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Chapter 1

Introduction

The early diagnosis of diseases in patients is a key objective of biomedical
science and one of the most important factors in the treatment of diseases
such as cancer. The early detection of cancer can make the difference between
a successful treatment and the dead of the patient.

Ovarian cancer is diagnosed at late clinical stage in more than 80% of
patients and the 5-year survival rate is around 35% of population, while in
early diagnosed patients it exceeds 90% [III et al.2002]. The aim of this work
is to present techniques for the early detection of ovarian cancers based in
probabilistic analysis of proteomic spectra.

1.1 Proteomics

A proteome is the entire protein complement of a cell, tissue, or organism in
a particular state [Elo and Schwikowski2011]. With the advances of the later
years the focus of biomedical research has moved from protein identification
towards the analysis of proteome. Among all possible techniques, mass spec-
trometry has become popular due to its ability to deal with a wide range of
different proteins in complex proteomes.

Gene expression is a complex process where information from a gene is
transcribed, by synthesis, in a gene product. This products are often proteins,
but they also could be functional RNA. One important component of gene
expression is protein expression. Protein expression starts after DNA is tran-
scribed into messenger RNA (mRNA). The process consist in the translation
of mRNA to polypeptide chains, which are ultimately folded into proteins.

The sequencing technologies of mRNA are becoming cheaper and increas-
ing their availability. However the analysis of mRNA does not give any in-
formation about whether a protein is being expressed or not. Even though

5



CHAPTER 1. INTRODUCTION 6

the mRNA formation is the first step of the protein synthesis it does not give
all the information about which proteins are going to be expressed because
different proteins can be generated from a single gene.

Proteomic study is becoming an important tool in biomedical research.
A key objective of the proteomic analysis is the early detection of diseases,
expected to lead to a longer survival rate. Unfortunately proteomic data
consists in a large set of data which requires the use of classification tools.

1.2 Probabilistic classification

Supervised classification is a basic task in data analysis and pattern recog-
nition. It requires the construction of a classifier, that is, a function that
assigns a class label to instances described by a set of variables. There are
numerous classifier paradigms, among which the ones based on probabilistic
graphical models (PGMs) [Lauritzen1996], are very effective and well-known
in domains with uncertainty.

PGMs can be divided in three main groups, those with discrete variables,
those with continuous variables and those with both types of variables which
are called mixed models. Probabilistic classifiers have a discrete variable
corresponding to the class. Therefore there will be only two family models
when we talk about classification, discrete models, if all the variables are
discrete, and mixed models, when one or more variables are continuous.

Also, a widely used assumption is that data follows a multidimensional
Gaussian distribution[Geiger and Heckerman1994]. This is adapted for classi-
fication problems by assuming that data follows a multidimensional Gaussian
distribution that is different for each class, encoding the resulting distribution
as a Conditional Gaussian Network (CGN)[Bøttcher2004].

In [Larrañaga et al.2006], Larrañaga, Pérez and Inza introduce and evalu-
ate classifiers based on CGNs with a more detailed description in [Pérez2010].
They analyze different methods to identify a Bayesian network structure and
a set of parameters such that the resultant CGN performs well in the classi-
fication task. In [Pérez2010] the authors propose to estimate the parameters
directly from the sample mean and sample covariance matrix in the data, that
is, using maximum likelihood. It is well known [Buntine1996] that following
this strategy can lead to model overfitting when data is scarce.

In bioinformatics, models are sought in domains where the number of data
items is small and the number of variables is large, such as classification of
mass spectrograms or microarrays. To try to avoid overfitting, we introduce
classifiers based on Gaussian Join Trees (GJT) that instead of estimating by
maximum likelihood perform exact Bayesian averaging over the parameters.
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1.3 Structure of the thesis

We start by shortly reviewing in the theory of Probabilistic Graphical Models
and conditional Gaussian networks and introducing Gaussian Join tree clas-
sifiers in chapter 2. Next we get into the learning problem. In chapter 3 we
review the Maximum likelihood and the bayesian model averaging methods.
Also we review the theory oh Hyper Markov distribution over decomposable
graphs.

Chapter 4 is used to explain the learning process over conditional Gaus-
sian Networks using maximum likelihood. Following, in chapter 5 we explain
the process to learn Gaussian join tree classifiers using Bayesian model aver-
aging and also introduce the Hyper Normal Inverse Wishart distribution.

In chapter 6 we perform a comparison between models learned using max-
imum likelihood and Bayesian model Averaging. The comparison is based in
classifying mass spectrometry data from cancer patients. Finally in chapter
7 we give the final conclusions of the work.

1.4 Contributions

The contributions of the work are:

1. The proposal of GJT classifiers including a proof that the HNIW law
is strong hyper Markov,

2. A preliminary empirical comparison with classifiers adjusting parame-
ters by maximum likelihood for the task of mass spectra classification
and,

3. An open source implementation of the algorithms, made available for
easy reproducibility of the results.



Chapter 2

Probabilistic Graphical models

A probabilistic graphical model is a representation of a join probability dis-
tribution over a set of variables. It has two main parts, one is the structure,
i.e., the set of conditional dependences between the which is represented by
a graph, and the other is the conditional distributions over the variables in
which the join distribution factorises.

This chapter introduces basic concepts in probabilistic graphical models.
We start by reviewing some necessary concepts on graph theory. Next in
section 2.2 we take a look on Bayesian networks and Markov networks and
review important results on the equivalence of Bayesian and Markov net-
works.In the same section, we review Markov distributions over decompos-
able graphs theory. Following, we review the concept of conditional Gaussian
networks introduced by [Bøttcher2004] and see how apply them to classifi-
cation. Finally we introduce Gaussian Join Tree classifiers, an adaptation of
conditional Gaussian networks to Markov networks which take advantage of
the Markov distributions theory.

2.1 Graph theory

Graph theory is an accepted formalism for representation of probabilistic
graphical models. In this section we introduce the basic definitions and
notations that will be used. Most of the definitions of this section have been
adapted from [Koller and Friedman2009].

We start by introducing a general definition of graph.

