of
the first and last packets. When estimating the latency of a specific flow, they
propose three methods: using the two timestamps of that flow (accurate only
for small flows), using all the timestamps logged for the duration of the flow
(most accurate for long flows) and the hybrid method, choosing one or the
other depending on the length of the flow.

The main advantage of measuring QoS with this methodology is that it
can be retrofit in already deployed systems, saving time and resources. Even
though accuracy will get hit, it is still quite good (around 20% median error in
flows of more than 100 packets), and it outperforms other methods that do not
require many changes.

I. Introduction 8

1.3. Scope of the project

This project has three main goals:

– Implement a program that applies the rules used in the article
described above.

– Create a network simulation environment that allows to test this and
other similar projects.

– Test the software created with both the created environment as well
as with the method used for the paper.

II. Technologies used by the method

These are technologies required for the deployment of the project. Either
them or a modern replacement are necessary.

2.1. Cisco's Netflow

Cisco's Netflow [2] is the most known flow reporting protocol. It was
originally a method to store routing calculations, so they would not have to be
recalculated for successive packets in the same flow. It was only later changed
into a protocol to save and export flow reports.

Netflow works checking a few values of the packets that go through a
router (protocol, ports, involved addresses), and if they match the ones of an
already checked packet, they get grouped in a 'flow', that stores certain
characteristics of the packets that have been grouped (mostly total packets,
total size, timing of the first and last packets). After a while, these 'flows'
describing the traffic are exported to a collector, usually a general purpose
computer.

– Sampled Netflow:

Sampled Netflow is only supported by the Cisco 12000 routers, which
makes it hard to come by. But even then, that version of Sampled Netflow (the
only one, as of now) chooses the packets(not even flows!) at random, so it is
completely unusable by this project, since the reports would never match. As
said before, it is necessary to pick flows deterministically (depending on
hashes).

– Consistency when delivering the reports:

The report delivery from the probes to the collector does not perform
any checks, so the reports can suffer loses (either partial or complete) or even
corruption. Because of that, to increase the reliability it is recommended to
collect the reports with computers directly connected to the routers, and then
assemble the report files (with proper transferring methods, making sure
nothing is lost or corrupted) for analysis.

II. Technologies used by the method 10

– ActiveTimeout:

This parameter determines for how many minutes an active flow (that
has not seen any end-of-transmission packets) can live. If it reaches the limit
set by this parameter, it will expire (and get split). By default it is set to 30
minutes, but it can be set to as low as 1 minute, increasing the amount of
samples taken.

Setting it to one minute does have disadvantages though, because
depending on the jitter and packet rate it is likely that a flow will get split at
different packets in each router, making that sample unusable for the latency
estimation.

2.2. Network Time Protocol

Depending on the network to be analysed, it might be possible to use
NTP [3] instead of GPS clock synchronization. NTP is an stratified clock-sync
protocol that improves its precision with successive sync-requests. The lowest
stratus (stratum 1) is populated by devices directly connected to atomic clocks
(these being called stratum 0), and it increases with every step away from
them. Usually computers sync to a stratum 3 servers over the internet, so they
would be stratum 4 themselves.

Cisco's implementation of NTP achieves around 100ms precision over
the internet, 10ms over stable WANs, and 1ms in LAN. Obviously, to make use
of NTP in this case, precisions of more than 10ms are unacceptable, so an
almost direct connection between the routers is required.

III. Technologies used for the simulation

These are the essential technologies needed for the simulation environment,
which we have found to be the best after trying a few alternatives.

3.1. Discarded: The Common Open Research Emulator (CORE)

The Common Open Research Emulator [4], created by researchers of the
U.S. Navy, offers a decent amount of features despite being lightweight and
really easy to setup. The inner networking is managed with virtual network
devices, their output being read and written by virtual nodes, more specifically
“Linux network namespaces”, a recent feature of the Linux kernel that allows
creating independent program and network stacks. Right from the GUI it is
possible to open a terminal window in the corresponding node, and execute
any software installed in the host machine.

Thanks to the simplicity of its architecture and the lack of hardware
virtualization (since all the code is executed natively), even an average
machine is able to emulate a network composed by dozens of nodes.

Screenshot 1: A sample setup in the CORE environment. The "dummy0" interface
allows connecting the virtual network to the host machine.

III. Technologies used for the simulation 12

But the way the nodes are emulated is both its best feature and its main
disadvantage. They are very efficient, and can execute almost everything that
the host machine can, but they are exclusively Linux machines, and, after all,
they do not even have their own emulated hardware. No being able to
incorporate Cisco's IOS (nor any other firmware) to the system puts a limit to
what can be tested. Also, the lack of hardware emulation makes it unfit to test,
for instance, clock synchronization (because all the nodes use the same clock,
the host's clock).

Taking notice of those limitations, we proceeded with Core, despite the
possibility of it falling short. At the end, we had to switch to one of the
alternatives because of an inconsistency in the Netflow-probe software we
were using (softflowd [5]) and preferred to use a platform that supported
Cisco's native software.

Even if it was more softflowd's fault than Core's, and we could have
tested with other Linux Netflow probes (like nprobe), we were fearful of
finding other misbehaviours, forcing us to switch environment anyway. All in
all, it was nice getting familiarized with CORE, which can work very nicely if
the project is not bothered by the lack of device variety.

Screenshot 2: Showcase of the basic node processes and filesystem.

III. Technologies used for the simulation 13

3.2. Graphical Network Simulator (GNS3)

GNS3 [6] is a complex and feature-rich tool compatible with many
devices, thanks to its VirtualBox [7] compatibility and IOS emulation through
Dynamips [8] (of which GNS3 is the main platform).

