
Renewable Energy Production Distribution Map

of Catalan Homes

by

Pau Pérez Fabregat

Jun 18, 2014

Thesis Supervisor
Carles Farré Tost

Department of Service and Information System Engineering. ESSI

Informatics Engineering

Universtiat Politècnica de Catalunya (UPC)
BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41808376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2



Renewable Energy Production Distribution Map of Catalan

Homes

by

Pau Pérez Fabregat

Department of Service and Information System Engineering. ESSI
on Jun 18, 2014

Informatics Engineering

Abstract

Recent development in web technology and infrastructure services together with en-
hancements in microcontrollers and hardware devices enable the implementation of
cheaper IT systems. This enable research centers to build powerful and affordable
infrastructures that can ease their work. This is particularly for The Center for Eco-
logical Research and Forestry Applications (CREAF) which is geared towards the
creation of new methodological tools in the field of the terrestrial ecology. The up-
coming idea of the sensor web – led by the Open Geospatial Consortium (OGC) –
offers a new way to obtain data on a more interoperable basis.

The aim of this thesis is to implement a first prototype of a larger project whose
goal is to provide a system that enables monitoring the distribution of renewable en-
ergy produced in Catalan homes in real-time. A thorough research evaluates the avail-
able technologies and lays the foundation of the further development of the project.
Through an asynchronous messaging queue the system provides a loosely coupled
architecture that enables its scalability. A simple single-page web application offers
a real-time data visualization of the data generated by sensor simulators which allow
the evaluation of the system while the physical sensor devices are not implemented
yet.

3



4



Contents

1 Introduction 9

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Iterative Development . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Test-Driven Development . . . . . . . . . . . . . . . . . . . . 12

2 Analysis 15

2.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Schedule Constraints . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Budget Constraints . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Scope of the Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Non-functional Requirements . . . . . . . . . . . . . . . . . . 20

3 Specification 25

3.1 Use Case Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5



4 Technology research 33

4.1 Public Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Client devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Relational DBMSs . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 NoSQL Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Real-Time in Distributed Systems . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 HTML5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Real-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Design 47

5.1 Physical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Logical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Messaging Queue . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.3 Sensor Observation Service . . . . . . . . . . . . . . . . . . . . 53

5.2.4 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.5 Web Application . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Implementation 63

6.1 Development environment setup . . . . . . . . . . . . . . . . . . . . . 63

6.2 CLI commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 AMQP Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Sinatra’s DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Data Joins in D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 Server-Sent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6



7 Infrastructure 73

7.1 Amazon AWS setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Performance Testing 81

8.1 Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Sensor Observation Service . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Project Management 101

9.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10 Conclusions 109

10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A Instruction Manual 113

A.1 Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 CLI Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.3 Sensor Observation Service . . . . . . . . . . . . . . . . . . . . . . . . 118

7



8



Chapter 1

Introduction

The Center for Ecological Research and Forestry Applications (CREAF) is a public

research institution that was created in 1987. The members of the Governing Council

of CREAF are the Generalitat of Catalonia, the Autonomous University of Barcelona

(UAB), University of Barcelona (UB), the Institute for Research and Technology

(IRTA), the Institute of Catalan Studies (IEC) and the Spanish National Research

Council (CSIC).

Its objective is to generate knowledge and create new methodological tools in

the field of terrestrial ecology in order to improve environmental planning and man-

agement in rural and urban areas with special emphasis on forest ecology. This

is achieved, among other means, through the development of methodological and

conceptual tools designed to facilitate decision-making and improve environmental

management.

Since its creation, CREAF has made very important contributions to the field of

terrestrial ecology and towards a sustainable management of the environment. This

has been achieved through research, development, training and technology transfer.

Some of its most relevant contributions include the design and implementation of the

Ecological and Forest Inventory of Catalonia (EFIC), innovative at the international

level due to the incorporation of new ecological parameters, the production of the

Land Cover Map of Catalonia (MCSC), a high-resolution digital map for environ-

mental assessment and territorial planning and management and the development of

9



the MiraMon©Geographic Information System, widely adopted in Catalan adminis-

tration and currently used in over thirty countries around the world.

1.1 Motivations

The motivation for this master’s thesis stems from the idea that the wide development

of web technologies, DevOps and infrastructure services make possible the implemen-

tation of powerful systems with significant cuts on budget and maintenance costs.

Moreover, these technologies often entail considerable improvements in maintainabil-

ity, performance and reduced complexity.

I am firmly convinced that these technologies and tools can improve research in

centres such as CREAF, providing them with better and affordable infrastructures

reducing the timespan of common processes. Furthermore, they provide new means

for the dissemination of the resulting data.

Nonetheless, I think that computer engineering should be conceived as a tool to

push forward the development of other sciences. As recently graduated engineers we

can contribute back to society with our knowledge in an attempt to solve problems

that benefit us all. Hence, I wish to develop a project in which the outcome could

improve the work of public research centres thus making it a useful tool.

Given the interest aroused in topics like distributed computing, sensor networks

and resilience systems during in my recent stay in University of Antwerp, I am eager

to expand my knowledge further and apply them in a real-world use case.

Within the context of volunteered geographic information (VGI) and renewable

energies, CREAF wants to solve the problem of ascertaining the distribution of renew-

able energy produced in Catalan homes. Nowadays, its performance, time evolution

and distribution is unknown thus complicating the decision-making process regarding

renewable energy sources in Catalonia.

On the other hand, CREAF wishes to expand its methodological tools by adopting

sensor web. The reduced cost of hardware devices like Raspberry Pi and Arduino and

their general-purpose features make them an affordable and versatile solution as sensor

10



devices. Their considerable computational power also facilitates the development of

service clients in widely adopted languages. For these reasons, CREAF plans to

deploy its own sensor devices in natural surroundings in the near future.

Although CREAF already took some design decisions, the architecture of the

system and the software the devices would be shipped with were still to be determined.

Given the mutual interest in the project outlined by CREAF, we set out to design

and implement a prototype as a first working solution.

1.2 Project Goals

The Renewable Energy Production Distribution Map of Catalan Homes (REDCH) is

aimed at developing a system that offers features to registered users who freely share

their data as well as other publicly available features. It will visualize the energy

production of the clients system and its contribution to the whole Catalan renewable

energy production in a real time map, while offering a private analytics dashboard to

registered users where they can figure out the actual performance of their system.

Given the extent of the desired product with this thesis we wish to develop a

proof of concept – a distributed computing system that will provide essential features,

being a simple but functional prototype of the final product. Once built, the system

results and metrics will be evaluated and its architecture may eventually become the

standard infrastructure basis for future CREAF projects that demand sensor data.

As a consequence, all features for registered users are out of the scope.

To sum up, these two general objectives are translated into the following specific

goals:

• Provide a command-line interface which allows for the simulation of sensor

functionality

• Develop a functional system that stores and processes sensor observations

• Implement a simple public web application to display the observations in a real

time map

11



1.3 Methodology

1.3.1 Iterative Development

Although advocating agile software methodologies, the concept-proof nature of the

thesis – which is developed by just one person – make them an unsuitable choice. We

opt instead for a custom adaptation of iterative development.

In conjunction with incremental development, Iterative development is a way of

breaking down the development of a software system into smaller chunks and repeated

cycles. In each cycle, known as iteration, the slice of functionality is designed, devel-

oped, tested, deployed and evaluated. This allows software developers to apply the

knowledge acquired in previous iterations, so the first implementation whose goal is

to build a bare minimal functional system is iteratively enhanced so as to meet the

requirements.

Nevertheless, iterative and incremental development are the basis for Agile De-

velopment. Therefore, by adhering to these two practices, we attempt to avoid the

agile practices and constraints that may be pointless in this case. Doing so, we aim to

progressively enhance the codebase in subsequent iterations, gain insight into the ar-

chitecture and improve any weak points we may identify until eventually meeting the

requirements. Additionally, early results can be achieved and evaluated by CREAF

resulting in a smoother collaboration.

1.3.2 Test-Driven Development

The chosen methodology also includes Test-Driven Development (TDD), which is a

developer practice that involves writing tests before writing the code to be tested. The

initially failed test defines the behaviour of the code to be written, then the developer

writes the minimum amount of code required to pass the test. Once it passes, it is

time to refactor it to remove any duplication. This cycle must be repeated as many

times as required to further extend the responsibilities of the code.

Besides validating the correctness of the code, by running the design through test

12



cases the developer is mainly concerned with the interface of the program rather than

its actual implementation.

What we aim for by using TDD in this project is to obtain a more modularized,

maintainable, and extensible code. The development of the software in small units

leads to smaller, more focused and loosely coupled classes and cleaner interfaces. The

main benefit we may get by this means, however, is a greater level of confidence in

the code caused by the fact that all code written is covered by at least one test.

Additionally, in this early stage of the project to have a test-covered code is

basic practice for the successful evolution of the project. So it can be ensured that

the intended behaviour is kept and any defects are caught early in the development

process and therefore has a considerably less impact on costs than in later stages.

13



14



Chapter 2

Analysis

2.1 Stakeholders

There are four distinguished groups of stakeholders which will be affected by the

outcome of this project. These are summarized as follows.

Users These are the clients of the product and producers of the data that feeds the

system. They will provide the data gathered from their solar panels or wind mills to

the system. To that end, they are responsible for keeping the sensor device working

under the required conditions.

CREAF This research center is the client of the project and the product owner.

The staff in charge of the project is responsible for ensuring that the software and

hardware of the sensor devices is updated as needed and for the maintenance of the

system. In addition, CREAF must also provide and approve any required funding

and infrastructure, as well as monitor the progress of the project.

Decision makers Politicians and any person responsible for decisions that may

affect the future of renewable energies in Catalonia. They will use the system as a

basis for decisions concerning renewable energy production in Catalonia.

15



Green activists They act as a pressure group disseminating the system in their

regular campaigns.

2.2 Constraints

2.2.1 Schedule Constraints

Description The project shall be finished by June 2014.

Rationale This project will be delivered as a MS Thesis and must be completed

before its presentation at the end of June 2014.

2.2.2 Budget Constraints

Development Constraint

Description The project shall be developed by one engineer.

Rationale Since there is no budget assigned to the project, it must be developed by

the author of this MS Thesis within the time specified in 2.2.1.

Infrastructure Constraint

Description The system’s prototype must not involve any cost.

Rationale Due to the lack of budget the project must opt for free services and

solutions.

2.3 Scope of the Product

As already outlined in 1.2 this MS Thesis is part of a larger project. Given the

constraints enumerated in 2.2 the said MS Thesis aims to build the foundation for

the further development of the project, focusing on its core features. By doing so,

we will be able to draw conclusions and plan the further development of the project

16



accordingly. Thus, aspects such as the hardware of the sensor device, its distribution

among the users or the building of the complete web application fall beyond the scope

of this MS Thesis. Therefore, the system will be made up of the following three parts.

Firstly, a sensor simulator that will allow to use the system as if the sensor were

already developed. To that end, the simulator will provide a Command Line Interface

(CLI) to allow seamless interaction with the system. It will cover the essential use

cases for the system to work leaving others out of the scope.

Secondly, a distributed system will process and store the observations generated

from the simulators. Eventually, the same system will deal with real observations

from the sensor devices. Additionally, it will provide a web interface to manage the

sensors and observations as well as the system’s settings.

Finally, a simple publicly accessible web application will display these observations

in a real-time map. This application will enable to explore the possibilities of a

complete Software-as-a-Service (SaaS) by providing insight into the complexities and

requirements of building such service.

The scope of the project is formalized through the following features:

• Register simulators as sensors in the system

• Store observations generated from the simulator

• Change the data storage configuration

• Query the stored data

• Clear the stored data

• Show observations in real-time on a map

2.4 Requirements

These requirements have been obtained by means of some meetings with the CREAF

researcher in charge of the project.

17



Even though the terms sensor and simulator may be used interchangeably as

explained above, we use the former in the requirements below to keep consistency

throughout this Thesis.

2.4.1 Functional Requirements

Requirement Insert Sensor

Description: The system shall register the sensors that interact

with it.

Rationale: The observations within the system must be re-

lated to the producer sensor to know the location

of the phenomenon, and so the sensors must be

registered beforehand.

Requirement Insert Observation

Description: The system shall store the observation measured

by the sensors.

Rationale: The sensor observations must be stored into the

system in order to be queried.

Requirement Update data storage configuration

18



Description: The system shall enable changes in data storage

settings.

Rationale: The system must be independent of the parame-

ters of the underlying data storage and allow ad-

ministrators to update it.

Requirement Query data store

Description: The system shall allow queries over the stored

data.

Rationale: The system must allow administrators to query

all the raw data including the observations.

Requirement Clear data store

Description: The system shall allow clearance of all data stored.

Rationale: The system must allow administrators to clean

up all data stored in the system for maintenance

purposes.

Requirement Data visualization

19



Description: The system shall enable browse observations in a

real-time data visualization.

Rationale: Users must be able to browse the location of the

observations on a map in real time.

2.4.2 Non-functional Requirements

Usability

Requirement User-friendly

Description: The web application shall be easy to use by final

users.

Rationale: The users must be able to use the web application

by means of the User Interface (UI) without prior

learning.

Requirement Configurable CLI

Description: The simulator’s CLI shall enable configuration of

all its parameters.