Definition 1. A graph is a pair G = (X,E) where X is a non-empty finite
set of vertices and E is a set of pairs of nodes of X called edges. We call an
edge e = (xi, xj) ∈ E for xi, xj ∈ X a directed edge if (xi, xj) 6= (xj, xi),
otherwise we said that e is an undirected edge. If all the edges of a graph

8
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x1

x2 x3

x4

Figure 2.1: Example of a directed graph.

x1

x2x3

x4

x5

x6 x7

x8

Figure 2.2: Example of an undirected graph.

G are directed, we call G a directed graph, on the other hand if all of the
edges of graph are undirected we call it an undirected graph. A graph
is a complete graph if for any ordered pair, xi, xj ∈ X there is an edge
e = (xi, xj) ∈ E.

The general agreement is to represent a graph using arrows and lines that
connect nodes represented by different elements, usually a circle or a point.
Arrows represents direct edges and lines undirected edges. An example of a
directed graph is shown in figure 2.1, and an example of an undirected graph
is shown in figure 2.1.

An important concept when we work with directed graphs is the one of
parent and child.

Definition 2. Given a graph G = (X,E) and an edge e = (xi, xj) we say
that xi and xj are adjacent nodes. If e is directed we say that xi is a parent
of xj and xj is a child of xi. If e is undirected and xi and xj are connected
by an edge then xi and xj are neighbours.
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In general the parent is represented as the node at the tail of the arrow,
and the child is the one at the head. For example, in figure 2.1 x1 is the
parent of x2 and x3 which are children of x1. In figure 2.1 we have that the
neighbours of x3 are x1, x2 and x4 Now we have defined what a graph is, and
its different components, but sometimes we just need to work with a group
of nodes of the graph.

Definition 3. Let G = (X,E) be a graph and X̄ ⊂ X. We say that
H = (X̄, Ē) is the induced subgraph by X of G if any edge e = (xi, xj)
such as xi, xj ∈ X̄ is in Ē, and there is not any other edge in Ē. If H is
complete it is called clique, and it is said to be a maximal clique if for any
Y ⊃ X̄, the induced subgraph by Y is not a clique.

For example in figure 2.1 Usually we will abuse notation and use clique
to refer to the maximal cliques and speak in general of subgraphs instead of
using the term induced subgraphs. Finally we need to talk about paths.

Definition 4. We say that a sequence x1, . . . , xk forms a path in the graph
G = (X,E) if for every i = 1, . . . , k − 1 we have that (xi, xi+1) ∈ E. If
at least one edge in the path is directed, then we say that it is a directed
path. A cycle in G is a directed path x1, . . . , xk where x1 = xk. A graph is
acyclic if it contains no cycles.

For example in figure 2.1 the sequence x1, x2, x4 is a path, but x4, x3, x1

is not a path, because its not correctly oriented. Also noticed that the graph
is acyclic since there is no path from one variable to itself. A more general
notion of path is the one of trail, in which we don’t care about the direction
of the edges.

Definition 5. A sequence x1, . . . , xk form a trail in the graph G = (X,E)
if for every i = 1, . . . , k − 1 we have that (xi, xi+1) is in E or (xi+1, xi) in in
E. A loop in G is a trail x1, . . . , xk where x1 = xk. A chord in a loop is an
edge connecting two non consecutive nodes.

Now we define the concept of moral graph that will take importance later.

Definition 6. A directed graph is said to be a moral graph if there is an
edge between the parents of each node.

If we look at the graph in figure 2.1 we can notice that it is not moral,
since there is no edge between x2 and x3.

Definition 7. An undirected graph is said to be chordal if any loop of the
graph x1, . . . , xk, x1 for k ≥ 4 has a chord. A graph G is said to be chordal
if its underlying undirected graph is chordal.
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Taking the subgraph induced by the nodes x1, x2, x3, x4 from the graph in
figure 2.1 we get an example of a chordal graph, but if we take the subgraph
induced by nodes x5, x6, x7, x8 we get a non chordal graph since we have a
cicle of length 4 with no chords.

Definition 8. A pair (A,B) of subsets of nodes X is said to form a decom-
position of G = (X,E) if X = A ∪B and A is complete and it separates A
from B.

We can see that in figure 2.1, if we take the subgraph formed by x1, x2,
x3 and x4 we can see it is decomposable taking x1, x2, x3 and x2, x3, x4 as the
parts to be decomposed.

2.2 Bayesian and Markov networks

As we have seen in the previous section (2.1) there are two main families of
graphs: directed graphs and undirected graphs. Bayesian network models
use directed graphs as structure of the model, and Markov networks use
undirected graphs. In this section we will see the main difference between
the two models and also explain when they are equivalents.

2.2.1 Bayesian networks

Following we give a definition Bayesian networks and take a look on its
factorization.

Definition 9. A Bayesian network structure G is a directed acyclic graph
whose nodes represent random variables X1, . . . , Xn. G encodes the following
set of independence assumptions, Il(G), also called local independences:

• For each variable Xi, Xi is independent of their non descendant vari-
ables given its parents Pai.

In general if a distribution P is associated with a Bayesian Network struc-
ture and the local independences encoded in G holds for P we said that G is
an I-map of P . Also it allows to factorize the distribution using the following
formula.

P (X1, . . . , Xn) =
n∏
i=1

P (xi|Pai)

When we define a Bayesian network we can think about causality as
a heuristic way to decide what edge should be there. An edge between two
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nodes means a direct relation of causality between the two nodes: The parent
causes the children. This way of thinking is helpful when we are creating a
model. A good example will be a medical network where we have some
illnesses and some symptoms. The symptoms are a direct consequence of
the illnesses, therefore we will have direct edges from the illnesses to their
respective symptoms. But when we are putting directed edges between nodes
what we are assuming is a set of conditional independences.

2.2.2 Markov networks

We have already talked about Bayesian networks, now we will talk about
Markov networks. We start by giving the following definition.

Definition 10. A Markov network structure G is an undirected graph whose
nodes represent random variables X = X1, . . . , Xn. We define the Markov
blanket of Xi, MB(Xi) in G to be the neighbours of Xi in G. Then G
encodes the following set of local independence assumptions:

• For each variable Xi, Xi is independent of X \ (Xi ∪MB(Xi) given its
Markov blanket.