GNS3 supports three device emulators: Qemu, VirtualBox and
Dynamips:

• The first is an open source virtualizer, which, while requiring more
resources than CORE's machines, it is a lot lighter than full-feature
virtualization software.

• VirtualBox, owned by Oracle, is compatible with almost every
computer operating system that exists, and many of them are
directly supported by the “Guest Additions”, that enable many
additional features (like dragging files from and into the guest
system).

• Finally, Dynamips is able to emulate some of Cisco's routers. Sadly, it
does not support most of the newer routers, which also limits the
versions of IOS it can run. Still, it is the most developed IOS emulator
available, and its range of emulated Routers is enough for the
purpose of this project.

Screenshot 3: A GNS3 topology, showing the connections between the interfaces on
the right.

III. Technologies used for the simulation 14

3.3. Cisco 7200 router with IOS 12.3(22)

Dynamips supports Cisco's 1700, 3600, 3700, 2600 and 7200 and series.
We tested for a while with a 3620 router, since the 3600 series seem to be the
most popular in the GNS3 community. But it lacked some features present in
the 7200 series, even when packed with the same IOS versions (12.3). We
confirmed that lack by checking Cisco's website, where numerous hardware-
dependant differences (even within the same IOS version) are documented.

This specific router-IOS combination supports Netflow 5, 6 and 9, which
proved to be ideal for this project. Netflow 9 is the newest version, and
supports egress traffic, while version 6 is the simplest and most stable version
that has enough features to perform the tests. Netflow 5 does not allow to
customize timeouts, which is a relatively new feature, added in the 12.3(7)T
IOS version, the 'T' indicating that it is a test version.

Regarding performance, we did not find any noticeable difference
between the few 3620 and 7200 images tested.

Screenshot 4: One of the emulated Cisco routers showing the output of the "show
version" command.

III. Technologies used for the simulation 15

3.4. Archlinux

For the computers part of the GNS3 topology we chose Archlinux [9]
because of it being a minimalistic distribution, which most likely would not
have changes that could prevent using the kernel features we intended to. It
lacking many common repositories did not slow down the setup, because
most of the software we used already required downloading, configuring,
compiling and installing the packages manually.

3.5. Linux kernel tools: tc, tc qdisc and tc filter

Traffic Control [10], invoked with the command “tc”, allows to configure
the way network traffic is routed, and allows to apply a wide set of rules, some
made specifically for testing purposes, without any practical application (like
forcing delay, packet loses or corruption). Conventional networking hardware
usually lacks such features, and they are really simple when they do include
them.

“tc qdisc”, short for “queueing discipline”, allows to create multiple
“paths” packets can go through, while being applied rules that might change
the packets themselves, re-route them, or, in this case, delay or lose them.

“tc filter” sets the rules that will determine what patch do the packets go
through. You can filter by both packet contents and header. Combined with tc
qdisc, it allows to set the QoS parameters usually seen in domestic routers
(like prioritizing certain protocols or ports).

IV. Main software developed

This section will describe the most relevant features of the software, the
first two describing the basic behaviour, and the other three describing
modifications by us to the original behaviour that can improve the results.

4.1. Library

The documentation of this library can be found in the corresponding
chapter. Here we will comment on the main idea and some of the changes.

The library has four main tasks:

– Store “flowinfo_t” structs that each contain the information of a flow,
including the ports, IP addresses, exporter, timings, packets, bytes...

– Process the flows of one of the exporters one by one, attempting to
match them according to the set of rules defined by the article. Once
two flows are matched, there is a reasonable chance that the start
and end timestamps correspond to the same packets, so the
differences can be used to estimate the latency.

– The latency timings from the last step are processed, generating
additional information like jitter and minimum, maximum and
average latencies. It is also possible to generate the values for
specific ports, IP addresses, protocols...

– The information extracted in the last step is written into files in csv
(comma-separated values) format, making it reasonably easy to read
and import.

IV. Main software developed 17

4.2. The rules

These are the original rules used to pair the flows. All the changes and
tests are related to them, plus they will be referenced by their number, so it is
necessary to remember them to understand the rest of the paper.

– C1: The first and last packet times must be compatible. That is,
considering latency, processing delay, and timing differences, the
difference between the start of the flow of one exporter and the other
have to be within a margin.

– C2: The bytes and packets of the two flows have to match.

– C3: Rules out flow pairings that might include packets that one of the
probes split into another flow.

– C4: Rules out flows that might be missing packets in the sender due
to inactive timeout, but that due to jitter are found in the receiver.
(Irrelevant in our tests, since the inactive timeout is 15 seconds,
which is much less than the maximum delay).

– C5: If a pair of flows was previously discarded due to the C2-C4 rules,
discard the following flows with the same key until there is enough
separation (an amount of time larger than the inactive timeout).

These rules work nicely most of the time, but we found two changes that
perform better in some situations, explained in the next sections.

IV. Main software developed 18

4.3. Relaxing or replacing the C3 rule

The C3 rule can remove all the samples from certain services,
preventing the estimation of those. Services with lengthy connections and
high packet-rate (for instance, VOIP) are very likely to be ruled out by C3,
because they will spawn multiple flows cut by the active timeout, and the last
packet logged at the receiver might belong to the second half of the flow.

As figure 1 shows, when dealing with flows split by Active timeout, the
final packet logged in a receiver flow might correspond to a packet of a sender
flow that is not the one we are attempting to match. Obviously it would not
pass C2 in the first place, assuming no losses, but let us say Sender Flow 1
has 50 packets, one was lost, but a packet from Sender Flow 2 is included in
Receiver Flow 1. Then, both SF1 and RF1 would have 50 packets, but the
ending timestamps would refer to different packets, and the latency sample
would be incorrect. C3 prevents those scenarios.

