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1. INTRODUCTION 
 

1.1. Aim of the study 
 

The aim of the study is to determine the required maneuvers to control 
geostationary satellites within a delimited control window. It will be done 
defining different strategies of control for the calculation of impulsive maneuvers 
to obtain optimal values which will minimize the fuel consumption and will provide 
an automatic control for any situation. 

For each implemented strategy, an algorithm will be developed. These algorithms 
will be applied to some relevant longitudes in order to prove that they could be 
used for any longitude yielding good results.  

The geostationary control will only implement in-plane maneuvers (East/West). 
This means that only the longitude and the radial direction will be controlled, 
ignoring changes in inclination. 

 

1.2. Problem statement: JUSTIFICATION 
 

This work has been developed for the company GMV Aerospace, and the 
algorithm will be implemented in focusgeo, a product of the focussuite family 
developed by the Flight Dynamics division.   

The ancient strategies in focussuite did not accomplish all the desirable 
requirements. They produced the following problems  

• The old control in the former strategy did not enforce a symmetric 
evolution. 

• The longitude was not centered in the control window. 
• The time for applying the maneuver was not optimized. 

Thereby, the new code will have to address these shortcomings.  

The inclination maneuvers (North/South) are considered independent from the in-
plane maneuvers (East/West). The inclination maneuvers maneuvers will not be 
studied in this study.  

This study will take into account all the necessary elements to assure a good 
control of orbit plane components.   
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1.3. Scope of the study 
 

This study pursues a new strategy of longitude and eccentricity control. 
Although the total control of a geostationary satellite includes the inclination 
control, this document does not include the strategies of the North/South 
maneuvers, because the inclination evolution will be considered independent 
from the other parameters. Nevertheless, in order to consider the cross-coupling 
perturbations that the inclination maneuver could introduce, a typical inclination 
maneuver will be simulated periodically. 

The different strategies will be presented following the temporal order that were 
created, starting with the longitude and drift rate control, and following with the 
eccentricity control. The motivation behind the strategies will be discussed, 
presenting a flow diagram and a detailed explication of the code. 

 
The actual code will not be included because it has been implemented in the 
GMV software focusgeo. Its internal structure is outlined in the block diagrams 
used during the description of the code. All the results presented in this report 
have been obtained with the newly developed software. 

 
 

1.4. Basic requirements 
 

• The station keeping strategy shall schedule the maneuvers in periodic 
cycles (control cycles). 

• The maneuvers shall be applied at beginning of the control cycle. 
• The longitude deadband (𝛿𝜆) shall be of 0.10 
• The eccentricity evolution shall follow the control circle with a maximum of 

a 5% of tolerance. 
• The longitude control shall be accomplished with only one burn impulse. 
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1.5. Code specifications 
 

The algorithm has been coded in FORTRAN 77, using the platform Eclipse. Once 
the code has been compiled the new binary files are integrated into the 
focussuite framework. The figure 1 shows the diagram of the focussuite 
framework. 

 

Figure 1- focusgeo diagram 

The focusgeo client acts as the graphical interface through which the operator 
can modify the inputs of the different programs and control their execution. These 
modifications and actions are communicated to the focusgeo server through an 
application programming interface.  

The focusgeo server is a set of three servers (process, data and events logger) 
that will: 

i. manage code execution and user requests (process management); 
ii. manage the data access and keep a repository of the modifications (data 

management); 
iii. keep track of the server events and user requests (events logger). 

Each time the user requests a change to existing data or the execution of a 
module, the data management component locks the files susceptible of 
modification, and the process management spans the new process using the 
compiled binary to perform the computations and update the output files. 
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Different programs may be called sequentially in order to build an arbitrary 
solution strategy. The outline of the process is represented in the diagram 1 

 

Diagram 1- Code scheme  

First of all, the code must read the inputs that the Operator has chosen using the 
graphical interface.  

Later the orbit will be propagated one cycle (T) into the future. The code scheme 
will run from the beginning to the end of every cycle. If the operator wants to see 
the strategy applied during one year, it should run the code the number of cycles 
necessary for that amount of time.  

The propagation immediately after reading the inputs is necessary to obtain the 
evolution of the orbital elements across a complete cycle. The initial orbital 
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elements are inputs for the code. The propagation before printing the results is 
necessary to observe the final result. 

Furthermore, within the control strategy, internal propagations are needed for the 
iterative solution of the problem. These are handled with additional calls to the 
orbit propagator. 

  

Figure 2- Relationship between the propagator and the manoeuvre algorithm 

 

1.5.1. Inputs 

 
To run the simulations a set of parameters belonging to a generic satellite has 
been chosen. The values are as follows: 
 

• Initial epoch 
 
The initial epoch to start all the simulations will be at epoch 2012/01/01 at 
00.00.00h UTC. 

•  Initial state vector 
a(Km) 42164.5 

e 0.0002538524597 
i(0) 0.0600019446588 
𝝎(0) 350.02955984800 
𝛀(0) 297. 02955984800 
𝝀(0) 𝜆𝑇 
Table -  1- Initial state vector 
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The only free parameter in the state vector is the longitude. 

• Duration of the cycle of propagation. 

𝑇 = 14 𝑑𝑎𝑦𝑠 
The cycle is a constraint imposed by the operator that has the control of the 
station keeping. Performing the station keeping manoeuvre according to a regular 
schedule with a cycle of two weeks simplifies the planning of working hours for 
the Operator. The cycle is kept constant across the satellite lifetime. This time is 
adopted by current Operators because fourteen days fixes one day in a week 
during one year, and it is practical to know exactly which day in the week the 
operation should occur. 

• Initial satellite mass at the initial epoch is 2000Kg 

• The effective cross-section to mass ratio 𝜎 = 0.01𝑚2

𝐾𝑔
  

 

1.6. BACKGROUND  
 

1.6.1. Geostationary definition 
 

A geostationary orbit (GEO) is a circular orbit which is placed at the equator and 
has the same rotation period of the Earth. Thus, a satellite placed in this orbit has 
a fixed position in the sky for an Earth-bound observer. 

A perfectly geostationary orbit is a mathematical abstraction that could be 
achieved only if the Earth were perfectly symmetric with no forces acting other 
than Earth’s gravity.  

As the gravitational forces from other bodies (Sun and Moon) are small compared 
with Earth's attraction, it is the non-spherical nature of Earth's gravity potential 
which causes the main deviation from the ideal GEO.  

The theoretical parameters of the geostationary can be calculated establishing a 
balance between the centrifugal force acting on the satellite and the gravitational 
attraction.  

𝒎𝝍𝟐𝒓 = 𝒎𝝁 
𝒓𝟐

  (1) 

The Earth’s rotation rate for a mean sidereal day is 

𝜓 = 360.985647 𝑑𝑒𝑔/𝑑𝑎𝑦 = 0.729211585 10−4𝑟𝑎𝑑/𝑠 
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Thus, the orbital radius for an ideal geostationary orbit is r = 42164.2 Km  

And the velocity 𝑣𝑔𝑒𝑜 = 𝜓𝑟 = 3.075𝐾𝑚/𝑠 

Because of the definition of geostationary orbit, all the orbital parameters are 
fixed except one. This parameter will be the subsatellite longitude that can be 
arbitrarily selected by the Operator.  

In practice, a geostationary orbit can only exist instantaneously. The spacecraft 
will never stay at the same position in relation to the Earth, due to the asymmetry 
of the Earth's gravitational field and the perturbations created by other forces. 

The geostationary region is defined as the region which is near to the theoretical 
geostationary orbit. This region is very small and placing a satellite inside it offers 
many advantages for communications, Earth observation, etc. For this reason, 
the region is split into several bands, and inside each one there is a limited 
deadband (zone where the spacecraft must be confined) limiting the number of 
satellites placed in geostationary orbit. 

 

Figure 3- Deadbands. 

In order to keep analysing the geostationary orbit, the classical orbital elements 
will be defined. They are consequence of the orbit geometry.  
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Figure 4-Classical elements  

a – semimajor axis  

e – Eccentricity 

i – Inclination 

Ω – Right ascension of the ascending node 

𝜔 – Argument of perigee 

𝜈 – True anomaly 

Sometimes, the true anomaly can be replaced by the mean anomaly, M=nt, 

where n is the mean motion,𝑛 = 2𝜋
𝑃

 where P is the orbital period. 
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1.6.2. Geostationary framework 
 

The time standard scale used is UTC (Universal Time Coordinated). UTC is 
uniform and continuous except when the leap-second is inserted.  

The coordinate system used will be ToD (True of Date), a quasi-inertial reference 
system used for the geostationary orbits, which takes into account both 
precession and nutation. This system is referenced to the Modified Julian Date 
(MJD2000). MJD2000 is the time measured in days from 12:00:00 UTC on 
January 2000.  

The formula which defines the MJD2000 in UTC is 

𝑀𝐽𝐷2000 = 𝐽𝐷 − 2451544.5 

𝑱𝑫 = 𝟑𝟔𝟕𝒚𝒓 − 𝑰𝑵𝑻 �
𝟕�𝒚𝒓+𝑰𝑵𝑻�𝒎𝒐+𝟗𝟏𝟐 ��

𝟒
�+ 𝑰𝑵𝑻�𝟐𝟕𝟓𝒎𝒐

𝟗
�+ 𝒅 + 𝟏𝟕𝟐𝟏𝟎𝟏𝟑.𝟓 +

𝒔
𝟔𝟎+𝒎𝒊𝒏

𝟔𝟎 +𝒉

𝟐𝟒
(2) 

Where yr is the year, mo the month, d the day, min the minutes and s the 
seconds of the epoch. 

The x-y plan is the equatorial of the Earth. The x-direction points out the Vernal 
Equinox(𝛾). The y-direction is displaced 90o following the rotation of the Earth 
and the z-direction is normal to the x and y-direction and directly positive. 

 

 

Figure 5- ToD representation 

 

The distance from the centre of the Earth to the satellite in rectangular 
coordinates of the spacecraft in ToD is 
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𝐫 = �
𝒙
𝒚
𝒛
� = �

𝒓 𝐜𝐨𝐬𝜹 𝐜𝐨𝐬 𝒔
𝒓 𝐜𝐨𝐬 𝜹 𝐬𝐢𝐧 𝒔
𝒓 𝐬𝐢𝐧 𝜹

� (3) 

Where 𝛿 is the declination, s the right ascension and r the radial distance from 
the Earth’s centre to the satellite. 

The right ascension for a geostationary satellite can be expressed as 

𝑠 = 𝐺0 + 𝜓(𝑡 − 𝑡0) + 𝜆 = 𝛺 + 𝜔 + 𝜈 (4) 

 𝐺0 is the sidereal time in Greenwich for a determinate year, that is tabulated. 𝜓 is 
the Earth’s angular velocity. 𝑡 − 𝑡0 is the time elapsed since the beginning of the 
year under consideration, and 𝜆 is the longitude of the satellite. The longitudes 
are measured from the Greenwich Meridian, ranging from 0° to +180o (eastward) 
or -180o (westward). Longitudes traditionally have been written using "E" or "W" 
instead of "+" or "−" to indicate if they are counted following the Earth’s angular 
velocity. 

The instantaneous distance from The Earth to the satellite can be expressed as a 
function of the orbital elements (𝑎, 𝑒, 𝑖,Ω,𝜔, 𝜈).  

𝒓 = 𝒂�𝟏−𝒆𝟐�
𝟏+𝒆𝐜𝐨𝐬 𝝂

 (5) 

However, the standard orbital elements are not suitable for equatorial orbits 
because the values of Ω,𝜔 and 𝜈 are become undefined. 

Thus, to study a perturbed geostationary orbit, a different set if parameters will be 
chosen. To this effect, the equations of motion will be linearized and two-
dimensional vectors will be defined. 

𝒊 = �𝒊𝒙, 𝒊𝒚� = (𝒊 𝐬𝐢𝐧𝛀 ,−𝒊 𝐜𝐨𝐬𝛀) (6) 

𝒆 = �𝒆𝒙,𝒆𝒚� = (𝒆 𝐬𝐢𝐧(𝛀 + 𝛚) ,−𝒆𝐜𝐨𝐬(𝛀 + 𝛚)) (7) 

Both vectors are projected in the equator plane. The vector i points in the 
direction normal to the ascending node Ω. The vector e points in the direction 
normal to the perigee. 

Linearizing the equation (5) 

𝒓 ≈ 𝒂(𝟏 − 𝒆 𝒄𝒐𝒔𝝂) ≈ 𝑨 + 𝜹𝒂 − 𝑨 𝒆 𝒄𝒐𝒔𝝂 (8) 

Where 𝛿𝑎 is the difference between the theoretical semimajor axis (A) from the 
semimajor axis of the real orbit 𝛿𝑎 = 𝑎 − 𝐴 
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The true anomaly satisfies the following differential equation  

𝒅𝝂
𝒅𝒕

= �𝝁𝒂(𝟏−𝒆𝟐 )
𝒓𝟐

  (9) 

 

And introducing equation (8) in equation (9), yields 

𝒅𝝂
𝒅𝒕

= �
𝝁

𝒂𝟑(𝟏−𝒆𝟐)𝟑  (𝟏 + 𝒆 𝐜𝐨𝐬 𝝂)𝟐 (10) 

Now, inserting Third Kepler’s Law  𝜇 = 𝜓2𝐴3, and linearizing the expression     

𝒅𝝂
𝒅𝒕
≈ 𝝍�𝑨

𝒂
�
𝟑
𝟐 (𝟏 + 𝒆 𝐜𝐨𝐬𝝂)𝟐 ≈ 𝝍�𝟏 − 𝟏.𝟓𝜹𝒂

𝑨
+ 𝟐𝒆 𝒄𝒐𝒔𝝂� (11) 

The integration of equation (11) is simple and the integration constant is taken 
as the time of perigee passage tp 

𝝂 = 𝝍�𝒕 − 𝒕𝒑� �𝟏 − 𝟏.𝟓 𝜹𝒂
𝑨
�+ 𝟐𝒆𝐬𝐢𝐧𝝍�𝒕 − 𝒕𝒑� (12) 

Now, following the definition of the right ascension and substituting equation (12) 
in equation (4)   

𝝀 = 𝒔 − 𝑮 = 𝛀 + 𝝎 + 𝝂 − 𝑮𝟎 − 𝝍(𝒕 − 𝒕𝟎) (13) 

𝝀 = 𝛀 + 𝝎− 𝑮𝟎 + 𝝍�𝒕𝟎 − 𝒕𝒑� − 𝟏.𝟓 𝜹𝒂
𝑨
𝝍�𝒕 − 𝒕𝒑�+ 𝟐𝒆𝐬𝐢𝐧𝝍�𝒕 − 𝒕𝒑� (14) 

This new definition of the longitude contains two new parameters. 

𝝀𝟎 = 𝛀 +𝝎− 𝑮𝟎 +𝝍�𝒕𝟎 − 𝒕𝒑� (15) 

𝜆0 is called the mean longitude at epoch. 

The second parameter (𝟏.𝟓 𝜹𝒂
𝑨
𝝍 ) is the mean longitude drift rate that from now 

on, will be shortened as “drift rate”. The drift rate measures the deviation 
between the orbital period and the rotation of the Earth.  

For the particular case when no gravitational perturbations are considered, the 
drift rate takes the expression 

𝑫 = 𝒅𝝀
𝒅𝒕

= 𝝀̇ = −𝟏.𝟓 𝜹𝒂
𝑨
𝝍 (16) 
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The new set of parameters (𝜆𝑜,𝐷, 𝑒𝑥 , 𝑒𝑦, 𝑖𝑥 , 𝑖𝑦 ) is called the synchronous 
elements. The synchronous elements are defined as osculating elements for 
perturbed orbits in a manner analogous to the classical elements.  

Now, the latitude, the longitude and the radius can be expressed as functions of 
these new parameters, linearizing the components of equation (3). A full 
treatment is given in Soop [1]. 

𝑥
𝑟

= 𝑐𝑜𝑠𝛿 cos 𝑠 ≈ cos (Ω +𝜔 + 𝜈) 

𝑦
𝑟

= 𝑐𝑜𝑠𝛿 sin 𝑠 ≈ sin(Ω + 𝜔 + 𝜈) 

𝑧
𝑟

= 𝑠𝑖𝑛𝛿 ≈ 𝑖 sin(𝜔 + 𝜈) 

Adding the expressions of eccentricity and inclination vectors (equation  (6) and 
equation  (7)).  