Rationale: The simulator’s users must be able to choose the

service operation parameters in order to simulate

the sensors’ behaviour in different conditions.

20



Performance

Requirement Observations per hour

Description: The sensor’s simulators shall send at least 6 ob-

servations per hour.

Rationale: The simulators must be able to send at least 6

observation requests per hour to the system as

this amount is likely to be changed.

Requirement Real-time

Description: The system shall display a sensor’s observation

before its next one is received.

Rationale: Users must be able to see the observations in real-

time. Hence, the time to process and show an ob-

servation must be lower than the period between

receipt of observations.

Requirement Concurrency

Description: The system shall be reliable processing observa-

tions from at least 10 sensors.

21



Rationale: Although budget constraints do not allow to use

a full-featured infrastructure the system must be

able to deal with reasonable concurrency.

Requirement Scalability

Description: The system shall be scalable.

Rationale: It must be easy to scale the system in order to

handle higher loads with more sensors, more users

or both.

Interfaces to External Systems

Requirement Interoperability

Description: The system shall conform to OGC Sensor Obser-

vation Service (SOS).

Rationale: The system must offer its data using SOS in or-

der to be interoperable from other independent

systems.

Compliance

Requirement Licensing

22



Description: The system and all its components shall adhere to

Apache License.

Rationale: The system and all components of the final solu-

tion must adhere to Apache License to ensure that

all software is open-source.

23



24



Chapter 3

Specification

The following section describes what the system does by detailing its entities.

3.1 Use Case Model

This section describes the operations of the systems as events triggered by external

actors and their interrelation.

3.1.1 Actors

The actors of the system are the following.

Sensor device The device responsible for registering itself in the system and sending

the measured observations to it.

User A person who interacts with the public web application that shows the obser-

vations in a data visualization.

3.1.2 Use Cases

Use Case 1 Insert Sensor

25



Actors: Sensor device

Preconditions: The system is running

Postconditions: The sensor is registered and persisted in the

system

Main Success Scenario:

1. The sensor sends a request to register itself

2. The system stores the information of the sensor in the database

3. The system notifies the sensor when it has been successfully regis-

tered

Extensions:

1.a The sensor is already registered

1. The system returns an error response

Use Case 2 Insert Observation

Actors: Sensor device

Preconditions: • The system is running

• The sensor is registered in the system

26



Postconditions: • The observation is persisted in the system

• The observation is sent to the web applica-

tion tier

Main Success Scenario:

1. The sensor sends a request to store the observation

2. The system stores the observation data in the database

3. The system sends the observation data to the web application tier

4. The system notifies the sensor when the observation has been suc-

cessfully stored

Extensions:

1.a The sensor specified in the request is not found

1. The system returns an error message

Use Case 3 Browse data

Actors: User

Preconditions: The system is running

Postconditions: The web application is shown

Main Success Scenario:

27



1. The user’s browser loads the web application

2. Once loaded, the web application establishes a connection against

the system

3. The system incorporates observations into the web application as

they are available

3.2 Conceptual Model

As shown in figure 3-1, the system revolves around the concepts of Observation and

Sensor. Diagram 3-2 describes these concepts and other entities involved in the system

as well as their relations, heavily based on the OGC O&M model [12].

To start with, an observation is an aggregation of the following six elements:

Feature of interest A representation of a real-world object that carries the ob-

served property, e.g. ”Pantà de Sau”. Hence, for an in-place instrument this

would be the sensor location, whereas for a remote sensor it would be the target

location.

Procedure Instance of a process which has performed the observation. Despite being

usually a physical sensor, it can also be a process that leads to an observation

such as a computation or the result of post-processing.

Observed property Represent the phenomena under observation. Usually a con-

cept of a formal ontology, e.g. air temperature.

Phenomenon time Time when the phenomenon that produces the observation oc-

curs.

Result time Time when the observation result has been created. Note that phe-

nomenon and result times may be identical.

28



Figure 3-1: System use cases

Result Result of the observation, which can be either a scalar value or a complex

multi-dimensional array.

29



Figure 3-2: Conceptual model

3.3 Sequence Diagrams

Figure 3-3: Sequence Diagram - Insert Sensor

30



Figure 3-4: Sequence Diagram - Insert Observation

Figure 3-5: Sequence Diagram - Browse Data

31



32



Chapter 4

Technology research

This chapter aims to synthesize the research carried out over the main knowledge

areas involved in the development of this project. It intends to give an overview of

the technologies and paradigms considered to support the design decisions the project

is based upon. Considering the high-level architecture diagram below, these are the

main areas of concern initially identified: public interface, that is, the interaction

between the sensors and the web server, database, real-time across the system and

web technologies.

Figure 4-1: High-level required components

33



4.1 Public Interface

4.1.1 Client devices

In recent years, there has been a steady reduction in costs of hardware devices. Par-

ticularly, some microcontrollers have reached prices under 10$ such as ATmega168,

which is the one used by Arduino. Based on a simple microcontroller board and

its own development environment, Arduino can be used to develop a vast variety

of interactive objects. Its CPU speeds ranging from 8 to 84 Mhz, USB and UART

ports, many digital and analog I/O and Flash memory, make it a powerful physi-

cal computing device. Even though there are many other affordable microcontroller

platforms, Arduino stands out due to its easy-to-use programming environment and

cross-platform software. It is especially worth mentioning, however, that this is an

open-source physical computing platform. Both its software and the plans of its

modules are published under open source licenses.

On the other hand, the decrease in the price of processors for mobile devices with

excellent multimedia capabilities led to the foundation of the Raspberry Pi Foun-

dation and the public release of the first Raspberry Pi in 2012. This consists of a

single-board computer aimed at teaching computer science basics. Unlike Arduino,

it is shipped with 700 MHz ARM processors and as any other computer, it comes

with GPU, video and audio outputs and SD storage, but only its Model B has 100

Mbits Ethernet connection. Although it supports some Linux kernel-based operat-

ing systems like Debian GNU/Linux and Arch Linux ARM, it is recommendable to

run Raspbian, a Debian-based free operating system optimized for the Raspberry Pi

hardware. These general purpose features and its credit-card size make it a capable

computer which can be used in a wide range of scenarios replacing regular desktop

PCs.

Both devices have different aims and capabilities. Arduino is an easy-to-use lower-

level physical computing platform, whereas Raspberry Pi beats general purpose PCs

in terms of cost and size. Nonetheless, it is not unusual to combine their features

attaching them together as a single device, which [11] attempts. While Arduino brings

34



I/O capabilities that Raspberry Pi lacks, the latter provides computing power.

These features have contributed to their popularity among people involved in

technology as well as computing aficionados. They have attracted great interest in

the Internet of Things (IoT) community and have had direct impact on its recent

growth. Some projects are heavily inspired by Arduino extensibility such as [19],

whilst others build their products based on customized Arduino boards.

This is the case of Smart Citizen [16], a whole platform aimed at generating

participatory processes of people in cities thus, creating more effective and optimized

relationships between services, technology and communities in the urban environment.

The core of the platform is the called Smart Citizen Kit, a hardware device shipped

with air, temperature, light, sound and humidity sensors plus a Wi-Fi module to

serve as an ambient sensor. They started with Arduino shields to develop a prototype

until eventually coming up with their own specific-purpose Arduino-compatible data-

processing board.

4.1.2 Interoperability

Interoperability is the software quality of enabling a system to interact with other

systems without the need to write or maintain custom logic. This is often achieved

using the same protocols, exchange or file formats, or by means of standardization.

Interoperability has a great impact on several fields such as financial or medical

industries where inadequate implementations may lead to important economic costs.

It also crucial in science since the outcomes of a research must be operable for others

in order to progress towards a common goal. This also applies in the context of this

project since the data obtained by the sensors and its underlying infrastructure may

be used in other research projects of CREAF. Not less important is the role this

project plays within CREAF’s efforts towards the Sensor Web [14] as standardization

group of the Open Geospatial Consortium (OGC). Therefore, interoperability is a

main concern for REDCH.

The OGC’s Observations & Measurements (O&M) [12] is the standard data model

for storing and publishing sensor data. Based on the Geography Markup Language

35



(GML) OGC standard, it models the relationship between observation events, the

spatial objects under observation, the measured properties and measurement proce-

dure and the captured data resulting from the observations. O&M is one of the open

standards developed in the Sensor Web Enablement (SWE) initiative of the OGC.

While O&M provides a system-independent way of sensor data exchange, the

Sensor Observation Service (SOS), another SWE standard, defines a Web service in-

terface for sensor data. This standard allows querying observations and sensor meta-

data, registering and removing sensors, as well as inserting new sensor observations.

Furthermore, it defines KVP and SOAP bindings so as to be binding-independent.

However, OGC does not provide an implementation but a service interface.

There are currently some open-source implementations of the SOS. The Earth

Science Institute of the University of Applied Sciences of the South Switzerland set

up istSOS [4] in 2009, an SOS implementation entirely written in Python that includes

a RESTful API and a graphical user interface for easing the administration of the

service.

52North is a network of partners from research, such as the University of Mnster

and the Technische Universitt Dresden, industry, such ESRI Inc. and public admin-

istrations such as the IT department of the German Federal Ministry of Transport,

Building and Urban Development. It is aimed at bringing innovation into the field of

Geoinformatics. 52North SOS [1] is the leading implementation of the Sensor Obser-

vation Service. The latest version 4.0, recently released as of this writing, comes with

full support of the SOS 2.0 specification. In addition, 52North has developed the SOS

RESTful Extension. A SOS 4.0 Add-on that provides a REST binding beyond the

standard KVP and SOAP defined by the OGC.

4.2 Database

The way the data is handled and stored is a key point of the project. Therefore, it is

crucial to choose the Database management system (DBMS) that best fits the features

of the underlying data set. It must implement some sort of geographic support as

36



every observation implicitly belongs to a particular geographic location.

Databases allow to persist a representation of real-world objects and their relations

in a structured fashion. Furthermore, they also allow to integrate the data of different

applications thus, avoiding data duplication.

Databases may be classified in three general models: hierarchical, network, rela-

tional and NoSQL. Relational databases have gained a lot of popularity since their

appearance in the late 1970s, becoming the de facto choice regarding data manage-

ment in IT systems. On the ohter hand, NoSQL systems is a field that has been

quickly evolving very fast since its birth in the 2000s.

4.2.1 Relational DBMSs

The relational model is based on set theory and predicate logic. Relational databases

implement an approximation of these mathematical models using a table-based for-

mat. The data is structured in tables that represent relations where the information

of a particular entity is represented by a row and the set of fixed attributes of such

entity correspond to the columns.

Databases, however, need DBMSs in order to be functional. A DBMS is an

especially designed software which enables the creation, querying, update, and man-

agement of databases. It is a layer above the OS that abstracts the applications from

the database. Hence, applications deal with databases through the DBMS.

Relational DBMSs essentially provide efficient, reliable, convenient, and safe multi-

user storage of and access to massive amounts of persistent data. These guarantee

consistency by means of robust concurrency models and ACID (Atomicity, Consis-

tency, Isolation, Durability) transactions. Due to decades of development and re-

search relational database systems are relied upon by mission-critical applications

that demand strict consistency.

The most popular open-source relational DBMSs are MySQL and PostgreSQL,

both with spatial extensions. PostGIS, however, is the most mature solution. It is

a PostgreSQL extension that adds support for location awareness enabling queries

by geographic location. In addition, PostGIS supports geographic coordinates. As

37



a consequence of PostGIS’ rich feature list, PostgreSQL is the standard choice for

Geographic Information Systems (GIS).

However, not every data management or analysis problem is best solved exclusively

using a traditional DBMS. There are some problems that are more suitable for other

type of systems [9].

4.2.2 NoSQL Systems

NoSQL Systems, whose name stands for Not Only SQL, differ from traditional re-

lational systems in that they tend to provide a flexible schema rather than a rigid

structure. They are also quicker and cheaper to set up geared towards massive scala-

bility and use relaxed consistency in order to provide higher performance and higher

availability.

Their downsides are that there is no declarative query language thus, more pro-

gramming is involved in manipulating the data. Furthermore, because of the relaxed

consistency models, their better performance comes at the expense of fewer guar-

antees about the consistency of the data. Eventually consistent systems are often

classified as providing BASE (Basically Available, Soft state, Eventual consistency)

properties in contrast to traditional ACID-compliant relational systems.

One of the main goals of NoSQL systems is to enhance horizontal scalability.

As the CAP theorem states [8][3], this can only be achieved by relaxing either its

consistency or its availability so partition tolerance may be guaranteed. There is no

consensus among NoSQL vendors over which pair to choose. Some opt for consistency

against availability, while others focus on availability over consistency [10]. Nonethe-

less, there are few that pick both properties and consequently provide scalability

through replication rather than partitioning.

The number of different kinds of NoSQL systems may be generalized in four main

categories: MapReduce frameworks, Key-value stores, Graph database systems and

Document stores. MapReduce frameworks are typically used in applications that

process large amounts of data to do complex analysis, whereas Key-value stores tend

to perform a lot of small operations on very small parts of the data. On the other

38



hand, Graph database systems are designed for storing and operating over very large

graphs.