We have seen which kind of dependency we are encoding when we use
an undirected edge. We can use as heuristic the following idea: We put an
undirected edge between to nodes whenever both nodes are related, but not
necessarily with a cause-effect relation. Imagine the following toy example:
we have a network with two variables, one is the probability that my garden
is wet, and the other the probability that my neighbour’s garden is wet.
There is no causality relation between the event of both variables but if my
garden is wet, it is likely that the garden of my neighbour is also wet, and
vice versa. Again by using a Markov Network structure we state a set of
local independences.

2.2.3 Equivalences between Bayesian and Markov Net-
works

Until now we have seen that Markov Networks and Bayesian Networks code
different local independences, i.e., they encode different models. The fol-
lowing two results tell us when a Markov Network and a Bayesian Network
encode the same set of independences.

Definition 11. The moral graph M(G) of a Bayesian network structure G
over X is the undirected graph over X that contains an undirected edge
between two nodes if:
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• there is a directed edge between them, or

• they are parents of the same node.

Proposition 1. If the directed graph G is moral, then its moralized graph
M(G) encode the same conditional independences than G.

Proposition 2. Let H be a chordal Markov network. Then there is a
Bayesian network G such that the independences encoded in G and H are
the same.

Summing up, the only way that the independences in a graph can be
represented exactly in both types of models is if and only if the graph is
chordal. Therefore chordal graphs are the intersection between Markov and
Bayesian Networks.

2.2.4 Markov distributions over decomposable graphs

We have seen that an important class of models is the class of model with
a chordal graph as structure. A graph is in fact chordal if and only if it is
decomposable. When we are working with a decomposable graph the join
probability distribution can be factorized in terms of the cliques of the graph.
This theory is introduced in [Dawid and Lauritzen1993]. Here we review the
main results.

In the following, let G = (V,E) be an undirected decomposable graph
over a set of random variables. A graph is said to be decomposable if it can
be decomposed into its cliques.

Definition 12. A distribution P on V is called Markov over G if for any
decomposition (A,B) of G

A ⊥⊥ B|A ∩B.

Where A ⊥⊥ B means that A and B are independent. In other words, a
distribution is Markov if given a descomposition of a graph, the probability
of the two components is independent given their intersection.

In general a graphical model M(G) is a family of probability distributions
which are Markov over G.

Definition 13. We say that distributions Q over A and R over B are con-
sistent if both yield the same distribution over A ∩B.
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The next theorem tells us that given a set of marginal probability distri-
butions over the cliques of a graph that are consistent between them, we can
assess the unique joint probability distribution having those marginals. Let
C be the set of cliques of G, and S the corresponding collection of separa-
tors (including possible repetitions) (see [Dawid and Lauritzen1993, Cowell
et al.1999] for details).

Theorem 1. Given a pairwise consistent collection of distributions {QC :
C ∈ C}, QC being a distribution over C, the unique Markov distribution over
G having {QC} as its marginals is

p(x) =

∏
C∈C pC(xC)∏
S∈S pS(xS)

, (2.1)

where pC, the marginal of p over the clique C is QC and pS is the marginal
of any of the cliques in which the separator S is included.

This theorem allows to calculate the join probability distribution with a
simple factorisation. of the distribution. It also implies that we don’t have
to use the conditional distribution, instead we can use the join probability
distribution.

2.3 Conditional Gaussian networks

In this section we review the theory of Conditional Gaussian Network [Pérez2010,
Bøttcher2004]. Conditional Gaussian Networks are mixed Bayesian networks,
i.e., they contain both continuous and discrete variables.

Each continuous variable in the network follows a conditional Gaussian
distribution given its parents. While each discrete variable follows a multino-
mial distribution, given their parents. Our main interest is using conditional
Gaussian networks for classification tasks.

When performing classification with a conditional Gaussian network each
of the continuous variables of the network, which are also called predictor
variables, corresponds to each of the features of a given instance to be classi-
fied. On the other hand, there is only a discrete variable, which corresponds
to the class of the instance, it follows a multinomial distribution and is a
parent of every predictor variable.

This structure where all the predictor variables are sons of the class vari-
able allows the factorization of the join probability. Suppose that each in-
stance corresponds to a class C and has some features corresponding to
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C

X1 X2 X3 X4

Figure 2.3: Naive Bayes structure, with four predictive variables.

predictor variables X, then the join probability can be factorized as

P (X,C) = P (X|C)P (C) = P (C)
n∏
i=1

P (Xi|Pai ∩X,C). (2.2)

As we are performing classification we are more interested in the probabil-
ity of each class given some value for the predictor variables, this is P (C|X),
which can be calculated using the Bayesian rule.

P (C|X) =
P (X|C)P (C)

P (X)
∝ P (X|C)P (C) (2.3)

Notice that P (X) is exactly the same for all the possible classes, so it
does not need to be calculated. The combination of equation 2.2 and 2.3
give us enough information to classify an instance.

Example 1. Näıve Bayes example is the most common and simple con-
ditional Gaussian network. The assumption behind the model is that all
the predictor variables are independent between them given the class, the
bayesian network produced by this assumption can be seen in figure 1.

2.4 Gaussian Join tree classifiers

In the previous section we have reviewed conditional Gaussian networks in-
troduced in [Bøttcher2004].We introduce now a family of models based on
join trees structures and a Markov network which are equivalent to Condi-
tional Gaussian Networks with an equivalent directed structure.

In Gaussian join tree classifiers the structure is represented as a join tree.
We formally define join trees following [Cowell et al.1999].

Definition 14. A clique tree T = {T1, . . . , Tn} is a tree where each node
Ti ⊆ X is a set of variables. If Ti is a parent of Tj, the separator between
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Ti and Tj is the set of variables Sij = Ti ∩ Tj. A join tree T is a clique tree
such that for every pair of nodes Ti, Tj, Ti ∩ Tj is a subset of every separator
on the unique path from Ti to Tj.

A Gaussian join tree classifier is a mixed network formed by a discrete
variable corresponding to the class,which is the parent of all other variables.
And a set of continuous variables that formed a Markov network with a
structure of a join tree.