But, as we pointed in the introduction of this section, C3 can be too
strict. Let us say there is no packet loss at all in the scenario shown in Figure 1.
C3 would still rule out SF1-RF1 and SF2-RF2. SF-3RF3 would pass C3, because
it is shorter and is not cut at the end by Active timeout, but would be ruled out
by C5 because the two previous pairings have the same key and were ruled
out by C3. If these three pairings are the only samples of certain service, the
excessive cautiousness of C3 might have removed important information.

Figure 1: Diagram illustrating the problem associated with flows
split by Active Timeout.

Sender Flow 1 Sender Flow 2 Sender Flow 3

Receiver Flow 1 Receiver Flow 1 Receiver Flow 3

Earliest sender timestamp
possible (minimum ping)

Latest sender timestamp
possible (maximum ping)

Receiver timestamp

IV. Main software developed 19

To prevent this, we propose this change to the rules:
– The removal of C3, allowing chained flows to be used in the

sampling.
– Successive flows of the same key will be checked before any of them

are used in the sampling, and the C5 rule can be applied
retroactively.

Consider this scenario:
– SF1 has 40 packets.
– SF2 has 40 packets. The first packet corresponds to the last in RF1,

and the last to the penultimate in RF2.
– SF3 has 17 packets. The first packet corresponds to the last in RF2,

and the last corresponds to the last in RF3.
– RF1 has 40 packets, but one packet logged in SF1 was lost, and the

40th packet of RF1 corresponds to the first in SF2.
– RF2 has 40 packets, the first corresponds to the second in SF2, and

the last to the first in RF3.
– RF3 has 16 packets. The first corresponds to the second in SF3, and

the last to the last in SF3.

Without C3, the first two pairings would pass, generating incorrect
latency samples. But with the retroactive C5, the check between SF3 and RF3
would halt at C2, and the two previous pairings would be discarded.

The implementation of a retroactive C5 requires a few changes in the
structure of the program and also slows down a bit the execution, but allows
more sampling, plus the new structure (that stores each 'valid' pairing) makes
the library easier to extend with new features.

Both the removal of C3 and the retroactive C5 will be evaluated in the
corresponding section.

IV. Main software developed 20

4.4. Make C5 more strict (including flows discarded by C1)

A basic flaw we found in the original set of rules is that a pair discarded
by C1 is not considered for C5. There is a good reason for that, and it is that
two flows ruled out by C1 might be very far (in time) from each other. But at
the same time, it allows scenarios such as the one explained below to add
incorrect samples:

– SF1 has 40 packets.
– RF1 has 38 packets, the first one and another during the flow were

lost. Also the separation between the first and the second is enough
for the flow to get discarded by C1.

– SF2 has 10 packets.
– RF2 has 10 packets. The first one corresponds to the last one in SF1,

and one included in SF2 was lost. Due to jitter or a change in the
packet rate, the pairing is not discarded by C1 this time. We now have
a pair that has a correct ending sample but incorrect starting sample.

Even if this scenario might look picky, it is not that unlikely (and the
disparity between SF1 and RF1 does not have to be so small, it could be that a
few dozen packets were lost, and we might still find this scenario).

To prevent it, we propose using pairs discarded by C1, but that are close
enough to be referencing the same packets, in the checks made by C5. In the
example scenario, SF2-RF2 would be discarded because SF1-RF1 were more
than likely of referencing the same packets, but were unsynchronized because
of packet loss.

This strict C5 will be evaluated in the corresponding section.

IV. Main software developed 21

4.5. Using the initial sequence number and the TCP flags

There are two useful fields of information that were not used initially,
and those are the sequence numbers and TCP flags. While Netflow v9 and
previous versions do not provide them, IPFIX does export them with the rest.
This opens the possibility of using them for stricter pairings.

– “Initial sequence number” corresponds to the sequence number field
in the first packet of the flow. The straight-forward, drawback-less
usage is making sure the sequence numbers match during a pairing,
and if they do not, discard the pair. This could help in the unlikely
situation of a pair meeting all the rules despite referencing different
packets, and this last fact being revealed by the non-matching
sequence numbers.

– Regarding the TCP flags, it is possible to use the strict ruling of only
using the first and last timestamps if the SYN and FIN flags are
present, respectively. That will eliminate many timestamps that might
have been correct, but the chance of incorrect pairs should decrease
quite a bit.

Both these modifications will be evaluated in the corresponding
section.

IV. Main software developed 22

4.6. Exported data

Once the flows have been paired and we are reasonably sure of having
useful samples, it is time to decide what exact information should the
program export.

The basic information is the latency of the packets associated with
certain key. So the most verbose output would be printing the two latency
values of each paired flows, together with the flow information (IP addresses,
ports, protocols, start and ending time at the sender, amount of packets...). In
the article this method is called “endpoint estimator”.

An extension to that output is the multipoint estimator, which is the
main feature in the article. Instead of providing the latency at the boundaries
of a flow, the multipoint estimator assigns to each flow the average of the
latencies found between the start and the end of the flow. According to their
results, this method performs way better than the endpoint estimator for
longer flows.

The per-flow output is the best for accuracy tests, as well as for software
that works with flows, but it is not too readable for the end-user or for simpler
pieces of software that does not require such in-depth information. In that
case, it is possible to output grouped data; that data could be information
regarding the latency suffered by the packets during an specific timeframe.

If the flows have been previously been categorized, the output can
include the parameters of the latencies of those categories. Either way, the
parameters in a per-interval output should include the maximum, minimum
and average latencies, as well as the jitter.

