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Abstract 

It was in the mid 1970s when the research in the Wave Energy Converters began as a 

consolidated field, but it wasn’t until between the late 1990s and the beginnings of the 21st 

century that the sector boomed. Unlike many other renewable energy forms, the wave energy 

can be considered as a teenager, almost ready to show the world its enormous potential. 

Many prototypes are being tested throughout the oceans and even a commercial wave energy 

plant has been set already. Its growth is being unbalanced though. 

There are no current and prospective research studies with this scope for the Mediterranean 

Sea, it seems logical so the Mediterranean Sea is one of the least energetic seas in the world 

but this doesn’t exclude the fact that also in the Mediterranean Sea there is wave energy to be 

exploited and the purpose of this work is to initiate that path. 

The point absorber is the type of Wave Energy Converter chosen, it consists of a floating body 

that exploiting the motion produced by an incident wave generates electricity via an electric 

linear generator. Several simulations have been done with different kinds of buoys in two 

different locations in the Mediterranean Sea, Alghero and Mazara. The simulation’s goal is to 

compute the output power of the devices. Although the values state that the average 

extracted energy is of minor entity than the ones tested in big oceans such as the Atlantic 

Ocean or the Pacific Ocean, where the wave energetic regime is much higher, the results are 

hopeful, confirming its feasibility and opening a new door to renewable energies in the 

Mediterranean regions. 

The conclusions drawn in this work are always under the bases that there is still a lot of work 

to do and a full sea of possibilities.     

 

 





 

V 

List of contents 

WAVE ENERGY IN ITALIAN SEAS: PRELIMINAR DESIGN OF A POINT 

ABSORBER   ........................................................................................................................................ I

ACKNOWLEDGEMENTS  .............................................................................................................. I

ABSTRACT   ...................................................................................................................................... III

LIST OF CONTENTS   ...................................................................................................................... V

LIST OF FIGURES   ....................................................................................................................... VII

LIST OF TABLES   ........................................................................................................................... XI

CHAPTER 1: INTRODUCTION   ................................................................................................... 1

CHAPTER 2: LITERATURE   ......................................................................................................... 5

CHAPTER 3: THEORY   ................................................................................................................. 25

3.1 WAVE MECHANICS   ................................................................................................................ 25

3.1.1 WAVE GENERATION   ...................................................................................................... 25

3.1.2 WAVE ANALYSIS AND STATISTICS   ............................................................................ 30

3.1.3 LINEAR WAVE THEORY   ................................................................................................ 37

3.2 ELECTROMAGNETICS OF LINEAR GENERATOR   ........................................................... 50

3.3 FLOATING BODY DYNAMICS   .............................................................................................. 56

CHAPTER 4: MATHEMATICAL MODELING   ..................................................................... 61

4.1 MODEL OF THE FLOATING BODY   ...................................................................................... 63

4.2 MODEL OF THE LINEAR GENERATOR   ............................................................................. 70

4.2.1 ELECTROMAGNETIC MODEL   ...................................................................................... 70

4.2.2 MECHANICAL MODEL   .................................................................................................. 76

4.3 MODEL OF THE WAVE ENERGY CONVERTER   ............................................................... 78

CHAPTER 5: SIMULATIONS   .................................................................................................... 81

5.1 DESCRIPTION   ......................................................................................................................... 81

5.2 RESULTS   .................................................................................................................................. 87



VI 

CHAPTER 6: CONCLUSIONS   ................................................................................................. 101

REFERENCES   ............................................................................................................................... 105

APPENDIX A: MATLAB CODES   .......................................................................................... 111

A.1. MAIN SCRIPTS   ................................................................................................................ 111

A.1.1 Sim_WEC.m   ............................................................................................................. 111

A.1.2 Energy_Production.m   ............................................................................................ 115

A.1.3 optimization.m   ......................................................................................................... 116

A.2. FUNCTIONS:   ................................................................................................................... 119

A.2.1 Archimede.m   ............................................................................................................ 119

A.2.2 CiambC.m   ................................................................................................................. 120

A.2.3 CiambS.m   ................................................................................................................. 120

A.2.4 interpolazione1.m   .................................................................................................... 121

A.2.5 interpolazione_cilindro.m   ..................................................................................... 122

A.2.6 LIN_GEN.m   ............................................................................................................. 123

A.2.7 fou.m   .......................................................................................................................... 124

A.2.8 linear generator.m   .................................................................................................. 124

A.2.9 positiveFFT.m   .......................................................................................................... 126

A.2.10 positiveiFFT.m   ......................................................................................................... 126

A.2.11 PTO.m   ........................................................................................................................ 127

A.2.12 efficiencies.m   ............................................................................................................ 128



 

VII 

List of figures 

1.1  General Sketch of a point absorber wave energy converter. Main parts of the generator 
and the floating body are pointed down…………………………………………………………………….p 2 

1.2 Map of the central area of the Mediterranean Sea.  Alghero and Mazara are specified 
because the available data for this work is located in these geographical areas……..…p 2 

1.3 Illustration of the six degrees of freedom of a floating body. Each degree of freedom is 
based on a reference coordinate system and their names are the most commonly used 
in the naval sector………………………………………………………………………………………………………p 3 

2.1 Picture of Yoshio Masuda. The man who made the first serious investigations about 
Wave Energy Converters…………………………………………………………………………………………….p 6 

2.2 Illustration of the Salter Duck Device. A WEC designed in the mid 70’s and with the 
highest efficiency ever built………………………………………………………………………………………..p 7 

2.3 Map of the world with the wave energetic regimes illustrated in its corresponding 
areas. The units of the mean power contained in the waves is expressed in [kW/m]…p 9 

2.4 Map of the Mediterranean and Black Seas area with the wave energetic regimes 
illustrated in its corresponding areas. The units of the mean power contained in the 
waves is expressed in [kW/m]………………………………………………………………………………….p 10 

2.5 Raw description of the Wave Energy Converters type depending on its orientation 
corresponding with the incident wave direction………………………………………………………p 11 

2.6 General division of WEC technologies. Classified depending on the working principle, 
then structure type or position and finally, depending on the motion type…………….p 12 

2.7 Sketch and picture of the OWC’s Pico plant located in the Portuguese coast………….p 13 
2.8 Aerial picture of the breakwater integrated OWC plant in Mutriku, Basque Country, 

Spain………………………………………………………………………………………………………………………..p 14 
2.9 Schematic representation of the Backward Bent Duck Buoy. A floating structure OWC 

oriented backwards to improve energy absorption………………………………………………….p 14 
2.10 Computer rendering of the Mighty Whale. A floating Structure OWC designed in 

Japan………………………………………………………………………………………………………………………..p 15 
2.11 Four different pictures of the tests conducted in Uppsala University. Each picture 

shows a different buoy of the same kind of WEC, floating body point absorbers…..p 16 
2.12 Schematic illustration of the working principle of the AWS WEC and picture of the 

prototype…………………………………………………………………………………………………………………p 18 
2.13 Schematic top and side views of the Pelamis device………………………………………..p 19 



VIII 

2.14 Different Pictures of the Pelamis device. The first picture shows the prototype in a 
front view while it was being tested in the English coasts. The Second shows how it was 
introduced into the water. The third pictures shows the wave energy plant that was 
installed in the Portuguese coast, composed by three devices……………………………….p 20 

2.15 Schematic illustration of the SeaRev device. Including its mechanical, hydraulic and 
electric elements………………………………………………………………………………………………………p 21 

2.16 Computer rendering of a wave energy plant made of Oyster devices, developed in 
the U.K……………………………………………………………………………………………………………………..p 22 

2.17 Illustration of the working principle and picture of the Tapchan power Plant in 
Norway…………………………………………………………………………………………………………………….p 23 

2.18 Top and front view of the Wave Dragon device and illustration of the working 
principle……………………………………………………………………………………………………………………p 24 

2.19 Picture of the Wave Dragon prototype……………………………………………………………..p 24 
3.1 Graphical representation of the wave Generator. The graphic shows how the significant 

height and period evolve when are within the Fetch extension and outside for duration 
restricted generation and Fetch restricted generation…………………………………………….p 28 

3.2 Variation of the Wave Spectrum depending on which point of the Fetch the 
measurement is done……………………………………………………………………………………………….p 29 

3.3 Illustration of a wave record representing the sea surface elevation over the time….p 30 
3.4 Graphic of the probability distribution of the different wave heights registered in a 

wave record……………………………………………………………………………………………………………..p 31 
3.5 Logarithmical adapted version of the Rayleigh distribution made by the U.S. Naval 

Forces………………………………………………………………………………………………………………………p 32 
3.6 Non-dimmensionalized graphic which shows the curves of equal-probability of wave 

heights over the wave periods………………………………………………………………………………….p 33 
3.7 Difference from the wave spectrum obtained via the JONSWAP method or through the 

Pierson-Moskowitz method……………………………………………………………………………………..p 36 
3.8 Spatial and frequency description of a linear wave with all its parameters………………p 38 
3.9 Water particle velocities in a wave……………………………………………………………………………p 41 
3.10 Water particle orbits in deep water……………………………………………………………………p 42 
3.11 Water particle orbits in shallow water……………………………………………………………….p 42 
3.12 Pressure distribution along the depth in the wave crest and the wave trough……p 43 
3.13 Geometric configuration to compute the Potential Energy………………………………..p 44 
3.14 Geometric configuration to compute the Kinetic Energy……………………………………p 45 
3.15 Evolution of the shoaling coefficient over the ration sea depth by wave length in 

deep waters……………………………………………………………………………………………………………..p 47 
3.16 Geometric representation of the Snell’s law applied in sea waves in the near-shore 

area………………………………………………………………………………………………………………………….p 47 
3.17 Representation of the wave behavior when waves are refracting………………………p 48 
3.18 Wave diffraction behavior depending on the obstacle……………………………………….p 49 
3.19 Conceptual Scheme of the magnetic induction…………………………………………………..p 50 



 

IX 

3.20 Magnetization curve for a ferromagnetic material……………………………………………..p 52 
3.21 Physical description of the translator and stator parts of the linear Generator and its 

conceptual function………………………………………………………………………………………………….p 53 
3.22 Equivalent Electric Circuit. With voltages, currents, resistance and reactance…..p 54 
3.23 Conceptual representation of the load angle……………………………………………………..p 55 
3.24 Floating body full coordinate system………………………………………………………………….p 56 
3.25 Illustration of the six degrees of freedom of a floating body. Each degree of 

freedom is based on a reference coordinate system and their names are the most 
commonly used in the naval sector………………………………………………………………………….p 56 

3.26 Excitation Force restricted in heave mode depending on the wave frequency and 
the radius of the sphere floating body………………………………………………………………………p 58 

3.27 Stages of the model creation process and factors that have some kind of influence 
in that process……………………………………………………………………………………………………..…..p 61 

3.28 Description of the geometrical figures used as floating bodies. All the needed 
parameters to model them are described in the figure. Namely, the radius, draft and 
vertical distance where the floating body is partly submerged…………………………….…..p 65 

4.3 Distribution of the unitary radiation damping, ε, and the unitary added-mass 
coefficient, µ, in surge mode, j=1, and heave mode, j=3, of a spherical floating body of 
radius a over the product of the angular repetency, k= ω2/g, by the sphere’s radius 
a……………………………………………………………………………………………………………………………….p 66 

4.4 Distribution of the unitary radiation damping, ε, and the unitary added-mass 
coefficient, µ, in surge mode, j=1, and heave mode, j=3, of a cylindrical floating body of 
radius a over the product of the angular repetency, k= ω2/g, by the sphere’s radius 
a………………………………………………………………………………………………………………………………p 67 

4.5 Vertical Position and vertical Speed of a spherical floating body induced by incident 
monochromatic waves with constant height and period over the time……………………p 68 

4.6 Vertical Position and vertical Speed of a cylindrical floating body induced by incident 
monochromatic waves with constant height and period over the time……………………p 68 

4.7  General Sketch of a point absorber wave energy converter. Main parts of the generator 
and the floating body are pointed down……………………………………………………………………p 70 

4.8  General sketch of the electric linear generator, with its main parts such as the translator 
and stator are illustrated in detail………………………………………………………………………………p 71 

4.9  Electrical field induced by the wave motion in the stator of the generator. Phases a, b 
and c are represented. The voltage between two phases is also plotted and the root 
mean squared voltage is also marked due to its importance……………………………………p 74 

4.10 Electrical current induced by the wave motion in the stator of the generator. Phases 
a, b and c are represented. The root mean squared current is also marked due to its 
importance……………………………………………………………………………………………………………p 74 

4.11 Electrical power generated by the wave motion. There are also plotted the time 
averaged power for the whole time and for a mobile window. The root mean squared 
current is also marked due to its importance………………………………………………………..p 75 



X 

4.12 Magnetic Force generated by the wave motion in the translator of the generator. 
The time averaged force is also plotted……………………………………………………………………..p 75 

4.13 Illustration of the mechanical equivalent of the electric linear generator, a mass-
spring-damper system with its parameters m, k and c as the mass, the spring coefficient 
and the damping coefficient respectively…………………………………………………………………..p 76 

4.14 Illustration of the mechanical equivalent of the point absorber WEC, a mass-spring-
damper system………………………………………………………………………………………………………….p 78 

4.15 Simplification of a mass-spring system and its condition to reach resonance…….p 79 
5.1 Schematic representation of the capture width concept. This figure shows how the 

capture width can be larger than the devices width maximizing the energy 
absorption……………………………….……………………………………………………………………………...p 86 

5.2 Vertical Position and vertical Speed of the spherical floating body WEC induced by 
incident monochromatic waves with constant height and period over the time……….p87 

5.3 Vertical Position and vertical Speed of the cylindrical floating body WEC induced by 
incident monochromatic waves with constant height and period over the time………p 88 

5.4 Fourier Spectrum. The upper plot shows the amplitude of the signal over a range of 
frequencies, and the lower plot shows the phase of the signal over a range of 
frequencies………………………………………………………………………………………………………………p 89 

5.7 Optimized spring coefficient for the spherical floating body over different sea 
states……………………………………………………………………………………………………………………….p 90 

5.8 Optimized spring coefficient for the cylindrical floating body over different sea 
states………….……………………………………………………………………………………………………………p 91 

5.9 Evolution of the Capacity Factor over the spring coefficient of the Spherical 
WEC.…………………………………………………………………………………………………………………………p 94 

5.10 Evolution of the Capacity Factor over the spring coefficient of the Cylindrical 
WEC.………………………………………………………………………………………………………………………..p 94 

5.11 Power Matrix for the optimized Spherical device.……………………………..……………….p 96 
5.12 Power Matrix for the optimized Cylindrical device.……….……………………………………p 96 
5.13 Efficiency Matrix for the optimized spherical device..………………….…………………….p 97 
5.14 Efficiency Matrix for the optimized cylindrical device…………………..…………………….p 97 
5.15 Capture Width Matrix for the optimized spherical device.………….………………………p 98 
5.16 Capture Width Matrix for the optimized cylindrical device.………..……………………..p 98 
5.17 Histograms of the Energy and Power Outputs for both devices in Alghero…..…….p 99 
5.18 Histograms of the Energy and Power Outputs for both devices in Mazara…..…….p 99 
5.19 Histograms of the Full load hours and the Capacity Factor for both devices in 

Alghero…………………………………………………………………………………………………………………..p 100 
5.20 Histograms of the Full load hours and the Capacity Factor for both devices in 

Mazara……………………………………………………………………………………….………..………………p 100 
6.1 Deeply submerged body attached to the floating body to increase the resonance 

frequency………………………………………………….……………………………………………………………p 109 

 



 

XI 

List of tables 

3.1  Birth-to-death process of sea waves. States the process since are generated in an 
irregular form by the wind pressure until they finish breaking against the shore 
losing the energy gathered in the travel, going through the swell and shoaling 
states…………………………………………………………………………………………………………………p 26 

3.2 Description of the six degrees of freedom of a floating body given a reference 
coordinate system……………………………………………………………………………………………..p 57 

4.1 Description of the electromagnetic parameters of the linear generator; with name, 
parameter, value and unit………………………………………………………………………………….p 73 

5.1  Description of the physical parameters of the spherical floating body of the WEC; 
with name, parameter, value and unit……………………………..………………………………..p 81 

5.2 Description of the physical parameters of the cylindrical floating body of the WEC; 
with name, parameter, value and unit……………………………………………………………….p 82 

5.3 Description of both, the electromagnetic and physical parameters of the linear 
generator; with name, parameter, value and unit………………………………………………p 82 

5.4  Initial states of the spherical buoy and cylindrical buoy when running the 
simulations. Describes, vertical position, vertical velocity and units…………………..p 84 

5.5 Spring coefficient determination for each device and location…………………………..p 95 
5.6 Wave energy converters Maximum Power output……………………………….………….p 101 
5.7 Wave energy converters Maximum Efficiency…………………………..……………………..p 101 
5.8 Wave energy converters Maximum Capture Width…………………….…………………...p 101 
5.9 Mean Annual Features for each Wave energy converter………………………………….p 102 

 

 

 





1 

CHAPTER 1: 

INTRODUCTION 

 

When thinking of renewable energies, several different names such as wind, solar, hydraulic 

or biomass energy come quickly to mind. Lately, due to the threads of the climate change 

impacts in the foreseeable future and to the ever increasing oil price, a whole new variety of 

new kinds of renewable energy sources and technologies are being explored. Within this 

frame, wave energy plays a very significant role, if not the pole position, in terms of 

potentiality of power absorption and conversion into its electrical form. 

Wave energy, with exception of tidal waves which are generated by the earth’s rotation within 

the gravity fields of the moon and the sun, is a concentrated type of solar energy.  Strictly 

speaking, the sun’s energy, in form of electromagnetic waves, reaches the earth’s atmosphere 

and surface with a well known span of intensities according to its latitude. Namely, the 

further up north from the equator for the northern hemisphere and vice versa for the 

southern hemisphere the lower it is the amount of energy received by our planet. The reason 

for that phenomenon to happen is the almost spherical earth’s shape and the variation of the 

angle of incidence that implies. As a result of this unbalanced input of energy, the 

temperature on the earth varies depending on the latitude and in turn, so does the 

atmospheric pressure, creating the winds moving from high pressure areas to lower ones. If 

that wind is located in an oceanic area part of this wind energy is transferred to the water 

surface  and thus causing waves, that initially are ripples and then depending on the wind 

speed, direction , duration and the distance over which it blows (“the fetch”) can evolve into a 

big and powerful swell.  Such waves can travel vast distances, thousands of miles, with an 

extremely low loss of energy. The wave power density is much higher than wind or solar 

power, more specifically, five times higher than the former and twenty to thirty times higher 

than the latter just below the ocean’s surface.  

 To help understand the big potential of this kind of energy let’s put it into numbers; on 

regular day the coasts of the British Islands receive an amount of wave energy of about 1 

TWh. Applying a feasible efficiency of extraction of 10-25% means that the daily energy 
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demand in the U.K. could be fed only by the waves that reach its coasts.  To sum up, it is 

believed that wave energy could supply over the 10% of the world’s current electricity 

consumption, taking a significant part of the energetic mix. 

The aim of this Master Thesis is to understand and realize if it is possible and, to which 

extent, to extract wave energy from the Mediterranean Sea and which is the best way to 

achieve it. The research is done through a point absorber wave energy converter (See Fig 1.1) 

which basically consists of a heaving buoy and linear electric generator placed on the seabed. 

This specific device is fully described further in the second and fourth chapters. The areas 

selected to conduct this study are l’Alghero and Mazara, the former is located in the west 

coast of Sardinia, the biggest island in Italy and the latter is located in also in the western 

point of the Sicilian coast.  These two spots, according to the available data gathered by more 

than 20 buoys, are the most energetic places in Italy (See Fig 1.2.). 

 
Figure 1.1: General Sketch of a point absorber wave energy converter. 

 
Figure 1.2: Map of the central area of the Mediterranean Sea.   

- Alghero 
- Mazara 
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The essay of this master thesis is divided into six different chapters. After the introduction 

comes the chapter two which gives an overall vision of the short history of the wave energy 

extraction and a detailed description of all the different types of WEC that are being studied 

and, in some particular cases, even used commercially. 

 Nowadays, approximately two thousand different methods are being seriously considered to 

study wave power extraction. Each of these different devices works in a very different way. 

There are floats, ramps, funnels, cylinders, air-bags and liquid pistons. These devices can be 

located at the sea surface, on the sea bed or anywhere else in between. They can be put facing 

backwards, forwards, sideways or obliquely and they can move in many different modes such 

as in heave, surge, pitch, sway and roll or any kind of combination among them (See Fig. 1.3). 

Their power take-off system performance can be based in different principles, working fluids 

and materials like, oil, air, water, steam, gearing or electro-magnets. They can be placed 

onshore, on the coast line or offshore reaching a range of different demands as of the 

mooring system, seabed connections for transportation of the generated power to the 

mainland grid or the end-stop system to survive extreme storm conditions. 

 
Figure 1.3: Illustration of the six degrees of freedom of a floating body. 

 

In chapter three all the theories related to the WEC’s environmentare exposed. That is to say, 

the wave mechanics, which are divided into three main parts. Firstly, the wave generation, 

explaining in full detail the spectrum subsequently used in this work and its related 

parameters. Afterwards, the wave analysis and statistic theories used to obtain reliable and 

trustworthy data.Finally, the famous linear theory which simplifies the complicated physical 

laws that describe the ocean waves and provides an overall understanding of the wave’s 

movement, actions, reactions and their role in the world of WEC. Further reading in the 

chapter three, the reader finds the electromagnetic laws that govern the power take-off 
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system of the studied WEC. And last but not least, the floating body dynamics are described. 

This is the majority of the base knowledge required to design successfullya WEC. 

Chapter four talks about all the mathematical modeling used in this work. It is anything but 

all the theoretical knowledge gathered in the previous chapter put into practice through the 

software MATLAB. All the work of this master thesis is resumed in three different 

mathematical models merged together to form a new bigger mathematical model. The three 

main subparts of this general model of the WEC are: the model of the floating body and two 

different conceptual models of the linear generator, its mechanical equivalent and its 

electromagnetic equivalent. 

Subsequently, in chapter five is given a fully detailed description of the diverse numerical 

simulations done during the work to achieve the optimal working conditions for the WEC 

and the maximum power outtake. The obtained results are critically commented and 

discussed. 

The last chapter is assigned to draw the required conclusions. 
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CHAPTER 2: 

LITERATURE 

 

Wave energy potential has been recognized throughout the history and mostly, for its 

destructive nature. It hasn’t been until relatively recent times that humankind hasn’t started 

to think of it as a source of energy for its own benefit. The first documented case dated back 

to 1799 it was a heaving artificial raft invented by Girard père et fils, which is known as the 

first patent which aim is to capture wave energy and convert it into mechanical energy. 

During the nineteenth century several wave motors were patented. In the early twentieth 

century the first motors to supply energy to floating devices, such as buoys with whistles, 

bells and lighthouses, were built. 

 A good example of that is the case of Bouchaux-Paceique who built an entire system that fed 

his house, in Royan (France), with electricity. The system consisted of a tunnel placed three 

meters below the lowest tidal level, the tunnel was open to the ocean on one edge and 

connected to a well on the other edge, this well was closed at its top by a dome. A pressure 

pipe connected the top of the shaft and a turbine which in turn, was connected to a generator 

that stored the electricity via a battery system that supplied the house electricity needs 

during the rest periods. To protect the system from the oceanic storms a sea wall was built 

outside the system. 

After that, several isolated inventions kept appearing in some specific parts of the planet. 

Alva Reynolds in 1909 lighted a dock in Pacifica (California) and in 1919 an experimental 

pendulum motor was tested in Japan. During the 1930s a series of experiments were carried 

on by the Société Méditerranéene d’Energie Marine in collaboration with the Société 

Marocaine d’Etudes de la Houle et du Vent in Algeria, several converging channels supplied a 

fore-bay for a low head station.  

Since 1926 the Oceanographic Institute of Monaco employed a 400 watt wave energy pump 

to raise the water level in columns up to 20 to 60 meters in museums and laboratories. The 

system could provide a 7kW peak power thanks to a Savonius rotor that drove double acting 

pumps to lift the water. 
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It wasn’t until the 1940s when the first important figure of the world of wave energy 

conversion showed up, his name was Yoshio Masuda (dead in 2009) (See Fig. 2.1). Masuda 

may be considered as the father of modern wave energy technology, he developed a 

navigation buoy powered by wave energy, which was in fact the first device to use the 

principle of, what later would be called, a floating oscillating water column (OWC). These 

buoys were commercialized in Japan since 1965 and later were exported to the USA. In 1965, 

Masuda led the construction of Kaimei, a large floating platform (80m x 12m) installed with 

several OWCs with different kinds of air turbines. The results of the Kaimei testing program 

weren’t exactly the expected ones, owing to the basic level of theoretical knowledge of the 

subject acquired by that time, the efficiency and power extraction rates achieved were rather 

low. 

 
Figure 2.1: Picture of Yoshio Masuda. Wave Energy Converters precursor. 

 

The oil crisis that began the autumn of 1973 helped to change the perspectives of a new 

scenario where the interest of developing renewable energies was born. Wave energy wasn’t 

an exception and serious studies to produce energy from waves in large scale were initiated. 

A paper published in 1974 in the renowned Journal Nature by Stephen Salter, of the 

University of Edinburgh, was the real kick off of the discipline. That article not only 

presented a brilliant solution but also brought wave energy extraction to attention of the 

international scientific community.  The paper presented a device known as the Salter Duck 

(see Fig 2.2), consisting of a floating body that can reach an efficiency of 90%, an exceptional 

high value compared to other devices performances and it keeps holding the first places in 

the efficiency podium devices in the present days.   
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Figure 2.2: Illustration of the Salter Duck Device. 

 
As seen on the previous paragraph the efficiency levels achieved by the Salter Duck were 

astonishing by that time, but one year later a discovery made by Johannes Falnes and Kjell 

Budal from the Trondheim University in Norway took a bit of importance to that significant 

high values of efficiency. Falnes and Budal introduced the concept of “Capture Width” or 

“Capture Width Ratio” which represents the amount of energy absorbed by unit of length, 

the big discovery was that this ratio could be bigger than the amount of energy contained in 

the width of the device, when speaking of point absorbers. So a heaving body can capture 

more energy than what’s actually within its physical borders, in other words, efficiency can 

be higher than the theoretical value of 100%. The physical concept behind that parameter is 

of such difficulty, but in general terms it works that way: due to de properties of waves, which 

will be explained in the third chapter, the maximum energy which may be absorbed by a 

heaving axe-symmetric body equals the wave energy transported by the incident wave front 

of width equal to the wavelength divided by 2π.   

That year, the British Government started an important research and development program 

in wave energy, the same path the Norwegian Government followed some months later. The 

first conferences dedicated exclusively to wave energy took place in Canterbury and 

Heathrow (England) in 1976 and 1978 respectively. In 1979 were organized the first two 

conferences at an international level: Power from Sea Waves (Edinburgh) and the First 

Symposium on Wave Energy Utilization (Gothenburg). The Second international 

Symposium on Wave Energy Utilization (Trondheim) celebrated in the 1982 coincided with 

the cut of funds for research on Sea Wave Energy by the British Government and although 

the research went on, specially for the UK scientific community was a big step backrwards. 
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Norwegians instead, continued with their own research and development program and in the 

autumn of 1985 built two full-sized shoreline prototypes in the area nearby the coastal city of 

Bergen, which were able to achieve 500 kW of power. In the late 1980s the majority of the 

activity was restrained at the academic level. The only steps forward were a prototype, a 75 

kW shoreline OWC,  build by the University of Edinburgh in the island of Islay  and two more 

60 kW OWC integrated into the breakwater at the port of Sakata, in Japan. 

The decision of the European Commission, in 1991, of including Wave Energy in the R&D 

program on renewable energies changed drastically the situation in the sector.   The first 

projects started in 1992 and since then, about thirty projects have been funded by the 

European Commission involving a large number of active teams in Europe. Few of these 

projects took the form of coordination activities; one of the most important ones was the 

Coordination Action in Ocean Energy, which involved around forty partners. A big series of 

European Wave Energy Conferences were sponsored and partly funded by the European 

Commission, the places that hosted those events are the following: Edinburgh (UK, 1993), 

Lisbon (Portugal, 1995), Patras (Greece, 1998), Aalborg (Denmark,2000), Cork (Ireland, 

2003), Glasgow (UK, 2005), Porto (Portugal, 2007), Uppsala (Sweden,2009)and 

Southampton (UK, 2011), in September 2013 will take place the tenth edition in Aalborg 

(Denmark). 