𝛿 = 𝑖 sin(𝑠 − 𝛺) = −𝑖𝑥 cos 𝑠 − 𝑖𝑦 sin 𝑠 

𝑟 = 𝐴 + 𝛿𝑎 − 𝐴 𝑒 cos(𝑠 − Ω − 𝜔) = 𝐴 + 𝛿𝑎 − 𝐴�𝑒𝑥 cos 𝑠 + 𝑒𝑦 sin 𝑠� 

The declination, the longitude and the radial distance yield 

𝜹 = −�𝒊𝒙 𝐜𝐨𝐬 𝒔 + 𝒊𝒚 𝐬𝐢𝐧 𝒔� (17) 

𝒓 − 𝑨 = −𝑨�𝑫
𝝍

+ 𝒆𝑿 𝐜𝐨𝐬 𝒔 + 𝒆𝒚 𝐬𝐢𝐧 𝒔� (18) 

𝝀 = 𝝀𝟎 + 𝑫
𝝍

(𝒔 − 𝒔𝟎) + 𝟐�𝒆𝒙 𝐬𝐢𝐧 𝒔 − 𝒆𝒚 𝐜𝐨𝐬 𝒔� (19) 

The declination variation is equal to the inclination magnitude. 

The real longitude will be longitude expressed by the equation (19), whereas the 
mean longitude will be the average of the real longitude in one sidereal day.  

Now, it will be presented how these linear approximations change with the time. 
The following expressions give the radial, tangential and orthogonal components 
of the satellite velocity relative the Earth’s angular velocity.  

𝑽𝒓 = 𝒅𝒓
𝒅𝒕

= 𝑽�𝒆𝒙 𝐬𝐢𝐧 𝒔 − 𝒆𝒚 𝐜𝐨𝐬 𝒔� (20) 

𝑽𝒕 = 𝑨𝒅𝝀
𝒅𝒕

= 𝑽�𝑫
𝝍

+ 𝟐𝒆𝒙 𝐜𝐨𝐬 𝒔 + 𝟐𝒆𝒚 𝐬𝐢𝐧 𝒔� (21) 
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𝑽𝒐 = 𝑨𝒅𝜽
𝒅𝒕

= 𝑽�𝒊𝒙 𝐬𝐢𝐧 𝒔 − 𝒊𝒚 𝐜𝐨𝐬 𝒔� (22) 

𝑉𝑟 is the radial velocity, 𝑉𝑡 is the tangential velocity and 𝑉𝑜 is the normal velocity 
relative to the geostationary orbit. 

 

1.6.3.  Perturbed equations of motion 
 

The orbital perturbations can be classified as conservative or non-conservative 
forces. Conservative forces depend only on the position of the satellite; while 
non-conservative depend on both position and velocity. 

In this report, the conservative perturbations (F) will be only considered, such as, 
the non-symmetry of the gravity field of the Earth, the gravity of the Sun and the 
Moon and the solar pressure. 

At any instant, the situation of a satellite can be described by the rectangular 
components of position 𝑥𝑖  ={𝑥, 𝑦, 𝑧} and velocity 𝑥̇𝑖 ={𝑥̇, 𝑦̇, 𝑧̇}. In place of these 
numbers, it is more useful to use the six orbit elements {𝑎, 𝑒, 𝑖,𝑀,𝜔,Ω}  

Following the development of Kaula [7], the equations of the six elements with 
conservative perturbations that are known as Lagrange equations yield 

𝒅𝒂
𝒅𝒕

= 𝟐
𝒏𝒂

𝝏𝑭
𝝏𝑴

 (23) 

𝒅𝒆
𝒅𝒕

= 𝟏−𝒆𝟐

𝒏𝒂𝟐𝒆
𝝏𝑭
𝝏𝑴

− �𝟏−𝒆𝟐�
𝟏
𝟐

𝒏𝒂𝟐𝒆
𝝏𝑭
𝝏𝝎

  (24) 

𝒅𝝎
𝒅𝒕

= − 𝐜𝐨𝐬 𝒊

𝒏𝒂𝟐(𝟏−𝒆𝟐)
𝟏
𝟐 𝐬𝐢𝐧 𝒊

𝝏𝑭
𝝏𝒊

+ �𝟏−𝒆𝟐�
𝟏
𝟐

𝒏𝒂𝟐𝒆
𝝏𝑭
𝒅𝒆

 (25) 

𝒅𝒊
𝒅𝒕

= 𝐜𝐨𝐬 𝒊

𝒏𝒂𝟐(𝟏−𝒆𝟐)
𝟏
𝟐 𝐬𝐢𝐧 𝒊

𝝏𝑭
𝝏𝝎
− 𝟏

𝒏𝒂𝟐(𝟏−𝒆𝟐)
𝟏
𝟐 𝐬𝐢𝐧 𝒊

𝝏𝑭
𝝏𝛀

 (26) 

𝒅𝛀
𝒅𝒕

= 𝟏

𝒏𝒂𝟐(𝟏−𝒆𝟐)
𝟏
𝟐 𝐬𝐢𝐧 𝒊

𝝏𝑭
𝝏𝒊

 (27) 

𝒅𝑴
𝒅𝒕

= 𝒏 − 𝟏−𝒆𝟐

𝒏𝒂𝟐𝒆
𝝏𝑭
𝝏𝒆
− 𝟐

𝒏𝒂
𝝏𝑭
𝝏𝒂

 (28) 

However, for geostationary satellites, it is more useful the variation of the six 
synchronous elements. According to P.Legendre [8], the six synchronous 
elements yield.  
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𝒅𝒂
𝒅𝒕

= 𝟐
𝒏𝒂

𝝏𝑭
𝝏𝝀

 (29) 

𝒅𝝀
𝒅𝒕

= 𝒏 − 𝒔̇ − 𝟐
𝒏𝒂

𝝏𝑭
𝝏𝒂

 (30) 

𝒅𝒆𝒙
𝒅𝒕

= − 𝟏
𝒏𝒂𝟐

𝝏𝑭
𝝏𝒆𝒚

 (31) 

𝒅𝒆𝒚
𝒅𝒕

= 𝟏
𝒏𝒂𝟐

𝝏𝑭
𝝏𝒆𝒙

 (32) 

𝒅𝒊𝒙
𝒅𝒕

= − 𝟏
𝒏𝒂𝟐

𝝏𝑭
𝝏𝒊𝒚

  (33) 

𝒅𝒊𝒚
𝒅𝒕

= − 𝟏
𝒏𝒂𝟐

𝝏𝑭
𝝏𝒊𝒙

 (34) 

The drift rate is proportional to the semimajor axis, so variations in the semimajor 
axis will produce the same effect in the drift rate.  
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2. LONGITUDE CONTROL 
 

The longitude control consists of maintaining always the real longitude the closest 
from the longitude target (𝜆𝑇 ). Because of the perturbations, the satellite will only 
reach instantly this longitude. The maximum longitude the satellite could reach is 
the longitude deadband (𝛿𝜆). 

 To assure the good behaviour of the algorithm, the longitude control must 
accomplish the following requirements. 

2.1. Longitude requirements 
 

• The real longitude shall always be confined inside a deadband, except if a 
change of strategy has been accorded (longitude shift), in this case 
another longitude target will be the centre of the deadband, 𝜆𝑇. 

𝜆𝑇 − 𝛿𝜆 ≤ 𝜆(𝑡) ≤ 𝜆𝑇 + 𝛿𝜆 

The complexity of station keeping operations increases when the deadband 
decreases. 

• The algorithm shall predict the longitude evolution during the whole cycle. 

The simplest strategy of longitude would be to wait until the day before the 
longitude exceeds the deadband and applying a Δ𝑉 to distance the longitude 
from the boundary. However, it is unsatisfactory, because the longitude is not 
controlled and the Δ𝑉 would not be optimized.  

• The algorithm shall be compatible for all the longitudes. 

Equilibrium positions and near equilibrium positions present very different 
characteristics in comparison with the rest of longitudes. Thereby, the objective is 
to create an algorithm which does not distinguish between equilibrium regions 
(near to the equilibrium points) and other longitudes.     

• The manoeuvres and the longitude evolution shall be the most similar 
possible throughout the cycles.  

This requirement is as a summary of the rest. If the longitude evolution were 
approximately the same in each control cycle during the satellite lifetime, the 
algorithm would be autonomous.  
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A general line of development in space operations is the trend to perform more 
and more functions on-board in automatic mode, including orbit determination 
and manoeuvre planning. The purpose of automation is to reduce the manual 
workload for current operations. Thus, when the algorithm produces similar 
manoeuvres, the automation is most easy and more efficient.  

 

2.2. Longitude considerations 

2.2.1. Longitude evolution 
 

The longitude is perturbed practically only by the non-symmetry of the gravity 
field. Thereby, the next section will explain with details the effect of the 
gravitational potential. 

The gravity acceleration can be expressed as function of a potential V 

𝒈 = 𝛁𝑽 (35) 

The potential V must accomplish the Laplace’s equation  

𝛁𝟐𝑽 = 𝝏𝟐𝑽
𝝏𝒙

+ 𝝏𝟐𝑽
𝝏𝒚

+ 𝝏𝟐𝑽
𝝏𝒛

= 𝟎 (36) 

Writing the Laplace’s equation in spherical coordinates (𝑟, 𝜆,𝜃 ) Where r is the 
radial distance, 𝜆 the longitude and 𝜃 the latitude.  

𝒓𝟐𝛁𝟐𝑽 = 𝝏
𝝏𝒓
�𝒓𝟐 𝝏𝑽

𝝏𝒓
� + 𝟏

𝒄𝒐𝒔𝛉
𝝏
𝝏𝛉
�𝒄𝒐𝒔𝛉 𝝏𝑽

𝝏𝛉
� + 𝟏

𝐜𝐨𝐬𝟐 𝛉
𝝏𝟐𝑽
𝝏𝝀𝟐

= 𝟎 (37) 

A possible solution for the Laplace’s equation has the form 

𝑽 = 𝑹(𝒓)𝚽(𝛉)𝚲(𝛌) (38) 

  Substituting equation  (37) into equation (38)  

𝟏
𝑹
𝒅
𝒅𝒓
�𝒓𝟐 𝒅𝑹

𝒅𝒓
�+ 𝟏

𝚽 𝐜𝐨𝐬𝛉
𝒅
𝒅𝛉
�𝒄𝒐𝒔𝛉 𝒅𝚽

𝒅𝛉
� + 𝟏

𝚲𝐜𝐨𝐬𝟐 𝛉
𝒅𝟐𝚲
𝒅𝝀

= 𝟎 (39) 

Because the first term of equation  (39) is the only term that is function of r, it 
must be constant ( 𝑙(𝑙 + 1) = 𝑐𝑡),  

𝒓𝟐 𝒅
𝟐𝑹
𝒅𝒓𝟐

+ 𝟐𝒓 𝒅𝑹
𝒅𝒓

= 𝒍(𝒍 + 𝟏)𝑹 (40) 

The choice of this constant is because equation (45) is the Euler differential 
equation, and the series solution is 
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𝑅 = �𝑎𝑛𝑟𝑛+𝑐
∞

𝑛=0

 

Then,  

𝑟2�(𝑛 + 𝑐)(𝑛 + 𝑐 − 1)𝑎𝑛𝑟𝑛+𝑐−2 + 2𝑟�(𝑛 + 𝑐)𝑎𝑛𝑟𝑛+𝑐−1 − 𝑙(𝑙 + 1)�𝑎𝑛𝑟𝑛+𝑐 = 0
∞

𝑛=0

∞

𝑛=0

∞

𝑛=0

 

�[(𝑛 + 𝑐)(𝑛 + 𝑐 + 1) − 𝑙(𝑙 + 1)]𝑎𝑛𝑟𝑛+𝑐 = 0
∞

𝑛=0

 

This must hold true for all power of r. With n=0, 𝑟𝑐   

𝑐(𝑐 + 1) = 𝑙(𝑙 + 1) 

Which is only true when 𝑐 = 𝑙 ,−𝑙 − 1. And 𝑎𝑛 = 0 for 𝑛 ≠ 𝑙,−𝑙 − 1.Therefore, the 
solution of R is given by 

𝑹𝒍(𝒓) = 𝑨𝒍𝒓𝒍 + 𝑩𝒍
−𝒍−𝟏  (41) 

Where 𝐴𝑙 and 𝐵𝑙 are arbitrary constants.  

Substituting the solution of R in equation (39) and multiplying by cos2 𝜃 

𝑙(𝑙 − 1) cos2 θ +
cosθ
Φ

𝑑
𝑑θ

�cosθ
𝜕Φ
𝜕θ
� +

1
Λ
𝑑2Λ
𝑑𝜆2

= 0   

The last term is the only one which is function of 𝜆, so it must be constant. 
Making this constant equal to −𝑚2 

𝚲 = 𝑪𝒎 𝐜𝐨𝐬𝒎𝝀 + 𝑺𝒎 𝐬𝐢𝐧𝒎𝝀 (42) 

Where Cm and Sm are arbitrary constants. 

Substituting the solution of Λ in equation  (39) and multiplying by Φ/ cos2 𝜃 , the 
solution of the equation which yields is only function of 𝜃 

1
cosθ

𝑑
𝑑θ

�cosθ
𝑑Φ
𝑑θ

� + �𝑙(𝑙 + 1) −
𝑚2

cos2 θ�
Φ = 0 

Which is similar to 

𝐬𝐢𝐧𝜽 𝒅
𝒅𝛉
�𝐬𝐢𝐧𝛉 𝒅𝚽

𝒅𝛉
� + �𝒍(𝒍 + 𝟏) 𝐬𝐢𝐧𝟐 𝜽 −𝒎𝟐�𝚽 = 𝟎 (43) 

This equation is the associated Legendre function.  
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Substituting 𝜇 = cos𝜃  is possible to find Legendre’s polynomials that are solution 
of  Φ  

𝚽 = 𝐏𝐥𝒎(𝝁) = 𝟏
𝟐𝒍𝒍!

�𝟏 − 𝝁𝟐�
𝒎
𝟐 𝒅𝒍+𝒎

𝒅𝝁𝒍+𝒎
�𝝁𝟐 − 𝟏�𝒍  (44) 

In the table 2 are written the first Legendre’s polynomials  

𝒍 𝑃𝑙(𝜇) 
0  1 
1  𝜇 

2  1
2

(3𝜇2 − 1) 

3  1
2

(5𝜇3 − 3𝜇) 
  Table - 2- Solution of Legendre’s polynomials 

The complete real solution of the Laplace equation, setting 𝐴𝑙=0 and 𝐵𝑙=1 is 

𝑽(𝒓,𝜽,𝝀) = ∑ ∑ 𝟏
𝒓(𝒍+𝟏) 𝑷𝒍𝒎𝒄𝒐𝒔 𝜽(𝑪𝒍𝒎 𝐜𝐨𝐬𝒎𝝀 + 𝑺𝒍𝒎 𝐬𝐢𝐧𝒎𝝀) ∞

𝒎=𝟎
∞
𝒍=𝟎 (45) 

Thus, the potential of gravity yields 

𝑼(𝒓,𝜽,𝝀) = 𝝁
𝒓

+ 𝝁∑ ∑ 𝑹𝑬𝒍

𝒓(𝒍+𝟏) 𝑷𝒍𝒎𝒔𝒊𝒏𝜽(𝑪𝒍𝒎 𝐜𝐨𝐬𝒎𝝀 + 𝑺𝒍𝒎 𝐬𝐢𝐧𝒎𝝀) 𝒍
𝒎=𝟎

𝑳
𝒍=𝟐  (46) 

The radial force 

𝑭(𝒓) = 𝝏𝑼
𝝏𝒓

= − 𝝁
𝒓𝟐
∑ (𝒏 + 𝟏) �𝑹𝑬

𝒓
�
𝒏
∑ 𝑷𝒏𝒎(𝐬𝐢𝐧𝝓)[𝑪𝒏𝒎 𝐜𝐨𝐬𝒎𝝀 + 𝑺𝒏𝒎 𝐬𝐢𝐧𝒎𝝀] 𝒏
𝒎=𝟎

∞
𝒏=𝟎 (47) 

The three coefficients with l=1 (𝐶10,𝐶11,𝑆11) are zero by definition because the 
origin of the coordinate system is placed at the centre of mass of the Earth.  

The zonal terms with m=0 are rotationally symmetric, so they are independent 
from the longitude. However, they affect the radial direction, and consequently 
the drift. 

The sectorial terms (|𝑚| = 𝑙) have no zero-lines parallel to the equator, but they 
have a variation in the meridional direction. 

The tesseral terms (𝑚 ≠ 𝑙) are caused by the unsymmetrical mass distribution 
inside the Earth. In spite of having a small value, the tangential components have 
a great importance in the drift evolution.  

Because the tangential acceleration is dominated by the two coefficients with 
l=m=2 its longitude dependence becomes approximately sinusoidal with four 
nodes. Two of these are stable equilibrium points since any small longitude 
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deviation from the node would induce a drift back towards the node. The other 
nodes are unstable; the spacecraft will drift away in either direction. 