For the initial tests with the software we applied different policies to
certain port ranges. Those port ranges were assigned to a certain category,
and the per-minute output of the program had to estimate correctly the
policies.

Later, in order to roughly reproduce the tests performed in the article,
we used the per-flow output.

V. Software developed/modified for the simulation
environment

5.1. Executable that calls the library (main)

It has the code responsible of reading the data, parsing it into the correct
data-structures and feeding it to the library, which will processs the data and
generate the output. It supports two formats: flow-tools' [11] output and
YAFSCII's ASCII output, which is a tool included in YAF that translates YAF's
IPFIX-compilant format to readable ASCII.

5.2. Traffic-generating script (flowcreation.sh)

This shellscript loops and calls hping3 (a tool that creates TCP/UDP
connections) with a randomized destination and source ports, amount of
packets, packet-rate, size of the packets and destination address. Those vales
are randomized between the desired intervals. As a result, by calling this
script a computer generates multiple varied TCP connections, which can be
routed through the Netflow probes, generating flow reports. It has a used
port-check to prevent having multiple hping3 instances attempting to use the
same ports.

5.3. Traffic-shaping script (netemvariation.sh)

This shellscript modifies tc qdisc parameters so the traffic conditions
vary over time, either for all the packets or only for certain intervals of ports or
IP addresses.

5.4. TCPDUMP and editcap

With TCPDUMP [12] at the boundaries of the analysed network it is
possible to log every single packet, which can later be used for precise latency
calculation. But since the devices at the boundaries are linux machines that
are not perfectly synchronized, editcap [13] is needed to synchronize the
packet dumps a posteriori.

V. Software developed/modified for the simulation environment 24

5.5. PCAP_DIFF

This tool [14] compares two packet dumps in pcap format (generated by
TCPDUMP), and if a packet from one dump matches a packet from the other
one, a line is printed indicating the nature of the packet and the timestamp
difference (precise latency).

We had to add a null-check in a loop's header because it was resulting in
segmentation fault errors. As far as we know, the lack of this check is an
oversight unlikely to get corrected, since the project has increased its scope,
has been renamed to TPCAT and includes a GUI and a few new features. It
lacks, however, pcap_diff's command-line capabilities, and does not seem to
be useful for large captures.

5.6. PCAP_DIFF-output compiling script

PCAP_DIFF's output as-is is not useful to check if the latency is being
correctly estimated, so we programmed an awk script (a tool made to deal
with tasks that need to do an action per-line in a target file). This script can
group the packets in intervals, and output the maximum, minimum and
average latency of the packets. It can also output the latency of packets sent
through specific port intervals.

5.7. YAFSCII

Before describing the change we had to perform on YAFSCII [15], we will
define POSIX or Unix time. This standard counts the time passed since the 1st

of January 1970, at 00:00 UTC. It is widely used in all Linux-based software.
When represented in seconds, it has the disadvantage requiring almost all of
the bits in a 32-bit integer, so there is almost no room for extra precision. In
fact, in 2038 not even the seconds will be storable in a 32-bit integer.

Now onto YAFSCII, the time output was highly inconvenient for our
purposes since the format was complete, with numbers for year, month, day,
hour, minute... we modified its source so the time output was in milliseconds
since Epoch. The only trouble with this format is that it requires a 64-bit
integer to store it, since the current time in that format requires 40 bits. But
since the format used by the code is a 2-element struct (with one element for
seconds since Epoch and another for microseconds), adapting this format is
quite straight-forward.

VI. Main code documentation

6.1. Main functions, for external call

void *initialize_qos(int out_type):

Initializes the struct that stores the status of the processing and handles
a pointer to it, which is required for every other external call.

'out_type' chooses which kind of output will be performed:

– '0': One line for each of the timestamps paired and the corresponding
delay.

– '1': One line for each flow paired, including the start time, end time, the
delay by endpoint-estimation, the delay by multi-flow estimation and
the real average delay of the flow.

– '2': One line per export_period (a constant, set to 60 seconds). Each line
contains the jitter, average, maximum and minimum delays of all the
flows during the period, plus each of those values for a number of
applications/categories specified by a config file.

void process_flow(void *state, flowinfo_t *f):

Processes and stores a copy of the flow pointed by 'f', which will be
used for the calculation.

int output(void *state):

Outputs all the safe output possible. By “safe”, it means that it is unlikely
that relevant information is not being ignored due to it not being processed
yet. So the output will only use the timestamps that are separated enough (in
time) from the newest flows processed. That separation is defined by a
constant and should be longer than the longest export delay possible. That
way, we can be relatively sure that we did not omit useful information that
was going to be processed later.

VI. Main code documentation 26

int output_all(void *state)

Unlike the regular output function, this one does not restrict itself to
'safe' output, and uses all the flows that have been processed. It should be
called once all the flows in a finite trace (not a continuous stream) have been
processed by the library.

6.2. Flow comparison functions

int startdiff(flowinfo_t *f1, flowinfo_t *f2)

Gives the difference in microseconds between the start of the flow pointed by
f1 and the one pointed by f2. Returns a positive value if f1's start was earlier
than f2's.

int enddiff(flowinfo_t *f1, flowinfo_t *f2)

Gives the difference in microseconds between the end of the flow pointed by
f1 and the one pointed by f2. Returns a positive value if f1's end was earlier
than f2's.

int startenddiff(flowinfo_t *f1, flowinfo_t *f2)

Gives the difference in microseconds between the start of the flow pointed by
f1 and the one pointed by f2. Returns a positive value if f1's start was earlier
than f2's end.

char same_key(flowinfo_t *f1, flowinfo_t *f2)

Returns 1 if the key of the flow pointed by f1 matches the key of f2. The key is
defined as the two IP addresses and two ports (source and destination). The
source of one flow has to match the source of the other flow, it won't return 1
for flows in opposite direction. If the key doesn't match, it returns 0.

