
Constraint Programming based
Local Search for the Vehicle Routing

Problem with Time Windows

Master Thesis of

Joan Sala Reixach

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Anne Meyer (FZI, LSE Furmans)
Julian Dibbelt (KIT, ITI Wagner)

Time Period: 1st April 2012 – 30th September 2012

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41808360?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, September 30, 2012

iii

Abstract

Vehicle Routing is a problem of extreme variance and at the same time, of extreme
importance to companies around the world. Extensive work has been done on finding
methods to solve it in an efficient way that provides a solution of good quality.

This project focuses especially on the Vehicle Routing Problem with Time Windows.
It explores and tests a method based on a Constraint Programming formulation of
the problem, and it implements a local search method with the power of making
very powerful moves: Large Neighbourhood Search. Large Neighbourhood Search
removes big sets of customers from the solutions (up to around 30% of the customers)
and tries to reinsert them. Those powerful moves help solving one of the biggest
problems of local search methods: Escaping local minima.

We first explore a basic path formulation of the model, as well as some alternative
formulations. We implement a first basic version of a Large Neighbourhood Search
engine and try to improve it through the exploration of different options for all the
decisions that must be taken when designing such an engine. Concretely, the main
decisions to take are about how to design the methods to remove customers from
the solution and the methods to reinsert them back into the solution, desirably in a
better way.

The methods are then tested using a set of benchmark problems. The results ob-
tained are then compared to the best known solutions for these benchmarks, as well
as to the results obtained by other authors that have done work regarding the Vehicle
Routing Problem with Time Windows.

Deutsche Zusammenfassung

Dieses Projekt beschäftigt sich mit dem Vehicle Routing Problem. Diese Probleme
sind extrem unterschiedlich und ähnlich nur in ihren Grundbegriffen. Das Problem
ist aber sehr wichtig für Firmen, die im Logistikbereich arbeiten.

Dieses Projekt konzentriert sich vor allem auf das Vehicle Routing Problem mit Time
Windows. Es erforscht und testet eine Methode basierend auf einer Constraint-
Programming Formulierung des Problems, und es setzt eine lokale Suchmethode
ein, mit der Fähigkeit, große Teilen der Lösung zu ändern: Large Neighbourhood
Search. Diese Methode löscht eine große Menge von Kunden aus den Lösungen (bis
etwa 30 % der Kunden) und versucht, sie besser wieder einzufügen. Diese mächtigen
Moves helfen bei der Lösung eines der größten Probleme der lokalen Suchmethoden:
Lokalen Minima zu entkommen.

Zuerst exploriert die Arbeit die elementare Path-Formulierung des Modells, sowie
einige alternative Formulierungen. Wir implementieren eine erste Basisversion einer
großen Nachbarschaftssuche. Wir versuchen danach diese Basisversion zu verbessern
durch die Erforschung der verschiedenen Optionen für alle Entscheidungen, die sich
präsentieren bei der Gestaltung der Suche. Konkret sind die wichtigsten Entschei-
dungen zu treffen, wie die Kunden gelöscht werden und wie die gelöschten Kunden
wieder in die Lösung eingefügt werden.

Die Methoden werden dann unter Verwendung eines anerkannten Benchmarks getestet.
Die erhaltenen Ergebnisse werden dann zu den besten bekannten Lösungen für diese
Benchmarks sowie zu Ergebnissen von anderen Autoren verglichen.

v

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Contributions . 2
1.3 Summary . 2

2 Preliminaries 3
2.1 The Vehicle Routing Problem . 3
2.2 Constraint Programming . 4
2.3 Gecode . 4

2.3.1 Modelling . 5
2.3.1.1 Gecode Variables . 5

2.3.2 Propagation . 5
2.3.3 Branching . 6
2.3.4 Search Engines . 6

2.4 Large Neighbourhood Search . 7

3 The Model 9
3.1 The Path Model . 9
3.2 The Set Model . 10
3.3 Propagation . 11

3.3.1 The NoCycle Propagator . 12
3.4 Branching . 12

3.4.1 Selecting a variable . 12
3.4.2 Selecting the value . 13

3.4.2.1 The minimum distance brancher 13
3.4.2.2 The time brancher . 13

4 The Search Engine 15
4.1 General Algorithm . 15
4.2 Construction Heuristic . 16
4.3 Improvement Heuristic . 16

4.3.1 Relaxation . 17
4.3.1.1 Neighbourhood Size . 17
4.3.1.2 Relatedness Function . 17

4.3.2 Reinsertion . 18
4.3.2.1 Limited Discrepancy Search 18
4.3.2.2 General Algorithm . 18
4.3.2.3 Fixing Clients . 20
4.3.2.4 Costumers Left Free . 21
4.3.2.5 Time Limit on Reinsertion 24
4.3.2.6 First-Found, all-solutions 24

4.3.3 Objective Function . 25

vii

Contents

4.3.4 Implementation in Gecode . 25

5 Evaluation 27
5.1 Propagators and Branchers . 29

5.1.1 NoCycle Propagator . 29
5.1.2 Branchers . 30

5.2 Construction Heuristics . 31
5.3 Improvement Heuristics . 32

5.3.1 Reinsertion . 32
5.3.2 Heuristics for Insertion Sequence . 34
5.3.3 Inserting Variables when Only One Position is Left 35
5.3.4 Time Limit on Reinsertion . 36
5.3.5 Stopping Search When a Solution is Found 37

5.4 Relatedness Function . 38
5.5 Parameters . 39

5.5.1 Discrepancies . 40
5.5.2 Attempts . 41
5.5.3 Determinism . 41
5.5.4 Overall . 41

5.6 Objective Function . 43
5.7 Best Found Configurations . 43
5.8 Robustness of the Solution . 46
5.9 Improvement over Time . 46

6 Conclusion 49

Bibliography 51

viii

1. Introduction

Vehicle routing is a key problem to management of goods distribution and has become one
of the most important areas for improvement for companies around the world, and one
which must be systematically solved. In the industrial practice, vehicle routing problems
are extremely different and they share only a common basis. This high variability comes
from the different requisites and constraints that each company will provide for the prob-
lem, and in it resides the complexity of solving these problems. Therefore it is interesting
to find a method that allows us to be able to easily model constraints, as well as being able
to modify them easily without the need of major changes. Its flexibility to add new con-
straints or modify existing ones is what makes Constraint Programming (see [RVBW06])
so useful for this problem.

We provide extensive evaluation on a suite of well-known test instances, namely the
Solomon instances designed in [Sol87]. Solomon instances are sets of benchmark Vehi-
cle Routing problems, which present different scenarios. There are sets with the customers
distributed randomly, and sets of problems with clustered clients. Vehicle capacity, as well
as the time windows of the customers also vary. With them, the best solution found so
far for each of them is also provided. These instances are very useful for the testing of
applications for the Vehicle Routing Problem.

1.1 Related Work

Extensive work has been done around the vehicle routing problem, as summarized in [Lap09].
A wide variety of exact algorithms have been developed, including branch and bound, dy-
namic programming, set partition and flow algorithms. However, these exact methods
have proved unfeasible for problems bigger than 100 nodes. To try and solve bigger prob-
lems many heuristic methods have been introduced, one of the most popular being the
Savings method proposed by Clarke and Wright in 1964 in [CW64]. The Savings method
starts with an initial solution tries to merge two routes at each iteration until it is not
possible to merge routes anymore. Set Partitioning heuristics [GM74], try to solve the set
partitioning formulation with a subset of promising vehicle routes. Generalized assignment
(GAP) approaches were intorduced in [FJ81]. These methods try to locate a given number
of seeds and cluster the visits around those, then solve TSP for each cluster.

Further research has been done in the line of metaheuristics. These methods start with
an initial solution and try to improve it according to some criteria by applying changes

1

1. Introduction

to it. Many Local Search methods have been applied to vehicle routing problems. Local
search methods differ mainly in how the neighbourhood is defined. Basic methods have
been applied to the Vehicle Routing Problem, like Tabu Search in [GLS96, BGG+97] and
Simmulated Annealing in [DS90, Due93] Other methods have been explored like Variable
Neighborhood Search in [MH97] or Very Large Neighborhood Search in [EOSF06]. Pop-
ulation methods like Genetic algorithms (proposed by [HM91]) have also been proposed
and can be combined with local search methods. Some research has also been made in
how to include neural networks to provide learning mechanisms that can learn from ex-
perience and incrementally adjust their weights in an iterative fashion. This concept has
been however found to be hardly able to be applied to VRP.

1.2 Contributions

This project focusses in a combinations of constraint programming and local search meth-
ods, which leads to the Large Neighbourhood Search. This method consists of removing
a set of visits from a current feasible solution and re-inserting them in an optimal or at
least better way with the help of Constraint Programming, which is used to maintain the
domains of this variables through propagation rules. This allows both the high exploration
from local search methods and the propagation of constraint programming methods to be
used.

The main aim of this project is to further examine the constraint programming based large
neighbourhood search introduced by Paul Shaw in 1998 [Sha98]. In particular, we want to
find better lower bounds for the solutions, determine meaningful strategies for the large
neighbourhood search—selection of clients and reinsertion, as well as design experiments
for performance measuring with respect to the instances known from the literature. First
of all a basic version of the Constraint Programming based Large Neighbourhood Search
method will be implemented in Gecode (see [STL11]). This will serve as the starting point
from which further work will be done to improve the methods that form engine and will
serve as a base to test whether the proposed new methods actually perform better.

The main side of the project results serve as a test method for the Large Neighbourhood
Search method, as well as the adequacy of using Constraint Programming to solve Vehicle
Routing problems. It also aims to test the flexibility of Constraint Programming to easily
adapt to the introduction of new side constraints.

1.3 Summary

The concepts in the project will be presented in the following order:

• Chapter 2 reviews the basic concepts that will be used throughout the project.
This consists of the description of the Vehicle Routing Problem, and key concepts
about Constraint Programming and Large Neighbourhood Search.

• Chapter 3 describes the problem modelling—the formulation of the Vehicle Routing
Problem in terms of Constraint Programming, as well as alternative formulations.

• Chapter 4 describes the search engine that implements Large Neighbourhood Search
and details the various methods that have been implemented and tested.

• Finally, Chapter 5 exposes the tests that have been run and the results obtained.

• Chapter 6 presents the conclusions of the work.

2

2. Preliminaries

This chapter serves as an introduction to the project by defining and laying out the main
concepts that we will work with. First we provide a formal definition of the Vehicle Rout-
ing Problem with Time Windows. Then we review Constraint Programming and Large
Neighbourhood Search, laying out the main aspects and advantages of those methods. We
also provide an introduction to the C++ framework that we used to implement the system,
Gecode. We explain how it works generally as well as which are its main components and
operations.

2.1 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a generalization of the famous travelling salesman
problem (TSP). Whereas in the TSP we only have one vehicle to visit all the customers,
VRP generalizes to a fleet of multiple vehicles. The VRP is precisely the problem of
finding a set of routes to visit a set of customers exactly once with the available vehicles,
and considering restrictions like vehicle capacity. We want to find a solution that is optimal
according to some criteria. Usual optimization criteria are the minimization of the travelled
distance or travel time, and number of vehicles required to visit all the customers. The
problem can be further complicated with the addition of the time period during which
a costumer can be visited. This time interval is called a time window and the resulting
problem, a VRPTW. We define a Vehicle Routing Problem with Time Windows as:

• The set of n customers that must be visited, coupled with their coordinates [xi, yi],
for i = 1..n.

• The amount ri of goods requested by each customer i.

• The time window [ai, bi] for each customer indicating in which period of time the
costumer i can be visited.

• The set of m vehicles, the vehicle fleet. In the case of a homogeneous fleets, it consists
of a single value indicating how many vehicles are available.

• The vehicle capacity Qj , for j = 1..m. If the fleet is homogeneous all vehicles have
the same capacity and thus a single value Q is given for all vehicles.

• The depot coordinates [xd, yd], where all vehicles start and must end their tours.

3

2. Preliminaries

The problem is extremely variable and flexible, allowing to add a wide variety of side
constraints. This will almost always happen in real life, as each company or situation
asks for their own side constraints or the exact optimization criteria that will fit its needs.
There are also several variants of the problem that arise from the depot, including problems
with multiple depots, problems which don’t require vehicles to return to the depot and
problems where the picking up of goods is done through the route (pick-up and delivery).

2.2 Constraint Programming

Constraint programming is a declarative paradigm that, unlike imperative languages, does
not specify the exact step sequence to find the solution. Constraint programming limits
the programming process to a generation of constraints [Apt03]. These constraints de-
scribe a solution by specifying the requirements it must meet. As the step sequence to
execute is not determined, constraint programming subsequently has to use the specified
properties of a solution to find it. It makes use of domain variables representing the range
of values the variable can take. Those domain variables are reduced according to the con-
straints during computation, pruning the space and guiding the search. It provides easy
use for both mathematical constraints (e.g. X > Y), or more complex symbolic constraints
that describe non-mathematical relations between constraints (e.g. all-different constraint,
which applied to a vector will make sure all the variables in that vector take different val-
ues). These symbolic constraints allow for precise modelling for the problems [FLM02].
When all the variables are assigned to one value, a solution is found. If on the contrary the
domain of any variable becomes empty, the model is failed. If there are still variables with
more than one possible value, then we need to keep exploring the search space according
to some search strategy.

Standard search methods that perform complete search on the whole space are usually
unable to find a solution in a short time period, and have the big problem of local minima.
To try and escape those minima and find solutions in shorter times, it is interesting to use
some heuristic or meta-heuristic to guide the search. Iterative small improvements done
by small changes in the current solution, usually have success in these problems [BFS+00].
Constraint programming provides a very rich language to model the problem, both for
usual arithmetic and logical operators as well as complex constraints, for example the
all-different constraint. Constraint programming also allows for great flexibility to the
insertion of different side constraints to a basic model, and this is precisely what makes it
a very adequate tool for vehicle routing problems, as those are usually very variable in the
sense that each of them incorporates different side constraints to the basic model.

2.3 Gecode

Gecode [STL11] is a C++ software library for the development of constraint programming
applications, distributed as free software under the MIT license. Despite being a mature
tool, still a lot of acting development and improving is being done to provide with more
reliable tools. It is open source, as all the code is available, and has a detailed and extensive
documentation. It also comes with an interactive graphical debugging tool, Gist, which is
useful when testing applications. Gecode provides a lot of options to the developer, as it
allows the programming of new variables, propagators, branching strategies and even the
search engine itself. This feature makes possible to develop elements specifically designed
for our own problem.