In 2001, the international Energy Agency established implementing agreement in Ocean 

Energy Systems in which 17 countries are present and whose endeavor is to coordinate and 

facilitate ocean energy research, development and demonstration through international 

cooperation and knowledge sharing. In the last few years, northern American countries, i.e. 

USA and Canada are making big investments, involving the national and regional 

administrations, research institutions and private companies  favoring meetings and 

conferences on ocean energy. 

As stated in the introduction chapter, wave power is a source of energy with one of the 

known highest energy density. Although that fact, as commonly happens in the frame of 

energy extraction, it’s not spread throughout the world homogeneously, there are some 

restricted areas in which the amount of energy delivered by the waves is huge, by contrast, 

there are some other places which are simply too little energetic and where the wave energy 

absorption is, frankly speaking, not feasible (See Fig 2.3.). 
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Figure 2.3: Map of the world with the wave energetic regimes illustrated in its 

corresponding areas. The units of the mean power contained in the waves is expressed 

in [kW/m]. 

 

The figure above shows estimates of the wave power density at various locations around the 

world. The areas of the world which are subjected to regular wind fluxes are those with the 

largest wave energy resource. South western winds are common in the Atlantic Ocean, and 

often travel substantial distances. 

There are several regions around the world with high incident wave power levels, particularly 

well suited to exploiting wave energy. These are located generally in extreme latitudes 

(between 40°- 60° latitude in the North and South) and in the west coast of continents 

including the western seaboards of South and North America, Northern Europe, Australia, 

and Asia. In these areas the wave power per unit width of wave crest has a typical annual 

mean of between 50 - 100 kW/m on the open ocean with values decreasing as the pole or the 

equator are approached. In tropical regions annual mean power levels of 10 - 20 kW/m are 

more typical. 

Situated at the end of the long fetch of the Atlantic, the wave climate along the western coast 

of Europe is highly energetic. Higher wave power levels are found only in the southern parts 

of South America and in the Antipodes. The long-term annual wave power level increases 

from about 25 kW/m off the southernmost part of Europe's Atlantic coastline (Canary 

Islands) up to 75 kW/m off Ireland and Scotland. In the North Sea, the resource changes 

significantly, varying from 21 kW/m in the most exposed (northern) area to about the half of 

that value in the more sheltered (southern) area. In the Mediterranean basin, the annual 

power level off the coasts of the European countries varies between 4 and 11 kW/m, the 
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highest values occurring for the area of the south-western Aegean Sea. The entire annual 

deep-water resource along the European coasts in the Mediterranean is of the order of 30 

GWh (See Fig. 2.4:). 

 
Figure 2.4: Map of the Mediterranean and Black Seas area with the wave energetic regimes 

illustrated in its corresponding areas. The units of the mean power contained in the waves is 

expressed in [kW/m]. 

 

As opposed to other types of energy sources, such as large wind turbines, in wave energy 

technologies there are many different methods to perform the energy absorption. Each kind 

of method uses the physical principle which achieves the highest rates in extracting energy 

and are based on the water depth and on the location, they can be placed at the shoreline, 

near-shore or offshore. In the early work, WEC were classified in only three different 

categories: Point Absorber, Terminator and Attenuator. That classification is still used 

nowadays, but just to a certain extent because it is quite poor and omits lots of devices used 

recently, it actually doesn’t take into account any device that is not a float body. 

Consequently, all the devices placed onshore are not considered by this classification. 

A point absorber is a device, typically axis-symmetric about a vertical axe with reduced 

dimensions in comparison to the wavelength of the incident wave. Terminator and 

Attenuator devices instead, have sizes of the same order of magnitude of the wavelength of 

the incident waves. The longest side of an attenuator is aligned with the direction of the wave 

front.  The dominant direction of a terminator device is perpendicular to the direction of the 

incident wave (See Fig. 2.5). 
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Figure 2.5: Raw description of the Wave Energy Converters type depending on its 

orientation corresponding with the incident wave direction. 

 

The previous classification, as stated before, leaves apart different device categories, to solve 

that problem a new classification method came up. It consists in differencing the devices in 

generations; by now a third generation has been reached. First generation devices are those 

which are placed onshore or near-shore, typically OWCs. Second generation systems are 

represented by float pumps and are designed to operate at a wide variety of offshore and 

near-shore spots where high levels of energy are available in a range of water depth among 

thirty and a hundred meters.  The third and last generation system at the moment it 

comprises large-scale offshore devices, with vast dimensions and power output. There is not 

a single form of third generation systems, it can be whether a large single device or a large 

array of much smaller devices. The former would be either an Attenuator or a Terminator 

and the latter without confusion it would be a power plant made of several point-absorber 

devices. 

 Afterwards, several methods have been proposed to classify wave energy systems depending 

on location, working principle and size. Figure 2.6 shows a classification of the more 

advanced technologies in the field, based mainly in the working principle.  
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Figure 2.6: General division of WEC technologies 

 

As it can be seen the first subdivision follows a criterion based on the energy conversion 

principle. Afterwards, comes another subdivision depending on the location of the device, in 

the case of the OWC and overtopping systems  can be onshore or offshore. For oscillating 

bodies it is always offshore but the differentiation comes to specify if the device is at the 

water surface or beneath. The third differentiation is more specific, depending on the single 

kind of technology and can state more specificallythe position or working principle. 

The following and last part of this chapter will be dedicated to the description of the most 

successful devices in the current days, which will be also subdivided into several categories 

following the previous classification. 

Fixed-structure OWC are usually placed in open coastal waters, in the majority of the cases 

are located on the shore line or near-shore; those devices would fit within the first generation 

system classification. Usually, these devices are fixed to the sea bottom or to a rocky cliff, 

which also includes port breakwaters. These devices have a major advantage in comparison 

with other types, which is the easier installation and maintenance, because they do not 

require deep-water mooring systems and long expensive electrical cables to drive the 

produced electricity to the main grid. Despite the less energetic wave climate that is given 

near shore due to wave friction with the seabed and wave breaking, the power outputs of 

these devices are of the same order of magnitude thanks to the compensation made by the 

natural refraction and diffraction. 
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The oscillating water column device is made of a steel or concrete submerged part, open to 

the open sea below the water surface, inside which air is trapped above the free water 

surface. The oscillating motion of the internal free water surface, produced by the incident 

waves, makes the air flow through a pipe in which an air turbine is installed; an electrical 

generator is connected to the turbine to perform the energy conversion. In the mid 1970s the 

axial-flow well turbine was invented, this technological advance avoids the need of installing 

rectifying valves in the turbine well which reduces substantially the cost of the installation 

and the maintenance tasks, this kind of valves where one of the major technical difficulties of 

these devices indeed (See Fig 2.7).   

 

 
Figure 2.7: Sketch and picture of the OWC’s Pico plant located in the Portuguese coast. 
 

Their installed power capacity lies within the range of 60-500 kW with a maximum of 2 MW 
delivered by OSPREY plant. Unfortunately, the OSPREY plant had a short life, early after its 
inauguration the plant was hit, destroyed and sunk by the sea; it is believed that the main 
cause was its steel structure which wasn’t strong enough to resist the waves’ strokes in fully 
developed sea states. After that episode no more steel structured OWC are being 
constructed going back to the heavier and stronger concrete structures. 
Since the early 1980s a new technological advance has been introduced in the construction 
of the fixed OWC power plants. It was discovered that by projecting the walls of the air-
water chamber towards the direction of the incident waves, forming a harbor or a collector, 
the power absorption rates were increased. That meant a major deal in different aspects, 
not only the energy absorption was higher, it also allowed to reduce the construction costs. 
The cost of building a fixed-structure OWC plant it is by far way higher than any other entry 
in the budget for an OWC and that new discovery permitted to integrate the plant structure 
into a breakwater, which means constructional cost sharing, if a new breakwater is to be 
built, let’s put an OWC plant in it, the cost won’t be much higher and there will be a 
substantial profit based on the energy extraction. That technique makes also much easier 
operation and maintenance tasks. Good examples of that is the recently constructed 
breakwater at the port of Mutriku, Basque Country, Spain that includes 16 chambers and 16 
Wells Turbines that produce 18,5 kW each. (See Fig. 2.8) 
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Figure 2.8: Aerial picture of the breakwater integrated OWC plant in Mutriku, Basque 

Country, Spain. 

The OWC devices not only are placed onshore in the coastline or in harbor breakwaters they 

can also be found offshore in the form of floating-structures. There are basically two clear 

examples of this kind: the Backward Bent Duct Buoy also known as BBDB and the Mighty 

Whale. The BBDB bents backwards from the incident wave direction, which was discovered 

to be a great method to enlarge the size of the water column and through that principle, 

achieve resonance conditions while keeping the draught of the floating structure within a 

reasonable size. This device has been used in many countries to empower up to one thousand 

navigation buoys and since 2006 a 1/4th scale prototype is being tested in Galway Bay 

(Ireland) with the purpose to prove its feasibility to be grid connected (See Fig. 2.9). 

 

 

Figure 2.9: Schematic representation of the Backward Bent Duck Buoy. A floating 

structure OWC oriented backwards to improve energy absorption. 
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 The Mighty Whale is the most famous OWC floating-structure. It has been developed by the 

Japan Marine Science and Technology Center. Is the only device of his kind in which a full 

dimension prototype has been  built, its floating structure is 50 meters long, 30 meters wide, 

12 meters draft and a weight of 4400 t. It has three air chambers located at the front, side by 

side and several buoyancy tanks. Each air chamber is connected to a Wells Turbine that 

drives an electrical generator with a total power rate of 110kW (See Fig. 2.10). 

 

Figure 2.10: Computer rendering of the Mighty Whale. A floating Structure OWC 

designed in Japan. 

 

The next step in this technology review is to describe the most successful Oscillating body 

systems. These are offshore devices, often classified as third generation systems and they can 

be floating in the free water surface or fully submerged below it. The fact that are not onshore 

or near-shore devices, usually located where the ocean is, at least, more than 40 meters deep 

makes them the device that exploits the sea in the most possible energetic regimes where 

there is virtually no loss of energy in wave propagation. Offshore wave energy converters are 

usually more complicated than first generation devices. Therefore, it is the less developed 

technology in the field and the one studied in the work of this Master Thesis. The reason for 

all this complexity is that comprises many different factors, not only the hydrodynamics of 

the floating body or the electromagnetic of their generators but the mooring systems, the 

access for maintenance or the need of long underwater electrical cables.  The proof of this 

complexity is that, by now, there is not a single full scale prototype being tested in any of the 

oceans and seas of the world. 
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The simplest oscillating body device is the heaving buoy; the buoy reacts against a fixed 

structure, which can be a hydraulic turbine, an air turbine or a linear electrical generator, 

attached to the seabed. An early attempt was a device named G-1T, consisting of a wedged-

buoy of rectangular plan form and whose vertical movement was guided by a steel structure 

fixed to a breakwater. The PTO used for theG-1T was a hydraulic ram. In Norway another 

heaving device was designed. It consisted of a spherical buoy attached to an air turbine, this 

device could be phase-controlled by latching to achieve the best oscillation regime.  

An alternative design is a buoy connected to a structure fixed on the seabed through a cable 

which is kept tight a spring or an equivalent system. The relative motion between the excited 

floating body and the fixed structure is used by the PTO to convert the energy. The PTO can 

be an hydraulic turbine activated by high-pressure piston pump like in the device tested in 

the coasts of Denmark in the early 1990s or a linear electrical generator like the one 

developed by the Uppsala University in Sweden. A line from the top of the generator is 

connected to a buoy located at the ocean free surface, springs attached to the translator of 

generator store energy during half of a wave cycle act as a restoring force during wave 

troughs. Tests of a 3 meters cylindrical buoy are being conducted by the Uppsala University 

(See Fig 2.11). 

 

Figure 2.11: Four different pictures of the tests conducted in Uppsala University. Each 

picture shows a different buoy of the same kind of WEC, floating body point absorbers. 

There is though, a major problem when talking about a single floating body reacting against a 

bottom fixed PTO, which is the distance between the two elements, one way to solve that 

problem is by thinking of a multiple body system in which the distances are not so big. The 

energy is converted from the relative motion between two bodies oscillating differently, but 

also this kind of device raises another kind of problem, control problems. The two-body point 

absorber concept it could be described as a two point heaving system. It consists of two 

floaters, the outer one, which has to have very low resonance frequency, works as a structure 
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that provides a reference for the inner body that acts as a resonating absorber. The mass of 

the inner body is increased connecting it to a fully submerged body located deep enough to 

have no effects on diffraction and damping forces. 

One of the most interesting two-body systems for wave energy conversion is the IPS buoy, 

developed in Sweden by the company Interproject Service. This is made of a buoy rigidly 

connected to a fully submerged tube open at both ends. The tube hosts a piston whose 

relative motion to the float-tube system drives a power take off mechanism. To solve the end-

stop problem the tube bells out to either end from the center part to limit the stroke of the 

piston. A half scale prototype was built in the mid 1980s and tested in Sweden. A very similar 

device is the AquaBuoy, developed in the 2000s, uses the IPS concept mixed with a pair of 

hose pumps to produce a high pressure water flow that drives a Pelton turbine instead of a 

piston, this device is being tested in the coast of Oregon, USA, since 2007. The Wavebob is 

one of the latest devices introduced in society; it is still under development in Ireland. It 

consists of two co-axial axe-symmetric buoys which relative motion is converted into 

electricity through a high-pressure-oil system. The inner body is connected to another 

coaxial submerged body whose function is to increase the inertia without affecting other 

coefficients such as the diffraction or radiation coefficients, a 1/4th scale prototype is being 

tested in Galway Bay, Ireland. 

To finish with the heaving body category there is only one kind left to be explained, the fully 

submerged heaving systems. The Archimedes Wave Swing also known as AWS is a fully 

submerged heaving device basically developed in Holland and consists of an air filled 

chamber fixed to the seabed and open at the top (the silo), closed by another cylinder (the 

floater). An air lock is created between the two cylinders and so water cannot flood the silo. 

The floater is pushed down when the crest of the wave passes above it and moves up when 

the trough passes above it, this movement obeys the instantaneous pressure which varies 

while the wave passes through, it increases with the wave crest and decreases with the wave 

trough. The conversion of mechanical energy into electrical energy is made via a linear 

electrical generation. The AWS was the first device using that PTO principle and is being 

tested since the second half of 2004 (See Fig. 2.12). 
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Figure 2.12: Schematic illustration of the working principle of the AWS WEC and picture of 

the prototype. 

 

The wave energy converter devices briefly described above are heaving systems; that is to 

say, the energy conversion is performed through a relative translation motion. There are 

other oscillating-body systems in which the energy conversion is based on relative rotation, 

mostly pitch, this is the case of the Salter Duck, mentioned in the first part of this chapter. It 

is basically a cam-like floater oscillating in pitch. The firsts versions consisted of a string of 

Ducks mounted on a long spine and located along the wave crest direction, which would be 

an attenuator WEC, the energy conversion was performed by a hydraulic-electric PTO 

system. Afterwards, a solo Duck was proposed, in which the frame of reference against which 

the nodding duck react was provided by gyroscope. Unfortunately, this device never reached 

the stage of full-scale prototype tested in real seas. 

Probably one of the most important wave energy converters is the Pelamis, that device is the 

only offshore device that has reached the commercialization phase, although it was for a 

short period of time as it will be seen later on that description. The Pelamis, developed in the 

UK, is a snake-shaped slack-moored articulated structure made of four cylindrical sections 

attached by hinged joints. It is another attenuator device and therefore, it is placed on the 

wave direction.  
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Figure 2.13: Schematic top and side views of the Pelamis device. 

The motion induced by the waves in these joints is captured by hydraulic rams that transfer 

that motion into high pressure oil pumps that drive hydraulic motors coupled to electrical 

generators. Gas accumulators provide energy storage. 

After years of research, beginning with theoretical/numerical modeling and continuing with 

physical model testing at several scales, sea trials of a full scale prototype took place in 

Scotland the year 2004. Finally, by the second half of 2008 the northern Portuguese coast 

hosted the first and, until now, the only grid-connected wave farm, composed of three 

Pelamis units of 750 kW each. The dimensions of this device are quite astonishing, being one 

of the largest devices developed, it is 150m long and has a diameter of 3.5m. After some 

months of operational state of the wave farm, the rams of the devices didn’t resist the 

conditions of a particularly violent storm and the result was catastrophic, resulting in all the 

devices being useless. Nowadays the wave farm is still inoperative and the company 

responsible of the devices is working to improve the resistance of the devices in the worst 

possible conditions. The figures below report some steps of this process to the wave farm. 
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Figure 2.14: Different Pictures of the Pelamis device. The first picture shows the 

prototype in a front view while it was being tested in the English coasts. The Second 

shows how it was introduced into the water. The third pictures shows the wave energy 

plant that was installed in the Portuguese coast, composed by three devices. 
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The Searev wave energy converter, developed at at Ecole Centrale de Nantes, France, is a 

floating device containing a heavy horizontal-axis wheel that works as an internal gravity 

reference. The center of gravity of that wheel it is not centered, that makes the mechanic 

equivalent to a pendulum when it is spinning due to the passing through of the incident 

wave. The wheel is connected to an electrical generator via two hydraulic rams. Major 

advantages of these systems are: first, all the moving parts are protected from the sea action 

because they are placed in the inner part of the device and second,  the fact that the 

mechanism is just a wheel spinning and working as a pendulum avoids the need of end-stop 

systems due to that it won’t be any kind of stroke that could damage the system (See Fig 

2.15). 

 

 

Figure 2.15: Schematic illustration of the SeaRev device. Including its mechanical, 

hydraulic and electric elements. 

The Spanish company Oceantec is developing another offshore floating energy converter that 

extracts the energy basically from the pitching motion. It has the shape of an elongated 

horizontal cylinder with ellipsoidal ends whose major axis is aligned with the incident wave 

direction. The energy conversion process is based on the relative inertial motion that the 

waves cause in a gyroscopic system. A 1/4th scale prototype was deployed in Gipuzkoa, 

Basque Country in Spain, in September 2008 and was tested for several months. 

Single oscillating-body devices operating in pitching mode have been proposed, based on the 

inverted pendulum concept hinged at the seabed. A buoyant flap hinged at the sea bed, 

whose pitching oscillations activate a set of double-acting hydraulic rams located on the sea 

bed that pump high-pressure fluid to the shore via a sub-sea pipeline. The fluid flow is 
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converted into electric energy by a conventional hydraulic circuit. These devices are intended 

to be deployed near shore at a maximum depth of 20 meters. 

The most famous device of this kind is the Oyster, which is under development in UK.  This 

device has a surface piercing flap that spans the whole water depth and the hydraulic fluid 

used to generate electricity is sea water that powers a Pelton turbine placed onshore. This 

device has a significant weak point though; the hydraulic rams and the junctions of the 

different moving parts can end up blocked by the sand and by deposits carried by the ocean 

currents. 

 

 

Figure 2.16: Computer rendering of a wave energy plant made of Oyster devices, 

developed in the U.K. 

A very different way of converting wave energy is to capture the water that is close to the 

wave crest and introduce it by over spilling into a reservoir where it is stored at a level higher 

than the average free surface level of the surrounding sea. The potential energy contained in 

the stored water is converted into useful energy through conventional low-head hydraulic 

turbines. The hydrodynamic behavior of the overtopping devices is strongly non-linear and, 

unlike the cases of oscillating water column devices and oscillating body devices cannot be 

approached by the linear water wave theory. 

The Tapchan (Tapered Channel Wave Power Device), is a device developed in Norway in the 

1980s and deployed in Toftestallen, Norway, in 1985.  The Tapchan contains a collector, a 

converter, a water reservoir and a low-head water turbine. The horn-shaped collector gathers 

the incoming waves and directs them towards the converter, in the Toftestallen prototype the 
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collector was directly carved in the rock and is about 60 meter wide at its wider point in the 

entrance. The converter is a channel which section gradually gets narrower, the walls of that 

channel has the same height as the reservoir maximum water level. The waves enter the wide 

section of the channel and as they propagate down to the narrowing end, the wave height is 

gradually amplified until the water of the crest spills over the walls of the collector and fills 

the reservoir. As a consequence, the wave energy is gradually converted into potential energy 

in the reservoir which in turn will be later converted into kinetic energy by the turbine that 

drives an electrical generator. It is usually used a conventional low-head Kaplan turbine by 

that purpose. The main function of the reservoir is to supply a constant flow of water, which 

means that it must be large enough to smooth the fluctuations of the water overtopping the 

converter walls, about a surface of 8500 m2. The Norwegian prototype has a power rate of 

350 kW (See Fig. 2.17). 

 

 

 

Figure 2.17: Illustration of the working principle and picture of the Tapchan power Plant 

in Norway. 

The Wave Dragon is one of the foremost technologies within the field of wave power. Unlike 

most other devices this one does not oscillate with the waves; it gathers the wave energy 

passively by utilizing the overtopping principle. The front face of the device is a curved ramp, 

incoming waves surge up it, as if it were a beach. Behind the crest of this ramp lies a reservoir 

which gathers the “overtopping” water which now has higher potential energy than the 

surrounding water. The effect of Wave Dragon is amplified by long reflector wings. Mounted 

to the reservoir, they channel the waves towards the ramp. The energy is extracted as the 

waterdrains back to the sea through low head hydraulic turbines placed in the reservoir. The 

Wave Dragon is designed as a floating offshore device to be placed in water depths above 20 
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m. These areas are where the highest wave energy is, and also where it is easiest to gain the 

permission to deploy. Over three years, sea testing has been conducted on a prototype in 

Northern Denmark. This device is by far the largest envisaged wave energy converter today 

and each unit will have a rated power of 4–11 MW or more depending on how energetic the 

wave climate is at the deployment site. This will be a device with a displacement of 

approximately 30,000 tones and dimensions that can reach 57 meters wide. This size brings 

many advantages, the device will respond minimally to waves, reducing fatigue problems. 

Also as it is large and stable it will be possible to work on board the device, which will 

drastically reduce maintenance costs and downtime. As an overtopping device, there are also 

many   advantages from the robustness of the design, in particular there are no end-stop 

problems as in larger seas the waves will wash over the platform harmlessly (See Fig. 2.18). 

 

Figure 2.18: Top and front view of the Wave Dragon device and illustration of the 
working principle. 

 
 
 

 
Figure 2.19: Picture of the Wave Dragon prototype. 



25 

CHAPTER 3: 

THEORY 

3.1 WAVE MECHANICS 

3.1.1 WAVE GENERATION 

 

The most common and normally the most important waves in the spectrum of sea waves are 

those waves generated by the wind. Wind-generated waves are much more complex than the 

typical mono-chromatic wave widely used in literature. To have a complete outlook of the 

waves behavior at the sea it is crucial to understand how they are generated. It is important 

to have a means to quantify wind-generated waves for many varied uses in engineering. It is 

also important to predict this waves for a given wind condition, essentially those extreme 

wind-generated wave conditions that will be used as the limit for engineering design. The 

record of a water surface time history, measured at a point, when storm conditions are given 

shows a very irregular trace of the free water surface. A wave record taken at the same time at 

a nearby location shows a very different pattern but it has similar statistical properties. The 

records of a particular area might contain locally wind-generated waves from an existing 

storm superposed on lower waves having different range of periods, and these were 

generated by previous winds acting in a different area, even thousands of kilometers away. 

 The average height and period of the wind-generated waves grow as the wind speed, 

duration and the distance or fetch over which the wind blows increase. For a given wind 

speed, and unlimited fetch and duration there is a limit to which the average wave height and 

period cannot overtake. That happens because at this stage the rate of energy input to the 

wave from the wind is balanced by the rate of energy dissipation due to wave breaking and 

surface water turbulence. When that energetic balance is reached by the ocean is known as 

the fully developed sea state. Fortunately the fully developed sea state is not commonly 

reached, not even in large storms. 
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Waves that are in middle of the generation process have crests that are short and not very 

well defined. The crests have not only one direction of propagation; they propagate within a 

span around the dominant wind direction. As the waves propagate through the area where 

the wind is active, they gradually grow in average height and period. After leaving the area of 

active wind generation, the surface profile becomes smoother and the crest gets longer and 

more distinguishable, these types of waves are known as swell. The swells propagates 

keeping almost all the energy stored in the waves, there exist minimal energy losses due to 

air resistance, internal friction but mainly because of angular speeding of the wave field. That 

makes longer waves to propagate ahead of the shorter ones in the field of swell. Once reached 

the surf zone, also called near-shore, the longest waves predominate above the smaller ones. 

It is though, in that area when some phenomena start occurring, phenomena like shoaling, 

refraction and diffraction due to the no longer negligible seabed’s action. Finally the wave 

breaking occurs setting free the majority of the energy contained in the sea wave. The table 

presented below summarizes in a schematic way the birth-to-death process of a sea wave. 

 
Table 3.1: Birth-to-death process of sea waves. States the process since are generated in an 

irregular form by the wind pressure until they finish breaking against the shore losing the 

energy gathered in the travel, going through the swell and shoaling states. 
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Wind blowing over the surface of a water body will transfer energy into the water in the form 

of surface current and by generating waves on the water surface. There are turbulent 

pressings in the wind field that apply a fluctuating pressure on the water surface. These 

fluctuations are not strictly periodic and can quickly vary in magnitude and frequency, they 

move forward within a range of velocities. These fluctuations cause the water surface to 

undulate, develop and grow. This growth is mainly achieved as a result of a resonant 

interaction that takes place between the forward moving fluctuations and the free waves 

propagating at the same speed as the pressure fluctuations. Once the wave is born and 

somewhat consolidated another mechanism takes action, as the wind blows over a forward 

moving wave a complex air flow is formed over the wave. This flow implies a secondary air 

circulation that is set up around a wave crest parallel axis. Consequently, below that axis, 

where the wind velocity is equal to the wave celerity, the air flow is reversed relatively to the 

forward moving wave profile. As opposed to that point, above the axis, the air relative 

velocity has the same sign as the wave celerity. Therefore, a flow circulation in a vertical 

plane above the wave surface is created, that flow causes a pressure distribution on the 

surface that is out of phase with the surface displacement resulting in a momentum transfer 

to the wave that selectively amplifies the steeper waves i.e. the steeper is the wave the faster 

it grows. There are also shear effects on the growth of waves but they have been proved of 

minor significance.  Wave to wave interaction also causes substantial effect on wave growth, 

being the smaller wave that transfers the energy into the bigger one under certain conditions 

such as the right phase and direction. 

For wave prediction, wave climate analysis, design of coastal structures or design of floating 

devices is convenient to choose a single wave height and period to represent a full spectrum 

of wind-waves. If the wave heights from a wave record are ordered by size it is possible to 

define a height Hn, that would be the average of the highest n percent of the wave heights. 

E.g. H10 is the average of the highest 10% of the waves in the record or H100 is the average of 

the wave height of the whole record. The most commonly used representative wave height is 

H33 which is the average height of the highest one-third of the record and it is called the 

significant height Hs, this parameter has been chosen because it is, approximately the height 

that an experienced observer would report when visually estimating the height of waves at 

sea. The significant period Ts is the period corresponding to Hs, that is to say, the average 

period of the highest one-third waves in the record.    

Whether the significant wave height or the significant wave period as well as the resulting 

spectrum, are directly related to the distance over which the wind blows, usually known as 

fetch F, are also related to the wind speed W and to the duration of that wind td.  Some other 

factors such as the fetch width, the water depth, atmospheric stability, the temporal and 

spatial variability in the wind field or the bottom characteristics if the water depth is shallow 

enough can, to some extent, affect those wave defining parameters. Waves are generated with 
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propagation directions that cover a range of oblique angles, in other words, less than 90° 

from the direction of the wind. As stated before, the waves propagate through the fetch 

increasing their period whereas their range of directions decreases proportionally. For this 

reason, the narrower the fetch is the fewer the possibilities are that a short wave has to 

remain within the fetch limits and grow in size. The water depth affects the water surface 

shape and its kinematics, hence its energy transfer from the wind. Bottom friction it also 

dissipates energy thus retarding the rate of growth and the ultimate wave size and the 

atmospheric stability affects directly the wind field affecting in turn the wave generation. But, 

except for some specific cases, all these factors are usually neglected due to their small 

contribution to the wave formation and growth. The only parameters left to be considered 

are the fetch length F, the constant wind speed W, and the duration of the blowing wind td. 