VI. Main code documentation 27

6.3. Flow management functions

void make_invalid(flowinfo_t* f)

Makes the flow invalid for future pairings. Used after a flow has been paired,
so it does not get paired multiple times.

void discard(void *state, int flownumber)

Adds a flow to the list of discarded flows (flows that could not be paired). This
list is checked during the pairings, using check_discard(), to prevent possible
unsynchronized flows from being paired.

char check_discard(void *state, flowinfo_t* f)

Returns 1 if there is a flow with the same key as 'f' in the discarded list, and 0
otherwise.

void clear_discarded(void *state, int flownumber)

Removes the references to the flows up to 'flownumber' from the discarded
list. Cleanup function, used after older flows that are not going to be used get
removed.

void clear_pairs(void *state, int flownumber)

Removes the pairs that reference to the flows up to 'flownumber' from the
discarded list. Cleanup function, used after older flows that are not going to
be used get removed.

char insert_exporter(void *state, int exporter)

Inserts a new exporter in a list of exporter addresses, used to determine which
is the main exporter (the one whose flows will be checked one by one, and
only once each, when attempting to pair flows).

VII. Evaluation

7.1. Evaluation methods

We used two ways to test the software developed: one of our own
design, trying to use tools as close as reality as possible, making sure that the
software could be of some use in a real environment (albeit much at a much
smaller scale). The main objective of these test is to make sure everything is
compatible.

The other way is inspired by the article and attempts to be as close as
possible to it, using very large and dense Internet traces, and aims to test the
performance of the program.

7.2. Compatibility tests with GNS3

The main benefit of playing around GNS3 was learning about Cisco's
IOS, which is, after all, very likely to be involved in any deployment of the
method this paper is about. We learned that not every version of this
operating system is suited for the purpose, and of those that are suited, some
are better than others.

There are a few features or characteristics to look for in a router that is
going to export Netflow traffic:

Customizable timeouts: introduced in IOS 12.3(7)T and only available when
using Netflow v6 or higher, it allows lowering the maximum duration of a flow
(after that, it gets split). Setting it to a lower value than the default 30 minutes
allows increasing the time-stamp density, specially for services that tend to
stablish long connections. It also allows customizing the seconds before a
flow expires (and therefore, any packets that might have been part of that flow
will generate a new flow), which is set by default to 15 seconds.

VII. Evaluation 29

Capturing outbound traffic: Until Netflow v9, it was only possible to capture
inbound traffic, that is, traffic that is entering through interface, but not traffic
coming out from one. Because of that, it might be needed to capture useless
traffic when using versions previous to v9, as explained below and shown by
the figure 2.

If we wanted to analyse the traffic going through the cloud, from A to B,
with older Netflow versions it is necessary to capture the ingress traffic in all
of the interfaces of the routers (which would include the traffic going from one
of the subnets of A to the other, as well as traffic directed to the routers
themselves). On the other hand, with Netflow v9 it is possible to capture
exclusively the traffic going through the interfaces directly connected to the
cloud.

Figure 2: Comparison of the traffic that has to be captured in Netflow v9 versus previous
version.

Netflow v9

Pre-v9 Netflow

A B

A B

Cloud

Cloud

VII. Evaluation 30

Consistency on delivery: Another thing that has to be considered when
creating a Netflow setup is the report delivery. Netflow does not have any kind
of security protocol, so they can be lost or corrupted without notice. The
exporters do not even check if the collector is up. Because of that, it is
recommended that there is a collector in the local network of each of the
Netflow probes, and the reports would get merged later. The only security
measured included was added in Netflow v9 and consists in a export number
at the beginning of each export, which allows to detect loses of entire exports,
but there is no way to ask for a retry to the probe, and it does not protect from
partial losses or corruption.

After investigating those matters, we generated traffic within the
simulated topology with a script, which got modulated by a virtual machine
between the routers, and those routers reported the traffic through the
Netflow protocol.

Both the reports and the program proved to be reliable within certain
limits – limits imposed by the simulation itself. We captured the actual packets
with TCP at the sender and receiver (virtual PCs directly attached to the
routers) and synchronized the traces with editcap (when needed, since the
virtual machines used by GNS3 are not always synchronized).

Using the pcap_diff tool we described previously, we managed to obtain
the real delays suffered by the packets, and compared them to the ones
extrapolated from Netflow. And despite that both were somewhat consistent,
showing correctly variations over time in the latency and jitter, there was
always certain delay from the Netflow capture to the TCPDUMP capture, and it
was not always the same.

As it happens, GNS3 topologies have an innate delay when tunneling
packets, which can be reduced to very few (less than 2) milliseconds when
there are enough spare CPU cycles, but varies between that and ~10
milliseconds during heavy load.

That would not be such a big problem if it was not due to how
Dynamips (the Cisco IOS emulator) works, since in a clean, under-loaded PC
the tunneling is sufficiently fast and consistent. But Dynamips' emulates IOS
through an infinite loop without any kind of pause or sleep, using as much
CPU power as it is provided to it. Even in multicore machines such as the one
we used for the tests this intensive work made the whole GNS3 environment
unreliable.

VII. Evaluation 31

The feature that solves this problem, 'Idle PC' (part of GNS3 and
Dynamips), picks an instruction in the IOS code and sleeps whenever it
reaches it. When using it, the CPU usage drops up to twenty times what it was.
But this does not solve the problem at all, since it generates Netflow
inconsistencies (the timestamps are not precise, plus some packets seem to
be ignored) and even bigger latency inconsistencies in certain cases.

