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Summary

In time-to-event randomized clinical trials, it is common to use composite endpoints, defined as
the union of two or more relevant events, as the main endpoint when comparing two treatment
groups. A new statistical methodology has been recently developed in order to study the advan-
tages and disadvantages of using a composite endpoint. Furthermore, this new methodology
derives guidelines for deciding whether to expand the main endpoint from a relevant endpoint
to a composite endpoint considering the inclusion of an additional endpoint.

This methodology, developed by Gómez and Lagakos [1], is based on the asymptotic relative
efficiency (ARE) of a logrank test for comparing two treatment groups with respect to a rel-
evant endpoint versus the composite endpoint. In order to compute the ARE, it is necessary
to have the joint law of the time to the relevant and additional endpoints. A useful way of
approaching it is specifying this law as a function of the marginal laws for each time and an
association parameter θ via a copula model. A copula is defined as a function that joins or cou-
ples multivariate distribution functions to their one-dimensional marginal distribution functions.

Given the marginal laws for the time to the relevant and additional endpoints and the correlation
between them, different copulas yield to different joint laws. Gómez and Lagakos [1] considered
Frank Arquimedean copula and, hence, it is necessary to check whether the modelization with
a different copula implies a change in the ARE recommendation. The main aim of this master
thesis is to develop this methodology using Gumbel copula and to compare it with the results
obtained using Frank copula.

The results of this project show that, using Gumbel copula, it is recommended to use the compos-
ite endpoint if the hazard ratio of the additional endpoint is smaller (higher beneficial effect) than
the hazard ratio of the relevant endpoint. However, when these beneficial effects are about the
same, the composite endpoint should be used if the probability of observe the relevant endpoint
is lower than the probability of observe the additional endpoint.

These results are similar to the ones obtained using Frank copula. We conclude that the method-
ology based on the ARE is robust for both Frank and Gumbel copula. We observe that both
copulas are highly correlated (ρ = 0.999) and they yield to the same recommendation of whether
or not to use the composite endpoint in more than 98% of the simulated situations studied. More-
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over, the difference between the ARE values in those cases in which there is not concordance is
negligible. Therefore, we conclude that the ARE method is robust for the choice of the copula
when restricted to Frank and Gumbel copulas.

Keywords: Clinical Trials, Combined outcomes, Competing risks, Composite endpoints,
Logrank test, Copulas, R, Asymptotic relative efficiency
2010 Mathematical Subject Classification: Statistics / Survival and censored data (62N)



Contents

1 Introduction 11

2 State of the art 15
2.1 Clinical Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Composite Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Statistical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Definition of the endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Logrank test and asymptotic relative efficiency . . . . . . . . . . . . . . . . . 18
2.3.3 Computation of ARE for cases 1 and 3 . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Cases studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Applicability of this method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Copulas 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Joint distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.5 Survival Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Some Common Bivariate Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Product copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Farlie-Gumbel-Morgenstern copula . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Frank copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Gumbel copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.5 Clayton copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Tail dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.4 Visual illustration of dependence . . . . . . . . . . . . . . . . . . . . . . . . . 38

9



10 CONTENTS

3.5 Archimedean Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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Chapter 1

Introduction

When using a randomized clinical trial to compare two treatment groups A and B, it is very
important to choose correctly the main endpoint of the trial. One might have to choose among
several relevant endpoints to define the main endpoint. A composite endpoint, defined as the
union of two or more events, is often used in order to increase the power of the trial to detect
differences between treatment groups.

There was little discussion in the literature on the advantages and disadvantages of this practice
from a statistical point of view until the project promoted by Guadalupe Gómez, the director of
this master thesis, and Stephen Lagakos, international leader in biostatistics and AIDS research
from the Harvard School of Public Health. Despite the untimely death of Professor Lagakos, this
work continues under the leadership of Professor Gómez. In this project, a statistical methodol-
ogy is developed to choose a relevant endpoint or the addition of a additional event and, thus,
consider the composite endpoint [1].

In this methodology, the asymptotic relative efficiency (ARE) of the logrank test to compare the
treatment groups with respect to the relevant endpoint in comparison with the logrank test with
respect to the composite endpoint is used to decide when it is better to use one or the other.
Most of the times the two endpoints of interest are correlated and the joint law of the times to
the event is needed. A useful way to approach the joint law is to specify this law as a function
of the marginal densities and an association parameter via a copula model.

In this methodology presented by Gómez and Lagakos [1], it is assumed that the outcomes
follow a Weibull distribution and the copula used for the joint law is the Frank Archimedean
copula. This new methodology is very important to design time-to-event clinical trials which
compare two treatment groups because it provides rigorous arguments to decide what should
be the main outcome and, therefore, reduces economic resources and unnecessary efforts, on
one hand, and the number of patients to be recruited, on the other, which is very important and
ethically necessary in studies on health. For this reason, it is crucial to make this methodology

11



12 Chapter 1 Introduction

as extended and applicable possible. To achieve this objective, it is necessary to test this method
with other laws for the marginal and joint distributions in order to prove the robustness of the
methodology presented in [1]. Therefore, it becomes essential to study and test other families of
copulas and marginal laws.

The main aim of this master thesis is to contribute in this research studying the robustness of the
method based on ARE for different copulas in assessing the efficiency of the main endpoint in a
randomized clinical trial.

To achieve this, the specific goals are the following:

1. To learn and understand how this methodology is developed.
Chapter 2 summarizes the research done by Gómez and Lagakos, who developed this
methodology [1] and Moises Gómez, whose master thesis gave recommendations in the
cardiovascular area [2].

2. To study the definition of copula and their properties.
Chapter 3 presents an introduction to copulas summarizing Nelsen (1999) [3] and Trivedi
and Zimmer (2007) [4]. The definition and basic properties of copulas and different existing
copula families are given in this chapter. It is important to know and understand the
differences between each of theses families in order to study the behavior of the method
depending on the copula used.

3. To develop the analytical expression of the ARE for a copula different than Frank copula.
In the methodology presented by Gómez and Lagakos [1], the expression of ARE is given
when Frank copula is used. In chapter 4, an expression for ARE in terms of Gumbel copula
is found. In chapter 5, the differences in the behavior of ARE between these different
copulas are studied checking whether the conclusions achieved with Frank copula are
valid (robust). In Appendix D, the expression of ARE in terms of Clayton copula is found
and it is left for future research the study of its results.

4. To improve my skills using the statistical software R.
In the practical exercises of my master courses, I gained skills with software R. In this project,
these skills are improved because algorithms to compute the ARE value are programmed
for the different chosen copulas and the descriptive analysis of the results is carried out
using this software.

5. To learn how to use LATEX in scientific writing
LATEX is a very important tool for research in mathematics, statistics or other fields where
math formulas and symbols are needed. Therefore, another of the objectives of this master
thesis is to improve my writing using it and learn how to use Beamer for the project’s oral
presentation.
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6. To gain research skills and improve my writing in English
As a first experience in research, this project gives me a good chance to gain research skills
for my future. On the other hand, English is the most used language in investigation and,
hence, it is essential for me to get used to it if I want to keep on doing research. Therefore,
I have decided to write my master thesis in English, even if it means quite a challenge to
me.
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Chapter 2

State of the art

2.1 Clinical Trials

A clinical trial is a research study designed to provide extensive data that will allow for statis-
tically valid evaluation of treatment or interventions on a group of individuals [5]. A medical
clinical trial compares an endpoint between two or more groups. It is typically used to test a
treatment versus placebo or standard of care. The most optimal trial is a randomized clinical
trial, that allocates patients to one of the arms randomly and it is useful to avoid bias in this
process.

2.2 Composite Endpoints

When using a randomized clinical trial to compare two treatment groups A and B, it is very
important to choose correctly the main endpoint of the trial. One might have to choose among
several relevant endpoints to define the main endpoint. A composite endpoint, defined as the
union of 2 or more different events, is often used in order to increase the number of events
expected to observe. In this case, subjects are followed until one of the events of interest occurs,
whichever happens first, or until the follow-up period of the study ends.

The main clinical arguments for using a composite endpoint [6] are that the composite endpoint
(1) captures the net benefit of the intervention and avoids the need to choose a single main
endpoint when the different endpoints are of equal importance and (2) avoids interpretational
problems associated with competing risks in the sense of preventing an apparent benefit being
attributed to a given event.

The statistical arguments given for the use of a composite endpoint are (1) to increase the sta-
tistical efficiency and, therefore, have a more powerful test of the treatment efficacy and (2) to
reduce the multiplicity problems that may occur when the different endpoints are used separately.

15



16 Chapter 2 State of the art

On the other hand, the main disadvantages of using a composite endpoint are the difficulty of
interpret the results when the different single endpoints have different clinical importance and
the fact that treatment effect on the composite endpoint does not necessarily imply an effect on
each component.

More details about advantages and disadvantages of using a composite endpoint can be found
in [6, 7, 8, 9, 10].

2.3 Statistical Considerations

It is common to use composite endpoints in time-to-event analysis, where the focus is the time
from randomization until the first of a set of clinical outcomes occurs. Little research appears
to have been reported on the question of increased statistical efficiency to be gained from using
a composite endpoint in this context until the project promoted by Gómez and Lagakos [1], in
which a methodology designed to decide when it is better to use the relevant endpoint or the
composite endpoint was presented in a context of time-to-event analysis. The following sections
summarize this research project.

2.3.1 Definition of the endpoint

Consider a two-arm randomized study with assignment to an active (X = 1) or control treatment
(X = 0), for example new treatment versus standard of care or placebo. We assume that we only
have two relevant endpoints, that we denote by E1 or relevant endpoint and E2 or additional
endpoint. Individuals are followed until the event of interest, or until the end of the study,
whatever occurs first.

The composite endpoint is defined as E∗ = E1∪E2 and the time to E∗ is defined as T∗ = min{T1,T2}

where T1 and T2 denote the times to E1 and E2, respectively, and are assumed to be absolutely
continuous so that ties cannot occur. C represents the time from randomization to the end of the
study and it is the only noninformative censoring cause.

Observation of endpoints E1 and E2 depends on whether or not they include a terminating
event. For example, E1 might not be observed if E2 includes death. We can consider four
different censoring situations depending on theses premises:

Case 1: This first case corresponds to clinical trials where neither of the two endpoints (E1 and E2)
includes a terminating or fatal event. In this case, Ei (i = 1, 2) will be observed if it occurs
before the end of the study, i.e., whenever T1 < C and T2 < C.

Case 2: In a case-2 censoring situation, the relevant endpoint E1 does not include mortality whereas
the additional endpoint E2 includes a terminating event. In this case, E1 is only observed if
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T1 < min{T2,C} while E2 is observed if T2 < C. That is E1 is observed if it occurs before E2

and the end of the study and E2 is always observed if it occurs before the end of the study.

Case 3: This situation is analogue to case 2 but, in this case, E1 includes a terminating event and
E2 does not include it. E1 will be observed if the time to the relevant endpoint, T1, occurs
whitin the study time (T1 < C) while the additional endpoint E2 will only be observed if it
occurs within the time of the study and before the relevant endpoint, i.e., T2 < min{T1,C}.

Case 4: In a case-4 censoring situation both events of interest, E1 and E2 include a terminating event.
In this situation, E1 is observed if T1 < min{T2,C} and E2 is observed if T2 < min{T1,C}.

It is important to remark that censoring cases 2 and 3 are not symmetrical. The time to E1,
T1, in cases 1 and 3, is only right-censored by the end of the study C because the additional
endpoint E2 does not include a terminating event. Note that, in cases 2 and 4, E2 does in-
clude mortality and it is competing with the censoring random variable C in the observation
of E1. Thus, in cases 2 and 4, we have a competing risk situation with dependent censoring on T1.

The observed outcome will be denoted by U in every case, defining U = min{T1,C} in cases 1
and 3 and U = min{T1,T2,C} in cases 2 and 4. On the other hand, E∗ will be always observed if
T∗ < C. Thus, the observed outcome will be denoted by U∗ and defined by U∗ = min{T∗,C}.

In this master thesis, we focus on in-depth study of cases 1 and 3, leaving the extension of these
to cases 2 and 4 for future research (Figure 2.1).

Figure 2.1: Different censoring cases depending on the fatality of the endpoints.
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2.3.2 Logrank test and asymptotic relative efficiency

The methodology developed in [1] considers the asymptotic relative efficiency (ARE) of the
logrank test to compare treatment groups with respect to E1 in comparison with E∗ in order to
recommend the use of E1 or E∗ in terms of initial parameters provided by expert researchers in
the field, such as the proportion of events expected in the control group and the hazard ratio
between two treatments.

The logrank test is a nonparametric hypothesis test to compare the curves S1 and S2 from two
samples of survival data given, for example, from a randomized clinical trial with two different
treatment groups [11]. Formally, the following test is defined

H0 : S1(t) = S2(t) for all t ∈ [0, τ] versus H1 : S1(t) , S2(t) for, at least, one t ∈ [0, τ]

where S1 and S2 are the survival functions from each of the two populations and they are
supposed to be defined in [0, τ]. The hypothesis test defined above is equivalent to the following
one

H0 : λ1(t) = λ2(t) for all t ∈ [0, τ] versus H1 : λ1(t) , λ2(t) for, at least, one t ∈ [0, τ]

where λ1 and λ2 are the hazard functions for each of the two samples.

The logrank test statistic is defined as

Z(τ) =

∑D
i=1

(
di1 − Ri1

di
Ri

)
√∑D

i=1
Ri1
Ri

(
1 − Ri1

Ri

)
Ri−di
Ri−1 di

where each time ti (i = 1, . . . ,D) represents the moment where an event is observed in the
joint sample, di1 and Ri1 are the observed events and individuals at risk at moment ti in the sam-
ple 1 and di and Ri are the observed events and individuals at risk at moment ti in the joint sample.

One can observe that the numerator of Z(τ) represents the sum of the differences between ob-
served and expected events under H0 in each moment. Therefore, under H0, this number should
be small and Z follows a normal standard distribution for n big enough [11].

Efficiency is a term used in comparison of an hypothesis testing procedure. A more efficient test
needs a fewer number of individuals in the sample size than a less efficient test to achieve the
given power. The relative efficiency of two tests is the ratio of their efficiencies and theoretically
depends on the sample size available for the given procedure. It is often possible to use the
asymptotic relative efficiency, defined as the limit of the relative efficiency as the sample grows
to infinity. When comparing two tests Z1 and Z2, Z1 is more efficient whenever ARE(Z1,Z2) > 1
and Z2 is more efficient otherwise. For example, an ARE(Z1,Z2) = 0.5 means that Z1 needs the
double of individuals sampled in Z2 to achieve the same power.
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Logrank test for the relevant endpoint E1

Recall that T1 is the time to the relevant endpoint E1 and that individuals have been randomized
to one of two groups. Let λ( j)

1 (t) be the hazard function of T1 for someone in group j ( j = 0, 1)
when there are not competing causes. The null hypothesis of no treatment differences based on
the relevant relevant endpoint E1 is stated as

H0 : λ(0)
1 (·) = λ(1)

1 (·)

or, equivalently, H0 : S(0)
1 (·) = S(1)

1 (·), where S( j)
1 (·) is the survival function of T1 for someone in

group j ( j = 0, 1) when there are no competing causes.

The logrank test Z, under the null hypotheses of no treatment difference, is asymptoticallyN(0, 1)
[11]. The efficiency of Z is studied by examining the large sample behavior of Z when H0 does
not hold. It is not useful to think about any fixed alternative to H0 because the power of Z will
typically go to 1 as n → ∞. Thus, it is considered a sequence of contiguous alternatives to H0

which approach H0 as n→∞. We consider λ(0)
1 (·) as fixed and let λ(1)

1 (·) vary with n defining the
sequence of contiguous alternatives to H0 as

Ha,n : λ(1)
1,n(t) = λ(0)

1 (t)eg(t)/
√

n

For any finite n, the two groups have hazard ratio at time t equal to log
(
λ(1)

1,n(t)

λ(0)
1 (t)

)
= g(t)/

√
n.

Under these conditions, [12] and [13] showed that Z is asymptotically normal with unit variance
and mean µ given by

µ =

∫
∞

0 g(t)p(t)[1 − p(t)]PrH0{U ≥ t}λ(0)
1 (t)dt√∫

∞

0 p(t)[1 − p(t)]PrH0{U ≥ t}λ(0)
1 (t)dt

(2.1)

where g(t) = limn→∞
√

n log
(
λ(1)

1,n(t)

λ(0)
1 (t)

)
, U is the observed outcome given by U = min{T1,C},

p(t) = PrH0{X = 1|U ≥ t} is the null probability of, someone at risk at time t, is in treatment group
1, PrH0{U ≥ t} is the null probability that someone is still at risk at time t and PrH0{U ≥ t}λ(0)

1 (t)
corresponds to the probability, under the null hypotheses, of observing event E1 by time t.

Logrank test for the composite endpoint E∗

If T2 denotes the time to the event E2 and T∗ = min{T1,T2} the time to the composite endpoint
E∗, the logrank test statistic Z∗ is used to test the null hypotheses of no treatment difference
(H∗0 : λ(0)

∗ (·) = λ(1)
∗ (·)).

Analogously as above, under H0, the logrank test statistic Z∗ is asymptoticallyN(0, 1) and under
a sequence of contiguous alternatives to H∗0, it is asymptotically normal with unit variance and
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mean µ∗ given by

µ∗ =

∫
∞

0 g∗(t)p∗(t)[1 − p∗(t)]Pr∗H0
{U∗ ≥ t}λ(0)

∗ (t)dt√∫
∞

0 p∗(t)[1 − p∗(t)]Pr∗H0
{U∗ ≥ t}λ(0)

∗ (t)dt
(2.2)

where g∗(t) = limn→∞
√

n log
(
λ(1)
∗,n(t)

λ(0)
∗ (t)

)
, U∗ is the observed outcome given by U∗ = min{T1,T2,C},

p∗(t) = PrH∗0{X = 1|U∗ ≥ t} is the null probability of, someone at risk at time t, is in treatment group

1, PrH∗0{U ≥ t} is the null probability that someone is still at risk at time t and PrH∗0{U∗ ≥ t}λ(0)
1 (t)

corresponds to the probability, under the null hypotheses, of observing event E∗ by time t.

Asymptotic relative efficiency

The behavior of the ARE of the logrank test Z∗ based on E∗ versus the logrank test Z based on
E1 is used to assess the difference in efficiency between Z∗ and Z. Given that both tests Z and
Z∗ are asymptoticallyN(0, 1) under H0 and H∗0, respectively, and are asymptotically normal with
variance 1 under a sequence of contiguous alternatives to the null hypothesis, their ARE [12] is
given by:

ARE(Z∗,Z) =

(
µ∗
µ

)2

(2.3)

where µ∗ and µ are to be replaced by (2.1) and (2.2).