The selection of the join tree structure for the continuous variables allows
us to use the decomposition explained in section 2.2.4. The factorization of
the probability P (C|X), where C is the class and X the predictive variables
is easily done. Then the probability can be calculated as in equation 2.3,
where the P (X|C) is factorized as in 2.1.



Chapter 3

Learning Probabilistic
Graphical Models

In this chapter we take a look to the problem of learning a model from
data. The learning problem can be divided in two parts, structural learning
and parameter learning. Structure learning consist in infering from data
the conditional dependencies between the different variables of the model.
Parameter learning consist in, once given a factorization of the model, learn
the parameters of the different distributions of the factorization. From now
on, we will focus on parameter learning.

We can divide the learning algorithms in two big families, frequentist
and bayesian learning algorithms. We will consider two different algorithms:
maximum likelihood, which is a frequentist approach and Bayesian model
averaging, which is a Bayesian approach.

In this chapter we will start by reviewing general maximum likelihood in
section 3.1. In section 3.2 we review Bayesian model averaging and shortly
review the necessary theory to perform it over decomposable graphs.

3.1 Maximum likelihood

Maximum likelihood is one of the most used approaches to learn the param-
eters of a probability distribution. Even though it is one of the most used
strategies it also presents some troubles like model over fitting.

If we consider a model with a set of parameters Λ and a dataset D of in-
stances. Maximum likelihood approach estimates the value of the parameters
by using those which maximize the likelihood.

P (D|Λ)

17
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The strategy of maximizing the likelihood, as we have said before can over
fit the model, specially when the data is scarce. For example imagine that
we are modelling the toss of a fair coin, and all our data consist in three
consecutive flips in which we have obtained three heads. Then the maximum
likelihood method infers that the probability of throwing the coin and obtain
head is 1. Which is completely false and the worst possible approximation
to the real model.

In order to obtain better model, and solve the problem of model over
fitting we introduce in the next section the Bayesian model averaging method.

3.2 Bayesian model averaging

Bayesian model averaging tries to overcome the problem of model over fit-
ting through considering a prior distribution over the space of parameters
[Bishop2006]. This prior represents how probably we think a certain param-
eter is. The Bayes theorem gives us a way to learn a posterior distribution
for the parameters from data.

Bayes theorem is one of the most important results of the probability
theory. The main result is to calculate the probability of an event A given
the event B by turning around the condition.

P (A|B) =
P (A)P (B|A)

P (B)
.

If we think in A as the parameters of the model and B the data we have
the next result:

P (Λ|D) ∝ P (D|Λ)P (Λ).

which means that the posterior distribution is proportional to the product
of the likelihood of the data and the prior distribution.

When doing inference using a Bayesian model averaging method, we have
to integrate over the whole space of parameters. This integration is not
always possible and is required to use a sampling method such as Markov
Chain Monte Carlo methods.

One usual problem with this approach is that most of the time the most
important factor when choosing a prior distribution is their mathematical
convenience rather than the information they take.
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3.2.1 Hyper Markov distributions over decomposable
graphs

We have seen in Section 2.2.4 that a probability distribution can be easily
factorized in term of the cliques and separators if the associated graph is de-
composable. In order to perform Bayesian model averaging over this models
we need to introduce hyper Markov distributions.

In this section we sufficiently review the fundamental results in [Dawid
and Lauritzen1993]. The interested reader can find some of the missing
definitions and additional details in [Dawid and Lauritzen1993].

Let θ be a quantity parametrising a graphical model M(G). A hyper
Markov law is then defined by a property which mimics the global Markov
property, at the parameter level

Definition 15. A law on M(G) is called (weak) hyper Markov over G if for
any decomposition (A,B) of G

θA ⊥⊥ θB|θA∩B

Definition 16. A law on M(G) is called strong hyper Markov over G if for
any decomposition (A,B) of G

θB|A ⊥⊥ θA

Strong hyper Markov laws produce an especially simple decomposition of
the Bayesian analysis into a collection of sub-analyses for smaller problems.
Thus, the posterior after observing some data can be assessed locally.

The following two propositions from [Dawid and Lauritzen1993] will be
needed later. They give sufficient conditions to prove that a given probability
law is strong hyper Markov.

Proposition 3. Given a set of hyperconsistent laws {MC} over clique marginals,
there is a unique hyper Markov law over G satisfying those marginals, which
is called the hyper Markov combination of {MC}.

Proposition 4. Let P ⊆M(G) be a subfamily of the Markov models over G.
Assume that P is weak meta Markov, and for any complete set S in G the
model PS form a full exponential family. Let L be a hyper Markov law such
that, for any clique C, the law of θC is a conjugate prior distribution for the
model PC. Then L is strong hyper Markov.



Chapter 4

Learning CGN by ML

We have already talk about learning in Chapter 3, here we focus on learn-
ing conditional Gaussian networks using maximum likelihood. We start by
reviewing multinomial and Gaussian distribution, how to learn their param-
eters and how to calculate their conditional distribution. Finally we put
everything together and get into how to learn conditional Gaussian Networks

4.1 The multinomial distribution

The multinomial distribution is a probability distribution over discrete prob-
abilities that can take two or more different values. It only has an array of
parameters where each parameter is the probability that the variable take.
The array of parameters c = (c1, . . . , cK) full fill the following properties.

ci > 0

p(x = k|c = ck = 1

4.1.1 Parameter learning

Parameter of the multinomial distribution are easily learned by maximum
likelihood. The value of each parameter ci is just proportion of times that
the variable takes the i-th value in the data. In other words if mi is the
number of times that the variable takes the value i in the data, and the data
has n instances, then

ci =
mi

n
.