Models are implemented in Gecode using spaces. Spaces are the basic Gecode objects,
which contain variables, propagators and branchings. Propagators implement constraints
and branchings describe the search tree. To implement a Gecode model, one needs to start

4

2.3. Gecode

by creating a space and defining the variables we want to assign values to. Next step is
specifying the constraints that the variable values need to satisfy. Gecode offers a rich set
of propagators that can be easily posted to the model using its constraint post function.
Those propagators implement a variety general of constraints, however it is interesting to
design one’s own propagators to post constraints specific to our own problem. Finally,
the branchings define the shape of the search tree, and are implemented by branchers.
Branchers take a space and create a choice, which consists of a number of alternatives to
be explored. Gecode provides basic Depth-first search and Branch-and-bound engines, but
again it will be interesting to implement our own branchings to meet the specific needs of
our problem.

2.3.1 Modelling

The model is implemented following C++’s object orientation philosophy, and thus will
be a subclass of the class Space which implements all spaces, and will inherit from it.
Posting variables is simple, as Gecode provides operations for creation, access and update
of integer, boolean and set variables, as well as arrays of said variables. These variables will
later be constrained through the posting of constraints, and modified through constraint
propagation and branching. Aside from the model itself, our space will need to implement
a cost function that defines how good a solution is if we want to use Branch-and-bound
search. Besides, a copy creator and a copy function are needed for the search engines to
work.

2.3.1.1 Gecode Variables

The variables used in Gecode are not like usual C++ variables. While the last contain
only the value of the variable, Gecode variables contain the set of possible values that the
variable can still take. When constraint propagation occurs, the domains of these variables
will reduced through the removal of the values that are no longer permitted for each one.
Gecode variables can be maintained in three consistency levels [STL11]:

• Value consistency. Maintains the whole set of possible values for a variable and
performs value propagation. Gecode will wait until a variable is assigned and then
remove all the values that are not consistent with this assignment from the domains
of the other variables.

• Domain consistency. Like value consistency, it maintains the whole set of possible
values for a variable but will always keep this set consistent with the domains of the
other variables.

• Bounds consistency. Only the lower and upper bound for the variable are main-
tained, giving a range of possible values from min to max.

2.3.2 Propagation

Propagators implement constraints by removing values from the variable domains that are
no longer permitted, because they are in conflict with a constraint. As variables do not
offer operations for modification—only for access—, propagators work with variable views
instead, which serve as an interface to access modify the values of the variables. When a
propagator is created, it will subscribe to some views, and will go from idle to scheduled
for execution as soon as that view is modified—that is, some of its values are removed.
When the status() function of a space is called, it will execute one of the propagators that
are scheduled for execution. If no more propagators are scheduled—no more propagation
can be done, then we call the space stable. When a propagator is executed, values will be
removed from the views. This can cause in turn to schedule more propagators. Besides

5

2. Preliminaries

propagating the constraints, the propagators will also report about the propagation done,
reporting one of the following outcomes:

• SS FAILED. A propagator will report failure if the constraint they implement is
not satisfiable anymore with the current assignment of variables.

• ES FIX. The propagator is at a fixpoint. We say a propagator is at a fixpoint if it
cannot remove any more values from any of its views.

• ES NOFIX. Propagation was successful but the propagator is not at a fixpoint.

• ES SUBSUMED. The constraint the propagator implements is guaranteed to be
satisfied from this point. The propagator can thus be disposed of. A propagator
must report subsumption at latest when all of its views are assigned.

2.3.3 Branching

Branchers are used in modelling to determine the shape of the search tree. Spaces have
a list of branchers available in a queue. Branchers will be executed following that queue
order. The first brancher in the queue is called the current brancher. Three functions are
basic to the implementation of branchers—these are actually virtual functions that will be
used by the search engine—.

• status() tests whether the current brancher has anything left to do, for example if
there are unassigned views on which to branch.

• choice() will create a choice with a number of alternatives, which describe to the
search engine how to branch. It should be space independent and not contain any
information about the space so it can be used with different spaces.

• commit() will commit to one of the previously created alternatives, typically mod-
ifying views as defined by the choice.

We will understand the use of these functions when looking at how search engines work.

2.3.4 Search Engines

Search in Gecode is based on spaces. Spaces have to implement the same three functions
as branchers: status(), choice() and commit(). When an engine wants to determine if a
Space is failed, it will call its status() function, that will trigger constraint propagation and
check the result of the process. If the space is failed, it will return SSFAILED. Otherwise
the search engine will check the status of the current brancher. If it returns false, the
engine will jump to the next brancher in the queue. When one of them returns true,
the status() function of the Space will return SSBRANCH, indicating that branching is
required. If all the branchers in the queue return false, then it means that any of the
branchers has any work left to do and thus the engine will conclude that the space is
solved. If branching is required, the engine will call the choice() function of the space.
This function will in turn call the choice() function of the current brancher, which will
compute a choice with a number of alternatives and return it back to the engine. Once this
choice has been computed, the engine can use the commit() function of the space. This
function will commit the space to one of its alternatives by calling the commit() member
of the brancher that has generated the choice.

Besides, the space has to provide a method for cloning during search. This is used to allow
the engine to backtrack. When branching is needed, the engine will always create a clone
before commiting to one of the alternatives. This clone of the space can be used if in the
future it needs to backtrack and commit to a different alternative, as it is a copy of the
exact state of the space at that point in the search.

6

2.4. Large Neighbourhood Search

Finally, a cost function is also needed to guide the search. Gecode needs a way of deter-
mining whether a solution is better than another. When this is required, the cost function
will be called to evaluate the current quality of the space.

2.4 Large Neighbourhood Search

Large Neighbourhood Search (LNS) is a term first coined in [Sha97, Sha98]. It is a form of
local search enhanced by constraint programming techniques, following a tree-based local
search. Constraint Programming makes it easy to maintain the domains of the variables
and can be easily used to evaluate the legality and cost of moves [Sha11]. It tries to
take advantage both from the high exploration capacity of local search methods and the
flexibility of constraint programming methods. Each move in the search is defined by the
removal and re-insertion of a set of costumer visits. LNS is a process of continual relaxation
and re-optimization, which at each step, will remove a set of customers and try to re-insert
them in a better way. As the neighbourhood of a solution is defined by the set of all other
solutions that can be reached using those relax and reinsert methods, the neighbourhood
of a solution is implicitly defined by the relaxation and reinsertion methods.

• Relaxation A method must be designed to destroy the current solution by removing
a set of customers from it. It is interesting to remove a set of customers that are in
some way related, for example because they are geographically close or in the same
tour. For this reason, a function that measures relatedness between customers is
needed. This method is very important, as it will in a strong way determine whether
LNS is or is not successful. We don’t want to choose variables that are likely to
maintain the same value when reinserted, but variables that give way to better
alternatives and improvement. Another point to consider is how many customers to
remove, that is, the neighbourhood size. It is usually a good strategy to start with
neighbourhood size of 1, and increase it when the search cannot improve the current
solution any more, or when the search does a given number of consecutive moves
without improvement. The neighbourhood size will keep increasing until some fixed
limit is reached.

• Reinsertion Once the solution has been destroyed according to the relaxation
method he following problem to solve is where to reinsert the customers we have
removed. For this we will use constraint programming and metaheuristics. The
relaxed visits are the constrained variables, maintained through propagation rules
that also maintain capacity and time constraints along a route. A simple branch and
bound method can be used to find the minimum cost insertion place for the relaxed
customers, but this can take a long time in some cases. Limited Discrepancy Search
(LDS) tries to avoid this by reducing the size of the search tree. This is done by
allowing the removed customers only to be inserted in their n-best positions, being n
the number of discrepancies. A strategy is also needed to choose the order in which
the customers will be inserted.

One of the main advantages of LNS is that it doesn’t suffer as much from local minima
as traditional local search methods do. These methods only perform small changes to the
current solution, and because of that suffer greatly from the problem of escaping local
minima. We call this method large neighbourhood search because it can remove a big
set of customers—up to 30% of the customers in the current solution. Removing such a
big set of customers provides the engine a very big neighbourhood to explore, and has
the potential to perform powerful moves, changing big parts of a solution. The method is
able to perform far-reaching changes that allow the search to move out of local minima.
The moves allowed by Large Neighbourhood Search are so powerful that it usually doesn’t

7

2. Preliminaries

need any other local minima escaping technique [Sha97]. Those powerful and far-reaching
moves also help better handling side constraints, as they can drive the search over barriers
in the search space created by side constraints. Cost differences are just a hint to the
search and thus can be simple functions related to distance. The cost of solutions helps
evaluate new found solutions, which will be accepted only if their cost is lower than the
cost of the best found solution so far.

8

3. The Model

In this chapter we review two models proposed by [KS06] for the Vehicle Routing Problem
with Time Windows. We also want to study the implementation of custom propagators
and branchers.

3.1 The Path Model

First constraint programming approaches for the TSP were described by [CL97, PGPR98],
using path constraints to model the routing. This formulation is adapted to the VRP by
introducing the multiple-vehicle concept in [BFS+00, KPS00]. It is further developed and
explored in [KS06]. It maintains a variable pi for each customer i that represents the
visit that goes immediately before it. We call the vector p formed by these variables the
predecessor vector. Similarly, a successor vector s is maintained, the variables si of which
indicate the visit that is performed immediately after costumer i. The maintenance of
those vectors is redundant, because s is implicitly defined by the values of p through the
coherence constraints 3.1. However, maintaining both helps to propagate the constraints
quicker. Two special visits fj , lj are introduced for each vehicle j. These visits represent
the first and last visits of each vehicle to the depot. We will refer to the sets of the first and
last visits as F and L respectively. We will refer to the set of all visits as V . Additionally,
two variable vectors are used to maintain time windows and capacity along the tours, we
call these vectors t and q. For each visit, ti represents the time the service at visit i starts,
while qi represents the load of the vehicle after the visit i has been performed. Finally a
vector v is maintained, each variable vi of which indicates the vehicle that visits costumer
i.

All-different constraint ensures that all values of p and s must be different from each
other. This is needed to guarantee that all the clients are visited exactly once.

pi 6= pj , ∀i, j ∈ V ∧ i < j

Coherence constraints enforce that the predecessor and successor variable vectors are
consistent with one another. For convention, we will say that the last visit of a vehicle has
the first visit of the vehicle as successor, consequently the first visit will have the last visit
of its tour as predecessor.

spi = i, ∀i ∈ V, psi = i, ∀i ∈ V

9

3. The Model

Vehicle constraints indicate that all variables must be visited by the same vehicle as
their predecessor. Each first visit fj ∈ F and last visit lj ∈ L will be assigned their
respective vehicle j when setting up the model.

vi = vpi , ∀i ∈ V, vi = vsi , ∀i ∈ V

Capacity constraints make sure the vehicle capacity is not exceeded. We first need
the constraints which will maintain the values of the quantity of goods being carried
by a vehicle. For these quantities, we only need to maintain bounds consistency (see
section 2.3.1.1). The load of a vehicle j after performing visit i will be equal to the load
qpi after visiting the previous customer in the tour plus the demand ri of the current
customer.

qi = qpi + ri, ∀i ∈ V − F, qi = qsi − rsi , ∀i ∈ V − L

Then we need, for each visit, to make sure the vehicle load does not exceed the vehicle
capacity Q, assuming a homogeneous fleet where all vehicles have the same capacity.

qi ≤ Q ∀i ∈ V

Time constraints make sure the planned tour meets the time window constraints for
all the costumers. Recall ti represents the time at which visit i starts. Then we have
that the start of service for client i is the start of service for the predecessor tpi , plus the
service time for pi and travel time between the costumers dist(i, pi). We define Tpi,i =
servicetimei + distancepi,i. In the same manner as with capacity, we need only maintain
consistency bounds for the time values along vehicle routes. For the start of service, waiting
is usually allowed, for this reason an inequality is maintained instead of an exact equality.

ti ≥ tpi + Tpi,i ∀i ∈ V − F, ti ≤ tsi − Ti,si ∀i ∈ V − L

Finally we have to constraint that the start of service for each costumer i fits its time
window [ai, bi].

ai ≤ ti ≤ bi

3.2 The Set Model

The set model described in [PGPR98] presents an alternative to the above described path
formulation 3.1 for the TSP problem. The model can be easily extended to make it ap-
plicable to the VRP [KS06]. The authors of [PGPR98] report that the model for the
TSP resulted in increased propagation by eliminating certain arcs from consideration or
enforcing that certain costumers must be visited by different vehicles. Instead of maintain-
ing only a predecessor and successor vector, two sets of visits Ai and Bi are maintained
for each client. Those sets represent the visits that come before and after the costumer
respectively. The model is defined through the constraints:

• For every costumer i, the intersection of its respective sets Ai and Bi must be empty.
This is, any other visit can come either before or after costumer i, but can not come
both before and after. This constraint helps forbid cycles in tours.

Bi ∩Ai = ∅

• If customer j comes after customer i, then customer i must come before customer j.

j ∈ Ai ⇔ i ∈ Bj

• If the direct successor of customer i is customer j, then the set of visits that come
after i must be exactly the set of visits that come after j plus the same node j.

si = j ⇔ Ai = Aj ∪ { j }

10

3.3. Propagation

• The transitive property that if a customer j comes after i, and in turn a costumer l
comes after j, then necessarily customer l comes after customer i.

j ∈ Ai ∧ l ∈ Aj ⇒ l ∈ Ai

• For two customers i, j, the customer j must either come before or after i in the same
tour, or they are in a different tour—served by different vehicles.

vi 6= vj ∨ j ∈ Bi ∨ j ∈ Ai

• If other visits come between i and j, then j can’t be the direct successor of i.

Ai ∩Bj 6= ∅ ⇒ si = j

• These constraints enforce time window constraints by stating that there must be a
certain time gap in between two visits when they are ordered in some way in the
same tour.

j ∈ Ai ⇒ tj ≥ ti + τi,j

j ∈ Bi ⇒ tj ≤ ti − τj,i

• Additionally to these constraints described by the authors, we also need similar
constraints for the vehicle capacity.

j ∈ Ai ⇒ qj ≥ qi + rj

j ∈ Bi ⇒ qj ≤ qi − rj

Despite the good results described in [PGPR98] for the TSP, which described increased
propagation in the model, we have found that when applied to VRPTW, the model grows
exponentially in size due to the multiple alternatives caused by multiple vehicles. The fact
that the variable domain is a large set (all subsets from 0..n) causes it to run very slowly,
while the quality of the solution found remains the same. To understand this we need to
think about the sets that are being maintained for each variable, Ai and Bi. In the TSP,
all the visits are either contained in Ai or in Bi, meaning one of this sets is completely
defined by the other set, and for this reason we only have to branch on one of the sets. On
the VRP, there is a third possibility: according to constraint e, a visit can either be in Ai,
Bi, or visited by another vehicle. In the TSP problem, it is enough to maintain the set Ai

for each visit, while in the VRP we need to maintain both Ai and Bi for each visit. Also,
in TSP the domain of the A sets is much smaller, as it is strongly constrained by the fact
that visits must be either in A or B, while in VRP those domains are very large due to
the possibility of being visited by another vehicle. A number of preliminary tests were run
on Solomon instances, mostly resulting in ”heap memory exhausted” exceptions. Hence,
from here on we only consider and work with the path formulation described in 3.1.