It is understood that the composite endpoint will be chosen whenever ARE(Z∗,Z) > 1.

To achieve the designated goal of deriving an expression of ARE useful for designing clinical
trials, the computations of ARE(Z∗,Z) would need to be based on easily interpretable parameters
such as:

• The frequencies p1 and p2 of observing endpoint E1 and E2 in treatment group 0.

• The relative treatment effects on E1 and E2 given by hazard ratios HR1 and HR2.

• The degree of dependence between T1 and T2 given by Spearman’s rank correlation coef-
ficient ρ.

It is important to state the main assumptions being established to compute ARE and setting out
the main steps to express it in terms of these interpretable parameters.

Assumptions
In the planning of the sample size of a randomized clinical trial in time-to-event study, apart
from fixing type I error probability and power to detect the specific alternative, one has to set the
marginal law of the survival time in the control group, the censoring distributions, the probabil-
ity π of being in group 1 under the null hypothesis and the log hazard ratio. It is often assumed
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that the censoring rates are the same for both groups and that the hazard ratio is constant. Thus,
the mild and reasonable assumptions being adopted in [1] merely reproduce what has often been
common practice in most of the clinical trials.

It is assumed that there are two independent samples and a total sample size of n individuals
and that a proportion of individuals π is allocated to group 1. Efficiency calculations will be
evaluated based on the following other assumptions:

• Assumption 1: End-of-study censoring at time τ is the only non-informative censoring
cause and, without loss of generality, τ = 1 is taken for computation purposes.

• Assumption 2: End-of-study censoring is identical across grows, that is,
Pr{C > t|X = 0} = Pr{C > t|X = 1} = Pr{C > t} = 1[0,τ](t).

• Assumption 3: Treatment groups have proportional hazards. The proportionality assump-

tion is given by the hazard ratios
λ(1)

1 (t)

λ(0)
1 (t)

= HR1 and
λ(1)

2 (t)

λ(0)
2 (t)

= HR2 for all t where λ( j)
i (t) is the

hazard function of Ti for someone in treatment group j.

2.3.3 Computation of ARE for cases 1 and 3

It is here where the computations are different depending on if there are competing risks. As
introduced before, in this master thesis, the censoring cases of interest are cases 1 and 3. Therefore,
given the assumptions stated above and, as it is developed in [1], the non-centrality parameters
µ and µ∗ given in (2.1) and (2.2) can be expressed as

µ =

√
nπ(1 − π)

∫ 1
0 log

(
λ(1)

1 (t)

λ(0)
1 (t)

)
f 0
1 (t)dt√∫ 1

0 f (0)
1 dt

(2.4)

µ∗ =

√
nπ(1 − π)

∫ 1
0 log

(
λ(1)
∗ (t)
λ(0)
∗ (t)

)
f 0
∗ (t)dt√∫ 1

0 f (0)
∗ dt

(2.5)

where f (0)
1 (t) and f (0)

∗ (t) are the marginal density functions for T1 and T∗ in group 0.

Replacing (2.4) and (2.5) in (2.3), and
λ(1)

1 (t)

λ(0)
1 (t)

by HR1, the ARE in cases 1 and 3 is given by

ARE(Z∗,Z) =

(
µ∗
µ

)2

=

(∫ 1
0 log

(
λ(1)
∗ (t)
λ(0)
∗ (t)

)
f (0)
∗ (t)dt

)2

(
log HR1

)2 (
∫ 1

0 f (0)
∗ (t)dt)(

∫ 1
0 f (0)

1 (t)dt)
(2.6)

From (2.6), the ARE expression only depends on:

• The marginal law of T1 in group 0 ( f (0)
1 (t))
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• The law of T∗ in group 0 ( f (0)
∗ (t)) and the hazard functions of T∗ in both treatment groups

(λ(0)
∗ (t) and λ(1)

∗ (t))

• The hazard ratio for the relevant endpoint E1 (HR1)

Law of (T1,T2) and T∗: the use of copulas to model the bivariate survival function

The law of T∗ for each group can be obtained from the bivariate distribution of (T1,T2) since
T( j)
∗ = min{T( j)

1 ,T
( j)
2 } for j = 0, 1 and

S( j)
∗ (t) = Pr{T( j)

∗ > t} = Pr{min{T( j)
1 ,T

( j)
2 } > t} = Pr{T( j)

1 > t,T( j)
2 > t} = S( j)

(1,2)(t, t) (2.7)

Law of (T1,T2)
If E1 and E2 are independent, it has been shown that the beneficial effect of the treatment on E∗
does not imply the beneficial effect on each component E1 and E2 [7]. On the other hand, most of
the times the two endpoints E1 and E2 are correlated and the hazard of the composite endpoint E∗
cannot be decomposed into the sum of the two marginal hazards. In this situation, the joint law
of (T1,T2) is needed and a useful way of approaching it is specifying the joint law of (T1,T2) as
a function of the marginal densities f1(t1) and f2(t2) and an association parameter θ via a copula
model.

A copula is defined as a function that joins or couples multivariate distribution functions to their
one-dimensional marginal distribution functions [3]. The copula parametrises the dependence
between the marginals, while the parameters of each marginal distribution function can be esti-
mated separately. A key aim of this master thesis is the study of copulas, thus further study is
postponed to chapter 3.

In the methodology given by Gómez and Lagakos [1], T1 and T2 are assumed to be binded by
Frank Archimedean survival copula, given by

C(u, v;θ) =
−1
θ

log
(
1 +

(e−θu
− 1)(e−θv

− 1)
e−θ − 1

)
where θ is the association parameter between T1 and T2. There is a bijective relationship between
θ and Spearman’s rank correlation ρ between T1 and T2.

Assuming equal association parameter θ for groups 0 and 1, the joint survival and joint density
functions for (T1,T2) in group j ( j = 0, 1) are given by

S( j)
(1,2)(t1, t2;θ) =

−1
θ

log

1 +
(e−θS( j)

1 (t1)
− 1)(e−θS( j)

2 (t2)
− 1)

e−θ − 1


f ( j)
(1,2)(t1, t2;θ) =

θ

e−θ − 1
e−θ(S( j)

1 (t1)+S( j)
2 (t2))

e−2θS( j)
(1,2)(t1,t2;θ)

[ f ( j)
1 (t1)][ f ( j)

2 (t2)]
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where S( j)
1 (t1) and f ( j)

1 (t1), S( j)
2 (t2) and f ( j)

2 (t2) are the survival and marginal densities of T1 and T2,
respectively, in group j.

Law of T∗
As seen in (2.7), S( j)

∗ (t;θ) = S( j)
(1,2)(t, t;θ), and having f ( j)

∗ (t;θ) = −∂S( j)
∗ (t;θ)/∂t, we have

S( j)
∗ (t;θ) =

−1
θ

log

1 +
(e−θS( j)

1 (t)
− 1)(e−θS( j)

2 (t)
− 1)

e−θ − 1


f ( j)
∗ (t;θ) =

1
e−θ − 1

e−θS( j)
1 (t)(e−θS( j)

2 (t)
− 1)

e−θS( j)
(1,2)(t,t;θ)

f ( j)
1 (t) +

e−θS( j)
2 (t)(e−θS( j)

1 (t)
− 1)

e−θS( j)
(1,2)(t,t;θ)

f ( j)
2 (t)


λ

( j)
∗ (t;θ) =

f ( j)
∗ (t;θ)

S( j)
∗ (t;θ)

Hence, in order to compute ARE(Z∗,Z) assuming Frank copula, we need to specify:

• f ( j)
1 (t) and S( j)

1 (t): The marginal density and survival functions of T1 in group j ( j = 0, 1)

• f ( j)
2 (t) and S( j)

2 (t): The marginal density and survival functions of T2 in group j ( j = 0, 1)

• θ: The copula association parameter between T1 and T2.

• HR1: The constant hazard ratio of T1, HR1 = λ(1)
1 (t)/λ(0)

1 (t)

Choice of marginal laws for the computations
To derive the ARE(Z∗,Z) in terms of the above listed interpretable parameters, we have to specify
marginal parametric laws for T( j)

1 and T( j)
2 for both treatment groups 0 and 1 and we have to relate

their parameters to the frequencies p1 and p2, the hazard ratios HR1 and HR2 and the Spearman’s
coefficient ρ.

Gómez and Lagakos [1] chose Weibull distributions for the endpoints T1 and T2 with scale pa-
rameters b( j)

1 and b( j)
2 for groups j = 0, 1 and shape parameters β1 and β2 chosen equal for both

groups so that the proportionality of the hazards holds.

In this case, the survival function S( j)
k (t) is defined by S( j)

k (t) = exp
(
−(t/b( j)

k )βk
)

and, then, there is a

direct relationship between ( f ( j)
1 ,S( j)

1 , f ( j)
2 ,S( j)

2 , θ,HR1) and (b(0)
1 , b

(0)
2 , b

(1)
1 , b

(1)
2 , β1, β2, θ,HR1). These

parameters can be related to the parameters of interest (p1, p2, β1, β2, ρ,HR1,HR2) by means of:

• The scale parameters b(0)
1 and b(0)

2 are functions of p1, p2, β1 and β2 and, depending on the
censoring case, are given by

– For case 1, b(0)
1 and b(0)

2 are given by

b(0)
1 = 1

(− log(1−p1))1/β1
and b(0)

2 = 1
(− log(1−p2))1/β2

.
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– For case 3, b(0)
1 and b(0)

2 are given by

b(0)
1 = 1

(− log(1−p1))1/β1

b(0)
2 is found as the solution of p2 =

∫ 1
0

∫ 1
v f (0)

(1,2)(u, v;θ)dudv.

• For k = 1, 2, the scale parameter b(1)
k is function of the scale parameter b(0)

k , the shape

parameter βk and the hazard ratio HRk as follows: b(1)
k =

b(0)
k

HR
1
βk
k

• The independence parameter θ is a function of ρ for the Frank copula case given by

ρ = ρ(θ) = 1 − 12
θ [ 1

θ

∫ θ
0

t
et−1 −

2
θ2

∫ θ
0

t2

et−1 dt]

2.3.4 Cases studies

Gómez and Lagakos [1] and Moises Gómez [2] made some simulation studies with different
values for β1, β2, p1, p2, HR1, HR2 and ρ in order to develop statistical guidelines to help physi-
cians decide whether or not use a composite endpoint when designing a clinical trial. It is
understood that the composite endpoint will be chosen whenever ARE(Z∗,Z) > 1. However, it
is possible to recommend a more flexible rule such that the composite endpoint is always used if
ARE(Z∗,Z) > 1.25 and it is never used if ARE(Z∗,Z) < 1.1. In that case, for values of ARE between
1.1 and 1.25 it is not clear which endpoint should be used. Gómez and Lagakos [1] used the rule
to choose the composite endpoint if ARE(Z∗,Z) > 1.1 and the relevant endpoint otherwise.

The values in [1] for cases 1 and 3 were 0.5, 1 and 2 for β1 and β2, representing decreas-
ing, constant and increasing hazard functions, respectively. The possible values for p1 and
p2 were 0.05, 0.15, 0.30 and 0.50 while the values of HR1 and HR2 were HR1 = 0.5 (with
HR2 = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and HR1 = 0.7 (with HR2 = 0.5, 0.6, 0.7, 0.8, 0.9, 1). The values
for Spearman’s rank correlation ranged from ρ = 0.15 to ρ = 0.75 in order to consider weak,
moderate and strong correlations between T1 and T2. A total of 6048 combinations were studied
for both censoring case 1 and case 3. For each such case, these combinations are grouped for
specific values of β1, β2, p1, p2 and HR1 yielding a total of 144 scenarios for each censoring case
(Table 2.1).

A further analysis of the results can be found in [1] but the general pattern is similar for cases
1 and 3: ARE decreases when the Spearman’s rank correlation between the two endpoints in-
creases; and also when the relative effect of treatment on the additional endpoint is smaller than
that on the relevant endpoint.

On the other hand, it has been made a search of all randomized clinical trials on cardiovascular
disease carried out in 2008 [2]. The search was restricted to randomized clinical trials using the
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β1 0.5 1 2
β2 0.5 1 2

(p1, p2) (0.05,0.05) (0.15,0.05) (0.15,0.15) (0.3,0.3) (0.5,0.3) (0.5,0.5)
(p1, p2) (0.05,0.15) (0.3,0.5) (0.05,0.3) (0.15,0.3)

ρ 0.15 0.25 0.35 0.45 0.55 0.65 0.75
HR1 = 0.5 and HR2 = 0.3 0.4 0.5 0.6 0.7 0.8
HR1 = 0.7 and HR2 = 0.5 0.6 0.7 0.8 0.9 1

Table 2.1: Possible values simulated in Gómez and Lagakos [1]

logrank test for comparison between the two groups and it has been observed if the main out-
come was a simple or composite endpoint. From here, it has been studied in which cases a more
efficient design of clinical trials could have been done and it has been observed that it is necessary
to follow some sort of criteria in order to avoid designing the trials wrongly. Preliminary results
showed no differences between different values of β1 and β2 considering decreasing, constant
and increasing hazards and hence β1 = β2 = 1 was considered. The values for p1, p2, HR1, HR2

and ρ were the values shown in Table 2.2. In that case, the threshold for choosing the single o
composite endpoint was set to ARE(Z∗,Z) > 1 or ARE(Z∗,Z) ≤ 1. Among the conclusions of this
study it is worth mentioning that composite endpoints should always be used if HR1 ≥ 0.8 and
HR2 ≤ 0.35. On the other hand, values of HR1 chosen to 0.5 and HR2 ≥ 0.55 often provide ARE
values near . A total of 48 scenarios cases were studied for censoring case 3 in this work.

β1 1
β2 1
p1 0.035 0.05 0.09 0.125
p2 0.1 0.15 0.2
ρ 0.15 0.25 0.35 0.45 0.55 0.65 0.75

HR1 0.5 0.6 0.7 0.8
HR2 0.4 0.5 0.6 0.7 0.8 0.9

Table 2.2: Possible values simulated in Moisés Gómez’s master thesis [2]

The general guidelines for using a composite endpoint can be checked in [2] but they are similar
to the general rules obtained in [1].

2.4 Applicability of this method

In this methodology presented by Gómez and Lagakos [1], it is assumed that T1 and T2 follow
a Weibull distribution and the copula used for the joint law is the Frank Archimedean copula.
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As said above, it is crucial to make this methodology the widest and most applicable possible
studying and testing other families of copulas and marginal laws.

Therefore, the copula’s theory will be studied (chapter 3) and we will try the methodology for
Gumbel copula for censoring cases 1 and 3 (chapter 4). It is left for future research the censoring
cases 2 and 4, with competing risks, and the study of other families of copulas and marginal
distribution laws.



Chapter 3

Copulas

In this chapter, an introduction to copulas will be presented summarizing Nelsen (1999) [3] and
Trivedi and Zimmer (2007) [4]. This is a summary of those concepts which, from my point
of view, are necessary to understand the main aim of this master thesis. Theorems are stated
without proofs and further information can be found in [3] and [4].

3.1 Introduction

The study of copulas in statistics is a modern phenomenon that started in the decade of the
nineties with the interest of studying distributions with fixed or given marginal distributions.
Copulas are defined as functions that join or couple multivariate distribution functions to their
one-dimensional marginal distribution functions. According to Fisher (1997) [14], copulas are of
interest to statisticians for two main reasons: firstly, as a way of studying scale-free measures of
dependence; and secondly, as a starting point for constructing families of multivariate distribu-
tions, sometimes with a view to simulation.

The word copula is a latin noun that means ”link, tie, bond” [15] and it is used in grammar and
logic to describe ”that part of a proposition which connects the subject and the predicate” [16]. A
brief history of the development and study of copulas can be found in [3] but, in a few words, the
word copula was first used in a mathematical sense in the theorem that describes the functions
which ”join together” one-dimensional distribution functions to form multivariate distribution
functions. This theorem was proposed by Abe Sklar in 1959 but the functions themselves existed
before the use of the term copula because they appeared in the study of multivariate distribution
with fixed univariate marginal distributions made by Fréchet, Dall’Aglio, Féron, Hoeffding and
many others. On the other hand, the earliest paper explicitly relating copulas to the study of
dependence among random variables appears in 1981. In that paper, Schweizer and Wolff dis-
cussed and modified a criteria for measures of dependence between pairs of random variables
but copulas had already appeared implicitly in earlier work on dependence by many other au-
thors.

27
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The main objective of this master thesis is to study the joint distribution function of two random
variables and, therefore, all definitions and results take into account bivariate copulas. An
extension to multivariate copulas can be found in [3].

3.2 Definitions and Basic Properties

Consider a pair of random variables X and Y, with distribution functions F(x) = Pr{X ≤ x} and
G(y) = Pr{Y ≤ y}, respectively, and a joint distribution function H(x, y) = Pr{X ≤ x,Y ≤ y}. For
each pair of real numbers (x, y) we can associate three numbers: F(x), G(y) and H(x, y), each of
them lying in the interval [0,1]. Each pair (x, y) leads to a point

(
F(x),G(y)

)
in the unit square. In

plane words, a copula is the function that links the value of the joint distribution H(x, y) to each
pair of values of the marginal distribution functions

(
F(x),G(y)

)
.

3.2.1 Preliminaries

A 2-place real function H is a function whose domain, DomH, is a subset ofR
2

and whose range,
RanH, is a subset of R, where R = (−∞,∞) and R = [−∞,∞].

Definition 3.2.1. Let S1 and S2 be nonempty subsets of R and let H be a function such that
DomH = S1 × S2. Let B = [x1, x2] × [y1, y2] a rectangle in DomH. Then the H-volume of B is
given by

VH(B) = H(x2, y2) −H(x2, y1) −H(x1, y2) + H(x1, y1) (3.1)

A 2-place real function H is 2-increasing if VH(B) ≥ 0 for all rectangle B in DomH. This definition
could be understood as a two-dimensional analog of a nondecreasing function of one variable
but it is important to remark that ”H is two-increasing” neither implies nor is implied by ”H is
nondecreasing in each argument”.

A function H from S1 × S2 is said to be grounded if H(x, a2) = H(a1, y) = 0 for all (x, y) ∈ S1 × S2

where a1 and a2 are the least elements of S1 and S2, respectively. In this case, the property of
2-increasing of H implies that H is nondecreasing in each argument.

Analogously, a function H from S1 × S2 is said to have marginals, that are functions F and G, if

DomF=S1 and F(x) = H(x, b2)
DomG=S2 and G(y) = H(b1, y)

where b1 and b2 are the greatest elements of S1 and S2, respectively.