20
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4.2 The normal distribution

The normal distribution, also known as Gaussian distribution, is defined on
Rk. It has two parameters: the mean µ which is a real-valued vector, and the
covariance matrix Σ wich is a positive definite k×k matrix. In the literature
the covariance matrix can be substituted by its inverse, the precission matrix.
The probability density function is

N (X|µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
1

2
(x− µ)TΣ−1(x− µ)

)
4.2.1 Parameter learning

Paremeters of normal distribution can be learned from data by different ap-
proaches. The most common one is to use maximum likelihood estimations.
Given a dataset D {xi}ni=1 with xi ∈ Rk the maximum likelihood estimator
of the mean vector is

x̄ =
1

n

n∑
i=1

xi. (4.1)

The estimation of S can be calculated as

S =

[
1

n

n∑
l=0

(xil − x̄i)(x
j
l − x̄

j)

]
0<i,j≤k

, (4.2)

where xi is the ith entry of the vector x.
Instead of using maximum likelihood strategies for learning parameters

we could use maximum a posteriori learning methods. For this we have to
define a prior distribution over the space of parameters of the distribution. In
next section we introduce Normal Inverse Wishart, as a prior for the normal
distribution.

4.2.2 Condtional Gaussian distribution

Given a multidimensional variable z = (z1, . . . , zk) which follows a normal
distribution with parameters µ and Σ we can calculate the conditional dis-
tribution of a subset of this,say x variables given the other, y. Without loss
of generality we can think that x are the first l variables, with l smaller than
k. We have the following decomposition of the parameters:

µ = (µx, µy)

Σ =

(
Σx Σxy

Σyx Σy

)
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Then we can calculate the conditional distribution of P (zx|zy) which is
also a Gaussian distribution with parameters

µx|y = µx + Σx,yΣ
−1
y (zy − µy),

Σx|y = Σx − ΣxyΣ
−1
yy Σyx.

4.3 Learning conditional Gaussian Networks

Now we have seen how can we learn the different distributions separately,
now we focus on how to learn all the parameters of a conditional Gaussian
Network.

Algorithm 1 explains how to learn the parameters of the network from a
dataset D. Basically it can be split in two parts, the first one is to determine
the probability of each class, the second to learn, for each class a different
distribution for each variable.

Algorithm 1 Maximum Likelihood learning of CGN parameters

function LearnCGNParameters(X ,D)
for each class c do

Set P (C = c) as the proportion of instances of class c in D
for each node Xi ∈ X do

Calculate the mean and the covariance probability of the join
distribution of Xi and their predictor parents, according to equation 4.1
and 4.2.

Calculate the conditional Gaussian distribution of X given their
parents as explained in Section 4.2.2.

end for
end for

end function

Other possible strategies to learn parameters are possible. We will fo-
cus in the comparison between Bayesian Model Averaging and Maximum
Likelihood. In the following chapters we will give the sufficient tools to use
Bayesian Model Averaging over decomposable graphs.



Chapter 5

Learning Gaussian Join Tree
classifiers by BMA

In the previous chapter we have focus on learning a conditional Gaussian
network using a Maximum likelihood. As we have commented before, this
model can lead to model over fitting, specially when data is scarce. This
problem can be solved by Bayesian learning techniques. In this chapter we
focus on the use of Bayesian Model Averaging to learn the parameters of a
Gaussian Join Tree distribution. We start by reviewing the Dirichlet prior
for the multinomial and introducing the Hyper Inverse Wishart Distribution.
Finally we give the algorithms to learn the parameters of a Gaussian Join
Tree classifier.

5.1 Dirichlet distribution

Dirichlet distribution is a conjugate prior for the multinomial distribution
[Bishop2006].The Dirichlet distribution is defined as follows.

P (c|α) =
Γ(Kk=1αk)∏K

k=1

K∏
k=1

cαk−1
k

Where k is the dimension of the distribution, ck > 0,
∑K

k=1 ck = 1, and
Γ(x) is the Gamma function. The parameter αi must be an integer, and
it represents how many times the class i has been saw in the prior. So, if
according to our belief one class is more probable it should translate in a
larger value for its corresponding α parameters in the prior.

23
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5.1.1 Conjugancy

Since the Dirichlet distribution is conjugate to the multinomial distribution
we can learn the posterior distribution by updating the parameters of the
prior. Given a dataset D, the parameters α′ of the posterior distribution
are updated by adding the counts of each class, i.e., let ni be the number of
instances in D corresponding to the class i then

α′i = αi + ni.

5.1.2 Predictive posterior distribution

Inference when using the Dirichlet distribution as a prior for the multinomial
distribution can be calculated exactly. The posterior predictive distribution
is obtained by integrating out the parameter ci.

P (X|α′)
∫
c

MN (X|c)D(c|α′) ∝ α′

Then, the probability of a given class is the proportion of the class in the
data, and in the prior. In other words, the predictive posterior distribution

is another multinomial distribution with parameters
α′∑K
i=1 α

′
i

.

5.2 Hyperinverse Wishart distribution

Now we return to Hypermarkorv theory, and introduce the hyperinverse
Wishart distribution in order to introduce later the Hyper normal inverse
Wishart distribution, which will be used as a prior for the Gaussian distri-
bution over a decomposable graph.

Let G be a decomposable graph over a set of continuous variables. We
are interested in the subfamily of models which are in M(G) and which
are assumed to be jointly multivariate normal with mean equal to zero and
unknown positive definite covariance matrix Σ, that is x ∼ N (0,Σ). For this
particular family, it is possible to define a strong hyper Markov distribution.
It was introduced in [Dawid and Lauritzen1993], under the name of hyper
inverse Wishart distribution

Definition 17. Let ΦC = {ΦC , C ∈ C} be a collection of positive definite
dispersion matrices, where ΦC is the dispersion matrix over the variables in
clique C. Assume that the matrices are consistent, that is, for each B ⊆
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C1 ∩C2, the sub-matrices1 ΦC1 [B,B] and ΦC2 [B,B] are identical. Let δ be a
positive real number. We can define a collection of hyper consistent Markov
laws by defining over each matrix ΣC the following law:

L(ΣC) = IW(δ; ΦC).

The law that results from the hyper Markov combination of this collection
of laws is called hyper inverse Wishart and noted HIW(δ,ΦC).

The HIW is proved strong hyper Markov in [Dawid and Lauritzen1993].

5.3 Hyper normal inverse Wishart distribu-

tion

HIW laws can only be used when the multivariate mean is known to be 0.
We are interested in the more general subfamily of models in M(G) with any
possible mean, that is x ∼ N (µ,Σ). We introduce the hyper normal inverse
Wishart distribution and prove that it is strong hyper Markov.