If the wind duration exceeds the time required for the waves to travel the whole fetch length 

i.e. td> F/ Cg the waves will grow continuously and their characteristics at the end of the fetch 

will depend on F and the wind speed W, this is known as fetch limited condition and would 

be represented by the line OAB in the figure 3.1.  On the contrary, if the duration of the wind 

doesn’t allow the waves to travel along the whole fetch, the waves reach a certain size and 

then become stable, which is what is known by the term duration limited and in figure 3.1 is 

represented by the line OAC. If the fetch length is extremely big and the wind duration 

permits the wave to go along the entire fetch, note that the line AOB, in figure 3.1, would tend 

to be horizontal and then the conditions of fully developed sea would have been reached, but 

as previously said that rarely occurs, not even with the biggest storms in the middle of the 

ocean. Outside the generation area or for bigger distances than F, the waves propagate as 

swell reducing its height and increasing its period minimizing their energy losses (See Fig. 

3.1). 

 

Figure 3.1: Graphical representation of the wave generation.  
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The characteristics of waves generated by a given wind condition may also be defined by a 

wave spectrum, which is a plot of the wave density of energy at each component period or 

frequency versus a range of component periods or frequencies. Figure 3.2 shows a series of 

typical wave spectra at successive point along the fetch. Note that the peak frequency 

decreasesas the wave spectrum grows along the fetch. The total area under the spectrum 

curve is the total amount of energy which in turn, is related to the significant height, this area 

grows as the waves travel through the fetch. One of the most interesting things though, is 

that if the figure 3.2, which is function of the position in the fetch, was done at the same 

point but in five different consecutive time lapses, the pattern of the spectra wouldn’t change 

that much or, in other words, the wave spectrum, apart from being position-dependent it is 

also time-dependent. 

 

Figure 3.2: Variation of the Wave Spectrum depending on which point of the Fetch the 
measurement is done. 
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3.1.2 WAVE ANALYSIS AND STATISTICS 

 

The general understanding of wind-generated waves comes mostly from the analysis of wave 

records. Most of these records are point measurements of the water surface in a fixed point at 

different time lapses during a period of several minutes, even hours in some cases. There are 

mainly two ways to perform these analyses. The first way consists of identifying individual 

waves in the record and statistically analyzing the heights and periods of these waves. The 

second and not widely used technique is based on conducting a Fourier analysis of the wave 

record to develop a full wave spectrum. Both ways will be shown in this chapter following the 

previous order. 

Figure 3.3 is basically a graphical representation of a short fragment of a typical wave record. 

The most commonly used analysis procedure is called the zero-crossing, which has two 

variants, the so called zero-up-crossing and the zero-down-crossing, both variants have 

exactly the same validity and the results will be totally equivalent but usually and by default 

the most commonly used is the zero-up-crossing (Pierson, 1954). A mean water surface 

elevation is set and each point that crosses that zero elevation in the upward direction is 

noted down. The elapsed time between two consecutive points is the wave period and the 

maximum vertical distance between the wave crest and trough is the wave height. The zero-

down-crossing follows the exact same procedure but following the downward direction to 

mark the points. Note that small fluctuations are left apart from the counting, that way high 

frequency components are directly filtered out. 

 
Figure 3.3: Illustration of a wave record representing the sea surface elevation over the time. 
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A major concern in the analysis is the distribution of heights in the record. If those wave 

heights are plotted as a height-frequency distribution, note that in this case frequency means 

frequency of occurrence; that is probability. Figure 3.4 represents an example of that 

distribution where p(H) is the frequency of occurrence and H is the wave height. The shaded 

area is the upper one-third of the wave height and its average gives the significant height. 

 

Figure 3.4: Graphic of the probability distribution of the different wave heights 
registered in a wave record. 

 For engineering purposes the most important distribution of wave heights is the one 

generated by a storm for obvious reasons. Longuet-Higgins (1952) proved that this kind of 

distribution is well defined by a Rayleigh’s probability distribution. 

The Rayleigh’s distribution can be written by the following expression: 

𝑝𝑝(𝐻𝐻) =  2𝐻𝐻
(𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟 )2 𝑒𝑒

−� 𝐻𝐻
𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟

�
2

        (3.1) 

 Where the root mean square height Hrms is given by 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟 = �∑𝐻𝐻𝑖𝑖2

𝑁𝑁
         (3.2) 

Where Hi is the individual wave among N waves that the wave record contains. From the 

Rayleigh distribution some useful relationships can be extracted: 

𝐻𝐻𝑆𝑆 = 1.416𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟          (3.3) 

𝐻𝐻100 = 0.886𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟         (3.4) 

The cumulative probability distribution results in: 

𝑃𝑃(𝐻𝐻) = ∫ 𝑝𝑝(𝐻𝐻)𝑑𝑑𝑑𝑑𝐻𝐻
0 = 1 − 𝑒𝑒−�

𝐻𝐻
𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟

�
2

       (3.5) 

For engineering purposes is much more interesting to know the percentage of waves which 

have greater heights that the given height 

1 − 𝑃𝑃(𝐻𝐻) =  𝑒𝑒−�
𝐻𝐻

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟
�

2

         (3.6) 
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From equation (3.3) the following expressions is deduced  

1 − 𝑃𝑃(𝐻𝐻𝑠𝑠) = 𝑒𝑒−(1.416)2 = 0.135 

So the 13.5% of the waves in a storm record might have higher heights than the significant 

height. Figure 3.5 is a very useful adapted form of the Rayleigh’s distribution, line a gives the 

probability P that any wave height will exceed the height rate (H/Hrms) and line b gives the 

average height of the n highest fraction of waves. 

 

Figure 3.5: Logarithmical adapted version of the Rayleigh distribution made by the U.S. 
Naval Forces. 

When a spectrum of waves reaches the shore, wave breaking limits the wave’s height 

distribution at a higher end. Some authors have modified the Rayleigh’s distribution to 

explain that behavior. There is no upper limit to the wave heights specified by the Rayleigh’s 

distribution. Longuet-Higgins (1952) demonstrated that for a storm with relatively large 

number of waves N, the expected value of the height of the highest waves would be 

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 0.707𝐻𝐻𝑠𝑠√ln𝑁𝑁         (3.7) 

That equation is valid in the offshore areas where the waves are not affected by the seabed 

and there are no breaking conditions which due to its highly non-linear behavior void the 

validity of the expression. 

The joint wave’s height-period probability distribution can be of some interest. Figure 3.6 

shows the shape of that distribution, it shows the distribution of the wave height versus the 

wave period of a typical record, note that the values are non-dimensionalized by diving them 

by the average wave’s height and period from the record. The contour lines are lines of equal 

probability of occurrence for that couple height-period to happen. The significant period Ts is 

considered to be more statistically stable than average period and therefore, is preferred to 
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represent the records. When using a spectral approach to analyze a wave record another 

parameter comes to surface, the peak period Tp. As the name tells that is the period of the 

most energetic wave from the spectrum and it is a crucial parameter when designing sea 

structures and other devices.  Its value can be calculated through the following expression: 

Ts=0.95Tp. 

 

Figure 3.6: Non-dimmensionalized graphic which shows the curves of equal-probability 
of waves’ heights over the waves’ periods. 

Another way to analyze a wave record is by determining the resulting wave spectrum for that 

record. A water surface profile can be reproduced by a series of sine waves with different 

periods, amplitudes, phases and propagation directions. A directional wave spectrum is 

produced when the sum of the energy density in these component waves at each wave 

frequency S(f,θ) is plotted versus wave frequency f and direction θ.  A specific version of it is 

plotted at a single direction and only versus the frequency S(f) or in the alternate version in 

which the energy density is plotted versus the period, the inverse function of the frequency, 

S(T).  From the linear wave theory the energy density of a wave is ρgH2/8, leaving apart the 

fluid density ρ and the acceleration of gravity g the following expression for directional wave 

spectrum is developed: 

𝑆𝑆 (𝑓𝑓,𝜃𝜃 ) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 =  ∑ ∑ 𝐻𝐻2

8
𝜃𝜃+𝑑𝑑𝑑𝑑
𝜃𝜃

𝑓𝑓+𝑑𝑑𝑑𝑑
𝑓𝑓        (3.8) 

Where H is the wave height in the record, this expression is simplified for the one-

dimensional spectrum as: 

𝑆𝑆 (𝑓𝑓) 𝑑𝑑𝑑𝑑 =  ∑ 𝐻𝐻2

8
𝑓𝑓+𝑑𝑑𝑑𝑑
𝑓𝑓           (3.9) 
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The expression for the one-dimensional spectrum dependent on the wave period is: 

𝑆𝑆 (𝑇𝑇) 𝑑𝑑𝑑𝑑 =  ∑ 𝐻𝐻2

8
𝑇𝑇+𝑑𝑑𝑑𝑑
𝑇𝑇           (3.10) 

The relation between both spectra is the following: 

𝑆𝑆(𝑓𝑓) =  𝑆𝑆(𝑇𝑇)𝑇𝑇2          (3.11) 

The exact scale and shape of a wave’s spectrum depends on the generating factors, previously 

stated in the first section of that chapter such as the wind speed, the duration of the wind and 

the fetch. Nonetheless, a general form of a spectral model equation is: 

𝑆𝑆(𝑓𝑓) =  𝐴𝐴
𝑓𝑓5 𝑒𝑒

−𝐵𝐵
𝑓𝑓4            (3.12) 

Where A and B are scale adjusting factors and can be written as functions of the generating 

factors or as functions of the representative wave parameters such as the significant wave 

height and period (Hs and Ts).  An important way to define a wave spectrum can also be by 

the moments of that spectrum, the nth moment of a spectrum can be defined as: 

𝑚𝑚𝑛𝑛 = ∫ 𝑆𝑆(𝑓𝑓)𝑓𝑓𝑛𝑛𝑑𝑑𝑑𝑑∞
0             (3.13) 

For instance, the zeroth moment is the area below the spectral curve of the plot and since a 

spectrum shows the density of energy at each frequency versus a range of frequencies, the 

area below that curves equals to the total energy of the wave spectrum. 

From the linear wave theory, the total energy density is twice the potential energy density of 

a wave and it can be written as: 

𝐸𝐸� = 2𝐸𝐸𝑝𝑝��� = 2
𝑇𝑇∗
∫ 𝜌𝜌𝜌𝜌𝜌𝜌 �𝜂𝜂

2
�𝑇𝑇∗

0 𝑑𝑑𝑑𝑑          (3.14) 

Where T* is the length of the analyzed wave record and the bar over the E denotes the energy 

density. The equation 14 can be rewritten as: 

𝐸𝐸� = 𝜌𝜌𝜌𝜌𝜂̅𝜂2 = 𝜌𝜌𝜌𝜌 ∑𝜂𝜂2

𝑁𝑁∗
           (3.15) 

In that occasion the bar over the E denotes the average sum of N* water surface values from a 

wave record of length T*.From the definition of Hrms and Hs the energy density can also be 

expressed as: 

𝐸𝐸� = 𝜌𝜌𝜌𝜌𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟2

8
= 𝜌𝜌𝜌𝜌𝐻𝐻𝑠𝑠2

16
            (3.16) 

If the zeroth moment of a spectrum equals the total energy density divided by the fluid 

density and the gravity’s acceleration; combining the equations 3.15 and 3.16 the following 

expression is obtained: 

𝐸𝐸� = 𝜌𝜌𝜌𝜌𝑚𝑚0 = 𝜌𝜌𝜌𝜌 ∑𝜂𝜂2

𝑁𝑁∗
= 𝜌𝜌𝜌𝜌𝐻𝐻𝑠𝑠2

16
         (3.17) 

Reorganizing the equation 3.17, the expression of the significant height for a wave spectrum 

is deduced as: 

𝐻𝐻𝑠𝑠 = 4�𝑚𝑚0           (3.18)  
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Where, from now on Hs will be named as Hm0 for semantic reasons since Hs was directly 

obtain from a wave record and Hm0 it has been obtain from a wave spectrum analysis.  

The Rayleigh’s distribution is a useful model for the expected distribution of wave heights for 

stormy conditions, but it is not enough. It is also useful to have other models to determine 

that wave spectrum. Several one-dimensional wave spectra have been proposed and they all 

generally derive from the main equation presented above, the equation 3.12. The two most 

commonly used models will be presented and described in the following lines.  The first one 

is the Pierson-Moskowitz Spectrum Model (Pierson and Moskowitz, 1964). The authors 

analyzed wave and wind records from British weather ships operating in the north Atlantic 

and selected records representing, in the majority of the cases, fully developed seas for wind 

speeds between 20 and 40 knots to generate the spectrum shown below: 

𝑆𝑆(𝑓𝑓) =  𝛼𝛼𝑔𝑔2

(2𝜋𝜋)4𝑓𝑓5 𝑒𝑒
−0.74� 4𝑔𝑔

2𝜋𝜋𝜋𝜋𝜋𝜋 �
4

       (3.19) 

Where W is the wind speed measured at 19.5 meters of altitude which is usually from 5% to 

10% higher than the speed measured at the standard elevation of 10 m above the sea level. 

Other formation parameters such as the fetch or the duration are not taken into account due 

to the fully developed sea conditions which allows neglecting them. The alpha coefficient 

equals to 8.1x10-3. At much higher speeds than 20 to 40 knots, that spectrum shouldn’t be 

used because it is thought for fully developed seas and at that wind speeds it is highly 

improbable for those conditions to be reached. The following expressions derive from the 

Pierson-Moskowitz spectrum formulation: 

𝐻𝐻𝑚𝑚𝑚𝑚 = 0.21𝑊𝑊2

𝑔𝑔
         (3.20) 

𝑓𝑓𝑝𝑝 = 0.87𝑔𝑔
2𝜋𝜋𝜋𝜋

         (3.21) 

 

The other widely used spectrum model it’s called JONSWAP (Hasselmann et al., 1973) and 

comes from Joint North Sea Wave Project and it was elaborated by laboratories from four 

different countries. Wave and wind measurements were taken with sufficient wind durations 

to produce a deep water fetch limited model spectrum. The model development begins with a 

simple association, if the wind speed W is isolated from equation 3.21 and then substituted to 

the general equation of the Pierson-Moskowitz model, equation 3.19, the result is the 

following: 

𝑆𝑆(𝑓𝑓) =  𝛼𝛼𝑔𝑔2

(2𝜋𝜋)4𝑓𝑓5 𝑒𝑒
−1.25�

𝑓𝑓𝑝𝑝
𝑓𝑓 �

4

       (3.22) 

The JONSWAP’s spectral equation is a slight modification of that last equation, equation 

3.22, and is achieved by developing relationships for α and fp in terms of  wind speed and 

fetch. Finally, enhancing the spectrums peak by a factor γ, the JONSWAP spectral equation 

looks like that: 
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𝑆𝑆(𝑓𝑓) =  𝛼𝛼𝑔𝑔2

(2𝜋𝜋)4𝑓𝑓5 𝑒𝑒
−1.25�

𝑓𝑓𝑝𝑝
𝑓𝑓 �

4

𝛾𝛾𝑎𝑎        (3.23) 

 

 

Where 

𝑎𝑎 =  𝑒𝑒
−�

�𝑓𝑓−𝑓𝑓𝑝𝑝 �
2

2𝜎𝜎2𝑓𝑓𝑝𝑝2
�
 

𝜎𝜎 = 0.07 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑓𝑓 < 𝑓𝑓𝑝𝑝  

𝜎𝜎 = 0.09 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑓𝑓 ≥ 𝑓𝑓𝑝𝑝  

In the JONSWAP spectrum, the parameter γ has a range of values from 1.6 to 6 but for 

general usage is recommended to use the value 3.3. The coefficient α, γ and fp for the 

JONSWAP spectrum are given by: 

𝛼𝛼 = 0.076 �𝑔𝑔𝑔𝑔
𝑊𝑊2�

−0.22
        (3.24) 

𝑓𝑓𝑝𝑝 = 3.5𝑔𝑔
𝑊𝑊
�𝑔𝑔𝑔𝑔
𝑊𝑊2�

−0.33
        (3.25) 

𝛾𝛾 = 7 �𝑔𝑔𝑔𝑔
𝑊𝑊2�

−0.143
         (3.26) 

Nowadays the JONSWAP spectrum has become the most commonly used spectrum for 

engineering design and for laboratory irregular wave experiments.  Figure3. 7 plots the 

generic form of both spectra, Pierson-Moskowitz and JONSWAP; depending on the chosen γ 

coefficient, the form of the JONSWAP accentuates its energy density peak value. 

 

Figure 3.7: Difference from the wave spectrum obtained via the JONSWAP method or 
through the Pierson-Moskowitz method. 
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3.1.3 LINEAR WAVE THEORY 

 

Introducing the velocity potential concept into the theory, which is the integrated form of the 

velocity itself, the motion equations are reduced to the Laplace’s equation (3.27) and to the 

Bernoulli’s equation (3.28). 

∇2∅ = 𝜕𝜕2∅
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2∅

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2∅
𝜕𝜕𝑧𝑧2        (3.27) 

𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 1
2

|∇∅|2 + 𝑝𝑝
𝜌𝜌

+ 𝑔𝑔𝑔𝑔 = 0       (3.28) 

Those equations with the right boundary conditions become the basis of the irrotational wave 

motion theory and the hypothesis in which are based are the following: 

1. Non viscous ideal fluid 
2. Conservative forces 
3. Irrotational motion 

Furthermore, experimental studies have determined that another constrain has to be added 

to maintain the theory’s validity. The period of the sea waves must be within the following 

range 1.1s < T < 30s but that is not a major problem because practically the totality of the sea 

waves generated by the wind which are relevant for engineering purposes are within that 

range.  

In the following paragraphs will be developed the linear wave theory also known as first 

order theory. Firstly, the boundary condition regarding to the free water surface must be set 

linear. This constrain is composed by two different equations, the kinematic equation (3.29) 

and the dynamic equation (3.30), which closely analyzed make perfectly sense in terms of 

velocity for the former and in terms of energy the for latter: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕∅
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕∅
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕∅

𝜕𝜕𝜕𝜕
= 0       𝑓𝑓𝑓𝑓𝑓𝑓       𝑧𝑧 = 𝜁𝜁(𝑥𝑥,𝑦𝑦, 𝑡𝑡)     (3.29) 

𝑔𝑔𝑔𝑔 + 𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 1
2
��𝜕𝜕∅

𝜕𝜕𝜕𝜕
�

2
+ �𝜕𝜕∅

𝜕𝜕𝜕𝜕
�

2
+ �𝜕𝜕∅

𝜕𝜕𝜕𝜕
�

2
� = 0       𝑓𝑓𝑓𝑓𝑓𝑓     𝑧𝑧 = 𝜁𝜁(𝑥𝑥,𝑦𝑦, 𝑡𝑡)   (3.30) 

The non linearity of the equations is obvious for the unknown parameters of ζ and Ø but 

there is another implicit non linear condition for 𝑧𝑧 = 𝜁𝜁(𝑥𝑥,𝑦𝑦, 𝑡𝑡) which is part of the solution 

and therefore, another unknown parameter. The linearization of those equations requires the 

introduction of new constrains. 
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 Figure 3.8 fully describes a progressive periodic wave and all its parameters; this wave 

propagates in a flat-bottomed channel and is mainly defined by its period T, inverse function 

of the frequency, its wave length L and its wave height H=2a. Analyzing the figure, the 

proportion among the different parameters is clear and the orders of magnitudes can 

securely be determined. 

𝜁𝜁 = 𝑂𝑂(𝐻𝐻) ;   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑂𝑂 �𝐻𝐻
𝑇𝑇
� ;   𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑂𝑂 �𝐻𝐻

𝐿𝐿
�   

 

Figure 3.8: Spatial and frequency description of a linear wave with all its parameters. 

 

The maximum velocity of the water particles can be approximated to πH/T which leads to 

the next expression. 

(𝑢𝑢)𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑣𝑣)𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑤𝑤)𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜕𝜕∅
𝜕𝜕𝜕𝜕
�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝜕𝜕∅
𝜕𝜕𝜕𝜕
�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝜕𝜕∅
𝜕𝜕𝜕𝜕
�
𝑚𝑚𝑚𝑚𝑚𝑚

= 𝜋𝜋𝜋𝜋
𝑇𝑇

= 𝑂𝑂 �𝐻𝐻
𝑇𝑇
� (3.31) 

Knowing that, in addition c=L/T, the non linear terms of the equations (3.29) and (3.30) 

have the following orders of magnitudes: 
𝜕𝜕∅
𝜕𝜕𝜕𝜕

=  𝑂𝑂 �𝐻𝐻
𝑇𝑇
� = 𝑂𝑂 �𝑐𝑐 𝐿𝐿

𝑇𝑇
�        (3.32) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑂𝑂 �𝐻𝐻
𝑇𝑇
� = 𝑂𝑂 �𝜕𝜕∅

𝜕𝜕𝜕𝜕
�        (3.33) 

𝜕𝜕∅
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕∅
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑂𝑂 �𝑐𝑐 𝐻𝐻
2

𝐿𝐿2 � = 𝐻𝐻
𝐿𝐿
𝑂𝑂 �𝜕𝜕∅

𝜕𝜕𝜕𝜕
�      (3.34) 

These relations proof that the non linear terms have an order of magnitude H/L times that of 

the linear terms and assuming that the wave slope ε=H/L<<<1 is rather small, the non linear 

terms of the free surface boundary condition can be eliminated due to its small influence in 

the whole expression. Once the quadratic terms have been suppressed there is still the 

implicit non-linearity to be taken care of. If the free water surface elevation is taken to zero, 

the critical condition can be expanded using the Taylor polynomial form and the final result 

is: 
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𝜁𝜁 𝜕𝜕
2∅
𝜕𝜕𝑧𝑧2 (𝑥𝑥, 0, 𝑡𝑡) = 𝑂𝑂 �𝐻𝐻

𝑇𝑇
𝐻𝐻
ℎ
� = 𝑂𝑂 �𝑐𝑐 𝐻𝐻

𝐿𝐿
𝐻𝐻
ℎ
�      (3.35)  

As previously commented the term ε=H/L<<<1 and H/h<<<1 make the order of magnitude 

close to zero, so this term is also negligible. So after all the analysis and the pertinent 

transformations the boundary condition expressions are linearized and under the form of: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕∅

𝜕𝜕𝜕𝜕
= 0          𝑓𝑓𝑓𝑓𝑓𝑓         𝑧𝑧 = 0       (3.36) 

𝑔𝑔𝑔𝑔 + 𝜕𝜕∅
𝜕𝜕𝜕𝜕

= 0          𝑓𝑓𝑓𝑓𝑓𝑓         𝑧𝑧 = 0       (3.37) 

To simplify even more these boundary conditions, both expressions can be merged into a 

single equation to form only one boundary condition at the free water surface. The 

mathematical problem in its linearized form is governed by the following expressions: 

∇2∅ = 𝜕𝜕2∅
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2∅

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2∅
𝜕𝜕𝑧𝑧2  in the fluid     (3.38) 

𝜕𝜕∅
𝜕𝜕𝜕𝜕

= 𝜕𝜕∅
𝜕𝜕𝜕𝜕

= 0   for z = -h      (3.39) 

𝜕𝜕2∅
𝜕𝜕𝑡𝑡2 + 𝑔𝑔 𝜕𝜕∅

𝜕𝜕𝜕𝜕
= 0   for z = 0      (3.40) 

The previous equations are valid when the following hypotheses are respected: 

1. Constant depth. 
2. Small width waves. 

At that point, adding a few more constraints, it is possible to solve the problem based in the 

variable Ø, the velocity potential, once this is found the velocity field in the fluid domain is 

easily studied. Moreover, the free water surface profile can be obtained from a derivate of the 

boundary condition’s equation.The pressure induced by this on the fluid field, can also be 

easily calculated by the linearized form of the Bernoulli’s equation: 

𝑝𝑝+ = 𝑝𝑝 + 𝜌𝜌𝜌𝜌𝜌𝜌 = −𝜌𝜌 𝜕𝜕∅
𝜕𝜕𝜕𝜕

        (3.41) 

Where p+ is the pressure’s excess induced by the wave in the fluid. 

The next logical step is to find the solution for the velocity potential and the velocity field. In 

order to achieve that goal some new hypothesis must be introduced: 

1. Constant period of the waves. 
2. Constant shape of the waves. 
3. Bidimensional flat waves (x,z). 

As a consequence of the last hypothesis the Laplace equation for the motion of the fluid, 

which can only have components of velocity in the x and z directions of the plane, becomes: 

∇2∅ = 𝜕𝜕2∅
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2∅

𝜕𝜕𝑧𝑧2 = 0  in the fluid     (3.42) 

Assuming that the wave is constant-shaped, that means that always has the same length L 

and mathematically speaking is expressed in the following way: 
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𝜕𝜕∅
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝜕𝜕∅
𝜕𝜕𝜕𝜕

(𝑥𝑥 + 𝐿𝐿, 𝑧𝑧, 𝑡𝑡)       (3.43) 

The previous reasoning works also for the second hypothesis, being a constant period wave 

implies: 
𝜕𝜕∅
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝜕𝜕∅
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑧𝑧, 𝑡𝑡 + 𝑇𝑇)       (3.44) 

Taking into account that those two relations together with the relation of the phase celerity, 

previously stated c=L/T is constant, and a new way of representing the equations is deduced. 

Instead of expressing ζ(x,t) and Ø(x,z,t) why not introducing a new variable that simplifies 

the expressions?  The result is the new variable θ which is defined by the following 

expression: 

θ = 2π �x
L
− t

T
�         (3.45) 

So now the result is ζ(θ) and Ø(θ,z) and by introducing two new parameters the equations 

are fully described in this new simpler system of coordinates. These two new parameters are 

the wave number k and the angular frequency w. The equation of Laplace looks like the 

following way: 

𝑘𝑘 = 2𝜋𝜋
𝐿𝐿

          (3.46) 

𝑤𝑤 = 2𝜋𝜋
𝑇𝑇

          (3.47) 

θ = kx − wt         (3.48)   
𝜕𝜕2∅
𝜕𝜕𝑧𝑧2 + 𝑘𝑘2 𝜕𝜕2∅

𝜕𝜕𝜃𝜃2 = 0     in the fluid    (3.49) 

𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 𝑤𝑤2

𝑔𝑔
𝜕𝜕2∅
𝜕𝜕𝜃𝜃2 = 0     for the free water surface  (3.50) 

𝜕𝜕∅
𝜕𝜕𝜕𝜕
�𝜃𝜃 = −2𝜋𝜋 𝑡𝑡

𝑇𝑇
, 𝑧𝑧� = 𝜕𝜕∅

𝜕𝜕𝜕𝜕
�𝜃𝜃 = 2𝜋𝜋 �1 − 𝑡𝑡

𝑇𝑇
� , 𝑧𝑧� for periodicity    (3.51) 

Once all this changes have been applied and through lots of somewhat complicated 

mathematical passages, such as ODE solution and sinusoidal wave theory,  the final result is 

reached giving the following expressions for free water surface’s elevation and for the velocity 

potential: 

𝜁𝜁 = 𝑎𝑎 cos(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤) = 𝐻𝐻
2

cos⁡(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤)      (3.52) 

∅(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑎𝑎𝑎𝑎
𝑤𝑤

cosh [𝑘𝑘(ℎ+𝑧𝑧)]
cosh (𝑘𝑘ℎ)

sin(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤)      (3.53) 

Once reached the expression of the velocity potential (3.53), seems obvious that the next step 

is to calculate the velocity field, but there is a step in the middle in which without it, the 

computing of the velocity field is not feasible. The fact is that the wave number still is an 

arbitrary number, given that there is no expression to calculate the wave length for a fixed 

period yet. Using the boundary condition at the free water surface (3.29) and the following 

derivates of the equation (3.53) it is obtained that: 

�𝜕𝜕∅
𝜕𝜕𝜕𝜕
�
𝑧𝑧=0

= 𝑎𝑎𝑎𝑎
𝑤𝑤

tanh(𝑘𝑘ℎ) sin(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤)      (3.54) 
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�𝜕𝜕
2∅
𝜕𝜕𝑡𝑡2�𝑧𝑧=0

= −𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤)       (3.55) 

Which substituted into the equation (3.30) gives the relation of dispersion, the intermediate 

step to find the velocity field. The physical meaning of the relation of dispersion is quite 

complicated. Essentially its meaning is no other than the relation of wave energy loss in wave 

propagation depending on its frequency and its mathematical form is: 

𝑤𝑤2 = 𝑔𝑔𝑔𝑔 tanh(𝑘𝑘ℎ)        (3.56) 

Once the relation of dispersion is found the velocity field and trajectory of the water particles 

can easily be calculated. The only operations required to find their expressions are derivates 

of the velocity potential, respecting to the x axis to find the horizontal velocity u and 

respecting to the z axis to find the vertical velocity w: 

𝑢𝑢(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝜕𝜕∅
𝜕𝜕𝜕𝜕

= 𝑎𝑎𝑎𝑎
𝑤𝑤
𝑘𝑘 cosh [𝑘𝑘(ℎ+𝑧𝑧)]

cosh (𝑘𝑘ℎ)
cos⁡(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤)     (3.57) 

 

𝑤𝑤(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝜕𝜕∅
𝜕𝜕𝜕𝜕

= 𝑎𝑎𝑎𝑎
𝑤𝑤
𝑘𝑘 sinh [𝑘𝑘(ℎ+𝑧𝑧)]

cosh (𝑘𝑘ℎ)
sin⁡(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤)     (3.58) 

Three different groups can be distinguished in the equations (3.49) and (3.50), the first 

group expresses the wave characteristics i.e. wave width, wave number and wave angular 

frequency; the second group reflects the velocity variation depending on the vertical position 

and the third group states the harmonic behavior of a sea wave. See Fig 3.9. 