3.2.2 Copulas

Definition 3.2.2. Let I be the interval [0, 1]. A two-dimensional copula is a function C from I2 to I with
the following properties:
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• ∀u, v ∈ I, C(u, 1) = u and C(1, v) = v.

• ∀u, v ∈ I, C(u, 0) = 0 = C(0, v)

• C is 2-increasing.

This is the formal definition of a copula. Let us now see some properties and basic results about
copulas. First of all, let us study the bounds of these functions.

Theorem 3.2.3. Given u, v ∈ I, any copula C satisfies

max{u + v − 1, 0} ≤ C(u, v) ≤ min{u, v}

It is trivial to prove that W(u, v) = max{u + v − 1, 0} and M(u, v) = min{u, v} are also copulas and
they are called the Fréchet-Hoeffding bounds. Another example of a copula is the product copula,
defined by

∏
(u, v) = u × v.

The graph of any copula is a continuous surface within I3 whose boundary is the skew quadri-
lateral with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 1). Given any copula C and t ∈ I, the graph
of the level set is defined as {(u, v) ∈ I2

|C(u, v) = t}. Figure 3.1 shows the graph and level sets for
some t for copulas

∏
(u, v), M(u, v) and W(u, v). The graph of

∏
(u, v) lies between the graphs of

M(u, v) and W(u, v) and the level set of
∏

(u, v) for a given t must lie in the shaded triangle shown
in Figure 3.2, whose boundaries are the level sets determined by M(u, v) = t and W(u, v) = t.
Since M(u, v) and W(u, v) are the bounds for any copula, these properties holds for any copula
C, and not only for

∏
(u, v).

3.2.3 Joint distributions

The joint distribution of a set of random variables (Y1, . . . ,Ym) is defined as
F(y1, . . . , ym) = Pr{Yi ≤ yi; i = 1, . . . ,m} and the survival function is given by
F(y1, . . . , ym) = Pr{Yi > yi; i = 1, . . . ,m}. Let us focus on the 2-dimensional case.

The following conditions are necessary and sufficient for a right-continuous function F to be a
bivariate distribution function:

1. limy j→−∞ F(y1, y2) = 0 for j = 1, 2

2. limy j→∞∀ j F(y1, y2) = 1

3. For all (a1, b1), (a2, b2) with a1 ≤ a2 and b1 ≤ b2, F(a2, b2) − F(a1, b2) − F(a2, b1) + F(a1, b1) ≥ 0.

Conditions 1 and 2 imply 0 ≤ F ≤ 1. Condition 3 is referred to as the property that F is
2-increasing, as seen in (3.1). If F has second derivatives, then the 2-increasing property is equiv-
alent to ∂2F/∂y1∂y2 ≥ 0.

Given a bivariate distribution function F, the marginal distribution functions F1 and F2 are
F1(y1) = limy2→∞ F(y1, y2) and F2(y2) = limy1→∞ F(y1, y2).
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Figure 3.1: Graphs and level sets of
∏

(u, v), M(u, v) and W(u, v)

3.2.4 Sklar’s Theorem

Sklar’s theorem elucidates the role that copulas play in the relationship between multivariate
distribution functions and their univariate marginals. As we saw in definition 3.2.2, properties 2
and 3 are general properties of multivariate distribution functions. Thus, it follows that a copula
can be defined as a bivariate distribution function whose support is contained in I2 and whose
marginals are uniform on I.

Theorem 3.2.4 (Sklar’s theorem). Let H be a joint distribution function with marginals F and G. Then
there exists a copula C such that ∀x, y ∈ R,

H(x, y) = C(F(x),G(y))

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on RanF × RanG.
Conversely, if C is a copula and F and G distribution functions, then the function H defined by
H(x, y) = C(F(x),G(y)) is a joint distribution function with marginals F and G.

H(x, y) = C(F(x),G(y)) gives an expression for joint distribution functions in terms of a copula
and two univariate functions. It can be inverted to express copulas in terms of a joint distribution



3.2 Definitions and Basic Properties 31

Figure 3.2: Graphs of the level set {(u, v) ∈ I2
|C(u, v) = t} of M(u, v) and W(u, v)

function and the ”inverses” of the two marginals (if a marginal is not strictly increasing, it does
not have an inverse in the usual sense and a quasi-inverse must be defined).

Definition 3.2.5. Let F be a distribution function. Then a quasi-inverse of F is a function F(−1) with
domain I such that

1. If t is in RanF, then F(−1)(t) is any number x ∈ R such that F(x) = t.

2. If t is not in RanF, then F(−1)(t) = in f {x|F(x) ≥ t} = sup{x|F(x) ≤ t}

If F is strictly increasing, F(−1)(t) = F−1(t)

Corollary 3.2.6. Let H be a joint distribution function with marginals F and G and let C be a cop-
ula such that H(x, y) = C(F(x),G(y)). Let F(−1) and G(−1) be quasi-inverses of F and G. Then
∀(u, v) ∈ DomC, C(u, v) = H(F(−1)(u),G(−1)(v))

The relation between distribution functions and copulas has been stated above. Let us denote
C(F(X),G(Y)) by CXY and let us now see some properties.

Theorem 3.2.7. Let X and Y be continuous random variables with distribution functions F and G. Then
X and Y are independent if and only if CXY =

∏
, i.e. C(F(x),G(y)) = F(x)G(y).
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Theorem 3.2.8. Let X and Y be continuous random variables with copula CXY. Assume that α and β
are strictly monotone on RanX and RanY respectively, the following properties relate CXY with Cα(X)β(Y)

when α(X) and β(Y) are the corresponding transformed random variables:

1. If α and β are both strictly increasing, then Cα(X)β(Y) = CXY.

2. If α is strictly increasing and β strictly decreasing, then Cα(X)β(Y)(u, v) = u − CXY(u, 1 − v).

3. If α is strictly decreasing and β strictly increasing, then Cα(X)β(Y)(u, v) = v − CXY(1 − u, v).

4. If α and β are both strictly decreasing, then Cα(X)β(Y) = u + v − 1 + CXY(1 − u, 1 − v).

The Fréchet-Hoeffding bounds can be defined for joint distribution functions of random variables
as max{F(x) + G(y) − 1, 0} ≤ H(x, y) ≤ min{F(x),G(y)}. Now we can introduce some definitions
and lemmas preceding a theorem related to these bounds.

Definition 3.2.9. A subset S ofR
2

is nondecreasing if ∀(x, y), (u, v) ∈ S, x < u implies y ≤ v. Similarly,

a subset S of R
2

is nonincreasing if ∀(x, y), (u, v) ∈ S, x < u implies y ≥ v.

Lemma 3.2.10. Let S be a subset of R2. Then S is nondecreasing if and only if ∀(x, y) ∈ R2, either

1. ∀(u, v) ∈ S, u ≤ x implies v ≤ y; or

2. ∀(u, v) ∈ S, v ≤ y implies u ≤ x

Lemma 3.2.11. Let X and Y be random variables with joint distribution function H. Then H is equal

to its Fréchet-Hoeffding upper bound if and only if ∀(x, y) ∈ R
2
, either P[X > x,Y ≤ y] = 0 or

P[X ≤ x,Y > y] = 0.

Theorem 3.2.12. Let X and Y be random variables with joint distribution function H. Then,

• H is identically equal to its Fréchet-Hoeffding upper bound if and only if the support of H is a

nondecreasing subset of R
2
.

• H is identically equal to its Fréchet-Hoeffding lower bound if and only if the support of H is a

nonincreasing subset of R
2
.

3.2.5 Survival Copulas

The probability of an individual living or surviving beyond time x is given by the survival
function F(x) = Pr{X > x} = 1 − F(x). The natural range of a random variable is often [0,+∞);
however, we will use the term ”survival function” for Pr{X > x} even when the range is R.

For a pair (X,Y) of random variables with joint distribution H, the joint survival function is given
by H(x, y) = Pr{X > x,Y > y}. Then the marginals of H are the functions H(x,−∞) and H(−∞, y)
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which are the univariate survival functions F and G.

We can now try to find a relationship between univariate and joint survival functions. Let C be
a copula of F and G. Then

H(x, y) = Pr{X > x,Y > y} = 1 − Pr{X ≤ x} − Pr{Y ≤ Y} + Pr{X ≤ x,Y ≤ y} =

= 1 − F(x) − G(y) + H(x, y) = F(x) + G(y) − 1 + C(F(x),G(y)) =

= F(x) + G(y) − 1 + C(1 − F(x), 1 − G(y))

We can define Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) and H(x, y) = Ĉ(F(x),G(y)). Then Ĉ is a copula
and we refer to it as survival copula of X and Y.

It is easy to check the three conditions for Ĉ to be a copula following that C is a copula. Indeed,

1. Ĉ(u, 1) = u + C(1 − u, 0) = u + 0 = u
Ĉ(1, v) = v + C(0, v) = v + 0 = v

2. Ĉ(u, 0) = u − 1 + C(1 − u, 1) = u − 1 + (1 − u) = 0
Ĉ(0, v) = v − 1 + (1 − v) = 0

3. For 0 ≤ u1 < u2 ≤ 1 and 0 ≤ v1 < v2 ≤ 1,
Ĉ(u2, v2) − Ĉ(u2, v1) − Ĉ(u1, v2) + Ĉ(u1, v1) =

= C(1 − u2, 1 − v2) − C(1 − u2, 1 − v1) − C(1 − u1, 1 − v2) + C(1 − u1, 1 − v1) ≥ 0
since C is 2-increasing and 0 ≤ 1 − u2 < 1 − u1 ≤ 1 and 0 ≤ 1 − v2 < 1 − v1 ≤ 1.

There are other functions of interest, like the dual of a copula, C̃(u, v) = u+v−C(u, v); or the co-copula,
C∗(u, v) = 1 − C(1 − u, 1 − v). They are functions that are not copulas but express probabilities.
Especifically, Pr{X ≤ x or Y ≤ y} = C̃(F(x),G(y)) and Pr{X > x or Y > y} = C∗(F(x),G(y)).

3.3 Some Common Bivariate Copulas

Copulas can be used to express a multivariate distribution in terms of its marginal distributions
because copulas allow researchers to piece together joint distributions when only marginal
distributions are known with certainty. In the bivariate case, the copula associated with H is a
distribution function C from [0, 1]2 to [0, 1] that satisfies

H(x, y) = C(F(x),G(y);θ)

where θ is a parameter of the copula called the dependence parameter, which measures de-
pendence between the marginals. It could be said that each family of copulas define a concrete
dependence structure and θ measures the intensity of this dependence. Five examples of com-
mon bivariate copulas are introduced in this section and the dependence properties are stated
for each copula. However, a more detailed discussion of dependence is given in section 3.4.
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3.3.1 Product copula

As seen above, the product copula has the form

C(u, v) = uv

where u and v take values in the unit interval of the real line and it corresponds to independence
between the two marginal random variables.

3.3.2 Farlie-Gumbel-Morgenstern copula

The Farlie-Gumbel-Morgenstern (FGM) copula takes the form

C(u, v;θ) = uv(1 + θ(1 − u)(1 − v))

This copula is a perturbation of the product copula; if the dependence parameter θ equals zero,
then the FGM copula collapses to independence. It is restrictive because this copula is only
useful when dependence between the two marginals is modest in magnitude.

3.3.3 Frank copula

The Frank copula takes the form

C(u, v;θ) = −
1
θ

log
(
1 +

(e−θu
− 1)(e−θv

− 1)
e−θ − 1

)
.

The dependence parameter may assume any real value (−∞,∞) and values of −∞, 0 and ∞
correspond to the Fréchet-Hoeffding lower bound, independence and upper bound, respectively.
It permits negative dependence between the maginals and it is most appropriate for data that
exhibits weak tail dependence.

3.3.4 Gumbel copula

The Gumbel copula takes the form

C(u, v;θ) = exp
(
−[(− log(u))θ + (− log(v))θ]1/θ

)
The dependence parameter is restricted to the interval [1,∞) and values of 1 and∞ correspond to
independence and the Fréchet-Hoeffding upper bound. Gumbel copula does not allow negative
dependence and it exhibits strong right tail dependence and relatively weak left tail dependence.
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3.3.5 Clayton copula

The Clayton copula takes the form

C(u, v;θ) = (u−θ + v−θ − 1)−1/θ

with the dependence parameter θ restricted to the region (0,∞). As θ approaches zero, the
marginals become independent. On the other hand, as θ approaches infinity, the copula attains
the Fréchet-Hoeffding upper bound. The Clayton copula cannot account for negative depen-
dence and it exhibits strong left tail dependence and relatively weak right tail dependence.

To summarize, Table 3.1 contains the possible direction for the dependence of these copulas and
the strength of its tail dependence.

Copula Dependence Left Tail Right Tail
Product independence weak weak

FGM modest in magnitude weak weak
Frank positive and negative weak weak

Gumbel positive weak strong
Clayton positive strong weak

Table 3.1: Dependence and Tail dependence for some common bivariate copulas.

3.4 Dependence

As said above, the concept of dependence is defined in this section. Moreover, section 3.4.4
shows the dependence structure of each copula from a graphical point of view.

The random variables X and Y are said to be dependent or associated if they are not independent
in the sense that H(X,Y) , F(X)G(Y) where H is the joint distribution function of (X,Y) and F
and G are the marginal distribution functions of X and Y.

3.4.1 Correlation

Association can be measured using several alternative concepts but, by far, the most familiar
association dependence is the Pearson correlation coefficient between a pair of variables (X,Y),
defined as

ρXY =
Cov(X,Y)
σXσY

where Cov(X,Y) = E[XY] − E[X]E[Y] and σX, σY > 0 are the standard deviations of X and Y,
respectively. It is well known that ρXY measures linear dependence, so it is necessary to consider
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alternative measures of dependence between X and Y (see [4] for more details).

3.4.2 Concordance

Another measure of dependence is the concordance. A pair of random variables (X,Y) are
concordant if large values of one tend to be associated with large values of the other, and small
values of one with small values of the other. Two measures of concordance are Kendall’s rank
correlation (Kendall’s τ) or Spearman’s rank correlation (Spearman’s ρ). For the following
definitions, let X and Y be two random variables with marginal and joint distribution functions
F, G and H, respectively. Therefore, H(X,Y) = C(F(X),G(Y)).

Kendall’s τ

Let (X1,Y1) and (X2,Y2) be independent and identically distributed pairs of random variables,
each with joint distribution function H. The Kendall’s rank correlation is defined as the proba-
bility of concordance minus the probability of discordance, as follows

τXY = Pr{(X1 − X2)(Y1 − Y2) > 0} − Pr{(X1 − X2)(Y1 − Y2) < 0}.

Spearman’s ρ

Let (X1,Y1), (X2,Y2) and (X3,Y3) be independent and identically distributed pairs of random
variables, each with joint distribution function H. The Spearman’s rank correlation is defined as
the probability of concordance minus the probability of discordance of the two vectors (X1,Y1)
and (X2,Y3), as follows

ρXY = Pr{(X1 − X2)(Y1 − Y3) > 0} − Pr{(X1 − X2)(Y1 − Y3) < 0}.

Another way to define Spearman’s ρ is as the Pearson correlation coefficient between the ranked
variables.

Relation between copulas and measures of concordance

Copulas play an important role in concordance and measures of association. Let X and
Y be two random variables with marginals F and G. Given any copula C(u, v) such that
H(X,Y) = C(F(X),G(Y)), the relation between C and these measures is defined as follows [3]:

ρXY = 12
∫ 1

0

∫ 1

0
[C(u, v) − uv]dudv

τXY = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1

There is a list of the copulas introduced above and their concordance measures in Table 3.2.
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Copula type C(u, v;θ) θ-domain τ ρ

Product uv - 0 0
FGM uv(1 + θ(1 − u)(1 − v)) [−1, 1] 2

9θ
1
3θ

Clayton max{[u−θ + v−θ − 1]−1/θ, 0} [−1,∞)\{0} θ
θ+2 -

Frank −
1
θ log

(
1 +

(e−θu
−1)(e−θv

−1)
(e−θ−1)

)
(−∞,∞) 1 − 4

θ (1 −D1(θ)) 1 − 12
θ (D1(θ) −D2(θ))

Gumbel exp
(
−[(− log(u))θ + (− log(v))θ]1/θ

)
[1,∞) θ−1

θ -
FGM is the Farlie-Gumbel-Morgenstern copula.
Dk(x) denotes the ”Debye” function k/xk

∫ x

0
tk

(et−1) dt, k = 1, 2.
- denotes that there is not an analytical expression.

Table 3.2: List of Common Bivariate Copulas

Relation between ρ and τ

While both Kendall’s τ and Spearman’s ρ measure the probability of concordance between
random variables with a given copula, the values of ρ and τ are often quite different. This is
important in this master thesis because there is a straightforward relation between ρ and θ for
Frank copula but it is not for Clayton or Gumbel copulas. Therefore, it is not possible to obtain
the dependence parameter from a given ρ in these cases and it is necessary to obtain θ using
numerical approximations or obtain it using the relation with Kendall’s τ. One could imagine
that it is easier to do it using Kendall’s τ and then find a relation between ρ nd τ but, as stated
above, it is not always true that these two values are similar. Nelsen [3] presents the exact relation
between these two measures for members of some of the families of copulas but there are general
patterns that work for all the cases.

Theorem 3.4.1. Let X and Y be continuous random variables, and let τ and ρ denote Kendall’s τ and
Spearman’s ρ, respectively. Then, −1 ≤ 3τ − 2ρ ≤ 1.

The relationship between τ and ρ can also be shown by the following pair of inequalities:

3τ − 1
2
≤ ρ ≤

1 + 2τ − τ2

2
if τ ≥ 0

τ2 + 2τ − 1
2

≤ ρ ≤
1 + 3τ

2
if τ ≤ 0

These bounds for the values of τ and ρ are illustrated in Figure 3.3. For any pair X and Y of con-
tinuous random variables, the values of the population measures of Kendall’s τ and Spearman’s
ρ must lie in the shaded region.

A further study of the relationship between these two variables can be found in [17], where
better approximations of the bounds of this relationship are summarized depending on the
joint distribution function and it is introduced that, under mild regularity conditions, the limit
of the ratio ρ/τ is 3/2 as the joint distribution function of the random variables approaches
independence.
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Figure 3.3: Graph of the bounds for ρ and τ for pairs of continuous random variables.

3.4.3 Tail dependence

In some cases the concordance between extreme (tail) values of random variables is of interest.