Document stores Document stores are very similar to Key-value stores except that

the values are documents. Hence, the data model is based on < key, document > pairs

where the document is a known type of structure that can contain semistructured data

formats such as JSON or XML. Like in key-value stores the basic operations allow

a document to be fetched, updated, deleted and inserted based on a given key. Ad-

ditionally, they also implement a fetch operation based on document contents which

is a very implementation-specific feature since there is no standard query language.

Few examples of document stores are CouchDB, MongoDB and Amazon’s SimpleDB,

among many others.

In addition, MongoDB, CouchDB and SimpleGEO support geospatial indexing

allowing to query for location-based data. Although not as accurate as PostGIS,

these NoSQL systems may fit in some use cases where performance and scalability

are critical.

4.3 Real-Time in Distributed Systems

As defined in [18] a distributed system is a collection of independent computers that

appears to its users as a single coherent system. This involves some sort of collabo-

ration between the autonomous components (i.e., computers). Although discussing

the advantages and disadvantages is not the topic of this writing, the main benefits

of distributed architectures over centralized systems are the greater scalability, im-

proved resilience and higher availability. To do so, distributed systems decouple a

single application in a number of components that handle the diverse functionalities

of the whole system. This enables the horizontally scaling in an independent way and

makes them fail-tolerant. However, this impose other problems as the components

need to share state and communicate. Moreover, failure-handling is often a complex

task. [5] presents a summary of the main distributed computing concerns.

39



The challenge that real-time in a distributed environment entails is essentially the

management of the system’s state, as happens with non-real-time distributed systems.

Particularly, real time systems are systems in which the timeliness of the operations is

a part of the functional requirements and correctness of the system. However, nearly

all systems may be qualified as soft real-time, in that there are usually unspoken

expectations for the timeliness of operations.

On the other hand, hard real-time refers to systems which don’t fulfil the require-

ments when time constraints are not met. This kind of systems are commonly known

as Distributed Real-Time systems.

4.3.1 Message Passing

Instead of sharing the memory, in distributed systems is generally a better approach

to share state by communicating. Message passing is a communication model that

involves calling a subroutine by sending a message to an intermediary process. It relies

on its infrastructure to invoke the actual code rather than calling subroutine by name

as in a traditional procedure call. In such systems, communication is explicit and

functions are separated from the specific implementations. (Immediate drawbacks)

An immediate upside of such communication model is the loose coupling between

components. With a remote procedure call, the sender process must know the re-

ceiver and the complete signature of its procedures beforehand whereas with message

passing, sender and receiver are nearly independent. This allows the system’s com-

ponents to be upgraded one at a time, thus giving the system the ability to evolve.

Furthermore, it also improves interoperability. If the message is text-based (i.e.,

JSON, XML) there is no requirement for the components to be built in the same

platform, operating system or language.

As all information regarding the state is contained in the messages there is no

need for the receiver to store state information thus providing statelessness to the

system. Although it comes at the cost of a slightly longer transmission time, this

drastically improves the system’s scalability.

Message passing systems are categorized in two main groups whether they im-

40



plement synchronous or asynchronous messaging. In the former, the sender and the

receiver must be running at the same time for the message to be passed while in

the latter the receiver is not required to be running at the time the sender sends the

message. As a consequence, asynchronous messaging requires additional data storing

and retransmitting capabilities for components that may not run concurrently.

In regular function calls, the caller waits for the called function to complete.

Likewise, in synchronous message passing the sending process remains blocked un-

til the receiving process finishes. The resulting impact on performance is generally

unaffordable for large distributed systems, particularly for those with hard real-time

constraints.

In contrast, asynchronous messaging is non-blocking. The sending process deliv-

ers the function call along with any needed arguments wrapped in a message to the

message layer and continues its execution thread. The message layer acts as a inter-

mediary between sender and receiver and so is considered a middleware. It stores the

message until the receiver requests messages sent to it. Then, the receiver sends a

message back with the result and the message layer stores it until the sender fetches its

messages. Asynchronous messaging software is often referred to as Message Queues.

Essentially, messaging middlewares store messages in a queue and processes them in

a FIFO fashion.

Besides commercial products of well-known vendors such as Oracle or IBM, there

are many open-source queueing systems available [17] due to the standardization of

AMQP and STOMP protocols. As a consequence, there is no restriction for different

programming languages to interact with queueing systems based on these standards.

Each one of these has been created for solving specific problems.

The most widely popular and successful running on production systems are Apollo,

HornetQ, RabbitMQ and ZeroMQ. The first one is a major rewrite of the Apache’s

ActiveMQ with better reliability and performance. It is an implementation of the

Java Message Service (JMS) specification with support for Enterprise Integration

Pattern required for distributed transactions. It supports STOMP, AMQP, MQTT,

OpenWire and WebSockets plus SSL support. Additionally, Apollo also provides a

41



REST Management API.

HornetQ is fully JMS 1.1 compliant, previously integrated in the JBoss Applica-

tion Server under the name of JBoss Messaging 2.0. Although further developed as a

separated project, it provides seamless integration into JBoss. It is focused on reliabil-

ity and contains lots of features and configurable settings at the expense of a certain

degree of complexity. Its REST interface allows it to be used by any programming

language, besides the HornetQ client libraries available.

RabbitMQ, written in Erlang, is specially suited for high performance distributed

applications with great support for concurrency, availability and clustering. With

its core fully supporting the AMQP protocol, it can understand STOMP protocol as

well through its plug-in architecture. Furthermore, there are client libraries available

for multiple languages and integrations with popular frameworks. Finally, its man-

agement plugin provides a web console that allows easy administration and detailed

resources monitoring.

ZeroMQ, on the other hand, provides a library to create distributed and concurrent

applications rather than a message queue. In contrast to the aforementioned message-

oriented middlewares, ZeroMQ doesn’t require a central server. The sender process

handles the routing and the receiver deals with the queueing. This approach enables

very low latency and high throughput resulting in substantially better performance.

Therefore, it’s ideal for large volume of messages like in financial transactions or

online games.

It is worth mentioning, however, the MQ Telemetry Transport (MQTT) a pub-

sub, simple and lightweight messaging protocol, designed for constrained devices and

low-bandwidth, high-latency or unreliable networks. It is fully geared towards the

minimisation of network bandwidth and device resource, over reliability and resilience.

Therefore, it is especially suitable for the Internet of Things, the sensor web and

mobile applications.

Scalability and reliability don’t make a difference between all the above products,

except for MQTT, as all of them are highly scalable, robust and reliable. With regards

to performance, it’s really difficult to objectively evaluate even with standardized

42



benchmarks. However, as already stated, ZeroMQ is by far the most performant

message queue when message persistence is not required. Althought there’s not much

difference between other solutions, RabbitMQ tends to beat others when used with

AMQP protocol.

4.4 Web Technologies

Since the Sir Tim Berners-Lee’s first draft of the World Wide Web back in 1989 and

his first proposal for the HyperText Markup Language (HTML) [2] in 1991 the WWW

has experienced a tremendous evolution. Since then, HTML has gone through many

revisions. The World Wide Web Consortium (W3C) published many iterations of the

standard until the specification HTML 4.01 in 1999. It was not until 2004, when the

Web Hypertext Application Technology Working Group (WHATWG) was founded to

extend HTML so as to allow the creation of web applications. WHATWG published

the First Public Working Draft of the HTML5 specification in 2008. Although parts

of HTML5 have already been implemented in browsers, it was not until 2012 that

W3C designated HTML5 as a Candidate Recommendation. It is scheduled for release

as a stable Recommendation by the end of 2014.

4.4.1 HTML5

HTML5 is designed to deliver rich content without the need for third-party plugins

while being backward compatible. As happened in HTML 4.01 with CSS 1.0, in

HTML5 JavaScript is an integral part of the specification along with CSS3. The

standard defines multiple JavaScript APIs such as drag and drop, files, webRTC,

audio and video, webGL, etc. while others like vibration or accelerometer APIs are

still in development.

HTML5 together with XMLHttpRequest API, the technology behind AJAX, al-

ready present in major browsers some years ago, has turned web browsers into web

application containers. This fact has stimulated the development of JavaScript li-

braries. Some try to solve cross-browser issues like jQuery. Since its creation in 2006

43



it has become the standard for manipulating the DOM and for dealing with AJAX

requests due to its simplicity and extensibility.

As for JavaScript frameworks, there is a myriad of choices due to the rebirth of

the JavaScript community over the last few years. These modern JavaScript frame-

works like Backbone.js, Ember.js, AngularJS, CanJS and others provide structure,

organization and maintainability to the so called single-page applications (SPA). All

of them implement variations of the Model-View-Controller (MVC) pattern.

Much like jQuery improved the DOM manipulation, D3.js happens to be essential

as well when it comes to data visualizations. Its concepts provide an abstraction layer

that enables the manipulation of documents based on data. It converts data to visu-

alizations using HTML, SVG and CSS with lots of features through a large collection

of components and plugins. It is worth mentioning its geographic projections along

with layouts and geometry plugins which may come in handy in our project and its

further development.

4.4.2 Real-Time

The web follows the pull paradigm by design. In HTTP, communication is initiated

by the client who sends a request to a server. The server then sends a response back

to the client. That is, the client pulls data from the server. While this approach works

fine for fetching documents from a server, for which the web was initially designed, it

does not work when the server needs to initiate the communication.

The first and most common solution to this issue is what is known as polling, that

is, to request information from the server at regular intervals regardless of whether

it has new data available. A further improvement of this approach is to make these

requests wait until new data available, which is called long polling or comet. Both

techniques, however, entail a waste of resources and are clearly non-real-time.

Nonetheless, HTML5 has provided two new techniques to solve this common is-

sue and bring push capabilities to the web. Server Sent Events (SSE) is a W3C

specification [15] that defines an API for opening an HTTP connection for receiving

push notifications from a server through a half-duplex channel. It is designed to be

44



extended to work with other notification schemes such as SMS. Furthermore, it has

features like automatic reconnection, event identifiers and the ability to send custom

events.

With server-sent events, it’s possible for a web server to send data to a web page

at any time by pushing messages into it. The client initiates the communication

by issuing a request to the server when a new EventSource object is instantiated in

JavaScript. Then the server pushes the messages as DOM events that can be listened

to like any other JavaScript event source.

On the other hand, WebSockets provide a richer protocol with support for bi-

directional, full-duplex communication. They have drawn much more attention than

server-sent events due to its richer feature set. WebSockets is a TCP-based protocol [6]

completely separate from HTTP that provides low-latency two-way communication

for browser-based applications.

Its bidirectional capabilities makes it particularly suitable for games, messaging

apps and for use cases where near real-time updates in both directions is needed.

Additionally, it provides cross origin communication, which enables communication

between parties on any domain. As a downside, since it’s not HTTP it requires

specific infrastructure such as a server enabled to deal with this protocol.

45



46



Chapter 5

Design

In this chapter we will discuss all design decisions taken regarding the building of

REDCH. These are grounded on the detailed research explained in Chapter 4. The

high-level architecture already outlined in 3-1 is extended further by first explaining

the technology used: the programming languages, frameworks and most relevant

libraries. Then, the whole architecture of the system is presented by describing each

one of the components the system is comprised of.

The design explained below aims to provide a solid groundwork and a first proto-

type for the REDCH project. Therefore, not all ideas discussed in previous chapters

may be included in the result of this master thesis.

Ruby has been chosen as the main language for the development of the project.

This dynamic language focused on simplicity and productivity is often regarded as

developer performant. Due to its flexibility and similarity with natural language along

with the massive amount of libraries and frameworks available, it allows developers

to write applications very quickly. However, these features may hamper its execution

performance.

5.1 Physical Architecture

The core idea of this architecture is to decouple the data producers from the data

consumers by means of an asynchronous message queue enabling push capabilities in

47



the consumption tier. It is compound of four different servers, as shown in figure 5-1:

an application server that receives the observations from the sensors and stores them

in the database. That server is also responsible for publishing them into the messaging

queue. Then the messaging queue makes them available to the data consumption tier,

where the app server sends them to the web clients.

Figure 5-1: Physical Architecture

Such architecture brings about a number of benefits, as outlined in 4. First and

foremost, each tier can easily scale out independently. In both tiers, high availability

and increased throughput can be provided through redundancy [7], that is, adding

more app servers. As for the database and the messaging queue, clusterizing them

can provide better performance, increased throughput and storage capacity.

The loosely coupled architecture that the messaging queue provides along with

the benefits stated in 4.3.1, not only enables horizontally scaling but also allows

components to evolve independently. The only constraint is that both tiers must

understand the Advanced Message Queuing Protocol (AMQP). On the other hand,

given the wide adoption of such protocol, the particular messaging queue may be

replaced without affecting any of the tiers.

Finally, a high-performance asynchronous messaging queue provides real-time ca-

pabilities to the system.

48



5.2 Logical Architecture

5.2.1 Sensor

As already stated in 3.1.1, although we opt for a solution that may involve Rasp-

berryPi, the development of the sensor device falls beyond the scope of this project.

Nonetheless, the system requires some sort of client in order to simulate its functioning

in normal conditions.

Figure 5-2: Simulator Logic View
Figure 5-3: Sensor Logic View

A CLI acts as a presentation layer that enables interaction with the underlying

SOS API client thus allowing the particular features of the sensor to be simulated.