 

Figure 3.9: Water particle velocities in a wave. 

 

Finding the trajectory of a particle if its velocity field is known has no secret, it is universally 

known that the position is the velocity integral form or on the contrary the velocity is the 

derivate in the time of the position. Knowing that, the next step seems obvious, the velocity 

field must be integrated in the time. 

𝑥𝑥𝑝𝑝(𝑡𝑡) = 𝑥𝑥0 + ∫𝑢𝑢�𝑥𝑥𝑝𝑝(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑑𝑑 𝑧𝑧𝑝𝑝(𝑡𝑡) = 𝑧𝑧0 + ∫𝑤𝑤�𝑥𝑥𝑝𝑝(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑑𝑑   (3.59) 
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Once integrated and simplified the expressions of the particle trajectories on the horizontal 

and vertical axis look like that: 

𝑥𝑥𝑝𝑝(𝑡𝑡) = 𝑥𝑥0 − 𝑎𝑎 cosh [𝑘𝑘(ℎ+𝑧𝑧0)]
sinh (𝑘𝑘ℎ)

sin⁡(𝑤𝑤𝑤𝑤 − 𝑘𝑘𝑥𝑥0)      (3.60) 

𝑧𝑧𝑝𝑝(𝑡𝑡) = 𝑧𝑧0 + 𝑎𝑎 sinh [𝑘𝑘(ℎ+𝑧𝑧0)]
sinh (𝑘𝑘ℎ)

cos⁡(𝑤𝑤𝑤𝑤 − 𝑘𝑘𝑥𝑥0)      (3.61) 

Using the terms: 

𝛼𝛼 = 𝑎𝑎 cosh [𝑘𝑘(ℎ+𝑧𝑧0)]
sinh (𝑘𝑘ℎ)

        (3.62) 

𝛽𝛽 = 𝑎𝑎 sinh [𝑘𝑘(ℎ+𝑧𝑧0)]
sinh (𝑘𝑘ℎ)

        (3.63) 

 

If the equations (3.60) and (3.61) are divided by α and β respectively, squaring them and 

finally adding them term by term, the result is a very known type of equation: 

�𝑥𝑥𝑝𝑝 (𝑡𝑡)−𝑥𝑥0�
2

𝛼𝛼2 + �𝑧𝑧𝑝𝑝 (𝑡𝑡)−𝑧𝑧0�
2

𝛽𝛽2 = 1       (3.64) 

This is the ellipse equation and it varies its parameters depending on the conditions. If the 

seabed is deep enough to be dismissed, i.e.  deep water conditions, then this ellipse is turned 

into a perfect circumference which radius decreases with the depth until a limit when tends 

to zero. See Figure 3.10. If the sea bed is close enough to the water surface to have influence 

in the behavior of the wave, i.e. shallow water conditions, then the ellipse remains ellipse and 

its secondary radius also decreases with the depth until seabed surface, where the velocity 

has only horizontal component in order to respect the bottom boundary condition. See 

Figure 3.11. 

 

Figure 3.10 Water particle orbits in deep water. 

 

 

Figure 3.11: Water particle orbits in shallow water. 
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The distribution of the pressure in the fluid mass is obtained through the linearized 

Bernoulli’s equation: 

𝑝𝑝+ = −𝜌𝜌 𝜕𝜕∅
𝜕𝜕𝜕𝜕

= 𝜌𝜌𝜌𝜌𝜌𝜌 cosh [𝑘𝑘(ℎ+𝑧𝑧)]
cosh (𝑘𝑘ℎ)

cos(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤) = 𝜌𝜌𝜌𝜌𝜌𝜌(𝑥𝑥, 𝑡𝑡) cosh [𝑘𝑘(ℎ+𝑧𝑧)]
cosh (𝑘𝑘ℎ)

= ρgKpζ(x, t) (3.65) 

Where Kp is the pressure response factor and its value is always equal or smaller than one 

and depends on the value of z. If the equation (3.65) substituted into the equation (3.41) the 

entire pressure profile in the water is obtained: 

𝑝𝑝 = 𝑝𝑝+ − 𝜌𝜌𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌(𝐾𝐾𝑝𝑝𝜁𝜁 − 𝑧𝑧)       (3.66) 

When z = 0 then Kp = 1 thus resulting in a pressure p = ρgζ so in the crest of a wave the 

pressure is p = ρga and in the trough of a wave the pressure is p = -ρga.  Then the pressure 

profile keeps growing as the depth point of study is also increasing. See Figure 3.12. 

 

Figure 3.12: Pressure distribution along the depth in the wave crest and the wave 
trough. 

In the linear wave theory all dissipative phenomena are neglected, so the energy linked to 

wave motion is made only by potential energy and kinetic energy. As an oscillating motion, 

the energy in a certain point (x,y) is time dependent. However, the energy contained at a 

point in a certain time is not really a matter of major interest in the engineering world, a 

much more used term is the specific energy, defined as mean energy (in time) per surface 

unit or, in other words, the density of energy which applications have been exposed in detail 

at previous sections of this chapter. In the following paragraphs the expressions of potential 

and kinetic energy will be developed separately and finally merged together. 

Figure 3.13 shows the schematic geometric basis to calculate potential energy. An elementary 

fluid column is the studied area. That column has a unitary width (perpendicular to the sheet 

plane), a differential length dx and a height of h+ζ. The elementary potential energy is: 

𝑑𝑑𝐸𝐸�𝑝𝑝1 = 𝑔𝑔ℎ𝐺𝐺𝑑𝑑𝑑𝑑         (3.67) 
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The mass of the fluid column is equal to: 

𝑑𝑑𝑑𝑑 = 𝜌𝜌(ℎ + 𝜁𝜁)𝑑𝑑𝑑𝑑        (3.68) 

This can be substituted into equation (3.67): 

𝑑𝑑𝐸𝐸�𝑝𝑝1 = 1
2
𝜌𝜌𝜌𝜌(ℎ + 𝜁𝜁)2𝑑𝑑𝑑𝑑        (3.69) 

Which in turn is implicitly time dependent, owing to the variable ζ(x,t).  The final step to get 

the potential energy density is to integrate the equation (3.69) over the variables x and t, 

from x to x+L and from t to t+T: 

𝐸𝐸�𝑝𝑝1 = 1
𝐿𝐿𝐿𝐿 ∫ ∫ 𝑑𝑑𝐸𝐸�𝑝𝑝1𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌

2𝐿𝐿𝐿𝐿
𝑥𝑥+𝐿𝐿
𝑥𝑥

𝑡𝑡+𝑇𝑇
𝑡𝑡 ∫ ∫ (ℎ + 𝜁𝜁)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥+𝐿𝐿

𝑥𝑥
𝑡𝑡+𝑇𝑇
𝑡𝑡     (3.70) 

Operating mathematically and trigonometrically the equation (3.70) results inthe final and 

simplest form of: 

𝐸𝐸�𝑝𝑝 = 𝜌𝜌𝜌𝜌 𝑎𝑎2

4
         (3.71) 

 

Figure 3.13: Geometric configuration to compute the Potential Energy. 

To develop the kinetic energy expression the figure 3.14 is used. The study area is again an 

elementary region of fluid mass, which length and height are respectively dx and dz and it 

has a unitary width. The resulting expression is: 

𝑑𝑑𝐸𝐸�𝐶𝐶(𝑡𝑡) = 1
2

(𝑢𝑢2 + 𝑤𝑤2)𝑑𝑑𝑑𝑑 = 𝜌𝜌
2

(𝑢𝑢2 + 𝑤𝑤2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     (3.72)  

Making the mean on the wave period and length and integrating on the vertical, the following 

expression is obtained: 

𝐸𝐸�𝐶𝐶 = 1
𝐿𝐿𝑇𝑇 ∫ ∫ ∫ 𝑑𝑑𝐸𝐸�𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =𝑡𝑡+𝑇𝑇

𝑡𝑡
0
−ℎ

𝑥𝑥+𝐿𝐿
𝑥𝑥

𝜌𝜌
2𝐿𝐿𝐿𝐿 ∫ ∫ ∫ (𝑢𝑢2 + 𝑤𝑤2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡+𝑇𝑇

𝑡𝑡
0
−ℎ

𝑥𝑥+𝐿𝐿
𝑥𝑥   (3.73)  

After long passages of mathematical and trigonometric operations the final and simplified 

expression of the kinetic energy density is: 

𝐸𝐸�𝐶𝐶 = 𝜌𝜌𝜌𝜌 𝑎𝑎2

4
         (3.74) 
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Figure 3.14: Geometric configuration to compute the Kinetic Energy. 

Astonishingly, the exact same quantity than the other kind of energy, the potential energy. By 

adding both term the total amount of energy density in a wave is obtained: 

𝐸𝐸� ≡ 𝐸𝐸�𝐶𝐶 + 𝐸𝐸�𝑃𝑃 = 1
8
𝜌𝜌𝑔𝑔𝐻𝐻2        (3.75) 

It is important to remind that this expression is valid for a unitary horizontal section, that is 

why is called energy density. Another interesting fact to keep in mind when designing in the 

sea engineering world is that the energy contained in a wave is not function of its period or 

length but of its height, that’s why the wave height is the most important parameter when 

building marine structures. 

At this point, the bases of the linear wave theory have been exposed. For this Master Thesis 

purpose, the already described part is mainly the whole needed theory so the rest of the 

linear wave theory will be describe in a very brief way. As stated above the real sea water 

surface is not made of one monochromatic wave, the reality is that, even a small portion of 

the sea surface is composed by hundreds or thousands of waves, which have different 

heights, directions, periods and phases. Groups of waves and reflected waves will be treated 

in the next paragraphs.  

The principle of superposition of the effects is also valid within the linear wave theory 

premises. That principle is as simple as the sum of each different component: 

𝜁𝜁(𝑥𝑥, 𝑡𝑡) = ∑ 𝜁𝜁𝑛𝑛 =𝑛𝑛 ∑ 𝑎𝑎𝑛𝑛 sin(𝑘𝑘𝑛𝑛𝑥𝑥 − 𝑤𝑤𝑛𝑛𝑡𝑡 + 𝛿𝛿𝑛𝑛)𝑛𝑛      (3.76) 

There are some particular cases such as: 

A- Waves that propagate in the same direction and have same periods 
A.1- If their phase is the same 
 𝜁𝜁(𝑥𝑥, 𝑡𝑡) = (𝑎𝑎1 + 𝑎𝑎2) sin(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤 + 𝛿𝛿)    (3.77) 
A.2- If their phase is opposed π rad 
 𝜁𝜁(𝑥𝑥, 𝑡𝑡) = (𝑎𝑎1 − 𝑎𝑎2) sin(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤 + 𝜋𝜋)    (3.78) 

B- Waves that propagate in the same direction and have different periods 
𝜁𝜁(𝑥𝑥, 𝑡𝑡) = 2𝑎𝑎{cos[𝛿𝛿𝛿𝛿 − 𝛿𝛿𝛿𝛿𝛿𝛿 − 𝛿𝛿] sin(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤)}  (3.79) 
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C- Waves that propagate in opposed direction 
C.1- If ai=ar is called total reflection  
𝜁𝜁(𝑥𝑥, 𝑡𝑡) = 2𝑎𝑎𝑟𝑟 cos(𝑘𝑘𝑘𝑘) cos⁡(𝑤𝑤𝑤𝑤)     (3.80) 

C.2-If the wave amplitudes are different 

 𝜁𝜁(𝑥𝑥, 𝑡𝑡) = 2𝑎𝑎𝑟𝑟 cos(𝑘𝑘𝑘𝑘) cos⁡(wt) + (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑟𝑟)cos⁡(kx − wt)   (3.81) 

The minimum and maximum values of the free elevation surface corresponding 

respectively to the trough and the crest are: 

|𝜁𝜁𝑚𝑚𝑚𝑚𝑚𝑚 | =  𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑟𝑟   |𝜁𝜁𝑚𝑚𝑚𝑚𝑚𝑚 | = 𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑟𝑟      (3.82) 

And the Reflection coefficient is 𝑅𝑅 = 𝑎𝑎𝑟𝑟
𝑎𝑎𝑖𝑖

      (3.83) 

When describing groups of waves a new concept rises up. The group celerity, physically the 

group celerity is the velocity in which the totality of the energy contained in a group of waves 

propagates. Do not forget the fact that in a group of waves, each wave can propagate at 

different speeds but their energy is shared and unique of that group, this is why is called a 

group of waves. To find the group celerity the relation of dispersion is used and its final 

expression can be simplified depending on the depth, shallow water or deep water. 

𝑐𝑐𝑔𝑔 = 𝑐𝑐
2

(1 + 𝐺𝐺)         (3.84) 

Where G is obtained from the relation of dispersion:  𝐺𝐺 =  2𝑘𝑘ℎ
sinh (2𝑘𝑘ℎ)

 

𝑐𝑐𝑔𝑔0 = 1
2
𝑐𝑐0  for deep water      (3.85) 

𝑐𝑐𝑔𝑔 = 𝑐𝑐 = �𝑔𝑔ℎ  for shallow water      (3.86) 

Once the group celerity has been introduced the next logical step is to describe the energy 

propagation in a group of waves. It is easily understandable, once known the physical 

meaning of the group celerity, that the flux of energy in a wave group is nothing else than the 

energy contained in the wave multiplied by the group celerity: 

𝐸𝐸�𝑓𝑓 = 𝑐𝑐𝑔𝑔𝐸𝐸� = 1
16
𝜌𝜌𝜌𝜌𝐻𝐻2𝑐𝑐 �1 + 2𝑘𝑘ℎ

sinh 2𝑘𝑘ℎ
�      (3.87) 

When approaching to the shoreline, in the area called near-shore, the seabed starts having a 

significant influence in the wave’s behavior. The first wave response at the seabed presence is 

called Shoaling. When the wave reaches that area the depth decreases as the wave propagates 

so the water has less space to move forward with the same amount of energy, lets remind that 

until wave breaking there is no energy loss in the linear wave theory, resulting in an initial 

smooth decrease completed by a sudden substantial increase of the waves height (See Figure 

3.15). The Shoaling degree is represented by a coefficient called shoaling coefficient Ks 

defined by the following expression: 

𝐾𝐾𝑆𝑆 = 𝐻𝐻
𝐻𝐻0

= �
𝑐𝑐0

2𝑐𝑐𝑔𝑔
= 1

�tanh (𝑘𝑘ℎ)(1+𝐺𝐺)
       (3.88) 
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Figure 3.15: Evolution of the shoaling coefficient over the ration sea depth by wave 
length in deep waters. 

 

The waves usually don’t reach the near-shore area propagating perpendicularly to the coast 

line but when observing wave breaking, their direction of propagation is always 

perpendicular to the coast, this occurs because of refraction. It is the same kind of refraction 

to which the light waves are submitted, it works the same way and the same principles can be 

applied. Actually, the law of Snell, developed for light waves is also used in sea waves to 

calculate the refraction coefficient. Figure 3.16 illustrates in fully detail how is the law of 

Snell applied in the sea wave field. 

 

Figure 3.16: Geometric representation of the Snell’s law applied in sea waves in the 
near-shore area. 

Resulting in a refraction coefficient expression:   𝐾𝐾𝑟𝑟 = �𝐿𝐿1
𝐿𝐿2

  (3.89) 

Depending on the coastline form, the wave height can increase or decrease when refracted 

i.e. if the coast is a bay, concave form, waves will tend to spread into a wider area and 

therefore, their height will decrease. On the contrary, if the coast is a cape, convex form, the 
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waves will tend to concentrate towards the outer cape point and their height will increase 

(See Figure 3.17). The height can be computed through the following expression: 

𝐾𝐾𝑟𝑟𝐾𝐾𝑆𝑆 = 𝐻𝐻
𝐻𝐻0

= �
𝑐𝑐0

2𝑐𝑐𝑔𝑔
�𝐿𝐿1
𝐿𝐿2

        (3.90) 

 

Figure 3.17 Representation of the wave behavior when waves are refracting. 

 

Finally, the last part of the linear wave theory is based on another particular phenomenon, 

also found in light waves, called diffraction. When a wave finds an obstacle when propagating 

throughout the oceans, an unusual phenomenon occurs. Immediately after over passing the 

obstacle the wave propagation direction changes abruptly following the obstacle main 

direction. For that behavior to occur, the obstacle dimensions must be similar than the waves 

dimensions. In other words, the main dimension of the obstacle must be whether the same or 

under one order of magnitude as the wave length. The mathematical representation of this 

phenomenon is by no means easy and its understanding is of complicated nature. The 

equation proposed by the German mathematician is an adaptation of the Laplace equation by 

introducing complex numbers in it: 

𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝐼𝐼𝐼𝐼{𝑓𝑓(𝑧𝑧)Φ(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑡𝑡𝑡𝑡𝑡𝑡 }      (3.91) 

𝜁𝜁(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑅𝑅𝑅𝑅{𝜂𝜂(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑡𝑡𝑡𝑡𝑡𝑡 }       (3.92) 

Where:  𝑓𝑓(𝑧𝑧) = cosh [𝑘𝑘(ℎ+𝑧𝑧)]
cosh (𝑘𝑘ℎ)

      (3.93) 

After some mathematical operations like partial derivation and simplification the Helmholtz 

version of the Laplace Equation is the following expression: 
𝜕𝜕2Φ
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2Φ

𝜕𝜕𝑦𝑦2 + 𝑘𝑘2Φ = 0        (3.94) 

This equation which results in the elliptic form it has been proved valid for the following 

cases: 

• Straight hurdle of semi-infinite length. 
• Finite gap in an infinite length straight hurdle. 
• Isolated obstacle made of a straight hurdle of finite length. 
• Isolated obstacle which horizontal section is circular. 
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The last of these cases could be the floating body of the device studied in this Master Thesis. 

So diffraction is an element which has to be seriously considered when designing a Wave 

Energy Converter. In the particular case of this Master Thesis work, diffraction can be 

neglected due to the fact that the main dimension of the floating body is about two orders of 

magnitude smaller than the typical wave length and only in some rare occasion would occur. 

Moreover, if occurred, the energy contained in the incident wave would be extremely low due 

to its reduced dimensions. Figure 3.18 illustrates the typical behavior of waves when finding 

an obstacle and diffracting. 

 

Figure 3.18 Wave diffraction behavior depending on the obstacle. 
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3.2 ELECTROMAGNETICS OF LINEAR GENERATOR 

As previously stated, this Master Thesis studies the performance of point absorber wave 

energy converters. Among the different kind of this type of devices, this work is going to be 

focused on heaving floating body devices with a specific power take-off system, the electrical 

linear generators. 

To achieve a full understanding of how these generators work, the fundamental concepts of 

electromagnetism need to be introduced.  Electromagnetic laws are well represented by the 

Maxwell’s equations: 

∇ · 𝐷𝐷 = 𝜌𝜌𝑐𝑐          (3.95) 

∇ · 𝐵𝐵 = 0         (3.96) 

∇ × 𝐸𝐸 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

         (3.97) 

∇ × 𝐻𝐻 = 𝐽𝐽 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

         (3.98) 

Where B is the magnetic flux density or magnetic induction, D is the displacement field, E is 

the electric field and H is the magnetizing field or magnetic field intensity. On the other side 

of the equations there are ρc which refers to the charge density and J which is the free current 

density.  The equation (3.96) states that the flux of the magnetic induction must be zero in 

the whole dominium of the body. In spite of electrical fields, magnetic fields must complete a 

close loop. Equation (3.101) expresses that the curl of the electric field must be equal to the 

negative time derivative of the magnetic field.The magnetic field intensity can also be 

expressed by the following equation and is expressed in amperes per meter (A/m): 

𝐻𝐻 = 1
4𝜋𝜋
𝐼𝐼 ∫ 𝑑𝑑𝑑𝑑����⃗ ×𝑟𝑟𝑙𝑙

𝑟𝑟2𝐶𝐶          (3.99) 

The integration is carried out over the circuit C that carries a current I. This current gives 

place to an H-field in the point P. The unitary vector rl and the distance r determine the 

direction and distance from the circuit C to the point P. See Figure 3.19. 

 

Figure 3.19: Conceptual Scheme of the magnetic induction. 
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Magnetic field induction is closely related to the force exerted on a conductor carrying an 

electrical current and also to the magnetizing field by the following expression: 

𝐵𝐵 = 𝜇𝜇𝐻𝐻          (3.100) 

Where µ is the permeability constant of the medium in which the magnetic induction is 

generated. Magnetic induction is expressed in Tesla (T). 

The magnetic flux through a surface S is measured in Webbers (W) and defined by: 

Φ = ∫ Bda�⃗S          (3.101) 

Another important concept is the magnetization. Namely, the magnetic moment per unit of 

volume at a point in a given medium, it has the same units as the magnetic field intensity H 

and contributes to the magnetic induction in the following way: 

𝐵𝐵 = 𝜇𝜇0(𝐻𝐻 + 𝑀𝑀)         (3.102) 

Where µ0 is the permeability of free space, the vacuum.  Using the Stokes’ theorem, equation 

(3.98) can be reformulated as follows: 

∮ 𝐻𝐻𝑑𝑑𝑙𝑙𝐶𝐶 = ∫ 𝐽𝐽𝑑𝑑𝑎⃗𝑎𝑆𝑆         (3.103) 

Equation (3.103) is the Ampere’s law and states that the integral of the magnetic field 

intensity over a closed loop equals the integral of the density of current going through the 

inner surface surrounded by c. This is the theoretical origin of the solenoids or coil turns, the 

final total current in a coil is the obtained in equation (3.103) multiplied by the number of 

turns. Equation (3.97) can also be reformulated applying the Stokes’ theorem in the left hand 

side and the equation (3.101) in the right hand side resulting in: 

𝑒𝑒 = −𝑑𝑑Φ
𝑑𝑑𝑑𝑑

         (3.104) 

This is known as the Faraday’s law for induction. The e is the induced voltage by the total flux 

bound by the circuit. The direction of the induced current in the circuit is what generates the 

opposition against the flux change by the magnetic field. As in the case of the Ampere’s law, 

the induced voltage for the circuit is multiplied by the number of turns of the coil. None of 

this behaviors and laws would be like that without the existence of a kind of materials with 

unique properties, the ferromagnetic materials. This type of materials are magnetic dipoles 

that can reach very high levels of magnetization, this ability is expressed through the 

previously introduced relative permeability µ.  Equation (3.100) can be combined with 

equation (3.102) to show the dependence between the relative permeability µ and the 

magnetization M, both parameters are strictly related with the material nature. 

𝜇𝜇 ≡ 𝐵𝐵
𝐻𝐻

= 𝜇𝜇0 �1 + 𝑀𝑀
𝐻𝐻
�        (3.105) 

The relative permeability of ferromagnetic materials is very high and thus, those are used to 

build magnetic devices to guide the magnetic flux. Each material has a curve of 

magnetization, in which depending on the applied magnetic field; a magnetic induction is 

achieved to a greater or lesser extent depending on the material characteristics such as the 
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magnetization or relative permeability. When the ferromagnetic material reaches the 

saturation means that the magnetic induction stabilizes and the magnetization no longer 

increases. See figure 3.20. 

 

Figure 3.20: Magnetization curve for a ferromagnetic material. 

Once the theoretical bases have been introduced it’s time to focus on the practical problem, 

the electrical linear generator. A linear generator is a brand new form of an induction 

generator, it hasn’t reached the commercial stage yet and therefore, a lot of research study 

has to be done in the field in order to optimize its performance. A good proof of that is that 

only few prototypes have been built and most of the research is still in the computer based 

simulations. An induction generator is composed of two main parts: the rotor and the stator. 

The terminology of those terms is due to its main function, the rotor is the piece of the 

generator that rotates to generate the magnetic flux changes and the stator is the piece which 

is static and gathers the induced currents. In the present case, the rotor no longer rotates, in 

fact, follows an alternative motion of translation, so from now on will be treated as 

translator; the stator keeps being static so there is no need to change its name. Between the 

translator and the stator there is a small distance called the air gap, so the translator and 

rotor are not directly in contact. Without the air gap the mechanics of the system would be 

much more complicated and the solution would be too costly to make it profitable. 

The translator is mounted with permanent magnets between pole shoes. Pole shoes are steel 

bars with the poles placed face to face which serve to conduce the magnetic flux towards the 

air gap and over the stator. The stator consists of coil windings placed inside a steel block, 

which is the stator structure. Once the magnetic flux has crossed the air gap is led through 

the stator-tooth to the stator-yoke where the flux is divided into two parts and sent back to 
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the translator to close the loop according to the Maxwell’s equations. The previous process is 

illustrated in the figure 3.21. 

As the translator moves relatively to the stator a time varying magnetic field is created in the 

stator coils, this variation can be measured by an angle due to its periodicity. This angle is 

called the electric angle. 

 

 

Figure 3.21: Physical description of the translator and stator parts of the linear 
Generator and its conceptual function. 

The majority of the generators have a multi phase system which means that the coil windings 

are composed of several parallel circuits. A single circuit is called a phase, the most used 

system is the three-phase system in which each phase is shifted 2π/3 electrical radians from 

the other ones. The property of the three-phase system is that allows a constant power 

production. That’s not 100% true in the linear generator’s case, it is true when the relative 

motion of the rotor from the stator is constant and in linear generators the translator is not 

always moving at the same speed compared to the stator. Actually, there are the so called 

end-stop points (crest and trough of the waves) where the translator does not move and thus 

the power output at that instant is zero. 

The induction generator uses the same principle of the equation (3.104) where a time varying 

electromagnetic field induces an electromagnetic voltage in the coil windings. The induced 

voltage in the generator is the sum of all voltages induced separately in each coil per phase. 
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The magnetic induction is assumed to be sinusoidal and monochromatic so as wave 

propagation is, and thus not being constant. 

𝐵𝐵 = 𝐵𝐵� sin(𝑥𝑥 − 𝑤𝑤𝑤𝑤)        (3.106) 

Where 𝐵𝐵�  is the maximum amplitude, x is the reference point in the stator and w is angular 

velocity of the translator. The single flux related to a coil at a certain time t is described by 

the following expression: 

Λ = 𝑤𝑤
2𝜋𝜋
𝑁𝑁𝑁𝑁𝐵𝐵� ∫ sin(𝑥𝑥 − 𝜛𝜛𝜛𝜛)𝑑𝑑𝑑𝑑 = 𝑤𝑤

𝜋𝜋
𝑁𝑁𝑁𝑁𝐵𝐵� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜋𝜋
2
−𝜋𝜋2

     (3.107) 

Where, in this case, 𝜛𝜛 is the pole width, N the number of turns and l the length of a coil turn. 

The induced voltage is: 

𝑒𝑒 = −𝑑𝑑Λ
𝑑𝑑𝑑𝑑

= 𝜛𝜛𝑤𝑤
𝜋𝜋
𝑁𝑁𝑁𝑁𝐵𝐵�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐵𝐵�𝑐𝑐𝑐𝑐𝑐𝑐2𝜋𝜋𝜋𝜋𝜋𝜋     (3.108) 

So the effective or root mean square voltage E is defined as: 

𝐸𝐸 = 𝑒𝑒̂
√2

= √2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐵𝐵�         (3.109) 

Where 𝑒̂𝑒 is the maximum voltage. 

Each generator has a magnetic equivalent, which has been described in full detail above and 

also an electrical equivalent, which is usually known as the equivalent circuit, illustrated in 

figure 3.22. The induced voltage is the Enl, this is referred to as a no load voltage and is the 

measurable voltage at the coil ends when no electric intensity is flowing through the 

generator. Xs is the synchronous reactance and Rc is the resistance of the coil windings. Rload 

can be purely resistive, reactive or a combination of both, in this case will be considered as 

purely resistive for simplicity reasons, the physical meaning of the load is the useful interface 

in which the output power will be used, could be an appliance, a house or simply the national 

grid. Finally, U is the voltage used by that interface and is in phase with the current in the 

armature Ia. 