3.3 Propagation

Recall that propagators serve as implementation of the constraints 2.3.2. Propagation in
Gecode occurs when the status() function of a space is called. This happens when the
domain of any variable is modified, and all the constrained values that are affected by
this modification will be updated—this is what we call propagation. Although Gecode
provides many available propagators that implement a wide variety of constraints, it can
be useful to implement custom own propagators for specific constraints.

11

3. The Model

3.3.1 The NoCycle Propagator

This efficient constraint for avoiding cycles was first introduced in [CL97, PGPR98]. For
each variable, we maintain a pair [bi, ei] representing the nodes at the beginning and at
the end of the corresponding chain respectively. A propagation rule enforces that the
successor of a variable cannot be the node at the beginning of the same chain, forbidding
cycles. This constraint is not applied to last visits, which have first visits as successors.
Cycles in tours are already forbidden by various constraints. The most obvious is the
all-different constraint placed on the successor vector s. If there was a cycle, then for some
variables j and k, sj = sk, directly violating the constraint. Capacity and time window
constraints also guarantee that no cycles can happen, as the inequations maintained would
contradict each other. Despite cycles being already forbidden, adding this propagator will
help propagate faster.

ut we want to use it for better and quicker propagation. The idea is to fail nodes quicker
and be able to explore more nodes in a shorter time.

As far as problems with a very clustered set of costumers is concerned, very similar compute
times are required to find a solution. This problems however are normally easy and quick
to solve. In all of the more complicated problems though, the model performs faster with
the noCycle propagator, especially in problems with wide time windows. The reason for
this is that in problems with small time windows, much of the constraint propagation and
variable domain restrictions come from the said time windows. The wider time windows
are, the less restricted the variable domains are and thus there is more room for the system
to make a choice that violates the noCycle constraint.

3.4 Branching

2.3.3 Branchings determine the shape of the search tree by providing the search engine
with a choice, which will keep reducing the domains of the variables and try to assign them
a value. Branching occurs in two steps:

• Select a variable. We first need to choose one of the unassigned values to which
we will try to assign a value. At its simplest it can just be the first unassigned value,
but other strategies make sense like choosing to first assign the most constrained
variable.

• Select a value. The next step is to determine which value to assign to the variable
we have chosen. Again, we can choose one of the permitted values in the variable’s
domain at random, but we can also use information we have about the problem to
make a better choice.

In the presented model, we branch on the p vector, that is, on the predecessor variables.
This means we will try to assign a value to each one of the variables in p. If we can do
this, then we have a solution and the other vectors s and v are implicitly defined by the
values in p.

3.4.1 Selecting a variable

From the start, two options have been considered within the default branchings that
Gecode offers:

• INT VAR NONE. This default brancher will simply assign a value to the first
unassigned value that it encounters, without taking into account the variables as-
signed so far nor the domains of the remaining variables.

12

3.4. Branching

• INT VAR MIN SIZE. This brancher will take into account the domains of the
variables that have not yet been assigned. It will search for the variable with the
smallest domain size, that is the most constrained variable so far. The idea is to as-
sign the most constrained variables first to prevent states without possible solutions.

This strategies make sense each one in their own scenario (see section 4. Evaluation)
and for this reason it has not been modified nor has the need to implement new selection
methods arisen.

3.4.2 Selecting the value

The default brancher provided by Gecode assigns the minimum value from the domain to
the variable. This doesn’t make much sense when treating with vehicle routing problems,
so it is desirable to design a better way to assign a value. Two new branchers were
implemented, the minimum distance brancher and the time brancher.

3.4.2.1 The minimum distance brancher

Once a variable has been selected, this brancher will consider the distance between the
node and all the possible domain values to assign the node with the minimum distance as
the predecessor. The calculation of this minimum distance poses obviously an overhead in
the brancher every time a new choice has to be computed, resulting in longer computation
times. However, preliminary experiments show that the quality of the solution found is
much better, making for a good trade-off between computation time and solution quality.
This strategy works with similar results independently of the strategy used to select the
variable.

3.4.2.2 The time brancher

Another idea when assigning a value to a variable is to assign as a successor to a variable
the node with the smallest time window. We understand that the smaller the late window
value is the more likely it is that this node will need to be visited first. The idea is to visit
first the nodes that are more urgent. The interesting thing about it is to avoid making
assignations to variables that will inevitably lead to failed nodes, to find solutions in a
smaller computation time. As it doesn’t take into account any distances, the quality of
the solution is expected to go down. However, the idea is to combine this brancher with the
minimum distance brancher described above to find a good balance between computation
time and solution quality. However, as preliminary tests showed this brancher alone didn’t
present good results, we didn’t explore this option further.

13

4. The Search Engine

Gecode provides already built engines for Depth-First Search and Branch-and-Bound
search. We are however interested in Large Neighbourhood Search, and so we want to
design a new Gecode search engine that implements it. Various decisions over all the
available options must be taken when designing the engine. First of all, we need a con-
struction heuristic that will be used to determine an initial solution from which to start
the search. We need to define an improvement heuristic that will determine how Large
Neighbourhood Search is performed. This improvement heuristic will be basically defined
through the relaxation and reinsertion methods—that is, how the solution will be de-
stroyed and rebuilt. As for the relaxation method, the main decision will be how to choose
the customers to remove, the reinsertion process will determine how those removed clients
are inserted. As the whole process of choosing a neighbourhood, destroying the solution
and reinserting the removed clients is not exactly described in [Sha98] we want to explore
various options and decisions that present themselves when designing the search engine.

4.1 General Algorithm

We present the general algorithm for Large Neighbourhood Search (Algorithm 4.1), based
on [PR10]. A variable xB is maintained throughout the algorithm, it is the best solution
found until the current time. The algorithm receives an instance problem from the entry
and searches for an initial solution using the construction heuristics. This solution is used
as first best found solution. Then it enters the loop, the first thing it does is a copy x of the
current best solution. The following steps are destroying it using the function destroy(x)
and rebuilding it using the function rebuild(xD). Once the solution has been rebuilt, we
have to see whether we accept the new solution or not. Typically, we will accept any
valid solution the cost of which is lower than the current best solution. That is, we will
accept any valid solution that improves the current solution. In this case, the variable xB

is updated to the new found solution. When the neighbourhood size becomes too big, it is
too expensive to determine that we are truly at a local minima, and thus some other stop
condition must be placed on the search [KPS98]. This condition is usually a time limit
that accounts for how long the user is disposed to wait to find a solution. In our case a

15

4. The Search Engine

time limit of 900 seconds will be placed on the whole search to receive an answer. It will
naturally end sooner if the whole search space until a neighbourhood size of 30 is explored.

Algorithm 4.1: General algorithm for the Large Neighbourhood Search.

Input instance problem initSol = find initial solution(problem) xB = initSol ;1

while stop criterion not met do2

x = xB ;3

xD = destroy(x) ;4

xR = rebuild(xD) ;5

if accept solution(xR) then6

xB = xR ;7

return xB8

4.2 Construction Heuristic

The first step is to determine the initial solution. It is important to choose how the start
solution will be determined because it is the starting point from where to perform Large
Neighbourhood Search. Various methods have been tested to evaluate various ways to
obtain an initial solution.

• Using one of the default engines. We can use the default Branch and Bound or
Depth-First Search engines, combined with our custom brancher (see section 3.4.2.1),
to determine an initial solution. The solution obtained by this method is usually of
a good quality. However, the BAB and DFS engines can take a very long time to
find an initial solution, especially for instances with wide time windows, sometimes
even exceeding the total time limit set for the whole search. The quality of the initial
solution rarely pays off for this high temporal cost.

• Start with one tour per vehicle. A very simple option is to start with a vehicle
per client [Sha98]. For the Solomon instances, this means we start with 100 vehicles.
Although the quality of this initial solution is obviously as poor as it can be, the
solution is very quickly improved to one of similar quality as the one found with the
BAB engine. This quick improvement is possible thanks to the low cost of moves
when only a single client is removed, allowing to perform a long series of successful
moves in little time.

• Savings method. A third alternative is the savings method [CW64]. It also starts
with one tour per client, but the idea is to use the savings method before running
LNS to try and start from a better start point. The method computes the cost for
every pair of nodes, in this case the distance and ranks them accordingly, from lowest
to highest cost. It does then iteratively try to link the cheapest pair of clients until
no more moves are possible. This method improves the solution in a relatively low
time, but no big differences can be observed with respect to starting LNS right after
assigning one tour per client.

4.3 Improvement Heuristic

After finding a first solution, the next step is to improve this solution. We will do this by
iteratively removing sets of customers and trying to reinsert them in the solution.

16

4.3. Improvement Heuristic

4.3.1 Relaxation

The next step is to determine how we will destroy the current solution. To do that we
want to remove a set of clients from the solution. The most important decision in this step
is deciding which clients to remove, and the relaxation method will be implicitly defined
by the function that makes this choice. The most basic method is to remove a set of clients
chosen at random, but this doesn’t make any use of the information we have about the
problem or the state of the current solution. Using these informations, we ideally want the
costumers that we choose to remove to be maximally related according to some relatedness
measure, to avoid removing sets of clients that are very likely to be reinserted in the same
positions, leading to no improvement in the solution. The main part of designing the
relaxation method consists in defining said relatedness measure.

4.3.1.1 Neighbourhood Size

Another important question that arises is how many clients to remove from the solution.
It is best to remove a set of costumers as small as possible, as their reinsertion step
is very cheap, but we also want to remove sets of clients big enough as to allow large
parts of the solution to be changed and make it easier to escape local minima. Therefore
we will start removing a single client and increase the neighbourhood size once no more
improvements have been found after a certain number of failed attempts. A parameter
will indicate how many consecutive failed attempts will be performed before jumping to
the next neighbourhood size. The higher this number is, the more stubbornly will the
engine try to find a solution in a given neighbourhood size before increasing the number
of clients to remove.

4.3.1.2 Relatedness Function

As said in section 4.3.1 we want to remove clients that are maximally related to each other.
The set of customers to be removed from the current solution is implicitly determined by
the relatedness function. A very basic method that considers relatedness is to choose a
random seed node and remove the set of visits that are closer geographically. A better
option suggested in [Sha98] is to consider also whether the visits are or not on the same
tour as the seed node. This helps by optimization of the number of vehicles used, as to
reduce the number of vehicles we need to relax all the visits on one tour so that they can
be re-inserted somewhere else.

rel(i, j) = 1
dist(i,j)+v(i,j)

Where dist(i, j) is the distance between the nodes normalized in the range [0..1) and
v(i, j) = 0 if the clients are in the same tour and v(i, j) = 1 otherwise.

This function will always attempt to remove first all the clients in the tour, as their
relatedness will always be higher than those in other tours. This is important for vehicle
optimization, as reducing the number of vehicles used requires the removal of entire tours.

Determinism

A determinism parameter is used to introduce a certain degree of randomness to the
algorithm. This randomness is used when removing clients and it will cause the engine
to take not always the most related client to the seed node. It indicates how strongly the
engine relies in the relatedness function. With determinism = 0, relatedness is completely
ignored and the nodes to remove are randomly selected. With determinism = ∞, the
algorithm takes always the most related client. The importance of this factor lies in

17

4. The Search Engine

the fact that if we rely entirely on the relatedness function, it is pointless to perform
more attempts than the total number of clients, as the removal of a given seed client will
always result in the removal of the same neighbourhood and perform the same reinsertion
attempts. By introducing a certain randomness we allow that different attempts, even
with the same seed node, result in slightly different neighbourhoods.

4.3.2 Reinsertion

Once the solution has been destroyed, the next step is to try and reinsert those clients
in the solution, hopefully in a better way that improves the quality of the solution. It
is possible to use the default branchers or the custom ones described in section 3.4.2.1
to explore the whole search tree of the destroyed solution, that is, consider every single
insertion position for each one of the removed customers with hopes of finding a better
solution. However, although for some reinsertion steps, especially with neighbourhoods of
small size, the engine can quickly find out a solution or determine that no better solution
exists, in other occasions exploring the whole search tree of the destroyed solution can take
a very long time. As a great number of reinsertions are made during the whole process,
we wish that this step is as fast as possible, and a high overhead on this process can
lead to very high computation times. The alternative to try and compute this reinsertion
step faster, is to not explore the whole search tree but only a part of it. If we can find
a way to explore only the best branches of the search tree, then we will quickly find out
whether there is a solution that improves our current best or not. For this we will use
Limited Discrepancy Search introduced in [HG95]. It is also important to choose a way to
determine in which order will the customers be reinserted. As for the reinsertion method,
a series of different strategies have been implemented and tested to the effect of finding the
optimal way to reinsert the removed nodes. The main reinsertion variants revolve around
fixing or not fixing the customers when they are inserted. Fixing them will mean that,
when inserting customer j after customer i, we will unequivocally set pj = i and si = j.
The alternative is not to set this and keep the domains bigger to allow other insertions to
be made between those nodes.

4.3.2.1 Limited Discrepancy Search

The idea behind LDS (see [HG95]) is to explore only the best possible insertion positions
for the removed customers, assuming that, if there is a better solution to be found within
the search tree, it will be one involving those values for the removed costumers. We will
explore only the d best insertion points for the nodes, being d the number of discrepan-
cies. We call a discrepancy the insertion of a removed visit in its second best position.
We consider two discrepancies either the insertion of a visit in its third best position or
the insertion of two visits in their second best position. The parameter d indicates how
stubbornly the engine will try to find a new solution within a given neighbourhood. The
more discrepancies we allow, the longer the engine will try to find a better solution by
inserting the removed costumers in different positions, even when they are not the best
positions for those customers.