The tail dependence measure can be defined in terms of the joint survival function S(u, v) for
standard uniform random variables u and v. Especifically, λL and λU are measures of lower and
upper tail dependence, respectively, defined by

λL = lim
v→0+

C(v, v)
v

λU = lim
v→1−

S(v, v)
1 − v

where the expression S(v, v) = Pr{U1 > v,U2 > v} represents the joint survival function where
U1 = F−1

1 (X) and U2 = G−1
1 (Y). The upper tail dependence measure λU is the limiting value

of S(v, v)/(1 − v), which is the conditional probability Pr{U1 > v|U2 > v} (= Pr{U2 > v|U1 >

v}). The lower tail dependence measure λL is the limiting value of the conditional probability
Pr{U1 < v|U2 < v} (= Pr{U2 < v|U1 < v}).

3.4.4 Visual illustration of dependence

One way of visualizing copulas is to present contour diagrams with graphs of level sets defined
as the sets in I2 given by C(u, v) = a where a is a constant. Graphs in Figure 3.1 show level curves
for the upper and lower bounds and the product copula. The shadowed triangle in Figure 3.2
gives the bounds for the level set {(u, v) ∈ I2

|C(u, v) = t} of any copula, determined by the lower
and upper bounds, W(u, v) and M(u, v), respectively.
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Unfortunately, this is not always a helpful way of visualizing the data patterns implied by
different copulas. One alternative is to present two-way scatter diagrams of realizations from
simulated draws from copulas. These scatter diagrams are quite useful in illustrating tail depen-
dence in a bivariate context.

Following [3], Figure 3.4 shows the scatter plots for the different copulas seen in section 3.3.
The process of generating this simulated draws is the conditional distribution method. We need
to generate a pair (u, v) of observations of uniform (0,1) random variables (U,V) whose joint
distribution function is C. The first step is generating a pair (u, t) of uniform random variables U
and T in [0, 1]. Then (u, v) is the simulated pair where v can be obtained through the conditional
distribution function for V given U = u, which we denote cu(v):

cu(v) = Pr{V ≤ v|U = u} =
Pr{V ≤ v,U = u}

Pr{U = u}
=

∫ v
0 f (u,w)dw

f (u)
=

∫ v

0
f (u,w)dw =

∂
∂u

C(u, v)

following that f (u) = 1 because U is uniform and v = c(−1)
u (t), where c(−1)

u denote a quasi-inverse
of cu. Since T is U(0, 1), V = c(−1)

u (T) is a random variable with distribution cu. Therefore, the pair
(U,V) are uniformly distributed variables drawn from the respective copula C(u, v;θ).

The equations in Table 3.3 show how v is obtained for the different copulas presented in sec-
tion 3.3.

Copula Conditional distribution
Producte v = t
FGM v = 2t√

[1−θ(2u−1)]2+4θt(2u−1)−θ(2u−1)

Clayton v =
(
u−θ

(
t−θ/(θ+1)

− 1
)

+ 1
)−1/θ

Frank v = − 1
θ log

(
1 +

t(1−e−θ)
t(e−θu−1)−e−θu

)

Table 3.3: Selected conditional transforms for copula generation

For the Gumbel copula, the conditional distribution is not directly invertible [18] and, hence, we
use another way to generate variables using the following general algorithm [3]:

1. Generate two independent uniform variables (v1, v2).

2. Set w = K−1
C (v2) where KC(t) = t − ϕ(t)

ϕ′(t) .

3. Set u1 = ϕ−1[v1ϕ(w)] and u2 = ϕ−1[(1 − v1)ϕ(w)].

The desired pair is then (u1,u2). In the above algorithm, the function KC(t) is the distribution
function of the random variable Cθ(U1,U2) where U1 and U2 are uniform random variables with
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an Archimedean copula C generated by ϕ (Archimedean copulas and their generators will be
introduced in section 3.5). For the Gumbel copula, the above algorithm is:

1. Generate two independent uniform variables (v1, v2).

2. Set KC(w) = w(1 − log(w)
θ ) = v2, and solve it numerically for 0 < w < 1.

3. Set u1 = exp[v1/θ
1 log(w)] and u2 = exp[(1 − v1)1/θ log(w)].

In Figure 3.4, the dependence parameter θ has been set such that ρ(X,Y) = 0.8. In the case
of the FGM copula, θ has been set such that ρ(x, y) = 0.3 because it is unable to accommodate
large dependence. This graphic reaffirms what has been introduced in section 3.3 for each copula.

Figure 3.4: Simulated samples from some copulas with ρ(X,Y) = 0.8 except for FGM where
ρ(X,Y) = 0.3 and for Product copula where ρ(X,Y) = 0.
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It can be seen that variables drawn from the Frank copula exhibit symmetric dependence in both
tails but this dependence seems to be weak. This suggests that the Frank copula is best suited
for applications in which tail dependence is relatively weak.

In contrast to Frank copula, the Clayton and Gumbel copulas exhibit asymmetric dependence.
Clayton dependence is strong in the left tail but weak in the right tail. The implication is that the
Clayton copula is best suited for applications in which two outcomes are likely to experience low
values together. On the other hand, the Gumbel copula exhibits strong right tail dependence and
weak left tail dependence, although the contrast between the two tails of the Gumbel is not as
pronounced as in the Clayton copula. Consequently, Gumbel is an appropriate modeling choice
when two outcomes are likely to simultaneously realize upper tail values.

Finally, the FGM copula exhibits symmetry in both tails, but it can not accommodate variables
with large dependence. The FGM copula allows negative dependence but it must be weak.

The implication of these graphs is that multivariate distributions with similar degrees of depen-
dence might exhibit substantially different dependence structures.

3.5 Archimedean Copulas

Copulas have been introduced and we have seen the role they play in modeling the dependence
structure of two random variables. A family of copulas that allow us to construct joint distribution
functions is introduced in this section.

3.5.1 Definitions

We have seen that if there is independence between two continuous random variables X and Y
with joint distribution H and marginals F and G, then H(x, y) = F(x)G(y) ∀x, y ∈ R.

There are a few cases in which a function of H factors into a product of a function of F and
a function of G. For example, as seen in [3], the Ali-Mikhail-Haq family of copulas, where the
relation between H, F, G and θ is the following

1 −H(x, y)
H(x, y)

=
1 − F(x)

F(x)
+

1 − G(y)
G(y)

+ (1 − θ)
1 − F(x)

F(x)
1 − G(y)

G(y)

can be rewritten as

1 + (1 − θ)
1 −H(x, y)

H(x, y)
=

(
1 + (1 − θ)

1 − F(x)
F(x)

) (
1 + (1 − θ)

1 − F(x)
F(x)

)
That is λ(H(x, y)) = λ(F(x)) · λ(G(y)) where λ(t) = 1 + (1 − θ) 1−t

t .
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Let ϕ be defined as ϕ(t) = − log(λ(t)). Then, whenever we can write λ(H(x, y)) = λ(F(x)) ·λ(G(y))
for a function λ (positive in (0, 1)), we can write H as a sum of functions of the marginals, i.e.
ϕ(H(x, y)) = ϕ(F(x)) + ϕ(G(y)) or, for copulas, ϕ(C(u, v)) = ϕ(u) + ϕ(v).

Example 3.5.1. The copula Ĉθ given by Ĉθ(u, v) = (u−1/θ+v−1/θ
−1)−θ satisfiesϕ(C(u, v)) = ϕ(u)+ϕ(v)

with ϕ(t) = t−1/θ
− 1.

The main point of this kind of copulas is the ease with which they can be constructed but we
need to solve the relation ϕ(C(u, v)) = ϕ(u) + ϕ(v) for C(u, v), that is, C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)

)
for an appropriately defined ”inverse” ϕ[−1].

Definition 3.5.2. Let ϕ be a continuous, strictly decreasing function from I to [0,∞] such that ϕ(1) = 0.
The pseudo-inverse of ϕ is a function ϕ[−1] with Domϕ[−1] = [0,∞] and Ranϕ[−1] = I given by

ϕ[−1](t) =

 ϕ−1(t) if 0 ≤ t ≤ ϕ(0)
0 if ϕ(0) ≤ t ≤ ∞

Note that ϕ[−1] is continuous and non increasing on [0,∞], and strictly decreasing on [0, ϕ(0)]. Further-
more, ϕ[−1](ϕ(t)) = t on I and

ϕ(ϕ[−1](t)) =

 t if 0 ≤ t ≤ ϕ(0)
ϕ(0) if ϕ(0) ≤ t ≤ ∞

Finally, if ϕ(0) = ∞, then ϕ[−1] = ϕ−1.

Lemma 3.5.3. Let C be a function from I2 to I that satisfies C(u, v) = ϕ[−1](ϕ(u)+ϕ(v)). Then C satisfies
the boundary conditions for a copula.
C(u, 0) = ϕ[−1](ϕ(u) + ϕ(0)) = 0
C(u, 1) = ϕ[−1](ϕ(u) + ϕ(1)) = ϕ[−1](ϕ(u)) = u
Analogously, the conditions are satisfied for C(0, v) and C(1, v).

It has been seen that copulas can be constructed with a given function ϕ but it is not true
that they are always copulas. We have seen that a function ϕ has to be a continuous, strictly
decreasing function from I to [0,∞] such thatϕ(1) = 0. Then a function C from I2 to I that satisfies
C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) satisfies the boundary conditions for a copula. It is still necessary for
C to be 2-increasing in order to be a copula. Therefore, the election of ϕ must be restricted.

Lemma 3.5.4. C is 2-increasing if and only if whenever u1 ≤ u2, C(u2, v) − C(u1, v) ≤ u2 − u1.

Theorem 3.5.5. Letϕ be a continuous, strictly decreasing function from I to [0,∞] such thatϕ(1) = 0, and
letϕ[−1] be the pseudo-inverse ofϕ. Then the function C from I2 to I given by C(u, v) = ϕ[−1](ϕ(u)+ϕ(v))
is a copula if and only if ϕ is convex.

Copulas of the form C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) are called Archimedean Copulas and the function
ϕ is called a generator of the copula. If ϕ(0) = ∞, we say that ϕ is a strict generator and, in this
case, ϕ[−1] = ϕ−1 and C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) is said to be a strict Archimedean copula. To
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be precise, ϕ is an additive generator of C. If we set λ(t) = exp(−ϕ(t)) and λ[−1](t) = ϕ[−1](−ln(t)),
then C(u, v) = λ[−1](λ(u)λ(v)) and λ is called a multiplicative generator.

Some properties of Archimedean copulas are stated below. However, more properties can be
found in [3].

Theorem 3.5.6. Let C be an Archimedean copula with generator ϕ. Then:

1. C is symmetric; i.e., C(u, v) = C(v,u) ∀u, v ∈ I

2. C is associative, i.e, C(C(u, v),w) = C(u,C(v,w)) ∀u, v,w ∈ I

3. if c > 0 is any constant, then cϕ is also a generator of C

An example of a Archimedean copula is the product copula
∏

(u, v) = uv. Let ϕ(t) = − log(t) for
t in [0, 1]. Since ϕ(0) = ∞, ϕ is strict and, then, ϕ[−1](t) = ϕ−1(t) = e−t, and generating C yields
C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) = exp(−[(− log(u) + (− log(v))]) = exp(log(u) + log(v)) = uv.

Among copulas introduced in section 3.3, Clayton, Frank and Gumbel are Archimedean copulas
with generators ϕ(t) = 1

θ (t−θ − 1), ϕ(t) = − log
(

e−θt
−1

e−θ−1

)
and ϕ(t) = (− log(t))θ, respectively. It is

easy to check that the FGM copula is not Archimedean since it is not associative,

Cθ
(1
4
,Cθ

(1
2
,

1
3

))
, Cθ

(
Cθ

(1
4
,

1
2

)
,

1
3

)
for all θ ∈ [−1, 1] except 0. Hence, FGM copulas are not Archimedean except the specific case
when θ = 0, corresponding to the product copula case.

To summarize, Archimedean copulas can be constructed using functions that will serve as
generators, that is, continuous, decreasing convex functions ϕ from I to [0,∞] with ϕ(1) = 0.
With a given ϕ, families of Archimedean copulas can be generated with different values of the
dependence parameter, θ.

3.5.2 Fréchet-Hoeffding bounds for Archimedean copulas

The following theorems can often be used to determine whether or not M(u, v),
∏

(u, v) and
W(u, v) are limiting members of an Archimedean family. We let Ω denote the set of continuous
strictly decreasing convex functions ϕ from I to [0,∞] with ϕ(1) = 0.

Theorem 3.5.7. Let {Cθ|θ ∈ Θ} be a family of Archimedean copulas with differentiable generators ϕθ in
Ω. Then C = lim Cθ is an Archimedean copula if and only if there exists a function ϕ ∈ Ω such that for
all s, t ∈ (0, 1),

lim
ϕθ(s)
ϕ′
θ
(t)

=
ϕ(s)
ϕ′(t)

(3.2)

where ”lim” denotes the appropriate one-sided limit as θ approaches an endpoint of the parameter interval
Θ.
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Since the generator of W is ϕ(t) = 1 − t, W will be the limit of a family {Cθ|θ ∈ Θ} if
limϕθ(s)/ϕ′θ(t) = s − 1; and since the generator of

∏
is ϕ(t) = − log(t),

∏
will be the limit

of a family {Cθ|θ ∈ Θ} if limϕθ(s)/ϕ′θ(t) = t log(s).

Theorem 3.5.8. Let {Cθ|θ ∈ Θ} be a family of Archimedean copulas with differentiable generators ϕθ in
Ω. Then lim Cθ(u, v) = M(u, v) if and only if

lim
ϕθ(t)
ϕ′
θ
(t)

= 0 for t ∈ (0, 1) (3.3)

where ”lim” denotes the appropriate one-sided limit as θ approaches an endpoint of the parameter’s
interval Θ.

3.5.3 Kendall’s τ for Archimedean copulas

Quantifying dependence is relatively straightforward for Archimedean copulas because Kendall’s
τ simplifies to a function of the generator function.

Theorem 3.5.9. Let X and Y be random variables with an Archimedean copula C generated by ϕ in Ω.
The population version of Kendall’s τ for X and Y is given by

τ = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t)

dt (3.4)

On the other hand, there is not any known analytical relationship between the generator ϕ of a
copula and the Spearman’s correlation ρ of X and Y.



Chapter 4

Computing ARE for Gumbel copula

As introduced in chapter 2, the main aim of this master thesis is to study the robustness of the
methodology developed by Gómez and Lagakos [1] using the ARE to determine which should
be the main endpoint in a randomized clinical trial when changing the copula considered. In
the Gómez and Lagakos methodology, the Frank copula was chosen and, in this chapter, the
same methodology is developed but for another copula. For this new copula, the results and
guidelines for using the composite endpoint or the relevant endpoint are given for censoring
cases 1 and 3.

4.1 Stable (Gumbel-Hougaard) copula

The Asymptotic Relative Efficiency (ARE) will be defined for the Stable (Gumbel-Hougaard)
copula, also known as Gumbel Copula. As seen in chapter 3, the Gumbel Copula, compared to
Frank copula, yields to different families of bivariate distribution functions. The main difference
between Frank and Gumbel copula is that the first one exhibits weak tail dependence and the
second one shows a strong right tail dependence. On the other hand, Frank copula allows both
positive or negative dependence while Gumbel copula only allows positive dependence. This
could be a problem when comparing the results for both copulas since it would not be possible
to compare the ARE results for two negatively correlated outcomes. It is possible to find a
situation where higher values of an outcome are correlated to lower values of the other outcome,
for example in HIV area, the CD4 counts and the viral load are negatively correlated because
a higher number of CD4 counts is correlated to a lower viral load. However, in this master
thesis, the outcomes of interest are the time to the events and, therefore, it is difficult to consider
for a composite endpoint in clinical trials two outcomes with negatively correlated times. It
has been seen that each one of these two copulas drives us to different families of distribution
functions with the same correlation between them. This situation highlights the importance of
checking the robustness of the methodology for different copulas since it is not enough to only
take into account the correlation between the two possible outcomes. Although the correlation is
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the same using one or another copula, it is also important to consider their dependence structure.

The Gumbel copula is an Archimedean copula and its generator is given by ϕ(t) = (− log t)ϕ for
θ ≥ 1. The expression of this copula is

C(u, v;θ) = exp
(
−

[
(− log u)θ + (− log v)θ

]1/θ
)

and the limiting cases of the dependence parameter θ correspond to C(u, v; 1) =
∏

(u, v) and
C(u, v;∞) = M(u, v) [3].

4.2 Computing ARE for Gumbel copula

The steps used in chapter 2 are replicated for the computing of ARE with the new copula instead
of Frank copula, starting from the expression of ARE in censoring cases 1 and 3, defined in (2.6)
as

ARE(Z∗,Z) =

(
µ∗
µ

)2

=

(∫ 1
0 log

(
λ(1)
∗ (t)
λ(0)
∗ (t)

)
f (0)
∗ (t)dt

)2

(
log HR1

)2 (
∫ 1

0 f (0)
∗ (t)dt)(

∫ 1
0 f (0)

1 (t)dt)

where f (0)
1 (t) and f (0)

∗ (t) are, respectively, the densities for T1 and T∗ in group 0.

This expression of the ARE depends, among other things, on the law of T∗ and it can be obtained
from the bivariate distribution of (T1,T2).

Law of (T1,T2)
In this case, T1 and T2 are assumed to be binded by Gumbel survival copula instead of Frank
survival copula. Assuming equal association parameter θ for groups 0 and 1, the joint survival
function for (T1,T2) in group j ( j = 0, 1) is given by

S( j)
(1,2)(t1, t2;θ) = S( j)

1 (t1) + S( j)
2 (t2) − 1 + exp

(
−

[
(− log(1 − S( j)

1 (t1)))θ + (− log(1 − S( j)
2 (t2)))θ

]1/θ)
where S( j)

1 (t1) and S( j)
2 (t2) are the survival functions of T1 and T2, respectively, in group j.

Law of T∗
As seen in (2.7), S( j)

∗ (t;θ) = S( j)
(1,2)(t, t;θ), and having f ( j)

∗ (t;θ) = −∂S( j)
∗ (t;θ)/∂t, we have

S( j)
∗ (t;θ) = S( j)

1 (t) + S( j)
2 (t) − 1 + exp

(
−

[
(− log(1 − S( j)

1 (t)))θ + (− log(1 − S( j)
2 (t)))θ

]1/θ)
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f ( j)
∗ (t;θ) = f ( j)

1 (t) + f ( j)
2 (t) − exp

(
−

[
(− log(1 − S( j)

1 (t)))θ + (− log(1 − S( j)
2 (t)))θ

]1/θ
)

[
(− log(1 − S( j)

1 (t)))θ + (− log(1 − S( j)
2 (t)))θ

] 1−θ
θ

(− log(1 − S( j)
1 (t)))θ−1

f ( j)
1 (t)

1 − S( j)
1 (t)

+ (− log(1 − S( j)
2 (t)))θ−1

f ( j)
2 (t)

1 − S( j)
2 (t)


λ

( j)
∗ (t;θ) =

f ( j)
∗ (t;θ)

S( j)
∗ (t;θ)

Hence, in order to compute ARE(Z∗,Z) assuming Gumbel copula for both groups with equal
association parameter θ, we need to specify the same parameters as in Frank copula’s case:

• f ( j)
1 (t) and S( j)

1 (t): The marginal density and survival functions of T1 in group j ( j = 0, 1)

• f ( j)
2 (t) and S( j)

2 (t): The marginal density and survival functions of T2 in group j ( j = 0, 1)

• θ: The copula association parameter between T1 and T2.