 

Figure 3.22: Equivalent Electric Circuit. 
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The equivalent circuit equation for the voltage U can be deduced as function of the induced 

voltage Enl,the armature current Ia, the coil resistance Rc, and the synchronous reactance Xs: 

𝑈𝑈 = 𝐸𝐸𝑛𝑛𝑛𝑛 − (𝑅𝑅𝑐𝑐 + 𝑗𝑗𝑋𝑋𝑠𝑠)𝐼𝐼𝑎𝑎         (3.110) 

𝑈𝑈 = 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐼𝐼𝑎𝑎          (3.111) 

Although the simple appearance of this equation is rather complicated due the introduction 

of imaginary numbers and the electrical angular velocity, to solve that problem another 

schematic way is used, rather trigonometric than electric or magnetic, it is a helpful way to 

operate with imaginary numbers. The diagram works in the following way: imaginary 

numbers can only be drawn in the vertical axis and in proportion with the real numbers 

which can only be represented along the horizontal axis. Figure 3.23 illustrates a phasor 

diagram describing the relations between the different parts of the equivalent circuit. The 

resulting equation is a simple trigonometric relation: 

 

Figure 3.23: Conceptual representation of the load angle. 

The angle γ between the purely resistive load voltage and the real load voltage is called load 

angle and it’s an easy way to know the degree of reactance of the equivalent circuit, electric 

theory states that the lower the load angle is the higher the useful extracted power will be. 

𝑈𝑈 = 𝐸𝐸𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝐼𝐼𝑎𝑎         (3.112) 

The term RIa represent the losses by the Joule effect, that loss of energy is translated into 

heat power. In an induction generator there are losses that in this work will be neglected due 

to its small entity and for simplicity reasons. The main characteristic energy losses given in 

an electric induction generator are: 

• Losses due to the changing magnetic field. 
o Hysteresis losses. 
o Eddy currents losses. 

• Resistive losses in the coil windings (Joule Effect). 
• Mechanical losses due to friction and deformation. 
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3.3 FLOATING BODY DYNAMICS 

The purpose of the last part of this chapter is to describe the interaction between the sea 

waves and oscillating floating bodies. Body oscillations and wave forces on bodies will be 

studied in detail as well as the theory hidden behind and the equations that shape 

mathematically this behavior. 

The first step when studying the floating body dynamics is to create a reference coordinate 

system for obvious reasons, without the coordinate system would be impossible to write the 

equations that govern the oscillating motion or describe the forces acting on that body. The 

system has its z axis through the gravity center of the body, being the origin of the coordinate 

system the center of gravity point.  See Figure 3.24.  

 

Figure 3.24: Floating body full coordinate system. 

If the floating body is not fixed to any anchor or mooring system, the body has six degrees of 

freedom, three of them translational and the other three rotational. For a ship or a well 

distinguishable body shape are named as shown in figure 3.25 and table 3.2. For 

axysimmetric bodies the mode numbers (1 and 2) and (4 and 5) are ambiguous and its 

semantic determination is left   anyone free will. In the case studied in this work, although 

being axysimmetric bodies like spheres and cylinders, this problem has not even been 

considered because the used floating bodies have been restricted to only one degree of 

freedom, they can only oscillate along the z axis and thus, they are only in heaving mode. 

 

 
Figure 3.25: Illustration of the six degrees of freedom of a floating body 
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Mode No. Component Mode Name 

1 u1=Ux Surge 

2 u2=Uy Sway 

3 u3=Uz Heave 

4 u4=Ωx Roll 

5 u5=Ωy Pitch 

6 u6=Ωz Yaw 

Table 3.2: Description of the six degrees of freedom of a floating body given a reference 

coordinate system. 

 

After introducing the coordinate system, the next step is to derive expressions for the forces 

and moments which act on a free floating body, in terms of a given velocity potential Ø. 

Firstly, the vertical force component Fz , which acts in heave mode will be considered. The 

vertical force acting on a body of wet surface S is initially deduced from its hydrodynamic 

pressure: 

𝑝𝑝(−𝑛𝑛𝑧𝑧)𝑑𝑑𝑑𝑑 = −𝑝𝑝𝑛𝑛3𝑑𝑑𝑑𝑑        (3.113) 

Integrating over the wet surface the result is the total heave force   : 

𝐹𝐹3 ≡ 𝐹𝐹𝑧𝑧 = −∬ 𝑝𝑝𝑛𝑛3𝑑𝑑𝑑𝑑𝑆𝑆         (3.114) 

Analogous expressions are derived for the surge and sway forces, F1 and F2 respectively. 

When the forces have been derived, it’s time for the moments following exactly the same 

procedure: 

𝑑𝑑𝑀𝑀𝑥𝑥 = 𝑠𝑠𝑦𝑦𝑑𝑑𝐹𝐹𝑧𝑧 − 𝑠𝑠𝑧𝑧𝑑𝑑𝐹𝐹𝑦𝑦 = �𝑝𝑝𝑛𝑛𝑦𝑦𝑠𝑠𝑧𝑧 − 𝑝𝑝𝑛𝑛𝑧𝑧𝑠𝑠𝑦𝑦�𝑑𝑑𝑑𝑑     (3.115) 

Integrating over the wet surface: 

𝑀𝑀𝑥𝑥 = −∬ �𝑝𝑝𝑛𝑛𝑦𝑦𝑠𝑠𝑧𝑧 − 𝑝𝑝𝑛𝑛𝑧𝑧𝑠𝑠𝑦𝑦�𝑑𝑑𝑑𝑑 =𝑆𝑆 − ∬ 𝑝𝑝(𝑠𝑠 × 𝑛𝑛�⃗ )𝑥𝑥𝑑𝑑𝑑𝑑 = −𝑆𝑆 ∬ 𝑝𝑝𝑛𝑛4𝑑𝑑𝑑𝑑𝑆𝑆   (3.116) 

Again like in the forces case, analogous expression are derived for the pitch and yaw modes 

giving place at generalized force vector: 

𝐹𝐹 ≡ (𝐹𝐹1,𝐹𝐹2,𝐹𝐹3,𝐹𝐹4,𝐹𝐹5,𝐹𝐹6) ≡ �𝐹𝐹𝑥𝑥 ,𝐹𝐹𝑦𝑦 ,𝐹𝐹𝑧𝑧 ,𝑀𝑀𝑥𝑥 ,𝑀𝑀𝑦𝑦 ,𝑀𝑀𝑧𝑧� = (𝐹⃗𝐹,𝑀𝑀��⃗ )    (3.117) 

The first three components of the vector have SI units N and the following three ones have Si 

units Nm. Once the general forces and moments have been stated, what comes next and 

directly is the power expressions, which as commonly known, is the product of the force 

applied on a body by its velocity: 

𝑃𝑃(𝑡𝑡) = 𝐹⃗𝐹(𝑡𝑡) · 𝑈𝑈��⃗ (𝑡𝑡) + 𝑀𝑀��⃗ (𝑡𝑡) · Ω��⃗ (𝑡𝑡) = ∑ 𝐹𝐹𝑗𝑗 · 𝑈𝑈𝑗𝑗6
𝑗𝑗=1      (3.118) 

When the body is fixed, a certain velocity potential 𝜙𝜙� is the consequence of an incident wave. 

The Fj introduced above, in that case is called the excitation force, the excitation moment 
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when j=4,5,6, and the sub index e is used to express tist kind of force, which is described by 

the following expression: 

𝐹𝐹𝑒𝑒 ,𝑗𝑗 = 𝑖𝑖𝑖𝑖𝑖𝑖∬ �𝜙𝜙�0 + 𝜙𝜙�𝑑𝑑�𝑛𝑛𝑗𝑗𝑑𝑑𝑑𝑑𝑆𝑆        (3.118) 

Where 𝜙𝜙�0 represents the undisturbed incident wave and 𝜙𝜙�𝑑𝑑  the diffracted wave. Note that 

the velocity potential due to a diffracted wave won’t be considered in this work. As stated 

previously, in the linear wave theory, the diffraction term originated in the studied devices is 

so small that can be neglected without affecting the validity of the results. Equation (3.118) is 

a very complicated equation to solve due to its intrinsic variation depending on many factors 

as seen on the linear wave theory section.Even though it has been already simplified by 

working in the frequency domain instead of working in the time domain. For the purpose of 

this work is very interesting to show the example of the simplified equation for a floating 

heaving cylinder in infinitely deep waters: 

𝐹𝐹�𝑒𝑒 ,3 = 𝑖𝑖𝑖𝑖𝑖𝑖� � 𝜙𝜙(𝑟𝑟,𝜃𝜃, 0)𝑛𝑛3𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑎𝑎

0

2𝜋𝜋

0

= −𝑖𝑖𝑖𝑖𝑖𝑖�
2
𝜋𝜋
� �� 𝑃𝑃𝑚𝑚(𝜁𝜁)

𝐼𝐼𝑚𝑚(𝜁𝜁𝜁𝜁)
𝐼𝐼𝑚𝑚(𝜁𝜁𝜁𝜁)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(𝑚𝑚𝑚𝑚)𝑑𝑑𝑑𝑑 =
∞

0

𝑎𝑎

0

2𝜋𝜋

0

= 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋� 𝑃𝑃0(𝜁𝜁)
𝐼𝐼1(𝜁𝜁𝜁𝜁)
𝜁𝜁𝐼𝐼0(𝜁𝜁𝜁𝜁)

∞

0

𝑑𝑑𝑑𝑑                                    (3.120) 

Where Im is the modified first Bessel function of order m, Pm(ξ) is an unknown coefficient 

and a is the cylinder radius. Figure 3.26 illustrates the normalized heave excitation force, in 

the frequency domain, as a function of k0a (k0=ω2/g) for various draft (b) to radius (a) ratios.  

 

Figure 3.26: Excitation Force restricted in heave mode depending on the wave 
frequency and the radius of the sphere floating body. 
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 In the following paragraphs the case ofanoscillating body with no incident wave has been 

treated. The body’s oscillation results in the generation of secondary waves, usually called 

radiated waves which have a considerable effect on the body’s dynamics, this force is called 

the radiation force. The radiated wave is associated with the velocity potential as follows: 

𝜙𝜙�𝑟𝑟 = 𝜑𝜑𝑗𝑗𝑢𝑢�𝑗𝑗          (3.121) 

𝐹𝐹�𝑟𝑟 ,𝑗𝑗 = 𝑖𝑖𝑖𝑖𝑖𝑖∬ 𝜑𝜑𝑗𝑗𝑢𝑢�𝑗𝑗 𝑛𝑛𝑗𝑗𝑑𝑑𝑑𝑑𝑆𝑆         (3.122) 

Where 𝜑𝜑𝑗𝑗  is a coefficient of proportionality and 𝑢𝑢�𝑗𝑗  is a constant under the integration 

conditions, for this reason the radiated force can be reformulated in the following way: 

𝐹𝐹�𝑟𝑟 ,𝑗𝑗 = −𝑍𝑍𝑗𝑗′𝑗𝑗 𝑢𝑢�𝑗𝑗          (3.123) 

𝑍𝑍𝑗𝑗′𝑗𝑗 = −𝑖𝑖𝑖𝑖𝑖𝑖∬ 𝜑𝜑𝑗𝑗𝑛𝑛𝑗𝑗𝑑𝑑𝑑𝑑𝑆𝑆         (3.124) 

Where 𝑍𝑍𝑗𝑗′𝑗𝑗  is the radiation impedance matrix which SI units are Ns/m for 𝑍𝑍𝑝𝑝′𝑝𝑝   when 

p’,p=1,2,3 , Nsm for 𝑍𝑍𝑞𝑞′𝑞𝑞  for q’,q=4,5,6 and Ns for 𝑍𝑍𝑞𝑞′𝑝𝑝  and 𝑍𝑍𝑝𝑝′𝑞𝑞 . Using the boundary 

condition in the wet surface the following expression is obtained: 

𝑍𝑍𝑗𝑗′𝑗𝑗 = −𝑖𝑖𝑖𝑖𝑖𝑖∬ 𝜑𝜑𝑗𝑗
𝜕𝜕𝜑𝜑𝑗𝑗 ′
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑𝑆𝑆        (3.125) 

Note that the term 𝜑𝜑𝑗𝑗  is complex while the term 
𝜕𝜕𝜑𝜑𝑗𝑗 ′
𝜕𝜕𝜕𝜕

 is real on S because n is real. If the 

boundary condition has to be respected, can be deduced from equation (3.125) that−𝑍𝑍𝑗𝑗′𝑗𝑗 is the 

component j’ of the reaction force which is caused by the radiated wave in mode j, and when 

oscillating with the unit amplitude must be equal to the j component of the reaction force due 

to wave radiation from mode j’, also oscillating with the unit amplitude causing a reciprocity 

relation. Given that the dimension of the radiation impedance is 6 x 6 it becomes a 

symmetric matrix: 

𝑍𝑍𝑗𝑗′𝑗𝑗 = 𝑍𝑍𝑗𝑗𝑗𝑗 ′          (3.126) 

Several simplifications can be done in the impedance matrix depending on the analyzed 

body’s geometry. For instance, if the plane y=0 is a symmetry plane then n2, n4 and n6 are 

odd functions of y in equation (3.124) whereas ϕ1, ϕ3, and ϕ5 are even functions. Thus, 

Z21=Z23=Z25=Z41=Z43=Z45=Z61=Z63=Z65=0. Furthermore, if the plane x=0 is also a symmetry 

plane then n1, n5 and n6 are odd functions of x while ϕ2, ϕ3, and ϕ4 are even functions. Hence, 

Z12=Z13=Z14=Z52=Z53=Z54=Z62=Z63=Z64=0. Taking also into account equation (3.126), the only 

remaining non zero off-diagonal elements of the radiation matrix impedance, when y=0 and 

x=0 are symmetry planes are Z15=Z51 and Z24=Z42. Given that ω is real, it is convenient to 

separate 𝑍𝑍𝑗𝑗′𝑗𝑗  into real and imaginary parts: 

𝑍𝑍𝑗𝑗′𝑗𝑗 = 𝑅𝑅𝑗𝑗′𝑗𝑗 + 𝑖𝑖𝑋𝑋𝑗𝑗′𝑗𝑗 = 𝑅𝑅𝑗𝑗 ′ 𝑗𝑗 + 𝑖𝑖𝑖𝑖𝑚𝑚𝑗𝑗′𝑗𝑗        (3.127) 

Where analogously to an electrical equivalent 𝑅𝑅𝑗𝑗′𝑗𝑗  is named the radiation resistance, that 

contains the so called radiation damping coefficient, and 𝑋𝑋𝑗𝑗′𝑗𝑗  is called the radiation reactance 
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where 𝑚𝑚𝑗𝑗′𝑗𝑗  is the added mass coefficient. Both, radiation damping and added mass are 

fundamental parameters to reproduce accurately the floating body dynamics.  

The only force which has not been described yet to complete the description of the forces 

acting on a floating body is the hydrostatic force, which is by far the simplest force acting on 

a floating body. The hydrostatic force FH is the combined action of the gravity W and the 

buoyancy force FB, which is strictly related to the hydrostatic pressure. Its   expression is the 

following one and follows closely the Archimedes’s principle: 

𝐹𝐹𝐵𝐵 =  𝑉𝑉𝑠𝑠𝜌𝜌𝜌𝜌         (3.128) 

𝑊𝑊 = 𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑏𝑏𝜌𝜌𝑏𝑏𝑔𝑔        (3.129) 

𝐹𝐹𝐻𝐻 =  (𝑉𝑉𝑠𝑠𝜌𝜌 − 𝑉𝑉𝑏𝑏𝜌𝜌𝑏𝑏)𝑔𝑔        (3.130) 

Where Vs is the submerged volume of the body, Vb the total volume of the floating body and 

𝜌𝜌𝑏𝑏  is the body’s density. 

After describing all the forces acting on a floating body the final equation is: 

𝐹𝐹𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝑒𝑒(𝑡𝑡) + 𝐹𝐹𝑟𝑟(𝑡𝑡) + 𝐹𝐹𝐻𝐻(𝑡𝑡)       (3.131) 

Once all the forces acting on a floating body have been described it’s time analyze the 

response of the body on the force’s action.  Following the pattern developed in the previous 

work in this Master Thesis, simplifications will be done in the motion modes, restricting the 

motion only to the third mode; namely, the heaving mode and therefore, the motion of the 

body in this single mode can be written as: 

𝑍𝑍(𝑡𝑡) = 𝑅𝑅𝑅𝑅{𝜉𝜉𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 }        (3.132) 

Where 𝜉𝜉 is a complex constant the magnitude of which corresponds to the magnitude of the 

oscillation and the phase, it is remarkable to state that these parameters might differ, and 

commonly do, from those contained within the incident wave. The derived velocity field 

acceleration fields are respectively equations (3.133) and (3.134): 

𝑍̇𝑍(𝑡𝑡) = 𝑈𝑈(𝑡𝑡) = 𝑅𝑅𝑅𝑅{𝕌𝕌𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 },     𝕌𝕌 = −𝑖𝑖𝑖𝑖𝑖𝑖      (3.133) 

𝑍̈𝑍(𝑡𝑡) = 𝑈̇𝑈(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) = 𝑅𝑅𝑅𝑅{𝔸𝔸𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 },      𝔸𝔸 = 𝑖𝑖𝜔𝜔2𝜉𝜉     (3.134) 

Last but not least, to fully explain the floating body dynamics there is the need to merge 

forces and motions into one expression that states: 

𝑚𝑚𝑋̈𝑋 = 𝐹𝐹𝐹𝐹(𝑡𝑡) + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 �𝑋𝑋, 𝑋̇𝑋, 𝑡𝑡� = 𝐹𝐹𝑒𝑒(𝑡𝑡) + 𝐹𝐹𝑟𝑟(𝑡𝑡) + 𝐹𝐹𝐻𝐻(𝑡𝑡) + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 �𝑋𝑋, 𝑋̇𝑋, 𝑡𝑡�   (3.135) 

Where m is the mass of the body and Fext are the forces produced due to external elements 

such as mooring systems, end-stop system or power take-off systems. Equation (3.135) which 

is written in time domain can also be rewritten in the ordinary differential equation form 

(3.136) and in the frequency domain (3.137) as: 

(𝑚𝑚 + 𝐴𝐴)𝑋̈𝑋 + 𝐵𝐵𝑋̇𝑋 + 𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅{𝕏𝕏𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 } + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 �𝑋𝑋, 𝑋̇𝑋, 𝑡𝑡�    (3.136) 

𝑅𝑅𝑅𝑅{[−𝜔𝜔2(𝑚𝑚 + 𝐴𝐴) − 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶]𝜉𝜉𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 } =  𝑅𝑅𝑅𝑅{𝕏𝕏𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 } + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 �𝑋𝑋, 𝑋̇𝑋, 𝑡𝑡�   (3.137) 

Where A is the added-mass coefficient B is the radiation damping coefficient and C is the 

hydrostatic force coefficient. 
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CHAPTER 4:                          

MATHEMATICAL MODELING 

A model is a simplified representation of a system, which purpose is to enable reasoning 

within an idealized framework and also to allow testable predictions of what might happen 

under new circumstances. Done properly, the representation is based on explicit simplifying 

assumptions that give place to acceptably accurate simulations of the real system. A compact 

overview of the model building and evaluation process is presented in Figure 4.1. The process 

begins by interacting with reality through observation and experiment (through our senses 

and measurement device extensions of our senses). From qualitative and quantitative 

observations of the environmental system, progressive mental understanding of what seems 

important and how things work is gained. This forms a subjective ‘perceptual model’, unique 

to each person and influenced by previous experience and education. 

 
Figure 4.1: Stages of the model creation process and factors that have some kind of influence 

in that process. 
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 As this perceptual understanding through contemplation and discussion is organized, one or 

more ‘conceptual models’ emerge, represented usually in the form of verbal and pictorial 

descriptions that enables to specify, summarize and discuss the gained understanding with 

other people. A complete conceptual model will include a clear specification of the following 

system elements; system boundaries, relevant inputs, state variables and outputs, physical 

and/or behavioral laws to be obeyed, facts to be properly incorporated uncertainties to be 

considered and the simplifying assumptions to be made. The relationships among these 

elements need not be rigorously specified, but should be conceptually explained through 

drawings, maps, tables, papers, reports, oral presentations, etc. Therefore, the conceptual 

model summarizes the abstract state of knowledge about the structure and workings of the 

system. Furthermore, it defines the level at which communication actually occurs between 

scientific colleagues or between scientists and policy/decision makers. Alternative conceptual 

models represent competing hypotheses about the structure and functioning of the observed 

system, conditioned on the perceptually acquired qualitative and quantitative observations 

and on the prior facts, knowledge and ideas. Taken together, the perceptual and conceptual 

models of the system along with the conditioning prior knowledge form the basic levels of the 

‘theory’ about the system. 

The need to a better understanding of the system and a better discrimination between 

competing hypotheses leads to the formulation of an ‘observational system model’ to guide 

effective and efficient acquisition of further data. The observation model should, of course, 

be derived from the theory and be designed to maximally reduce the uncertainty in our 

knowledge. Moreover, it should also be designed to detect flaws in the theory. Observational 

model design should accommodate observations on boundary conditions, conventional and 

extreme modes of system behavior, the issue of poorly observable system states, clarification 

of assumptions, and so on. Design issues will include sufficiency of sampling, 

representativeness of observations, informativeness, quality of data and measurement 

extent, support and spacing. Clearly, acquisition of knowledge via the observational system 

model is complementary to the formation of hypotheses via the theory.  

The next steps in model development include the formulation of ‘symbolic’ and ‘numerical’ 

models. A symbolic model formalizes the understanding represented by a conceptual model 

using a mathematical system of logic that can be manipulated to enable rigorous reasoning 

and to facilitate the formulation of testable predictions. It is common to use the related 

systems of algebra and calculus for this purpose, although other logical systems are possible. 

Finally, because mathematical intractability often precedes explicit derivations of the 

dynamic evolution of system trajectories, it is common to build a numerical model 

approximation using a computer.  
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4.1 MODEL OF THE FLOATING BODY 

There is a wide variety of mathematical models that describe the floating body dynamics, 

there are models in all forms and aspects: models working in the time domain, models 

working in the frequency domain, first order models also known as linear models, non-linear 

models of a higher order such as second or third order models and so on. In this work a non-

linear model and more specifically a second order model has been chosen. Is a model that 

works in the time domain and has its origins in the Morison’s Equation. This was introduced 

in a scientific paper in 1950 by Morison itself, O’Brien, Johnson and Schaaf.  The model takes 

the name of its principal equation and it is therefore called, the Morison’s Model. This model 

has been chosen due to its simplicity, low computational costs and accurate results and of 

course because it is especially efficient when talking about the description of offshore 

oscillating floating bodies dynamics, which is specially the case this Master Thesis work is 

about. The mathematical instrument used to carry on the simulation and modeling processes 

is the computer software MATLAB. 

The Morison’s equation which describes the forces acting on a floating body due to an 

incident wave is: 

𝐹𝐹 = 𝜌𝜌𝑤𝑤𝑉𝑉𝑢̇𝑢 + 𝜌𝜌𝑏𝑏𝐶𝐶𝑎𝑎𝑉𝑉(𝑢̇𝑢 − 𝑣̇𝑣) + 1
2
𝜌𝜌𝑤𝑤𝐶𝐶𝑑𝑑𝐴𝐴(𝑢𝑢 − 𝑣𝑣)|𝑢𝑢 − 𝑣𝑣|    (4.1) 

Where V is the body’s volume, u and v are the flow and body velocities respectively.  𝑢̇𝑢 and 𝑣̇𝑣 

are their time derivative, so their accelerations, 𝜌𝜌𝑤𝑤  is the sea water density, A is the area in 

which the force is applied, 𝐶𝐶𝑎𝑎  is the added-mass coefficient and 𝐶𝐶𝑑𝑑  is the drag or radiation 

force coefficient, both of them seen in the previous chapter in the floating body dynamics 

section.  The first group of terms in equation (4.1) represents the Froude-Kyrlov force, 

equation (4.2), which represents the inertial term or as treated in the previous chapter, the 

excitation force. The second group of terms represents the real part of the radiation 

impedance directly related to the added-mass effects on a body. Finally, the third group of 

terms represents the imaginary part of the radiation impedance also known the radiation 

reactance which states the drag made by an incident wave.  

𝐹⃗𝐹𝐹𝐹𝐹𝐹 = −∫∫ 𝑝𝑝𝑛𝑛�⃗ 𝑑𝑑𝑑𝑑𝑆𝑆         (4.2) 

Where 𝐹⃗𝐹𝐹𝐹𝐹𝐹  is the Froude-Kyrlov force, S is the wet surface of the body p is the undisturbed 

pressure and  𝑛𝑛�⃗  is the normal vector of the incident wave. The Froude-Kyrlove force in its 

simplest form helps understand its intrinsic behavior: 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐴𝐴𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐴𝐴𝐴𝐴𝐴𝐴 𝐻𝐻
2
        (4.3) 
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Where A is the wet area of a floating body, ρ is again the sea water density, g is the 

acceleration of gravity and H is the wave height.  Once the fundamentals of the model have 

been stated its time to introduce the model’s equation: 

𝑚𝑚(1 + 𝑐𝑐𝑎𝑎)𝑧̈𝑧 = 𝐹𝐹𝐵𝐵 −𝑊𝑊 + 1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝐴𝐴(𝜂̇𝜂 − 𝑧̇𝑧)|𝜂̇𝜂 − 𝑧̇𝑧|     (4.4) 

Where m is the mass of the floating body,𝑐𝑐𝑎𝑎  is the added-mass coefficient, FB is the buoyancy 

force, W is the weight force, ρ is the sea water density, Cd is the drag coefficient, A is the 

incident surface of the floating body, 𝑧̈𝑧 is the body’s acceleration and, 𝜂̇𝜂 and 𝑧̇𝑧 are the free 

water surface  and body’s velocities respectively. It is extremely relevant to note that, whether 

the position, sea water velocity, body’s velocity and body’s acceleration are restricted to the 

vertical axis, that is why the letter z is used in their notation; thus, being coherent with the 

one degree of freedom restriction, specifically in heave mode. 

Is generally known that the weight force is no mystery being the product of the body’s mass 

by the gravity’s acceleration: 

𝑊𝑊 = 𝑚𝑚𝑚𝑚 = 𝜌𝜌𝑏𝑏𝑉𝑉𝑉𝑉        (4.5) 

Where 𝜌𝜌𝑏𝑏  is the body’s material density and V its volume. In this work two different 

geometries have been used to run the simulations, a spherical buoy and a cylinder shaped 

buoy: 

𝑉𝑉𝑆𝑆 = 4
3
𝜋𝜋𝑟𝑟3         (4.6) 

𝑉𝑉𝐶𝐶 = 𝜋𝜋𝑎𝑎2b         (4.7) 

Where r is the sphere radius, a is the base circle radius and b the draft of the cylinder. The 

buoyancy force derives directly from the Archimedes’s principle as stated in the previous 

chapter and can be expressed in the following way: 

𝐹𝐹𝐵𝐵 = 𝜌𝜌𝑓𝑓𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔         (4.8) 

Where 𝜌𝜌𝑓𝑓 is the density of the fluid and 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠  is the submerged volume of the body which in the 

sphere’s and cylinder’s cases is: 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4
3
𝜋𝜋𝑟𝑟3 − 𝜋𝜋

6
ℎ2(3(2𝑟𝑟 − ℎ) + ℎ)      (4.9) 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜋𝜋𝑎𝑎2h         (4.10) 

 

Being h the vertical distance from the base or the lowest point of the body to the water 

surface level. See Figure4.2. 
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Figure 4.2: Description of the geometrical figures used as floating bodies. All the needed 

parameters to model them are described in the figure. Namely, the radius, draft and 

vertical distance where the floating body is partly submerged. 

 

For a general geometry it is complicated to solve the radiation problem for an oscillating 

body, more specifically, to solve the boundary condition value problem without some 

numerical specialized computer software like WAMIT or AQUADYN. Unfortunately, it has 

been impossible to work with a software package of these characteristics in this Master 

Thesis, so as previously said, some general and simple geometries such as the sphere and the 

cylinder have been chosen. In the following paragraphs numerical calculations are presented 

for the radiation impedance for these particular geometries. Let’s consider a sphere of radius 

a semi submerged on water of infinite depth. The particular geometry of the sphere allows to 

state with security that rotary modes (j=4,5,6) cannot generate any wave in an ideal fluid. 