This approach offers the advantage of reusing the SOS client as a component of the

final sensor device.

Command Line Interface

On one hand, the Redch global namespace comprehends the CLI’s commands. Similar

to the command pattern, each class is named after the command it enables and

contains all the logic for that particular command. As 5-4 shows, the Redch::CLI

class itself is a Thor application that exposes its interface in the command line,

49



receives the input, executes the commands and prints their output.

Thor is a toolkit for building powerful command-line interfaces, which is used by

well-known frameworks and tools such as Bundler, Ruby on Rails or Vagrant. The

Thor class exposes a command-suite command-line application like Git that leads to

very polished and easy-to-maintain command-line applications. In any Thor subclass,

public methods become commands. Furthermore, Thor provides an interface to easily

specify options and flags as a command’s metadata, along with methods to specify the

description of the commands. These are then included in a automatically generated

help command.

Sensor Observation Service Client

On the other hand, each command calls the underlying SOS Client, which in turn

makes an HTTP request to the service. Being SOS a RESTful Web Service, the client

implements two REST resources: sensors and observations, using the Ruby’s rest-

client gem1.

This widely-used gem abstracts the actual HTTP protocol by exposing methods

for each HTTP verb that accept header and query parameters to be passed in. Addi-

tionally, it provides a lower-level API that enables specification OF SSL parameters,

dealing with cookies, etc. for cases the general API doesn’t cover.

Finally, the client uses the Slim template language to render Geography Markup

Language (GML), an OGC standard adopted by the International Organization for

Standardization (ISO). Each operation has its own template that gets rendered with

the data provided by each call. The obtained XML markup makes up the HTTP

request body.

5.2.2 Messaging Queue

The messaging queue is the central component which drives the data throughout the

system and thereby determines the architecture of all other components. A detailed

1Libraries in Ruby programming language

50



F
ig

u
re

5-
4:

C
L

I
cl

as
s

d
ia

gr
am

51



F
igu

re
5-5:

S
O

S
C

lien
t

class
d
iagram

52



list of most known messaging queue systems has been given in 4.3.1, all of which

highly reliable and high-performant. However, usually message queues aren’t sys-

tem bottlenecks but rather message consumers slowed down by database queries or

backend systems.

So the choice of an specific message queue depends on the amount of client libraries

available, particularly for the languages used in the project, clustering support and

the complexity of installation and management. It is also important that the chosen

queue has enough high-quality online resources to ease the integration. RabbitMQ,

with a rich management web UI and exhaustive documentation including a clustering

guide, is the one that best fits our requirements.

This decision has an impact on the design of the data producers and consumers,

which must integrate with RabbitMQ using the AMQP protocol. This will be dis-

cussed further in following sections.

5.2.3 Sensor Observation Service

Given the CREAF’s determination towards the SWE initiative and its involvement in

the open-source GIS community, it is important to make use of the Sensor Observation

Service (SOS). To do so, we opt for 52North SOS 4.0, the leading open-source im-

plementation already integrated by many research institutions throughout the world.

In this regard, great efforts are underway to bring latest web standards to the OGC

implementations, which may be worth looking into in order to include them in the

REDCH project. This is the case of 52North SOS 4.0. While this project uses its

beta version, the final version was released less than three months before this writing.

As fully discussed in 4.1.2, SOS provides the level of interoperability the project

requires. This specification structures the service with a core and four extensions:

Transactional, Enhanced operations, Result handling and bindings. Together, all

extensions provide CRUD functionality for sensors, observations and results.

With regard to the bindings, only SOAP and KVP are defined in the specification.

In addition, 52North SOS 4.0 implements a RESTful binding as part of the bindings

extension which our SOS client will use. By choosing this binding, we aim to build a

53



lightweight and stateless service client that can run in a resource-constrained sensor

device.

Additionally, 52North SOS also provides an administrator GUI that enables chang-

ing the settings, de/activation of encodings and bindings as well as queries and clear-

ance of stored data.

In order to integrate with RabbitMQ, a component that handles the data delivery

to the messaging queue must be developed and included in the SOS. Once the obser-

vation has been stored in the database, this component publishes a message with the

observation into the queue. Its logical architecture is shown in figure 5-6.

5.2.4 Database

52North’s implementation uses Hibernate and Hibernate Spatial persistence frame-

work to allow changing the underlying database management system and database

model, which currently supports PostgreSQL/PostGIs, Oracle/Oracle spatial, My-

SQL and SQL Server DBMSs. Although we have chosen PostgreSQL, the GIS in-

dustry standard, REDCH may benefit from the integration of some sort of NoSQL

solution.

The system is characterised by an ever-growing data set with small data units.

That is, the system is write-intensive and I/O-bound. Given this features, in a real-

world scenario REDCH may take advantage of massive NoSQL scalability and higher

performance. Furthermore, in this project the impact of relaxed consistency may not

be as high as in other systems where high reliability is required.

However, time constraints do not allow further exploration of this possibility since

this would require that the whole relational schema migrate to a non-relational one.

In addition, this prototype will only deal with a limited number of sensors for testing

purposes.

54



Figure 5-6: SOS AMQP extension

55



5.2.5 Web Application

The web application has two differentiated parts: the application’s backend and the

Single-Page Application (SPA). While the former pushes AMQP messages received

from the queue to the SPA, the latter converts this information into a data visualiza-

tion. Both components are tied together through a simple Sinatra Application.

Figure 5-7: Web Application’s Logic View

Backend

The backend uses the amqp gem. A feature-rich asynchronous RabbitMQ client which

is built on top of EventMachine, the most popular event-driven I/O and concurrency

library in Ruby. This library implements the Reactor pattern [13], the event handling

pattern that constitutes the core of Python’s Twisted or Node.js.

Once a message is received, the backend forwards it to each open streaming con-

nection using the HTML5 Server Sent Events API, explained in 4.4.2. Therefore,

concurrency is essential for the performance of the backend which, once again, is

provided through EventMachine.

SSE has been chosen over WebSockets as the data delivery mechanism because of

its much easier implementation and lesser impact on the underlying infrastructure.

Moreover, since the data flows only from the backend to the browser, half-duplex

one-way communication is enough.

Sinatra is a Web application framework and Domain Specific Language (DSL)

that enables quick creation of web applications in Ruby. In contrast with other

56



frameworks, such as Ruby on Rails, Sinatra does not include a complex ORM nor

follows the MVC pattern, focusing instead on being small and flexible.

The Sinatra Application exposes just two endpoints: GET / and GET /stream.

The former is used to download the whole SPA, whereas the latter allows for an SSE

streaming connection to be opened.

The class diagram of the whole backend is as follows.

Figure 5-8: Backend class diagram

Single Page Application

The SPA downloads all necessary source codes —HTML, JS and CSS— at the first

request and renders the data visualization, empty at this point. Then, an HTTP

streaming connection is opened through which the SSE events are sent. Then, the

data visualization is continuously rendered with every event containing an observa-

tion by using the D3.js JS library. The state of the application is handled through

Backbone.js which structures it as a collection of observation models.

The SPA consists of four different components: the HTML template, the data

visualization, the data handling and the SSE client.

57



Figure 5-9: SPA class diagram

The single HTML file acts as the template for the application and contains the

references to all of its assets: css files, web fonts, and JS libraries. Among these

assets, there are the JS and tiles that Mabpox – the interactive maps JS library used

– loads.

The data visualization sets up the map and renders circles placed at the exact

location where the observation took place, each one corresponding to a different ob-

servation. These circles convey the observation’s electrical power with the filling color

ranging from yellow to red following a linear function.

All SPA pieces work in a fully evented fashion. Whenever a SSE message is re-

ceived, the Communicator publishes the event into the eventBus and the observations

collection, which is subscribed to said event, process it. When the collection triggers

an add, remove or change event the visualization gets updated with new, changed or

deleted circles depending on the information contained in the collection at that point.

58



5.3 Sequence Diagrams

This section aims to depict the lifetime of an observation as it goes through all the

aforementioned steps from the sensor up until it is visualized in the SPA, thereby

giving an overall view of the system’s functioning.

59



F
igu

re
5-10:

S
eq

u
en

ce
D

iagram
-

In
sert

O
b
servation

60



Figure 5-11: Sequence Diagram - Publish Observation

Figure 5-12: Sequence Diagram - Browse Data

61



62



Chapter 6

Implementation

6.1 Development environment setup

The development of this project encompasses a set of diverse tools that aim to ease

this process allowing one to focus on the particularities of this project rather than on

repetitive and common tasks. What follows is the description and reasons that led

to their choice.

Terminal emulator iTerm2 has been used as the terminal emulator throughout

the project to execute many tools used in this project from the compilation of the

customized SOS to the execution of the simulator’s CLI. Its rich features such as

search, split panes, tabs, 256 colors or OS native notifications support make it a good

replacement for the Mac OS X terminal.

Editors Given the diversity of languages used in the project different editors have

been used in its development. An static language like Java requires the use of a full-

featured Integrated Development Environment (IDE) like Eclipse, which provides

integration with major frameworks and tools. As for the dynamic languages of the

project, Ruby and JavaScript, Sublime Text 2 has been chosen as the main editor,

sometimes replaced with Vim. Both are lightweight editors with a rich environment

of plugins and focused on the efficiency of the developer.

63



Version Control System Is essential for the sake of the project to store its code-

base in a Version Control System (CVS). All source codes as well as this document are

kept in multiple Git repositories. In addition, Github has been chosen as the as the

code hosting service due to its focus on collaboration and its considerable popularity

in the open-source community.

Virtual Machines Virtual Machines (VM) have been mainly used in order to

employ multiple sensor simulators at once. A tool such as Vagrant has dramatically

improved the use of such systems by providing means to easily configure lightweight

and portable development environments. It has become as simple as describing the

VM in a file and booting it up by typing vagrant up in the terminal. The same

configuration file can boot the same VM in any other host OS with vagrant installed.

1 VAGRANTFILE_API_VERSION = ’2’

2 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

3 config.vm.box = ’sensor-precise32’

4 config.vm.provision :shell, path: ’provisioning.sh’

5

6 config.vm.define :sensor0 do |s0|

7 s0.vm.host_name = ’sensor0’

8 s0.vm.network :private_network, ip: ’192.168.0.2’

9 end

10

11 config.vm.define :sensor1 do |s1|

12 s1.vm.host_name = ’sensor1’

13 s1.vm.network :private_network, ip: ’192.168.0.3’

14 end

15

16 config.vm.define :sensor2 do |s2|

17 s2.vm.host_name = ’sensor2’

18 s2.vm.network :private_network, ip: ’192.168.0.4’

19 end

20 end

Listing 1: Example of a Vagrantfile specifying three VM to host sensor simulators

64



Secure Shell the Secure Shell (SSH) has proven to be essential for the development

of the project. Once the aforementioned VMs are running the easiest and fastest way

to manage them is by using ssh through the terminal. Likewise, ssh is the only way

to remotely manage the production servers.

Custom tools Third-party tools not always solve the issues encountered through-

out the stages of a project. Rather than final solutions, sometimes is worthwhile

considering them as the building blocks of a custom solution. This is the approach

followed in the building of the Random Observations Generator1, a very simple wrap-

per around the RabbitMQ’s Management Command Line Tool plugin. The wrapper

is built with Thor and the Open4 gem, which allows to open child processes and

handle their pids and I/O streams.

6.2 CLI commands

Every implemented SOS operation has its CLI command equivalent. Figure 2 shows

the implementation of the command simulate. The Thor’s desc and option class

methods allow one to define the description of the command and any option such as

period. The helper shell method say outputs the passed message to the terminal.

The simulate command is then executed from the terminal as:

$ redch simulate -p 10

Figure 6-1: Example of sensor’s simulation from the command line

6.3 AMQP Service

The Service Interface pattern is a common and simple pattern for building Java

extensible applications. The Service is just a set of programming interfaces and

classes that provide access to some specific feature. Considering the implemented

1Git repository: https://github.com/sauloperez/redch-obsgen

65

https://github.com/sauloperez/redch-obsgen


1 desc "simulate", "Simulate a sensor generating electrical power observations in W"

2 option :period, :aliases => :p

3 def simulate

4 setup

5 config = Redch::Config.load

6 simulate = Redch::Simulate.new(config.sos.device_id, config.sos.location)

7 simulate.period = options[:period].to_i if options[:period]

8

9 say("Sending an observation from #{put_coords(@setup.location)} every #{simulate.period} seconds...\n\n")

10 simulate.run do |value|

11 say("Observation with value #{value} sent")

12 end

13 end

Listing 2: Implementation of the command simulate using Thor

AMQP Service, figure 3 constitutes the Service Provider Interface (SPI), the public

interface defined by the service. Then, the particular implementation shown in 4 acts

as a AMQP Service provider by conforming to the SPI.

1 // (...)

2 public interface AMQPService {

3 void publish(String message) throws IOException;

4 void stop() throws IOException;

5 void setProducer(Producer producer);

6 }

Listing 3: AMQPService SPI

66



1 // (...)