4.3.2.2 General Algorithm

We present the general algorithm for the reinsertion process based on [Sha98], using Lim-
ited Discrepancy Search. It is implemented with a recursive function (see Algorithm 4.2).
The algorithm receives the current solution, the number of discrepancies parameter and
a vector that contains the customers that are yet to be inserted. On the first call, these
are precisely the destroyed solution and the set of removed customers. First of all, the
algorithm checks whether there are still customers to be reinserted. If this is not the case,

18

4.3. Improvement Heuristic

then it means we have effectively reinserted all the customers and thus have a solution.
If it is better than the best found so far, we will accept it. If there are still customers
to insert, the algorithm chooses one of the removed customers to be inserted using the
insertion order heuristic, and computes the allowed insertion points for that customer and
ranks from lower to higher cost. Then it tries, while there are still valid insertion points
and we haven’t used all the allowed discrepancies, to insert the chosen customer in the next
best position, and recursively call the function to try and insert the remaining customers.
Before inserting, a clone of the current solution is done so that we can backtrack to it after
the reinsertion process, in the case that it has not produced a better solution.

Algorithm 4.2: General algorithm for the reinsertion step.

Input current solution x, number of discrepancies d, removed clients removed ;1

if |removed| = 0 then2

if cost(x) < cost(xB then3

xB = x ;4

else5

toInsert = choose customer to insert(removed) ;6

insertionPoints = calculate and rank insertion points(toInsert) ;7

i = 0 ;8

for p in insertionPoints and i <= d do9

xC = clone(x) ;10

insert(x, toInsert, p) ;11

reinsert(x, removed-toInsert, d-i) ;12

x = xC ;13

i = i+1; ;14

Choosing Which Customer to Insert

We have to reinsert all the clients back in the destroyed solution. The order of insertion of
these customers is of big importance, as every insertion affects the domains of all the other
variables. To choose which variable we will assign first, we have considered two heuristics,
the most-constrained heuristic and the farthest insertion heuristic:

• Most-Constrained heuristic. Consists in assigning a value first to those variables
with less possible options available, to try and avoid that their domains become
empty and fail the model.

• Farthest insertion heuristic. For each removed client, we consider the set of its
insertion points as the set of nodes after which the removed client can be inserted.
The cost of each insertion point is defined as the increase in distance when inserting
the removed node. We choose as the variable to insert the one for which the cheapest
insertion point is largest. The basis for this is to minimize the maximum cost by
inserting first the node with largest distance increases, for inserting it at the end
could cause the total cost to increase highly.

Inserting Variables when Only One Position is Left As an optimization for the
Farthest Insertion heuristic, as soon as one of the customers yet to be reinserted is left
with only one possible value in its domain, it is immediately inserted in that point—
note that the Most Constrained heuristic does that implicitly. This can hopefully avoid
the failing of a state due to the domain of this variable becoming empty and increase
efficiency resulting in the exploration of larger neighbourhoods in less time. This aims to
combine the good parts of both methods: Using information about the problem provided

19

4. The Search Engine

through the Farthest Insertion heuristic and avoiding explorations that will most likely
lead to empty domains through inserting variables when only one position is left. Another
way to see it is as using the Most Constrained heuristic only if the domain of a variable
has only one value, and using the Farthest Insertion heuristic otherwise.

4.3.2.3 Fixing Clients

In this versions, when an insertion point is decided for a client, the predecessor variable
for this client is fixed to be equal to the client after which it is inserted. This means
that if customer j is inserted after customer i, then pj = j and si = j. This method is
very simple, as it allows us to use Gecode both for solution checking as well as constraint
propagation. The main issue with this version is that, after this insertion, no more nodes
can be inserted between the nodes i and j. This is so because domains in Gecode can
never become bigger, meaning that once an assignment has been made, it is not reversible
and that customer j will always have the customer i as predecessor, unless we decide the
search has failed and we decide to backtrack. An alternative to these methods is presented
in the next section which aims to solve this problem. Another question is what to do with
the clients that we don’t remove: we can either leave them fixed or allow removed clients
to be inserted between them:

Fixing the non-removed clients

The first option implies that we will only allow to change the part of the solution that we
have destroyed, re-organizing those clients in the same tour or moving them to other tours
next to other removed clients, while the rest of the solution will remain exactly the same
(see Figure 4.1). The main advantage of having everything fixed is that it is much faster
to explore the neighbourhoods due to them being much smaller, unfortunately this very
same fact also causes that some solutions that would be possible are passed away and not
found.

A

B

C

F L

P

Q

dom(p[C]) = P

dom(p[Q]) = A,C,F,L,P

dom(p[P]) = B

dom(p[B]) = A

dom(p[A]) = F

dom(p[F]) = L dom(p[L]) = C

Depot

Figure 4.1: Domains of the clients after reinserting the client P in the tour in the all nodes
fixed version.

Allowing clients to be inserted anywhere

The second option allows for clients to be reinserted anywhere in the solution. All non-
removed nodes here have as predecessor variable’s domain the set of removed costumers
plus their predecessor in the current solution. When a node is inserted its predecessor will

20

4.3. Improvement Heuristic

be automatically removed from the domains of the other clients, as per the all-different
constraint (see Figure 4.2). Obviously the neighbourhood is here bigger, and although
it will take longer to explore the removed neighbourhoods, there is the hope that better
solutions will be found. The method still suffers from the fact that no nodes can be further
inserted before the node that we have just inserted, which limits the search options.

A

B

C

F L

P

Q

dom(p[C]) = P,Q

dom(p[Q]) = A,C,F,L,P

dom(p[P]) = B

dom(p[B]) = A,Q

dom(p[A]) = F,Q

dom(p[F]) = L dom(p[L]) = C,Q

Depot

Figure 4.2: Domains of the clients after reinserting the client P in the tour in the version
allowing clients to be inserted everywhere.

4.3.2.4 Costumers Left Free

The idea behind this method is to allow removed clients to be inserted after any of the non-
removed nodes. To allow this, no node link can be fixed until the end, because this would
cause the model to always fail when only one removed client is left, as the domain of the
predecessor for this client is empty. This is because due to the all-different constraint, all
pi variables must be different, and at the same time a node can’t have itself as predecessor.
The insertion of nodes will be done instead by adjusting the domains of the nodes according
to the insertion. A solution is found when all the removed nodes have been successfully
reinserted. If the domain of any variable becomes empty during the process, the status()
function of the model will report that it has been failed.

As this method requires the shrinking of domains and propagation of some constraints to
be done manually, which leaves the Constraint Programming environment almost only as
a solution checker, used to determine whether a model can still be further explored, has
been failed or is already a solution.

Passive Representation

In this method, instead of inserting clients directly to the model, the domains of the vari-
ables will be manually updated to be consistent with the current state of the solution.
The model now only contains a set of constrained variables with their corresponding do-
mains for predecessor and successor variables. As we want to keep the options open for
the removed customers to be inserted anywhere, even the variables that have already been
assigned a predecessor will have not only that predecessor in their domain, but also other
customers that are yet to be inserted—those could come in between that variable and
its current predecessor. Because of that, the model loses the information about which
customers are actually assigned together in the current solution. To avoid losing this in-
formation, a passive representation will be maintained to describe the actual state of the

21

4. The Search Engine

solution. It consists of two additional vectors. These vectors represent how would the pre-
decessor and successor vectors be in the original model if the customers actually inserted
in the solution. When costumers are removed, this passive representation represents the
tours that the the non-removed customers form. When customers are inserted, the vectors
are updated to include that customer in the corresponding tour.

Domain Adjusting

This method is based on adjusting the domains of the variables to make them consistent
with the actual state of the model. This has to be done both when destroying the current
solution—as the removal of variables changes variable domains, and as well when inserting
clients, as this will make the set of possible values left smaller.

Removing Clients from the Current Solution When we have a valid solution, all
the pi and si variables are set and this means the domain of each of these variables has one
and only one value. After removing clients, there will be many values again open for those
domains. As the domains of the variables can never become bigger in Gecode, we will
part from an empty model, completely unrestricted, and set the domains of the variables
according to the removed clients Figure 4.3. For this task there are three kinds of clients:

• The first visits. Those visits representing the starting point at depot will always
have the corresponding last visits as their predecessor. This is enforced through
constraints in the model so no further work must be done for those clients.

• The removed clients. These are the clients whose domain becomes bigger. The
domain for their predecessor variables will include virtually all the non-removed
clients. This is, they can be inserted after any of the clients that have not been
removed as long as they are not forbidden by time windows or capacity constraints.
The rest of the removed clients must also be included in the domain, because although
they will not be considered as insertion points while they remain free, they could
be once if they are inserted before the current node, as explained in the following
section.

• The non-removed clients. The predecessor variable for these clients can take any
of the removed clients yet to be inserted plus their predecessor in the current solution,
that is, they can either keep their current predecessor or get one of the removed clients
inserted before them—again, unless time windows or capacity constraints forbid it.

Reinserting Removed Nodes in the Model Each time a removed node is inserted,
the domains of most of the rest of variables will be shrunk Figure 4.4. Again, the first
visits don’t require any treatment, they keep the corresponding last visit as predecessor.
There are four different cases that must be considered when inserting a node:

• The inserted node. The inserted node becomes a completely normal non-removed
node when inserted and will be treated as such from here on. This means that the
domain for this node will be, as for all the other non-removed nodes, the current
predecessor in the solution plus the nodes that are still free. This translates in
removing all the non-removed nodes from the domain of this client except for the
one after which it has been inserted.

• The successor of the inserted node. The old predecessor for this node is not a
valid option anymore, as a node has been inserted in between and this node is now
the current predecessor. As it was already in the domain of that variable, the only
thing that must be done is remove the old predecessor which is not valid anymore
from its domain.

22

4.3. Improvement Heuristic

A

B

C

F L

P

Q

dom(p[C]) = B,P,Q

dom(p[Q]) = A,B,C,F,L,P

dom(p[P]) = A,B,C,F,L,Q

dom(p[B]) = A,P,Q

dom(p[A]) = F,P,Q

dom(p[F]) = L dom(p[L]) = C,P,Q

Depot

Figure 4.3: Domains of the clients after removing the nodes P and Q from the tour.

A

B

C

F L

P

Q

dom(p[C]) = P,Q

dom(p[Q]) = A,B,C,F,L,P

dom(p[P]) = B,Q

dom(p[B]) = A,Q

dom(p[A]) = F,Q

dom(p[F]) = L dom(p[L]) = C,Q

Depot

Figure 4.4: Domains of the clients after reinserting P back in the tour.

• The rest of non-removed clients. Those nodes can no longer have the inserted
node as their predecessor because this node is no longer free. The inserted node
must thus be removed from their domains.

• The nodes that remain free. Nothing must be done for the nodes that are yet to
be inserted. They keep all the options open, including all the non-removed clients,
the removed ones and the inserted node as well.

Constraint Propagation

We need to remember that constraint propagation in Gecode happens when the status()
function of the space is called. When a variable is assigned, the domains of all the other
variables will be reduced according to that assignment. Due to the variables not being
fixed in this version, the status() function cannot perform propagation on the time and
capacity vectors for that assignment, because although the customer has been assigned a
predecessor in the passive representation, the domain of this variable in the active model
can still contain other values. As we want to keep them coherent with the current state of
the solution that we have in the passive representation, constraint propagation for those
variables must be performed by hand. In practice, this means that when a node is inserted

23

4. The Search Engine

in a tour, the time window and capacity variables must be updated for the nodes in the
same tour Figure 4.5. Always starting from the inserted node until we reach the depot,
we need to do two kinds of propagation:

• Forwards Propagation. The minimum values for t and q must be updated for
all the nodes that come after the inserted client, as they are no longer valid. This
means that the insertion of a node before them will most probably cause the start
of service for those clients to start later.

• Backwards Propagation. In the same manner, maximum values for the nodes
that come before the inserted client must be updated. The insertion of a client after
those visits means that the service time for visits before will be constrained to start
sooner.

A

B

C

F L

P

Q

Depot

tP ≥ min(tB) + distB,P + servicetimeB
qP >= min(qB) + requestP

tB ≤ max(tP) − distB,P − servicetimeB
qB ≤ max(qP) − requestP

tC ≥ min(tP) + distP,C + servicetimeC
qC >= min(qP) + requestC

tL ≥ min(tC) + distC,L + stC
qL >= min(qC) + requestL

tP ≤ max(tC) − distP,C − servicetimeP
qP ≤ max(qC) − requestC

tA ≤ max(tB) − distA,B − servicetimeA
qA ≤ max(qB) − requestB

tF ≤ max(tA) − distF,A − servicetimeF
qF ≤ max(qA) − requestA

Figure 4.5: Forwards and backwards propagation of the time windows and capacity con-
straints after reinserting node P in the tour.

Finally, we also have to take this into account when destroying the solution, and propagate
this constraints after the removal of clients. It is done in the exact same way as for the
inserted clients, but it must be done for all tours where clients have been removed from.
For simplicity the constraints are propagated forwards from the first to the last node and
similarly backwards from the last to the first node.

4.3.2.5 Time Limit on Reinsertion

Observing the results of each iteration, one can see that most of the iterations where a
solution is found, this solution is found quickly. In other words, it can be seen that most
of the reinsertion iterations that take long time don’t end up in the finding of a better
solution, while on the contrary in most of the iterations where new solutions are found
the reinsertion time is relatively low. Based on this observation a time limit can be placed
on each iteration to avoid long reinsertion steps that most likely won’t find any better
solution.

4.3.2.6 First-Found, all-solutions

Another decision to take is whether to consider the first solution found or keep searching
for better ones. Finding all the solutions does not seem a good option, as when a better
solution is found it is unlikely to become any better by finding more solutions due to our

24

4.3. Improvement Heuristic

LDS engine inserting the clients in their best positions. It does seem clear then that we
will halt when a solution is found. We have however two options:

• Stop when a solution better than the current best solution is found.

• Stop when a solution is found, be it better or not than the current best solution.
It can be similarly argumented that the first solution found is most likely to be the
best we will find in during that reinsertion iteration.

4.3.3 Objective Function

The search in Gecode needs an objective function or cost function that returns the cost
associated with the current solution. This function will help decide whether a solution
found is better or not than the current best solution. As an important part of our problem
is to optimize the number of vehicles used, using the distance travelled is not enough,
and a high penalty for each vehicle used is added to the cost function besides distance
travelled. In addition to providing better guidance for the search, it allows small increases
in the total distance travelled if this means using less vehicles. As we never accept worse
solutions, this would never be possible if the cost function only takes the distance into
account, but with this penalty per vehicle, even if the distance goes slightly up, the total
value of the objective function decreases, making this move possible.