Because of that, we abandoned the intent of using this environment for
performance tests, and restricted its use to compatibility tests and the study of
IOS.

Screenshot 5: A capture of 'ping' performed by IOS between two
directly connected routers, showing GNS3's tunneling behaviour
during moderate CPU load.

VII. Evaluation 32

7.3. Performance tests using the CAIDA traces

Following the method used by the authors of the article, we requested
access to the Anonymized Internet Traces 2008 from CAIDA (Cooperative
Association for Internet Data Analysis [16]). These traces were captured by
monitors on OC192 Internet backbone links in Chicago and San Jose, and only
include the header of the packets, which have also been modified so they can
not be related to real, specific IP addresses.

The Chicago trace includes 13 million packets in 60 seconds, which
correspond to 1.2 million flows.

In the article they created a queue-simulator that let packets through
according to various delay models, being weibull the most favoured.

Sadly, we found this queue-simulator to be outside of the reach of this
project, since it would require us to get familiarized with the PCAP library
(LIBPCAP), program our own queuer, which would emulate the time spent
processing the packets and write them on the output file with the
corresponding delay.

We had to restrict the project to simpler delay models. We were
surprised at finding that we would have to program those ourselves too, since
the only tool that did something like that (editcap) could only add a fixed
delay to all packets at once.

What we ended up doing was modifying editcap's source code in order
to add variable delay and chance-based packet losses (by default it can only
remove packets specified in the command line). Any function can be chosen
for the delay, as long as the delay difference applied at timestamps T1 and T2
is never bigger than the time difference between those two. If that happened,
the order of the packets could get changed, which can not be easily corrected
as far as we could tell, other than using the “strict time option” with editcap,
that does not really reorder packets, but instead increases the timestamp to
make sure they are strictly increasing.

We chose to use trigonometric functions to apply the delays, more
specifically the sine function. The delay applied to a packet with our modified
editcap is:

100ms+200ms∗sinus(
(timestamp.seconds%10+timestamp.miliseconds /1000)∗pi

10
)

VII. Evaluation 33

Since the value passed to sin always goes between 0 and pi, the result
of the sin function is always between 0 and 1. Because of that, the delay varies
between 100ms and 300ms, varying slowly enough so that packets never get
reordered.

After applying these varying delays, whole packets are skipped from
writing if the result of rand() is bigger than a certain value, simulating packet
loss.

Then both the original trace and the fabricated trace are processed by
the program, tagged as if they were produced by two different exporters. The
output used in this case is the “per-timestamp output”, which writes the time
and delay of every beginning and ending of paired flows.

Then, the timestamps exported by the program are checked against the
formula, in order to know if the program exported the right timestamps
(matched timestamps that represented the same packets) or not.

There are 1.071.683 flows in the original trace, but many of them were
removed if they were not relevant in some of the tests (specially non-TCP
connections). The resulting trace has the following characteristics:

– 632.741 total flows.
– 127.338 one-packet flows.
– 409.227 flows between 2 and 10 packets.
– 96.176 flows of more than 10 packets.

– Of those, 17230 flows over 100 packets.
– 1332 flows over 1000 packets.

The maximum timestamps possible in a result are 505403*2 + 127.338 =
1.138.144 (since the 1-packet flows can only provide one timestamp).

VII. Evaluation 34

So we ran tests with these versions, combining the modifications
explained in section IV:

– A regular version, without any modification other than the removal of
C3 (which we used as the standard, since C3 is questionable to begin
with).

– The exact version from the article, with C3.
– A version with the retroactive C5 (discarding a pairing because a

future flow with the same key could not be paired) plus stricter C5
(flows are more likely to be added to the discarded pool that is
checked in C5).

– A version that checks for the sequence numbers before pairing flows.
– A version that checks the tcp flags, only using the initial timestamps

of flows with SYN, and the final timestamps of flows with FIN.

Every version was tested with 3 different traces: one without packet
losses, one with 5% losses and one with 10% losses. The results were the
following:

No packet loss:

– 'Samples' refers to the amount of unique delay samples (timestamp
plus delay found) provided by the execution.

– %Samples' refers to the percentage of samples provided compared to
the maximum of samples in a lossless trace (1.138.144).

– 'Misses' corresponds to the amount of miss-samples provided in the
result, which are samples product of flows wrongly paired.

– '%Miss' corresponds to the percentage of misses compared to the
amount of samples provided.

– 'Average error' indicates the how far, on average, were the miss-
samples from the correct value.

– 'Maximum error” indicates how far was from the correct value the worst
sample in the result.

Version Samples %Samples Misses %Miss Average error Maximum Error
Regular 1.134.910 99.72% 0 0.0000% 0 ms 0 ms
With C3 890.030 78.20% 0 0.0000% 0 ms 0 ms
Retroactive C5 1.134.898 99.71% 0 0.0000% 0 ms 0 ms
Seqnum check 1.134.910 99.72% 0 0.0000% 0 ms 0 ms
Strict Flags 412.861 36.27% 0 0.0000% 0 ms 0 ms

VII. Evaluation 35

5% packet loss:

Version Samples %Samples Misses %Miss Average error Maximum Error
Regular 820.184 72.06% 319 0.0389% 20 ms 191 ms
With C3 694.360 61.01% 305 0.0439% 24 ms 191 ms
Retroactive C5 818.398 71.91% 31 0.0038% 28 ms 141 ms
Seqnum check 820.184 72.06% 319 0.0389% 20 ms 191 ms
Strict Flags 309.625 27.20% 73 0.0236% 31 ms 165 ms

Figure 3: Cumulative distribution of errors, the Y axis shows the amount of errors
bigger than the miliseconds marked by the X axis. The seqnum check version is
missing because it has the exact same results as the regular version.