2 public class AMQPServiceImpl implements AMQPService {

3 private static final Logger LOGGER = LoggerFactory.getLogger(AMQPServiceImpl.class);

4

5 private Producer producer;

6

7 public AMQPServiceImpl(String host, String exchangeName) throws IOException, AMQPServiceException {

8 try {

9 this.producer = new Producer(host, exchangeName);

10 } catch (AMQPServiceException e) {

11 LOGGER.debug("AMQP connection failed");

12 throw e;

13 }

14 }

15

16 public void publish(String message) throws IOException {

17 producer.sendMessage(message);

18 }

19

20 public void stop() throws IOException {

21 producer.close();

22 }

23

24 // (...)

25 }

Listing 4: AMQPService implementation

6.4 Sinatra’s DSL

Sinatra exposes a simple DSL that enables the actions associated to a given endpoint

to be specified and the response template to render. Similar to the HTTP verbs

methods, it defines a method for each templating engine supported, which accepts

the template name as a parameter.

67



1 class App < Sinatra::Base

2 configure do

3 # (...)

4 end

5

6 get ’/’ do

7 erb :index

8 end

9

10 get ’/stream’, provides: ’text/event-stream’ do

11 stream :keep_open do |connection|

12 p "New connection: #{connection.object_id}"

13

14 Redch.subscribe_to ’samples’, stream: connection

15 end

16 end

17 end

Listing 5: Implementation of the two backend endpoints with Sinatra

6.5 Data Joins in D3

Data Joins is what D3.js uses to bind data to elements. Data joined to existing

elements produces the enter selection, that is, the intersection’s set between data and

elements. All unbound data produce the enter selection, that is, all missing elements.

Similarly, all remaining elements produce the exit selection which represents elements

to be removed. These selections represent the three possible states.

To operate over these three states, one must select the elements and data to be

joined. In the third line of the source code 6 all circles of the this. g SVG container

are selected. This selection is then joined to the array of Backbone observation models

this.collection.models passed in on instantiation.

As a consequence, data joins lead to a more declarative code allowing targeting

operations to specific states without need for branches nor iterations. A good example

is found in lines 8 and 24. While the updated circles animate their transition to the

new fill color, the circles fade out before being removed.

68



1 draw: function() {

2 var self = this,

3 feature = this._g.selectAll("circle")

4 .data(this.collection.models),

5 // (...)

6

7 // Update circles that are still present

8 feature.transition().duration(200).style("fill", function(model) {

9 return color(model.get(’value’));

10 });

11

12 // Create new circles

13 feature.enter()

14 .append("circle")

15 .style("fill", function(model) {

16 return color(model.get(’value’));

17 })

18 .style("fill-opacity", 0.75)

19 // (...)

20 });

21

22 // Remove old circles

23 feature.exit()

24 .transition().duration(250).attr("r",0).remove();

25 }

Listing 6: D3 data joins used in the SPA

6.6 Server-Sent Events

Server-side

From the server-side, HTML5 Server-Sent Events API is a really simple convention

over a regular HTTP streaming connection. Together with Sinatra’s DSL its imple-

mentation is reduced to few lines.

69



1 class App < Sinatra::Base

2 get ’/stream’, provides: ’text/event-stream’ do

3 stream :keep_open do |stream|

4 stream << ’id: Time.now.to_i\n’

5 stream << ’data: a SSE event from Sinatra\n\n’

6 end

7 end

8 end

Listing 7: SSE server-side implementation with Sinatra

The Event Stream format is just a plain text response served with Content-Type

set to text/event-stream and whose data must conform to the SSE format. The

format specifies that the response must contain a line beginning with data: followed

by the message. The message can be broken up in multiple data: lines by ending

them with a single "\n" char. Therefore, "\n\n" must be used to end the stream.

This is considered a single event, thereby firing only one message event on the client-

side.

An event can be associated with a unique id by including a line starting with

id: as in line 4. Likewise, the reconnection-timeout can be changed by including

a line beginning with retry: followed by the number of milliseconds to wait before

the reconnection. In this way, whenever the connection is dropped the browser will

attempt to reconnect after the specified time.

What makes SSE even more interesting is the possibility to specify your own event

names. If the server sends a line beginning with event: followed by a unique name,

this event will be associated with that name. Hence, the client can set up a regular

event listener to listen to that particular event.

Client-side

With regard to the client-side, the JavaScript API exposes the EventSource object.

To subscribe to an event stream, this object must be instantiated passing the URL

of the stream. This can be easily encapsulated into a standalone JavaScript object

70



so the data consumers are not concerned with the details of the API. This is the idea

behind the implementation of communicator.js partially shown in 8.

1 // (...)

2 connect: function() {

3 if (this._connection) return;

4 this._connection = new EventSource(this.uri);

5 this.setCallbacks();

6 }

7 // (...)

Listing 8: SSE connection in communicator.js

Next, a handler may be set up for each of the EventSource’s basic events: message,

open and error. The onmessage handler fires and new data becomes available in the

data property of the event object whenever updates are pushed from the server.

Likewise, onopen is triggered when the connection has been opened and onerror

when an error has been encountered.

1 this._connection.onopen = function(e) {

2 console.log(’New SSE connection opened’);

3 };

4 this._connection.onmessage = function(e) {

5 console.log("Message ’" + e.data + "’ received");

6 };

7 this._connection.onerror = function(e) {

8 console.log(’An error has occurred’);

9 };

Listing 9: Example of SSE event handlers

Furthermore, the application can listen to your specific events setting up a regular

EventListener as follows.

71



1 this._connection.addEventListener(’sensor-in-sleep-mode’, function(e) {

2 console.log("This sensor won’t send more observations");

3 });

Listing 10: Listen to custom events

72



Chapter 7

Infrastructure

This chapter aims to describe the tools and processes involved in the infrastructure

setup, from local development environment to the set of production servers running

the REDCH. Firstly, it explains the infrastructure setup and secondly, describes the

provisioning and deployment processes.

7.1 Amazon AWS setup

Amazon Web Services (AWS) is a cloud computing platform that offers a collection

of remote computing services ranging from computing and storage to networking

services such as DNS, among others. AWS is a world-wide leader of Infrastructure-

as-a-Service (IaaS) providers with numerous companies like Spotify, Heroku, Airbnb,

Foursquare, Github, Reddit or Mapbox relying on them.

The whole infrastructure of the system is made up of EC2 instances, virtual servers

in Amazon’s cloud. They all run a custom Amazon Machine Image (AMI) built from

a raw Ubuntu 12.04 LTS with all needed dependencies —Puppet and Ruby 2.0.0—

installed. As a result, any new instance booted up with this custom AMI is ready to

be provisioned. Starting and stopping machines, as well as configuring their firewall

rules is managed through the AWS Management Console, a web UI.

One of the major benefits REDCH can take advantage of is Amazon’s Auto Scal-

ing. This service allows to scale the capacity of the EC2 instances up and down

73



according to a set of predefined conditions. A load balancer, for instance, can au-

tomatically spawn app servers during demand spikes and shut them down during

low demand periods. REDCH can get the most out of it by exploiting the fact that

solar panels don’t produce energy at night, thereby minimizing costs. Likewise, less

computing power is required under windless conditions.

Although it would be desirable to keep a provider-independent infrastructure,

Amazon RDS has been chosen as database server which makes it easier to set up,

operate and scale a relational database. Furthermore, it provides automated backups,

Multi-AZ replication and monitoring metrics. It has support for MySQL, Oracle, SQL

Server and PostrgeSQL, all the DBMSs supported by 52North SOS, being the latter

the one it uses by default. However, the PostrgeSQL support is still in beta version

due to its recent release in November of 2013.

The final production environment consists of the four servers shown in 7-1. Three

EC2 micro instances plus a RDS micro instance. Amazon’s free tier includes both

services at no cost within the first year. Therefore, EC2 micro instances are limited

to 1 low-capacity throttled CPU with 627MB of RAM 1. All three EC2 instances

are attached to an 8GB Elastic Block Storage (EBS), which are storage volumes

with built-in redundancy. These volumes host the filesystem of their attached EC2

instances.

Ubuntu 12-04 LTS has been chosen as the OS of all three servers due to its

stability and security as well as the inherent benefits of a Linux OS. With regard to

the database, Amazon RDS abstract away from the particularities of the underlying

hardware by providing the database access as a service.

7.2 Provisioning

Once the software is developed, the underlying infrastructure must be configured to

host each of the system components. This process, which involves creating directories

1AWS Micro Instances Documentation: http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/concepts_micro_instances.html

74

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts_micro_instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts_micro_instances.html


F
ig

u
re

7-
1:

P
ro

d
u
ct

io
n
’s

in
fr

as
tr

u
ct

u
re

d
ia

gr
am

75



and installing packages, may be error-prone when done manually. Besides, the process

may need to be repeated several times whenever new servers are set up. Although

writing down the build-out process may help, whoever reads that documentation may

not be able to figure out the current state of the configuration.

Server automation frameworks formalize systems administration treating infras-

tructure as code. As a result, infrastructure configuration can be tested and repeated,

automating away repetitive tasks while systems administrators focus on architecting

and tunning services.

Puppet, among other solutions such as Chef, enables server configuration automa-

tion. It automates server provisioning by formalizing its configuration into manifests.

Puppet’s manifests are text files that contain statements written in a declarative DSL

that allows the desired state of the infrastructure to be defined. Once these configura-

tions are deployed, Puppet automatically installs the necessary packages and ensures

that the machines files and services match the desired state.

1 package { ’apache2’:

2 provider => ’apt’,

3 ensure => ’installed’

4 }

5

6 service { ’apache2’:

7 ensure => ’running’

8 }

Listing 11: Example of Puppet’s manifest file

Puppet is mature and widely used and besides having an open source version,

there are lots of learning materials available online.

Prior provisioning, any server must have Puppet installed which comes packaged

as a ruby gem and therefore, also requires a MRI Ruby interpreter. Puppet can also

be installed with any system package manager, but doing so will likely install previous

releases missing features and bug fixes.

Puppet enables provision machines by either applying the configuration directly

or compiling into a catalog and distributing it to the target system via a client-server

76



paradigm.

Production Software

Most of the software used in the development environment is also used in production.

This is the case of SOS, for instance, where both Tomcat 7 and PostgreSQL have

been chosen to run also in production. However, the production web application stack

differs from the one used in development. Nginx plus Passenger has been chosen over

Thin, the server included in Sinatra for development purposes.

Passenger is a mature and feature-rich application server widely used in many

production scenarios. Therefore, is easy to find learning materials and support on

the internet. Nginx on the other hand, is a high-performance web server and load

balancer that can handle high concurrency.

Placed in front of the application server, Nginx acts as a reverse-proxy. It deals

with all incoming requests serving static files efficiently and passing them to the

application layer. Passenger then processes the requests and returns a response.

7.3 Deployment

Once the configuration is applied, the target server is up and ready. Next, the code

release must be transferred to the production environment to make the application

available for use.

Capistrano is a remote multi-server automation tool that enables the execution

of arbitrary tasks on remote servers over SSH. It aims to allow reliable deployment

of web applications to any number of machines simultaneously. All of its features

enforce sane development workflows.

The general configuration of the application is set in the deploy.rb file. Then,

each particular stage overrides it in its own file. By following this convention, Capis-

trano infers the environment names and enables tasks to be run on each of them as

in 7-2.

The configuration can be tailored to fit the needs of the project by writing extra

77



1 set :application, ’redch’

2 set :repo_url, ’git://github.com/sauloperez/redch-webapp.git’

3 set :ssh_options, {

4 forward_agent: true

5 }

6

7 ask :branch, proc { ‘git rev-parse --abbrev-ref HEAD‘.chomp }

8

9 set :deploy_to, ’/var/redch’

10 set :use_sudo, false

11 set :deploy_via, :copy

12 set :copy_strategy, :export

13

14 SSHKit.config.command_map[:rake] = "bundle exec rake"

15

16 after ’deploy:publishing’, ’nginx:restart’

17 after ’deploy:publishing’, ’passenger:restart’

Listing 12: Capistrano’s deployment definition

$ cap staging deploy

...

$ cap production deploy:rollback

Figure 7-2: Execution of commands in different environments

tasks. Capistrano provides the deploy and rollback flows that invoke several hooks for

the developer to hook up custom tasks into the flow. In line 16 of listing 12 Nginx is

restarted right after the release has been published and before the deploy’s leftovers

are cleaned up.

Therefore, some custom Capistrano tasks have been developed to ease the execu-

tion of common operations such as starting and stopping tomcat. The listing 13 illus-

trates Nginx-related tasks used in the web application’s deployment. As Capistrano

essentially executes commands in a remote server, these custom tasks can written to

target any specific purposes such as listing servers’ uptimes, checking their load, etc.

78



1 namespace :nginx do

2 desc ’Start nginx’

3 task :start do

4 on roles(:app), in: :sequence, wait: 5 do

5 sudo ’start nginx’

6 end

7 end

8

9 desc ’Stop nginx’

10 task :stop do

11 on roles(:app), in: :sequence, wait: 5 do

12 sudo ’stop nginx’

13 end

14 end

15

16 desc ’Restart nginx’

17 task :restart do

18 on roles(:app), in: :sequence, wait: 5 do

19 sudo ’restart nginx’

20 end

21 end

22 end

Listing 13: Content of lib/capistrano/tasks/nginx.cap

79



80



Chapter 8

Performance Testing

Performance testing deals with any process of determining the quality attributes of a

system such as responsiveness, stability and reliability under certain workloads. It is

usually used to verify that the system meets its specifications.