4.3.4 Implementation in Gecode

Gecode doesn’t provide a way to unassign values, because this is a really complex problem
that doesn’t only involve the value itself but the propagation of all the constraints and rules
that come with this assignment. Relaxing visits in Gecode thus involves creating a new
unconstrained model and adjusting the domains of the non-relaxed variables to take the
corresponding allowed values. Reinsertions will always be done on a clone of the current
Space. In case backtracking is needed because the reinsertion we tried did not work and
we need to try another choice, then we still have the original state of the model at that
point. This need to constantly clone the current state of the model before each reinsertion
causes this clone operation to be one of the most time consuming in the whole process,
taking up to around half the execution time.

25

5. Evaluation

The objective of this section is to analyse the data obtained from the run tests to evaluate
the performance of each method and understand why some methods perform better than
others. First of all we will quickly evaluate and review the NoCycle propagator from 3.3.1
and the Minimum Distance brancher from 3.4.2.1. Then we will proceed to analyse the
LNS engine. The construction heuristics will be evaluated to see if starting with the
savings method is useful. As for the improvement heuristics, we will present a number
of tests regarding the three main reinsertion methods and the farthest insertion heuristic.
Relaxation will be analysed based on tests on the relatedness function. Many tests have
been also run to determine the effect the main parameters in search have—number of
discrepancies, attempts and determinism. Finally, we will test other options like inserting
a variable immediately when only one client is left, objective function and stopping search
when the first solution is found.

Environment

We compiled the programs using GCC v4.5.0 with full optimization—using the flag -O3.
All tests have been run on one core of a 4x12-core AMD Opteron Processor 6172 machine
clocked at 2.6 GHz, running Linux Suse 2.6.34. It has 128 KiB L1 cache (per core), 512 KiB
L2 cache (per core), 12 MiB L3 cache (per socket) and a total of 256 GiB RAM.

Inputs

To test the implemented models, the Solomon benchmark instances [Sol87] have been used.
These are problems for which best-known solutions are provided. The instances can be
divided using two criteria: The geographic distribution of the customers and the vehicle
capacity.

Regarding the distribution of the clients we have three kinds of instances:

• The C instances. These instances present a set of clustered customers (see Fig-
ure 5.1). Given the clustered distribution, these problems are usually easy to solve
with an optimal number of vehicles.

• The R instances. These instances have a set of customers that are randomly
distributed (see Figure 5.2).

• The RC instances. These instances have a mix of clustered and randomly dis-
tributed clients (see Figure 5.3). They are a mix of the C and R instances.

27

5. Evaluation

All the instances in each of these sets presents the exact same distribution of customers.
In each set, the instances are divided in groups of four—that is 101..104, 105..108, etc.,
except for c109 that is left alone. Within each group, time windows widen progressively,
with the first in the group having very narrow time windows and the last in the group
having very wide time windows—in some cases almost no time window restrictions.

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●●

●
●●

●

●

●

●

X

Figure 5.1: Distribution of clustered customers found in the C-Type instances. The point
marked with a cross represents the depot.

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

X

Figure 5.2: Distribution of randomly placed customers found in the R-Type instances. The
cross is marked with a red point.

With respect to tour length we have two kinds of instances:

• C1, R1, RC1 instances. The vehicle capacity for this instances is relatively
low, resulting in a relatively high number of tours of short length, as the capacity
constraints do not allow the tours to become much longer.

• C2, R2, RC2 instances. This instances have a high vehicle capacity, which allows
the tours to be very long. These instances usually can be solved with 2-3 vehicles
that do a very long tour.

28

5.1. Propagators and Branchers

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

X

Figure 5.3: Mixed distribution of clustered and randomly placed customers found in the
RC-Type instances. The point marked with a cross represents the depot.

This evaluational chapter of the project focuses on the C1, R1 and RC1 instances, as they
are the ones that are suitable to be effectively solved by Large Neighbourhood Search
methods. The C2, R2 and RC2 are usually solved with three or four vehicles, each of
which has a length of about 25 customers. This means that to remove a whole tour we
need to remove a very large set of customers. As vehicle optimization usually requires
the removal of two or even three complete tours, that would mean removing around 50 or
60 customers, which is more than half of the solution. The LNS engine proposed gets to
remove only a 30% of the customers, which is already a large number.

Methodology

As our algorithm has a part of randomness, for each instance ten runs of the program have
been executed in parallel with different random seeds. The best solution obtained from
the ten runs has been taken to analyse. A time limit of 900 seconds has been placed on
those tests, unless specified otherwise. In most of the tests we left the C-Type instances
out of the analysis, the fact is that these problems are the easiest kind and most methods
always find the optimal solution, at least in number of vehicles, and with results in terms
of distance varying only very slightly. This fact causes the analysis of this data not to
bring a lot of insight into the performance of the methods.

5.1 Propagators and Branchers

Although our custom brancher and propagator are not finally used in our final Large
Neighbourhood Search engine, it is interesting to quickly test their performance on a
Branch and Bound or Depth-First Search engine. We first present the results for the
NoCycle propagator. Secondly, we analyse the in-built variable selection methods provided
by Gecode, and finally we evaluate our custom brancher, the distance brancher.

5.1.1 NoCycle Propagator

The NoCycle propagator forbids cycles within a chain of customers. It aims to increase
propagation and speed up the process of finding an initial solution. Tests have been run
to find out whether it really accomplishes this objective, as well as running an analysis
on propagation data to see how this affects search. As evidenced by Table 5.1, using the

29

5. Evaluation

propagator results in increased propagation. Around 90% more fails occur when using
the nocycle propagator, which means spaces are failed before. This results in avoiding
a lot of useless search. It is also evidenced by the number of nodes explored. Around
75% more nodes are explored in less time when using the nocycle propagator. For the
C-Type instances this doesn’t result in a tangible win in terms of computation time, as
these problems are easy to solve and an initial solution is very quickly found. On the R
and RC instances though, the computation time for the initial solution is reduced almost
a 15%.

Table 5.1: Table showing execution times, fails and nodes explored, as well as win percent-
ages when using the nocycle propagator.

C-Type R/RC-Type

Average Time 0.32 0.41
Average Fails 9.71 16.95
Average Nodes Eplored 144.41 158.89
Average Time (NoCycle) 0.32 0.35
Average Fails (NoCycle) 269.18 297.34
Average Nodes Explored (NoCycle) 663.35 719.68

%Time Win 0,91 14.49
%Fail increase 96.39 94.30
%Nodes explored increase 78.23 77.92

5.1.2 Branchers

Recall that branching in Gecode has two steps: Selecting a variable and selecting a value
(see section 2.3.3). A new brancher has been implemented to improve the default branch-
ers that use no information about the problem. It uses information about the problem,
concretely the distance between nodes, to assign a value to a variable, and uses the built-in
strategies for variable selection.

Selecting the Variable

We have two already built-in options for variable selection:

• INT VAR NONE. Assign a value to the first unassigned variable.

• INT MIN SIZE. Assign a value to the variable with smallest domain—that is,
most constrained variable.

Although it could initially seem that assigning first to the variable with the smallest
domain would yield the best results, this is not always the case. For problems with a big
fleet available, it is much better to assign a value to the first unassigned variable first.
This is due to the fact that the problem is much less constrained and because of that,
the domains of the variables remain considerably big. On the other hand, with problems
with a narrow number of vehicles where the variables are much more constrained, the
domain of the variables are quickly reduced, leading to more failings of the space. Fore
these problems, it is much better to choose the most constrained variable to minimize this
failing. Using this method, a solution is found faster. On these problems, assigning the
first unassigned variable performs poorly.

Preliminary tests have shown that using the most constrained selection when the number
of vehicles is very restricted is not a good idea, even failing to find solutions for some of

30

5.2. Construction Heuristics

the C-Type instances. When the number of vehicles is not that restricted, as is the case
of the Solomon instances, using first unassigned variable performs really good for C-Type
instances. This is again, because those instances are easy. Using most constrained variable
takes longer to find a solution, and even fails to find one in the time limit placed for the
instance c103. However, when moving to more complicated problems, namely R-Type and
RC-Type, the first unassigned method fails to find a solution for 55% of the instances on
the placed time limit, while using the most constrained only fails in 25% of the instances,
namely those with very wide time windows.

Selecting the Value: Distance Brancher

The distance brancher aims to reduce total distance values by always assigning as a pre-
decessor for a customer, the customer that is geographically closer. Tests have been run
to see if this is accomplished and which impact does that have on computation time. We
show analysis based on those instances for which an initial solution could be determined
within the 900 seconds time limit for both methods. There were a series of instances with
wide time windows for which both methods failed to find a solution, and other when only
one of them could—. For those instances that both methods could solve, tests result in
the whole computation being made around 80% faster. The solution quality in terms of
distance improves—that is total travelled distance goes down, around 44%.

5.2 Construction Heuristics

We want to determine which of the options we have to obtain the initial solution is better:
Using one of the default engines, starting with the savings method or starting directly with
one vehicle per customer. Preliminary tests have shown that it is not viable to find an
initial solution with the default engines 5.1.2, as for problems with very wide time windows
it can take more than the 15 minutes placed as time limit for the whole search only to find
that initial solution.

Having discarded the default engines option, it remains to see if the savings method adds
any benefit with respect to searching directly with LNS after starting with one tour per
vehicle. As can be seen in Table 5.2, the results are very similar for most instances.
However, in some cases using the savings method before launching LNS results in better
solutions (r110, r111, rc107), using one vehicle less, and it only performs worse for the
instance r106 (one vehicle more). Although there is not a big difference between the two
methods, applying the savings method seems to help with some instances, and the biggest
downside it presents is a low increase of travelled distance on most instances.

The fact that both methods perform so similarly is because when starting with a vehicle
per customer, the search engine does moves that are very similar to the savings method.
Recall that at the start of LNS the neighbourhood size is one, meaning only one single
client is removed (see section 4.3.1.1). While the savings method will always take one of
the customers that is still alone in a tour and try to insert it in another tours, LNS selects
a customer randomly and as such can choose a customer that is already together with
other customers in the same tour. However, removing a costumer that is already coupled
with another one will never result in opening a new tour due to the vehicle penalty causing
the objective function to rise greatly. On the other hand, when removing a customer that
is alone in a tour, we will always put it together with other nodes—as long as capacity
and time window constraints allow it, due to the objective function now sinking when
eliminating a vehicle. Finally, as the lowest tested number of attempts is 250, even with
the randomness factor we can be almost sure that all nodes will be chosen at some point,
and so they will be placed within other tours. All together, we could say that, in the first
step where the neighbourhood size is one, the LNS engine does perform in a very similar

31

5. Evaluation

Table 5.2: Comparative of the performance on distance and number of vehicles starting
with one vehicle per tour (init) and for the savings method.

Instance Vehicles (init) Distance (init) Vehicles (savings) Distance (savings)

r101 20 1695.79 20 1684.59
r102 19 1529.07 19 1520.44
r103 14 1265.32 14 1277.91
r104 11 1062.91 11 1042.70
r105 16 1403.68 16 1405.82
r106 13 1289.56 14 1281.91
r107 12 1116.89 12 1123.89
r108 11 994.33 11 1006.51
r109 14 1233.84 14 1239.85
r110 13 1146.32 12 1139.32
r111 13 1104.25 12 1103.78
r112 11 989.92 11 1048.89
rc101 17 1711.34 17 1709.37
rc102 15 1547.61 15 1553.86
rc103 13 1354.11 13 1402.81
rc104 11 1194.70 11 1303.46
rc105 16 1598.80 16 1584.40
rc106 14 1468.65 14 1524.74
rc107 13 1303.16 12 1309.16
rc108 12 1222.51 12 1220.08

Sum 278 26232.76 276 26483.49

way to the savings method. We can see that in the time the savings method takes to find
the initial solution, the search engine reaches a solution of even a better quality by making
lots of moves removing only one customer, as shown in Table 5.4 . However in the three
mentioned instances the savings method performs better, which indicates that in those
very concrete cases the pairings the savings method does provide a better basis for further
optimization.

5.3 Improvement Heuristics

This section aims to analyse the performance of the different improvement heuristics and
explore all the options and parameters that are involved in the process. First of all we
evaluate the three main insertion methods and the heuristics for choosing the node to
reinsert. We also develop the question of when should the reinsertion process be stopped,
for example by accepting the first found solution or placing a time limit on reinsertion.
Secondly we evaluate the relatedness functions, and its effectiveness in comparison to
random selection of clients. Finally we evaluate various values for the main parameters of
the search engine.

5.3.1 Reinsertion

The objective of this section is to evaluate the performance of the three main reinsertion
methods, summarized in Table 5.3. First of all, we want to compare the two methods that
fix customers when reinserting them. These are the Fixed and Partially Fixed methods.

32

5.3. Improvement Heuristics

0 100 200 300 400 500 600 700

20
40

60
80

10
0

Time

V
eh

ic
le

s

●

Figure 5.4: Evolution of the number of vehicles starting directly with LNS. The point
represents the initial solution obtained by the savings method.

By comparing those methods we want to find out which impact has fixing all the non-
removed customers with respect to leaving them open. Secondly, we want to see how
important is the problem of not allowing further insertions before reinserted nodes, and
whether the Costumers Left Free method—which solves this problem, performs better.

Table 5.3: Summary of the three reinsertion methods classified by whether removed cus-
tomers are fixed upon reinsertion and by whether the rest of the non-removed
nodes are fixed.

Fix removed clients upon reinsertion?
YES NO

Non-removed clients fixed?
YES Fixed Method (Fix) -
NO Partially Fixed Method (PF) Clients Left Free Method (CLF)

Within the two methods fixing the costumers when they are inserted (see section 4.3.2.3),
the one that also fixes the non-removed costumers performs better as can bee seen in Ta-
ble 5.4. Not fixing the non-removed costumers provides a larger neighbourhood to explore.
Although a larger neighbourhood allows the engine to explore more options to find solu-
tions, it also takes more time to be completely explored, because more reinsertions and
backtracks have to be done, each of them involving a clone operation (see section 4.3.4).
The Customers Left Free method does not fix anything, allowing free customers to be

33

5. Evaluation

Table 5.4: Comparative of the results obtained with the three reinsertion methods: Clients
Left Free (CLF), Only fixing the reinserted costumers (Partially Fixed, PF) and
Everything Fixed (fix).