When a geostationary satellite is kept by a narrow deadband of less than 1º, the 
tesseral acceleration can be considered constant for the mean longitude. Its 
tangential component (𝜆̈ ) cause a change of the semimajor axis and drift rate, 
which is the same effect of a weak continuous thrust. Because of the rotational 
symmetry, the eccentricity does not change. Thus, 

𝒅𝟐𝝀
𝒅𝒕𝟐

= 𝒄𝒕 = 𝝀̈ (48) 

The tangential accelerations for every longitude slot are tabulated in the ANNEX-
A. If the longitude is not near one of the four nodes, the mean variation of 
longitude as a function of time describes a parabola. The expression of this 
parabola comes from integration the equation (48) 

𝝀(𝒕) = 𝝀𝟎 +  𝝀̇(𝒕 − 𝒕𝟎) + 𝟏
𝟐

 𝝀̈(𝒕 − 𝒕𝟎)𝟐 (49) 

Where 𝑡0 is the initial epoch. 

2.2.2. Errors/Certification 
 

The longitude control must be ready to support any adversity. The adversities 
could be errors in calculations, changes of strategies or any other cause. The 
causes of these problems mainly arise from: 

• Orbit determination 

There are errors due to the accuracy of the orbit determination program. 

The orbit determination program is used to calculate the orbital elements and 
auxiliary parameters for an epoch. This program should be run regularly. In this 
study, this program is totally independent from the program which calculates the 
manoeuvres for the station keeping.   

• Longitude station keeping 

These are the errors associated to the expression of longitude. By analysing the 
free motion of the satellite, it is possible to detect the errors that will be the cause 
of the total longitude error. 

𝝐𝝀 = 𝝐𝝀𝟎 + 𝝐𝑫𝝍(𝒕 − 𝒕𝟎) + 𝟐𝝐𝒆 (50) 
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The error 𝜖𝐷 of the drift rate stays approximately constant in time, whereas the 
factor (𝜖𝐷𝜓(𝑡 − 𝑡0) increases linearly in time.  

The error 𝜖𝜆0 is a constant error in the longitude expression; however, this error 
can be high, because this error represents the precision of a shift longitude 
manoeuvre. 

The error interval for the eccentricity vector can be expressed as a circle with 
radius 𝜖𝑒 around the measured element 𝑒0. The reason will be analyzed in the 
eccentricity strategy. 

|𝒆 − 𝒆𝟎| ≤ 𝝐𝒆  (51) 

Both 𝑒0�  and 𝜖𝑒 are constant in time. 

• Real manoeuvres 

The manoeuvre must have an excellent precision. Normally, the manoeuvres are 
of the order from 0.5 to 0.001m/s, so small changes in the impulse produce large 
changes in the drift rate. 

If the thrust error is such that the window control is left, the manoeuvre must be 
performed with a corrective thrust to slow down the drift. The thrust error 
influences more the drift rate than the other parameters.  

•  Iteration thresholds  

The manoeuvres are calculated with an iterative process. The thresholds limit the 
accuracy of the solution, but it is necessary to pay attention because a tiny 
threshold could prevent the iteration from converging. Normally, the value of the 
thresholds will be chosen based on experience.  

 

2.2.3. Equilibrium points 
 

According the perturbations caused by the tesseral elements, there are four 
longitudes where the tangential acceleration disappear. Two are stable and two 
unstable.  

Stable = 75.1o E and 105.3o W 

Unstable = 11.5oW and 161.9o E 
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Station keeping at these longitudes should have a drift rate equal to zero, but 
because of the Moon and the Sun, there are small perturbations which result in 
the longitude going outside of the deadband. 

In these cases, the longitude drifts slowly. As shown in the figure 6 where the 
longitude at 𝜆 = 75.10𝐸 drifts free. 

 

 

Figure 6- Free motion simulation at a stable point (𝝀 =75.10E) over several cycles 

In this equilibrium stable point is necessary to wait until 2012/02/12 (3 control 
cycles) to have the longitude out the deadband. The drift rate is extremely small 
and it is really different from the rest of longitudes because the other 
perturbations (Moon, Sun, etc.) are higher than the perturbations produced by the 
tesseral terms.  

Near these longitudes, the situation is similar because the drift rate is small in 
comparison with any other longitude. Thus, the treatment of the equilibrium points 
will be applied for all the regions where the drift rate is very small, they will be 
called equilibrium regions. 

The free drift motion of the mean longitude around a stable point is that of a 
harmonic oscillator with a period of more than two years and no damping, always 
that the initial drift rate is zero. 
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Figure 7- Free motion simulation at a stable point (𝝀 =75.10E) over a ten-year period 

The simulation of the free motion at a stable point could be represented as a 
sinusoidal function, with a period of two year. Normally, the errors produced by 
the thrusts of the station keeping are the main problem to correct the orbit. 

The task of station keeping for an unstable point is similar to that of balancing a 
ball on the top of a hill, without any friction. The acceleration of the mean 
longitude in the vicinity of an equilibrium point (𝜆0 ) can be approximated by a 
linear function in 𝜆  with the proportionality constant (𝑝2 ) 

𝒅𝟐𝝀
𝒅𝒕𝟐

= 𝒑𝟐(𝝀 − 𝝀𝟎) (52) 

The differential equation (52) has two partial solutions, one convergent and one 
divergent. 

The convergent solution  

𝝀 = 𝝀𝟎 + 𝑪𝟏𝒆−𝒑𝒕  (53) 

𝜆̇ = −𝑝(𝜆 − 𝜆0) (54) 

The divergent solution 

𝝀 = 𝝀𝟎 + 𝑪𝟐𝒆+𝒌𝒕 (55) 

𝜆̇ = 𝑝(𝜆 − 𝜆0) (56) 
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Whatever the starting conditions are, the longitude evolution will be dominated by 
the divergent solution. Longitude station keeping can be described as 
manoeuvring the mean longitude to the convergent solution, but a small error will 
bring it back again to the divergent solution. 

The figure 8 shows the free evolution of the mean longitude around a divergent 
point 11.50W with the drift rate.  

 

Figure 8- Free motion of an unstable point (𝝀 =11.50W) 

In both cases, (stable and unstable points) the drift rate near the points is almost 
zero. For this reason they will be considered as being similar, because the control 
cycle is fourteen days, during which the drift rate has not evolved appreciable.  

Thus, station keeping at an equilibrium region always needs active manoeuvring, 
although the fuel needed to correct it was very small.  

 

 

 

 

 



 32   
 

2.3. Single manoeuvre  
 

As mentioned in the requirements, for the longitude control, only one manoeuvre 
will be considered. An East/West thrust or a tangential manoeuvre changes the 
longitude, the drift rate and the eccentricity vector (𝑒𝑥 , 𝑒𝑦 ). 

A single tangential thrust can be considered as an instantaneous impulse that 
changes instantaneously the flight velocity of the satellite, but not its position. The 
new orbit will keep the original height at this point and the perigee will be located 
there. 

The fact that the instantaneous spacecraft position does not change at the instant 
of the impulsive thrust imposes the following conditions on the change in the 
synchronous elements. According to equations (18) and  (19) 

𝚫𝐫 = 𝟎 = −𝑨�𝚫𝑫
𝟏.𝟓

+ 𝚫𝒆𝑿 𝐜𝐨𝐬 𝒔𝒃 + 𝚫𝒆𝒚 𝐬𝐢𝐧 𝒔𝒃� (57) 

𝚫𝝀 = 𝟎 = 𝚫𝝀𝟎 + 𝚫𝑫(𝒔𝒃 − 𝒔𝟎) + 𝟐�𝚫𝒆𝒙 𝐬𝐢𝐧 𝒔𝒃 − 𝚫𝒆𝒚 𝐜𝐨𝐬 𝒔𝒃� (58) 

Being 𝑠0 the initial right ascension of the satellite, and 𝑠𝑏 the right ascension of 
the satellite when the manoeuvre will be applied. 

And adding the change in the spacecraft velocity from the equation (20) and the 
equation (21) 

𝚫𝑽𝒓 = 𝑽�𝚫𝒆𝒙 𝐬𝐢𝐧 𝒔𝒃 − 𝚫𝒆𝒚 𝐜𝐨𝐬 𝒔𝒃� (59) 

𝚫𝑽𝒕 = 𝑽�𝚫𝑫+ 𝟐𝚫𝒆𝒙 𝐜𝐨𝐬 𝒔𝒃 + 𝟐𝚫𝒆𝒚 𝐬𝐢𝐧 𝒔𝒃� (60) 

There are four linear equations and four parameters. This a linear system where 
the exact solutions are 

𝚫𝝀𝟎 = 𝟑𝚫𝑽
𝑽

(𝒔𝒃 − 𝒔𝟎) (61) 

𝚫𝑫 = −𝟑𝚫𝑽
𝑽

 (62) 

𝚫𝒆𝒙 = 𝟐𝚫𝑽
𝑽
𝐜𝐨𝐬 𝒔𝒃 (63) 

𝚫𝒆𝒚 = 𝟐𝚫𝑽
𝑽
𝐬𝐢𝐧 𝒔𝒃 (64) 

The change Δ𝜆0is only a mathematical result of extrapolating the new drift rate 
back to the original epoch. The expression for the change of the semimajor axis 
becomes 
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𝚫𝒂 = −𝟐𝑨
𝟑
𝚫𝑫 = 𝟐

𝝍
𝚫𝑽 (65) 

The drift rate changes in the opposite direction of the direction of the manoeuvre. 
An east thrust gives a west drift and a west thrust gives an east drift. This 
happens because, although an east thrust first increases the flight velocity and 
causes a short initial east move, the main effect is to raise the semimajor axis of 
the orbit. This increases the orbital period so the orbital velocity decreases, with a 
west drift as consequence.  

For instance, a drift rate of 0.1o/sec gives a Δ𝑉 = 1.788875 𝑚/𝑠. 

Following the linearized equations (18)  and  (19), for a manoeuvre at time tb, the 
radius and longitude variations are 

𝚫𝒓 = 𝟐𝚫𝑽
𝝍

[𝟏 − 𝐜𝐨𝐬�(𝒕 − 𝒕𝒃)𝝍�]  (66) 

𝚫𝝀 = 𝚫𝑽
𝑽
�𝟒 𝐬𝐢𝐧�(𝒕 − 𝒕𝒃)𝝍�− 𝟑�(𝒕 − 𝒕𝒃)𝝍�� (67) 

The longitude does not change instantaneously but changes in time as a result of 
the new drift rate.  

 

Figure 9- Evolution of the semimajor axis vs mean longitude 

This figure shows the position in the radial direction with the longitude. The 
displacement along-track (𝐴Δ𝜆 ) goes from 𝐴𝜆1 = 42164.5 · 30 · 𝜋

180
= 22077.28 Km to 
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𝐴𝜆2 = 42164.5 · 30.28 · 𝜋
180

= 22283.34 Km, the difference 𝐴Δ𝜆 = 206.055 Km is really 

high in comparison with the displacement in the radial direction Δ𝑟 = 1.76Km. This 
high sensitivity of the along-track position for a given Δ𝑉 compared to the radial 
position must be taken into account when assessing the effect of manoeuvres 
uncertainties.  

 

2.4. Symmetry control 
 

The symmetry control consists of giving the necessary Δ𝑉 to produce a 
symmetric parabola in one cycle of the mean longitude, in such a way that the 
difference between the maximum and the deadband is equal to the difference 
between the minimum and the deadband. The manoeuvres are applied at the 
maximum or at the minimum of the longitude evolution, in the interval of time 
between the initial time (𝑡0 ) and the end of the control cycle (𝑡0 + 𝑇 ) 

 𝜆𝑇 − min
t0≤𝑡≤𝑡0+𝑇

 𝜆(𝑡) = max
t0≤𝑡≤𝑡0+𝑇

𝜆(𝑡) − 𝜆𝑇 = 𝑊 

This difference (W) is called the symmetry parameter. 

The following conditions are valid when the parabola is positive (negative drift 
rate), whereas a negative value is dealt within an analogous way by swapping 
east and west and changing the signs. Following this assumption, the conditions 
to fulfil the symmetry in one cycle must be 

 

𝜆(𝑡0) = 𝜆𝑇 +𝑊  Start the cycle with the longitude near the east 
boundary 

𝜆̇(𝑡0) = 𝜆̇0    Initial drift rate 

𝜆(𝑡0 + 𝑇/2 ) = 𝜆𝑇 −𝑊  Arrive to the value of the symmetry parameter 

𝜆̇(𝑡0 + 𝑇/2 ) = 0   Natural drift reversal at the west boundary. 

The longitude centre of the deadband is the longitude target, the manoeuvre will 
be applied analysing the real longitude, not the mean longitude. Actually, this is 
the real longitude, so controlling the real longitude; the longitude will be always 
inside the deadband. 

The objective is to obtain an expression which determines the necessary Δ𝑉 to 
get the conditions of symmetry. 
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g (t) is an auxiliary function that represents the rate between the difference of 
longitudes with the manoeuvre of the equation (68)  

𝒈(𝒕) = 𝚫𝝀
𝚫𝑽

= 𝟑
𝑨

 (𝒕 − 𝒕𝒃)− 𝟒
𝑽
𝐬𝐢𝐧�𝝍(𝒕 − 𝒕𝒃)� (68) 

The necessary thrusts to get symmetry in the maximum and in the minimum of 
the longitude are 

𝑼𝑨 = 𝐦𝐢𝐧𝐭𝟎≤𝒕≤𝒕𝟎+𝑻
𝝀(𝒕)−𝝀𝑻+𝑾

𝐠(𝐭𝐀)
 (69) 

𝑼𝑩 = 𝐦𝐚𝐱𝐭𝟎≤𝒕≤𝒕𝟎+𝑻
𝝀(𝒕)−𝝀𝑻−𝑾

𝐠(𝐭𝐁)  (70) 

The subscripts A and B represent the minimum and the maximum respectively.  

In order to reach both maximum and minimum longitude separated by the 
parameter W, an iterative expression must be found. 

In order to approach this symmetry during the iteration 𝑊𝑛+1 is solved during the 
same step by requiring  

Δ𝑉𝑛+1 − Δ𝑉𝑛 =
𝜆(𝑡𝐴) − 𝜆𝑇 + 𝑊𝑛+1

gn(tA) =
𝜆𝑛(𝑡𝐵) − 𝜆𝑇 −𝑊𝑛+1

gn(tB)
 

The orbit is calculated by the propagator to the end of the control cycle with the 
manoeuvres from the latest iteration.  

This leads to the following formula for each iteration step, using the accurate 
numerical integration of Soop [1] 

𝚫𝑽𝒏+𝟏 = 𝚫𝑽𝒏 + 𝒈𝒏(𝒕𝑨)𝑼𝒏𝑨+𝒈𝒏(𝒕𝑩)𝑼𝒏𝑩
𝒈𝒏(𝒕𝑨)+𝒈𝒏(𝒕𝑩)  (71) 

𝑾𝒏+𝟏 = 𝑾𝒏 + �𝑼𝒏𝑩−𝑼𝒏𝑨�𝒈𝒏(𝒕𝑨)𝒈𝒏(𝒕𝑩)
𝒈𝒏(𝒕𝑨)+𝒈𝒏(𝒕𝑩)  (72) 

This process requires propagating the orbit every iteration in order to obtain the 
maximum and the minimum longitude updated. Normally, in a few iterations the 
solution converges.  
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Diagram 2- Algorithm of the strategy of symmetry control 
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2.4.1. Algorithm 
 

• Initialization of variables. 

At the start of the first iteration the initial values are 𝑊0 = 𝛿𝜆
4

 and Δ𝑉0 the 

necessary because the longitude arrives to the boundary of the control window, 
𝛿𝜆 (just the first step of the first control cycle), later these values will be these of 
the ancient control cycle.  

• Find the maximum and the minimum 

This function searches the maximum and the minimum real longitude and the 
time when the maximum and the minimum are obtained.  

This function is called every time that a new Δ𝑉 is obtained, because each time 
the Δ𝑉 changes, the maximum and the minimum will be different, and so will be 
the times when the maximum and the minimum are placed.  

• Calculation of the Δ𝑉 and W 

Following the expressions calculated above, equations (71) and (72), both 
Δ𝑉 and W will not be considered accurate enough unless the following criteria are 
met 

𝝐𝒓(𝚫𝑽) = (𝚫𝑽𝒏+𝟏−𝚫𝑽𝒏)
𝚫𝑽𝒏

< 𝟏𝟎−𝟔 (73) 

𝝐𝒓(𝑾) = (𝑾𝒏+𝟏−𝑾𝒏)
𝑾𝒏

< 𝟏𝟎−𝟔 (74) 

These values have been chosen because are the minimum tolerance that can be 
tolerated by the computer process. 

 

2.4.2. Results  
 

As explained before, the only free parameters that the Operator could choose in 
a geostationary satellite are the longitudes and its respective deadbands. The 
others will be consequence of the strategy to follow and they will depend on the 
initial conditions. 
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The algorithm works for all the range of longitudes, but for obvious reasons, it is 
impossible to show the solutions in all the longitudes. The simulations will be 
done showing the most representative cases. 

The longitudes chosen are: a typical longitude (𝜆 =30oE), a stable equilibrium 
point (𝜆 =75.1oE), an unstable equilibrium point (𝜆 =11.5oW), and a longitude 
near to the stable equilibrium point (𝜆 =76.5oE). 