• HR1: The constant hazard ratio of T1, HR1 = λ(1)
1 (t)/λ(0)

1 (t)

These parameters can be computed given the frequencies p1 and p2 of observing endpoint E1 and
E2 in treatment group 0, the relative treatment effects on E1 and E2 given by hazard ratios HR1

and HR2, the shape parameters of Weibull distribution β1 and β2 and the degree of dependence
between T1 and T2 given by Spearman’s rank correlation coefficient ρ.

The relation between those parameters is the same for both Gumbel and Frank copula, given
in chapter 2. However, as stated in chapter 3, the dependence parameter θ for Gumbel copula
cannot be obtained directly from Spearman’s ρ. The first idea was to obtain θ using Kendall’s
τ and then obtain a relation between ρ and τ. However, as stated in Theorem 3.4.1, it is not
true that there is a one-to-one relationship between these two concordance measures (ρ and τ).
In order to make the methodology comparable and using the same parameters for Gumbel and
Frank copula, including ρ, the dependence parameter has been obtained with ρ using numerical
approximations with the R-package copula [19, 20, 21].

4.3 Setting for the computations

We have now the expression of the ARE depending on parameters that can be understood from
a clinical point of view. Next step is to repeat the simulation studies carried out in [1] and [2] in
order to observe whether the composite endpoint should be used in each case or not depending
on these parameters. Therefore, the same plausible values for the different parameters have
been taken into account for the computations of ARE for both Frank and Gumbel copula and
censoring cases 1 and 3:

• Several frequency situations are reproduced for events E1 and E2 by taking probabilities p1

and p2 equal to 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5.
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• The relative treatment effect on the relevant endpoint E1, given by the hazard ratio HR1,
is set to 0.5, 0.6, 0.7 and 0.8, indicating that the effect of the treatment is beneficial. Each
hazard ratio is combined with eight different relative treatment effects on the additional
endpoint E2, namely HR2, and set to 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95.

• Values for the shape parameters of Weibull distribution β1 and β2 are set to 0.5, 1 and 2 in
order to have decreasing, constant and increasing hazards, respectively.

• A range of associations have been considered from weak (Spearman’s rank correlation
(ρ = 0.15, 0.25), through moderate (ρ = 0.35, 0.45) to strong (ρ = 0.55, 0.65, 0.75).

The proposed settings (shown in Table 4.1) provide 72.576 configurations for both cases 1 and 3.

β1 0.5 1 2
β2 0.5 1 2
p1 0.05 0.1 0.2 0.3 0.4 0.5
p2 0.05 0.1 0.2 0.3 0.4 0.5

HR1 0.5 0.6 0.7 0.8
HR2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
ρ 0.15 0.25 0.35 0.45 0.55 0.65 0.75

Table 4.1: Possible values for the simulation of ARE

The computations of ARE for both Frank and Gumbel copulas for censoring cases 1 and 3 were
done with software R (version 2.10.1) (see code in Appendix A).

4.4 Results for Gumbel Copula

Preliminary analyses show that the ARE for a given combination (p1, p2,HR1,HR2, ρ) is analo-
gous for the 9 different choices of (β1, β2) (this result was also concluded in [1, 2] for the Frank
Copula). Thus, we conclude that the behavior of ARE is independent of whether the marginal
hazard function are decreasing, constant or increasing. For the moment, no other choices for β1

and β2 have been considered.

We present the results for the particular combination of β1 = β2 = 1, where there are 8.064
different configurations for each censoring case 1 and 3. For each such case, these are grouped
for specific values of p1, p2,HR1 yielding a total number of 144 scenarios for each censoring case
1 and 3. For every scenario, the 7 value of ρ and the 8 values of HR2 are plotted as described
below. Each one of the 144 plots displays 8 curves corresponding to 8 different values of the
relative treatment effect on E2 (HR2). Each plot has Spearman’s ρ ranging from 0.15 to 0.75 on
the abscissa and the value of ARE on the ordinate, on a logarithmic scale. A logarithmic scale
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has been used since it represents better its significance. For example, an ARE(Z∗,Z) = 2 is as
relevant as an ARE(Z∗,Z) = 0.5. That is, the distance from a point with ARE(Z∗,Z) = 2 to 1 is the
same as the distance from a point with ARE(Z∗,Z) = 0.5 to 1.

Figure 4.1 shows the plot for the particular scenario for p1 = 0.1, p2 = 0.05 and HR1 = 0.6 for
censoring case 1 and it can be used by way of illustration. In this case, the ARE is higher than 1
for HR2 < 0.7 and is lower than 1 for HR2 > 0.7. For HR2 = 0.7, the threshold between having
the ARE higher or lower than 1 is at ρ = 0.55. Therefore, we could conclude that the composite
endpoint should be considered for HR2 > 0.7 or HR2 = 0.7 and weak or moderate correlation
between the 2 endpoints. The 288 plots (144 for each censoring case) depicting all the scenarios
of β1 = β2 = 1 can be found in Appendix B.

Figure 4.1: ARE for Gumbel copula (case 1) for HR1 = 0.6, p1 = 0.1 and p2 = 0.05.

4.4.1 Case-1 guidelines: non-fatal relevant and additional endpoints

The general pattern in a case where neither the relevant nor the additional endpoint is terminat-
ing, is that ARE decreases when the Spearman’s rank correlation between them increases; and
also when the relative effect of treatment on the additional endpoint decreases (HR2 increases).
This pattern is similar to the one concluded in [1] for Frank Copula. Almost all the plots display
a similar parallel behavior as shown, by way of example, in Figure 4.1. Thanks to this parallel
behavior, it is easy to develop general guidelines for using the composite endpoint depending
on HR1, HR2 and ρ. However, when p1 gets higher and p2 smaller, different behaviors can be
observed. Figure 4.2 is an example of this different behavior for p1 = 0.4 and p2 = 0.05. This
could be a problem but it can be observed that it does not affect the decision of whether to use
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or not the composite endpoint because the value of ARE for these situations is always smaller
than one and, hence, there is no doubt in deciding not to use the composite endpoint.

Figure 4.2: ARE for Gumbel copula (case 1) for p1 = 0.4 and p2 = 0.05.

The recommendation to use the composite endpoint is clear when the relative treatment effect
HR2 on the additional endpoint is smaller (higher beneficial effect) than on the relevant endpoint.
However, when HR2 is about the same of HR1, the composite endpoint should be used if p1 < 0.3.
If p1 ≥ 0.3 or HR2 is slightly larger than HR1, the decision on whether or not to use the composite
endpoint depends on the frequency of observing each endpoint together with their correlation.

4.4.2 Case-3 guidelines: relevant endpoint, fatal; additional endpoint, non-fatal

ARE behavior in cases where the relevant endpoint does but the additional endpoint does not
include a terminating event is very similar to that of case 1, in which neither event is fatal. Here
too it will be observed that ARE decreases: when the correlation between the two endpoint
increases; and when HR2 increases. In that case, it can also be observed that when p1 increases
and p2 is smaller, the ARE increases with the correlation.
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In censoring case 3, the decision is clear when the relative treatment effect is greater on the
additional endpoint than on the relevant endpoint (HR2 < HR1), in which case the composite
endpoint should always be used. On the other hand, when HR2 ≥ HR1, the relevant endpoint
should always be used when HR2 ≥ HR1 + 0.2. If the additional endpoint one plans to add to
the relevant endpoint has approximately the same (HR1 = HR2) or a slightly smaller effect on
treatment (HR2 −HR1 = 0.1) than does the relevant endpoint, the decision as to whether or not
the composite endpoint should be used is not clear, and the choice will depend on the value of
these effects on treatment together with the frequency of observations of either endpoint and its
correlation.

4.4.3 General Guidelines

The behavior of the ARE has been studied using graphical techniques but it is interesting to see
the percentages of situations on which the composite endpoint should be used as a function of
the different values of β1, β2, p1, p2,HR1,HR2 and ρ. The following figures consider these pro-
portions considering the 9 different cases for (β1, β2) and, hence, 72.576 cases for each censoring
case.

Figure 4.3 shows that the percentage of cases in which we should use the composite endpoint
(ARE > 1) is higher when the Spearman’s rank correlation value between the endpoint decreases.
However, this is not enough alone to elucidate whether or not to use the composite endpoint
and, hence, the influence of other parameters must be evaluate.

Figure 4.3: Percentage of situations for which the composite endpoint should be used by ρ.

Figure 4.4 shows that using the composite endpoint is less relevant as the probability of observing
the relevant endpoint gets larger. On the other hand, the additional endpoint tends to be more
necessary when the probability of being observed gets larger. This is not enough to recommend
the composite endpoint over the relevant endpoint and next figure shows how the ARE values
behave depending on the hazard ratios.
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Figure 4.4: Percentage of situations for which the composite endpoint should be used by p1 and
p2.

As stated above, Figure 4.5 shows how the values of the relative treatment effect on the relevant
(HR1) and additional (HR2) endpoint influence the ARE value. It is possible to observe that as
HR1 gets larger (and, hence, having less beneficial effect), adding a additional endpoint is more
convenient. On the other hand, the value of HR2 by itself is relevant. If it is small, the composite
endpoint should always be used and, if it is large, the relevant endpoint without the addition of
the additional endpoint should be used.

Figure 4.5: Percentage of situations for which the composite endpoint should be used by HR1

and HR2.
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It is interesting to study the behavior of the ARE for joint combinations of HR1 and HR2.
Figure 4.6 presents some conclusive results. The composite endpoint should almost always be
used if HR2 < HR1. On the other hand, the relevant endpoint should always be used if HR2 > 0.8
unless perhaps if the effect on E1 is also very low.

Figure 4.6: Percentage of situations for which the composite endpoint should be used by HR2

depending on HR1.

It can be observed in Figure 4.6 that the use of the composite endpoint could be determined by
the difference between HR1 and HR2. Figure 4.7 shows the behavior of the ARE depending on
this difference of hazard ratios without considering HR2 = 0.3 and HR2 = 0.95, where the com-
posite or relevant endpoint, respectively, should always be used. Therefore, the total number of
combinations is 54.432 for each censoring case. It can be observed that the composite endpoint
should always be used if HR2 −HR1 ≤ −0.2 and the relevant endpoint should always be used if
HR2 −HR1 ≥ 0.4 for both censoring cases 1 and 3.

Figure 4.7: Percentage of situations for which the composite endpoint should be used by the
difference between HR2 and HR1.

After these analysis, the scenarios where adding the additional endpoint is not clear are when
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−0.1 ≤ HR2−HR2 ≤ 0.3. Figure 4.8 shows the proportion of cases where the composite endpoint
should be used for each one of these differences depending on the value of ρ. The following can
be concluded:

• When HR2 = HR1 − 0.1, the composite endpoint should almost always be used (except
some cases when ρ = 0.75).

• When HR2 = HR1, the composite endpoint should be used whenever ρ < 0.45).

• The rest of cases should be studied depending on p1 and p2.

Figure 4.8: Percentage of situations for which the composite endpoint should be used by ρ
depending on the difference between HR2 and HR1.

Therefore, it is still necessary to study these 5 different scenarios where it is not clear which
endpoint should be used and it is necessary to study the behavior of ARE depending on p1 and
p2:

• HR2 = HR1 − 0.1 and ρ = 0.75.

• HR2 = HR1 and ρ ≥ 0.45.

• HR2 = HR1 + 0.1.

• HR2 = HR1 + 0.2.

• HR2 = HR1 + 0.3.
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Figure 4.9 summarizes what has been found about the proportion of cases in which the composite
endpoint should be used depending on HR1 and HR2.

Figure 4.9: Percentage of situations for which the composite endpoint (CE) should be used
instead of relevant endpoint (RE) by HR1 and HR2.

On the other hand, Figure 4.10 shows the proportion of cases where the composite endpoint
should be used for the 5 cases stated above, depending on p1 and p2 for both censoring cases 1
and 3. It can be observed that the recommendations are the following:

1. When HR2 = HR1 − 0.1 and ρ = 0.75, use the composite endpoint if:

• p1 ≤ 0.4

• p1 = 0.5 and p2 ≥ 0.2

2. When HR2 = HR1 and ρ ≥ 0.45, use the composite endpoint if:

• p1 ≤ 0.1

• p1 = 0.2 and p2 ≥ 0.1

• p1 = 0.3 and p2 ≥ 0.2

• p1 = 0.4 and p2 ≥ 0.4

3. When HR2 = HR1 + 0.1, use the composite endpoint if:

• p1 = 0.05 and p2 ≥ 0.2

• p1 = 0.1 and p2 = 0.5

4. When HR2 = HR1 + 0.2, use the relevant endpoint if:

• p1 ≥ 0.3

• p1 = 0.2 and p2 ≤ 0.2

• p1 = 0.1 and p2 = 0.05

5. When HR2 = HR1 + 0.3, use the relevant endpoint if:

• p1 ≥ 0.1

• p1 = 0.05 and p2 ≤ 0.2
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Figure 4.10: Percentage of situations for which the composite endpoint (CE) should be used
instead of relevant endpoint (RE) by p1 and p2 for particular scenarios of HR1, HR2 and ρ.

4.5 Conclusions

It is clear that the composite endpoint should be used when HR2 is small and the relevant end-
point should always be used when it is high. On the other hand, when HR2 is close to HR1, the
recommendation of whether to use or not the composite endpoint depends on the values of ρ,
p1 and p2. Most of the cases where it is not clear what should be used are when HR2 = HR1 + 0.1;
when HR2 = HR1, with p1 high and p2 small; and when HR2 = HR1 + 0.2, with p1 small and p2

high. Table 4.2 summarizes which are the cases where the composite and the relevant endpoints
should be chosen.

Use the relevant endpoint when: Use the composite endpoint when:
HR2=0.95 HR2 = 0.3

HR2 ≥ 0.9 and HR1 ≤ 0.6 HR2 ≤ HR1 − 0.1
HR2 = HR1 − 0.3 HR2 = HR1 with p1 ≤ p2

HR2 = HR1 − 0.2 with p1 ≥ 0.3

Table 4.2: Cases in which the composite or the relevant endpoint should be chosen

Figure 4.11 shows a decision tree for the selection of the composite endpoint or the relevant
endpoint depending on the value of HR1, HR2, p1, p2 and ρ. In those cases in which it is not
clear which one is better, it shows the percentage of cases with the values where the composite
endpoint should be chosen.
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Figure 4.11: Decision tree for the selection of the composite endpoint (CE) or the relevant
endpoint (RE).
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Chapter 5

Comparation of ARE for Frank and
Gumbel copulas

In chapter 4, we calculated the ARE using Frank and Gumbel copula and the results for the latter
were analyzed. In this chapter, we compare these results for censoring cases 1 and 3.

These results are compared in two different ways. On one hand, they are described and com-
pared using the absolute difference between both values. This could be useful in order to see if
there would be differences between different copulas when calculating a sample size given the
parameters and the copula. On the other hand, they are compared in terms of their concordance,
studying in which cases the methodology for both copulas yield to the same recommendation on
whether or not use the composite endpoint. We will say that there is concordance between both
copulas whenever the ARE values computed via Frank or via Gumbel copula are both greater
than 1 or both smaller than 1.

The results for the ARE using Frank and Gumbel copula with the same combinations of values
for β1, β2, HR1, HR2, p1, p2 and ρ given in Table 4.1 are used to study the robustness of the
methodology with respect to the different copulas. A total of 72.576 configurations have been
studied for both censoring cases 1 and 3.

5.1 Difference between the ARE values for Frank and Gumbel copulas

In what follows we compare the values of the ARE for both copulas using the absolute difference.

Table 5.1 shows that the ARE value for censoring case 1 ranges from 0.03 to 267.3 and 0.03 to
272.7 for Frank and Gumbel copulas, respectively. The mean values for the ARE for both copulas
are 4.9 and 5.1, respectively, with standard deviations of 15.2 and 15.5. We observe that the ARE
value for Gumbel copula is slightly higher than the ARE value for Frank copula. Actually, there
are 69.948 combinations (96.4%) where the value of the ARE is higher for Gumbel than for Frank
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copula and 2.628 combinations (3.6%) where it is the other way around.

mean (SD) min Q1 median Q3 max
AREFrank 4.95 (15.2) 0.026 0.76 1.18 2.93 267.3

AREGumbel 5.08 (15.5) 0.032 0.79 1.22 3.06 272.7
|AREFrank − AREGumbel| 0.14 (0.4) 2 × 10−7 0.02 0.04 0.11 9.529
SD = Standard Deviation. Q1 and Q3 are the first and third quartile.

Table 5.1: Descriptive Analysis of the ARE values for censoring case 1

Table 5.2 shows that the ARE value for censoring case 3 ranges from 0.025 to 277.1 and 0.03 to
282.6 for Frank and Gumbel copulas, respectively. The mean values for the ARE for both copulas
are 5.47 and 5.52, respectively, with standard deviations of 16.0 and 16.2. We observe again
that the ARE value for Gumbel copula is slightly higher than the ARE value for Frank Copula.
However, for this censoring case, there are 58.931 combinations (81.2%) in which the value of the
ARE is higher for Gumbel than for Frank copula and this percentage is lower than in censoring
case 1. On the other hand, there are 13.645 combinations (18.8%) where it is the ARE for Frank
copula which is higher.

mean (SD) min Q1 median Q3 max
AREFrank 5.47 (16.0) 0.025 0.71 1.33 3.68 277.1

AREGumbel 5.52 (16.2) 0.030 0.75 1.34 3.68 282.6
|AREFrank − AREGumbel| 0.12 (0.3) 1.5 × 10−7 0.02 0.04 0.10 9.013
SD = Standard Deviation. Q1 and Q3 are the first and third quartile.