Instance Veh. (CLF) Dist (CLF) Veh. (PF) Dist (PF) Veh. (Fix) Dist (Fix)

r101 20 1695.79 22 1764.76 22 1764.25
r102 19 1529.07 20 1608.47 20 1542.66
r103 14 1265.32 16 1358.48 17 1346.82
r104 11 1062.91 13 1166.12 14 1126.54
r105 16 1403.68 18 1547.00 19 1506.38
r106 13 1289.56 16 1390.05 17 1370.58
r107 12 1116.89 14 1205.06 14 1180.66
r108 11 994.33 12 1063.71 13 1072.42
r109 14 1233.84 16 1350.24 16 1271.52
r110 13 1146.32 15 1303.54 15 1245.88
r111 13 1104.25 15 1286.18 15 1235.94
r112 11 989.92 15 1237.87 14 1098.97
rc101 17 1711.34 19 1881.81 19 1901.39
rc102 15 1547.61 19 1929.07 18 1690.82
rc103 13 1354.11 17 1624.49 15 1473.92
rc104 11 1194.70 14 1568.24 14 1401.39
rc105 16 1598.80 20 1966.50 18 1738.78
rc106 14 1468.65 17 1751.27 17 1569.44
rc107 13 1303.16 15 1488.59 16 1504.73
rc108 12 1222.51 16 1533.95 15 1398.83

Sum 278 26232.76 329 30025.40 328 28441.92

reinserted anywhere in the current solution. This provides a much bigger neighbourhood
for the engine as the nodes can be inserted in a much bigger set of positions, and although
it also becomes a bit slower because of the increase of size in the neighbourhoods, much
better solutions are found, as can be seen in Table 5.4. As seen in the table, the results
obtained by this method are clearly better for all instances, both in vehicles and distance.

The fact that the Customers Left Free method performs so much better demonstrates how
big a problem fixing the customers upon insertion is: It greatly reduces the neighbourhood
causing the engine to miss a lot of choices that could potentially lead to better solutions.
The better performance of the Partially Fixed Method with respect to the Fixed Method
indicates that a big neighbourhood to explore is useless if the neighbourhood isn’t properly
chosen. This method does provide a bigger search tree, but the big problem it has makes it
useless, because the values we want to find are most likely left out because of this problem.
The only thing it accomplishes is wasting more time exploring a bigger search tree that
won’t lead to any better solution.

5.3.2 Heuristics for Insertion Sequence

Another decision that can be important when reinserting clients is the choice of which client
to reinsert first. Two options have been presented (see section 4.3.2.1). Tests have been
run to determine which of them yields the best results. Although the Farthest Insertion
Heuristic performs better on the instance r103, the Most Constrained Heuristic does give
better results in almost all the RC-Type instances—concretely for the rc101, rc105, rc106,
rc107 and rc108 (see Table 5.5). The better performance of the Most Constrained Heuristic
can come from the fact that a lot of searches that end up with a failed spaced are avoided.

34

5.3. Improvement Heuristics

Inserting first the variables with less possible values attempts to minimize the risk of the
domain of a variable becoming empty. Avoiding the search of those neighbourhoods that
will end up in a fail is important because it increases the speed of the reinsertion process
and can take the engine to bigger neighbourhoods within the placed time limit. These
results indicate that it is important to try and minimize distance travelled, but it is also
important to guide search but taking the current domains into the variables into account.

Table 5.5: Results for the Farthest Insertion Heuristic (FI) and the Most Constrained
Heuristic (MC)

Instance Vehicles (FI) Distance (FI) Vehicles (MC) Distance (MC)

r101 20 1695.79 20 1680.45
r102 19 1529.07 19 1520.05
r103 14 1265.32 15 1243.72
r104 11 1062.91 11 1058.80
r105 16 1403.68 16 1400.01
r106 13 1289.56 13 1305.13
r107 12 1116.89 12 1125.59
r108 11 994.33 11 976.78
r109 14 1233.84 14 1241.51
r110 13 1146.32 14 1241.51
r111 13 1104.25 12 1093.04
r112 11 989.92 11 988.96
rc101 17 1711.34 16 1706.99
rc102 15 1547.61 15 1534.57
rc103 13 1354.11 13 1353.73
rc104 11 1194.70 11 1183.79
rc105 16 1598.80 15 1619.02
rc106 14 1468.65 13 1469.65
rc107 13 1303.16 12 1274.19
rc108 12 1222.51 11 1163.03

Sum 278 26232.76 274 26180.52

The fact that the Most Constrained heuristic works better than the Farthest Insertion
heuristic comes from the fact that it avoids failing of spaces sooner. However, it is inter-
esting to compare these results with those obtained when variables with only one valid
insertion point left are immediately inserted (see Table 5.6).

5.3.3 Inserting Variables when Only One Position is Left

We want to see if inserting variables immediately if at some point they are left with one
possible value 4.3.2.2 has any influence on both the solution quality and computation
time. It can be seen in Table 5.6 inserting variables when only one position is left results
in better vehicle optimization for some instances, specifically r102, r109, r111, rc107 and
rc108. It also performs better on distance for most of the instances. Inserting variables
when only one value is left in their domain avoids many useless explorations that will
end in failed spaces, greatly accelerating the search and allowing the engine to explore
bigger neighbourhoods in less time. This is reflected in the neighbourhood size reached
within the 900 time limit, which is greater in all instances. This is especially important
for instances with wide time windows. These instances are much less constrained and thus

35

5. Evaluation

reinsertion takes longer, as many possibilities are available and must be explored. Due to
this extra cost on reinsertion, for some of the instances the engine only reaches a very small
neighbourhood size—for example for the instance r104, it only reaches neighbourhood size
of 8 removed customers. On the other hand, by inserting the customers when they have
only a single allowed value brings the engine to reach neighbourhood size of 14 removed
customers. Getting to remove bigger sets of customers is important because it allows
changing bigger parts of the solution, which is important to escape local minima (see
section 2.4).

Table 5.6: Results on distance for the plain Farthest Insertion heuristic (FI) and the Far-
thest Insertion heuristic with immediate insertion of variables with only one
position left (FI-INS) , as well as neighbourhood size reached.

Instance Veh. (FI) Dist (FI) Veh. (FI-INS) Dist (FI-INS) NSize (FI) NSize (FI-INS)

r101 20 1695.79 20 1682.16 30 30
r102 19 1529.07 18 1556.08 30 30
r103 14 1265.32 14 1285.53 24 30
r104 11 1062.91 11 1071.13 11 13
r105 16 1403.68 16 1403.62 30 30
r106 13 1289.56 13 1302.59 22 30
r107 12 1116.89 12 1147.18 18 28
r108 11 994.33 11 990.75 11 17
r109 14 1233.84 13 1199.86 23 29
r110 13 1146.32 13 1162.69 19 22
r111 13 1104.25 12 1099.56 24 26
r112 11 989.92 11 994.25 10 16
rc101 17 1711.34 17 1708.74 30 30
rc102 15 1547.61 15 1551.35 30 30
rc103 13 1354.11 13 1345.78 21 19
rc104 11 1194.70 11 1166.51 8 14
rc105 16 1598.80 16 1591.16 30 30
rc106 14 1468.65 14 1496.01 24 29
rc107 13 1303.16 12 1295.62 18 26
rc108 12 1222.51 11 1198.44 12 16

Sum 278 26232.76 273 26249.01 425 495

It is also interesting to compare these results obtained with the Farthest Insertion Heuristic
against the ones obtained with the Most Constrained heuristic (see Table 5.5). With this
optimization, the Farthest Insertion heuristic gives distances slightly higher, but performs
better in number of vehicles on 20% of the instances (r102, r109, r111, rc107, rc108),
so inserting variables immediately when only one insertion point is left indeed succeeds
in bringing some of the advantage of the most Constrained Heuristic into the Farthest
Insertion heuristic.

5.3.4 Time Limit on Reinsertion

As solutions are usually found relatively quick within a neighbourhood, we want to see if
placing a 20 second time limit on the reinsertion step 4.3.2.5 accelerates the whole search,
allowing the engine to reach bigger a neighbourhood size faster. We also want to see if
cutting the search at this point has any significant effect on the solution quality because
it will prevent the engine from finding a better solution, or on the contrary it is safe to
assume that from there on no better solutions will be found in the search. We can see

36

5.3. Improvement Heuristics

that the results obtained are better for many instances in Table 5.7, namely r102, r109,
r111, rc103, rc107 and rc108. Only for the instance rc106 the number of vehicles goes
up. The reason for it performing better for many instances is that due to the reinsertion
process being accelerated, we get to remove bigger sets of clients—that is, we get to explore
bigger neighbourhoods. Removing big sets of customers is a requirement regarding vehicle
optimization, as this allows the engine to perform more powerful moves, which favours
escaping from local minima.

Table 5.7: Comparative of the results obtained by placing a time limit on the reinsertion
step against the ones obtained by not doing so.

Instance Veh. Dist Veh. (Inslimit) Dist (Inslimit) NSize NSize (Inslimit)

r101 20 1695.79 20 1682.16 30 30
r102 19 1529.07 18 1556.08 30 30
r103 14 1265.32 14 1285.53 24 26
r104 11 1062.91 11 1067.69 11 19
r105 16 1403.68 16 1403.62 30 30
r106 13 1289.56 13 1302.59 22 30
r107 12 1116.89 12 1124.46 18 26
r108 11 994.33 11 990.75 11 14
r109 14 1233.84 13 1199.86 23 30
r110 13 1146.32 13 1162.69 19 24
r111 13 1104.25 12 1108.79 24 23
r112 11 989.92 11 994.25 10 14
rc101 17 1711.34 17 1708.74 30 30
rc102 15 1547.61 15 1547.20 30 27
rc103 13 1354.11 12 1357.21 21 27
rc104 11 1194.70 11 1223.04 8 13
rc105 16 1598.80 16 1615.90 30 30
rc106 14 1468.65 15 1500.46 24 29
rc107 13 1303.16 12 1311.02 18 23
rc108 12 1222.51 11 1199.34 12 16

Sum 278 26232.76 273 26341.38 425 491

5.3.5 Stopping Search When a Solution is Found

We want to test when should the reinsertion step be stopped. Preliminary tests have
shown that exploring the whole neighbourhood even when a solution that is better than
the current best found solution is not worth it, as it takes a lot of time to explore neigh-
bourhoods for which already a better solution has been found. Based on 4.3.2.6 we now
want to test if it is safe to assume the first solution found will be the best, stopping search
in the current neighbourhood even if this first found solution is not as good as our current
best solution, or if contrarily we should keep searching for better solutions.

The results in Table 5.8 show that it is better to keep searching for a solution that is better
than the current best. Doing so yields better results for some of the instances (r102, r109,
r110, r111, rc107).

To understand what is happening we have to look at the evolution of the number of
vehicles through time. As can be seen in the Figure 5.5, at the beginning both strategies
present almost the same results, going exponentially down. This is because the initial
solution with one vehicle per tour is of very poor quality, and as a almost any solutions

37

5. Evaluation

Table 5.8: Results for the both strategies, stopping when a solution is found (FF), or
stopping when a solution better than the current one is found (FB).

Instance Distance FF Vehicles FF Distance FB Vehicles FB

r101 1695.79 20 1703.19 20
r102 1529.07 19 1556.08 18
r103 1265.32 14 1285.53 14
r104 1062.91 11 1067.69 11
r105 1403.68 16 1403.62 16
r106 1289.56 13 1302.59 13
r107 1116.89 12 1124.46 12
r108 994.33 11 990.75 11
r109 1233.84 14 1199.86 13
r110 1146.32 13 1164.06 13
r111 1104.25 13 1099.56 12
r112 989.92 11 994.25 11
rc101 1711.34 17 1708.74 17
rc102 1547.61 15 1613.88 15
rc103 1354.11 13 1345.78 13
rc104 1194.70 11 1166.51 11
rc105 1598.80 16 1612.75 16
rc106 1468.65 14 1496.01 14
rc107 1303.16 13 1295.62 12
rc108 1222.51 12 1198.44 11

Sum 26232.76 278 26329.37 273

that are found will also be better than the current one. Note that if the first solution
found within a neighbourhood is better than the current one, then both methods behave
exactly the same. However, as the solution gets better, its more difficult to found a better
solution. The assumption that the best solution will always be the first found—or at least
most times, is incorrect, as evidenced by the fact that although both methods do similarly
through time, by searching for a solution that improves the current best the engine finds
one last solution at the end that the other strategy fails to find. This means that there are
better solutions hidden deeper in the search tree that will be found only if it is explored.
Although exploring deeper into the tree means using more discrepancies or the removed
customers and consequently inserting more nodes in locally less optimal positions, it can
happen that the overall solution becomes better. It is worth being explored, as otherwise
this new improvement in the solution is skipped by the engine.

5.4 Relatedness Function

In this section we want test the various ways of choosing the clients to remove. First of
all we want to evaluate if the concept of using relatedness between customers is indeed
better than choosing clients to be removed at random. Table 5.9 shows that random
selection of customers performs poorly in comparison with the relatedness functions, both
in number of vehicles and distance. This confirms that indeed using the information we
have available about the problem and current state of the solution by removing related
clients is important.

38

5.5. Parameters

0 1000 2000 3000 4000

20
40

60
80

10
0

Iterations

V
eh

ic
le

s
Stop at First Better
Stop at First Found

Figure 5.5: Evolution of the number of vehicles using the both strategies.

Secondly, we want to compare the suggested relatedness function 4.3.1.2 to a simple func-
tion that only considers geographic closeness. Our relatedness functions perform very
similarly regarding distance, but there are some differences regarding number of vehi-
cles 5.9. While the only geographically related function performs slightly better on a few
instances (r102, r109, r111, rc108), it also performs slightly worse on some others (r103,
r106, rc107), and much worse on some others (rc102, rc103) where the solution obtained
is up to 4 vehicles over the solution found with the same tour relatedness function. This
indicates that while both relatedness functions seem to perform similarly on some of the
instances, there are other instances where it is indeed required to remove entire tours to
successfully optimize the number of vehicles. Those are the instances where using our
relatedness function really performs much better than the only geographically related.

5.5 Parameters

In these section we want to test the three main parameters of our search engine: Number
of discrepancies, number of attempts and determinism. We first make an analysis of
each parameter on its own to understand how the search is affected by each of those
parameter variations, and then we have an global overview of the results obtained with
various combinations of the parameters.

39

5. Evaluation

Table 5.9: Table showing a comparative of the results obtained removing a set of clients
at random (RDM), using a geographically-close relatedness mesure (GEO) and
using a geographic and same tour relatedness function (Tour).