Definition 18. Let ΦC = {ΦC , C ∈ C} be a collection of matrices as in
definition 17. Let µC = {µC , C ∈ C} be a collection of vectors such that
for each B ⊆ C1 ∩ C2, µC1 [B] = µC2 [B]. Let κ and δ be non-negative real
numbers. Since the marginal of a normal inverse Wishart depends only on the
corresponding sub-vector and sub-matrix (see section A.2.3), the collection
of laws

L(ΣC) = NIW(µC , κ, δ,ΦC)

is hyper consistent. The hyper Markov combination of its elements is called
hyper normal inverse Wishart and noted HNIW(µC, κ, δ,ΦC). By proposi-
tion 3 the HNIW law is hyper Markov.

Theorem 2. The HNIW distribution is strong hyper Markov.

Proof. Is a direct application of proposition 4. First, note that in our case, the
set of models is the set of multidimensional Gaussian models that factorize
over G. Thus, it is weak meta Markov and over a complete set, it forms a
full exponential family. Since the HNIW law is hyper Markov, and for any
clique C, it is a conjugate distribution for the multidimensional Gaussian
over C, by proposition 4 it is strong hyper Markov.

1Given a matrix M and sets of indexes I,J , we note M [I, J ] the sub-matrix that keeps
the rows with indexes in I and the columns with indexes in J. Equivalent notation is used
for vectors.
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5.3.1 Conjugacy

Since theHNIW is strong hyper Markov, we can update each of the marginal
distributions locally. Furthermore, since the local laws are NIW the update
can be done using the result in appendix A.2.1. Hence, in order to learn
from data we only have to update our hyperparameters using the following
equations.

η′ =
κη + nx

κ+ n
, (5.1)

κ′ = κ+ n, (5.2)

δ′ = δ + n, (5.3)

Ψ′ = Ψ + (n− 1)S +
κn

κ+ n
(x− η)(x− η)T . (5.4)

5.3.2 Predictive distribution

The predictive distributions for each clique are multivariate t distributions,
as given by the equation:

p(x|η, κ, δ,Ψ) =

=

∫
µ,Σ

N (x|µ,Σ)NIW(µ,Σ|η, κ, δ,Ψ) =

= tδ(η,
κ+ 1

κδ
Ψ). (5.5)

To get the distributions over a separator, we marginalize the distribution
of one of the cliques that it separates using the result provided in section A.1.1
about the marginal of a multivariate t.

5.4 Gaussian Join Tree Classifiers

We have already introduced Gaussian Join Tree Classifiers in section 2.4. In
this section we introduce how to learn the parameters of a Gaussian Join
tree classifier using Bayesian model averaging. The parameters of a GJT
classifier are determined combining the results described in section 5.3.1 and
5.3.2. For each of the classes, each of the cliques and separators will be
assigned a multivariate t distribution. The algorithmic details are provided
in Algorithmd 3, 4 and 5.

In Algorithm 3 we start setting the prior distributions by specifying their
parameters, in line 1 to learn the parameters of the multinomial distribution
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Algorithm 2 General GJT classifier

function GJTLearner(D)
T := DetermineCliqueTree(D)
Θ := LearnGJTParameters(T ,D)
return 〈T ,Θ〉

end function

Algorithm 3 Bayesian learning of GJT parameters

1: function LearnGJTParameters(T ,D)
2: LearnClassesByBMA(D)
3: C := Cliques(T )
4: for each class c do
5: LearnCliquesByBMA(c, C, T )
6:

for the classes of the model as explained in algorithm 4. Then, from line 3
to 5, we learn the parameters of the cliques for each different class according
to algorithm 5.

Algorithm 4 Bayesian learning of class parameters

1: function LearnClassesByBMA(D)
2: Set the parameters of prior distribution α.
3: Asses the number of data of each class ni from data D.
4: α′ := α + n
5: Normalize the vector α′.
6: for each class c do
7: Set the probability of c equal to it corresponding entry of α′.
8: end for

In algorithm 4 we learn the probabilities of the different classes. In line
1 we set the parameters of the Dirichlet prior. In lines 2-3 we update the
parameters and in the last line we set the posterior predictive distributions
of the classes.

Algorithm 5 explains how to learn the parameters of gaussian distribution
over a set of cliques, it basically iterates over the set of cliques and calculate
all the distribution and then marginalizes the distribution over the separators.
In line 3 we asses the prior distribution by assessing its parameters, next, we
calculate the empirical mean and the covaraince matrix. From line 6 to line 9
we update the parameters of the prior distribution to calculate the posterior.
Finally we define a t distribution over the clique and marginalize it over the
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separators formed by the intersection between the clique and their sons in
the clique tree structure.

Algorithm 5 Bayesian learning of cliques parameters

1: function LearnCliquesByBMA(c, C, T )
2: for C ∈ C do
3: Set the parameters of the prior distribution κ, δ,η, and Ψ.
4: With the data from class c assess the number of data points n(c),

the sample mean y(c)
5: and the sample covariance matrix Σ(c).
6: κ′(c) := κ(c) + n(c)
7: δ′(c) := δ(c) + n(c)

8: η′ := κ(c)η[C]+n(c)x(c)[C]
κ(c)+n(c)

9: Ψ′ := Ψ[C,C] + (n(c) − 1)Σ(c)[C,C] + κn(c)
κ+n(c)

(x(c)[C] −
η[C])(x(c)[C]− η[C])T .

10: d(C, c) := tδ′(η
′, κ
′+1
κ′δ′

Ψ′)
11: for each clique C ′ child of C in T do
12: d(C ′ ∩ C, c) = tδ′(η

′[C ′ ∩ C], κ
′+1
κ′δ′

Ψ′[C ′ ∩ C,C ′ ∩ C]])
13: end for
14: end for
15:

5.5 Predicting

Given a new unclassified data point, Bayes formula is used to determine
the posterior probability for each class. We use Laplace formula to assess
the prior probability for class c (which is equivalent to assuming a Dirichlet
prior) and get the posterior by multipling it by joint probability obtained
using equation (2.1).
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Empirical Comparison

In this section we compare GJT classifiers with classifiers making similar
independency assumptions, but whose parameters are adjusted by maximum
likelihood, namely CGN classifiers, as proposed in [Pérez2010]. We use two
different datasets from the bioinformatics domain, one for ovarian cancer and
one for pancreatic cancer. Both datasets have been obtained from the NIH
and contain high resolution spectrograms coming from surface-enhanced laser
desorption/ionization time of flight mass spectrometry (SELDI-TOF MS). In
both datasets the objective is to distinguish spectrograms coming from cancer
patients from those coming from control individuals.