VII. Evaluation 36

10% packet loss:

Version Samples %Samples Misses %Miss Average error Maximum Error
Regular 648.966 57.02% 417 0.0643% 25 ms 211 ms
With C3 560.805 49.27% 414 0.0738% 26 ms 213 ms
Retroactive C5 646.569 56.81% 39 0.0060% 27 ms 156 ms
Seqnum check 648.966 57.02% 417 0.0643% 25 ms 211 ms
Strict Flags 243.894 21.43% 101 0.0414% 35 ms 211 ms

Figure 4: Cumulative distribution of errors, the Y axis shows the amount of errors
bigger than the miliseconds marked by the X axis. The seqnum check version is
missing because it has the exact same results as the regular version.

VII. Evaluation 37

Observations on the results:

– The regular version performs quite well by itself giving quite precise
measures of the ping during the trace (25ms average error * 0.0643%
is almost negligible).

– C3 does not really solve any of the misses in the regular version, as
we suspected, and in fact removes a bigger percentage of good
samples than bad ones. Plus, looking at the graphs, it seems to
produce bigger (though less) mistakes than the regular version.

– Retroactive C5 performs superbly, eliminating about 90% of the
misses of the regular version and only a small percentage of valid
samples.

– The version with sequence number check does not vary at all from
the regular version, so there is no pair that would be approved by the
rest of the rules but not by the sequence number check.

– 'Strict flags' cuts the amount of samples by a lot, but manages to
remove a bigger percentage of misses than samples, so it could be
circumstantially useful.

VII. Evaluation 38

After checking the precision of the timestamps provided by the method,
we compared the two flow-level delay estimation methods: the endpoint
estimator (using only the two timestamps of the flow) and the multiflow
estimator (using all the timestamps within the duration of the flow). To check
that, the program outputs one line for each flow, with the three delays
(endpoint, multipoint and real) on top of other data that helps identifying the
flow.

The tests were done on the sample with 5% losses with the best version
(retroactive and strict C5), and the output was done for one of every 30 flows,
without favouring longer flows. This resulted in 11.712 flows having output.

Figure 5: Graph showing the precision of both estimation methods, the Y axis
shows how close are the estimations to the real value (1 being the exact value) and
the X axis shows the flow length in seconds. From 10 seconds and on the scale is
20 times as dense (each notch represents 5 seconds instead of 0.25).

VII. Evaluation 39

– The multiflow estimator averages a 99.65% precision. Precision is
defined as how close were the estimated values from the real values

– The endpoint estimator averages a 94.13% precision.

– The biggest delay overestimation of the Multiflow estimator was
5.82% higher than the real delay, and the biggest underestimation
was 5.09% lower than the real delay.

– For the endpoint estimator they were 39.93% higher and 55.79%
lower, respectively.

– The multiflow estimator's precision does not vary much with flow
length, other than improving sightly for longer flows.

– On the other hand, the endpoint estimator gets 99.45% precission for
flows under 2 seconds, 96.4% for flows under 10 seconds, and
83.48% for flows over 10 seconds.

VIII. Schedule and costs

8.1. Schedule

The project has been split in four phases, each composed by various
steps. This section will name each step and its corresponding professional
category.

1. Project definition:

• Initial organization (project manager)

• Research the delay-estimation method through Netflow
described by the article (analyst)

• Research Netflow, IPFIX and other flow-level reporting tools
(analyst)

• Research hardware capable of using the previous features
(analyst)

• Research suitable simulation environments (analyst)

• Project organization (project manager and analyst)

2. Development:

• Split the required features and responsibilities in different C
modules or script files (analyst)

• Design and develop the C module that processes flow files
(analyst and programmer)

• Design and develop the C functions needed to store and
manage flows and the auxiliary data structures (analyst and
programmer)

• Design and develop the function that processes flows and
stores pairings (analyst and programmer)

VIII. Schedule and costs 41

• Design and develop the module that outputs the results
(analyst and programmer)

• Perform the changes necessary to the source code of the tools
that will be used during testing, so that their output is
compatible with the rest of the environment (programmer)

• Design and develop the scripts needed to manage, adapt and
test the output of the different tools (analyst and programmer)

3. Testing and deployment:

• Test the software in a simulated environment with generated
traffic (analyst and programmer)

• Deploy and configure the hardware needed (technical support)

• Deploy and configure the software (technical support)

• Test the software in the real environment with controlled traffic
(analyst and programmer)

• Adjust the initial traffic constants used by the software
(programmer)

• Test the software with real traffic (analyst and programmer)

• Review the results (analyst)

4. Documentation

• Write the final report (analyst)

• Final verification and approval (analyst and project manager)

VIII. Schedule and costs 42

Figure 6: The project's Gantt chart

VIII. Schedule and costs 43

8.2. Costs

– Human costs:

Category Salary/Hour Hours Total salary

Project manager €28.00/h 60h €1,680.00

Analyst €22.00/h 480h €10,560.00

Programmer €16.00/h 440h €7,040.00

Technical support €15.00/h 100h €1,500.00

Total 1080h €20,780.00

– Hardware and license costs:

Developing the software did not require any paid licenses or specific
hardware, but for the deployment it is necessary to have compatible
hardware available. Given that this project's objective is mostly to retrofit
latency estimations to Netflow-able routers, it is not expected to purchase
specific hardware for it. The cost of a brand new compatible Cisco router
varies from $1,000 to up to $10,000 or even more, depending on the
modules and capabilities, so the hardware cost heavily depends of the size
of the network.