Instance Veh. (RDM) Dist (RDM) Veh. (GEO) Dist (GEO) Veh. (TOUR) Dist (TOUR)
r101 20 1688.52 20 1659.69 20 1695.79
r102 20 1568.67 18 1546.79 19 1529.07
r103 16 1312.34 15 1264.12 14 1265.32
r104 13 1086.99 11 1070.10 11 1062.91
r105 18 1470.34 16 1410.20 16 1403.68
r106 16 1360.65 14 1276.95 13 1289.56
r107 13 1149.53 12 1128.71 12 1116.89
r108 15 1175.51 11 983.12 11 994.33
r109 15 1287.92 13 1236.46 14 1233.84
r110 13 1158.45 13 1139.38 13 1146.32
r111 13 1261.94 12 1189.23 13 1104.25
r112 13 1092.31 11 998.22 11 989.92
rc101 19 1765.28 17 1690.12 17 1711.34
rc102 17 1637.01 17 1690.12 15 1547.61
rc103 13 1400.84 17 1690.12 13 1354.11
rc104 13 1335.27 11 1192.47 11 1194.70
rc105 16 1594.54 16 1579.12 16 1598.80
rc106 16 1540.73 14 1448.55 14 1468.65
rc107 14 1422.15 14 1448.55 13 1303.16
rc108 13 1342.75 11 1176.85 12 1222.51

Sum 306 27651.74 283 26818.87 278 26232.76

5.5.1 Discrepancies

Discrepancies indicate how stubbornly the engine will try to find a solution within the
neighbourhood of a removed solution. A number of discrepancies that is too low will cause
the engine to discard neighbourhoods very soon when a solution might still be there to find,
while a number of discrepancies that is too high will cause the engine to keep exploring the
search tree for solutions where none is to be found, trying values for the removed customers
that are far from optimal. This is the most important parameter of the three and it has
a strong influence on how the engine performs, as it determines how the neighbourhoods
are explored. Adjusting the number of discrepancies is thus very important. We have
run tests for values of 2, 3, 5, 10, 15 and 20 discrepancies. To perform those tests, we
have fixed the other parameters at D = 15 and a = 250. The obtained results are shown
in Table 5.10. The best results are obtained with d = 10 and d = 15. While d = 10
has slightly worse results in number of vehicles, d = 15 presents higher travelled distance
values. Results slightly worse in both distance and number of vehicles are obtained with
d = 3 and d = 5, which perform very similarly compared to each other. d = 2 is clearly
an insufficient number of discrepancies, as the results obtained are significantly worse, and
although we can almost always explore until neighbourhoods of 30 removed costumers as
the reinsertion is very cheap, we don’t explore deep enough in each of them to find good
solutions. On the contrary, for d = 20 the results go worse again with respect to d = 10 or
d = 15. The number of discrepancies is too high and exploration of a neighbourhood takes
a very long time. For this reason, we don’t reach big neighbourhoods—for some instances
with wide time windows, the engine only reaches neighbourhood size of five or six, which
is clearly insufficient.

40

5.5. Parameters

Table 5.10: Average number of vehicles and travelled distance obtained for values of 2, 3,
5 10, 15 and 20 discrepancies, with a=250 and D=15.

d=2 d=3 d=5 d=10 d=15 d=20

Average number of vehicles 14.70 13.70 13.90 13.40 13.30 13.60
Average travelled distance 1355.76 1316.24 1311.64 1310.78 1323.02 1325.72

5.5.2 Attempts

The number of attempts determines how many consecutive reinsertion tries we will allow
before increasing the neighbourhood size. A value that is too low will cause the engine
to jump too soon to the next neighbourhood size when solutions could still potentially be
found. On the contrary, a number too high will cause the engine to spend so much time
attempting to find solutions with a neighbourhood size when there are probably no more
to be found. Tests have been run for 250, 500 and 1000 attempts. Table 5.11 shows that
a = 1000 is too large a number of attempts. In this case reinsertion takes much longer and
thus very little exploration is large neighbourhoods. On the other hand, a = 500 performs
slightly better than a = 250, showing that 250 is a too small number of attempts. It seems
to be the parameter that has a lower effect on the search.

Table 5.11: Average number of vehicles and travelled distance obtained for 250, 500 and
1000 attempts, with d=5 and D=15.

a=250 a=500 a=1000

Average number of vehicles 13.90 13.60 13.75
Average travelled distance 1311.64 1304.92 1303.67

5.5.3 Determinism

Determinism will indicate how strongly we rely on the relatedness function when removing
a set of clients. Values of determinism of 5, 10 and 15 have been tested. As can be seen
in Table 5.12, D = 10 and D = 15 perform almost the same, both producing the best
results in number of vehicles. In terms of distance, they also perform almost exactly the
same but D = 10 is slightly better. The results for D = 5, show that a high randomness
parameter is even worse. With d = 5, we are too close to removing sets of costumers at
random, which is coherent and reinforces the results obtained in section 5.4, which indicate
that the guidance of the relatedness function is indeed important and needed to appropri-
ately guide the search. Determinism has however a low impact on the solution quality. As
can be seen in the table the results vary only minimally. Of the three parameters, it is the
one which has the less effect on the results. An explanation of why that is so is that, while
discrepancies and attempts affect directly the search process, determinism affects only the
relatedness function, varying it slightly.

5.5.4 Overall

It seems that, when tested individually, d = 15, a = 500 and D = 15 is the best setup.
It is interesting however to test if those values do actually produce the best results when
combined. Running tests with that exact configuration has shown that it is not the case
(see Table 5.13). The reason is that d = 15 enforces that search is done extensively within a

41

5. Evaluation

Table 5.12: Average number of vehicles and travelled distance obtained for values of de-
terminism of 5, 10 and 15, with d=5 and a=250.

D=5 D=10 D=15

Average number of vehicles 14.00 13.90 13.90
Average distance travelled 1308.61 1311.14 1311.64

given neighbourhood, while a = 500 enforces that many attempts are done before increas-
ing the neighbourhood size. As discrepancies were tested with a low value of attempts, we
could afford using a high number of discrepancies. Similarly, attempts were tested with a
low number of discrepancies, allowing us to afford a relatively high number of attempts.
However, when a high number of discrepancies and a high number of attempts are com-
bined, these configurations slow up the whole reinsertion process significantly, resulting
in the engine not getting to explore neighbourhoods big enough—to around five or six
removed customers, which is of course insufficient. In addition, while for configurations
that are less search-extensive we can see that the last solution the engine finds is found
relatively soon, with this configuration the engine keeps finding solutions up to the very
time limit that is placed on the search. This is again caused by the fact that the engine
can only get to remove small sets of customers and has not yet got to explore the bigger
neighbourhoods. The fact that new solutions are found towards the end of the test hint
that there are still more solutions to be found and that, with more time, they would end
up finding a better solution. This hypothesis is explored in section 5.9. However, in this
section we want to determine which are the best parameters for our current time limit of
900 seconds.

To find out the best configuration we want to test various combinations of values. We
have taken the best values for discrepancies d = 5, 10, 15, the number of attempts a =
250, 500, 1000. While discrepancies and number of attempts are strongly related as they
affect the reinsertion step directly, determinism only affects the relatedness function and
seems to have a small impact on the solution, as D = 10 and D = 15 perform so similarly.
He have assumed then that D = 10 is the best value for determinism independently
of the number of discrepancies and attemtps. We have run tests for the chosen values of
discrepancies and attempts with determinism fixed at D = 10. Table 5.13 shows the results
obtained with D = 10. The best results are produced with d = 10, with both a = 250 and
a = 500 producing the best value for number of vehicles, and a = 500 performing the best
result in terms of distance. Both configurations of d = 10, a = 1000 and d = 15, a = 250
perform almost as good as d = 10, a = 500, only slightly worse. For bigger values of a
with d = 15, exploration is increased too much and the results we obtain begin worse as
the number of attempts increases. Similarly, for d = 5 too little exploration is done, also
resulting in worse values. But here, the results get worse as we decrease the number of
attempts, as this reduces even more the exploration done.

If we compare the results obtained with the combination d = 10, a = 500, D = 10 with the
ones that we obtained with d = 15, a = 250, D = 15 from the former tests (see Table 5.10),
we can see that they are slightly worse. This fact hints that, although D = 10 performs
slightly better in the concrete case of d = 5, a = 250, assuming that it is always the best
choice is not right and that D = 15 is actually a better value. We have thus repeated the
tests for the chosen values of discrepancies and attempts, now with determinism fixed at
D = 15. In the results presented in 5.14 we can see that the results obtained are worse
in some cases. Those are cases with a low number of discrepancies or a high number
of attempts. However, with those configurations that also obtained the best values for

42

5.6. Objective Function

Table 5.13: Results obtained for distance (right) and number of vehicles (left), with var-
ious configurations for discrepancies and attempts, with the fixed value for
determinism of D = 10.

a=250 a=500 a=1000

d=5 1311.14 13.9 1304.31 13.65 1294.6 13.55
d=10 1306.76 13.4 1293.64 13.4 1301.72 13.45
d=15 1318.66 13.45 1308.62 13.6 1314.10 13.7

D = 10, the results improve with respect to the tests previously made with D = 10. The
best results are obtained with d = 10, a = 500, having the best score in number of vehicles.
The configuration d = 15, a = 250 performs the same in number of vehicles, but is slightly
worse in distance.

Table 5.14: Results obtained for distance (right) and number of vehicles (left), with var-
ious configurations for discrepancies and attempts, with the fixed value for
determinism of D = 15.

a=250 a=500 a=100

d=5 1311.64 13.9 1304.92 13.6 1303.69 13.75
d=10 1310.79 13.4 1313.39 13.3 1301.87 13.65
d=15 1323.03 13.3 1305.54 13.65 1316.02 13.75

Based on this analysis, we conclude that the best parameter combination with the current
time limit of 900 seconds is d = 10, a = 500 and D = 10.

5.6 Objective Function

The objective of this section is to see whether our objective function 4.3.3 really allows
the travelled distance value to become slightly worse if that implies an improvement in the
number of vehicles. A penalty of 1000 has been used for each vehicle used, as suggested
in [Sha98]. It is a high penalty in the sense that it means we allow the distance to get up to
1000 units worse if this means optimizing a vehicle. This, despite the increase in distance,
still causes the overall objective function to go down. As an example the evolution of the
values for distance and number of vehicles for the instance r106 are presented. We can
clearly observe in Figure 5.6, that near iteration 5000, the travelled distance goes a bit
up exactly at the point where the number of used vehicles is improved. At this point,
our objective function serves its purpose and accepts a solution with a higher distance,
prioritizing the optimization of the number of vehicles.

5.7 Best Found Configurations

After testing all the combinations and options presented, we want to see if all the con-
figurations that were optimal locally also produce the best results when combined. As a
summary, these are exactly the options that have performed best in each case: An initial
solution with the savings method. For the relaxation step, the geographic and same tour
relatedness measure has been taken. For the reinsertion, the Customers Left Free method
with the Farthest Insertion Heuristic, with the optimization of inserting variables imme-
diately when they only have one insertion point. A 20 second time limit has been placed

43

5. Evaluation

1000 2000 3000 4000 5000

13
00

14
00

15
00

16
00

17
00

18
00

Iterations

D
is

ta
nc

e

15
20

25
30

V
eh

ic
le

s

Distance
Vehicles

Figure 5.6: Evolution of the travelled distance and number of vehicles over iterations for
the r106 instance.

on the reinsertion step. The search is stopped when a solution that is better than the
current best is found. The parameter values have been set at d = 10, a = 500 and D = 15.
The combination of those methods should result in better results than the ones obtained
until here, or in the worst case, results that are equally good. After running a complete
test with this configuration, we see that it doesn’t provide the best results. That would
indicate that one or more of the tested options perform good when tested individually but
don’t work well with the others.

Time Limit on Reinsertion. Tests have been run without the insertion time limit for
the configuration described above. Preliminary tests show that this option was indeed the
one that caused the whole configuration to perform worse, as the engine performs now very
equally than the previously tested methods. The reason that time limit on reinsertion does
not work properly now is that we now use parameters of d = 10, a = 500, while the insertion
time limit had been tested with lower values of d = 5, a = 250. More discrepancies indicate
that more search will be done within each neighbourhood. This increase in the search space
also implies an increase on the time each reinsertion step takes. Placing this time limit
on the reinsertion step with a higher number of discrepancies prevents the engine from
exploring the whole neighbourhood that results from that number of discrepancies. Thus,
the insertion time limit should not be used when allowing a higher number of discrepancies,
or in any case, a higher time limit should be placed.

44

5.7. Best Found Configurations

Savings method for the Initial Solution. As the savings method seem to perform very
similar to starting directly with one vehicle per customer, the results differencing only in
very few instances, we have also run tests without using it. The results indicate that it
is indeed, with this configuration, better to start directly with one vehicle per customer
instead of using the savings method.

Table 5.15 shows the results obtained by this configuration but starting with one vehicle
per customer and not placing the time limit on reinsertion. We can see the results are
now very similar to the ones obtained in the previous analysis, with some instances even
performing better (r102).

Table 5.15: Results obtained with the best configuration for the engine. We also report
the neighbourhood size reached (NSize Reached) before the time limit of 900
seconds.

Instance Vehicles Distance NSize Reached

r101 19 1691.23 13
r102 17 1527.86 8
r103 14 1285.47 7
r104 11 1071.80 7
r105 15 1447.05 14
r106 13 1286.64 9
r107 12 1128.47 7
r108 11 1003.51 6
r109 13 1207.69 11
r110 12 1145.83 9
r111 12 1095.10 7
r112 11 1022.09 5
rc101 16 1678.98 9
rc102 14 1548.73 10
rc103 12 1339.68 8
rc104 11 1200.77 5
rc105 15 1591.66 12
rc106 14 1427.90 8
rc107 12 1305.01 6
rc108 12 1204.81 6

From this analysis we conclude that the best configuration for the engine is the following:

• The initial solution will constructed assigning one vehicle to each customer.

• Relaxation will make use of the relatedness function that considers geographic
relation as well as whether the customers are currently on the same tour.

• Reinsertion will be done with the Customers Left Free method.

• As insertion order heuristic we will take the Farthest Insertion heuristic, with
the optimization of inserting a variable immediately when it only has one insertion
point left.

• No time limit will be placed on the reinsertion step.

• We stop the search after we found a solution that is better than the best found
solution so far.

45

5. Evaluation

• Parameter Configuration. We take the best found values of bf d = 10, a = 500
and D = 15.