6.1 Spectogram datasets

6.1.1 Ovarian cancer dataset

The ovarian cancer dataset contains a total of 216 spectrograms, 121 from
cancer patients and 95 controls. The m/z values do not coincide along the
different spectrograms. Thus, to create the variables, the m/z axis data has
been discretized into different bins, creating a variable for each bin, for a
total of 11300 variables. Thus, the number of variables largely exceeds the
number of data points. For each spectrogram, the average of the values of
each bin has been assigned to that bin’s variable.

6.1.2 Pancreatic cancer dataset

The pancreatic cancer dataset contains a total of 181 spectrograms, 101
from cancer patients and 80 controls. Each spectrogram is defined by 6771
variables which in this case are aligned, so no discretization is needed.

29
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Figure 6.1: Structure of the graph for k-BOX model
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Figure 6.2: Structure of the covariance matrix for k-BOX model

6.2 Dependency structures

We have used two different families of structures. Both are based on the
hypothesis that those variables that represent close m/z relations are more
likely to have large correlations than those whose m/z values are further
away.

6.3 k-BOX structure

A k-BOX structure can be defined over an ordered set of variables V =
〈X1, . . . , Xn〉. It is a restriction of semi Näıve Bayes [Larrañaga et al.2006],
also known as JAN [Pérez2010]. In a JAN structure the variables are joined
in groups to form multivariate distributions. In the k-BOX structure we
divide the variables in disjoints sets of k contiguous variables. The network
structure can be seen in Figure 6.3 and the corresponding covariance matrix
in Figure 6.3. In our case the ordering is provided by the m/z value.
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Figure 6.3: Structure of the graph for k-BAND model
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Figure 6.4: Structure of the covariance matrix for k-BAND model

6.3.1 k-BAND structure

The second proposed structure is the k-BAND structure. In k-BAND, we
assume that each variable is independent of all the remaining variables given
the k − 1 variables that precede it and the class variable. Therefore, the
k-BAND structure is formed by cliques of size k with separators of k − 1
variables.

The covariance matrix for a k-BAND structure is a band of size k around
the diagonal, as is shown in Figure 6.3.1. An example of the structure is
shown in Figure 6.3.1.

6.4 The prior

As we are working with Bayesian model average we need to define a prior
distribution for both, the multinomial and the Gaussian distributions. In the
case of multinomial distribution we have set as prior a Dirichlet distribution
with αi = 1 for i = 1, 2. This prior suppose that we know that exist instances
of both classes, but we don’t risk to much to say in what proportion. In the
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Learning Method
Maximum Likelihood Maximum a Posteriori

Structure K-BOX CGN-K-BOX GJT-K-BOX
Model K-BAND CGN-K-BAND GJT-K-BOX

Table 6.1: Summary of combination of methods and structures.

case of the Gaussian we choose a Normal Inverse Wishart prior distribution
which uses the following parameters. η = 0, δ = κ = 1 and Ψ equal to the
identity matrix, what includes a belief on the independence of the variables.

6.5 The experiment

We have performed different comparisons for each dataset. We have used 4
different classifier methods. Each classifier method is the combination of a
structure and a learning principle. The different combinations are shown in
table 6.5.
For cancer datasets the methods have been run with different value for K.

For ovarian cancer dataset K takes values from 1 to 50, and for pancreatic
cancer dataset the methods have been run with values of K from 1 to 30.

A 10-cross fold validation has been performed for each method. In other
words, the dataset have been divided in 10 different subsets. We have clas-
sified each of this subsets while the model has been learn with the other 9
subsets.

6.5.1 Measures

Two measures have been used to compare the performance of the classi-
fiers. The accuracy is the proportion of corrected classified patients. We can
understand accuracy as a measure of how well we classify.

Accuracy =
corrected classified instances

instances

We also use conditional log-likelihood (CLL), which is the log-probability
assigned to the correct class of the instances.CLL measures how accurately
the probabilities for each class are estimated, which is very relevant for ade-
quate decision making. If ci is the class associated to an instances xi, the cll
is defined as
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CLL =
m∑
i=0

log(P (C = ci|xi))

6.6 Results

We have run a sequence of experiments on each dataset to compare the
different structures (k-BOX and k-BAND) and parameter learning methods
(CGN and GJT) varying the k parameter.

The source code used to perform the experiments is available at http:

//www.iiia.csic.es/~cerquide/pypermarkov

6.6.1 Ovarian data

The ovarian data has been modelled using k-BOX and k-BAND structures
with k ranging from 1 to 50. In Figure 6.5 we show the mean accuracy
versus the number of parameters in the model and in Figure 6.6 we show
the mean CLL versus the number of parameters in each structure. We see
that in that dataset, k-BAND models are more accurate that k-BOX models.
For low values of k, CGN performs better than GJT, but GJT has a largest
accuracy and a highest CLL at its peak, and shows a more graceful decay as
the number of parameters grows beyond that peak.

6.6.2 Pancreatic data

The pancreatic cancer data has been classified using k-BOX and k-BAND
structures with k ranging from 1 to 30. Figure 6.7 and Figure 6.8 show
respectively the mean accuracy and mean CLL against the number of pa-
rameters. Note that the accuracy for this dataset is much lower and close to
the frequency of the largest class, that is 55.8% in this datasets. Previous
studies have shown that the accuracy results for this dataset are much lower
than for the previous one. The k-BOX model using GJT appears to reach
the highest accuracy and the k -BAND model reaches the highest CLL also
for pancreatic cancer.

http://www.iiia.csic.es/~cerquide/pypermarkov
http://www.iiia.csic.es/~cerquide/pypermarkov
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Figure 6.5: Prediction of ovarian cancer. Accuracy versus number of param-
eters in model.
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Figure 6.6: Prediction of ovarian cancer. CLL versus number of parameters
in model.
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Figure 6.7: Prediction of pancreatic cancer. Accuracy versus number of
parameters in model.
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Figure 6.8: Prediction of pancreatic cancer. CLL versus number of parame-
ters in model.