Table 5.2: Descriptive Analysis of the ARE values for censoring case 3

Despite the fact that the value of ARE is higher for Gumbel copula, this difference is small in
almost all the cases. There are only 1.489 combinations (2.1%) and 1.395 combinations (1.9%) for
censoring cases 1 and 3, respectively, in which the absolute difference between the two values is
higher than one. On the other hand, in the 72.5% and 75.5% of the combinations for both cases,
respectively, the absolute difference is lower than 0.1 and, in the 56.4% and 55.5% of the cases,
respectively, it is lower than 0.05. It is important to remark that such a small difference would
imply an equivalent ratio of sample sizes using both copulas. Therefore, we can claim that the
differences between both copulas are negligible.

To complete the study on the relationship between ARE based on Frank and Gumbel copulas, the
correlation between them is calculated and it is 0.999 for both censoring cases 1 and 3. Moreover,
the relation between the two values has been explored using graphical techniques: Figure 5.1
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shows a bivariate plot of the ARE for Frank copula in the abscissa and the ARE for Gumbel
copula in the ordinate.

Figure 5.1: Bivariate plot of values of ARE for Frank and Gumbel copulas.

Using graphical techniques, it can be concluded that the value of the ARE using the Gumbel
copula is slightly higher than the value of the ARE using the Frank copula but they are similar
in all the cases. For censoring case 3, it is clear, as stated above, that there is a higher percentage
of cases in which the ARE for Frank copula is higher than the ARE for Gumbel copula than in
censoring case 1.

5.2 Concordance

It is relevant and of great practical importance to study in which situations both copulas yield
to the same recommendation on whether or not use the composite endpoint. An analysis of
concordance is performed and the results are provided in Table 5.3.

The first conclusion is that both copulas agree in recommending the use of the composite or the
relevant endpoint in 98.0% and 98.7% of the configurations for censoring cases 1 and 3, respec-
tively. We pay close attention to these situations in which the methodology yield to different
results for the two copulas (2.1% and 1.28% of the combinations for censoring cases 1 and 3,
respectively).
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AREFrank > 1 AREFrank ≤ 1

AREGumbel > 1
59.5% 1.9%
61.1% 1.2%

AREGumbel ≤ 1
0.02% 38.5%
0.08% 37.6%

Table 5.3: Percentage of cases depending on the ARE value using Frank or Gumbel copula for
censoring cases 1 and 3.

5.2.1 Composite endpoint using Frank copula and relevant endpoint using Gumbel
copula

Table 5.4 describes the behavior of the ARE value for those cases in which it is higher than 1
for Frank copula and lower than 1 for Gumbel copula. There are 11 cases for censoring case
1, in which the maximum difference between the two values is 0.03 and, hence, it is possible
to conclude that they are very similar although they disagree in recommending the use of the
composite endpoint. On the other hand, there are 58 cases for censoring case 3, in which the
maximum difference is 0.17. A box plot (Figure 5.2) is useful in order to study these differences
and it can be observed that there are a few values where this difference is higher than 0.1.
Actually, in 75% of the cases, the difference between the two values of the ARE is lower than
0.06.

AREFrank > 1 and AREGumbel ≤ 1 mean (SD) min Q1 median Q3 max
Censoring case 1 AREFrank 1.01 (0.01) 1.01 1.01 1.01 1.02 1.02

(n = 11) AREGumbel 0.99 (0.01) 0.98 0.98 0.99 0.99 0.99
AREFrank − AREGumbel 0.02 (0.01) 0.01 0.01 0.03 0.03 0.03

Censoring case 3 AREFrank 1.03 (0.03) 1.00 1.01 1.02 1.03 1.15
(n = 58) AREGumbel 0.98 (0.02) 0.94 0.97 0.98 0.99 1.00

AREFrank − AREGumbel 0.05 (0.03) 0.01 0.03 0.04 0.06 0.17
SD = Standard Deviation. Q1 and Q3 are the first and third quartile.

Table 5.4: Descriptive Analysis of the ARE values for those cases in which AREFrank > 1 and
AREGumbel ≤ 1
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Figure 5.2: Box plot of the difference between ARE values in cases in which AREFrank > 1 and
AREGumbel ≤ 1.

5.2.2 Composite endpoint using Gumbel copula and relevant endpoint using Frank
copula

Table 5.5 describes the behavior of the ARE value for those cases in which it is higher than 1 for
Gumbel copula and lower than 1 for Frank copula. There are 1.415 cases for censoring case 1, in
which the maximum difference between the two values is 0.14, and 891 cases for censoring case
3, in which the maximum difference is 0.12. Figure 5.3 shows the distribution of these differences.
It is interesting to remark that, in the 75% of the cases, the difference between the two values is
lower than 0.06.

AREFrank ≤ 1 and AREGumbel > 1 mean (SD) min Q1 median Q3 max
Censoring case 1 AREFrank 0.98 (0.02) 0.88 0.97 0.98 0.99 1.00

(n = 1.415) AREGumbel 1.02 (0.02) 1.00 1.01 1.02 1.03 1.13
AREGumbel − AREFrank 0.05 (0.03) 0.004 0.02 0.04 0.06 0.14

Censoring case 3 AREFrank 0.98 (0.02) 0.91 0.97 0.98 0.99 1.00
(n = 891) AREGumbel 1.02 (0.02) 1.00 1.01 1.02 1.03 1.09

AREGumbel − AREFrank 0.04 (0.02) 0.003 0.02 0.04 0.06 0.12
SD = Standard Deviation. Q1 and Q3 are the first and third quartile.

Table 5.5: Descriptive Analysis of the ARE values for those cases in which AREFrank ≤ 1 and
AREGumbel > 1.
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Figure 5.3: Box plot of the difference between ARE values in cases in which AREFrank ≤ 1 and
AREGumbel > 1.

5.3 Conclusions

After studying these results, we conclude that the methodology based on the ARE is robust for
the choice of the copula when restricted to Frank and Gumbel families. The values for both
copulas are highly correlated (ρ = 0.999 for both censoring cases 1 and 3) and yield to the same
recommendation of whether or not to use the composite endpoint in more than 98% of the
cases. In the remaining cases, the difference between both values of the ARE is lower than 0.15.
Moreover, this difference is lower than 0.06 in 75% of the situations (Q3 in Tables 5.4 and 5.5).
Considering that the values of the ARE are around 1, we notice that there would be a small effect
of the addition of the additional endpoint to the relevant endpoint and, hence, use the composite
endpoint in the computation of the sample size. As a remark, in Gómez and Lagakos paper [1],
they recommended to use the value of 1.1 as a threshold for using the composite endpoint or the
relevant endpoint.

Despite this high concordance, we have described the cases in which there was discordance
because it would be useful for future research using other copulas. These analysis can be found
in Appendix C and it can be concluded that both copulas disagree when HR1 and HR2 are quite
similar and for high values of p1 jointly with low values of p2. It its interesting to remark that
they are the same situations seen in chapter 4 in which the ARE value using Gumbel copula did
not yield to a clear recommendation on whether use or not use the composite endpoint.

Furthermore, after observing the high concordance between the values of the ARE for both Frank
and Gumbel copula, it could be interesting to study what is different in the computation of the
ARE for these two copulas. The main difference is the density function for the composite end-
point T∗ and, hence, an analysis of these density functions depending on the copula considered
has been performed.
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5.3.1 Density functions for the composite endpoint T∗

It is important to remark that the value of the ARE is given by the expression defined in (2.6) as

ARE(Z∗,Z) =

(
µ∗
µ

)2

=

(∫ 1
0 log

(
λ(1)
∗ (t)
λ(0)
∗ (t)

)
f (0)
∗ (t)dt

)2

(
log HR1

)2 (
∫ 1

0 f (0)
∗ (t)dt)(

∫ 1
0 f (0)

1 (t)dt)

where f (0)
1 (t) and f (0)

∗ (t) are, respectively, the densities for T1 and T∗ in group 0.

Therefore, the choice of one copula or another changes the value of the density function f (0)
∗ (t)

for T∗ in group 0. It is interesting to study the behavior of this density function depending on
the chosen copula. For this reason, some graphical exploratory analysis has been performed.

If the density functions of f (0)
∗ (t) and f (1)

∗ (t) are plotted for Frank and Gumbel copula, it can be
observed that there are not big differences between them. As a way of example, Figure 5.4 shows
these plots for two cases: the first plot corresponds to β1 = 0.5, β2 = 2, ρ = 0.45, HR1 = 0.8,
HR2 = 0.5 and p1 = 0.05 and p2 = 0.3 for censoring case 3; and the second one to β1 = β2 = 2,
ρ = 0.65, HR1 = 0.7, HR2 = 0.3 and p1 = p2 = 0.05 for censoring case 1.

Figure 5.4: Density functions for T∗ for treatment groups 0 and 1 and Frank and Gumbel copula.

It has been observed that density functions for both copulas are similar. Therefore, it is still
necessary for future research to prove this methodology based on the ARE values for more
extreme copulas in order to prove its robustness.
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Chapter 6

Concluding remarks and future research

This master thesis has contributed to a deeper understanding of some concepts that I had already
seen in some of the courses of the master. For example, I have studied theoretical concepts of
survival analysis or theory about asymptotic behavior in order to understand the methodology
developed by Gómez and Lagakos [1]. It has allowed me to learn more about some other con-
cepts such as measures of dependence or multivariate distribution or survival functions and,
moreover, it has allowed me to discover new ones, such as the copulas. I had never heard about
copulas until I started this master thesis and, hence, I needed to do great bibliographic research
about this field and study them deeply in order to understand their meaning and the difference
between different families of copulas.

The main objective of this master thesis was to study the robustness of the methodology devel-
oped by Gómez and Lagakos [1] when changing the copula considered for the construction of
the joint distribution function of the two possible endpoints. The results of this project showed
that the method is robust considering Frank and Gumbel copulas because they agreed in more
than 98% of the cases in both recommending the use of the composite or the relevant endpoint.
Furthermore, the ARE values were similar between both copulas and the difference between
the two values in discordant cases was very small. However, and as concluded in chapter 5, it
is necessary to prove the methodology for more extreme copulas because it has been seen that
Frank and Gumbel copulas yield to similar density functions for the composite endpoint. As a
first step for future research, the expression of the ARE for Clayton copula has been developed
in Appendix D and it has been included in the R function created to compute the ARE value
(Code in Appendix A).

In addition, this master thesis refreshed and improved my writing skills using LATEX and my
programming skills using the statistical software R. The PhD student Moises Gómez adapted the
Maple code used in Gómez and Lagakos methodology [1] in order to use it with R. One of my
contributions to the research in composite endpoints is that I took the codes for censoring cases 1
and 3 and improved it in order to make the iterations faster in simulation studies and to extend
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it easily to other copulas or other marginal distribution laws. These improvements enabled me
to test the methodology for a higher number of combinations than the ones used until now.
On the other hand, I learned how to use the R packages copula [19, 20, 21], in order to find a
numerical approximation of the dependence parameter θ given the correlation ρ; and rpanel

[22], a useful tool to construct a graphical display that allows the user to interact with a plot in
a very effective manner. The code used for generating pairs of random variables using different
copulas or plotting the distribution function of the density function of T∗ using rpanel can be
found in Appendix E. In addition, the software R, jointly with Microsoft Excel and Powerpoint,
enabled me to create all the figures of this master thesis.

This project could be considered as a part of the investigations that professor Guadalupe Gómez
and the rest of the research group in survival analysis GRASS are doing on composite endpoints.
This line of research is one of the mainstays of their research project for the following years.
Moreover, I would like to remark that this master thesis made me discover a passion for the
research and it gave me the opportunity to work with GRASS group researchers and took benefit
of either their knowledge and the work previously done.

It is important to keep on working to make this methodology as extended and applicable possible.
Therefore, this master thesis can be considered as the prelude of my Doctoral Thesis, based on
this research area. Some of the issues that could be carried out in the near future are the following:

• Extend the comparison between the ARE values computed via Frank or Gumbel copula to
censoring cases 2 and 4, with competing risks.

• Study the most common distribution laws for survival analysis and extend this methodol-
ogy for laws other than Weibull.

• Two different random variables with a given correlation yield to different joint distribution
functions depending on the copula used. Therefore, it is necessary to study the robustness
of this method for copulas different than Frank and Gumbel.

• Develop recommendations to decide when it is necessary to extend the relevant endpoint
to the composite based on the different parameter values amplifying the possibilities by
different tests as weighted log-rank test and other from the Fleming-Harrington family.

• Proportional hazards between the two outcomes have been considered in the research
done. It is important to develop different hypotheses in the case that proportionality does
not hold.

• Develop the statistical methodology if we consider the main outcome as a binary variable
instead of times to the event of interest.

I am very pleased of having the opportunity to help in the development of this methodology
because it will yield to numerous beneficial repercussions. The application of this new method
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of choosing the main endpoint in randomized clinical trials is important for the pharmaceutical
industry and other research institutions because it allows the design of better trials and increases
their power. It will help in the improvement of the health of the people and will reduce the
number of patients to be included in trials. Therefore, it will contribute in reducing unnecessary
costs which I think it is very important, especially now that the economic adjustments are in
order of the day.
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Appendix A

R code for ARE computations

The PhD student Moises Gómez adapted the Maple code used in Gómez and Lagakos method-
ology [1] in order to use it with R. My contribution to improve these scripts has been:

• Create a function ARE(rho,beta1,beta2,HR1,HR2,p1,p2,case,copula) replacing the sev-
eral scripts, one for each censoring case, in order to make it easier to compute an ARE value
for given parameters instead of making the scripts run for each combination.

• Compute the dependence parameter θ for a given ρ using the R-package copula [19, 20, 21]
in order to make it faster.

• Compute the ARE value for Gumbel and Clayton copulas.

These improvements have enabled me to test the methodology for a higher number of combina-
tions that the ones used until now and compare the results for the different copulas.

1 ##################################################################################

2 # ARE_case13.R

3 ##################################################################################

4 # Computation of the Asymptotic relative Efficiency (ARE) values for censoring

5 # cases 1 and 3 and copulas Frank, Gumbel and Clayton.

6 #

7 ##################################################################################

8 # This is an adaptation of the following scripts:

9 # Case_1_One_Scenario.R

10 # Case_3_One_Scenario.R

11 # Last update: 07/01/2012

12 # R version: R 2.9.2

13 # Author: MoisÈs GÛmez Mateu (moises.gomez.mateu@upc.edu)

14 #

15 # Improvements:

16 # Generalize the scripts in one unique function for cases 1 and 3

17 # Compute the ARE for Gumbel and Clayton copula

18 # Computation of dependence parameter theta using package copula

19 # Generalize the scripts in one unique function for Frank, Gumbel and Clayton copula

20 ##################################################################################

21 #

22 # CASE 1: The composite endpoint does not include a fatal event (i.e. Death)
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23 # in the relevant endpoint neither in the additional.

24 #

25 # CASE 3: The composite endpoint does includes a fatal event (i.e. Death)

26 # in the relevant endpoint but it does not in the additional.

27 #

28 # Last update: 05/06/2012

29 #

30 # R version: R 2.10.1

31 #

32 # Author: Oleguer Plana Ripoll (oleguerplana@gmail.com)

33 #

34 ##################################################################################

35 #

36 # Notation:

37 #

38 # HR1: Hazard ratio for the relevant endpoint E1.

39 # HR2: Hazard ratio for the additional endpoint E2.

40 # p10: Probability of occurence of the relevant event (or endpoint) in group zero (or placebo).

41 # p20: Probability of occurence of the additional event in group zero.

42 # p11: Probability of occurence of the relevant event (or endpoint) in treatment group.

43 # p21: Probability of occurence of the additional event in treatment group.

44 #

45 # beta1: Shape parameter for a Weibull law for the relevant event in both groups.

46 # beta2: Shape parameter for a Weibull law for the additional event in both groups.

47 #

48 # b10: Scale parameter for a Weibull law for the relevant event in group zero.

49 # b20: Scale parameter for a Weibull law for the additional event in group zero.

50 # b11: Scale parameter for a Weibull law for the relevant event in treatment group.

51 # b21: Scale parameter for a Weibull law for the additional event in treatment group.

52 #

53 # T1: Time to observe the relevant endpoint E1.

54 # T2: Time to observe the additional endpoint E2.

55 # rho: Spearman’s coefficient between T1 and T2.

56 #

57 # References:

58 # GÛmez G. and Lagakos S. Statistical Considerations in the Use of a Composite

59 # Time-to-Event Endpoint for Comparing Treatment Groups. Accepted (2012).