Load testing is the simplest form of performance testing. Tests are conducted

to assess the behaviour of the system under a particular load, which is defined by a

particular number of transactions and a certain level of concurrency within a specified

duration. In the context of a web system, the transactions are a round-trip of HTTP

requests to a particular endpoint while the concurrency level is the number of requests

performed at a time. As a result, the test outputs the response times of these requests,

thus uncovering possible bottlenecks of the system.

There are numerous variables involved in the execution of a web system such

as network reliability, performance of the underlying hardware, availability of third-

party services, etc. Therefore, the following load tests do not aim to give a thorough

assessment of the performance of the system but rather its behaviour under conditions

similar to a real scenarios while making some reasonable assumptions.

The tests have been conducted using two simple yet powerful and mature open-

source tools: Apache Bench and Gnuplot. Apache Bench is a server benchmarking

tool that focuses on showing how many requests per second a system is able to serve.

It provides basic statistic such as mean, median, minimum and maximum of the

measured magnitudes. Gnuplot, on the other hand, makes it easy to draw charts from

81



diverse input text formats by means of its own scripting language or an interactive

console. Additionally, Apache Bench can output data in Gnuplot-compatible format,

which allows both tools to be easily integrated.

Since the system has two entry points, the one used by the sensors and the web

application, two different load test have been performed. By doing so, we can assess

the performance of the Sensor Observation Service and the Web application.

8.1 Web Application

First and foremost, the variables involved in determining the response times of the

requests must be defined. These are the concurrency level and the number of requests

per test.

Concurrency We distinguish two different levels of concurrency. Firstly, when a

browser loads a web page it starts multiple connections to the server to load the

resources. The number of simultaneous connections is a built-in browser parameter

that for most of the web browsers defaults to 6. Besides, concurrency in load testing

often refers to the number of users issuing requests to the system at a time. Each

progressive increase in this variable defines the workloads the system will be tested

with.

Number of requests This is the total number of requests issued to the system for

each execution of the test. However, each time a user loads a web page the browser

makes as many requests as assets the page contains. That is, the browser loads each

of the CSS files, images and JS scripts the HTML lists, one per request.

In this particular case, the single HTML page of the application contains 46 assets,

loading 717 KB of data. These resources contain the JS application source files plus

the map tiles and other resources fetched by the Mapbox library. Moreover, as the

user interacts with the map, more tiles are loaded by the browser. Nevertheless, these

requests don’t hit our system but instead the Mapbox’s servers. Therefore, they are

not taken into account although they have an impact on the perceived performance

82



of the system. The size of each resource is assumed to be the average, 717 KB / 46

resources = 15,6 KB.

Baseline

To serve as comparison the baseline is defined as a test with a single request to

load the HTML page followed by 46 requests with 6 concurrent connections to load

the assets of 15,6 KB each. This tries to mimic the behaviour of the browser while

simplifying the intricacies of its concurrency and assuming the content is instantly

rendered.

10-User Scenario

In the following scenario the concurrency is increased progressively in order to sim-

ulate more demanding situations, first 10 users, then 50. For each of these, half of

the required requests point to the HTML and the other half to the assets thereby

simulating requests that impact the server differently.

Therefore, the first test issues 10 concurrent requests to load the HTML, while

460 more requests with 60 concurrent connections load the assets.

30-User Scenario

To test the load equivalent to 30 users, this scenario involves 30 concurrent requests

plus 1380 requests with 180 concurrent connections. Again, this tries to be slightly

more realistic than just requesting the plain HTML document.

8.2 Sensor Observation Service

This test aims to assess the performance of the system while receiving requests from

the sensors. This test impacts the SOS and the database and so the bottleneck is

likely to be one of these components. In contrast with the web application load

83



test and since SOS is essentially a set of HTTP endpoints, regular requests with an

increasing level of concurrency are enough to assess the performance of the system.

Nevertheless, the sensors are required to perform only a request every 10 minutes,

resulting in 6 requests per hour. If higher resolution was required requests would also

be evenly distributed. Thus, the test take into account this time spans.

Baseline

For this test, the baseline is defined as a single POST request to the /observations

endpoint. The two available endpoints, /sensors and /observations, have fairly

similar behaviour. Since they process requests with similar payload size and store

results in the database, there is no need for testing both endpoints as it provides no

valuable insight.

First scenario

In this scenario the load is composed of 10 sensors sending observations every minute

concurrently. Thus, the resolution of the observations is then increased up until

60 observations per hour. This covers the worse-case scenario where all available

sensors have been turned on at the same time, thereby sending their observations

simultaneously. For the sake of brevity, only the execution with the worst mean

response time is shown in 8.3, while the response times of all executions is summarized

in the chart 8-3.

It is worth noting that all requests use the same POST data file, as it is the

only way to simulate a POST request with Apache Bench. Splitting the test into

different steps, one for each particular sensor wouldn’t allow Apache Bench to compute

aggregated statistics.

Second scenario

Finally, in this scenario the SOS performance is tested under a more demanding load.

To do so, the test sends 500 requests with 30 concurrent connections in a single

84



execution. Thus, by assuming that every sensor sends an observation per minute and

given that the system receives multiple batches of concurrent connections within a

minute, this scenario simulates much more than 30 sensors.

8.3 Results

Web Application

As shown in 8.3, the application assets are loaded in 240ms. This, together with the

response time of a request for the HTML document, 431ms, means that a single user

waits an average 671ms until the whole application is fully loaded. The requests per

second the system is able to serve while dealing with the assets is 24.94 req/sec.

When the concurrency level is increased up to 10, the application loading time

reaches 2966ms + 4419ms = 7385ms, on the average. However, as shown in 8.3 and

contrary to expectations, the throughput is reduced to 13.58 req/sec. The chart 8-1

more closely examines all the response times, which happen to be slightly disparate

in some cases.

Nevertheless, the system reaches its tipping point when the concurrency is in-

creased to 180 connections and 1380 requests for assets are issued. In this case,

Apache Bench’s output 8.3 lists 54 failed requests and the mean response time is in-

creased by more than 30%. The related chart 8-2 perfectly illustrates how the system

is unable to reliably process all the requests. Besides the initial burst on the response,

the standard deviation rises gradually as time goes by until reaching its maximum

capacity serving requests in around 30 seconds. Then, the system suddenly brakes

and serves only HTTP error responses which have a negligible response time.

In spite of some unusually long response times, the system can reliably handle

around 60 concurrent connections. In overall terms, the results show a somewhat

poor performance. It takes more than 7 seconds to load the application with 10

concurrent users, a highly likely scenario.

85



Sensor Observation Service

As expected, both SOS endpoints have a similar response when a single request is is-

sued to them. While /sensors response time is 510ms, it is 654ms for observations.

This is a reasonable difference since to insert an observation, the SOS must first look

up the related sensor.

When some concurrency is added, the results of the first scenario 8.3 show an

increased response time – 1103ms – but a better throughput, with 9 requests per

second. When all response times of the 7 executions are considered together, as in

8-3, the deviation turns out to be remarkably high. While most of the response times

fall within the one-second threshold, a significant number of measures are around 2

seconds and few of them fall beyond 3 seconds.

When tested with heavy load of 500 requests and 30 concurrent connections, the

system provides to be far more unreliable than the first scenario. The chart 8-4

conveys a dramatic increase in the deviation of the measures. Furthermore, the two

failed requests shown in 8.3 make clear that the system has already reached its limit

in terms of concurrency.

It should also be mentioned the high value of the mean connection waiting time.

Unlike the web application test, it is almost equal to the mean connection processing

time across all scenarios, including the baseline. This is directly related to the par-

ticular kind of workload this server does, mostly bound to the CPU and IO. Both are

scarce resources in a AWS micro instance.

Finally, the first scenario provides that the system meets the requirements in terms

of observation processing. It is able to handle 10 concurrent connections reliably.

86



(...)

Document Path: /test_asset

Document Length: 15600 bytes

Concurrency Level: 6

Time taken for tests: 1.845 seconds

Complete requests: 46

Failed requests: 0

Keep-Alive requests: 46

Total transferred: 729330 bytes

HTML transferred: 717600 bytes

Requests per second: 24.94 [#/sec] (mean)

Time per request: 240.603 [ms] (mean)

Time per request: 40.100 [ms] (mean, across all concurrent requests)

Transfer rate: 386.12 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max

Connect: 0 8 19.9 0 64

Processing: 87 223 241.9 142 1448

Waiting: 54 110 26.9 99 189

Total: 87 231 249.4 142 1448

Percentage of the requests served within a certain time (ms)

50% 142

66% 159

75% 259

80% 265

90% 378

95% 748

98% 1448

99% 1448

100% 1448 (longest request)

Listing 14: Web application baseline results

87



(...)

Document Path: /

Document Length: 2406 bytes

Concurrency Level: 10

Time taken for tests: 2.967 seconds

Complete requests: 10

Failed requests: 0

Keep-Alive requests: 10

Total transferred: 27460 bytes

HTML transferred: 24060 bytes

Requests per second: 3.37 [#/sec] (mean)

Time per request: 2966.874 [ms] (mean)

Time per request: 296.687 [ms] (mean, across all concurrent requests)

Transfer rate: 9.04 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max

Connect: 100 106 2.9 107 110

Processing: 241 529 821.4 276 2867

Waiting: 236 380 370.9 270 1435

Total: 345 636 819.3 383 2967

Percentage of the requests served within a certain time (ms)

50% 383

66% 390

75% 397

80% 404

90% 2967

95% 2967

98% 2967

99% 2967

100% 2967 (longest request)

Listing 15: Output of 10 concurrent connections to root of the Web application

88



(...)

Document Path: /test_asset

Document Length: 15600 bytes

Concurrency Level: 60

Time taken for tests: 33.881 seconds

Complete requests: 460

Failed requests: 0

Keep-Alive requests: 460

Total transferred: 7293300 bytes

HTML transferred: 7176000 bytes

Requests per second: 13.58 [#/sec] (mean)

Time per request: 4419.294 [ms] (mean)

Time per request: 73.655 [ms] (mean, across all concurrent requests)

Transfer rate: 210.22 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max

Connect: 0 17 48.0 0 212

Processing: 401 2677 2836.6 1979 31183

Waiting: 71 431 699.3 217 7835

Total: 401 2695 2849.7 1993 31183

Percentage of the requests served within a certain time (ms)

50% 1993

66% 2608

75% 3115

80% 3535

90% 4596

95% 7347

98% 11424

99% 18008

100% 31183 (longest request)

Listing 16: Output of 460 requests with 60 concurrent connections to load the assets

89



F
igu

re
8-1:

R
esp

on
se

tim
e

p
lot

of
460

req
u
ests

w
ith

60
con

cu
rren

t
con

n
ection

s

90



(...)

Document Path: /

Document Length: 2406 bytes

Concurrency Level: 30

Time taken for tests: 1.607 seconds

Complete requests: 30

Failed requests: 0

Keep-Alive requests: 30

Total transferred: 82380 bytes

HTML transferred: 72180 bytes

Requests per second: 18.67 [#/sec] (mean)

Time per request: 1606.587 [ms] (mean)

Time per request: 53.553 [ms] (mean, across all concurrent requests)

Transfer rate: 50.07 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max

Connect: 240 260 10.9 266 279

Processing: 350 752 443.5 457 1356

Waiting: 347 747 444.8 453 1354

Total: 600 1013 437.1 726 1606

Percentage of the requests served within a certain time (ms)

50% 726

66% 1555

75% 1561

80% 1572

90% 1602

95% 1604

98% 1606

99% 1606

100% 1606 (longest request)

Listing 17: Output of 30 concurrent connections to the root of the web application

91



(...)

Document Path: /test_asset

Document Length: 15600 bytes

Concurrency Level: 180

Time taken for tests: 102.233 seconds

Complete requests: 1380

Failed requests: 54

(Connect: 0, Receive: 0, Length: 54, Exceptions: 0)

Keep-Alive requests: 1326

Total transferred: 21187354 bytes

HTML transferred: 20841574 bytes

Requests per second: 13.50 [#/sec] (mean)

Time per request: 13334.721 [ms] (mean)

Time per request: 74.082 [ms] (mean, across all concurrent requests)

Transfer rate: 202.39 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max

Connect: 0 128 652.6 0 4900

Processing: 0 6618 17501.4 831 95570

Waiting: 54 1260 6032.2 193 49972

Total: 0 6745 17697.4 843 97127

Percentage of the requests served within a certain time (ms)

50% 843

66% 1348

75% 1843

80% 2547

90% 21964

95% 45340

98% 86613

99% 91950

100% 97127 (longest request)

Listing 18: Output of 1380 requests with 180 concurrent connections to load the
assets

92



F
ig

u
re

8-
2:

R
es

p
on

se
ti

m
e

p
lo

t
of

13
80

re
q
u
es

ts
w

it
h

18
0

co
n
cu

rr
en

t
co

n
n
ec

ti
on

s

93



(...)