Chapter 7

Conclusions and Future Work

We have introduced a new family of classifiers for continuous domains, namely
Gaussian join Tree classifiers that perform exact Bayesian averaging over the
parameters by virtue of the hyper normal inverse Wishart law, that we have
introduced and proved to be strong hyper Markov. To assess the benefits we
have compared GJT classifiers with GCN classifiers which assuming the same
set of independences adjust parameters using maximum likelihood. We per-
formed our comparison with two high resolution mass spectrometry datasets
for ovarian and pancreatic cancer prediction. We have seen that, for two
simple dependency structures, our classifiers reach a better peak accuracy
and a consistently better conditional log likelihood.

We have introduced k-BOX and k-BAND structure, which are part of
the same family of join trees structures. For example different sizes of the
separators define different models in the family. The study of this family
remains also as future work.

The GJT parameter averaging can be performed over any set of depen-
dencies that can be encoded into a decomposable graph. We can adapt any
algorithm for learning the structure of a CGN classifier so that it outputs a
join tree by moralizing and triangulating the DAG that encodes the structure
of the CGN, and then running maximum cardinality search. A future line of
work is comparing along the datasets in [Pérez2010] using the same structure
learning algorithms that they suggest, thus testing if the benefits extend to
domains with a smaller number of attributes.

Finding a structure learning method for large Bayesian networks remains
as future work. More informed dependencies structures should imply better
results in mass spectra classification.
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Appendix A

Distributions

A.1 Multivariate t-distributions

A p-dimensional random vector x is said to have the p-variate t distribution
with degrees of freedom ν, mean vector µ , and correlation matrix R (that
is x ∼ tν(µ,R)) if its joint pdf is given by

p(x|ν, µ,R) =
Γ((ν + p)/2)

(πν)p/2Γ(ν/2)|R|1/2
·

· [1 +
1

ν
(x− µ)R−1(x− µ)]−(ν+p)/2 (A.1)

A.1.1 Marginals

Let x be a p-dimensional random vector x ∼ tν(µ, R). Furthermore let x =

(x1,x2) where x1 is p1 dimensional, µ = (µ1,µ2) and R =

(
R11 R12

R21 R22

)
.

We have that
x1 ∼ tν(µ1, R11) (A.2)

For more information regarding multivariate t-distributions see [Kotz and
Nadarajah2004].

A.2 Normal Inverse Wishart distributions

The inverse Wishart distribution is defined on real-valued positive-definite
p × p matrices. It has two parameters: a real number δ > 0 and a p × p
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positive-definite matrix Ψ. The probability density function is

IW(X|δ,Ψ) =
|Ψ| δ+p−1

2 |X|− δ+2p
2

2
(δ+p−1)p

2 Γp(
δ+p−1

2
)
e−

1
2
tr(ΨX−1)

The normal inverse Wishart distribution is defined on pairs composed of
(i) vectors of dimension p and (ii) real-valued positive-definite p×p matrices.
It has four parameters: a p dimensional vector η that encodes the location,
a positive real number κ that acts as scaling factor, and δ and Ψ as in the
inverse Wishart. The probability density function is

NIW(µ,Σ|η, κ, δ,Ψ) = N (µ|η, 1

κ
Σ) · IW(Σ|δ,Ψ)

A.2.1 Conjugacy

The normal inverse Wishart distribution is conjugate to the multivariate nor-
mal [Gelman et al.2004]. Thus, if we assume as prior a NIW(µ,Σ|η, κ, δ,Ψ)
and we are given a sample X from a multivariate normal, the posterior will
be a NIW(µ,Σ|η′, κ′, δ′,Ψ′) where

η′ =
κη + nx

κ+ n
, (A.3)

κ′ = κ+ n, (A.4)

δ′ = δ + n, (A.5)

Ψ′ = Ψ + (n− 1)S +
κn

κ+ n
(x− η)(x− η)T . (A.6)

and S is the sample covariance.

A.2.2 Predictive distribution

The predictive distribution is the result of integrate over the space of param-
eter the product of the normal distribution and the Normal Inverse Wishart.
This operation, give as result a multivariate t distribution depending on the
hyperparameters of the model.

p(x|η, κ, δ,Ψ) =

=

∫
µ,Σ

N (x|µ,Σ)NIW(µ,Σ|η, κ, δ,Ψ) =

= tδ(η,
κ+ 1

κδ
Ψ). (A.7)
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A.2.3 Marginals

The next proposition give us the marginals of the Normal Inverse Wishart.
This result will be necessary later, when we talk about hyper Markov distri-
butions.

Proposition 5. Let µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, η =

(
η1

η2

)
and

Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
.

If (µ,Σ) ∼ NIW(η, κ, ν,Ψ), then (µ1,Σ11) ∼ NIW(η1, κ, ν,Ψ11)

Proof. The marginal can be assessed as follows

P (µ1,Σ11|η, κ, δ,Ψ) =

=

∫
µ2,Σ12,Σ22

NIW(µ,Σ|η, κ, δ,Ψ) =

=

∫
µ2,Σ12,Σ22

N (µ|η, 1

κ
Σ) · IW(Σ|δ,Ψ) =

=

∫
µ2,Σ12,Σ22

N (µ1|η1,
1

κ
Σ11)P (µ2|µ1,η, κ, δ,Ψ)·

· IW(Σ11|δ,Ψ11)P (Σ22,Σ21|Σ11, δ,Ψ) =

= N (µ1|η1,
1

κ
Σ11)IW(Σ11|δ,Ψ11)·

·
∫
µ2,Σ12,Σ22

P (µ2|µ1,η, κ, δ,Ψ)P (Σ22,Σ21|Σ11δ,Ψ) =

= N (µ1|η1,
1

κ
Σ11)IW(Σ11|δ,Ψ11) (A.8)
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