60 #

61 ##################################################################################

62

63 install.packages("copula")

64 library(copula)

65

66 #######################################################################################

67 # Function: ARE

68 #

69 #######################################################################################

70 # Descricption: It computes the ARE value for the given arguments

71 #

72 # rho Spearman’s coefficient that we set

73 # beta1 Shape parameter for a Weibull law for the relevant event

74 # beta2 Shape parameter for a Weibull law for the additional event

75 # HR1 Hazard Ratio for a Weibull law for the relevant event

76 # HR2 Hazard Ratio for a Weibull law for the additional event

77 # p1 Proportion of the relevant event expected in group zero

78 # p2 Proportion of the additional event expected in group zero

79 # case Censoring case -- > 1 (default) or 3

80 # copula Copula used --> "Frank" (default), "Gumbel" or "Clayton"
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81 #######################################################################################

82

83 ARE<-function(rho, beta1, beta2, HR1, HR2, p1, p2, case = 1, copula="Frank")

84 {

85

86 #######################################################################################

87 # Function calibSpearmansRho computes Theta from values of Rho (package copula)

88 #######################################################################################

89

90 if(copula=="Frank") {

91 theta <- calibSpearmansRho(frankCopula(0),rho)

92 }

93

94 if(copula=="Gumbel") {

95 theta <- calibSpearmansRho(gumbelCopula(1),rho)

96 }

97

98 if(copula=="Clayton") {

99 theta <- calibSpearmansRho(claytonCopula(1),rho)

100 }

101

102

103 ####### ASSESSMENT OF THE SCALE PARAMETER VALUES b10, b11, b20, b21

104 ## b20 is diferent for case 1 or 3

105

106 # b10 and b11 are the same for case 1 or 3

107 b10 <- 1/((-log(1-p1))ˆ(1/(beta1)))

108 b11 <- b10/HR1ˆ(1/beta1)

109

110 if(case==1) {

111 b20 <- 1/(-log(1-p2))ˆ(1/beta2)

112 } else

113 if (case==3) {

114 ################################################################################

115 # Function: Fb20

116 ################################################################################

117 # Description: It computes b20 value for case 3

118 # Arguments:

119 # b20

120 # p2 Probability of observing the additional endpoint

121 ################################################################################

122

123 Fb20<-function(b20,p2) {

124 integral<-integrate(function(y) {

125 sapply(y,function(y) {

126 integrate(function(x)((theta*(1-exp(-theta))*exp(-theta*(x+y)))

127 /(exp(-theta)+exp(-theta*(x+y))-exp(-theta*x)-exp(-theta*y))ˆ2),lower=0,

128 upper=exp(-((((-log(y))ˆ(1/beta2))*b20)/b10)ˆbeta1))$value

129 })

130 },

131 lower= exp(-(1/b20)ˆbeta2), upper=1)$value

132 return(integral-p2)

133 }

134 limits <- c(0.00001,10000)

135 b20 <- uniroot(Fb20, interval=limits,p2=p2)$root

136 }

137

138 # b21 is the same for case 1 or 3
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139 b21 <- b20/HR2ˆ(1/beta2)

140

141 ############## ARE (numerator and denominator) following Gomez and Lagakos paper

142

143 numerador <- function(t,b10,b11,b20,b21,beta1,beta2,theta,fT10,fT11,fT20,fT21,

144 ST10,ST11,ST20,ST21,Sstar0,fstar0,Lstar0,Sstar1,fstar1,Lstar1,HRstar,logHRstar) {

145 fT10 <- (beta1/b10) * ( (t/b10)ˆ(beta1 -1) ) * (exp(-(t/b10)ˆbeta1))

146 fT11 <- (beta1/b11) * ( (t/b11)ˆ(beta1 -1) ) * (exp(-(t/b11)ˆbeta1))

147 fT20 <- (beta2/b20) * ( (t/b20)ˆ(beta2 -1) ) * (exp(-(t/b20)ˆbeta2))

148 fT21 <- (beta2/b21) * ( (t/b21)ˆ(beta2 -1) ) * (exp(-(t/b21)ˆbeta2))

149 ST10 <- exp(-(t/b10)ˆbeta1)

150 ST11 <- exp(-(t/b11)ˆbeta1)

151 ST20 <- exp(-(t/b20)ˆbeta2)

152 ST21 <- exp(-(t/b21)ˆbeta2)

153

154 if(copula=="Frank") {

155 Sstar0 <- (-log(1+(exp(-theta*ST10)-1)*(exp(-theta*ST20)-1)/(exp(-theta)-1))/theta)

156

157 fstar0 <- (exp(-theta*ST10)*(exp(-theta*ST20)-1)*fT10+exp(-theta*ST20)*

158 (exp(-theta*ST10)-1)*fT20)/(exp(-theta*Sstar0)*(exp(-theta)-1))

159

160 Sstar1 <- (-log(1+(exp(-theta*ST11)-1)*(exp(-theta*ST21)-1)/(exp(-theta)-1))/theta)

161

162 fstar1 <- (exp(-theta*ST11)*(exp(-theta*ST21)-1)*fT11+exp(-theta*ST21)*

163 (exp(-theta*ST11)-1)*fT21)/(exp(-theta*Sstar1)*(exp(-theta)-1))

164 }

165

166 if(copula=="Gumbel") {

167 Sstar0 <- ST10 + ST20 -1 + exp(-(((-log(1-ST10))ˆtheta+(-log(1-ST20))ˆtheta)ˆ(1/theta)))

168

169 fstar0 <- fT10 + fT20 - (exp(-(((-log(1-ST10))ˆtheta+(-log(1-ST20))ˆtheta)ˆ(1/theta))))*

170 (((-log(1-ST10))ˆtheta+(-log(1-ST20))ˆtheta)ˆ((1-theta)/theta))*

171 (((-log(1-ST10))ˆ(theta -1))*(fT10/(1-ST10))+((-log(1-ST20))ˆ(theta -1))*(fT20/(1-ST20)))

172

173 Sstar1 <- ST11 + ST21 -1 + exp(-(((-log(1-ST11))ˆtheta+(-log(1-ST21))ˆtheta)ˆ(1/theta)))

174

175 fstar1 <- fT11 + fT21 - (exp(-(((-log(1-ST11))ˆtheta+(-log(1-ST21))ˆtheta)ˆ(1/theta))))*

176 (((-log(1-ST11))ˆtheta+(-log(1-ST21))ˆtheta)ˆ((1-theta)/theta))*

177 (((-log(1-ST11))ˆ(theta -1))*(fT11/(1-ST11))+((-log(1-ST21))ˆ(theta -1))*(fT21/(1-ST21)))

178

179 }

180

181 if(copula=="Clayton") {

182 Sstar0 <- ST10 + ST20 -1 + (((1-ST10)ˆ(-theta))+((1-ST20)ˆ(-theta))-1)ˆ(-1/theta)

183

184 fstar0 <- fT10 + fT20 - ((((1-ST10)ˆ(-theta))+((1-ST20)ˆ(-theta))-1)ˆ(-(1+theta)/theta))*

(((1-ST10)ˆ(-theta -1))*fT10+((1-ST20)ˆ(-theta -1))*fT20)

185

186 Sstar1 <- ST11 + ST21 -1 + (((1-ST11)ˆ(-theta))+((1-ST21)ˆ(-theta))-1)ˆ(-1/theta)

187

188 fstar1 <- fT11 + fT21 - ((((1-ST11)ˆ(-theta))+((1-ST21)ˆ(-theta))-1)ˆ(-(1+theta)/theta))*

(((1-ST11)ˆ(-theta -1))*fT11+((1-ST21)ˆ(-theta -1))*fT21)

189

190 }

191

192 Lstar0 <- (fstar0/Sstar0)

193 Lstar1 <- (fstar1/Sstar1)

194 HRstar <- (Lstar1/Lstar0)
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195 logHRstar <- log(HRstar)

196

197 return(logHRstar*fstar0)

198 }

199

200 numerador1<-integrate(numerador ,lower=0,upper=1, b10,b11,b20,b21,beta1,beta2,

201 theta,fT10,fT11,fT20,fT21,ST10,ST11,ST20,ST21,Sstar0,fstar0,Lstar0,Sstar1,fstar1,

202 Lstar1,HRstar,logHRstar ,subdivisions=1000,stop.on.error = FALSE)

203

204 numerador2<-(numerador1$value)ˆ2

205

206 ST10_1 <- exp(-(1/b10)ˆbeta1)

207 ST20_1 <- exp(-(1/b20)ˆbeta2)

208

209 if(copula=="Frank") {

210 Sstar0_1 <- (-log(1+(exp(-theta*ST10_1)-1)*(exp(-theta*ST20_1)-1)/(exp(-theta)-1))/theta)

211 }

212

213 if(copula=="Gumbel") {

214 Sstar0_1 <- ST10_1 + ST20_1 -1 + exp(-(((-log(1-ST10_1))ˆtheta+(-log(1-ST20_1))ˆtheta)ˆ(1/

theta)))

215 }

216

217 if(copula=="Clayton") {

218 Sstar0_1 <- ST10_1 + ST20_1 -1 + (((1-ST10_1)ˆ(-theta))+((1-ST20_1)ˆ(-theta))-1)ˆ(-1/theta)

219 }

220

221 ST10_1 <- exp(-(1/b10)ˆbeta1)

222

223 denominador <- ((log(HR1))ˆ2)*(1-Sstar0_1)*(1-ST10_1)

224

225 AREstarT <- (numerador2/denominador)

226

227 # IF THE VALUE THE NUMERATOR IS NOT COMPUTED, THEN WE ASSIGN A MISSING IN THE ARE VALUE

228 if(numerador1$message!="OK") {AREstarT <- NA}

229

230 # ARE VALUE:

231 return(AREstarT )

232

233 }

234

235

236 ##################################################################################

237 ##################################################################################

238 # EXAMPLES

239 ##################################################################################

240 ##################################################################################

241

242 ARE(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Frank")

243 ARE(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Gumbel")

244 ARE(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Clayton")

245

246 ARE(rho=0.5,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Frank")

247 ARE(rho=0.5,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Gumbel")

248 ARE(rho=0.5,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Clayton")

249

250 ARE(rho=0.8,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Frank")

251 ARE(rho=0.8,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Gumbel")
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252 ARE(rho=0.8,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Clayton")

253

254 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Frank")

255 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Gumbel")

256 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Clayton")

257

258 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Frank")

259 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Gumbel")

260 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Clayton")

261

262 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.7,HR2=0.6,p1=0.3,p2=0.5,case=1,copula="Frank")

263 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.7,HR2=0.6,p1=0.3,p2=0.5,case=1,copula="Gumbel")

264 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.7,HR2=0.6,p1=0.3,p2=0.5,case=1,copula="Clayton")

265

266 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.9,HR2=0.4,p1=0.6,p2=0.3,case=1,copula="Frank")

267 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.9,HR2=0.4,p1=0.6,p2=0.3,case=1,copula="Gumbel")

268 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.9,HR2=0.4,p1=0.6,p2=0.3,case=1,copula="Clayton")

269

270 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.6,p1=0.6,p2=0.3,case=1,copula="Frank")

271 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.6,p1=0.6,p2=0.3,case=1,copula="Gumbel")

272 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.6,p1=0.6,p2=0.3,case=1,copula="Clayton")

273

274 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.6,p1=0.3,p2=0.7,case=1,copula="Frank")

275 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.6,p1=0.3,p2=0.7,case=1,copula="Gumbel")

276 ARE(rho=0.2,beta1=2,beta2=2,HR1=0.5,HR2=0.6,p1=0.3,p2=0.7,case=1,copula="Clayton")

277

278 ##################################################################################

279 ##################################################################################

280 # APPENDIX

281 ##################################################################################

282 ##################################################################################

283

284 # WEIBULL DISTRIBUTION

285 ?dweibull

286

287 # DENSITY FUNCTION

288 dweibull(x, shape, scale = 1, log = F)

289 f(t) = (beta1/b10) * ( (t/b10)ˆ(beta1 -1) ) * (exp(-(t/b10)ˆbeta1))

290

291 # CUMULATIVE DISTRIBUTION FUNCTION => S(t) = 1 - F(t)

292 pweibull(q, shape, scale = 1, lower.tail = T, log.p = F)

293 F(t) = exp(-(t/b10)ˆbeta1)

../R/Case 13 One Scenario OLEGUER.r
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ARE plots depending on HR1, HR2, p1,
p2 and ρ for censoring cases 1 and 3

The following pages contain the plots for the particular combination of β1 = β2 = 1 and the
remaining parameters given in Table 4.1, where there are 8.064 different configurations for each
censoring case 1 and 3. For each such case, these are grouped for specific values of p1, p2 and
HR1 yielding a total number of 144 scenarios for each censoring case 1 and 3. Therefore, the
following 144 plots are grouped in the following way: the first 6 pages correspond to censoring
case 1 and the following 6 to censoring case 3; each page correspond to a different value of p1

and it contains 24 plots; within each page, there are 6 rows, each one corresponding to a different
value of p2; each row contains 4 plots, each one corresponding to a different value HR1.

For every scenario, the 7 value of ρ and the 8 values of HR2 are plotted as described below. Each
one of the 144 plots displays 8 curves corresponding to 8 different values of the relative treatment
effect on E2 (HR2). Each plot have Spearman’s ρ ranging from 0.15 to 0.75 on the abscissa and
the value of ARE on the ordinate, on a logarithmic scale. A logarithmic scale has been used
since it represents better its significance. For example, an ARE(Z∗,Z) = 2 is as relevant as an
ARE(Z∗,Z) = 0.5. That is, the distance from a point with ARE(Z∗,Z) = 2 to 1 is the same as the
distance from a point with ARE(Z∗,Z) = 0.5 to 1.
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Appendix C

Discordance between Frank and
Gumbel copulas in recommending the
use of the composite endpoint

It is interesting to study if discordant cases follow any patron and find which values of β1, β2,
p1, p2, HR1, HR2 and ρ yield to different recommendations in whether use or not the composite
endpoint.

Composite endpoint using Frank copula and relevant endpoint using Gumbel copula

There are 11 cases in which AREFrank > 1 and AREGumbel ≤ 1 for censoring case 1. In all these
cases, ρ = 0.75 and p1 = p2 = 0.5:

• There are 4 cases in which HR1 = HR2 = 0.7 with (β1, β2) ∈ {(0.5, 1), (1, 0.5), (1, 2), (2, 1)}.

• There are 7 cases in which HR1 = HR2 = 0.8 with (β1, β2) ∈ {(0.5, 1), (1, 0.5), (1, 2), (2, 1)} or
β1 = β2 ∈ {0.5, 1, 2}.

The number of discordant cases is higher for censoring case 3, with 58 cases in which the ARE
is higher than 1 using the Frank copula and lower than 1 using the Gumbel copula. As seen for
censoring case 1, most of these cases are when HR1 = HR2 (35 cases) or HR2 = HR1 + 0.1 (23
cases). None of the other situations yield to a value of the ARE higher than 1 using Frank copula
and lower than 1 using Gumbel copula. When studying these 58 cases depending on p1 and p2,
it can be observed that despite one case in which p1 = p2 = 0.05, all other cases correspond to
values of p1 higher than 0.3. On the other hand, the number of discordant cases increases as ρ
gets larger, ranging from 1 case for ρ = 0.15 to 20 cases for ρ = 0.75.

Composite endpoint using Gumbel copula and relevant endpoint using Frank copula

In the situation in which AREGumbel > 1 and AREFrank ≤ 1, there are 1.415 cases for censoring case
1 and 891 cases for censoring case 3. Therefore, it is not useful to list all of them and an analysis
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of its parameters is needed. Figure C.1 shows the number of combinations that do not agree
depending on HR1 and HR2. It can be observed that the cases where there are more discordant
situations are when −0.1 ≤ HR2 −HR1 ≤ 0.1.

Figure C.1: Number of combinations in which AREGumbel > 1 and AREFrank ≤ 1 by HR1 and HR2.

If the same analysis is carried out considering the difference HR2 − HR1 without considering
HR2 = 0.95 in which all the cases are concordant, it can be confirmed that the highest number of
discordant cases are when HR1 and HR2 have similar values (Figure C.2).

Figure C.2: Number of combinations in which AREGumbel > 1 and AREFrank ≤ 1 by HR2 −HR1.

When the probabilities of observing the relevant and additional endpoints are considered, it can
be observed that the number of discordant cases increases as p1 gets larger and decreases as p2

gets larger (Figure C.3).
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Figure C.3: Number of combinations in which AREGumbel > 1 and AREFrank ≤ 1 by p1 and p2.

On the other hand, as seen in Figure C.4, the number of discordant cases depending on ρ in-
creases as the correlation gets higher, ranging from 58 and 60 cases for ρ = 0.15 to 414 and 194
cases for ρ = 0.75, for censoring cases 1 and 3, respectively.

Figure C.4: Number of combinations in which AREGumbel > 1 and AREFrank ≤ 1 by ρ.

It is interesting to remark the behavior of the discordant cases when the shape parameters β1

and β2 of the Weibull distribution are taken into account. As seen in Table C.1, there are no big
differences in the distribution of the discordant cases but it is interesting to see that the same
number of cases are discordant when (β1, β2) = (0.5, 1) and (β1, β2) = (1, 2); when (β1, β2) = (1, 0.5)
and (β1, β2) = (2, 1); and when β1 = β2 = 0.5, 1 or 2.If these cases are studied, not only the number
of cases are the same but the cases themselves are the same. It is also interesting to remark that
the number of discordant cases increases as β1 gets smaller and β2 gets larger for censoring case
1 but the opposite behavior occurs for censoring case 3.
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the composite endpoint

Censoring case 1 β2 = 0.5 β2 = 1 β2 = 2
β1 = 0.5 164 163 176
β1 = 1 147 164 163
β1 = 2 127 147 164

Censoring case 3 β2 = 0.5 β2 = 1 β2 = 2
β1 = 0.5 108 74 66
β1 = 1 115 108 74
β1 = 2 123 115 108

Table C.1: Number of combinations in which Gumbel and Frank copulas do not agree in
recommending the use of the composite endpoint depending on β1 and β2.

After these analyses, and as said in chapter 5, it is possible to conclude that both copulas disagree
when HR1 and HR2 are quite similar and for high values of p1 jointly with low values of p2 or
strong correlation between the relevant and the additional endpoints.



Appendix D

Computing ARE for Clayton copula

The main aim of this master thesis is to study the robustness of copulas in assessing the effi-
ciency of the main endpoint in a randomized control trial. Gómez and Lagakos [1] used Frank
copula and it has been compared to Gumbel copula in this master thesis. In this Appendix, the
methodology based on the ARE is developed for Clayton copula in order to compare the results
with the previous ones in future research.

As seen in chapter 3, the Clayton Copula conduces to different families of bivariate distribution
functions than Frank or Gumbel copulas. The main difference between Clayton, Frank and
Gumbel copulas is that the first one exhibits strong left tail dependence while Frank copula
exhibit weak tail dependence and the Gumbel copula shows a strong right tail dependence. On
the other hand, Frank copula allows both positive or negative dependence while Gumbel and
Clayton copulas only allow positive dependence. As stated in chapter 4, this could be a problem
but, in clinical trials, it is difficult to find an scenario where the time to the two possible outcomes
are correlated negatively.

The Clayton copula is an Archimedean copula and its generator is ϕ(t) = 1
θ (t−θ − 1). The

expression of this copula is
C(u, v;θ) = (u−θ + v−θ − 1)−1/θ

and the limiting cases of the dependence parameter θ correspond to C(u, v; 0) = π(u, v) and
C(u, v;∞) = M(u, v) [3].

The same steps used in chapters 2 and 4 are followed on the computing of ARE with Clayton
copula starting from the expression of ARE in censoring cases 1 and 3, defined in (2.6) as

ARE(Z∗,Z) =

(
µ∗
µ

)2

=

(∫ 1
0 log

(
λ(1)
∗ (t)
λ(0)
∗ (t)

)
f (0)
∗ (t)dt

)2

(
log HR1

)2 (
∫ 1

0 f (0)
∗ (t)dt)(

∫ 1
0 f (0)

1 (t)dt)

where f (0)
1 (t) and f (0)

∗ (t) are, respectively, the densities for T1 and T∗ in group 0.
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This expression of the ARE depends, among other things, on the law of T∗ and it can be obtained,
again, from the bivariate distribution of (T1,T2). The objective is to obtain the expression of the
ARE depending on the same parameters as Frank and Gumbel copulas.

Law of (T1,T2)
In this case, T1 and T2 are assumed to be binded by Clayton survival copula instead of Frank or
Gumbel survival copulas. Assuming equal association parameter θ for groups 0 and 1, the joint
survival function for (T1,T2) in group j ( j = 0, 1) is given by

S( j)
(1,2)(t1, t2;θ) = S( j)

1 (t1) + S( j)
2 (t2) − 1 + [(1 − S( j)

1 (t1))−θ + (1 − S( j)
2 (t2))−θ − 1]−1/θ

where S( j)
1 (t1) and S( j)

2 (t2) are the survival functions of T1 and T2, respectively, in group j.