5.8 Robustness of the Solution

Finally we want to analyse how robust is the solution. All the tests have been run ten
times with different random seeds. We want to see how big a part this randomness factor
has, and see if the other solutions found differ a lot from the best found one. We have
computed the standard deviation for the 10 tests corresponding to the results in Table 5.15.
The results for the standard deviation are shown in Table 5.16. The results show that the
solution is robust in number of vehicles, for which the standard deviation is less than one
for all instances. In terms of distance, it is also robust in most of the instances, although
some of them present a relatively high deviation of around 20% of their distance value.

Table 5.16: Average solution quality, in number of vehicles and distance, found by the ten
runs of our engine, as well as the standard deviation.

Instance Avg. Vehicles Avg. Distance StDev (Vehicles) StDev (Distance)

r101 19.90 1684.73 0.32 16.31
r102 18.70 1531.56 0.67 7.21
r103 18.70 1531.56 0.67 13.54
r104 12.10 1083.21 0.57 30.69
r105 16.00 1423.47 0.47 23.55
r106 14.10 1299.31 0.57 21.08
r107 12.90 1145.60 0.32 22.08
r108 11.10 1022.27 0.32 16.39
r109 13.90 1231.39 0.57 26.05
r110 13.10 1166.16 0.57 14.24
r111 12.90 1130.88 0.74 17.68
r112 11.90 1046.14 0.57 25.02

rc101 16.50 1695.98 0.53 15.69
rc102 14.90 1557.89 0.32 23.08
rc103 12.90 1367.07 0.57 15.25
rc104 11.80 1250.99 0.42 25.74
rc105 16.00 1609.37 0.47 17.50
rc106 14.40 1477.63 0.70 30.02
rc107 12.60 1327.21 0.52 23.96
rc108 12.50 1276.23 0.53 48.21

5.9 Improvement over Time

We want to see how the solution evolves with more computation time. Especially, since
we have a relatively high number of discrepancies and attempts (d = 10, a = 500) and
this causes the engine not to reach very big neighbourhoods, as evidenced in Table 5.15.
We want to see if giving the engine more time to explore those neighbourhoods results in
better solutions for the problems.

We have run test with a half an hour limit (1800 seconds) and one hour limits (3600
seconds) to see if the solution really improves with more computation time. The results
obtained for a half an hour time limit are shown in Table 5.17. While distance is improved

46

5.9. Improvement over Time

for almost all instances, there isn’t a big influence in the number of vehicles used when
giving the engine more computation time. By giving the engine half an hour, we improve
a vehicle for instances r109 and rc108, and by giving it a whole hour we further improve
a vehicle for instance r107. What can be observed is that the solution is more robust,
meaning that from the 10 executions with different random seeds, most of them find that
best solution but fail to further improve it.

Table 5.17: Results obtained with the 900 seconds time limit compared to the results
obtained with 1800 seconds and 3600 seconds.

Instance Vehicles (900) Dist (900) Vehicles (1800) Dist (1800) Vehicles (3600) Dist (3600)

r101 19 1691.23 19 1691.23 19 1691.23
r102 17 1527.86 17 1518.67 17 1518.67
r103 14 1285.47 14 1268.52 14 1263.02
r104 11 1071.80 11 1031.55 11 1025.78
r105 15 1447.05 15 1447.05 15 1447.05
r106 13 1286.64 13 1322.07 13 1279.06
r107 12 1128.47 12 1111.10 11 1121.26
r108 11 1003.51 11 1002.58 11 988.68
r109 13 1207.69 12 1215.43 12 1215.43
r110 12 1145.83 12 1133.24 12 1132.59
r111 12 1095.10 12 1083.52 12 1083.52
r112 11 1022.09 11 1004.04 11 999.91

rc101 16 1678.98 16 1678.98 16 1678.98
rc102 14 1548.73 14 1545.67 14 1538.11
rc103 12 1339.68 12 1339.68 12 1331.30
rc104 11 1200.77 11 1184.38 11 1175.39
rc105 15 1591.66 15 1591.66 15 1591.66
rc106 14 1427.90 13 1432.01 13 1432.01
rc107 12 1305.01 12 1249.82 12 1249.82
rc108 12 1204.81 11 1175.42 11 1161.32

47

6. Conclusion

To conclude, a test for our methods with the combination of each best performing part is
compared to the results exposed in [Sha98]. We have used the best configuration found in
section 5.7. As an initial solution, we use the one obtained by initially assigning one vehicle
per customer. For the relaxation step, we use the relatedness function that considers both
geographic closeness and whether or not the customers are in the same tour. As for
reinsertion, we use the Customers Left Free method combined with the Farthest Insertion
heuristic—but inserting variables immediately if only one value is left in their domain. No
time limit is placed on the reinsertion step, but we will stop it once a solution that is better
than the current best solution is found. The parameters have been set at d = 10, a = 500
and D = 15.

As can be observed in table Table 6.1, while the results obtained in distance travelled are
very similar, in most instances we are one or two vehicles over the solution the authors
reported. Concretely, for all the C-Instances the optimal number of vehicles has been
found. For the other instances, we have found the optimal solution for 10% of the instances
(r101, r102). In 40% of the instances, we are 1 vehicle above and in the remaining 50%
of the instances the results obtained use 2 vehicles more than the ones reported by the
authors. In terms of distance, the results obtained are almost optimal, being 1.93% above
for the C-Type instances and 3.39% above for the rest of the instances. It should be noted
that in some cases where we obtain better results in distance this can come from the fact
that our computation is done with integer variables, which could lead to some solution
being accepted when it wouldn’t be if computing with the decimal numbers.

The fact that the solutions obtained are not exactly optimal can come from the fact that
the authors of [Sha98] do not describe exactly neither how the neighbourhoods are chosen
and not many details about the implementation are given, which can have led to some
misinterpretation from our part. Parameter analysis however provides a bit of insight
regarding where the problem might be. Especially interesting is the observation that we
obtain the best results for d = 10, 15 discrepancies while the authors obtain them for
d = 5, 10. This means that we need more discrepancies to find a solution which implies
that we need to try more insertion points to find it. This in turn means that the insertion
points we calculate for each customer to insert are not the same as the authors’. Probably
the problem lies within deciding which insertion points are candidates for reinsertion, and
in which order those insertion points will be tried.

Although we were not able to perfectly reproduce the results of [Sha98], we could verify that
Constraint Programming is indeed an effective way of solving Vehicle Routing Problems,

49

6. Conclusion

Table 6.1: Comparison of our best found solutions against the best found solutions the
authors reported.

Instance Vehicles Shaw Distance Shaw Vehicles Distance

c101 10 828.94 10 828.94
c102 10 828.94 10 829.70
c103 10 828.06 10 882.13
c104 10 824.78 10 836.06
c105 10 828.94 10 828.94
c106 10 828.94 10 829.70
c107 10 828.94 10 829.70
c108 10 828.94 10 859.76
c109 10 828.94 10 869.12
r101 19 1650.80 19 1691.23
r102 17 1486.12 17 1527.86
r103 13 1292.68 14 1285.47
r104 9 1007.31 11 1071.80
r105 14 1377.11 15 1447.05
r106 12 1252.03 13 1286.64
r107 10 1104.66 12 1128.47
r108 9 963.99 11 1003.51
r109 11 1197.42 13 1207.69
r110 10 1135.07 12 1145.83
r111 10 1096.73 12 1095.10
r112 10 953.63 11 1022.09
rc101 14 1696.95 16 1678.98
rc102 12 1554.75 14 1548.73
rc103 11 1261.67 12 1339.68
rc104 10 1135.48 11 1200.77
rc105 14 1540.18 15 1591.66
rc106 12 1376.26 14 1427.90
rc107 11 1230.48 12 1305.01
rc108 10 1139.82 12 1204.81

as the solutions obtained are very little over the optimal. The ease with which new side
constraints can be added greatly outweighs the somewhat less optimization performance.
To add side constraints to the system, only the specification of the requirements the
solution has to meet has to be modified. This is done by adding the new constraints to
the model. Most constraints can be posted using the implemented propagators Gecode
provides, but in the worst case all that must be done is implement a custom propagator.
The important thing is that to add new side constraints, nothing from the engine has to
be modified—the engine remains exactly the same.

Future work should further consider strategies for the reinsertion step, especially for the
definition and choice of the insertion points for the customers, as well as possibly the
order in which clients are inserted. Other relatedness functions and other reinsertion
methods should not be discarded though, as it could be that better options exist. It
should also concentrate on an in-detail evaluation of the impact of real-world constraints
on the performance of the search engine.

50

Bibliography

[Apt03] K.R. Apt. Principles of constraint programming. Cambridge University Press,
2003.

[BFS+00] B.D. Backer, V. Furnon, P. Shaw, P. Kilby, and P. Prosser. Solving vehicle
routing problems using constraint programming and metaheuristics. Journal
of Heuristics, 6(4):501–523, 2000.

[BGG+97] P. Badeau, F. Guertin, M. Gendreau, J.Y. Potvin, and E. Taillard. A paral-
lel tabu search heuristic for the vehicle routing problem with time windows.
Transportation Research Part C: Emerging Technologies, 5(2):109–122, 1997.

[CL97] Y. Caseau and F. Laburthe. Solving small tsps with constraints. In Interna-
tional Conference on Logic Programming, pages 316–330, 1997.

[CW64] G. Clarke and JW Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, pages 568–581, 1964.

[DS90] G. Dueck and T. Scheuer. Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing. Journal of computational
physics, 90(1):161–175, 1990.

[Due93] G. Dueck. New optimization heuristics. Journal of computational physics,
104(1):86–92, 1993.

[EOSF06] Ö. Ergun, J.B. Orlin, and A. Steele-Feldman. Creating very large scale neigh-
borhoods out of smaller ones by compounding moves. Journal of Heuristics,
12(1):115–140, 2006.

[FJ81] M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle
routing. Networks, 11(2):109–124, 1981.

[FLM02] F. Focacci, A. Lodi, and M. Milano. Embedding relaxations in global con-
straints for solving tsp and tsptw. Annals of Mathematics and Artificial Intel-
ligence, 34(4):291–311, 2002.

[GLS96] M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the
vehicle routing problem with stochastic demands and customers. Operations
Research, 44(3):469–477, 1996.

[GM74] B.E. Gillett and L.R. Miller. A heuristic algorithm for the vehicle-dispatch
problem. Operations research, 22(2):340–349, 1974.

[HG95] W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Interna-
tional Joint Conference on Artificial Intelligence, volume 14, pages 607–615.
LAWRENCE ERLBAUM ASSOCIATES LTD, 1995.

[HM91] J.H. Holland and J.H. Miller. Artificial adaptive agents in economic theory.
The American Economic Review, 81(2):365–370, 1991.

51

Bibliography

[KPS98] P. Kilby, P. Prosser, and P. Shaw. Apes report apes-01-1998. 1998.

[KPS00] P. Kilby, P. Prosser, and P. Shaw. A comparison of traditional and constraint-
based heuristic methods on vehicle routing problems with side constraints.
Constraints, 5(4):389–414, 2000.

[KS06] P. Kilby and P. Shaw. Vehicle routing. Foundations of Artificial Intelligence,
2:801–836, 2006.

[Lap09] Gilbert Laporte. Fifty years of vehicle routing. Transportation Science,
43(4):408–416, November 2009.

[MH97] N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24(11):1097–1100, 1997.

[PGPR98] G. Pesant, M. Gendreau, J.Y. Potvin, and J.M. Rousseau. An exact constraint
logic programming algorithm for the traveling salesman problem with time
windows. Transportation Science, 32(1):12–29, 1998.

[PR10] D. Pisinger and S. Ropke. Large neighborhood search. Handbook of meta-
heuristics, pages 399–419, 2010.

[RVBW06] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming,
volume 2. Elsevier Science, 2006.

[Sha97] P. Shaw. A new local search algorithm providing high quality solutions to
vehicle routing problems. Department of Computer Sciences, University of
Strathclyde, Glasgow, Scottland, Tech. Rep, APES group, 1997.

[Sha98] Paul Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In Michael Maher and Jean-Francois Puget, editors,
Principles and Practice of Constraint Programming – CP98, volume 1520 of
Lecture Notes in Computer Science, pages 417–431. Springer Berlin / Heidel-
berg, 1998.

[Sha11] P. Shaw. Constraint programming and local search hybrids. Hybrid Optimiza-
tion, pages 271–303, 2011.

[Sol87] M.M. Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research, 35(2):254–265, 1987.

[STL11] C. Schulte, G. Tack, and M.Z. Lagerkvist. Modeling and programming with
gecode, 2011.

52

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Summary

	2 Preliminaries
	2.1 The Vehicle Routing Problem
	2.2 Constraint Programming
	2.3 Gecode
	2.3.1 Modelling
	2.3.1.1 Gecode Variables

	2.3.2 Propagation
	2.3.3 Branching
	2.3.4 Search Engines

	2.4 Large Neighbourhood Search

	3 The Model
	3.1 The Path Model
	3.2 The Set Model
	3.3 Propagation
	3.3.1 The NoCycle Propagator

	3.4 Branching
	3.4.1 Selecting a variable
	3.4.2 Selecting the value
	3.4.2.1 The minimum distance brancher
	3.4.2.2 The time brancher

	4 The Search Engine
	4.1 General Algorithm
	4.2 Construction Heuristic
	4.3 Improvement Heuristic
	4.3.1 Relaxation
	4.3.1.1 Neighbourhood Size
	4.3.1.2 Relatedness Function

	4.3.2 Reinsertion
	4.3.2.1 Limited Discrepancy Search
	4.3.2.2 General Algorithm
	4.3.2.3 Fixing Clients
	4.3.2.4 Costumers Left Free
	4.3.2.5 Time Limit on Reinsertion
	4.3.2.6 First-Found, all-solutions

	4.3.3 Objective Function
	4.3.4 Implementation in Gecode

	5 Evaluation
	5.1 Propagators and Branchers
	5.1.1 NoCycle Propagator
	5.1.2 Branchers

	5.2 Construction Heuristics
	5.3 Improvement Heuristics
	5.3.1 Reinsertion
	5.3.2 Heuristics for Insertion Sequence
	5.3.3 Inserting Variables when Only One Position is Left
	5.3.4 Time Limit on Reinsertion
	5.3.5 Stopping Search When a Solution is Found

	5.4 Relatedness Function
	5.5 Parameters
	5.5.1 Discrepancies
	5.5.2 Attempts
	5.5.3 Determinism
	5.5.4 Overall

	5.6 Objective Function
	5.7 Best Found Configurations
	5.8 Robustness of the Solution
	5.9 Improvement over Time

	6 Conclusion
	Bibliography