Furthermore, all non-diagonal elements of the radiation impedance are equal to zero because 

x=0 and y=0 are both symmetry planes. Therefore, the only non vanishing terms are Z11=Z22 

and Z33, which can be written as: 

𝑍𝑍𝑗𝑗𝑗𝑗 = 2𝜋𝜋𝜋𝜋𝜋𝜋 𝑎𝑎3

3
�𝜖𝜖𝑗𝑗𝑗𝑗 + 𝑖𝑖𝜇𝜇𝑗𝑗𝑗𝑗 �        (4.11) 

Where ε and µ are non-dimensionalized radiation or drag and added-mass coefficients, 

respectively. The evolution of these parameters over the axis ka is illustrated in Figure 4.3, 

where k is the angular repetency, ω2/g, seen on the previous chapter. 

h 
b 

a 

h 
a 
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ka 

Figure 4.3: Distribution of the unitary radiation damping, ε, and the unitary added-mass 
coefficient, µ, in surge mode, j=1, and heave mode, j=3, of a spherical floating body of 
radius a over the product of the angular repetency, k= ω2/g, by the sphere’s radius a. 

 

May be noted that the radiation resistance tends to zero as ka approaches zero or infinite and 

the added mass is finite in both of these limits.  

The next example shown in Figure 4.4 is the radiation impedance for the heave mode of a 

floating truncated vertical cylinder of radius a and draft b. The cylinder axis is the z axis 

(x=0, y=0). It may be observed that the curves  shown in Figure 4.4 are qualitatively different 

to the corresponding curves in Figure 4.3 corresponding to the semi submerged sphere. This 

is because a different method has been used for the cylindrical buoy coefficients estimation. 

The method is called the Keulegan Carpenter method and it was designed specially for 

cylinders dynamics modeled with the Morison’s equation, which is exactly the kind of model 

used in this work. Depending on the Keulegan Carpenter Number, KC = πH/2a, the plots 

indicate a specific value for the Drag Coefficient and for the added-mass coefficient (See Fig 

4.4).  
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Figure 4.4: Distribution of the unitary radiation damping, CM, and the unitary added-
mass coefficient, CD, in surge mode, j=1, and heave mode, j=3, of a cylindrical floating 
body of radius a over the Keulegan Carpenter Number KC=πH/2a. 

The results for the given waves are: 

𝐻𝐻 = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0} [𝑚𝑚]    (4.13) 

𝑇𝑇 = {2, 3, 4, 5, 6, 7, 8, 9, 10 } [𝑠𝑠]       (4.14) 

𝐶𝐶𝑑𝑑 = {0.240,0.340 , 0.330, 0.270, 0.180, 0.095, 0.050,0.040 ,0.030  }   (4.15) 

𝐶𝐶𝑎𝑎 = {0.425, 0.640, 0.720, 0.780, 0.820, 0.825, 0.810, 0.790, 0.790 }   (4.16) 

𝐶𝐶𝑑𝑑 = 1.55         (4.17) 

𝐶𝐶𝑎𝑎 = {1.99,1.96, 1.93,1.89, 1.85, 1.81, 1.77, 1.74, 1.70, 1.67, 1.62, 1.58}  (4.18) 

Vectors (4.15) and (4.16) are the drag and added-mass coefficients respectively for the sphere 

buoy and vectors (4.17) and (4.18) are the drag and added-mass coefficients for the cylinder 

buoy. 

Figures 4.5 and 4.6 show the reaction of the sphere and cylinder respectively, for a certain 

wave of H=2 [m] and T=4 [s]:  
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Figure 4.5: Vertical Position and vertical Speed of a spherical floating body induced by 
incident monochromatic waves with constant height and period over the time. 

It can be noted that the previously described model reproduces accurately and coherently the 

behavior of a floating sphere of 1.5 meters of radius placed within a wave field. 

 

Figure 4.6: Vertical Position and vertical Speed of a cylindrical floating body induced by 
incident monochromatic waves with constant height and period over the time. 
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Same conclusion can be extracted from Figure 4.6, moreover, it may be noted thatboth, the 

floating body motion’s amplitude and vertical speed are higher. As a result of a preliminary 

analysis it can be thought that the cylinder can have a greater power output than the sphere, 

but there are not enough parameters to confirm it yet and further analysis have to be done. 

Both figures also show clearly the transient and steady regimes of the floating body.In the 

firsts periods, longer or shorter number of periods depending on the variables, the floating 

body behavior is more instable and erratic, that is the transient regime and then gradually 

becomes stable and constant, at that point the system has reached the stationary regime. The 

stationary regime is the one used to analyze and draw the conclusions from the floating body 

behavior.  
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4.2 MODEL OF THE LINEAR GENERATOR 

4.2.1 ELECTROMAGNETIC MODEL 

Synchronous generator models are usually based on the hypothesis that the rotation speed is 

constant, a proof of that are some parameters such as the synchronous reactance in the 

electric equivalent circuit, Xs=ωLs which is assumed to be a constant value; consequently, the 

electric frequency ω and the inductance Ls must be also constant, this is not possible in a 

linear generator as the translator speed is continuously varying due to the wave position. An 

accurate description of the linear generator is illustrated in Figure 4.7. 

 
Figure 4.7: General Sketch of a point absorber wave energy converter. Main parts of the 

generator and the floating body are pointed down. 

 

The proposed linear generator has permanent magnets mounted in the translator with 

alternating polarity. The motion of the translator can be assumed sinusoidal or closely 

sinusoidal, the amplitude associated with that motion is h and its frequency Ω, so the 

position and vertical speed of the translator can be written as: 

𝑧𝑧(𝑡𝑡) = ℎ𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡)         (4.19) 

𝑧̇𝑧(𝑡𝑡) = Ωℎ𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝑡𝑡)        (4.20) 

The pole pair width, ωp, is defined as the distance from a north pole to the next one; 

therefore, the electric angular frequency can be expressed as: (See Fig.  4.8) 

𝜔𝜔(𝑡𝑡) = 2𝜋𝜋
𝜔𝜔𝑝𝑝
𝑧̇𝑧 = 2𝜋𝜋Ωℎ

𝜔𝜔𝑝𝑝
cos⁡(Ω𝑡𝑡)       (4.21) 
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Figure 4.8: General sketch of the electric linear generator, with its main parts such as the 

translator and stator are illustrated in detail. 

 

The electric position θ is obtained integrating the electric angular frequency over the time: 

𝜃𝜃(𝑡𝑡) = ∫ 𝜔𝜔(𝑡𝑡)𝑑𝑑𝑑𝑑 = 2𝜋𝜋ℎ
𝜔𝜔𝑝𝑝

sin⁡(Ω𝑡𝑡)𝑡𝑡
0        (4.22) 

Considering the flux,Φ, slows down the motion by an angle δ, the flux can be expressed as a 

function of the electric position θ in the following way: 

Φ(𝑡𝑡) = Φ𝑡𝑡 cos(𝜃𝜃 + 𝛿𝛿) = Φ𝑡𝑡 cos �2𝜋𝜋ℎ
𝜔𝜔𝑝𝑝

sin(Ω𝑡𝑡) − 𝛿𝛿�     (4.23) 

Where Φt is the flux amplitude and δ is the load angle, which has been exposed in the 

previous chapter, the flux amplitude can be written as: 

Φ𝑡𝑡 = 𝐵𝐵𝑡𝑡𝜔𝜔𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑         (4.24) 

Where Bt is the magnetic field in a given tooth, ωt is the width of a stator tooth, where the 

flux line flow through its cross-sectional area. d is the width of the stator stack, p is the total 

number of poles, q is the number of slots per pole and phase and c is the number of cables or 

windings per slot. If equation (4.23) is derived, as stated by the Faraday’s law, the voltage is 

obtained as follows: 

𝑒𝑒(𝑡𝑡) = 2𝜋𝜋𝐵𝐵𝑡𝑡𝑤𝑤𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜔𝜔𝑝𝑝

cos(Ω𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋ℎ
𝜔𝜔𝑝𝑝

sin(Ω𝑡𝑡) − 𝛿𝛿�     (4.25) 

𝑒𝑒(𝑡𝑡) = 2𝜋𝜋𝐵𝐵𝑡𝑡𝑤𝑤𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜔𝜔𝑝𝑝

𝑧̇𝑧𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋ℎ
𝜔𝜔𝑝𝑝

𝑧𝑧 − 𝛿𝛿�       (4.26) 

In the previous equations, equation (4.25) is adapted to a sinusoidal motion of the translator 

whereas equation (4.26) is expressed as a function of generic velocities and positions.   



4MATHEMATICAL MODELING 

72 

The voltage calculated in equations (4.25) and (4.26) corresponds to a phase voltage, as 

stated in the previous chapter, the linear generators being studied and developed for wave 

energy converters are three-phase generators. The reason for it is that three coils are 

installed instead of a single coil, making three electric equivalent circuits, the physical 

location of its coil is displaced from the other two a distance that in electrical terms makes 

them differ in 120 degrees, this is the only difference, so the voltage, expressed in V,  of each 

phase is: 

𝑒𝑒𝑎𝑎(𝑡𝑡) = 2𝜋𝜋𝐵𝐵𝑡𝑡𝑤𝑤𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜔𝜔𝑝𝑝

cos(Ω𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋ℎ
𝜔𝜔𝑝𝑝

sin(Ω𝑡𝑡) − 𝛿𝛿�     (4.27) 

𝑒𝑒𝑏𝑏(𝑡𝑡) = 2𝜋𝜋𝐵𝐵𝑡𝑡𝑤𝑤𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜔𝜔𝑝𝑝

cos(Ω𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋ℎ
𝜔𝜔𝑝𝑝

sin(Ω𝑡𝑡) − 𝛿𝛿 + 2𝜋𝜋
3
�    (4.28) 

𝑒𝑒𝑐𝑐(𝑡𝑡) = 2𝜋𝜋𝐵𝐵𝑡𝑡𝑤𝑤𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜔𝜔𝑝𝑝

cos(Ω𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋ℎ
𝜔𝜔𝑝𝑝

sin(Ω𝑡𝑡) − 𝛿𝛿 − 2𝜋𝜋
3
�    (4.29) 

Following the electric equivalent circuit illustrated in the previous chapter the electric 

currents, expressed in A, which flow through each phase is calculated as follows: 

𝐼𝐼𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝑎𝑎 (𝑡𝑡)cos⁡(𝛿𝛿)
𝑅𝑅𝑐𝑐+𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

        (4.30) 

𝐼𝐼𝑏𝑏(𝑡𝑡) = 𝑒𝑒𝑏𝑏 (𝑡𝑡)cos⁡(𝛿𝛿)
𝑅𝑅𝑐𝑐+𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

        (4.31) 

𝐼𝐼𝑐𝑐(𝑡𝑡) = 𝑒𝑒𝑐𝑐(𝑡𝑡)cos⁡(𝛿𝛿)
𝑅𝑅𝑐𝑐+𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

        (4.32) 

What is really of interest though, is the voltage in the loads borne, because that is the useful 

energy output, the useful tension, in Volts, can be expressed as: 

𝑢𝑢𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝑎𝑎(𝑡𝑡) ∗ cos(𝛿𝛿) − 𝑅𝑅𝑐𝑐𝐼𝐼𝑎𝑎(𝑡𝑡)       (4.33) 

𝑢𝑢𝑏𝑏(𝑡𝑡) = 𝑒𝑒𝑏𝑏(𝑡𝑡) ∗ cos(𝛿𝛿) − 𝑅𝑅𝑐𝑐𝐼𝐼𝑏𝑏(𝑡𝑡)       (4.34) 

𝑢𝑢𝑐𝑐(𝑡𝑡) = 𝑒𝑒𝑐𝑐(𝑡𝑡) ∗ cos(𝛿𝛿) − 𝑅𝑅𝑐𝑐𝐼𝐼𝑐𝑐(𝑡𝑡)       (4.35) 

Once all these parameters have been found the next logical step is to find the output power 

through a very simple relation, which can be expressed either in VA or W. VoltAmpere is the 

unit of SI for the apparent power, which is the total electrical power and W is the unit of SI 

for the real power, which is the useful power. In that case, apparent and real power are the 

same due to the power factor, cos(ϕ), which for that generator equals to one, and that means 

that the reactive, and useless, power is void: 

𝑆𝑆𝑎𝑎(𝑡𝑡) = 𝑃𝑃𝑎𝑎(𝑡𝑡) = 𝑢𝑢𝑎𝑎(𝑡𝑡)𝐼𝐼𝑎𝑎(𝑡𝑡)       (4.36) 

𝑆𝑆𝑏𝑏(𝑡𝑡) = 𝑃𝑃𝑏𝑏(𝑡𝑡) = 𝑢𝑢𝑏𝑏(𝑡𝑡)𝐼𝐼𝑏𝑏(𝑡𝑡)       (4.37) 

𝑆𝑆𝑐𝑐(𝑡𝑡) = 𝑃𝑃𝑐𝑐(𝑡𝑡) = 𝑢𝑢𝑐𝑐(𝑡𝑡)𝐼𝐼𝑐𝑐(𝑡𝑡)       (4.38) 

𝑆𝑆𝑇𝑇(𝑡𝑡) = 𝑃𝑃𝑇𝑇(𝑡𝑡) = 𝑃𝑃𝑎𝑎(𝑡𝑡) + 𝑃𝑃𝑏𝑏(𝑡𝑡) + 𝑃𝑃𝑐𝑐(𝑡𝑡)      (4.39) 

The useful kind of parameters for electrical purposes are those called the root mean squared 

parameters and electrically represent the equivalents for direct current systems. The studied 

linear generator works in alternate current: 

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = max ⁡(𝑒𝑒𝑎𝑎 (𝑡𝑡))
√2

         (4.40) 
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𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 = max ⁡(𝐼𝐼𝑎𝑎 (𝑡𝑡))
√2

         (4.41) 

𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 = max ⁡(𝑢𝑢𝑎𝑎 (𝑡𝑡))
√2

        (4.42) 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟          (4.43) 

In order to be attractive for modeling purposes, the magnetic force generated by the linear 

generator has to be determined. First the magnetic power has to be found and that is 

achieved through a very simple step. Linear generators, as any other device, are not perfect 

and their energy transfer is never complete, so dividing the electric power by the efficiency of 

the devices the mechanic power is obtained and then, simply dividing again by the velocity of 

the translator, which is the generating part, the magnetic force is obtained: 

𝑃𝑃𝑀𝑀 = 𝑃𝑃𝑇𝑇
𝜂𝜂𝑒𝑒𝑒𝑒

          (4.44) 

𝐹𝐹𝑀𝑀 = 𝑃𝑃𝑀𝑀
𝑧̇𝑧

         (4.45) 

Figures 4.9, 4.10, 4.11 and 4.12 show the graphics of the voltage, current and power 

respectively over a period of a wave of H=2 [m] and T=4 [s] and table 4.1 shows the values of 

the simulation parameters. One may note that all these representations are also cyclic, which 

is logical because they come from the original energy of the wave which is also periodical. 

 

 

 

Parameter Name Value Unit 

Cosϕ Power Factor 1 - 

ns No. of Stator Sides 4 - 

ωp Pole Pair Width 100 mm 

d Width of the Stator 400 mm 

ωt Tooth Width 8 mm 

p Total No. of Poles 100 - 

q Winding Ratio 6/5 slot/(pole, phase) 

c No. of Cables per Slot 6 - 

Bt Magnetic Field in tooth 1.55 T 

RLOAD Load Resistance 3.1 Ω 

RC Generator Resistance 0.3735 Ω 

L Generator Reactance 11.5 mH 

Table 4.1: Description of the electromagnetic parameters of the linear generator; 
with name, parameter, value and unit. 
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Figure 4.9: Electrical field induced by the wave motion in the stator of the generator. 
Phases a, b and c are represented. The voltage between two phases is also plotted and 

the root mean squared voltage is also marked due to its importance. 

 

Figure 4.10: Electrical current induced by the wave motion in the stator of the 
generator. Phases a, b and c are represented. The root mean squared current is also 

marked due to its importance. 
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Figure 4.11: Electrical power generated by the wave motion. There are also plotted 
the time averaged power for the whole time and for a mobile window. The root 

mean squared current is also marked due to its importance. 

 
Figure 4.12: Magnetic Force generated by the wave motion in the translator of the generator. 

The time averaged force is also plotted. 
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4.2.2 MECHANICAL MODEL 

An electrical linear generator can also be seen from a different point of view, from a different 

perspective. For obvious reasons, the electrical modeling is the most important part when 

developed this kind of devices but, linear generator play also a very important role in the 

mechanical aspect. As shown in Figure 4.13, linear generators have springs that link the 

translator and sea-bed. That is crucial for the proper work of the device, these springs serve 

as end-stop systems that prevent the device from damaging during storm periods when the 

wavs heights can reach considerable levels. In addition, the springs allow the translator to 

move in a smooth way that favors the power extraction. Their action is described as follows: 

when the waves pushes up the spring acts against this motion to avoid extremely high 

velocity peaks and when the wave level is going down to the trough, the spring assures this 

motion to be regular and smooth pulling the translator downwards and thus, not leaving it 

free to the gravity forces. 

The linear generators mechanical equivalent is the well known mass-spring-damper system. 

This kind of systems have been very well studied for many years since are the representation 

of very important systems or devices like motorcycle suspensions and many others. Figure 

4.13 illustrates in a mechanical way the mass-spring-damper system. 

 
Figure 4.13: Illustration of the mechanical equivalent of the electric linear generator, a 

mass-spring-damper system with its parameters m, k and Bas the mass, the spring 

coefficient and the damping coefficient respectively. 
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This is mainly an oscillating system; favored by the force F and the spring k and smoothed by 

the damper C. its governing equation can be written as follows: 

𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 = −𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑧̈𝑧 − 𝑐𝑐𝑧̇𝑧 − 𝑘𝑘𝑘𝑘       (4.48) 

Where the variables of this ordinary differential equation are the acceleration𝑧̈𝑧, the velocity 𝑧̇𝑧 

and the position z respectively. The kind of models that best describe the behavior of this is 

systems are the so called, state-space models. The force F is considered as an input and the 

mass velocity 𝑧̇𝑧 is considered as an output of this system. The system is of second order, since 

it has one mass which can contain both kinetic and potential energy. A feasible selection of 

the states are the position z and the velocity𝑧̇𝑧, which derivate is given by Newton’s second 

law. The state space system is indeed expressed in the following way: 

𝑝̇𝑝(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡)        (4.49) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡)        (4.50) 

Where p(t) and 𝑝̇𝑝(𝑡𝑡) are the outputs, u(t) is the input and y(t) is the state of the system, 

equations (4.49) and (4.50) derive into the following system: 

�
𝑝𝑝
𝑝̇𝑝� =
̇

(𝐴𝐴) �
𝑝𝑝
𝑝̇𝑝� + (𝐵𝐵)𝑢𝑢 = �𝑥̇𝑥𝑥̈𝑥� = �

0 1
− 𝑘𝑘

𝑚𝑚
− 𝑐𝑐

𝑚𝑚
� + �

0
− 1

𝑚𝑚
�𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃     (4.51) 

𝑦𝑦 = (𝐶𝐶) �
𝑝𝑝
𝑝̇𝑝� + (𝐷𝐷)𝑢𝑢 = 𝑥̇𝑥 = (0 1) �𝑥𝑥𝑥̇𝑥� + (0)𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃      (4.52) 

 

An important thing to have in mind to optimize the device behavior and maximize the power 

output is to reach resonance conditions. If the system is oscillating in a specific frequency ω, 

that analogously could perfectly be the wave frequency, by imposing the following constrain 

to the system resonance conditions will be reached: 

𝜔𝜔 = �𝑘𝑘
𝑚𝑚

          (4.53)  
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4.3 MODEL OF THE WAVE ENERGY CONVERTER 

This last section of the mathematical modeling chapter is going to describe the modeling 

process of a wave energy converter, a point absorber device consisting of a floating body and 

an electric linear generator as PTO. All the knowledge acquired on the previous chapters and 

previous sections of this chapter is merged together to produce a complete model which 

allows to compute, in a realistic way, the needed values to accurately reproduce the behavior 

of the device in real open seas. Besides, the optimization of some parameters helps to 

improve, to some extent, the device’s work. 

The final model of the wave energy converter has and hydrodynamic part, an electromagnetic 

part and a mechanical part. All these concepts of very different nature are merged together 

and all united work in perfect harmony giving some results that permit to draw conclusions 

which will possibly bring to substantial improvements in the foreseeable future. 

The hydrodynamic part, strictly related to the upper part of the device; in other words, the 

floating body is the one that traps the energy contained in the incident waves through the 

different mechanisms explained in full detail in the last section of the previous chapter. Both, 

mechanical and electromagnetic parts are referred to the power take-off mechanism and 

their goal is to convert the energy trapped by the floating body into a useful energy kind that 

can later be used by the human race. A schematic representation of the full wave energy 

converter is illustrated in Figure 4.14. 

 

 

Figure 4.14: Illustration of the mechanical equivalent of the point absorber WEC, a mass-
spring-damper system. 
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The system represented in Figure 4.14 is composed by a floating body, a spring and a 

damper; as stated in several occasions previously in this work, this system has only one 

degree of freedom in the vertical direction, allowing only the motion in heave mode and 

having only one coordinate in the reference coordinate system. Putting together all this 

concepts previously described, results in a process towards the main equation of the 

mathematical model of this wave energy converter in the following way: 

𝑚𝑚(1 + 𝑐𝑐𝑎𝑎)𝑧̈𝑧 = 𝐹𝐹𝐵𝐵 −𝑊𝑊 + 1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝐴𝐴(𝜂̇𝜂 − 𝑧̇𝑧)|𝜂̇𝜂 − 𝑧̇𝑧|     (4.54) 

𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 = −𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑧̈𝑧 − 𝑐𝑐𝑧̇𝑧 − 𝑘𝑘𝑘𝑘       (4.55) 

𝐹𝐹𝑀𝑀 = 𝑃𝑃𝑀𝑀
𝑧̇𝑧

         (4.56) 

Equation (4.54) represents the hydrodynamic aspect of the WEC. Actually, this is the floating 

body dynamic’s equation. Equation (4.55) states the mechanical equivalent of the force 

generated by the power take-off mechanism and Equation (4.56) specifies the magnetic force 

generated by the linear generator which can also be interpreted as the mechanical damping, 

𝑐𝑐𝑧̇𝑧, in Equation (4.55). Once the different terms of the main model’s equation have been 

identified, this can be expressed in the following way: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (4.57) 

(𝑚𝑚(1 + 𝑐𝑐𝑎𝑎) + 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )𝑧̈𝑧 = 𝐹𝐹𝐵𝐵 −𝑊𝑊 + 1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝐴𝐴(𝜂̇𝜂 − 𝑧̇𝑧)|𝜂̇𝜂 − 𝑧̇𝑧| − 𝐹𝐹𝑀𝑀(𝑧̇𝑧, 𝑧𝑧) − 𝑘𝑘𝑘𝑘  (4.58)  

Where m is the mass of the floating body, mtrans is the mass of the translator part of the linear 

generator; ca is the added-mass coefficient. 𝑧̈𝑧,𝑧̇𝑧, and 𝑧𝑧 are the vertical acceleration, velocity 

and positionof the system, respectively,  FB is the buoyancy force, W is the weight force, ρ is 

the fluid density, Cd is the drag coefficient, A is the wet surface of influence of the floating 

body.  𝜂̇𝜂 is the vertical free water surface velocity, FM is the magnetic force generated by the 

linear generator and k is the spring constant which states the degree of stiffness. 

Furthermore, if the device performance wants to be improved and the power outtake wants 

to be increased, some constraints can be applied. It is commonly known that for an 

oscillating system the best way to maximize its energy absorption is by fulfilling its resonance 

conditions. In a simple system just composed of a mass and a spring of k constant, the 

resonance is reached by the following expression as shown by Figure 4.15: 

 

Figure 4.15: Simplification of a mass-spring system and its condition to reach resonance. 
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In the case of the studied wave energy converter device, its system, as shown in Figure 4.7 is 

a bit more complex and the resonance conditions results in: 

𝜔𝜔 = � 𝜌𝜌𝜌𝜌𝜌𝜌+𝑘𝑘
(𝑚𝑚(1+𝑐𝑐𝑎𝑎 )+𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )

        (4.59) 

As a result of equation (4.59), by simply adapting the spring coefficient k, the resonance in 

the whole system is achieved. After applying these settings the system is optimized and the 

model is ready to be simulated and discover the numerical results. 
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CHAPTER 5:                               

SIMULATIONS 

5.1 DESCRIPTION 

After having described the mathematical model of the wave energy converter device in the 

previous chapter, the next logical stage is to use that model and check its performance. 

Subsequently, once the wave energy converter’s behavior has been studied, the drawing of 

some conclusion will be able. Simulations will consist of reproducing the performance of two 

different floating bodies, a spherical buoy and a cylindrical buoy with practically the same 

electrical linear generator in two different locations; the coasts of Alghero, in the island of 

Sardinia, Italy and Mazara, in the island of Sicily, Italy.  

The simulations begin with the physical determination of the wave energy converter device. 

In order to achieve reliable results all parameters must be set in a proper and realistic way. 

Table 5.1, 5.2 and 5.3 specify the physical parameters of the spherical buoy, the cylindrical 

buoy and the linear generator respectively. 

Parameter Name Value Units 

Re External Radius 1.500 m 

Ri Internal Radius 1.485 m 

A External Area 7.068 m2 

Ve External Volume 14.137 m3 

Vi Internal Volume 13.717 m3 

V Material Volume 0.420 m3 

ρm Material Specific 

Weight: PVC 

14000 N/m3 

Wm Material Weight 5878.4 N 

mm Material Mass 599.4 Kg 

Table 5.1: Description of the physical parameters of the spherical floating body of 
the WEC; with name, parameter, value and unit. 
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Parameter Name Value Units 

Re External Radius 1 m 

Ri Internal Radius 0.850 m 

b Draft 4 m 

A External Area 3.142 m2 

Ve External Volume 12.566 m3 

Vi Internal Volume 8.398 m3 

V Material Volume 4.161 m3 

ρm Material Specific 

Weight: PVC 

14000 N/m3 

Wm Material Weight 58354 N 

mm Material Mass 5950.4 Kg 

Table 5.2: Description of the physical parameters of the cylindrical floating body of 
the WEC; with name, parameter, value and unit. 

As it can be seen in tables 5.1 and 5.2, the spherical and cylindrical buoys respectively, are 

not solid bodies and they could be considered as a spherical and cylindrical shells 

respectively, of 15 cm of thickness. Its dimensions are relatively low in comparison to other 

devices which are currently being tested in different seas of the world. Since the devices 

,studied in this work, are thought to be deployed in the Mediterranean Sea, where the 

energetic regime is substantially lower than in other oceans of the world, the devices 

dimensions need to be reduced to maximize the energy capture. 

Parameter Name Value Unit 

cosϕ Power Factor 1 - 

ns No. of Stator Sides 4 - 

ωp Pole Pair Width 100 mm 

d Width of the Stator 400 mm 

ωt Tooth Width 8 mm 

p Total No. of Poles 100 - 

q Winding Ratio 6/5 slot/(pole, phase) 

c No. of Cables per Slot 6 - 

Bt Magnetic Field in tooth 1.55 T 

RLOAD Load Resistance 3.1 Ω 

RC Generator Resistance 0.3735 Ω 

L Generator Reactance 11.5 mH 

ρF Density of the translator’s 

Material: Ferrite 

4700 Kg/m3 
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Parameter Name Value Unit 

LTr Length of the Translator 5.425 m 

wTr Width of the Translator 0.298 m 

ATr Area of the Translator 0.089 m2 

VTr Volume of the Translator 0.482 m3 

mTr Mass of the Translator 2264.3 kg 

WTr Weight of the Translator 2205 N 

Table 5.3: Description of both, the electromagnetic and physical parameters of the 
linear generator; with name, parameter, value and unit. 

In table 5.3 every parameter of the linear generator is defined. However, there is still one 

essential parameter of the power take-off system to be stated. The power take-off mechanism 

is composed by the linear generator and a system of springs that guarantee the best and 

smoothest performance of the wave energy converter. This set of springs can be simplified as 

an equivalent spring which elastic coefficient is still unknown and has to be determined. As 

stated in the previous chapter, for optimized power absorption levels, the resonance of the 

whole oscillating system has to be reached. Thereby, the properties of this spring have to be 

adapted in the following way: 

𝑘𝑘 = 𝜔𝜔2𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜌𝜌𝜌𝜌𝜌𝜌         (5.1) 

Where ω is the wave frequency, mtot is the total mass of the device (including the added 

mass), ρ is the sea water density and A is the area described in tables 5.1 and 5.2 for spherical 

buoy and cylindrical buoy respectively. 