Law of T∗
As seen in (2.7), S( j)

∗ (t;θ) = S( j)
(1,2)(t, t;θ), and having f ( j)

∗ (t;θ) = −∂S( j)
∗ (t;θ)/∂t, we have

S( j)
∗ (t;θ) = S( j)

1 (t) + S( j)
2 (t) − 1 + [(1 − S( j)

1 (t))−θ + (1 − S( j)
2 (t))−θ − 1]−1/θ

f ( j)
∗ (t;θ) = f ( j)

1 (t)+ f ( j)
2 (t)−[(1−S( j)

1 (t))−θ+(1−S( j)
2 (t))−θ−1]−

1+θ
θ

(
(1 − S( j)

1 (t))−(1+θ) f ( j)
1 (t) + (1 − S( j)

2 (t))−(1+θ) f ( j)
2 (t)

)

λ
( j)
∗ (t;θ) =

f ( j)
∗ (t;θ)

S( j)
∗ (t;θ)

Hence, in order to compute ARE(Z∗,Z) assuming Clayton copula for both groups with equal
association parameter θ, we need to specify the same parameters than in the cases assuming
Frank or Gumbel copulas.

The relation between those parameters is the same for Clayton, Gumbel and Frank copula,
given in chapters 2 and 4. As stated in chapter 3, the dependence parameter θ for Clayton
copula cannot be obtained directly from Spearman’s ρ as well as for Gumbel Copula. In this
case, it is also necessary to use numerical approximations using the R-package copula [19, 20, 21].

It is left for future research the simulation cases using Clayton copula and compare its results
with the ones obtained from Frank and Gumbel copulas.
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R code for interactive graphical display

It has been seen in chapter 3 that two random variables with a fixed correlation yield to a joint
distribution function that depends on its dependence structure and, hence, in the copula that
links the marginal distribution functions. The R-package rpanel [22] is a powerful graphical
tool to study how this dependence structure is important. On the other hand, it is also useful in
order to study the difference between density functions of T∗ for a given copula.

The following scripts have been used in order to study these issues.

1 install.packages("rpanel")

2 library(rpanel)

3 install.packages("copula")

4 library(copula)

5

6 #Functions for Gumbel Copula

7 K<-function(w,theta,v2) {

8 return(w*(1-((log(w))/theta))-v2)

9 }

10

11 equacio<-function(gm,K,theta) {

12 gm[3]<-uniroot(K, interval=c(0.000000001,0.999999999999), theta=theta, v2=gm[2])$root

13 }

14

15 gumbel_random<-function(n,theta) {

16 gm<-cbind(runif(n),runif(n),NA,NA,NA) #gumbel manual

17 gm[,3]<-apply(gm,1,equacio,K=K,theta=theta)

18 gm[,4]<-exp((gm[,1]ˆ(1/theta))*log(gm[,3]))

19 gm[,5]<-exp(((1-gm[,1])ˆ(1/theta))*log(gm[,3]))

20 return(gm[,4:5])

21 }

22

23 #rpanel

24 rp.copula<-function ()

25 {

26 copulaplot.pars <- function(copulaplot) {

27 rho2<-as.numeric(copulaplot$rho)

28 n2<-copulaplot$n

29
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30 #Computation of theta

31 copulaplot$theta_frank<-calibSpearmansRho(frankCopula(param=4,dim=2),rho2)

32 copulaplot$theta_clayton<-calibSpearmansRho(claytonCopula(param=4,dim=2),rho2)

33 copulaplot$theta_gumbel<-calibSpearmansRho(gumbelCopula(param=4,dim=2),rho2)

34

35 #Generation of random pairs

36 copulaplot$frank<-rcopula(frankCopula(param=copulaplot$theta_frank,dim=2),n2)

37 copulaplot$clayton<-rcopula(claytonCopula(param=copulaplot$theta_clayton,dim=2),n2)

38 #copulaplot$gumbel<-rcopula(gumbelCopula(param=copulaplot$theta_gumbel,dim=2),n2)

39 #It does not work --> Manual method:

40 copulaplot$gumbel<-gumbel_random(n2,copulaplot$theta_gumbel)

41

42 copulaplot.draw(copulaplot)

43 }

44

45 copulaplot.draw <- function(copulaplot) {

46 copulaplot$n <- max(copulaplot$n, 1)

47 with(copulaplot , {

48 par(mfrow = c(2,2),oma=c(0,0,1,0))

49 if(frank.showing == "TRUE") {

50 plot(frank,main="Frank’s copula",xlab="u",ylab="v",xlim=c(0,1),ylim=c(0,1))

51 }

52 else { plot(1, type="n", axes=F, xlab="", ylab="") }

53 if(gumbel.showing == "TRUE") {

54 plot(gumbel,main="Gumbel’s copula",xlab="u",ylab="v",xlim=c(0,1),ylim=c(0,1))

55 }

56 else { plot(1, type="n", axes=F, xlab="", ylab="") }

57 if(clayton.showing == "TRUE") {

58 plot(clayton,main="Clayton’s copula",xlab="u",ylab="v",xlim=c(0,1),ylim=c(0,1))

59 }

60 else { plot(1, type="n", axes=F, xlab="", ylab="") }

61 if(sobreposar.showing == "TRUE") {

62 plot(frank,pch=19,cex=0.5,xlab="u",ylab="v",xlim=c(0,1),ylim=c(0,1))

63 points(gumbel,pch=19,cex=0.5,col="red")

64 points(clayton,pch=19,cex=0.5,col="green")

65 legend("topleft",c("Frank","Gumbel","Clayton"),col=c("black","red","green"),pch=19,

bg="white")

66 }

67 else { plot(1, type="n", axes=F, xlab="", ylab="") }

68 title(paste("n =",n," / rho =",rho),outer=T)

69

70 })

71 copulaplot

72 }

73

74 #Configure the panel

75 copula.panel <- rp.control("Copula tool", n = 350, rho = 0.8)

76 rp.slider(copula.panel, rho, 0.01, 0.99, initval=0.8, title = "rho", action = copulaplot.

pars)

77 rp.doublebutton(copula.panel, rho, initval=0.8, range=c(0.01,0.99),showvalue=T,step=0.01,

action = copulaplot.pars)

78 rp.textentry(copula.panel, n, title = "n", action = copulaplot.pars)

79 rp.checkbox(copula.panel, frank.showing, initval= "TRUE", title = "Frank’s Copula",action =

copulaplot.draw)

80 rp.checkbox(copula.panel, gumbel.showing, initval= "TRUE", title = "Gumbel’s Copula",action

= copulaplot.draw)

81 rp.checkbox(copula.panel, clayton.showing, initval= "FALSE", title = "Clayton’s Copula",

action = copulaplot.draw)
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82 rp.checkbox(copula.panel, sobreposar.showing, initval= "FALSE", title = "SOBREPOSAR",

action = copulaplot.draw)

83 rp.do(copula.panel, copulaplot.pars)

84 }

85

86 rp.copula()

../R/random pairs copulas.r

1 install.packages("copula")

2 library(copula)

3

4 #Draw f*

5 fstar<-function(rho, beta1, beta2, HR1, HR2, p1, p2, case = 1, copula="Frank",group=1,x)

6 {

7 if(copula=="Frank") {

8 theta <- calibSpearmansRho(frankCopula(0),rho)

9 }

10 if(copula=="Gumbel") {

11 theta <- calibSpearmansRho(gumbelCopula(1),rho)

12 }

13 if(copula=="Clayton") {

14 theta <- calibSpearmansRho(claytonCopula(1),rho)

15 }

16

17 ####### ASSESSMENT OF THE SCALE PARAMETER VALUES b10, b11, b20, b21

18 ## b20 is diferent for case 1 or 3

19

20 # b10 and b11 are the same for case 1 or 3

21 b10 <- 1/((-log(1-p1))ˆ(1/(beta1)))

22 b11 <- b10/HR1ˆ(1/beta1)

23

24 if(case==1) {

25 b20 <- 1/(-log(1-p2))ˆ(1/beta2)

26 } else

27 if (case==3) {

28 ################################################################################

29 # Function: Fb20

30 ################################################################################

31 # Description: It computes b20 value for case 3

32 # Arguments:

33 # b20

34 # p2 Probability of observing the additional endpoint

35 ################################################################################

36

37 Fb20<-function(b20,p2) {

38 integral<-integrate(function(y) {

39 sapply(y,function(y) {

40 integrate(function(x)((theta*(1-exp(-theta))*exp(-theta*(x+y)))

41 /(exp(-theta)+exp(-theta*(x+y))-exp(-theta*x)-exp(-theta*y))ˆ2),lower=0,

42 upper=exp(-((((-log(y))ˆ(1/beta2))*b20)/b10)ˆbeta1))$value

43 })

44 },

45 lower= exp(-(1/b20)ˆbeta2), upper=1)$value

46 return(integral-p2)

47 }

48 limits <- c(0.00001,10000)

49 b20 <- uniroot(Fb20, interval=limits,p2=p2)$root
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50 }

51

52 # b21 is the same for case 1 or 3

53 b21 <- b20/HR2ˆ(1/beta2)

54

55 fT10 <- (beta1/b10) * ( (x/b10)ˆ(beta1 -1) ) * (exp(-(x/b10)ˆbeta1))

56 fT11 <- (beta1/b11) * ( (x/b11)ˆ(beta1 -1) ) * (exp(-(x/b11)ˆbeta1))

57 fT20 <- (beta2/b20) * ( (x/b20)ˆ(beta2 -1) ) * (exp(-(x/b20)ˆbeta2))

58 fT21 <- (beta2/b21) * ( (x/b21)ˆ(beta2 -1) ) * (exp(-(x/b21)ˆbeta2))

59 ST10 <- exp(-(x/b10)ˆbeta1)

60 ST11 <- exp(-(x/b11)ˆbeta1)

61 ST20 <- exp(-(x/b20)ˆbeta2)

62 ST21 <- exp(-(x/b21)ˆbeta2)

63

64 if(copula=="Frank") {

65 Sstar0 <- (-log(1+(exp(-theta*ST10)-1)*(exp(-theta*ST20)-1)/(exp(-theta)-1))/theta)

66

67 fstar0 <- (exp(-theta*ST10)*(exp(-theta*ST20)-1)*fT10+exp(-theta*ST20)*

68 (exp(-theta*ST10)-1)*fT20)/(exp(-theta*Sstar0)*(exp(-theta)-1))

69

70 Sstar1 <- (-log(1+(exp(-theta*ST11)-1)*(exp(-theta*ST21)-1)/(exp(-theta)-1))/theta)

71

72 fstar1 <- (exp(-theta*ST11)*(exp(-theta*ST21)-1)*fT11+exp(-theta*ST21)*

73 (exp(-theta*ST11)-1)*fT21)/(exp(-theta*Sstar1)*(exp(-theta)-1))

74 }

75

76 if(copula=="Gumbel") {

77 Sstar0 <- ST10 + ST20 -1 + exp(-(((-log(1-ST10))ˆtheta+(-log(1-ST20))ˆtheta)ˆ(1/theta)))

78

79 fstar0 <- fT10 + fT20 - (exp(-(((-log(1-ST10))ˆtheta+(-log(1-ST20))ˆtheta)ˆ(1/theta))))*

80 (((-log(1-ST10))ˆtheta+(-log(1-ST20))ˆtheta)ˆ((1-theta)/theta))*

81 (((-log(1-ST10))ˆ(theta -1))*(fT10/(1-ST10))+((-log(1-ST20))ˆ(theta -1))*(fT20/(1-ST20)))

82

83 Sstar1 <- ST11 + ST21 -1 + exp(-(((-log(1-ST11))ˆtheta+(-log(1-ST21))ˆtheta)ˆ(1/theta)))

84

85 fstar1 <- fT11 + fT21 - (exp(-(((-log(1-ST11))ˆtheta+(-log(1-ST21))ˆtheta)ˆ(1/theta))))*

86 (((-log(1-ST11))ˆtheta+(-log(1-ST21))ˆtheta)ˆ((1-theta)/theta))*

87 (((-log(1-ST11))ˆ(theta -1))*(fT11/(1-ST11))+((-log(1-ST21))ˆ(theta -1))*(fT21/(1-ST21)))

88

89 }

90

91 if(copula=="Clayton") {

92 Sstar0 <- ST10 + ST20 -1 + (((1-ST10)ˆ(-theta))+((1-ST20)ˆ(-theta))-1)ˆ(-1/theta)

93

94 fstar0 <- fT10 + fT20 - ((((1-ST10)ˆ(-theta))+((1-ST20)ˆ(-theta))-1)ˆ(-(1+theta)/theta))*

(((1-ST10)ˆ(-theta -1))*fT10+((1-ST20)ˆ(-theta -1))*fT20)

95

96 Sstar1 <- ST11 + ST21 -1 + (((1-ST11)ˆ(-theta))+((1-ST21)ˆ(-theta))-1)ˆ(-1/theta)

97

98 fstar1 <- fT11 + fT21 - ((((1-ST11)ˆ(-theta))+((1-ST21)ˆ(-theta))-1)ˆ(-(1+theta)/theta))*

(((1-ST11)ˆ(-theta -1))*fT11+((1-ST21)ˆ(-theta -1))*fT21)

99

100 }

101

102 if (group==1) { return(fstar1) }

103 if (group==0) { return(fstar0) }

104

105 }
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106

107 #EXAMPLES

108 curve(fstar(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Frank",group

=0,x),col=1,from=0,to=10)

109 curve(fstar(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Frank",group

=1,x),col=2,add=T)

110

111 curve(fstar(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Gumbel",group

=0,x),col=1,add=T,lty=2)

112 curve(fstar(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Gumbel",group

=1,x),col=2,add=T,lty=2)

113

114 curve(fstar(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Clayton",group

=0,x),col=1,add=T,lty=2)

115 curve(fstar(rho=0.2,beta1=1,beta2=2,HR1=0.9,HR2=0.4,p1=0.3,p2=0.5,case=1,copula="Clayton",group

=1,x),col=2,add=T,lty=2)

116

117

118 ##################################################################################

119 ##################################################################################

120 # rpanel

121 ##################################################################################

122 ##################################################################################

123

124

125 library(rpanel)

126

127 rp.fstar<-function ()

128 {

129 fstarplot.pars <- function(fstarplot) {

130

131 fstarplot$rho<-as.numeric(fstarplot$rho)

132 fstarplot$beta1<-as.numeric(fstarplot$beta1)

133 fstarplot$beta2<-as.numeric(fstarplot$beta2)

134 fstarplot$HR1<-as.numeric(fstarplot$HR1)

135 fstarplot$HR2<-as.numeric(fstarplot$HR2)

136 fstarplot$p1<-as.numeric(fstarplot$p1)

137 fstarplot$p2<-as.numeric(fstarplot$p2)

138 fstarplot$case<-as.numeric(fstarplot$case)

139

140 fstarplot.draw(fstarplot)

141 }

142 fstarplot.draw <- function(fstarplot) {

143 with(fstarplot , {

144 par(mfrow = c(1,1),oma=c(0,0,2,0))

145

146 curve(fstar(rho,beta1,beta2,HR1,HR2,p1,p2,case,copula="Frank",group=0,x),col=1,lty=1,

xlim=c(0,10),ylim=c(0,1),xlab="t",ylab="f*",

147 main=paste("rho =",rho,", beta1 = ",beta1,", beta2 = ",beta2,", HR1 = ",HR1,", HR2 =

",HR2,", p1 = ",p1,", p2 = ",p2),cex.main=0.9)

148 curve(fstar(rho,beta1,beta2,HR1,HR2,p1,p2,case,copula="Frank",group=1,x),col=1,lty=2,

add=T)

149 curve(fstar(rho,beta1,beta2,HR1,HR2,p1,p2,case,copula="Gumbel",group=0,x),col=2,lty

=1,add=T)

150 curve(fstar(rho,beta1,beta2,HR1,HR2,p1,p2,case,copula="Gumbel",group=1,x),col=2,lty

=2,add=T)

151 if(clayton.showing == "TRUE") {

152 curve(fstar(rho,beta1,beta2,HR1,HR2,p1,p2,case,copula="Clayton",group=0,x),col=3,lty
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=1,add=T)

153 curve(fstar(rho,beta1,beta2,HR1,HR2,p1,p2,case,copula="Clayton",group=1,x),col=3,lty

=2,add=T)

154 legend("topright",c("Frank group 0","Frank group 1","Gumbel group 0","Gumbel group 1

","Clayton group 0","Clayton group 1"),col=c(1,1,2,2,3,3),lty=c(1,2,1,2,1,2))

155 }

156 else {

157 legend("topright",c("Frank group 0","Frank group 1","Gumbel group 0","Gumbel group 1

"),col=c(1,1,2,2),lty=c(1,2,1,2))

158 }

159 title(paste("Density function for T* for censoring case ",case),outer=T)

160 })

161 fstarplot

162 }

163 fstar.panel <- rp.control("Density functions for T*",size=c(150,570), rho = 0.45, beta1=1,

beta2=2, HR1=0.8, HR2=0.4, p1=0.3, p2=0.5)

164

165 rp.radiogroup(fstar.panel, rho, c(0.15,0.25,0.35,0.45,0.55,0.65,0.75), title="Rho", action=

fstarplot.pars, pos=c(1,1,70,175))

166 rp.radiogroup(fstar.panel, beta1, c(0.5,1,2), title="Beta1", action=fstarplot.pars, pos=c

(75,1,70,85))

167 rp.radiogroup(fstar.panel, beta2, c(0.5,1,2), title="Beta2", action=fstarplot.pars, pos=c

(75,90,70,85))

168 rp.radiogroup(fstar.panel, HR1, c(0.5,0.6,0.7,0.8), title="HR1", action=fstarplot.pars, pos

=c(1,180,70,110))

169 rp.radiogroup(fstar.panel, HR2, c(0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95), title="HR2", action=

fstarplot.pars, pos=c(75,180,70,195))

170 rp.radiogroup(fstar.panel, case, c(1,3), title="Case", action=fstarplot.pars, pos=c

(1,295,70,80))

171 rp.radiogroup(fstar.panel, p1, c(0.05,0.1,0.2,0.3,0.4,0.5), title="p1", action=fstarplot.

pars, pos=c(1,380,70,155))

172 rp.radiogroup(fstar.panel, p2, c(0.05,0.1,0.2,0.3,0.4,0.5), title="p2", action=fstarplot.

pars, pos=c(75,380,70,155))

173

174 rp.checkbox(fstar.panel, clayton.showing, initval= "FALSE", title = "Clayton",

175 action = fstarplot.draw,pos=c(1,540,145,30))

176

177 rp.do(fstar.panel, fstarplot.pars)

178 }

179

180 rp.fstar()

../R/functions fstar.r
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