Document Path: /webapp/sos/rest/sensors

Document Length: 890 bytes

Concurrency Level: 1

Time taken for tests: 0.511 seconds

Complete requests: 1

Failed requests: 0

Total transferred: 1210 bytes

Total body sent: 3003

HTML transferred: 890 bytes

Requests per second: 1.96 [#/sec] (mean)

Time per request: 510.607 [ms] (mean)

Time per request: 510.607 [ms] (mean, across all concurrent requests)

Transfer rate: 2.31 [Kbytes/sec] received

5.74 kb/s sent

8.06 kb/s total

Connection Times (ms)

min mean[+/-sd] median max

Connect: 48 48 0.0 48 48

Processing: 463 463 0.0 463 463

Waiting: 462 462 0.0 462 462

Total: 511 511 0.0 511 511

(...)

Listing 19: Output of a POST request to /sensors

94



(...)

Document Path: /webapp/sos/rest/observations

Document Length: 854 bytes

Concurrency Level: 1

Time taken for tests: 0.655 seconds

Complete requests: 1

Failed requests: 0

Total transferred: 1210 bytes

Total body sent: 2204

HTML transferred: 854 bytes

Requests per second: 1.53 [#/sec] (mean)

Time per request: 654.535 [ms] (mean)

Time per request: 654.535 [ms] (mean, across all concurrent requests)

Transfer rate: 1.81 [Kbytes/sec] received

3.29 kb/s sent

5.09 kb/s total

Connection Times (ms)

min mean[+/-sd] median max

Connect: 59 59 0.0 59 59

Processing: 595 595 0.0 595 595

Waiting: 592 592 0.0 592 592

Total: 654 654 0.0 654 654

(...)

Listing 20: Output of a POST request to /observations

95



(...)

Document Path: /webapp/sos/rest/observations

Document Length: 1000 bytes

Concurrency Level: 10

Time taken for tests: 6.621 seconds

Complete requests: 60

Failed requests: 0

Non-2xx responses: 60

Total transferred: 70920 bytes

Total body sent: 132240

HTML transferred: 60000 bytes

Requests per second: 9.06 [#/sec] (mean)

Time per request: 1103.555 [ms] (mean)

Time per request: 110.355 [ms] (mean, across all concurrent requests)

Transfer rate: 10.46 [Kbytes/sec] received

19.50 kb/s sent

29.96 kb/s total

Connection Times (ms)

min mean[+/-sd] median max

Connect: 84 405 532.5 144 2382

Processing: 214 595 514.2 365 1916

Waiting: 213 595 514.2 365 1916

Total: 316 1000 672.8 611 2808

(...)

Listing 21: Output of 60 POST request to /observations with 10 concurrent connec-
tions

96



F
ig

u
re

8-
3:

6
ex

ec
u
ti

on
s

of
10

co
n
cu

rr
en

t
co

n
n
ec

ti
on

s
w

it
h

1
m

in
u
te

ti
m

es
p
an

97



(...)

Document Path: /webapp/sos/rest/observations

Document Length: 1000 bytes

Concurrency Level: 30

Time taken for tests: 63.616 seconds

Complete requests: 500

Failed requests: 2

(Connect: 0, Receive: 0, Length: 2, Exceptions: 0)

Non-2xx responses: 498

Total transferred: 588636 bytes

Total body sent: 1102000

HTML transferred: 498000 bytes

Requests per second: 7.86 [#/sec] (mean)

Time per request: 3816.968 [ms] (mean)

Time per request: 127.232 [ms] (mean, across all concurrent requests)

Transfer rate: 9.04 [Kbytes/sec] received

16.92 kb/s sent

25.95 kb/s total

Connection Times (ms)

min mean[+/-sd] median max

Connect: 53 1076 915.3 551 4895

Processing: 170 2477 2986.4 1296 21714

Waiting: 0 2391 2732.4 1205 19575

Total: 242 3554 3152.2 2658 22155

(...)

Listing 22: Output of 500 POST request to /observations with 30 concurrent connec-
tions

98



F
ig

u
re

8-
4:

R
es

p
on

se
ti

m
e

p
lo

t
of

50
0

re
q
u
es

ts
w

it
h

30
co

n
cu

rr
en

t
co

n
n
ec

ti
on

s

99



100



Chapter 9

Project Management

9.1 Planning

The project started with full-time dedication in September 2013 and was planned to be

finished by December 2nd, 2013. The first steps were to study its feasibility in terms

of technology, to outline the vision and specify the requirements with CREAF. Next

steps included the design and implementation of the identified major components of

the solution. It would end with the infrastructure setup, testing and the writing of

the current document.

101



Título Esfuerzo2 de set. - 8 de set. 9 de set. - 15 de set. 16 de set. - 22 de set. 23 de set. - 29 de set. 30 de set. - 6 d’oct. 7 d’oct. - 13 d’oct. 14 d’oct. - 20 d’oct. 21 d’oct. - 27 d’oct. 28 d’oct. - 3 de nov. 4 de nov. - 10 de nov. 11 de nov. - 17 de nov. 18 de nov. - 24 de nov. 25 de nov. - 1 de des.

2s 1d1.1) Technology research

4d1.2) Vision

1s 1d1.3) Requirements

4s 1d1) Analysis

1s 4d 
0,5h

2.1) Architecture

3d 3,5h2.2) Services

2d 1,5h2.3) Database

2s 4d 
5,5h

2) Design

1s 1d 7h3.1) Sensor Simulator

1s 5h3.2) Asynchronous Messaging Queue

3d3.3) Data Storage

1s 5h3.4) SOS Service

1s 1d 7h3.5) Client Webapp

1s 1d 
4,5h

3.6) Push Service

6s 4d 
4,5h

3) Implementation

1s 5h4.1) Set up testing environment

4d 3h4.2) Deployment

2s4) Infrastructure

4d5) Testing

10s 3d 6h6) Report



Título Esfuerzo2 de set. - 8 de set. 9 de set. - 15 de set. 16 de set. - 22 de set. 23 de set. - 29 de set. 30 de set. - 6 d’oct. 7 d’oct. - 13 d’oct. 14 d’oct. - 20 d’oct. 21 d’oct. - 27 d’oct. 28 d’oct. - 3 de nov. 4 de nov. - 10 de nov. 11 de nov. - 17 de nov. 18 de nov. - 24 de nov. 25 de nov. - 1 de des.



9.2 Cost

Human Resources

The human resources involved in the project must be considered in order to forecast

the costs of the project. These are an analyst who will be in charge of the Analysis

and Design, a Developer who will implement the design and a System administrator

who will set up the infrastructure. Therefore, considering these human resources and

the initial planning, the overall cost is 15250AC, as detailed below.

Resource Cost/Hour Hours Cost

Analyst 40AC/h 200 8000AC

Developer 25AC/h 250 6250AC

SysAdmin 20AC/h 50 1000AC

Overall 15250AC

Table 9.1: Cost of human resources

Besides the time spent on the different stages of the development, additional time

must be considered in order to write the current document. To that end, 90 additional

hours plus the 200h+ 250h+ 45h = 495h invested by these human resources must be

allocated, totalling 495h + 100h = 600h.

Material Resources

With regard to the software used in the development of the project, as all the frame-

works, tools, code editors and languages have open-source licenses they don’t involve

any cost. Regarding the infrastructure, as it relies only on AWS free tier no cost is

expected.

As for the development computer, the costs associated with its energy consump-

tion plus its amortization must be taken into account. Being 1500 the cost of computer

and an amortization in 4 years, its cost per hour would the number of work hours

in these years divided by its overall cost, 1500AC/8064h = 0.18AC/h. Considering that

104



the power consumption of the computer is 64W/h and that the current price of the

energy is about 0.20AC/kWh, the cost of the energy consumed by the computer is

0.064KW/h × 0.20AC/kWh = 0.0128AC/h. The overall cost of the material resources

is detailed in the table below.

Resource Cost/Hour Hours Cost

Computer 0.18AC/h 600 108AC

Energy 0.0128AC/h 600 7,68AC

Overall 115,68AC

Table 9.2: Cost of material resources

Lastly, taking into account human and material resources the total cost of the

project amounts 15250AC + 115, 68AC = 15365, 68AC.

Resource Cost

Human 15250AC

Material 115,68AC

Overall 15365,68AC

Table 9.3: Total cost of the project

9.3 Execution

Unfortunately, initial planning has suffered a few setbacks during its execution. It

was first delayed at the beginning of December due to my need of finding a job and

the time I spent working on a technical test required for a job offer. The major delay

was caused by the impact the full-time job had in the dedication time, causing the

project to be nearly stopped for several weeks. Although working on it occasionally,

it was not until allocating 2 hours every day and full-time dedication on weekends

that the project took effectively off. As a consequence, the planning for the remaining

tasks was defined as follows.

Regarding the cost, AWS free tier provided not to be enough to fulfil the needs of

105



the required infrastructure. Using three servers exceeded the maximum of 750 hours

of EC2 micro instance usage. Thus, the overall cost has been 20.27$ so far, missing

the cost of June 2014. Assuming that the cost for both months was the same the

total cost of the infrastructure would be 2× 20.27$ = 40, 54$, that is 29.92AC.

Moreover, another delay was encountered while executing this final planning. A

disproportionately large Amazon AWS bill was received for what seemed to be either

an attack on the system or a billing error. This required infrastructure to be shut

down until the issue was resolved. Although having some impact, fortunately it didn’t

excessively affect planning.

106



Título Esfuerzo24 de març - 30 de 
març

31 de març - 6 
d’abr.

7 d’abr. - 13 d’abr. 14 d’abr. - 20 
d’abr.

21 d’abr. - 27 
d’abr.

28 d’abr. - 4 de 
maig

5 de maig - 11 de 
maig

12 de maig - 18 de 
maig

19 de maig - 25 de 
maig

26 de maig - 1 de 
juny

2 de juny - 8 de 
juny

9 de juny - 15 de 
juny

16 de juny - 22 de 
juny

4s1.1) Provisioning

2s1.2) Deployment

6s1) Infraestructure

4s2) Testing

11s 7h3) Report



108



Chapter 10

Conclusions

10.1 Conclusions

The number of open-source software and modern web technologies used in this MS

Thesis have proven to be a viable solution for building IT infrastructure for public re-

search centers. These technologies have been combined together to build a distributed

system as a proof-of-concept for REDCH, a larger initiative that aims to provide a

valuable insight into the actual production of renewable energies at a small scale in

Catalonia.

The introduction presents the motivations behind this initiative of the CREAF

and outlines the main goals of this project.

Next, a thorough analysis defines the boundaries of this thesis by providing its

scope and requirements. This is detailed further in Chapter 3 with a formal specifi-

cation of the use cases and the whole conceptual model around the measurement and

processing of observations.

Then, Chapter 4 details the findings of the research process that had been carried

out to later support the design decisions taken in Chapter 5. These chapters are

particularly relevant due to the fact that the chosen technologies are the basis for its

further development.

Chapters 6 and 7 provide insight into the implementation and the infrastructure

the system runs on. Particular attention is given to the automation of common

109



processes such as provisioning, deployment and maintenance tasks, which provide re-

liability and confidence to the system managers. Then, the evaluation of the resulting

system in terms of performance is described in Chapter 8.

In spite of the difficulties that determining the scope of the product entailed, the

final delimitation we came up with together with CREAF has proven to be adequate.

It has been enough to explore each individual part of the project and demonstrate

their potential. Specifically, although being rather simple the web application shows

how a data visualization can be enriched with a full-featured application. As for the

future sensors, the development of the simulator has allowed to better understand

the challenges and requirements their design may involve.

On the other hand, the key point of using a messaging queue has been a very

successful decision, in that has enabled a loosely coupled and scalable architecture

that allows both ends of the queue, the SOS and the web application, to evolve

independently. But as downside, this has brought some complexity that affects the

resilience of the system. Implementing a more robust redundancy-based resilience

mechanism would have improved the overall quality of the system.

As for the infrastructure, the complexity of setting the servers up surpassed the

initial estimation causing a great impact on the time invested for that matter. While

running the services in a development environment is often very easy, there are nu-

merous variables involved when it comes to a production environment. Furthermore,

it was the least-known of the fields involved in the project and the one that required

the deepest understanding of the architecture. This led us to the conclusions that

being the infrastructure critical for the proper functioning of the system, much at-

tention has to be paid to the administration of the system. Otherwise, its impact on

cost will increase as the time goes by.

Regarding the methodology, the outcome of the iterative development is a clean

and maintainable codebase. A first iteration laid out each component and allowed to

get the insight upon which the second iteration set the system up and ready.

Finally, all the goals of the project have been successfully reached and all the

requirements in Chapter 2 were met. We are able to simulate sensors with a command-

110



line interface and the observations are stored, processed and displayed in real time.

10.2 Further Work

Considering the current state of the product, we identify some unresolved issues and

steps that would be worth exploring in further research.

From the point of view of the implementation, there are a couple of aspects of

the current architecture that would be interesting to investigate. First, given the

event-driven nature of the web application’s back-end, it may be worth replacing its

implementation with Node.js. Its non-blocking I/O design that claims to maximize

throughput and efficiency, makes it suitable for scalable networking applications. This

seems to be a natural fit for the features of this project and may even surpass the

EventMachine’s high performance. However, this has not been possible due to the

time constraints and our total lack of awareness of this platform.