All the simulations will start with the specified inputs from the section 1.6.1 where 
𝜆0 = 𝜆𝑇  

Actually, the only requirement to choose adequate initial values is that they must 
be close to the real geostationary orbit (e=0; i=0; a=42164.5Km) 

 

2.4.2.1. Longitude 30o E 
 

The plot of the real longitude throughout one year is aliased. Because to have a 
good representation, the sample must be each half hour, and the resolution of 
the format does not allow so much precision. However, the envelope longitude 
will be presented, showing where the maximum and minimum longitudes are. 

 

 

Figure 10- Envelope longitude with symmetry control during one year (𝝀 = 𝟑𝟎𝟎𝑬) 
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The first observation is that the real longitude is inside the deadband, so the main 
objective is accomplished. However, throughout the year the maximum and the 
minimum do not have similar values, this is due to the eccentricity, but also to the 
mean longitude.  

 

 

Figure 11- Zoom on real longitude (300E) with symmetry strategy 

 

The figure 11 shows the symmetry strategy of the real longitude in four control 
cycles. The minimum is always near the middle of the control cycles and the 
maximum can be at the beginning or at the end of the cycle, according to the 
eccentricity evolution. 

Although the objective is to control the mean longitude and assure that the real 
longitude is inside the control window, the maximum and minimum (time or 
longitude) found in every control cycle belong to the real longitude, and tge 
manoeuvres are applied to the real longitude, so the mean longitude is not 
entirely controlled. 

This effect means that the longitude evolution in one control cycle will not be 
centred, so if an unexpected error could produce the satellite would move outside 
the control window. 
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Figure 12- Drift rate vs mean longitude (𝝀 = 𝟑𝟎𝟎𝑬) 

 

Actually, the symmetry is not perfect because the eccentricity changes with the 
time. An eccentricity strategy will be necessary to control the longitude.  

Figure 13 shows the thrust evolution throughout a year. 
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Figure 13- Thrust evolution throughout a year at 𝝀 = 𝟑𝟎𝟎𝑬 

 

The Δ𝑉 do not have the same size, and there is no obvious tendency for one 
value. For this reason, the drift evolution will be different every cycle. 

In the course of one year, it will be impossible to control the longitude and the 
drift with only one manoeuvre; because a change of Δ𝑉 has implicit a change of 
drift rate, and consequently, the next real longitude cycle will be different from the 
previous one.  

 

2.4.2.2. Longitude 75.1oE 
 

This is an equilibrium stable point.  The strategy will try to ensure that the real 
longitude is symmetric, like in the longitude of 300E. However, it is not possible 
because the drift rate is so small that having a control cycle fixed of 14 days, the 
longitude cannot evolve enough to have symmetry. 

As mentioned before, the real longitude evolution in one year does not give 
important information; with a few of control cycles is enough to understand what 
happens with the stable equilibrium point. 
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Figure 14- Longitude evolution with symmetry control (𝝀 = 𝟕𝟓.𝟏𝟎𝑬) 

 

Figure 14 shows that the manoeuvres required are significantly small, and the 
longitude almost does not change. 

Moreover, for the control cycle, the drift rate evolution is so slight that applying a 
manoeuvre is more probably to increase the perturbation and not to help to 
stabilize the longitude. This is an important point to consider, because if the 
manoeuvre must control the longitude, and it happens the contrary, there is no 
control. 
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Figure 15- Drift rate vs mean longitude (𝝀 = 𝟕𝟓.𝟏𝟎𝑬) 

 

Figure 16 shows that the thrusts throughout a year have a low order of 
magnitude. Actually, values that are smaller than 0.005 m/s cannot be considered 
by the satellite engine. The errors associated to the thrusts are higher than the 
thrust they can produce. Most of the values of the thrust are under this minimum 
value (0.005 m/s) 
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Figure 16- Thrust evolution throughout a year at 𝝀 = 𝟕𝟓.𝟏𝟎𝑬 

 

All the values of the thrusts are lower than the minimum thrust that the engine 
can detect. 

This strategy cannot work for an equilibrium stable point having the control circle 
of 14 days. One possible solution to adapt this strategy to this point would be to 
change the control circle increasing the number of days, but the control cycle is 
an external requirement impossible to change. 

 

2.4.2.3. Longitude 11.5oW 
 

The longitude evolution is similar to the stable equilibrium point.  

0 

0,005 

0,01 

0,015 

0,02 

0,025 

0,03 

0,035 

0,04 

0,045 

0,05 

23/12/2011 11/02/2012 01/04/2012 21/05/2012 10/07/2012 29/08/2012 18/10/2012 07/12/2012 

Th
ru

st
 (m

/s
) 

Time (Calendar) 

Thrust throughout a year at 75.1ºE 



 45   
 

 

Figure 17- Longitude evolution vs symmetry strategy (𝝀 = 𝟏𝟏.𝟓𝟎𝑾) 

 

Nevertheless, the drift rate evolution is quite different. The drift rate diverges 
(slightly) because is very sensible to any perturbation, even if the thrust is really 
small.  

 

 

Figure 18- Drift rate vs mean longitude with symmetry strategy (𝝀 = 𝟏𝟏.𝟓𝟎𝑾) 
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Δ𝑉 applied in the equilibrium points are of the same order of magnitude. So the 
errors produced are similar. But, due to the instability of the drift, there are more 
manoeuvres are higher than the threshold value (0.005 m/s) indicated before. 

 

Figure 19- Thrust evolution throughout a year at 𝝀 = 𝟏𝟏.𝟓𝟎𝑾 

 

The fact of not having a controlled evolution in the drift rate evolution produces 
that the manoeuvres are unpredictable in the long-term (being low values) 

 

2.4.2.4. Longitude 76.5oE 
 

It is interesting to study a longitude near to an equilibrium point because it has 
characteristics of a typical point and of an equilibrium stable point.  

The drift rate in the longitudes near to an equilibrium point is also small. Here, the 
tesseral elements and the other perturbations have the same importance.  

The longitude evolution is similar to the longitude evolution of 𝜆 = 300𝐸, but with 
Δ𝑉 small. 
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Figure 20- Thrust evolution throughout a year at 𝝀 = 𝟕𝟔.𝟓𝟎𝑬 

 

The thrust problem of the equilibrium points also appears in this longitude. 
Although the values are higher than on the equilibrium points, they are not 
enough to be significant. 

 

Figure 21- Drift rate vs mean longitude (𝝀 = 𝟕𝟔.𝟓𝟎𝑬) 
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The way that the parabolas are centred reminds the equilibrium points, but unlike 
them, the drift rate is enough to do a little parabola. This is how the “hybrid” point 
behaves.  

Looking at the figure of the zoom in the drift rate, it can be observed that no 
parabola is centred in zero. Furthermore, they are placed arbitrarily in a delimited 
region inside the deadband. 

 

Figure 22- Zoom on drift rate vs mean longitude (𝝀 = 𝟕𝟔.𝟓𝟎𝑬) 

 

2.4.3. Problems to solve 
 

• The value of the thrusts changes in every control cycle. 

The values do not seem to keep a trend; the difference between two consecutive 
values can be up to 20%.  

The problem of the strategy is that the algorithm is only made according to one 
control cycle; there is no relation between a control cycle and the ancient control 
cycle.   
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The Δ𝑉 changes because the algorithm produces a thrust necessary to obtain a 
symmetric longitude in one cycle and if the maximum or minimum longitude vary, 
also the Δ𝑉. 

Thus, the initial longitude and the final longitude in one cycle are not the same. 
There is no capability to control the thrust in order to get more similar values.  

This problem is more evident analyzing the mean longitude in a several cycles: 

 

Figure 23- Mean longitude (300E) with symmetry strategy 

 

If the initial longitude and the final longitude are not levelled, the maximum and 
the minimum also, so the algorithm will not be automatic and it is one of the 
requirements.  

One of the causes is that the code is based on the oscillatory eccentricity, so the 
maximum and the minimum could not coincide with the maximum amplitude. 
Furthermore, the eccentricity varies in one cycle. 

  

• This strategy does not work as desired in the equilibrium points.  

It is true that the longitude is confined in a small region and never escapes. 
However, this region has not been chosen, so it is not centred and not controlled. 
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Nevertheless, the weakest point of this strategy for the equilibrium points is that 
the Δ𝑉 applied in most of the cases is very small. 

 

• The initial state vector must be coherent.  

As mentioned in the introduction of this section, the rest of synchronous 
parameters could be chosen arbitrarily, but in case the drift is really different from 
zero or the mean longitude at epoch is far from the longitude target, the algorithm 
does not answer well. 

 

 

 Figure 24- Drift rate with a bad initial state vector 

Figure 24 shows that four control cycles are needed to obtain a right longitude. 
Four manoeuvres mean one month since the set in orbit. Thus, once the initial 
longitude is not well placed, the algorithm cannot stabilize the longitude in a 
region. The worst problem is that the real longitude goes away the control 
window, as shown in figure 25 
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Figure 25- Longitude evolution with a bad initial state vector 

In order to solve the problems before mentioned, a new strategy will be 
presented. 

 

2.5. Drift/Longitude strategy 
 

The free drift rate without perturbing forces relates the real semimajor axis (a) 
with the theoretical semimajor axis (A), equation (16) 

However, in an environment where all the perturbing forces are considered, it is 
difficult to obtain an expression of the drift rate such as the mentioned before, 
where there are no perturbing forces, but is directly related with the semimajor 
axis.   

The free drift rate and the drift rate considering all the disturbing forces represent 
the same concept.  

Returning to the equation (49), considering that at the beginning of the cycle 
𝑡0 = 0 and taking the derivative of the longitude 

𝝀̇ = 𝝏𝝀(𝒕)
𝝏𝒕

= 𝝀̇𝟎 + 𝝀̈𝒕 (75) 
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Where 𝜆̇0 is the initial drift rate which could be found analysing the initial 
conditions and 𝜆̈ is the drift acceleration, which depends on the longitude that 
have been chosen These accelerations are tabulated and constant inside the 
deadband (ANNEX A). 

The time can be expressed as 

𝒕 = 𝝀̇−𝝀̇𝟎
𝝀̈

 (76) 

Thus, 

𝝀�𝝀̇� = 𝝀𝟎 −
𝟏
𝟐
𝝀𝟎̇
𝝀̈

 + 𝝀̇𝟐

𝟐𝝀̈
= 𝑫 + 𝑬𝝀̇𝟐 (77 ) 

The independent term D depends on the initial conditions (𝜆0, 𝜆0̇) and the 
coefficient E is constant.  

The term D is the longitude that will be reached when the drift rate was zero. The 

factor 𝑘 = 𝜆̇2

2𝜆̈
 determines the maximum and minimum values that the mean 

longitude could reach in function of the drift rate.  

The first condition that it must fulfil is that the parameter k is smaller than the 
deadband. 

𝒌 < 𝛿𝜆 (78) 

The second condition is to control the term 𝒌 to produce symmetry in the mean 
longitude with the drift rate. However, this symmetry is only possible in a 
determinate longitude (𝜆𝑏 ) because the control cycle is fixed in fourteen days. 
Hence, the question here is whether there is a point where applying a thrust, after 
the cycle, the longitude would arrive to the same place thanks to the drift 
evolution. If this point exists, the strategy would be completed. The aim of the 
strategy is to find this point where the mean longitude will repeat for long term.  

 

2.5.1. Longitude trade off 
 

There are several questions to answer, such as, if this point exists, if it would 
be constant and if it is possible to reach it with only one manoeuvre. 
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• Does this point exist? 

Obviously, the point where there will be longitude symmetry is not the longitude 
target because, in a determinate longitude, the drift rate will move the longitude to 
one side of the deadband, so the longitudes would be always displaced, not 
centred in the control window. 

It is impossible to know where this point is with only one control cycle. Because in 
only one control cycle, the strategy does not have enough information about the 
longitude throughout the time, only consider the longitude information in this 
control cycle.  

Thus, the strategy must take into account two cycles. The first one will find the 
point where in the next cycle, applying the symmetry strategy; the initial mean 
longitude and the final mean longitude will be at same place.  

Thus, there will be an iterative process, where the thrust of the first control cycle 
will be varying in order to find when the second cycle will have the initial and final 
longitude at same place applying the symmetry strategy.  

Normally, the Δ𝑉 of the second control cycle will not change throughout the 
iterative process. 

In the figure 26, the longitude painted of black represents the normal 
propagation. The longitude painted of green is the propagation when the thrust of 
the first cycle is smaller, and the blue is the effect of doing higher the first thrust.  

If the final longitude of the second cycle (𝜆3) is higher than the initial longitude of 
the second cycle (𝜆2), the velocity of the first manoeuvre increases. If it is the 
opposite case, the manoeuvre decreases. 

𝜆2 > 𝜆3 → Δ𝑉1 ↑ 

𝜆2 < 𝜆3 → Δ𝑉1 ↓ 

 



 54   
 

 

Figure 26- Effects of increasing or reducing the first thrust 

 

• Will the point be constant throughout one year? 

The first manoeuvre must be the necessary to set the second parabola in the 
point where the longitude and drift will be symmetric in the next cycles. For 
making sure that the next control cycle to the second parabola will be also 
similar, in every iteration a verification of the next cycle will be done.  

This means that throughout the satellite lifetime, the strategy will consider two 
control cycles, and will vary the thrust of the first one in order to obtain symmetry 
in the second one. Thus, the symmetry will be always carried out. 

With this process exists the assurance that one control cycle could not do a 
manoeuvre to destabilize the algorithm. By the way, if there was any perturbation 
that placed the longitude on an undesirable point, the algorithm will apply a 
manoeuvre to set the longitude at the end of the control cycle in order that the 
next cycle arrives at the point where all the iteration would repeat again. 

  

• Is possible to reach the point with only one manoeuvre? 

The theory says that it is not possible to control longitude and drift at same time, 
with only a single manoeuvre, but in reality, the only parameter that is controlled 
is the longitude, a longitude based on the symmetry of the drift rate. For this 
reason, the code must be ready to initialize each time that the drift rate has a big 
value.  
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2.5.2. Algorithm 
 

 

Diagram 3- Algorithm of the strategy drift/longitude control 

• Calculate the reference longitude 

According the assumptions of the section 2.4, the period of a cycle is fixed by the 
size of the deadband and by the tesseral acceleration. 

𝑻 = 𝟒�𝜹𝝀/𝝀̈  (79) 

Here, T represents the control cycle that is fixed. The cycle is fixed, where the 
𝛿𝜆 will be the parameter 𝑘, from the equation (78). The objective is to calculate 
this value, being the maximum of the mean longitude could reach. If the algorithm 
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could reach this value at the end of the longitude cycle, the longitude and the drift 
will be symmetrical for all the cycles. 

The table of the tangential accelerations due to the tesseral elements, ANNEX-A, 
only contains the accelerations for integer values of longitudes, so for the other 
longitudes (between two integer longitudes) the tangential acceleration will be 
found by extrapolation.  

In this way, the theoretical longitude is found as 𝜆𝑏 = 𝜆𝑇 + 𝑘 

• According to the difference between the reference point and the mean 
initial point, two processes of determination of longitude can be chosen. 

If the initial longitude is different than the theoretical longitude, the process 
chosen is (i), unless the process chosen is (ii). 

 

i. INITIALIZATION 

Case when the initial longitude is different with the reference longitude. 

The algorithm of this method is  
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Diagram 4- Algorithm of the initialization process 

• Δ𝑉 to achieve the reference longitude 

Normally, the initial longitude of the first cycle will not be at the right point. Thus, 
the first cycle is called an initialized cycle.  This cycle will not follow the drift or 
longitude symmetry, its only aim is to set the next longitude in drift and longitude 
symmetry.  

As it was mentioned before, the reference longitude should not be so far than the 
optimal point, so the first approximation will be a manoeuvre where the reference 
point would be the final longitude point. 

To do this by only considering the mean longitude, the required thrust comes 
from the equation 

𝚫𝝀 𝑽 = 𝚫𝑽 �𝟑
𝑨

(𝒕𝑻 − 𝒕𝒃)� (80) 

Where 𝑡𝑇 would be the time when the longitude will be targeted and 𝑡𝑏 the time 
when the manoeuvre should be done. 
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As the time of the manoeuvre is not yet controlled (it will be reserved for the 
eccentricity),  𝑡𝑇 − 𝑡𝑏 = 14 days 

The iteration becomes 

𝚫𝑽𝒏+𝟏 = 𝚫𝑽𝒏 + 𝑨
𝟑
𝝀𝒏(𝒕𝑻)−𝝀𝑻
𝒕𝑻−𝒕𝒃

 (81) 

Starting with the Δ𝑉 used for the symmetry strategy. 

• Verification 

This function propagates the second control cycle, taking the final state vector 
as the initial state vector for the second cycle. 