Simulations have been run over 108 different sea states, composed of 9 different significant 

wave periods and 12 different significant wave heights. That is to say, for each of the 12 

different significant wave heights, one simulationfor each of the 9 different significant wave 

periods has been carried out. The specific significant wave periods and heights composing 

the sea states are shown below: 

𝐻𝐻𝑠𝑠,𝑖𝑖 = {0.5, 1.0, 1.5,2.0, 2.5, 3.0,3.5, 4.0, 4.5,5.0, 5.5, 6.0,}    [𝑚𝑚]     (5.2) 

𝑇𝑇𝑠𝑠,𝑗𝑗 = {2, 3, 4,5, 6, 7,8, 9, 10}  [𝑠𝑠]                   (5.3)  

In each simulation the optimal value for resonance condition of the spring coefficient is 

calculated for both WECs, the one with the spherical buoy and the one with the cylindrical 

floating body. After finding the optimal value for k, all parameters needed to run the 

simulations are already available. Consequently, a simulation of the entire WEC devices is 

run over a period of time of 60 seconds with a sampling interval of 0.0005 seconds, for each 

couple of significant wave height and period. To successfully run the simulation an initial 

state of the devices is needed, it has been chosen the most logical situation in which the 

devices are resting in the sea when the free water surface is flat, that is to say, the device is in 

static equilibrium in waves absence, as it can be seen in table 5.4 the vertical initial velocity is 
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not exactly zero, that is to avoid probable future problem during the simulation, as the 

simulation code is made of Ordinary Differential Equations that need to be integrated in 

order to find the solution, and when the sampling data contains an explicit zero it often fails 

due to its integrating limits : 

 

Device / State Vertical Position Vertical Velocity 

Spherical Buoy 2.49 0.001 

Cylindrical Buoy 1.69 0.001 

Units m m/s 

Table 5.4: Initial states of the spherical buoy and cylindrical buoy when running the 
simulations. Describes, vertical position, vertical velocity and units. 

 

 When all data is ready, the simulation is carried out via the main equation of the model, 

stated in the previous chapter, equation (4.58). Once the data of the vertical positions and 

velocities over those 60 seconds is gathered the second half of the data is used to compute 

the power extraction. The last 30 seconds are used for that purpose because after a 

prudential time the system has become stable and reached the stationary state, this is a 

crucial step to avoid misleading when interpreting the results. 

The results of the output power, achieved by each different spring coefficient and floating 

body, are organized by significant wave height and period creating what is commonly known 

as Power Matrix. The obtained Power Matrixes are used then to compute the performance of 

each different device through a new set of simulations. These reproduce each device’s 

behavior in the virtual case of deployment in the locations of Alghero and Mazara for several 

years. These simulations have been run using the data available in the university department. 

The available data contains the wave record of both locations, Alghero and Mazara, already 

synthesized in sea state conditions. 

 

 The available data contains: 

• Significant Wave Height, Hs [m] 
• Peak Energy Wave Period, Tp [s] 
• Duration of that specific sea state, Dt [h] 
• Energetic wave Period, Te [s] 
• Sea State Power, Pss [kW/m] 
• Sea State Energy, Ess [kWh/m] 
• Annual Mean Power, Py [kW/my] 
• Annual Mean Energy,  Ey [kWh/my] 
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In the location of Alghero the following years are available: 1990, 1991, 1992, 1993, 1994, 

1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2007, 2010 and 2011. And for Mazara 

the available years are: 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 

2001, 2002, 2003 and 2011. Before running the last set of simulations a slight modification 

has to be done, one may note that devices work with the significant wave height and period 

and in the data presented above the significant wave period is not given, instead, the Peak 

Energy Wave Period is part of that data and as seen on the third chapter, in the Wave 

Analysis and Statistics section, the Peak Energy Wave Period can be converted into the 

significant wave period through the following expression: 

𝑇𝑇𝑠𝑠 = 0.95𝑇𝑇𝑝𝑝          (5.4) 

After running the simulations, each type of device with the best performance in each 

different location has been chosen as the definitive one. The term of “best performance” is 

quite ambiguous and it might vary depending on the wanted goal; to exemplify it, can be 

considered as the maximum power output, the maximum average energy output, the highest 

efficiency or the most stable power extraction rate among many others. For this work in 

specific and for the wave energy extraction world in general; the considered best 

performance is the most stable power output rate or, in other words the capacity factor and 

so, this is the performance evaluation parameter chosen in this work. The device with the 

highest capacity factor for each location has been selected as the optimal one.  

Once the devices have been selected their entire performance is computed in the following 

way:  

The first step is to calculate the power extraction in the sea states, which are registered in the 

data, and the total energy absorption for each device. Once the energy and power outputs 

have been obtained the efficiency of the devices can be calculated. As summarized previously, 

in the wave energy converters world, the efficiency is not a very important parameter since 

for some specific situation can be higher than the 100%. This is due to the complex 

hydrodynamic behavior of the floating body, radiation and overall to added-mass. Another 

factor to keep in mind is that the energy or power of a wave are calculated for unit of crest 

length i.e.: [kW/m] or [kWh/m],this is why the capture width is introduced. The capture 

width measures the power absorbing capability of the device and its units are meters, it can 

be larger than the device itself and that is the key point, it can absorb more energy than the 

one contained within its physical dimensions, see figure  (5.1) and equations (5.5),(5.6),(5.7) 

and(5.9) : 



5SIMULATIONS 

86 

 
Figure 5.1: Schematic representation of the capture width concept. This figure shows how the 

capture width can be larger than the devices width maximizing the energy absorption. 

 

𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑠𝑠) = 1
64
𝜌𝜌𝑔𝑔2𝐻𝐻𝑆𝑆2

𝑇𝑇𝑠𝑠
0.95

       (5.5) 

𝐸𝐸(𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑠𝑠) = 𝜌𝜌𝜌𝜌𝜌𝜌
4𝑘𝑘

�𝐻𝐻𝑠𝑠
2
�

2
�2𝑘𝑘ℎ+sinh (2𝑘𝑘ℎ)

sinh (2𝑘𝑘ℎ)
�      (5.6) 

𝜂𝜂 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑠𝑠)
𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑠𝑠)

         (5.7) 

𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑠𝑠)
𝐸𝐸(𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑠𝑠)

        (5.8) 

 

 

Where ω is the wave frequency, k the wave number ρ the sea water density, h the depth and 

𝐸𝐸(𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑠𝑠) is the flux energy per unit crest length. Finally, one last simulation will be done with 

the available data of the Alghero and Mazara’s station, computing the mean annual energy 

and power outputs, the full load hours per year and the capacity factor for each device. As its 

names state, the full load hours represents the time when the device is working at full load 

and the capacity factor is nothing else than the full hours divided by total amount of hours 

contained in a year. 
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5.2 RESULTS 

First of all, a brief comment on the computational costs is needed. As it can be seen in 

previous sections and chapters, the amount of different parameters used in the various fields 

of the model, i.e. hydrodynamic, electromagnetic and mechanical fields, is substantially high. 

The equations used in the model are also non trivial and with complexity levels rather 

elevated. All these facts mixed together with the small sampling interval Fs=0.0005 s or in 

other words Fs=0.5 ms, used at that levels to guarantee the accuracy of results, make the 

computational costs entity of relevance. Reaching, in some cases, simulation times as long as 

72 hours. So it is not wrong saying that is one of the main factors to take into account when 

running simulations. 

 Once the simulation is run and completed the first thing that needs to be verified is the wave 

energy converter behavior, in order to detect any possible error in the programming code or 

structural subjacent errors such as conceptual errors or theoretical misleading. The following 

results are presented in Figures 5.2 and 5.3: 

 

 

Figure 5.2: Vertical Position and vertical Speed of the spherical floating body WEC 
induced by incident monochromatic waves with constant height and period over the 

time. 
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Figure 5.3: Vertical Position and vertical Speed of the cylindrical floating body WEC 

induced by incident monochromatic waves with constant height and period over the 
time. 

 

When comparing figures 5.2 and 5.3 with figure 4.5 and 4.6 respectively, the influence of the 

power take-off system in the floating can clearly be seen.  In figure 5.2 there are two main 

aspects that need to be cleared. Firstly, a very powerful transient regime can be observed in 

the firsts seconds of the simulation, approximately the during first wave period, after which 

the systems quickly stabilizes giving place to the steady transient. Secondly, when observing 

the floating device’s vertical velocity a clear pattern, similar to a sine wave, can be 

distinguished, this behavior is due to the influence of the linear generator magnetic force and 

its three harmonic components.  In figure 5.3 it can be seen that the cylindrical wave energy 

converter works smoother than the spherical one, maintaining its typical features. 

 

As seen on figure 5.2 the effect of the magnetic force modeling is reflected on the whole wave 

energy converter behavior so a thorough analysis of this force has to be done and the method 

chosen is the Fourier analysis as it can be in figures 5.4 and 5.5: 
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Figure 5.4: Fourier Spectrum. The upper plot shows the amplitude of the signal over a range of 

frequencies, and the lower plot shows the phase of the signal over a range of 
frequencies. 

 
Figure 5.5: Magnetic force reduced only to its three first harmonic components. 
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Figure 5.4 clearly states that the Fourier spectrum of the magnetic force, shown in figure 4.12 

has three main components, whose relevance in amplitude terms is much higher than the 

rest of the terms. This is the reason why it has been decided to reduce the force into only 

three harmonic components (See Fig. 5.5), because there is a substantial gain in simplicity 

and almost no loss in accuracy. 

The next step in the simulation process, as stated in the previous section of this chapter, is to 

compute the optimized spring coefficient values for each device, spherical and cylindrical 

buoys, and for each sea state depending on the significant wave height and period, Hs and Ts 

respectively, as stated in equation 5.1. The following results are presented in figures 5.7 and 

5.8: 

 

 

 

 

 

 
Figure 5.7: Optimized spring coefficient for the spherical floating body over different 

sea states. 
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Figure 5.8: Optimized spring coefficient for the cylindrical floating body over different 

sea states. 

 

According to the theoretical argument explained in the previous section, the spring 

coefficients vary depending on the wave frequency and mass of the system. The wave 

frequency it in turn dependent of the significant wave period only. The mass of the systems, 

which only varying component is the added-mass, it changes over the wave frequency in the 

case of the sphere and over the significant wave height in the case of the cylinder, as seen on 

the fourth chapter section one. This can be corroborated looking at figures 5.7 and 5.8, where 

it can be seen that in the case of the sphere the spring coefficient varies only over the 

significant wave period and in the case of the cylinder the spring coefficients varies 

bidimensionally over both, significant wave period and height. 

 After having found the spring coefficient matrix all the conditions to compute the power 

matrix for each device are satisfied. The results are presented in the figures 5.9, 5.10, 5.11 and 

5.12: 
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Figure 5.9: Capacity Factor vs. spring coefficient of the Spherical WEC. 

 
Figure 5.10: Capacity Factor vs. the spring coefficient of the Cylindrical WEC. 
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From the plots shown above the optimal spring coefficients are those which maximize the 

capacity factor for each device and location. Might be noted that for the spherical device’s 

case (Figure 5.10), the relation between both parameters is practically linear with negative 

sign. Whereas, for the cylindrical device’s case the relation can be better defined as multi-

lineal and always with negative sign. However, the selection decision must be always done 

within the given range of coefficients. The results of spring coefficient selection for each 

device and location are synthesized in table 5.5, where the significant wave height and period 

columns express the sea state conditions in which the device achieves resonance: 

 
 

Device H 

[m] 
T 

[s] 
Spring coefficient k 

[N/m] 

Sphere Alghero - 2 40274 

Sphere Mazara - 2 40274 

Cylinder Alghero 2.5 5 1223 

Cylinder Mazara 2.5 5 1223 

Table 5.5: Spring coefficient determination for each device and location. 
 

Once each spring coefficient has been determined, the devices are fully characterized. 

Four simulations, one per device and location, have been done including all the 

parameters found at this stage. The results resulting from these simulations are 

definitive and all the conclusions will be drawn in the basis of this stage. The first step is 

to compute the power matrixes of the devices. Afterwards, the rest of the performance’s 

features are calculated.Figures 5.11 and 5.12 show the power matrix of each selected 

device, figures 5.13 and 5.14 illustrate the efficiency matrixes, figures 5.15 and 5.16 

represent the capture width matrixes, figures 5.17 and 5.18 plot the power output and 

energy extraction respectively and figures 5.19 and 5.20 plot the full load hours and 

capacity factor respectively: 
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Figure 5.11: Power Matrix for the optimized Spherical device. 
 

 
Figure 5.12: Power Matrix for the optimized Cylindrical device. 
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Figure 5.13: Efficiency Matrix for the optimized spherical device. 

 

 
Figure 5.14: Efficiency Matrix for the optimized cylindrical device. 
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Figure 5.15:Capture Width Matrix for the optimized spherical device. 

 

 
Figure 5.16:Capture Width Matrix for the optimized cylindrical device. 
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Figure 5.17:Histograms of the Energy and Power Outputs for both devices in Alghero. 

 

 
Figure 5.18:Histograms of the Energy and Power Outputs for both devices in Mazara. 
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Figure 5.19: Histograms of the Full load hours and the Capacity Factor for both devices in Alghero. 

 

 
Figure 5.20: Histograms of the Full load hours and the Capacity Factor for both devices in Mazara. 
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With the figures presented above the devices’ behaviors and characteristics are presented. 

The features such as power output, energy absorption, efficiency, capture width and capacity 

factor of each wave energy converter are synthesized in the following tables: 

 

 

Device  

Regular Waves Real Waves 
 

Mean Power Output 
[kW] 

H 
[m] 

T 
[s] 

Max. Power Output 
[kW] 

Sphere Alghero  6 2 4.86 0.72 

Sphere Mazara  6 2 4.86 0.64 

Cylinder Alghero  6 7 4.61 1.70 
 

Cylinder Mazara  6 7 4.61 1.58 

Table 5.6: Wave energy converters Maximum and Mean Power output. 
 

Device 

Regular Waves Real Waves 
 

Mean Efficiency 
[%] 

H 
[m] 

T 
[s] 

Max. Efficiency 
[%] 

Sphere Alghero 0.5 2 78.8 2.33 

Sphere Mazara 0.5 2 78.8 5.37 

Cylinder Alghero 0.5 5 34.81 8.24 

Cylinder Mazara 0.5 5 34.81 19.88 

Table 5.7: Wave energy converters Maximum and Mean Efficiency. 
 

Device 

Regular Waves Real Waves 

H 
[m] 

T 
[s] 

Max. Capture 
Width 

[m] 

Mean Capture 
Width 

[m] 

Relative 
Capture Width 

[-] 

Sphere Alghero 0.5 10 2.39 0.07 0.023 

Sphere Mazara 0.5 10 2.39 0.16 0.053 

Cylinder Alghero 0.5 6 8.96 0.17 0.085 

Cylinder Mazara 0.5 6 8.96 0.4 0.2 

Table 5.8: Wave energy converters Maximum and Mean Capture Width. 
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Device Mean Energy 

Absorption 
[MWh] 

Mean Full 
Load Hours 

[h] 

Mean Capacity 
Factor 

[%] 

Sphere Alghero 6.32 1300 14.84 

Sphere Mazara 5.59 1150 13.13 

Cylinder Alghero 14.87 3226 36.83 

Cylinder Mazara 13.80 2993 34.17 

Table 5.9: Mean Annual Features for each Wave energy converter. 
 

To sum up, both the devices, but specifically the cylindrical wave energy converter, have very 

interesting features.  When analyzing the tables above a major difference can be found 

between the maxim features values and the mean ones. This denotes that the devices work 

much below than its full capacity as it can clearly be seen in tables 5.7 and 5.8. 

Consequently, the average annual energy absorption levels (shown in figures 5.16 and 5.17 

and in table 5.9) are rather low.However, the cylinder device’s performance, in features like 

the mean power output, the mean energy absorption, the full load hours and the capacity 

factor,is much better than the sphere device’s, achieving rates that double, at least, the 

sphere device’s ones.This subject though, will be treated more widely in the next chapter.  

Another important feature to remark is the high capacity factor accomplished again by the 

cylindrical device which can be the key factor of its high energy and power outputs. 
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CHAPTER 6:                              

CONCLUSIONS 

A mathematical model of four variants of a Wave Energy Converter has been designed, and 

numerical simulations have been conducted to reproduce its behavior with real seas data. 

The first impressions, after obtaining the results and concluding the work, have been strictly 

of positive sign. The numerical work reported in this thesis leads to the conclusions listed 

below. 

Despite the fact that this has been the first attempt to model a Wave Energy Converter or, in 

other words, the process has been begun from zero, the results are hopeful and encouraging 

to carry on with the work towards further advanced stages. The performance features of the 

cylindrical floating body Wave Energy Converter are much higher than the spherical floating 

body WEC, even doubling or tripling them in some particular cases. This can be explained 

from the inertial terms of both devices. The spherical floating body has a total mass of 

approximately 600 kg, whereas the cylindrical buoy’s mass is about 6000 kg, or in other 

words, ten times heavier. This big difference can be used to explain the reason of such 

diverse behaviors in the following way. The highest the inertial term is, the slower the device 

reacts to abrupt changes in position and velocity configurations, that is why the sphere 

device, with a relatively small inertial component, adapts much better to steeper waves. On 

the other hand, the cylinder device, with a higher inertial term, has a much lower frequency 

response and thus, it hardly reacts to the very steep incident waves. 

The following list highlights the most conclusive results: 

 

• Maximum Power Output: 
o Cylinder WEC = 4.61 kW 
o Sphere WEC = 4.86 kW 

• Maximum Efficiency: 
o Cylinder WEC = 34% 
o Sphere WEC = 79% 
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• Maximum Capture Width: 
o Cylinder WEC = 8.96 m 
o Sphere WEC = 2.39 m 

• Average Annual Energy Production: 
o Cylinder WEC = 14.87 MWh 
o Sphere WEC = 6.32 MWh 

• Average Annual Power Output: 
o Cylinder WEC = 1.70 kW 
o Sphere WEC = 0.72 kW 

• Average Full Load Hours per year: 
o Cylinder WEC = 3226 h 
o Sphere WEC = 1300 h 

• Average Capacity Factor: 
o Cylinder WEC = 36.83% 
o Sphere WEC = 14.84% 

• Average Efficiency: 
o Cylinder WEC = 1.88% 
o Sphere WEC = 5.37% 

• Average Capture Width 
o Cylinder WEC = 0.4 m 
o Sphere WEC = 0.16 m 

 

 

 

Observing the first two points of the list above it might seem that both devices have similar 

performances, even the spherical WEC’s efficiency is higher, but taking a better look into the 

matrix efficiency figures for the sphere (5.13) and for the cylinder (5.14) a main difference 

comes to the surface, the red spots of showing high efficiencies are located in different places. 

Whereas high efficiencies for the cylinder are just at the same spot as the Wave Climate is 

more likely to happen; high efficiencies for the sphere are displaced to the bottom left corner 

of the figures. This is the main reason of the higher annual energy and power production of 

the cylinder, because it is efficient for the wave climates of the area where is thought to be 

working in.  There is though, one major improvement that could be done in this field, it’s 

about making the high efficiency regions, that currently are small and concentrated, bigger 

and wider embracing a major number of sea states and if it were possible, towards more 

energetic regimes. 

Another very concluding result is the capture width, which in its maximum values is good 

enough for the spherical device but astonishingly good when talking about the cylindrical 

device. A 9 meter capture width means that the device, in specific conditions, is able to 
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capture the energy contained in 9 meters of wave crest. This in practical terms means that, 

taking into account that cylinder diameter is 2 meters; the device captures 4.5 times the 

energy contained within its physical dimensions. In the hypothetical case of a wave energy 

plant made of these devices the separation in between the buoys in each array should be at 

least 9 meters to avoid interferences between devices when capturing the energy and 

guarantee the optimal energy output of the wave power plant. However, the mean values of 

the capture width need to be raised through an optimization process that improves the 

general performance of the device. 

 

Once again when comparing the average energy absorption of the two devices, the cylinder’s 

performance is much better than the sphere’s one, this result is strictly related with the 

capture width performance commented previously. Achieving the changes proposed above, 

for efficiencies and capture widths, would raise the annual energy outputs drastically. If the 

typical average annual electricity consumption in typical family house (working couple and 

two children) is about 2200 kWh per year a single cylinder device would reach to feed 

approximately 7 houses, in the hypothetical case of a wave energy plant of 10 arrays of 15 

devices per array, the plant would feed around 1050 houses. Examples apart, this might be 

the main issue in the prospective stages, with this energy outputs this technology is not yet 

economically viable in the Mediterranean Sea.  

To increase energy outputs a major increase of the average annual power outputs has to be 

achieved since the energetic regime of the Mediterranean Sea is as it. This is also achieved by 

spreading the high capture width and efficiency values of the devices over the wave climate 

regime of the Mediterranean Sea towards more energetic regimes. 

The average full load hours and the capacity factor are strictly related, the latter is much 

more interesting than the former when drawing conclusions, so let’s focus on it.  Although its 

value, 36,83% for the cylinder, can still be increased this is also a magnificent result, in 

comparison with the capacity factor of other devices, which prototypes are currently being 

tested throughout the oceans, the performance of the cylindrical devices is a complete 

success. Devices like the Aquabuoy, the AWS and the Pelamis have capacity factors of around 

5% in the same wave climate conditions. 

Once the main conclusions have been drawn, they need to be applied in the next stages in the 

developing process of the design of a Wave Energy Converter. The next logical step will 

consist in the design of a three dimensional model of the floating body, to achieve more 

realistic results and optimization, a very common way to improve the performance of a 

floating body is to attach to it a deeply submerged body, by doing that the added mass is 

increased but the radiation damping coefficient remains barely untouched and as a 

consequence, the resonance frequency increases improving the power absorption. An 

example of that is illustrated in figure 6.1: 



6CONCLUSIONS 

104 

 
Figure 6.1: Deeply submerged body attached to the floating body to increase the resonance 

frequency. 

 

Once the performance of the three dimensional device has been fully optimized the next step 

is to optimize the performance of the electric linear generator. In this work the linear 

generator used has not been designed for the wave climate regimes given in the 

Mediterranean Sea and, although its performance is acceptable enough, for sure that can also 

be optimized and thus, increasing the energy output.  When all devices that compose a Wave 

Energy Converters have already been optimized the subsequent step is to introduce phase-

control to increase even more the resonance frequency and improve the energy extraction. 

The phase-control commonly used in point absorber devices is called latching. Latching 

consist in holding the device in both extremes, top and bottom, and maintaining the devices 

blocked at these position for a certain period of time and them letting them off suddenly, 

once the device is free is forced to occupy its natural position as fast as possible resulting in 

high motion amplitudes and velocities and thus, increasing the energy output. 

When all these stages will be accomplished, the next step will be leaving the office work to 

start the field work and develop a reduced scale prototype and figure out if the simulated 

behavior of the Wave Energy Converter corresponds with the behavior of the scaled 

prototype. When the desired results will be achieved will be time to build the full scale 

prototype and deploy it into open seas. The full scale prototype will have to be working for 

several years in order to verify that its behavior in all the possible situations is the desired 

one. After the testing stage, the only remaining stage is what is usually called the commercial 

stage when the device will produce energy and deliver it to the national grid during its 

lifespan. 
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APPENDIX A:  
MATLAB CODES                                            

A.1. MAIN SCRIPTS 

A.1.1 Sim_WEC.m 

This code calculates: 

• The Spring Coefficients 
• The Power Matrixes of the devices. 

 
clear all 
close all 
clc 
  
load KS.txt 
load KC.txt 
  
%%%%% The buoys displacement is refered at the top part of the buoys 
surface,  
%%%%% so if the displacement=0 the whole buoy is submerged, if 
%%%%% displacement=D the whole buoy is emerged. 
P_rms_S=zeros; 
P_rms_C=zeros; 
P_avg_S=zeros; 
P_avg_C=zeros; 
  
  
Ti=[2 3 4 5 6 7 8 9 10];% Wave Period's array 
Hi=[0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6]; %Wave Height's array 
 
Cdc=1.55; %Drag Coefficient 
Cds= [0.24 0.34 0.33 0.27 0.18 0.095 0.05 0.04 0.03]; 
Cac= [1.99 1.96 1.93 1.89 1.85 1.81 1.77 1.74 1.7 1.67 1.62 1.58]; 
%%Added Mass Coefficient 
Cas= [0.425 0.64 0.72 0.78 0.82 0.825 0.81 0.79 0.79]; 
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% Parametri del modello 
Re=[1.5 1] ; %External Radius m 
Ri=[1.485 0.85]; %Internal Radius m 
rho=1025;%ocean water density kg/m3 
Ve(1)=4/3*pi*(Re(1)^3); 
Ve(2)=pi*Re(2)^2*4; % External Volume m3 
Vi(1)=4/3*pi*(Ri(1)^3); 
Vi(2)=3.70*pi*(Ri(2)^2); % Internal Volume m3 
V(1)=Ve(1)-Vi(1); 
V(2)=Ve(2)-Vi(2); % PVC Volume m3 
PPVC= 14000; %Bouy Material Specific Weight (PVC) N/m3 
Pg(1)=V(1)*PPVC; 
Pg(2)=V(2)*PPVC;% Spheres Weigth 
Paggiu=0; % External Elements Weight N 
Area(1)=((Re(1)^2)*pi); 
Area(2)=((Re(2)^2)*pi);% Maximums buoy surface section 
  
  
rho_trans= 4700;            %Ferrite Density [kg/m^3] Material of 
Translator. 
trans_length= 5.425;        % Length of the translator [m] 
trans_width= 0.3-0.002;     %Width of the translator [m] 
trans_area=trans_width^2; 
trans_volume= trans_area*trans_length; 
M= trans_volume*rho_trans;  %Total Translators Mass kg 
m_trans=M; 
  
  
g=9.80665; % gravity m/s2 
  
%%%%%MASS%%%%% 
mg_n(1) = (Pg(1)/g); % Mass of the sphere kg 
mg_n(2) = (Pg(2)/g); 
  
%%%%%LINEAR GENERATOR PARAMETERS%%%%% 
  
Bt=1.55;      %Magnetic Field in tooth [T] 
wt=8*10^-3;   %Tooth width [m] 
d=0.4;        %Width of Stator Side [m] 
p=100;        %Numero di Poli 
q=6/5;        %Winding ratio [slots/(pole, phase) 
ci=6;         %Number of cables per slot 
wp=0.1;       %Pole pair width [m] 
L=11.5*10^-3; %generator inductance [H] 
Rc=0.3735;    %Generator resistance [ohm] 
Rload=3.1;    %Load resistance [ohm] 
eff=0.791;    %efficiency 
cont=1; 
 
  
%%%%%ODES SIMULATION PARAMETERS%%%%% 
  
Fs=0.0005;    %Sampling Period [s] 
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tspan = [0 30];% Simulation Timespan [s] 
y0s = [2.49 0.001]; 
y0c = [1.69 0.001];   % Initial Conditions 
  
[Farcs,Farcc,Pss,Psc]=archimede(Pg,Vi,Re); 
for ii=1:length(Hi) 
    for jj=1:length(Ti) 
        Ks=KS(jj,ii); 
        Kc=KC(jj,ii); 
         
%%%%SIMULATION LOOPS FOR DIFFERENT WAVE HEIGHTS AND PERIODS%%%%% 
for he=1:length(Hi); 
  
A=Hi(he)/2;     
pe=1; 
H=2*A; 
  
m_ad_g(2)=Cac(pe)*mg_n(2); %Added Mass kg 
mg_Tot(2)=m_ad_g(2)+mg_n(2)+m_trans; %Total WEC Mass kg 
  
for pe=1:length(Ti); 
  
T=Ti(pe); 
omega = 2*pi/T; %Forcing Wave Frequency 
  
c(1)=0.5*rho*Cds(pe)*Area(1); %Drag Force  
c(2)=0.5*rho*Cdc*Area(2); %Drag Force  
m_ad_g(1)=Cas(pe)*mg_n(1); %Added Mass kg 
  
mg_Tot(1)=m_ad_g(1)+mg_n(1)+m_trans; %Total WEC Mass kg 
  
  
m=mg_Tot; %Total Mass 
time=(0:Fs:30)'; 
  
  
  
%%%%%IMPLEMENTATION OF THE WEC MODEL VIA ODE%%%%%% 
  
options = odeset('RelTol',1e-10,'AbsTol',1e-10); 
[ts,sols]=ode15s('ciambS',tspan,y0s,options,m(1),c(1),A,omega,Bt,wt,
d,p,q,ci,wp,L,Rc,Rload,eff,Farcs,Pss,Ks); 
[tc,solc]=ode15s('ciambC',tspan,y0c,options,m(2),c(2),A,omega,Bt,wt,
d,p,q,ci,wp,L,Rc,Rload,eff,Farcc,Psc,Kc); 
  
sol_inters=zeros(length(time),2); 
sol_inters(:,1)=interp1(ts,sols(:,1),time); 
sol_inters(:,2)=interp1(ts,sols(:,2),time); 
  
sol_interc=zeros(length(time),2); 
sol_interc(:,1)=interp1(tc,solc(:,1),time); 
sol_interc(:,2)=interp1(tc,solc(:,2),time); 
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eta=A*sin(omega*time); 
  
%%%%%RESULTS SAVING FOR SPHERE%%%%% 
risultati=[time((30/Fs-Ti(pe)/Fs):30/Fs) sol_inters((30/Fs-
Ti(pe)/Fs):30/Fs,1) sol_inters((30/Fs-Ti(pe)/Fs):30/Fs,2) 
eta((30/Fs-Ti(pe)/Fs):30/Fs)]; 
  
[p_elrmsS,avg_powerS,P_elS,~,~, f_mag_S, ~, force_S, ~, Fs] = PTO 
(H,T,Fs,risultati(:,2), risultati(:,3),tspan); 
  
P_avg_S(pe,he)=avg_powerS; 
  
%%%%%RESULTS SAVING FOR CYLINDER%%%%% 
time=(0:Fs:30)'; 
risultati=[time((30/Fs-Ti(pe)/Fs):30/Fs) sol_interc((30/Fs-
Ti(pe)/Fs):30/Fs,1) sol_interc((30/Fs-Ti(pe)/Fs):30/Fs,2) 
eta((30/Fs-Ti(pe)/Fs):30/Fs)]; 
  
[p_elrmsC,avg_powerC,P_elC,Y,harm, f_mag_C, pos, force_C, time, Fs] 
= PTO (H,T,Fs,risultati(:,2), risultati(:,3),tspan); 
  
P_avg_C(pe,he)=avg_powerC; 
  
  
clear ts 
clear tc 
clear sols 
clear solc 
clear eta 
percent=(cont/11664)*100 
cont=cont+1; 
end 
end 
  
  
filename= ['P_avg_S_ks_H=' num2str(Hi(ii)) '_T=' num2str(Ti(jj)) 
'.txt']; 
  
save (filename, 'P_avg_S','-ascii') 
  
filename= ['P_avg_C_kc_H=' num2str(Hi(ii)) '_T=' num2str(Ti(jj)) 
'.txt']; 
  
save (filename, 'P_avg_C', '-ascii') 
    end 
end 
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A.1.2 Energy_Production.m 

Calculates the energy output, power output, full load hours and capacity factor of the devices 

with real sea state’s data. 