Regarding the messaging queue, given that RabbitMQ’s messages acknowledge-

ment is not used may be beneficial to implement messaging with Redis instead. It

is essentially a very high-performance key/value store for structured data that brings

many other features such as pub/sub capabilities. These, however, don’t include

message acknowledgement for the sake of performance. Furthermore, Replacing Rab-

bitMQ with Redis would enable to implement bulk observation retrieval thereby al-

lowing to populate the map when a new browser is connected. Nevertheless, Redis

pub/sub simplicity compared to RabbitMQ queue features may impact on future

decisions as the system’s usage grows.

From the infrastructure perspective, it may be beneficial at the early stages of the

project to lean towards a Platfor-as-a-service (PaaS) hosting rather than the current

IaaS. As a result, it would require far less systems administration knowledge and

it would simplify deployments even more, but this comes at the expense of higher

cost and less control over the product. In any case, this a possibility that is worth

studying.

Finally, as next step, the system’s poor performance must be addressed by switch-

111



ing to more reliable and powerful servers. Regarding the sensors, the physical sensor

devices must be implemented considering the ideas brought in the research as the

starting point. Besides, the SOS must be upgraded to the 52North SOS 4.0 final

release.

After that, it would be recommended to start using the system with a small subset

of real users while the ideas exposed above are considered prior to a public release.

Meanwhile, it would be valuable to look for the involvement of public institutions,

other research centers and specially the Open Geospatial Consortium so as to ensure

the success of the project. Once a steady number of active users use the system,

it would be the time to explore using AWS Auto Scaling. Finally, at a much later

stage, the big data set would benefit from migrating to a NoSQL database, thereby

increasing the scalability of the system.

112



Appendix A

Instruction Manual

A.1 Web Application

Installation

First, clone the repo:

git clone git@github.com:sauloperez/redch-webapp.git

Next, install its dependencies:

bundle install

REDCH Webapp gets observations from a RabbitMQ, so make sure the RabbitMQ

server is running and accessible from within your network. For Mac OS X users this

is done be typing:

rabbitmq-server

While for Ubuntu users this is done with:

sudo /etc/init.d/rabbitmq-server start

Besides, you must load the appropriate Procfile containing the values for the

required env variables. It must contain the following:

113



AMQP_HOST=<RabbitMQ_server_host>

Name this file after the environment, e.g. development and save it wherever you

like from your directory tree. You can edit the development file in https://github.

com/sauloperez/redch-webapp/blob/master/development.

You can find further documentation in Process Types and the Procfile from Heroku

Dev Center and from its Github repo.

Usage

Development

Now we are ready to start the webapp. From the root folder type the following in

your terminal, using the path of your environment file:

foreman start -e <path_to_env_file>

Nevertheless, it is recommended to have a development environment file per ma-

chine ignored by git, so any customizations can be made for that machine.

That’s all. The webapp is up and running. Point your browser to http://localhost:3000

and you will see the real time map.

Production

In production the deployment process is automatized using Capistrano. To deploy

just type the following command from your machine:

cap production deploy

This essentially runs commands on the remote server through SSH. Once the

process is finished, point your browser to the production server.

Additionaly, some tasks to manage production services are provided. Each service

has its own start, stop and restart actions:

114

https://github.com/sauloperez/redch-webapp/blob/master/development
https://github.com/sauloperez/redch-webapp/blob/master/development
https://devcenter.heroku.com/articles/procfile#developing-locally-with-foreman
https://github.com/ddollar/foreman
http://capistranorb.com/


cap production nginx:restart

cap production passenger:stop

cap production rabbitmq:start

# Or open an SSH connection

cap production utils:ssh

To list all available tasks type:

cap production -T

Testing

Testing covers both frontend and backend of the app. Jasmine has been chosen for

the former while RSpec for the latter.

To test the frontend start up the server as stated above and point your browser to

http://localhost:3000/SpecRunner.html. You will get immediate results of how

many test are passing (hopefully all of them).

As for the backend, type the following in your terminal:

rspec spec

This will execute all tests contained in the /spec folder.

A.2 CLI Client

Installation

You must clone the repo

$ git clone git@github.com:sauloperez/redch.git

Although not mandatory, it is highly recommended to add the executable in

your PATH environment variable. To do so, create a softlink in a suitable system

115



folder pointing to /bin/redch of the previously cloned repository. In Mac OS X

/usr/local/bin might be a good choice. You can do that with the following com-

mand:

$ ln -s ~/redch/bin/redch /usr/local/bin/.

Then, make sure your PATH variable looks up into the folder that contains the

softlink. If not, add it. Doing so redch will be globally accessible.

In case of working with Bash shell this should be set in the ~/.bash profile file.

Find further details in .bash profile vs .bashrc

# Prepend the variable with the right path

PATH="/usr/local/bin:/usr/local/sbin:$PATH"

Lastly, load the changes

$ source ~/.bash_profile

Usage

The command-line interface comes with the methods setup and simulate that you

can use as follows.

Setup

If no coordinates are provided, the setup command will pick up a random location

near by Trrega within a range of 90 Km as the sensor location. It uses the first MAC

address of the system as device unique identifier.

$ redch setup -c ’41.65, 2.13’

Simulate

The simulate command loads the configuration set by the setup and issues randomly

generated observations for each time period indefinitely. If not specified a period of

2 seconds will be used.

116

http://www.joshstaiger.org/archives/2005/07/bash_profile_vs.html


# Issue a post request each second

$ redch simulate -p 1

If the setup defaults suit you, you can skip the setup and just type the simulate

command. It always executes the setup before the simulation if no configuration is

found.

# Set up the sensor with its defaults and simulate observations

$ redch simulate

Help

You can always list the available commands with the help command or the -h flag

$ redch help

Commands:

redch help [COMMAND] # Describe available commands or a single one

redch setup # Sets up the environment to enable the use of ...

redch simulate # Simulate a sensor generating electrical power ...

Or find out the details of a particular command

$ redch help setup

Usage:

redch setup

Options:

c, [--coordinates=COORDINATES]

Sets up the environment to enable the use of the device

117



A.3 Sensor Observation Service

Installation

Database

You must create a Postgres PostGIS database named sos. To do so, connect to

postgres and create the database. Then, connect to it and add the PostGIS extension.

$ psql -h localhost

=# CREATE DATABASE sos;

=# \connect sos;

=# CREATE EXTENSION postgis;

# Quit from the DB

=# \q

AMQP Service extension

This SOS implementation has been extended to suit the requirements of the REDCH

project. A RabbitMQ client wrapper has been added as extension.

Contained in the amqp-service submodule of the extensions module, it comes

with an example properties file which can be found in the config folder. These prop-

erties are the following:

# URL of the RabbitMQ server

redch.amqp.host=192.168.0.20

# Name of the exchange to where the observations should be published

redch.amqp.exchange=observations

An updated copy of this file must be stored in the same folder named as

redch.properties.

118

https://github.com/sauloperez/sos/tree/master/src/extensions/amqp-service
https://github.com/sauloperez/sos/tree/master/config


Note: Make sure you compile the amqp-service submodule whenever you change

it before compiling the whole SOS. You can do so with the mvn install command.

Integration This service has been integrated with the SOS by using a subclass

of the corresponding request handler. As every observation received must be pub-

lished into the queue, the ObservationsPostRequestHandler with RedchObservation-

sPostRequestHandler of the rest binding, which connects to the AMQP Service.

Usage

Development

First of all, deploy the Java Webapp with the command mvn clean tomcat:deploy

or mvn clean tomcat:undeploy tomcat:deploy if it already exists. Then configure

it using the webapp. Just browse to <tomcat url>/webapp and follow the wizard’s

steps.

REDCH SOS talks to RabbitMQ and Postgresql. So besides setting them up

and running, make sure the redch.amqp.host property of the redch.properties

file points to the right the RabbitMQ server. As for the DB, make sure the field Host

under Datasource settings section of the SOS administrative backend points to the

right host.

Production

In production the deployment process is automatized using Capistrano. To deploy

just type the following command from your machine:

cap production deploy

This essentially runs commands on the remote server through SSH. Once the

process is finished, point your browser to <production server>/webapp and fill up

the wizard fields like in development.

In addition, it also provides tasks to manage Tomcat. You can list all available

tasks typing:

119

https://github.com/sauloperez/sos/blob/master/src/bindings/rest/code/src/main/java/org/n52/sos/binding/rest/resources/observations/ObservationsPostRequestHandler.java
https://github.com/sauloperez/sos/blob/mastero/src/bindings/rest/code/src/main/java/org/n52/sos/binding/rest/resources/observations/RedchObservationsPostRequestHandler.java
https://github.com/sauloperez/sos/blob/mastero/src/bindings/rest/code/src/main/java/org/n52/sos/binding/rest/resources/observations/RedchObservationsPostRequestHandler.java
http://capistranorb.com/


$ cap production -T

...

cap tomcat:compile # Compile tomcat

cap tomcat:deploy # Deploy tomcat

cap tomcat:restart # Restart tomcat

cap tomcat:start # Start tomcat

cap tomcat:stop # Stop tomcat

cap tomcat:undeploy # Undeploy tomcat

So, you can run any of these by tying, for instance:

cap production tomcat: restart

Testing

The AMQPService extensions as well as the SOS itself come with unit tests made

with JUnit. It is recommended to run them from your IDE of choice. Most of them

have JUnit plugins available.

The tests can be found in the src/test folder of every module.

120



Bibliography

[1] 52North SOS 4.0. https://wiki.52north.org/bin/view/SensorWeb/
SensorObservationServiceIVDocumentation, 2014.

[2] Tim Berners-Lee. Html tags. CERN, 1991.

[3] Julian Browne. Brewer’s CAP Theorem.
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem,
January 2009.

[4] M. Cannata, M. Antonovic, M. Molinari, and M. Pozzoni. istSOS. University
of Applied Sciences of the South Switzerland, 2009.

[5] Peter Deutsch. The eight fallacies of distributed computing. 1997.

[6] I. Fette and A. Melnikov. The WebSocket Protocol - RFC 455.
http://tools.ietf.org/html/rfc6455, December 2011.

[7] Vincenzo De Florio. On the Constituent Attributes of Software and
Organisational Resilience. Interdisciplinary Science Reviews, June 2013.

[8] Seth Gilbert and Nancy Lynch. Brewers Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT News,
2002.

[9] Todd Hoff. What The Heck Are You Actually Using NoSQL For? High
Scalability, December 2010.

[10] Nathan Hurst. Visual Guide to NoSQL Systems.
http://blog.nahurst.com/visual-guide-to-nosql-systems, March 2010.

[11] Dexter Industries. Arduberry.
http://www.dexterindustries.com/Arduberry/, 2014.

[12] Geographic information - observations and measurements. OGC Abstract
Specification, September 2013.

[13] Douglas C. Schmidt. Reactor. An Object Behavioral Pattern for
Demultiplexing and Dispatching Handles for Synchronous Events. 1995.

121

https://wiki.52north.org/bin/view/SensorWeb/SensorObservationServiceIVDocumentation
https://wiki.52north.org/bin/view/SensorWeb/SensorObservationServiceIVDocumentation
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://tools.ietf.org/html/rfc6455
http://blog.nahurst.com/visual-guide-to-nosql-systems
http://www.dexterindustries.com/Arduberry/


[14] The OGC’s Sensor Web Enablement (SWE) Initiative. Open Geospatial
Consortium.

[15] Server-sent events, w3c candidate recommendation.
http://www.w3.org/TR/2012/CR-eventsource-20121211/, December 2012.

[16] Smart Citizen. http://www.smartcitizen.me/, 2012.

[17] Lukasz Strzalkowski. Queues. http://queues.io, 2014.

[18] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, second edition, 2007.

[19] Telefónica. Thinking things. http://www.thinkingthings.telefonica.com/,
2013.

122

http://www.w3.org/TR/2012/CR-eventsource-20121211/
http://www.smartcitizen.me/
http://queues.io
http://www.thinkingthings.telefonica.com/

	Introduction
	Motivations
	Project Goals
	Methodology
	Iterative Development
	Test-Driven Development


	Analysis
	Stakeholders
	Constraints
	Schedule Constraints
	Budget Constraints

	Scope of the Product
	Requirements
	Functional Requirements
	Non-functional Requirements


	Specification
	Use Case Model
	Actors
	Use Cases

	Conceptual Model
	Sequence Diagrams

	Technology research
	Public Interface
	Client devices
	Interoperability

	Database
	Relational DBMSs
	NoSQL Systems

	Real-Time in Distributed Systems
	Message Passing

	Web Technologies
	HTML5
	Real-Time


	Design
	Physical Architecture
	Logical Architecture
	Sensor
	Messaging Queue
	Sensor Observation Service
	Database
	Web Application

	Sequence Diagrams

	Implementation
	Development environment setup
	CLI commands
	AMQP Service
	Sinatra's DSL
	Data Joins in D3
	Server-Sent Events

	Infrastructure
	Amazon AWS setup
	Provisioning
	Deployment

	Performance Testing
	Web Application
	Sensor Observation Service
	Results

	Project Management
	Planning
	Cost
	Execution

	Conclusions
	Conclusions
	Further Work

	Instruction Manual
	Web Application
	CLI Client
	Sensor Observation Service