Now, in this second cycle, the strategy to follow is the symmetry longitude 
strategy. Applying the strategy of symmetry longitude the real longitude will be 
inside the deadband. Hence, in the first cycle, that is cycle which is really being 
controlled, the strategy is applied to the mean longitude. The second control 
cycle is only used to verify the thrust of the first cycle. 

With the thrust found by the equation  (81), the initial longitude and the final are 
compared. If they do not have the same value, the thrust of the first control cycle 
will be changed. 

it is necessary to pay attention in the order of magnitude of the different 
components of the equation  (81). 

Δ𝑉1~42164.5 ·
𝜆𝑛(𝑡𝑇) − 𝜆𝑇

3 · 14 · 86400
≈ 0.01162 (𝜆𝑛(𝑡𝑇)− 𝜆𝑇) 

Taking accuracy between the longitudes of 0.010 the contribution in km/s is of 
1.162E-4. Thus, taking accuracy of 0.00010 the iteration is not possible to 
achieve these values.  

Thus,  

If 𝜆𝑖2 < 𝜆𝑓2 the Δ𝑉2𝑛+1 = Δ𝑉𝑛 + 𝛿Δ𝑉 

If 𝜆𝑖2 > 𝜆𝑓2 the Δ𝑉2𝑛+1 = Δ𝑉𝑛 − 𝛿Δ𝑉 

The 𝛿Δ𝑉 can take the precision that the User wants. Considering the smaller it is, 
the much better the precision is, but the time required to perform it is really will 
increase.  

Finally, the program ends, calculating the size of the manoeuvre which will fulfil a 
symmetric parabola which will start and finish at the same longitude. 
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ii. DRIFT SYMMETRY 

Once the initial longitude has been initialized, if the assumptions have been right, 
using the equation (81), the initial and the final longitude will be the same, doing 
the drift rate a symmetric parabola.  

Nevertheless, to make sure that the next cycle will follow also a symmetric 
parabola, there will also be verification and in the case that the initial and final 
longitude of the second cycle will not overcome the threshold, another increment 
will be applied as mentioned before for the other case.  

 

 

Diagram 5- Algorithm of the drift symmetry 

2.5.3. Results 
 

As in the symmetry strategy, the analyzed longitudes will be the same than 
before, because they are the most relevant.  
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In order to demonstrate that applying the strategy in the mean longitude, the real 
longitude will also have better results, the plots showed will be of the real 
longitude versus time and the drift rate versus mean longitude.  

 

2.5.3.1. Longitude 30oE 
 

The typical value of 𝜆𝑇 = 30𝑜 sets the real longitude inside the deadband with a 
margin of no more than the 20% of the total deadband. To show it, as done in the 
symmetry strategy, the envelope longitude will replace the real longitude in one 
year. 

 

 

Figure 27- Envelope longitude with drift/longitude control during one year (𝝀 = 𝟑𝟎𝟎𝑬) 

 

Now, examining the drift rate, it is easy to watch where the optimum point is. 
Except the first longitude which comes from any point inside the deadband (initial 
state vector), the rest of longitudes are inside a really small range.  
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Figure 28- Drift rate vs mean longitude with longitude/drift control (𝝀 = 𝟑𝟎𝟎𝑬) 

 

It is true that the drift rate is not the same at the end of each control cycle. This is 
the influence of the other perturbing effects. These effects do not influence in the 
algorithm and neither in the choice of the optimum point. However, as mentioned 
in the equation (50), the drift error is accumulated, so if the mission was for two 
or more years, a double manoeuvre would be necessary to reduce the drift rate 
towards the value obtained of the first control cycle. 

These effects can be watched in the figure 29. 
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Figure 29- Thrust evolution throughout a year at 𝝀 = 𝟑𝟎𝟎𝑬 with drift/longitude strategy 

The thrust evolution is constant during the first half year, later the drift error start 
to influence in the thrust. A second initialization should be necessary or a double 
manoeuvre if it was urgent. 

 

2.5.3.2. Longitude 75.1oE 
 

In the equilibrium points, the real longitude does not change so much with the 
time. 

The main characteristics which define a longitude control in a stable point are the 
thrust evolution and the changes of drift rate between two control cycles. 
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Figure 30- Thrust evolution throughout a year at 𝝀 = 𝟕𝟓.𝟏𝟎𝑬 with drift/longitude strategy 

 

Although the most of the values of the thrusts are upper the minimum, it exists a 
lot of values that would not be considered. These values could be neglected. A 
good strategy would be avoiding doing manoeuvre in this cycle, because there 
will not be consequences, and having a control cycle that changes with the time. 

However, in comparison with the manoeuvres of this point with longitude 
symmetry, here, only a few of them are under the thrust threshold. In order to 
force the drift parabola, the thrust is higher.   

The figure 31 shows the drift rate, and the confirmation is done. This algorithm 
behaves correctly at equilibrium points.  
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Figure 31- Drift rate vs the mean longitude with longitude/drift control (𝝀 = 𝟕𝟓.𝟏𝟎𝑬) 

The mean longitude is centred in the middle of the control window. The next 
picture shows a zoom of the zone where the manoeuvres take place. 

 

Figure 32- Zoom on drift rate vs the mean longitude with longitude/drift control (𝝀 = 𝟕𝟓.𝟏𝟎𝑬) 

 

The drift varies more due to errors in thrusts than as a result of gravitational 
perturbations. To see better how the drift does not evolve along a manoeuvre. 



 65   
 

Watching the evolution of the semimajor axis could help, because of the mean 
drift rate definition. 

 

Figure 33- Semimajor axis evolution with longitude/drift control (𝝀 = 𝟕𝟓.𝟏𝟎𝑬) 

 

The horizontal lines represent the moments when the satellite is drifting. The 
vertical lines take place when the manoeuvres are applied. There is not almost 
drift rate between two control cycles. 

2.5.3.3. Longitude 11.5oW 
 

The real longitude evolution is similar to that found for the stable equilibrium 
point.  

The unstable point is the worst longitude to control. The solution obtained is not 
perfect but it shows some improvements with respect to the symmetry longitude 
strategy.  

First of all, it is impossible to set the longitude in one region, because its drift is 
very small but very sensitive to any perturbation. However, the longitude 
fluctation has been reduced in comparison with the symmetry longitude strategy. 
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Figure 34- Drift rate vs mean longitude with longitude/drift control (𝝀 = 𝟏𝟏.𝟓𝟎𝑾) 

The region the longitudes take place is at the middle of the control window. The 
difference of thrusts between two consecutive cycles is due to the impossibility of 
not having a drift rate constant. It is small, but sometimes with tendency to 
displace to the east and sometimes to the west. 
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2.5.3.4. Longitude 76.5oE 
 

Only analyzing the drift rate with the mean longitude is enough to show the 
improvements.  

 

 

Figure 35- Drift rate vs mean longitude with longitude/drift control (𝝀 = 𝟕𝟔.𝟓𝟎𝑬) 

 

The drift rate is enough to produce symmetry with the mean longitude. As the drift 
rate is so mall, the error of the drift rate produces that the parabolas move 
changing the position. 
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Figure 36- Thrust evolution throughout a year at 𝝀 = 𝟕𝟔.𝟓𝟎𝑬with drift/longitude strategy 

Only several of the values are under thrust threshold. It is a very good result in 
comparison with the longitude symmetry control. 

 

2.6. Comparison/Enhancements 
 

The graphics will show both strategies together in one plot. The comparison will 
be between the longitude symmetry strategy and the longitude/drift strategy, 
analyzed previously, and for a longitude of 𝜆 = 300E. 

Red colour represents the Drift/Longitude strategy and black denotes the 
symmetry longitude strategy.  

The drift/longitude control represents a better strategy than the symmetry control. 
Actually, the second strategy was born from the first one, and in one of its 
functions used the strategy of symmetry longitude. So, the symmetry longitude is 
included in the strategy of drift/longitude control. 
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Figure 37- Comparison between symmetry strategy and longitude/drift strategy in longitude 

  

The black grows more and is more irregular than the red one. The red is more 
delimited in one region. 

To show better the differences, a zoom of the picture before is shown.  

 

Figure 38- Zoom on the comparison in longitude 
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The drift rate shows better the improvements of the second strategy. 

 

Figure 39- Comparison between symmetry and drift/longitude strategy in drift rate with mean 
longitude 

The curves closely overlap and are confined inside a smaller region. If the 
threshold decreases, this region will be shrink. However this has a negative 
effect. If the threshold is too small, a lot of initializations will take place, because 
the difference between the initial mean longitude and the reference point will be 
higher than the threshold.  

The drawback is that the time required calculating a process of initialization is 
much longer than the time to produce symmetry between the mean longitudes. 
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Figure 40- Zoom on the comparison of drift rate with mean longitude 

The longitude objective is accomplished. The longitudes at the beginning of every 
control cycle are at the same region, with a low tolerance. 

Figure 41 shows that the thrust applied in the Drift/longitude strategy is almost 
constant, except the first manoeuvre that is an initialization manoeuvre. At the 
end of the year, the Δ𝑉 starts to increase, if this growth continues the initialization 
process shall activate 

 

Figure 41- Comparison between the thrusts of both strategies at 𝝀 = 𝟑𝟎𝟎𝑬 
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3. ECCENTRICITY CONTROL 

3.1. Eccentricity requirements 
 

• The eccentricity strategy shall be complementary with the longitude 
strategy. 

The amplitude of the longitude fluctuations depends on the eccentricity (2e), so 
enforcing a good eccentricity control; the longitude control will improve. 

• The eccentricity control shall determine the time of the manoeuvre. 

The time of the manoeuvre is a free parameter that has not been treated in the 
longitude control, because it has been reserved for the eccentricity control. The 
Δ𝑉 is calculated by the longitude control, but the time when the manoeuvre will be 
realized will only depend on the eccentricity. 

• The eccentricity control shall follow any control circle. 

The control circle is imposed by the Operators which take care of different 
satellites which are placed at the same longitudes. The radius and the position of 
the circle are chosen at the beginning of the mission, and the eccentricity must 
follow the circle as close as possible.  

The control circle will only change in case that the mission changes.  

• Double manoeuvres shall be allowed in cases where to excentricity vector  
is too far from the control circle sought.  

In case that the direction of a single manoeuvre was pointing directly to the 
control circle and it did not reach it, a double manoeuvre will be necessary. They 
will be realized only in a strictly necessary case because the aim of the algorithm 
is to get the right control using the minimum manoeuvres possible. 

• The time of the manoeuvre shall be in the first day of a cycle. 

The eccentricity vector points to any direction throughout a day, so the choice of 
the first day is to constrain the problem.  

However, not all the hours of a day are good because the thrusters in 
geostationary orbit use normally three axis controller to be pointing always to the 
Earth. If the thrusters are burning when the nozzle is pointing to the Sun, the 
temperature could reach a maximum and an undesirable effect could happen. 
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3.2. Eccentricity evolution 
 

3.2.1. Sun pressure perturbation 
 

The main contribution to the eccentricity evolution is the solar radiation 
pressure. The solar pressure constant is the power that the Sun produces in the 
form of electromagnetic radiation. The mean radiation intensity (I) near the Earth 
is 1.4kW/m2. The solar radiation pressure is defined by the radiation intensity 
divided by the light velocity (𝑐 = 3 108 m/s), Agrawal [3] 

𝐼
𝑐

= 𝑃 = 4.56 𝑁/𝑚2 (82) 

The electromagnetic radiation pressure exerts a force on the spacecraft 
proportional to its cross-section (C) which points to the Sun. 

𝐹 = 𝑃𝐶(1 + 𝜖) (83) 

Where 𝜖 is the reflectivity coefficient of the surface, which could take a value 
between 0 < 𝜖 < 1 according the surface materials. 

The acceleration caused by the solar pressure is 

𝑑𝑣
𝑑𝑡

= 𝑃𝐶(1+𝜖)
𝑚

 (84) 

The acceleration depends on the cross-section to mass ratio (C/m) of the 
spacecraft.  

The cross-section (C) is defined to be the area of the silhouette of the spacecraft, 
projected onto a plane perpendicular to the incoming Sun rays, so its value 
depends on the surface of the spacecraft which points to the Sun. 

Accurate modelling of the solar radiation acceleration is difficult because different 
surfaces with different reflectivity are often exposed to the sunlight. Furthermore, 
the different types of reflectivity, diffuse or specular, contribute by deflecting the 
incoming rays. However, for most geostationary satellites it is sufficient to model 
the radiation acceleration with only one single parameter𝜎, which is called the 
effective cross-section to mass ratio.  

𝜎 = 𝐶(1+𝜖)
𝑚

 (85) 

This yields the acceleration 
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𝑑𝑣
𝑑𝑡

= 𝑃𝜎 (86) 

Not considering the declination of the Sun with the Earth (that would give a 
normal component to be studied in the inclination control); the acceleration 
produced by the sun radiation pressure could be interpreted as a tangential and 
radial acceleration. The two components in the tangential and radial directions of 
the velocity differential (𝑑𝑉𝑡,𝑑𝑉𝑟) from the radiation pressure become, 

𝑑𝑉𝑡 = sin(𝑠 − 𝑠𝑠)𝑑𝑉 

𝑑𝑉𝑟 = cos(𝑠 − 𝑠𝑠)𝑑𝑉 

 

And from equations (63) and (64), the variation of the eccentricity produced by 
the Sun pressure 

𝒅𝒆
𝒅𝒕

= �
𝒅𝒆𝒙
𝒅𝒕
𝒅𝒆𝒚
𝒅𝒕

� = 𝟐
𝑽
�𝐜𝐨𝐬 𝒔𝐬𝐢𝐧 𝒔�

𝒅𝑽𝒕
𝒅𝒕

+ 𝟏
𝑽
� 𝐬𝐢𝐧 𝒔
−𝐜𝐨𝐬 𝒔�  𝒅𝑽𝒓

𝒅𝒕
  (87) 

 

Integrating equation (87) and replacing 𝑑𝑡 = 𝑑𝑠/𝜓  

𝒅𝒆
𝒅𝒕

=
𝑃𝜎

2𝜋𝑉
� �2𝑠𝑖𝑛 (𝑠 − 𝑠𝑠) �cos 𝑠

sin 𝑠�
𝑑𝑉𝑡
𝑑𝑡

− � sin 𝑠
− cos 𝑠�  𝑐𝑜𝑠 (𝑠 − 𝑠𝑠)� 𝑑𝑠 =

2𝜋

0

3𝑃𝜎
2𝑉

�−sin 𝑠𝑠
cos 𝑠𝑠

� 

𝒆(𝑡) = 𝑒0 + 3𝑃𝜎𝑌
4𝜋𝑉

�
cos 𝑠𝑠
sin 𝑠𝑠 � (88) 

Here, 𝑒0 is the constant of integration, Y is the angular velocity of the Earth 
around the Sun (in 1 sidereal year) with respect to fixed stars and 𝑠𝑠 is the right 
ascension of the Sun that can be approximated by 

𝑠𝑠 ≈ 𝑠0 + 𝑌(𝑡 − 𝑡0) 

Being 𝑠0 the initial position of the Sun with respect to the Vernal point. 
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Figure 42 –Representation of the right ascension of the Sun, and its eccentricity 
perturbation 

 

Because the velocity of the Earth around the Sun is not constant (𝑌 ≠ 𝑐𝑡 ), the 
geometrical solution is a ellipse that can be approximated by a circle with the 
initial point 𝑒0 . 

The right ascension of the Sun is independent of the position of the satellite. The 
cross-section defines the radius of the circle, the constant of integration defines 
the starting point of the eccentricity evolution and the initial epoch defines the 
orientation of the circle. In one year, the initial and the final point would be the 
same. 

Now, fixing 𝑒0 in zero, fixing the effective cross-section to mass ratio and varying 
the initial epoch, the circles take these forms 
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Figure 43-Eccentricity circles in one year varying the initial epoch  

The blue circle starts on the date 2012/01/01, the green on 2012/03/01, the red 
on 2012/06/01, and the fuchsia on 2012/09/01.  

The initial eccentricity (𝑒0 ) and the initial epoch do not affect to the size of the 
circle, only in the orientation that will follow.  

However, the initial epoch was fixed in the initial inputs (2012/01/01 at 00.00.00h 
UTC), the cross-section is fixed by the mass and satellite surface lighted by the 
Sun, and the initial eccentricity vector was also fixed in the inputs. Hence the 
solar pressure evolution is predetermined.  

Just like the velocity of the Earth around the Sun (Y), the solar radiation pressure 
(P) also depends on the distance from the satellite to the Sun. To understand 

better the effect of these factors, the coefficient 3𝑃𝜎𝑌
4𝜋𝑉

= 𝛼, also called cpsm (cross 

pressure section by mass) throughout a year is represented in figure 44 
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Figure 44-cpsm evoution in one year 

The time evolution of the coefficient is sinusoidal. The peaks of the curve have 
the same height, because the fuel consumption caused by East/West 
manoeuvres in one year is negligible.  