 

clc 
clear all 
 
%Inputs 
station = questdlg('Select the 
station','Station','Alghero','Mazara','Alghero'); 
filename = [station '_all_years_y_Hs_Tp_dt.txt']; %column1 = year; 
column2 = Hs; column3 = Tp; column4 = dt 
input = load(filename); 
 
if station(1:3) == 'Alg' 
    years = [1990; 1991; 1992; 1993; 1994; 1995; 1996; 1997; 1998; 
1999; 2000; 2001; 2002; 2003; 2007; 2010; 2011]; 
else 
    years = [1990; 1991; 1992; 1993; 1994; 1995; 1996; 1997; 1998; 
1999; 2000; 2001; 2002; 2003; 2011]; 
end 
 
device = questdlg('Select the 
device','Device','PM_S_A','PM_S_M','PM_C_M','PM_C_M'); 
filename = [device '.txt']; 
matrix = load(filename);    % Power matrix 
Ts = matrix(1,2:size(matrix,2)); % Ts [s] 
Hs = matrix(2:size(matrix,1),1); % Hs [m] 
Pe = matrix(2:size(matrix,1),2:size(matrix,2));  %Electric power 
[kW/m] 
 
fprintf('\nStation = %s\n', station); 
fprintf('Device = %s\n', device); 
 
%Calculations (Device power and Energy production) 
P = zeros(length(input),1); E=P; 
for i = 1:length(input) % for each registraton 
if input(i,3)>0 % if Tp>0 
if ( (input(i,3)*0.95)>=Ts(1) && (input(i,3)*0.95)<=Ts(length(Ts)) 
&& input(i,2)>=Hs(1) && input(i,2)<=Hs(length(Hs)) ) 
            P(i) = interp2(Ts,Hs,Pe,(input(i,3)*0.95),input(i,2));  
% power [kW] (bilinear interpolation) 
            E(i) = P(i)*input(i,4); %Energy production [kWh] 
end 
end 
end 
Flh = P * 365*24 /max(max(Pe)); %Full load hours 
Cf = P / max(max(Pe)); % Capacity factor [%] 
output1 = [P E Flh Cf]; 
filename = [station '_' device '_P_E_Flh_Cf.txt']; 
save(filename, 'output1', '-ascii'); 
fprintf('\nEnd\n'); 
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%Calculations (Annual values) 
annual_EP = zeros(length(years),1); 
for k = 1:length(years) %for each year 
    [a,b] = find(input(:,1) == years(k)); 
    annual_EP(k) = sum(E(a,1))/sum(input(a,4))*365*24/1000;  % 
Annual energy production [MWh] 
end 
annual_MP = annual_EP/365/24 * 1000; %Annual mean device power [kW] 
annual_Flh = annual_MP * 365*24 /max(max(Pe)); %Full load hours 
annual_Cf = annual_MP / max(max(Pe)); % Capacity factor [%] 
output = [years annual_EP annual_MP annual_Flh annual_Cf]; 
filename = [station '_' device '_year_AEO_P_Flh_Cf.txt']; 
save(filename, 'output', '-ascii'); 
 
 

A.1.3 optimization.m 

clear all 
close all 
clc 
  
dati_al= load( 'Alghero_all_years_y_Hs_Tp_dt.txt'); 
dati_ma= load ( 'Mazara_all_years_y_Hs_Tp_dt.txt'); 
Alghero_wave_clim= load ('Alghero_wave_clim.txt'); 
Mazara_wave_clim= load('Mazara_wave_clim.txt'); 
KC= load ('KC.txt'); 
KS=load ('KS.txt'); 
max1=0; 
max2=0; 
max3=0; 
max4=0; 
K_Cf_C=zeros; 
K_Cf_S=zeros; 
cont=1; 
  
Ti=[2 3 4 5 6 7 8 9 10];% Wave Period's array 
Hi=[0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6]; %Wave Height's array 
  
for ii=1:length(Hi) 
    for jj=1:length(Ti) 
     
    filename= ['P_avg_C_kc_H=' num2str(Hi(ii)) '_T=' num2str(Ti(jj)) 
'.txt']; 
    P_mat_Ca= load(filename); 
  
    filename= ['P_avg_S_ks_H=' num2str(Hi(ii)) '_T=' num2str(Ti(jj)) 
'.txt']; 
    P_mat_Sa= load (filename);  
     
    [P_mat_C, P_mat_S]= formats(P_mat_Ca,P_mat_Sa); 
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[perf_C_al,perf_C_al_y]=Energy_Production_Alghero(P_mat_C,dati_al); 
    
[perf_C_ma,perf_C_ma_y]=Energy_Production_Mazara(P_mat_C,dati_ma); 
    
[perf_S_al,perf_S_al_y]=Energy_Production_Alghero(P_mat_S,dati_al); 
    
[perf_S_ma,perf_S_ma_y]=Energy_Production_Mazara(P_mat_S,dati_ma); 
     
    Cf_C_al=mean(perf_C_al_y(:,5)); 
    Cf_C_ma=mean(perf_C_ma_y(:,5)); 
    Cf_S_al=mean(perf_S_al_y(:,5)); 
    Cf_S_ma=mean(perf_S_ma_y(:,5)); 
     
    if Cf_C_al > max1 
        max1=Cf_C_al; 
        opt_cond_C_al=[Hi Ti]; 
        def_perf_C_al=perf_C_al; 
        def_perf_C_al_y=perf_C_al_y; 
        P_mat_C_al=P_mat_Ca; 
    else 
    end 
     
    if Cf_C_ma > max2  
        max2=Cf_C_ma; 
        opt_cond_C_ma=[Hi Ti]; 
        def_perf_C_ma=perf_C_ma; 
        def_perf_C_ma_y=perf_C_ma_y; 
        P_mat_C_ma=P_mat_Ca; 
    else 
    end 
     
    if Cf_S_al > max3 
        max3=Cf_S_al; 
        opt_cond_S_al = [Hi Ti]; 
        def_perf_S_al=perf_S_al; 
        def_perf_S_al_y=perf_S_al_y; 
        P_mat_S_al=P_mat_Sa; 
    
    else 
    end 
     
    if Cf_S_ma > max4 
        max4=Cf_S_ma; 
        opt_cond_S_ma= [Hi Ti]; 
        def_perf_S_ma=perf_S_ma; 
        def_perf_S_ma_y=perf_S_ma_y; 
        P_mat_S_ma=P_mat_Sa; 
    else 
    end 
     
    K_Cf_C(cont,1)=KC(jj,ii); K_Cf_C(cont,2)=Cf_C_al; 
K_Cf_C(cont,3)=Cf_C_ma; 
    K_Cf_S(cont,1)=KS(jj,ii); K_Cf_S(cont,2)=Cf_S_al; 
K_Cf_S(cont,3)=Cf_S_ma; 
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    percent= (cont/108)*100 
    cont=cont+1; 
     
    end 
     
end 
  
[Eff_C_A,Eff_C_M,Eff_S_A,Eff_S_M,CW_C_A,CW_C_M,CW_S_A,CW_S_M] = 
efficiencies(P_mat_C_al,P_mat_C_ma,P_mat_S_al,P_mat_S_ma); 
%results(P_mat_C_al,P_mat_C_ma,P_mat_S_al,P_mat_S_ma,def_perf_C_al_y
,def_perf_C_ma_y,def_perf_S_al_y,def_perf_S_ma_y,K_Cf_C,K_Cf_S); 
  
filename= 'K_Cf_C.txt'; save(filename, 'K_Cf_C','-ascii'); 
filename= 'K_Cf_S.txt'; save(filename, 'K_Cf_S','-ascii'); 
  
filename= 'PM_C_A_opt.txt'; save (filename, 'P_mat_C_al','-ascii') 
filename= 'PM_C_M_opt.txt'; save (filename, 'P_mat_C_ma','-ascii') 
filename= 'PM_S_A_opt.txt'; save (filename, 'P_mat_S_al','-ascii') 
filename= 'PM_S_M_opt.txt'; save (filename, 'P_mat_S_ma','-ascii') 
  
filename= 'Eff_C_A.txt'; save (filename, 'Eff_C_A','-ascii') 
filename= 'Eff_C_M.txt'; save (filename, 'Eff_C_M','-ascii') 
filename= 'Eff_S_A.txt'; save (filename, 'Eff_S_A','-ascii') 
filename= 'Eff_S_M.txt'; save (filename, 'Eff_S_M','-ascii') 
  
filename= 'CW_C_A.txt'; save (filename, 'CW_C_A','-ascii') 
filename= 'CW_C_M.txt'; save (filename, 'CW_C_M','-ascii') 
filename= 'CW_S_A.txt'; save (filename, 'CW_S_A','-ascii') 
filename= 'CW_S_M.txt'; save (filename, 'CW_S_M','-ascii') 
  
filename= 'Perf_C_A_P_E_Flh_Cf.txt'; save (filename, 
'def_perf_C_al','-ascii') 
filename= 'Perf_C_M_P_E_Flh_Cf.txt'; save (filename, 
'def_perf_C_ma','-ascii') 
filename= 'Perf_S_A_P_E_Flh_Cf.txt'; save (filename, 
'def_perf_S_al','-ascii') 
filename= 'Perf_S_M_P_E_Flh_Cf.txt'; save (filename, 
'def_perf_S_ma','-ascii') 
  
filename= 'Mean_annual_Perf_C_A_year_AEO_P_Flh_Cf.txt'; save 
(filename, 'def_perf_C_al_y','-ascii') 
filename= 'Mean_annual_Perf_C_A_year_AEO_P_Flh_Cf.txt'; save 
(filename, 'def_perf_C_al_y','-ascii') 
filename= 'Mean_annual_Perf_S_A_year_AEO_P_Flh_Cf.txt'; save 
(filename, 'def_perf_S_al_y','-ascii') 
filename= 'Mean_annual_Perf_S_M_year_AEO_P_Flh_Cf.txt'; save 
(filename, 'def_perf_S_ma_y','-ascii') 
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A.2. FUNCTIONS 

A.2.1 Archimede.m 

Computes the Buoyancy Forces. 

 

function [Farcs,Farcc,Pss,Psc]=archimede(Pg,Vi,Re) 
 
Vols=zeros; 
Fgals=zeros; 
Farcs=zeros; 
Volc=zeros; 
Fgalc=zeros; 
Farcc=zeros; 
i=1; 
 
for h=0:0.1:2*Re(1) 
 
    Vols(i)=(4/3*pi*Re(1)^3)-(pi/6*h^2)*(3*(2*Re(1)-h)+h); %Sphere 
 
    Fgals(i)=Vols(i)*9.80665*1025; 
 
    Pss= Pg(1)+ Vi(1)*1.2041*9.8066558380; %Sphere 
 
    Farcs(i)=Fgals(i)-Pss; 
 
    i=i+1; 
end 
 
i=1; 
 
for h=0:0.1:4 
 
    Volc(i)= pi*Re(2)^2*4-pi*Re(2)^2*h; %Cilinder 
 
Fgalc(i)=Volc(i)*9.80665*1025; 
 
    Psc= Pg(2)+ Vi(2)*1.2041*9.8066558380; %Cylinder 
 
    Farcc(i)=Fgalc(i)-Psc; 
 
    i=i+1; 
end 
 

 



A:  MATLAB CODES 

120 

A.2.2 CiambC.m 

ODE solver for the cylindrical device. 

 

function dydt = ciambC(t,y,varargin) 
m = varargin{2}; c = varargin{3}; 
A = varargin{4}; omega = varargin{5};  
Bt=varargin{6}; wt=varargin{7}; 
d=varargin{8};p=varargin{9}; 
q=varargin{10}; ci=varargin{11}; 
wp=varargin{12}; L=varargin{13}; 
Rc= varargin{14}; Rload=varargin{15}; 
eff= varargin{16}; Farcc=varargin{17}; 
Psc=varargin{18}; Kc=varargin{19}; 
 
ssp=A*omega*cos(omega*t); 
ss=A*sin(omega*t); 
%%ODE model equation%%% 
dydt=[y(2);(((c*((ssp)-(y(2)))*abs(((ssp))-
(y(2))))+interpolazione_cilindro((max(0,(y(1))-(ss))),Farcc,Psc)-
LIN_GEN(y,Bt,wt,d,p,q,ci,wp,L,Rc,Rload,eff)-Kc*y(1))/m)]; 
 

A.2.3 CiambS.m 

ODE sovler for the spherical device. 

 

function dydt = ciambS(t,y,varargin) 
m = varargin{2}; c = varargin{3}; 
A = varargin{4}; omega = varargin{5};  
Bt=varargin{6}; wt=varargin{7}; 
d=varargin{8}; p=varargin{9}; 
q=varargin{10}; ci=varargin{11}; 
wp=varargin{12}; L=varargin{13}; 
Rc= varargin{14}; Rload=varargin{15}; 
eff= varargin{16}; Farcs=varargin{17}; 
Pss=varargin{18}; Ks=varargin{19}; 
 
ssp=A*omega*cos(omega*t); 
ss=A*sin(omega*t); 
%%ODE model equation%%% 
dydt=[y(2);(((c*((ssp)-(y(2)))*abs(((ssp))-
(y(2))))+interpolazione1((max(0,(y(1))-(ss))),Farcs,Pss)-
LIN_GEN(y,Bt,wt,d,p,q,ci,wp,L,Rc,Rload,eff)- Ks*y(1))/m)]; 
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A.2.4 interpolazione1.m 

Function that interpolates to obtain the exact buoyancy force for the spherical device. 

 

function [A]= interpolazione1(xi,Farc,Ps) 
 
 
%%%%INTERPOLATION OF THE EXCITING FORCE DEPENDING ON THE FLOATING 
LEVEL OF 
%%%%THE BUOY%%%%%%%%% 
if xi<=3 
x=[0 
0.100 
0.2 
0.300 
0.4 
0.500 
0.6 
0.700 
0.8 
0.900 
1 
1.100 
1.2 
1.300 
1.4 
1.500 
1.6 
1.700 
1.8 
1.900 
2 
2.100 
2.2 
2.300 
2.4 
2.500 
2.6 
2.700 
2.8 
2.900 
3]; 
 
 
 
A=interp1(x,Farc,xi,'linear','extrap'); 
 
else 
A=-Ps; 
end 
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A.2.5 interpolazione_cilindro.m 

Function that interpolates to obtain the exact buoyancy force for the spherical device. 

 

function [A]= interpolazione_cilindro(xi,Farc,Ps) 
 
 
%%%%INTERPOLATION OF THE EXCITING FORCE DEPENDING ON THE FLOATING 
LEVEL OF 
%%%%THE BUOY%%%%%%%%% 
if xi<=4 
x=[0 
0.100 
0.2 
0.300 
0.4 
0.500 
0.6 
0.700 
0.8 
0.900 
1 
1.100 
1.2 
1.300 
1.4 
1.500 
1.6 
1.700 
1.8 
1.900 
2 
2.100 
2.2 
2.300 
2.4 
2.500 
2.6 
2.700 
2.8 
2.900 
3 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4]; 
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A=interp1(x,Farc,xi,'linear','extrap'); 
else 
    A=-Ps; 
end 
 

A.2.6 LIN_GEN.m 

Computes the magnetic force generated by the linear generator. 

 

%%%%%LINEAR GENERATOR EQUATIONS USED IN THE ODE WEC MODEL%%%%%% 
function [f_pto] = LIN_GEN (y,Bt,wt,d,p,q,ci,wp,L,Rc,Rload,eff) 
 
 
freq= 2*pi*y(2)/wp; %Electric Angular Frequency 
Xs=freq*L; %Equivalent circuit impedance 
delta = atan(Xs/Rc); %Electric phase angle 
%Computing of the Generated Electric Field (Triphasic system)%%%     
ea=(2*pi*Bt*wt*d*p*q*ci/wp)*y(2)*sin((2*pi*y(1)/wp)-delta); 
eb=(2*pi*Bt*wt*d*p*q*ci/wp)*y(2)*sin((2*pi*y(1)/wp)-delta + degtorad 
(120)); 
ec=(2*pi*Bt*wt*d*p*q*ci/wp)*y(2)*sin((2*pi*y(1)/wp)-delta + 
degtorad(-120)); 
%Computing of the equivalent circuit currents% 
cua=ea*cos(delta)/(Rc + Rload); cub= eb*cos(delta)/ (Rc + Rload); 
cuc=ec*cos(delta)/(Rc + Rload); 
%Computing of the equivalent circuit tension% 
ua= ea*cos(delta) - (Rc*cua); ub= eb*cos(delta) - (Rc*cub); uc= 
ec*cos(delta) - (Rc*cuc); 
%Computing of the generated power 
p_ela= ua*cua; p_elb= ub*cub; p_elc=uc*cuc; 
p_el=p_ela + p_elb + p_elc; 
p_mag=p_el/eff; 
%computing of the PTO force% 
f_pto= p_mag/y(2); 
 
if f_pto==0 
        f_pto=4e-12; 
else 
end 
 
if f_pto>1e10 
        f_pto=4e-12; 
else 
end 
 
end 
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A.2.7 fou.m 

Calculates the magnetic force with only three harmonic components. 

 

function [Y,force,harm]= fou (f_mag, time, Fs) 
 
 
[Y, freq] = positiveFFT(f_mag,Fs); 
 
spettro_polare= [abs(Y); radtodeg(angle(Y));freq]'; 
spett_ord=sortrows(spettro_polare); 
 
harm.one.freq=spett_ord(length(spett_ord),3); 
harm.one.amp=2*spett_ord(length(spett_ord),1); 
harm.one.phase =spett_ord(length(spett_ord),2); 
 
harm.two.freq=spett_ord(length(spett_ord)-1,3); 
harm.two.amp=2*spett_ord(length(spett_ord)-1,1); 
harm.two.phase =spett_ord(length(spett_ord)-1,2); 
 
harm.three.freq=spett_ord(length(spett_ord)-2,3); 
harm.three.amp=2*spett_ord(length(spett_ord)-2,1); 
harm.three.phase =spett_ord(length(spett_ord)-2,2); 
 
[force] = positiveiFFT(Y,harm,f_mag); 
 
 

A.2.8 linear generator.m 

Computes the instantaneous electric power absorbed by the device. 

 

function 
[p_elrms,curms,erms,avg_force,avg_power,eab,ea,eb,ec,cua,cub,cuc,p_e
l,p_mag,f_mag,v,time,x] = linear_generator( Bt, 
wt,d,p,q,ci,h,w,wp,L,eff,Rc,Rload,T,Fs,pos,vel,time) 
% x  = load; %load position from results 
% v  = load; %load velocity from results 
 
ea=zeros; 
eab=zeros; 
eb=zeros; 
ec=zeros; 
cua=zeros; 
cub=zeros; 
cuc=zeros; 
ua=zeros; 
ub=zeros; 
uc=zeros; 
p_el=zeros; 
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p_ela=zeros; 
p_elb=zeros; 
p_elc=zeros; 
p_mag=zeros; 
f_mag=zeros; 
v=zeros; 
i=1; 
x=zeros; 
 
 
for  i=1:length(vel) 
 
    freq= 2*pi*vel(i)/wp; %Electric Angular Frequency 
    Xs=freq*L; %Equivalent circuit impedance 
    delta = atan(Xs/Rc); %Electric phase angle 
 
%Computing of the Generated Electric Field (Triphasic system)%%%    
ea(i)=(2*pi*Bt*wt*d*p*q*ci/wp)*vel(i)*sin((2*pi*pos(i)/wp)-delta); 
    eb(i)=(2*pi*Bt*wt*d*p*q*ci/wp)*vel(i)*sin((2*pi*pos(i)/wp)-
delta+ degtorad(120)); 
    ec(i)=(2*pi*Bt*wt*d*p*q*ci/wp)*vel(i)*sin((2*pi*pos(i)/wp)-
delta+ degtorad(-120)); 
 
 
eab(i)=ea(i)*sqrt(3); 
 
%Computing of the equivalent circuit currents% 
cua(i)=ea(i)*cos(delta)/(Rc+Rload); 
    cub(i)=eb(i)*cos(delta)/(Rc+Rload); 
    cuc(i)=ec(i)*cos(delta)/(Rc+Rload); 
 
%Computing of the equivalent circuit tension% 
ua(i)= ea(i)*cos(delta)-Rc*(cua(i)); 
    ub(i)= eb(i)*cos(delta)-Rc*(cub(i)); 
    uc(i)= ec(i)*cos(delta)-Rc*(cuc(i)); 
 
%Computing of the generated power 
    p_ela(i) =  ua(i)*cua(i); 
p_elb(i) =  ub(i)*cub(i); 
    p_elc(i) =  uc(i)*cuc(i); 
 
    p_el(i) = p_ela(i) + p_elb(i) + p_elc(i); 
    p_mag(i)=p_el(i)/eff; 
 
 
 
 
%computing of the PTO magnetic force% 
f_mag(i)=p_mag(i)/(vel(i)); 
 
if f_mag(i)==0 
        f_mag(i)=4e-12; 
else 
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end 
 
if f_mag(i)>1e10 
        f_mag(i)=4e-12; 
else 
end 
 
   cont=i 
end 
 
%f_mag(1)=0; 
avg_power=mean(p_el); 
avg_force=mean(f_mag); 
erms= max(ea)/sqrt(2); 
urms=max(ua)/sqrt(2); 
curms=max(cua)/sqrt(2); 
p_elrms=urms*curms; 
end 
 

A.2.9 positiveFFT.m 

Computes the Fourier transform. 

 

function [X, freq ]= positiveFFT(x,Fs) 
 
N=length(x); 
k=0:N-1; 
T=N/(1/Fs); 
freq= k/T; 
X=fft(x)/N; 
 
cutOff = ceil (N/2); 
X=X(1:cutOff); 
freq=freq(1:cutOff); 
 

A.2.10 positiveiFFT.m 

Computes the inverse transfor of Fourier. 

 

function [X]= positiveiFFT(x,harm,f_mag) 
YY=zeros; 
for i=1:length(x) 
if 2*abs(x(i))>= harm.three.amp 
        YY(i)=x(i); 
else 
end 
end 
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XR=ifft(YY,length(f_mag)); 
X=real(XR)*2*length(f_mag); 
 
 
 

A.2.11 PTO.m 

Simulates the power take-off system behavior. 

 

%%PTO MODEL%%% 
function [p_elrms,avg_power,p_el,Y,harm,f_mag,pos, force,time, Fs ] 
= PTO (Height, Period, Fs,pos,vel,time) 
  
Bt=1.55;      %Magnetic Field in tooth [T] 
wt=8*10^-3;   %Tooth width [m] 
d=0.4;       %Width of Stator Side [m] 
p=100;       %Numero di Poli 
q=6/5;       %Winding ratio [slots/(pole, phase) 
ci=6;         %Number of cables per slot 
h=Height/2;       %wave amplitude [m] 
T=Period;         %Wave period [s] 
w=2*pi/T;    %wave frequency [rad/s] 
wp=0.1;      %Pole pair width [m] 
L=11.5*10^-3; %generator inductance [H] 
Rc=0.3735;    %Generator resistance [ohm] 
Rload=3.1;       %Load resistance [ohm] 
eff=0.791;     %efficiency 
  
  
%%LINEAR GENERATOR MODEL%%%% 
[p_elrms,~,~,~,avg_power,~,~,~,~,~,~,~,p_el,~,f_mag,~,~,~] = 
linear_generator ( Bt, 
wt,d,p,q,ci,h,w,wp,L,eff,Rc,Rload,T,Fs,pos,vel,time); 
  
  
%%FOURIER ANALYSIS%% 
[Y,force,harm]= fou (f_mag,time, Fs); 
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A.2.12 efficiencies.m 

Performs the post processing of the simulation data, extracting its efficiency and capture 

width values. 

function 
[Eff_C_alg,Eff_C_ma,Eff_S_alg,Eff_S_ma,CW_C_alg,CW_C_ma,CW_S_alg,CW_
S_ma]=efficiencies ( P_avg_C_alg, P_avg_C_ma, P_avg_S_alg, 
P_avg_S_ma) 
  
load Alghero_wave_clim.txt 
load Mazara_wave_clim.txt 
  
rho=1025; 
g=9.81; 
Ti=[2 3 4 5 6 7 8 9 10];% Wave Period's array 
Hi=[0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6]; %Wave Height'sarray 
Wave_Power=zeros; 
Eff_C_alg=zeros; 
Eff_C_ma=zeros; 
Eff_S_alg=zeros; 
Eff_S_ma=zeros; 
Clim_pow_al=zeros; 
Clim_pow_ma=zeros; 
L=zeros; 
k=zeros; 
omega=zeros; 
Wave_Energy_Flux=zeros; 
CW_C_alg=zeros; 
CW_C_ma=zeros; 
CW_S_alg=zeros; 
CW_S_ma=zeros; 
  
for i=1:length(Ti) 
    L(i)=g*Ti(i)/(2*pi); 
    k(i)=2*pi/L(i); 
    omega(i)=2*pi/Ti(i); 
    for j=1:length(Hi) 
        
Wave_Energy_Flux(i,j)=(rho*g*omega(i)*((Hi(j)/2)^2)/4*k(i))*((2*k(i)
*50+sinh(2*k(i)*50))/sinh(2*k(i)*50)); 
        Wave_Power(i,j)=(rho*(g^2)*(Hi(j)^2)*(Ti(i)/0.95)/64); 
        Eff_C_alg(i,j)=P_avg_C_alg(i,j)/(Wave_Power(i,j)*2); 
        Eff_C_ma(i,j)=P_avg_C_ma(i,j)/(Wave_Power(i,j)*2); 
        Eff_S_alg(i,j)=P_avg_S_alg(i,j)/(Wave_Power(i,j)*3); 
        Eff_S_ma(i,j)=P_avg_S_ma(i,j)/(Wave_Power(i,j)*3); 
        Clim_pow_al(i,j)=Wave_Power(i,j)*Alghero_wave_clim(i,j); 
        Clim_pow_ma(i,j)=Wave_Power(i,j)*Mazara_wave_clim(i,j); 
        CF_C_alg(i,j)=P_avg_C_alg(i,j)/Wave_Energy_Flux(i,j); 
        CF_C_ma(i,j)=P_avg_C_ma(i,j)/Wave_Energy_Flux(i,j); 
        CF_S_alg(i,j)=P_avg_S_alg(i,j)/Wave_Energy_Flux(i,j); 
        CF_S_ma(i,j)=P_avg_S_ma(i,j)/Wave_Energy_Flux(i,j); 
    end 
end 
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