IX. Conclusion

Developing this project has taught me quite a bit about Cisco's IOS and
hardware, its legacy and its future. I was surprised at how inflexible this
operating system can be, but I understand that it is a trade-off necessary
when prioritizing reliability. Still, I expect that with the newer versions, the
strictness of the commands and configurations will get loosened.
Specifically for this purpose, IPFIX looks to be much easier and powerful
than current version, specially if they include (or allow to add) hash-based
sampled netflow, which is crucial.

I have also learned quite a bit about simulated network topologies, but
I admit to have been disappointed by GNS3's current state, which can only
be reliably used to roughly test commands and configurations, being is
unable to represent many of the intricacies of a real environment.

Regarding the delay-estimation program, I have been satisfied by the
performance shown, both at being able to match many of the flows even
with high loss levels, and the accuracy of the samples provided. I was happy
at finding how effective it is to check newer flows before exporting samples
(the “retroactive C5”), an idea I had when reading the article for the first
time. I remember being surprised by it not being mentioned, even if there
were performance concerns.

Speaking of which, I had to optimize many of the data structures and
loops for the Caida traces, since their massive size and density plus the
multiplicative nature of some of the loops could make some of the
executions quite long. Then there was also the memory requirements, since
2 million flows correspond to around 300MB (a bit unreasonable for such a
simple program); so I programmed buffers for the flows and every reference
to them, which get cleared periodically and help with that regard.

Finally, regarding the method this project revolves around, I consider
its results very successful and proof of how it can be very useful in the
proper circumstances. The evaluation confirms the conclusions drawn by the
research team of the Purdue University, about how it's not that hard to pair
flows generated by real traffic even in very high-bandwidth topologies.

IX. Conclusion 45

The multi-flow estimator performed better in all situations compared to
the endpoint estimator (which was suggested but not confirmed by the
paper). The advantages of the endpoint estimator are limited to convenience
and performance, since it requires less processing power and coding, but
will be always out-classed by the multi-flow estimator regarding precision.

About it's current usefulness, this method is way too dependant on a
consistent sampling of the traffic, a convenience pretty much all
contemporary routers lack. Because of that, it would be hard to find an
scenario where its application is warranted.

On the other hand, its future use might be brighter, depending on the
capabilities of the next generation of routers. If they continue the trend of
not being specially useful for the diagnostic of quality of service issues, but
continue to provide support to flow-level reports (and specially, if the comply
with IPFIX's standard), it would not surprise me if this method becomes a
very convenient way to diagnose networks. But as of now, IPFIX is just a
recently shipped specification, and its true potential remains to be
researched once the hardware and software that features it becomes
popular.

X. Bibliography

[1] Myungjin Lee, Nick Duffield and Ramana Rao Kompella,Purdue University, "Two
Samples are Enough", 2010,
http://www.cs.purdue.edu/homes/kompella/publications/infocom10netflow.pdf

[2] Cisco IOS NetFlow,
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html

[3] NTP: The Network Time Protocol, http://www.ntp.org/

[4] Common Open Research Emulator, http://code.google.com/p/coreemu/

[5] softflowd - fast software NetFlow probe, https://code.google.com/p/softflowd/

[6] Graphical Network Simulator, http://www.gns3.net/

[7] Oracle VM VirtualBox, https://www.virtualbox.org/

[8] Dynamips, http://www.gns3.net/dynamips/

[9] Arch Linux, a lightweight and flexible Linux distribution, https://www.archlinux.org/

[10] Linux Traffic Control, http://lartc.org/manpages/tc.txt

[11] flow-tools - Tool set for working with NetFlow data, http://linux.die.net/man/1/flow-
tools

[12] tcpdump, a powerful command-line packet analyzer, http://www.tcpdump.org/

[13] editcap - Edit and translate the format of capture files,
http://www.wireshark.org/docs/man-pages/editcap.html

[14] pcap_diff, http://sourceforge.net/projects/pcapdif/

[15] YAFSCII, http://tools.netsa.cert.org/yaf/yafscii.html

[16] CAIDA: The Cooperative Association for Internet Data Analysis,
http://www.caida.org/home/

	I. Introduction
	1.1. Measuring QoS
	1.2. The paper “Two Samples are Enough: Opportunistic Flow-level Latency Estimation using NetFlow”
	1.3. Scope of the project

	II. Technologies used by the method
	2.1. Cisco's Netflow
	2.2. Network Time Protocol

	III. Technologies used for the simulation
	3.1. Discarded: The Common Open Research Emulator (CORE)
	3.2. Graphical Network Simulator (GNS3)
	3.3. Cisco 7200 router with IOS 12.3(22)
	3.4. Archlinux
	3.5. Linux kernel tools: tc, tc qdisc and tc filter

	IV. Main software developed
	4.1. Library
	4.2. The rules
	4.3. Relaxing or replacing the C3 rule
	4.4. Make C5 more strict (including flows discarded by C1)
	4.5. Using the initial sequence number and the TCP flags
	4.6. Exported data

	V. Software developed/modified for the simulation environment
	5.1. Executable that calls the library (main)
	5.2. Traffic-generating script (flowcreation.sh)
	5.3. Traffic-shaping script (netemvariation.sh)
	5.4. TCPDUMP and editcap
	5.5. PCAP_DIFF
	5.6. PCAP_DIFF-output compiling script
	5.7. YAFSCII

	VI. Main code documentation
	6.1. Main functions, for external call
	6.2. Flow comparison functions
	6.3. Flow management functions

	VII. Evaluation
	7.1. Evaluation methods
	7.2. Compatibility tests with GNS3
	7.3. Performance tests using the CAIDA traces

	VIII. Schedule and costs
	8.1. Schedule
	8.2. Costs

	IX. Conclusion
	X. Bibliography