 

3.2.2. Other perturbations 
 

The eccentricity control must be more accurate than the longitude control 
because of its order of magnitude. For this reason, the gravitational field of the 
Moon and Sun must be analysed.  

The gravity potential of a third body is expressed 

𝑑2𝑟𝑠𝑎𝑡
𝑑𝑡2

= −𝜇∗ �
(𝑟∗−𝑟𝑠𝑎𝑡)
|𝑟∗−𝑟𝑠𝑎𝑡|3 −

𝑟∗
𝑟∗3
� (89) 

In which the subscript * designates either the Moon or the Sun. So, the 
𝒓∗ designs the position vector from the Earth to the third body, and 𝒓𝒔𝒂𝒕 the 
position vector from the Earth to the satellite. 

The positions of the Moon and Sun are derived from Brown theories (for the 
Moon) and Meeus theories (for the Sun), that are described in Vallado [6] 

To calculate the Sun position vector, the mean longitude of the Sun (𝜆𝑀𝑆) is 
calculated considering the nutation and the equinox precession. 

𝜆𝑀𝑆 = 280.46061840 + 36000.77005361𝑇𝑈𝑇1 

Where 𝑇𝑈𝑇1 is the number of Julian centuries, calculated with the expression 
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𝑇𝑈𝑇1 =
𝐽𝐷2000− 2451545

36525
 

The mean anomaly of the Sun (𝑀𝑆) is calculated by means of 

𝑀𝑆 = 357.52772330 + 35999.05𝑇𝑈𝑇1 

Because the Earth’s orbit is approximately circular, it is possible to assume that 
the true anomaly is close to the longitude to express the ecliptic longitude (𝜆𝑒𝑐𝑙𝑆) 
as 

𝜆𝑒𝑐𝑙𝑆 = 𝜆𝑀𝑆 + 1.914666 sin𝑀𝑆 + 0.019994 sin 2𝑀𝑆 + ⋯ 

The distance in AU from the Earth to the Sun using an expansion of elliptic 
motion, Taff [10] 

𝑟𝑆 = 𝑎𝑒 �1 +
𝑒𝑒2

2
+ �𝑒𝑒 +

3𝑒𝑒
8
−

5𝑒𝑒5

192
+ ⋯� cos𝑀𝑠 + �−

𝑒𝑒2

2
+
𝑒𝑒4

3
−
𝑒𝑒6

16
+ ⋯� cos 2𝑀𝑠� 

By using the solar constants from Seidelmann [9], the value for the semimajor 
axis is 𝑎𝑒 = 1.00000100178 𝐴𝑈 and for the eccentricity 𝑒𝑒 = 0.016708617  

Thus, it yields 

𝑟𝑆 = 1.00014− 0.016708 cos𝑀𝑆 − 0.000139589 cos 2𝑀𝑆 

And taking into account the obliquity of the ecliptic.  

𝜖𝑆 = 23.4390 − 0.013004𝑇𝑈𝑇1 

The Sun position vector yields 

𝑟𝑆 = �
𝑟𝑆 cos 𝜆𝑒𝑐𝑙

𝑟𝑆 cos 𝜖 sin𝜆𝑒𝑐𝑙𝑆
𝑟𝑆 sin 𝜖 sin𝜆𝑒𝑐𝑙𝑆

� 

The Moon’s motion is very complex. Ernest Brown developed one of the best 
numerical theories to determine the position of the Moon. The longitude (𝜆𝑒𝑐𝑙𝑀 ), 
latitude (𝜙𝑒𝑐𝑙𝑀 ) and parallax (𝜑 ) are expressed following the series expansion, 
where 𝑀𝑀 is the mean anomaly of the Moon,  

𝜆𝑒𝑐𝑙𝑀 = 218.320 + 48126708813𝑇𝑈𝑇1 + 6.29 sin𝑀𝑀 − 1.27 sin(𝑀𝑀 − 2𝐷𝑆) +
0.66 sin 2𝐷𝑆 + 0.21 sin 2𝑀𝑀 − 0.19 sin𝑀𝑆 − 0.11 sin 2𝑢𝑀(90) 

𝝓𝒆𝒄𝒍𝑴 = 𝟓.𝟏𝟑 𝐬𝐢𝐧𝒖𝑴 + 𝟎.𝟐𝟖 𝐬𝐢𝐧(𝑴𝑴 + 𝒖𝑴) − 0.28 sin(𝑢𝑀 −𝑀𝑀) − 0.17 sin(𝑢𝑀 −
2𝐷𝑆) (91) 
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𝜑 =
0.95080 + 0.0518 cos𝑀𝑀 0.0095 cos(𝑀𝑀 − 2𝐷𝑆) +

0.0078 cos 2𝐷𝑆 0.0028 cos 2𝑀𝑀 (92) 

𝑟𝑀 = 1
𝑝(𝑠𝑖𝑛𝜑)

(93) 

Where the p in the equation 93 means that is measured in parsecs, and 
𝐷𝑆,𝑢𝑀,𝑀𝑀 are auxiliary values that are calculated following the next formulas 
𝐷𝑆 = 297.850270 + 445267.1110𝑇𝑈𝑇1, 𝑀𝑀 = 357.525430 + 35999.04944𝑇𝑈𝑇1, 
 𝑢𝑀 = 134.962920 + 477198.86753𝑇𝑈𝑇1 

𝑟𝑀 = �
𝑟𝑀 cos 𝜆𝑒𝑐𝑙 cos𝜙𝑒𝑐𝑙𝑀

𝑟𝑀[cos 𝜖 sin𝜆𝑒𝑐𝑙𝑆 𝑐𝑜𝑠𝜙𝑒𝑐𝑙𝑀 − sin 𝜖 sin𝜙𝑒𝑐𝑙𝑀]
𝑟𝑀[sin 𝜖 sin 𝜆𝑒𝑐𝑙𝑆 𝑐𝑜𝑠𝜙𝑒𝑐𝑙𝑀 − cos 𝜖 sin𝜙𝑒𝑐𝑙𝑀]

�(94) 

The third’s body effect on the satellite could be calculated using a numerical 
integration, but there is a potential difficulty, the distance from the Earth to the 
Sun and the distance from the satellite are very similar, and the cube of the 
difference of these distance are in the denominator. 

One solution is to expand 1
|𝒓∗−𝒓𝒔𝒂𝒕|3

= 1
𝑟𝑠 𝑎𝑡−∗ 
3  in a series that is the generating 

function for Legendre polynomials. Where 𝑟𝑠𝑎𝑡−∗ is the distance from the 3th body 
to the satellite. 

1
𝑟𝑠𝑎𝑡 −∗ 
3 =

1
𝑟∗
�𝑃0𝑐𝑜𝑠𝜁 + 𝑃1𝑐𝑜𝑠𝜁

𝑟𝑠𝑎𝑡
𝑟∗

+ ⋯� =
1 + 𝐵
𝑟∗

 

Where 𝐵 = ∑ 𝑃𝑗𝑐𝑜𝑠𝜁 �𝑟𝑠𝑎𝑡
𝑟∗
�
𝑗∞

𝑗=1 and 𝜁 is the angle between the third body and the 

satellite as seen from the Earth 

Substituting the expansion in the equation (100) and expressing  𝛽 = (1 + 𝐵)3  

𝑑2𝒓𝒔𝒂𝒕
𝑑𝑡2

= ∑ −𝜇∗
�𝒓𝒔𝒂𝒕−𝛽𝑘(𝒓∗−𝒓𝒔𝒂𝒕)�

𝑟∗3
2
𝑘=1    (95) 

Finally, the perturbation potential function by expressing the third body potential 
in terms of the Legendre polynomials 

𝑅3−𝑏𝑜𝑑𝑦 = 𝜇∗
𝑟∗
∑ �𝑟

𝑟∗
�
𝑙
𝑃𝑙𝑐𝑜𝑠𝜁∞

𝑙=2  (96) 

By using the same development than in the gravitational field, showed in 
equation (53), the function yields 
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𝑅3−𝑏𝑜𝑑𝑦 = ∑ 𝒓𝒔𝒂𝒕𝑙𝑃𝑙𝑚𝑠𝑖𝑛𝜃[∞
𝑙=2 𝐴𝑙𝑚𝑐𝑜𝑠𝑚𝜆 + 𝐵𝑙𝑚𝑠𝑖𝑛𝑚𝜆] (97) 

In this case, the coefficients take the following values 

𝐴𝑙𝑚 = 𝜇∗
𝑟∗𝑙+1

(𝑙−𝑚)!
(𝑙+𝑚)!

𝑃𝑙𝑚𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝑚𝜆(98) 

𝐵𝑙𝑚 = 𝜇∗
𝑟∗𝑙+1

(𝑙−𝑚)!
(𝑙+𝑚)!

𝑃𝑙𝑚𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝑚𝜆 (99) 

Now, using the equations of the variations of the synchronous elements of the 
section 1.7.3 and assuming that 

𝑟𝑠𝑎𝑡 = 𝑎(1 − 𝑒𝑥 cos(𝑠𝑠) − 𝑒𝑦 sin(𝑠𝑠) (100) 

𝑟𝑠𝑎𝑡 = �
𝑟𝑠𝑎𝑡�cos 𝑠 + 𝑒𝑥(cos 2𝑠 − 1) + 𝑒𝑦 sin 2𝑠�
𝑟𝑠𝑎𝑡�sin 𝑠 + 𝑒𝑦(cos 2𝑠 − 1) + 𝑒𝑥 sin 2𝑠�

0
�(101) 

Including this equations in the expressions (35) and (36) the result yields, 
according to P.Lagrange [7] 

𝑑𝑒𝑥
𝑑𝑡

= 𝐾∗ �
𝑎∗
𝑟∗
�
3
�− sin 𝑠 − 3

4
𝑥∗2(sin 𝑠 + sin 3𝑠) + 3

4
𝑦∗2(5 sin 𝑠 + 3 sin 𝑠) + 3

2
𝑥∗𝑦∗(3 cos 𝑠 + cos 3𝑠)�+

𝐾∗ �
𝑎∗
𝑟∗
�
4
� 𝑎
𝑎∗
� �15

16
𝑦∗(1 − 5𝑧∗) − 3

4
𝑥∗2 sin 2𝑠 + 3

4
𝑥∗ cos 2𝑠 − 15

8
𝑥∗3 �sin 2𝑠 + 1

2
sin 4𝑠� + 45

16
𝑥∗𝑦∗2 �

10
3

sin 2𝑠 +

sin 4𝑠� + 45
16
𝑥∗2𝑦∗ �

3
2

sin 2𝑠 + cos 4𝑠� − 15
16
𝑦∗3(4 cos 2𝑠 + cos 4𝑠)�(102) 

𝑑𝑒𝑦
𝑑𝑡

= 𝐾∗ �
𝑎∗
𝑟∗
�
3
�cos 𝑠 − 3

4
𝑥∗2(5cos 𝑠 − cos 3𝑠) + 3

4
𝑦∗2(cos 𝑠 − cos 3𝑠) + 3

2
𝑥∗𝑦∗(sin 3𝑠 − 3 sin 𝑠)�+

𝐾∗ �
𝑎∗
𝑟∗
�
4
� 𝑎
𝑎∗
� �− 15

16
𝑥∗(1 − 5𝑧∗) + 3

4
𝑦∗2 cos 2𝑠 + 3

4
𝑦∗ sin 2𝑠 + 15

8
𝑦∗3 �sin 2𝑠 − 1

2
sin 4𝑠�+ 45

16
𝑥∗𝑦∗2 �

8
3

cos 2𝑠 +

cos 4𝑠� − 45
16
𝑥∗2𝑦∗ �

10
3

sin 2𝑠 − sin 4𝑠� − 15
16
𝑥∗3(4 cos 2𝑠 − cos 4𝑠)�(103) 

Being s the right ascension of the satellite, 𝐾∗ a constant, 𝑎∗ the semimajor axis, 
𝑟∗ the radial distance from the satellite to the Earth and 𝑥∗ and 𝑦∗ both 
components from the distance of the Earth to the centre of the third body. 

Substituting the subscript * by the Moon and the Sun and integrating numerically, 
the solution is a trigonometric series in which the coefficients are constants and 
known and the arguments are linear combination of parameters evolving linearly 
with the time. 

𝑒𝑥 = 𝑒𝑥0 + ∑ 𝛼𝑗 cos�𝑤𝑗𝑡 + 𝛾𝑗 + 𝑘𝑗𝑠�44
𝑗=1 (104) 

𝑒𝑦 = 𝑒𝑦0 +∑ 𝛽𝑗 sin�𝑤𝑗𝑡 + 𝛾𝑗 + 𝑘𝑗𝑠�44
𝑗=1 (105) 
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The coefficients 𝛼,𝛽,𝑤, 𝛾 and 𝑘 have different orders of magnitude because they 
represent different perturbed sources, for instance, the Moon affects mainly the 
eccentricity in two main ways. 

On one hand, the eccentricity produces loops in cycles approximately constant of 
29.5 days (synodic period between the Moon and the Earth). The figure 48 
shows these loops in 56 days (3 times the period cycle T) 

 

Figure 45- Loops produced by the synodic period of the Moon 

 

On the other hand, the lunar node cycles of approximately 18.9 years produces a 
secular effect which moves the circle in one direction according the epoch. This 
effect makes that the circle does not close, as shown in the figure 46, where all 
the perturbations are included.    

By the way, the effect of the gravitational field of the Sun could be considered 
constant and inferior to the gravitational field of the Moon.  
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Figure 46-Free evolution of the Mean eccentricity in one year  

 

Now that the perturbed elements are identified, it is time to know how the 
manoeuvres will influence the mean eccentricity. 

According the expressions of the section 2.3 the influence of a single manoeuvre 
affects to the eccentricity following the expression 

Δ𝒆 = 2Δ𝑉
𝑉
�

cos 𝑠𝑏
sin 𝑠𝑏� (106) 

Where 𝑠𝑏 is the right ascension of the satellite when the manoeuvre is applied.  

𝑠𝑏 = 𝐺0 + 𝜓(𝑡 − 𝑡0) + 𝜆𝑇 (107) 

𝐺0 is a constant that in the year 2012 takes the value 100.060 

(𝑡 − 𝑡0) is the difference of time from the initial epoch. 

Thus, the time of the manoeuvre, that had been constant at 00:00:00h UTC in 
the longitude control will be chosen to control the eccentricity. 
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3.2.3. Control circle 
 

The choice of the control circle is determined by the collocation. Collocation is the 
technique to place some geostationary satellites at the same longitude without 
danger of collision. For this reason, the eccentricity evolution has to follow with 
the maximum accuracy the control circle, but also with the same velocity. 

In order to avoid collisions between satellites placed at same longitude, there are 
two parameters to consider, the intersatellite distance and the angular 
separation. 

Intersatellite distance is the distance between pairs of satellites 

 

Figure 47- Intersatellite distance between two satellites placed at same longitude 

Angular separation means the angle between pairs of satellites measured from a 
certain ground station. 
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Figure 48- Angular separation between two satellites placed at same longitude 

These parameters have to be approximately constant during the satellite mission. 
For this reason, the eccentricity vector does not have to follow any circle; the 
eccentricity vector must follow the circle of control, such as mentioned in the 
eccentricity requirements. The size of the control circle will be an input.  

To preserve the intersatellite distance, the real longitude must be controlled, and 
for the angular separation, the real inclination.  

According these assumptions, the eccentricity must fulfil that when the satellites 
are placed in the intersection of their orbit planes, the separation must be 
longitudinal 

 

Figure 49- Pair of satellites in the intersection of their orbit planes 

When the satellites are placed 900 from the intersection between their orbit 
planes, the separation must be radial. 
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Figure 50- Pair of satellites 900 after the intersection of their orbit planes 

In one year, the final and the initial eccentricity vector must be equal in order to 
assure that the collocation is being accomplished. The manoeuvres must correct 
also the perturbations that are not periodic in order to close the circle.  

3.3. Sun-pointing perigee 
 

The sun-pointing perigee strategy consists in choosing a more optimal time for 
the longitude drift correction thrust than apogee or perigee. It cannot prevent the 
eccentricity from achieving high values, however with only one manoeuvre is the 
strategy that provides the minimum eccentricity.  

This strategy only will take into account the effects of the sun radiation pressure 

The Δ𝑉 is that calculated in the previous section for the drift/longitude control, 
taking the equation (62) 

Δ𝐷 𝑉
3

= −Δ𝑉 → 𝑑Δ𝑉
𝑑𝑡

≈ − 𝜆̈𝑉
3

 (108) 

Thus, as was done in the equation (87), the variation of eccentricity can be 
expressed as 

d𝑒
𝑑𝑡
≈ − 2𝜆̈

3
�

cos 𝑠𝑏
sin 𝑠𝑏� (109) 

Combining the expressions of one single manoeuvre and the change of 
eccentricity by the Sun pressure 

𝑑𝑒
𝑑𝑡

= 3𝑃𝜎
2𝑉

�−sin 𝑠𝑠
cos 𝑠𝑠

� − 2
3
𝜆̈ �

cos 𝑠𝑏
sin𝑠𝑏� (110) 

Integrating  
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𝑒(𝑡) = 𝑒0 + �3𝑃𝜎
2𝑉

− 2
3
𝜆̈� 𝑌

2𝜋
�

cos 𝑠𝑏
sin 𝑠𝑏�  (111) 

The task is to select 𝑠𝑏 to reduce the eccentricity and approach it to the circle of 
control. 

There are two possible cases. 

On one hand, if the eccentricity is near from the control circle, the manoeuvre 
must be done when was pointing to the Sun. 

For this reason the right ascension takes the following values 𝑠𝑏 = 𝑠𝑠 + 𝜋
2

 when 

the tesseral acceleration is positive, and 𝑠𝑏 = 𝑠𝑠 −
𝜋
2

 when the tesseral 

acceleration is negative. 

 

 

Figure 51- Eccentricity change when the manoeuvre is tangential 
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On the other hand, if the eccentricity has exceeded the tolerance and it is far of 
the control circle, the manoeuvre will have o be directly pointing to the control 
circle. 

The targeted eccentricity at the beginning is the point of the control circle which is 
associated with the right ascension of the Sun. Dividing equation (65) by 
equation (63) 

𝑠𝑏 = atan�
𝑒𝑇𝑦
𝑒𝑇𝑥

� 

The super index T indicates that is the target. 𝑒𝑇𝑦 and 𝑒𝑇𝑥 are respectively 
𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙 sin 𝑠𝑠 and 𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙 cos 𝑠𝑠 

Pointing towards the Sun (𝑠𝑆 ) the eccentricity vector rotates in a circle during one 
year and will have a constant size. 

 

3.3.1. Algorithm 
 

The diagram showed below represents the function time_target that will appear 
in the global algorithm at the end of the study, it shows the algorithm of the 
eccentricity strategy of sun-pointing. 
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Diagram 6 – Algorithm of the eccentricity strategy of sun-pointing 

 

The code of this strategy is quite simple. All the functions are self-explanatory. 

• Calculate 𝛼(cpsm). 
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• Determine the Sun position vector. 
 

• Determine the angle between the satellite and the Sun. The velocity of the 
Earth around the Sun is not constant, so this angle does not have a linear 
evolution. On 2012/04/21 at 00.00.00h UTC this angle is 00, so this date 
will be used as reference to check the values. 
 

• If the eccentricity vector is close to the control circle, the manoeuvre will 
be when will be pointing to the Sun. On the contrary case, the eccentricity 
will point directly to the control circle. 

 

3.3.2. Results 
 

The following results will be for 𝜆 = 300E 
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Figure 52- Mean eccentricity with sun-pointing perigee strategy 

 

Only choosing the time of manoeuvring, the eccentricity vector can follow any 
circle. The sun-pointing perigee strategy does not have time restrictions, so the 
time of the manoeuvre can be at any hour in the day, causing problems in the 
drift/longitude strategy which needs to know previously when the manoeuvre will 
be applied.  

The drift/longitude strategy puts the longitude in one point in order that the next 
cycle would accomplish the best parabola possible, so the time of the manoeuvre 
of the next cycle must be predicted approximately. If in the next cycle, the 
planned time changes, the algorithm has to do a process of initialization and the 
longitude will not repeat the same parabola. 
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Figure 53- Drift rate vs mean longitude with sun-pointing perigee strategy. 

 

The incompatibility with the drift/longitude strategy is not the only problem. The 
initial eccentricity vector does not coincide with the final eccentricity vector, 
because the only disturbing force considered is the sun radiation pressure. 
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Control cycle   𝚫𝑽 (𝒎/𝒔) 
Time when the 

manoeuvre is applied 
01/01/2012 0.05017392 2012/01/01-06:40:42 
15/01/2012 0.06936232 2012/01/15-06:54:53 
29/01/2012 0.07296227 2012/01/29-14:59:18 
12/02/2012 0.06376622 2012/02/12-02:50:00 
26/02/2012 0.07579356 2012/02/26-09:29:39 
11/03/2012 0.07128142 2012/03/11-22:02:32 
25/03/2012 0.06592936 2012/03/25-08:07:00 
08/04/2012 0.07650472 2012/04/08-21:15:41 
22/04/2012 0.06642788 2012/04/22-08:25:50 
06/05/2012 0.07585783 2012/05/06-21:22:06 
20/05/2012 0.06762665 2012/05/20-09:48:39 
03/06/2012 0.07417347 2012/06/03-20:24:01 
17/06/2012 0.06756198 2012/06/17-09:50:00 
01/07/2012 0.07345314 2012/07/01-20:07:38 
15/07/2012 0.06640478 2012/07/15-09:54:52 
29/07/2012 0.07381401 2012/07/29-21:02:16 
12/08/2012 0.06469383 2012/08/12-09:14:07 
26/08/2012 0.07556718 2012/08/26-21:20:42 
09/09/2012 0.06340272 2012/09/09-08:38:05 
23/09/2012 0.07817839 2012/09/23-20:53:47 
07/10/2012 0.06232958 2012/10/07-08:31:45 
21/10/2012 0.08032378 2012/10/21-19:58:52 
04/11/2012 0.0618251 2012/11/04-08:25:56 
18/11/2012 0.08066443 2012/11/18-17:20:24 
02/12/2012 0.06141792 2012/12/02-07:02:33 
16/12/2012 0.08033325 2012/12/16-17:07:09 

Table - 3– List of manoeuvres with sun pointing and longitude/drift strategy (𝝀 = 𝟑𝟎𝟎𝑬) 

Analyzing the effect of the eccentricity strategy in the equilibrium points. 
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Figure 54- Eccentricity evolution with sun pointing perigee strategy at an equilibrium point 

 

Any eccentricity strategy is difficult to apply to the equilibrium points because the 
Δ𝑉 will be always so small to correct any perturbation. For this reason, the only 
solution would be to move the eccentricity evolution the closest to the control 
circle. 
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3.4. Fixed time with variations strategy 
 

The strategy of sun-pointing perigee has the problem that there is no connection 
between the times of the manoeuvres in the different cycles. The time is 
optimized in each cycle to get the eccentricity target. In order to solve this 
problem, the eccentricity strategy must be planned thinking in the eccentricity 
evolution in long term (one year) 

 

In this new strategy, the objectives are to find a time (approximately constant 
throughout the mission) when the manoeuvres will be applied, and that the final 
and initial eccentricities take the same value (the eccentricity evolution closes) 

The eccentricity will be propagated in one year in steps of cycles of control (14 
days). The time of the manoeuvres will change in order to obtain the optimal time 
whose radius were the same than the control circle. 

Obviously, the eccentricity evolution cannot reach all the control circles. It is 
limited for the time when the manoeuvres are tangential to the eccentricity 
(minimum control circle possible) evolution and when are normal to the 
eccentricity evolution (maximum control circle possible). 

To develop this strategy, the orbit will be propagated considering the Sun 
radiation pressure, the influence of the Moon, the influence of the Sun and the 
manoeuvres as perturbing forces. 

Once the time of the manoeuvre has been analyzed, the first step is to move the 
initial eccentricity to one point of the control circle in order to assure that in the 
next cycles the eccentricity will follow the control circle. This initial point is not any 
point of the control circle, it is the one which guarantee that the eccentricity will 
follow the circle with a fixed time in the manoeuvres. 

As the initial eccentricity vector could take any value, in case that the centre of 
the analytical propagation does not have the same centre than the circle of the 
control circle, a double manoeuvre should be implemented.  
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3.4.1. Double manoeuvre 
 

By applying two tangential Δ𝑉 at different times to the orbit, it is possible to 
produce any desired combination of the drift rate and eccentricity.  

The new orbital elements can be obtained by superposition of the drift rate and 
eccentricity vector with the linear approximation done in the previous sections. 

The two manoeuvres will be separated by half sidereal day.  

𝑠𝑏2 = 𝑠𝑏1 + 𝜋 

𝑠𝑏1 is the right ascension of the satellite when the first manoeuvre is applied, and 
𝑠𝑏2 is when the second manoeuvre is applied.  

The combination produces that 

The sum Δ𝑉1 + Δ𝑉2 changes the longitude drift rate 

The difference Δ𝑉1 − Δ𝑉2 changes the eccentricity 

 

Figure 55- Double manoeuvre 

The new effect in the equations is 

Δ𝑎 = 2
𝜓

 (Δ𝑉1 + Δ𝑉2) (112) 

Δ𝜆̇ = − 3
𝑉

(Δ𝑉1 + Δ𝑉2) (113) 

𝚫𝒆 = 𝟐
𝑽

(𝚫𝑽𝟏 − 𝚫𝑽𝟐) �
𝐜𝐨𝐬 𝒔𝒃𝟏
𝐬𝐢𝐧 𝒔𝒃𝟏� = 𝟐

𝑽
(𝚫𝑽𝟐 − 𝚫𝑽𝟏) �

𝐜𝐨𝐬 𝒔𝒃𝟐
𝐬𝐢𝐧 𝒔𝒃𝟐� (114) 
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In the first interval time (between the first thrust and the second), the orbit 
changes under the influence of Δ𝑉1. The eccentricity and the drift rate change 
instantaneously, however the longitude changes linearly, the velocity of longitude 
change depends on the value of the drift rate. Between Δ𝑉1 and Δ𝑉2 the longitude 
is necessary to take into account the longitude evolution to have a high accuracy. 

𝚫𝝀 = 𝟏
𝑽

(𝚫𝑽𝟏 − 𝚫𝑽𝟐)[𝟒𝐬𝐢𝐧(𝒔 − 𝒔𝟏) − 𝟏.𝟓𝝅] − 𝟑
𝑽

(𝚫𝑽𝟏 + 𝚫𝑽𝟐) �𝒔 − 𝒔𝟏 −
𝝅
𝟐
� (115) 

Δ𝑟 = 2
𝜓

[Δ𝑉1 + Δ𝑉2 − (Δ𝑉1 − Δ𝑉2) cos(𝑠 − 𝑠𝑏1)] (116 ) 

Changing the drift rate without changing the eccentricity or changing the 
eccentricity without changing the drift rate is possible with a double manoeuvre. 
In the first case both thrusts must take the same absolute value, in the second 
one, the addition of both must be zero. 
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3.4.2. Algorithm 
 

 

Diagram 7 – Algorithm of fixed time eccentricity strategy 

 

• The theoretical thrust is calculated using the drift/longitude strategy. This 
Δ𝑉 will be considered as input to the function time_target. 
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• Determination of  𝜶(cpsm).  

 
• The propagation in one year is done considering all the perturbations and 

the manoeuvres as perturbations that will have different influences 
according the time that have been chosed. 

In each iteration, the eccentricity evolves following  

𝑒𝑛+1 = 𝑒𝑛 + 3𝑃𝜎𝑌

4𝜋𝑉
�cos 𝑠𝑠𝑛+1

sin 𝑠𝑠𝑛+1� + 2Δ𝑉
𝑉
�

cos 𝑠𝑏
sin 𝑠𝑏� + �

∑ 𝛼𝑗 cos�𝑤𝑗𝑡 + 𝛾𝑗 + 𝑘𝑗𝑠�44
𝑗=1

∑ 𝛽𝑗 sin�𝑤𝑗𝑡 + 𝛾𝑗 + 𝑘𝑗𝑠�44
𝑗=1

� (117) 

Where 𝑠𝑏 is fixed in a propagation of a year and 𝑠𝑠 varies from the initial position 
until the end of a sidereal year, following the Sun. 

• Radius is determined doing an average of the radius taken of the 
consecutive points.  

𝑅 = 364
26·14·2𝜋

∑ (𝑒𝑛+1 − 𝑒𝑛) 26
𝑛=1   (118) 

• Centre coordinates 

�
𝐶𝑥
𝐶𝑦
� = 1

26
∑ 𝑒𝑛 − 𝑅 �cos 𝑠𝑠𝑛

sin 𝑠𝑠𝑛
� 26

𝑛=1 (119) 

• The eccentricity target is the difference between the initial eccentricity 
vector and the centre of the eccentricity evolution. 

𝑒0 − �
𝐶𝑥
𝐶𝑦
� = 𝑒𝑇 (120) 

 

 

 

 

 

 

 

3.4.3. Results 
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Figure 56- Eccentricity evolution with fixed time with variations strategy 

 

The eccentricity follows the circle throughout one year with good accuracy, 
however, the final and the initial eccentricities do not coincide. Only fixing the 
time of the manoeuvre is not possible to close the eccentricity evolution. It is 
possible to follow the circle while not disturbing the drift/longitude strategy, but it 
is not possible to close it.   

The optimum time of the manoeuvre to reach the control circle at longitude of 30 
is 9.30h UTC local satellite. Hence, all the manoeuvres are at same time but with 
14 days of difference. 
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Figure 57- Drift rate vs mean longitude with fixed time with variations strategy 

 

The eccentricity evolution can follow any circle fixing the time of the manoeuvre, 
so changing slightly the time of all the manoeuvres throughout a year, the initial 
and the final eccentricity could take the same value. Actually, this is not the best 
solution for the longitude control, but if the changes between two consecutives 
manoeuvres are small, the drift/longitude strategy will work right. 

In the section 3.2, all the perturbing forces were analyzed; there were secular 
forces (Moon long terms and Sun gravity) that produce that the end and the initial 
of the eccentricity evolution do not close.  

These perturbing forces will be omitted in the eccentricity evolution to determine 
the time of the manoeuvre because these contributions will be compensated for 
changing the time of the manoeuvre previously calculated. 
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Figure 58- Variation of the direction of the thrust to compensate Moon’s effect 

 

In this way, in each control cycle (T) the contributions due to the secular 
disturbing forces will be cancelled changing the direction of the manoeuvre. It is 
possible because these contributions are small in short control cycles. 

This angle 𝛼 changes in each control cycle, because the position of the Sun and 
the Moon vary continuously. The angle is easy to find using a dot product, and 
the sign of the angle is determined by the cross product.  

𝛼 = acos �
𝑒𝑓𝑖𝑥𝑒𝑑 𝑡𝑖𝑚𝑒·𝑒𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑖𝑛𝑔 𝑠𝑒𝑐𝑢𝑙𝑎𝑟 𝑓𝑜𝑟𝑐𝑒𝑠

�𝑒𝑓𝑖𝑥𝑒𝑑 𝑡𝑖𝑚𝑒��𝑒𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑖𝑛𝑔 𝑠𝑒𝑐𝑢𝑙𝑎𝑟 𝑓𝑜𝑟𝑐𝑒𝑠�
� 𝑠𝑖𝑔𝑛(𝑒𝑓𝑖𝑥𝑒𝑑  𝑡𝑖𝑚𝑒  𝑥 𝑒𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑖𝑛𝑔 𝑠𝑒𝑐𝑢𝑙𝑎𝑟 𝑓𝑜𝑟𝑐𝑒𝑠) (121) 

Because the disturbing secular forces are small, this angle is also small. In case 
that the secular disturbing forces were higher, this strategy does not work with 
high accuracy.  
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Figure 59- Mean eccentricity with the variation of the fixed time strategy 

Now, the problem is solved. The times when the manoeuvres are applied are 
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Control cycle 𝚫𝑽 (𝒎/𝒔) 
Time when manoeuvre is 

applied 

01/01/2012 
0.07025894   
0.02787545 

01/01/2012  3:20:10  
01/01/2012  15:20:10 

15/01/2012 0.07236232 15/01/2012 9:52:30 
29/01/2012 0.07096227 29/01/2012 9:59:42 
12/02/2012 0.06894712 12/02/2012 9:46:44 
26/02/2012 0.07054854 26/02/2012 9:43:52 
11/03/2012 0.07128142 11/03/2012 9:33:47 
25/03/2012 0.06892751 25/03/2012 9:40:16 
08/04/2012 0.07258974 08/04/2012 9:38:49 
22/04/2012 0.07468412 22/04/2012 9:36:36 
06/05/2012 0.07585783 06/05/2012 9:33:43 
20/05/2012 0.06968564 20/05/2012 9:27:15 
03/06/2012 0.07417347 03/06/2012 9:17:10 
17/06/2012 0.07158756 17/06/2012 9:11:24 
01/07/2012 0.07254789 01/07/2012 9:09:58 
15/07/2012 0.07058459 15/07/2012 9:08:31 
29/07/2012 0.07389517 29/07/2012 9:06:22 
12/08/2012 0.06859741 12/08/2012 9:09:58 
26/08/2012 0.06987147 26/08/2012 9:08:14 
09/09/2012 0.07258971 09/09/2012 9:06:48 
23/09/2012 0.07058947 23/09/2012 9:04:42 
07/10/2012 0.07459688 07/10/2012 9:07:17 
21/10/2012 0.07259842 21/10/2012 9:18:48 
04/11/2012 0.06741591 04/11/2012 9:22:16 
18/11/2012 0.07002571 18/11/2012 9:25:17 
02/12/2012 0.06587412 02/12/2012 9:26:43 
16/12/2012 0.07051158 16/12/2012 9:28:44 
30/12/2012 0.06748842 30/12/2012 9:35:56 

Table - 4– List of manoeuvres with fixed time with variations and longitude/drift strategy 
(𝝀 = 𝟑𝟎𝟎𝑬) 
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4. TRIPLE MANOEUVRES 
 

 Three burn manoeuvres will be considered only in extraordinary cases. These 
cases could be when the Operator has made a mistake or the burns have taken 
values really far from the expected. In these cases, the longitude, the drift rate 
and the eccentricity will be outside tolerance. 

With only a single manoeuvre, i possible arrive to the targets imposed by the 
strategy, but the algorithm will spend many cycles (T) to get it. If the values are 
really far from the targets, and if the Operator wants to arrive to the targets 
immediately, the only solution possible is a triple manoeuvre. 

Considering the linearized equations (65) and  (67), and that the time between a 
pair of manoeuvres is a half of a sidereal day. 

The system to solve with three burns is 

Δ𝜆 = 3𝜋
𝑉

(Δ𝑉3 − Δ𝑉1) − 3
𝑉

(Δ𝑉1 + Δ𝑉2 + Δ𝑉3) (𝑠 − 𝑠2) (122) 

Δ𝑉𝑒 = |Δ𝑉1| + |Δ𝑉2| + |Δ𝑉3| (123) 

Δ𝑉𝐷 = Δ𝑉1 + Δ𝑉2 + Δ𝑉3 (124) 

The time of the first manoeuvre will be established by the eccentricity strategy (in 
order to reach the control circle), the second one, half sidereal day later, and the 
last manoeuvre one sidereal day later from the first one. 

𝑠2 = 𝑠1 + 𝜋 

𝑠3 = 𝑠1 + 2𝜋 

The Δ𝑉𝑒 will be the necessary to reach the point of the control circle that will 
determine strategy, according if it is sun-pointing strategy or fixed time with 
variations strategy, the points to reach will be different.  

The parameters Δ𝜆 and Δ𝑉𝐷have to be performed to reach one point of the ideal 
parabola (drift rate with mean longitude). 

In the the verification process of the drift/longitude strategy, the second cycle is 
calculated in such a way that the drift rate with the mean longitude execute the 
ideal parabola. Thus, the drift rate (or semimajor axis) and the mean longitude to 
reach will be the point of this parabola. 
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Figure 60  shows that starting from a point placed wherever, in three burns the 
orbit achieve the control of drift eccentricity and longitude. While a double 
manoeuvre needed two cycles to control the three parameters. 

 

 

Figure 60- Three manoeuvres to reach the perfect point 

Actually, the initial point cannot be placed anywhere; it must be close to the 
control window, because if it is really far from the control window the manoeuvre 
does not belong to the station keeping, it is a shift longitude. The time required to 
arrive at the longitude target only drifting is too much and the Δ𝑉 is also too big.  
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Figure 61- Eccentricity vector with three manoeuvres 
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Figure 62-Zoom of the initial and final eccentricity vector 

Figure 62 shows that the initial and the final eccentricity are approximately the 
same. Hence, the same strategy with only one burn could be applied the next 
year. 

5. CROSS COUPLING CONTROL 
 

Although the North/South station keeping is not studied, it is understood that a 
geostationary satellite will have North/South manoeuvres, and there will be a 
cross coupling component (tangential and radial) that will affect in the East/West 
direction.  

Hence, cross-coupling effect means that the manoeuvres will not be considered 
as ideal manoeuvres. They will have components in the other directions, not only 
in the theoretical direction where the manoeuvre should be applied.  
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The aim of the cross-coupling control is to prove that the strategy is able to 
correct the manoeuvres even if the thrusters are not perfect. These effects are 
the consequence of diverse factors.  

The typical configuration of thrusters consists in having two engines 
symmetrically positioned that theoretically would produce the same thrust each 
one. However, there are differences between both thrusters and they produce 
decompensated thrusts that have components in the other axis.  

Another influence that produces cross-coupling is the effect called “plume 
impingement”. It is produced because the solar arrays are always pointing to the 
Sun and because of the obliquity of the ecliptic of 23.450, the thrust that should 
be applied normal to the equator plane is disturbed by the solar arrays that are in 
the ecliptic plane. 

 

Figure 63- Interference between the thrust and the solar arrays 

The cross-coupling affects to all the manoeuvres, but considering the cross-
coupling of an East/West manoeuvre have no sense because normally the effect 
in the other components is around a 5% of the real manoeuvre. So, a 5% of a 
manoeuvre of 0.07m/s has no relevance. 

The cross-coupling effect due to the inclination manoeuvres will be considered. 
Although this study does not take account the inclination manoeuvres, a typical 
value of an inclination manoeuvre (𝚫𝑽𝒊 = 𝟐 𝒎/𝒔) will be applied two days before 
starting the control cycle. This the regular method applied in the inclination 
manoeuvres. 
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Inclination component  %𝚫𝑽𝒊 𝚫𝑽𝒄𝒓𝒐𝒔𝒔−𝒄𝒐𝒖𝒑𝒍𝒊𝒏𝒈(m/s) 

Radial component 2,5% 0,05 

Tangential component 5,0% 0,1 
Table - 5- Cross coupling effect 

Although the cross-coupling is an attempt to simulate the reality, the percentages 
used above can vary according the satellite. Normally, a preliminary ground study 
must be done to estimate the percentages.  

 

5.1. Results 
 

As the components are previously known, the cross-coupling is considered as a 
perturbation which causes an instantaneous drift rate change. 

 

Figure 64- Longitude with cross-coupling effect 

As the North/South manoeuvres take place 2 days before the control cycle, the 
longitude is not severely affected. The real longitude will always be confined 
inside the deadband. This is because the fact of having the longitude centred at 
the longitude window. If the real longitude was close to the boundary of the 
deadband, a small increment could take out the longitude from the deadband.  
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The North/South manoeuvres always take place at the same direction, for this 
reason, the longitude is slightly displaced to one side of the deadband. 

The cross-coupling effect is more evident in the figure 65, because of the 
instantaneous change in the drift rate. 

 

 

Figure 65- Drift rate vs mean longitude with cross-coupling effect 
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5.2. Final algorithm 
 

 

Diagram 8 – Final algorithm 



 112   
 

6. PLANNING 
 

This study has been realized in the company GMV Aerospace, so they had a 
planning ready for developing the code.  

There have been tasks that have been delayed and tasks that have been 
realized before the required time. 

Planning 

  Duration Start Finish 

Study of geostationary satellites 14 days Wed 01/02/12 Mon 20/02/12 

Introduction to the Focus environment 14 days Wed 01/02/12 Mon 20/02/12 

Development of longitude strategies 20 days Tue 21/02/12 Sun 18/03/12 

Implementation of longitude strategies 26 days Mon 27/02/12 Sun 01/04/12 

Longitude verification 3 days Mon 02/04/12 Wed 04/04/12 

Development of eccentricity strategies 12 days Thu 05/04/12 Fri 20/04/12 

Implementation of eccentricity strategies 13 days Thu 05/04/12 Mon 23/04/12 

Eccentricity verification 3 days Tue 24/04/12 Thu 26/04/12 

Implementation of double manoeuvre 7 days Fri 27/04/12 Mon 07/05/12 

Implementation of triple manoeuvre 11 days Fri 27/04/12 Fri 11/05/12 

Implementation of cross-coupling 12 days Fri 27/04/12 Mon 14/05/12 

Final conclusions  5 days Tue 15/05/12 Mon 21/05/12 
Table - 6- Planning 
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Reality tasks 

  Duration Start Finish 

Study of geostationary satellites 18 days Wed 01/02/12 Fri 24/02/12 

Introduction to the Focus environment 18 days Wed 01/02/12 Fri 24/02/12 

Development of longitude strategies 23 days Mon 27/02/12 Wed 28/03/12 

Implementation of longitude strategies 28 days Fri 02/03/12 Tue 10/04/12 

Longitude verification 3 days Wed 11/04/12 Fri 13/04/12 

Development of eccentricity strategies 12 days Mon 16/04/12 Tue 01/05/12 

Implementation of eccentricity strategies 15 days Mon 16/04/12 Fri 04/05/12 

Eccentricity verification 3 days Mon 07/05/12 Wed 09/05/12 

Implementation of double manoeuvre 7 days Thu 10/05/12 Fri 18/05/12 

Implementation of triple manoeuvre 11 days Thu 10/05/12 Thu 24/05/12 

Implementation of cross-coupling 12 days Thu 10/05/12 Fri 25/05/12 

Final conclusions  8 days Sat 26/05/12 Mon 04/05/12 

Revision 76 days Thu 05/06/12 Tue 19/09/12 
Table - 7- Reality tasks 

 

Although in the planning was supposed that the study was presented in June, the 
report was not ready, so the rest 76 days were to write the report and verify that 
there were no errors in the code.  

To do the planning more visual, a Gantt diagrams have been done for each 
planning. 
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Figure 66- Gantt chart of the planning 
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Figure 67- Gantt chart of the reality tasks 
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7. TECHNICAL AND ECONOMICAL VIABILITY OF THE PROPOSAL 
 

The objective of this study was to create a code that implements the strategies 
preciously studied. These strategies have already been implemented in the 
software of GMV, focusgeo.  

To calculate what benefits GMV could obtain from this code proves really difficult. 
In order to take part of the code of a product, the code should be normalized 
following and verified by the Operator with their satellite parameters. 

Once the code is ready for sale, it is difficult to estimate the benefits of a part of 
one product. 

 

8. LIFE CYCLE ENVIRONMENT EFFECT OF THE PROPOSAL 
 

The fact of controlling the synchronous elements with a single E/W manoeuvre 
provides clear effects in the fuel consumption. Even through if the single thrust is 
big, controlling the satellite with a double or triple manoeuvre periodically means 
a fuel consumption of more than four times the consumption studied in this 
report. 

Normally, station keeping software uses more than a single manoeuvre for 
controlling the longitude and eccentricity. This algorithm allows the control with 
only one. 
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9. CONCLUSIONS 
 

Nowadays, the number of geostationary satellites in a single slot is increasing. 
Maintaining the satellites avoiding collision requires strategies that provide better 
solutions for any adversity. The deadbands are decreasing, and the accuracy 
must be better.  

In order to assure the accuracy, the algorithm must be simple and fast, to do the 
control more automatic. For this reason, the number of manoeuvres is limited to a 
single manoeuvre, and the double and triple manoeuvres are only reserved for 
really special cases. Although the algorithm reserves the triple and double 
manoeuvre for when the satellite is far of the preestablished tolerance, the 
Operator could choose a double and a triple manoeuvre when he believes that is 
necessary. 

Another point to be highlighted is the necessity of an algorithm that works for the 
whole range of longitudes. In this study, the equilibrium points represent the main 
problems, because they do not show the same proprieties as the other 
longitudes.  

There have not been geostationary satellites placed in the equilibrium points, for 
this reason station keeping software has not been developed for these points. 
The fact of having an algorithm that works in all the longitude range will solve the 
problems for future missions. 

In longitude control the proposed objectives have been accomplished. The 
strategy of longitude/drift control has been tested in all the adverse conditions, 
and it has been performed with success. 

Even with cross-coupling, the longitude strategy has worked satisfactorily. The 
only problem is that the manoeuvres times must be scheduled and they must be 
taken into account in the computer process before the control cycle. In case that 
the manoeuvre times were unpredictable, the longitude/drift control would still 
work, but the accuracy obtained would degrade. 

For this reason, it was important to find an eccentricity strategy in order to find 
another strategy that help not lo lose accuracy in the longitude control. The fixed 
time was an idea that would facilitate the Operator work, because the operation 
day would be almost constant throughout a year, and an accurate schedule could 
be done. 
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Nevertheless, the algorithm should be tested in a real scenario when the errors 
would be greater because the satellite lifetime is around five years, whereas in 
this report, only one year has been considered.   

To sum up, the final results obtained have been satisfactory. The code is ready 
for anyone who wants to implement any new feature or any improvement to the 
strategy, and add the N/S station keeping. 
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11. ANNEXES 

ANNEX A- Table of acceleration tesseral elements 
 

𝝀̈ (0.001o/day2) 0 1 2 3 4 5 6 7 8 9 
1 0.65 0.70 0.76 0.81 0.87 0.92 0.97 1.02 1.07 1.12 
2 1.17 1.21 1.26 1.30 1.34 1.38 1.42 1.46 1.50 1.53 
3 1.56 1.59 1.62 1.65 1.67 1.70 1.72 1.73 1.75 1.76 
4 1.77 1.78 1.79 1.79 1.80 1.80 1.79 1.79 1.78 1.77 
5 1.76 1.74 1.72 1.70 1.68 1.65 1.63 1.60 1.56 1.53 
6 1.49 1.45 1.41 1.37 1.32 1.27 1.22 1.17 1.12 1.06 
7 1.01 0.95 0.89 0.82 0.76 0.80 0.61 0.56 0.50 0.43 
8 0.36 0.29 0.22 0.14 0.07 0.00 -0.07 -0.15 -0.22 -0.29 
9 -0.36 -0.44 -0.51 -0.58 -0.65 -0.72 -0.79 -0.85 -0.91 -0.99 

10 -1.05 -1.11 -1.17 -1.23 -1.29 -1.35 -1.40 -1.45 -1.50 -1.55 
11 -1.60 -1.64 -1.68 -1.72 -1.76 -1.79 -1.82 -1.85 -1.88 -1.90 
12 -1.92 -1.94 -1.96 -1.97 -1.98 -1.99 -1.99 -2.00 -2.00 -1.99 
13 -1.99 -1.98 -1.97 -1.95 -1.93 -1.92 -1.89 -1.87 -1.84 -1.81 
14 -1.78 -1.75 -1.71 -1.67 -1.63 -1.59 -1.55 -1.50 -1.45 -1.40 
15 -1.35 -1.30 -1.25 -1.19 -1.13 -1.08 -1.02 -0.96 -0.90 -0.83 
16 -0.77 -0.71 -0.64 -0.58 -0.51 -0.45 -0.38 -0.32 -0.25 -0.19 
17 -0.12 -0.06 0.01 0.07 0.14 0.20 0.26 0.33 0.39 0.45 
18 0.51 0.57 0.62 0.68 0.74 0.79 0.84 0.89 0.94 0.99 
19 1.04 1.09 1.13 1.17 1.21 1.25 1.29 1.33 1.36 1.39 
20 1.42 1.45 1.48 1.50 1.53 1.55 1.56 1.58 1.60 1.61 
21 1.62 1.63 1.64 1.64 1.65 1.65 1.65 1.64 1.64 1.63 
22 1.63 1.62 1.60 1.59 1.58 1.56 1.54 1.52 1.50 1.48 
23 1.45 1.43 1.40 1.37 1.34 1.31 1.27 1.24 1.21 1.17 
24 1.13 1.09 1.05 1.01 0.97 0.93 0.89 0.94 0.80 0.75 
25 0.71 0.66 0.62 0.57 0.52 0.47 0.43 0.38 0.33 0.28 
26 0.23 0.18 0.14 0.09 0.04 -0.01 -0.06 -0.10 -0.15 -0.20 
27 -0.24 -0.29 -0.34 -0.38 -0.43 -0.47 -0.51 -0.56 -0.60 -0.64 
28 -0.68 -0.72 -0.76 -0.80 -0.83 -0.87 -0.91 -0.94 -0.97 -1.01 
29 -1.04 -1.07 -1.10 -1.13 -1.15 -1.18 -1.20 -1.23 -1.25 -1.27 
30 -1.29 -1.31 -1.33 -1.34 -1.36 -1.37 -1.38 -1.39 -1.40 -1.41 
31 -1.42 -1.42 -1.42 -1.43 -1.43 -1.42 -1.42 -1.42 -1.40 -1.40 
32 -1.40 -1.39 -1.37 -1.36 -1.35 -1.33 -1.31 -1.29 -1.27 -1.25 
33 -1.22 -1.20 -1.17 -1.14 -1.11 -1.08 -1.05 -1.01 -0.98 -0.94 
34 -0.90 -0.86 -0.82 -0.78 -0.74 -0.69 -0.64 -0.60 -0.55 -0.50 
35 -0.45 -0.40 -0.35 -0.30 -0.24 -0.19 -0.14 -0.08 -0.03 0.03 
36 0.09 0.14 0.20 0.25 0.31 0.37 0.42 0.48 0.54 0.59 

Table - 8- Tangential acceleration due to tesseral Earth’s terms. 
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BUDGET 

 
This is a software project, so the budget consists of the list below and the work 
hours. 

 

Hardware Computer 700 € 
Microsoft Office 500 € 

Software  focus environment 0 € 
Engineer salary 10 €/h (700h) 7.000 € 

TOTAL 8.200,00 € 
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