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Introduction

Mathematical modelling is getting more and more important in plenty of fields. A good model
helps us understand deeply how a system works. Furthermore, it can be used to make simula-
tions of the system under certain conditions and, from them, predictions of its behaviour.

In particular, mathematical modelling is important in biomedical engineering. A deep
understanding of the physiology and all the components taking part in a certain process may
lead to a better control of this process through drugs, devices, etc.

One of the fields of interest in medical engineering is the management of the blood pres-
sure. It is well known that the arterial pressure gives an idea of the cardiovascular system’s
performance. A high level of blood pressure may indicate that there is a risk of more severe
cardiovascular diseases - even heart attack. On the other hand, in a hospital context with very
ill patients, low pressure values might indicate blood loss and other critical situations. In very
critical patients, the blood pressure is measured with an arterial catheter.

The objective of this work is to develop a model of the continuous arterial pressure signal
provided by the arterial catheter, and to validate it against real data to evaluate it.

The mathematical model that we present was partially developed in a workshop held at
CRM in December, 2010, in collaboration with Sabirmedical SL. The company’s objective
was to develop a system to measure the blood pressure continuously and non-invasively using
expert systems. To do so, it was necessary to have a good model to understand in detail
the physiology of the cardiovascular system and which factors affect the blood pressure. This
company provided the real data used in this work. The main objective was to develop a model
which included certain characteristics of the signal but keeping it as simple as possible, so it
would be easy to understand and interpret. In consequence, the model presented here comes
from a very applied framework and has been useful in a product’s development. It may be
considered a good example of mathematical models in engineering.

This thesis consists of five chapters. The first one is a very brief review of the circulatory
system and the blood pressure signal, emphasizing the particular characteristics we want to
model. In the second chapter, some of the existing models of the blood pressure are presented,
and their utility in our particular problem is discussed. The third chapter presents the model
we have developed with all its components, and integrates it for a theoretical set of parameters.
Since one of the objectives of the work is fitting the model into real arterial signals, the model’s
parameters must be estimated for each patient. The first part of the parameter estimation
is explained in chapter four - a sensitivity analysis, to determine which parameters have the
greatest influence on the solution. In the fifth chapter we can see the second part of the
parameter estimation method, and the result for each patient - their real blood pressure signal
compared to the one obtained with the model.

To sum up, we can say that this work presents a model and a method to adjust it to given
data, and a comparison of the model with real signals.
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Chapter 1

Review of the cardiovascular system
and the blood pressure signal

The cardiovascular system, also named the circulatory system, is a very complex organ system.
It is necessary to feed oxygen and nutrients to the rest of the body organs and tissues, to
mantain the body’s temperature, etc. This is achieved by means of a fluid: the blood. It is
constantly pumped by the heart, and circulates through a very complex network composed of
arteries, capillaries and veins.

We can first divide the circulation in two systems:

• The pulmonary circulation goes from the heart to the lungs and carries de-oxygenated
blood through pulmonary arteries. Once in the lungs, the red cells get the oxygen. The
oxygenated blood then goes to the heart again through pulmonary veins.

• The systemic circulation carries oxygenated blood coming from the pulmonary system
to the rest of the body. This is the system we will study in this work.

How does the systemic circulation work? The blood leaves the heart’s left ventricle through
the aortic valve and the aorta (a wide artery). The aorta divides into smaller arteries, and
then into arterioles and, after them, the smallest branches of the system, the capillaries. They
have a very small diameter, but are responsible for feeding all the organs and tissues with the
glucose, nutrients, and oxygen that the blood carries. The de-oxygenated blood continues to
find the venules, small unions of capillaries, and they join into veins, and finally all together
join into a wide vein, the vena cavae, which brings the blood to the heart. This is constantly
happening in our body, more than once each second!

To accurately model this network of blood vessels we could use a very complex fractal model
of the geometry. There are kilometers of blood vessels inside a human body, branching like
trees and then joining again. In consequence, in this work a simpler model of the systemic
circulation will be used. The cardiovascular system will be simplified into a heart, which ejects
blood to the arteries. The blood goes into the capillary network and then to the veins, to go
to the heart again through the mitral valve.

More particularly, each section (arteries, capillaries and veins) will be treated as a single
vessel, and we will only take into consideration their average pressures and flows. The same
with the heart - instead of modelling it with two ventricles and two atriums, we will only model
the left ventricle, which ejects the blood to the arteries.

A diagram of this simplification of the cardiovascular system is shown in figure 1.1.
Each heart beat consists in a contraction, named systole, and a relaxation, named diastole.
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Figure 1.1: The cardiovascular system

All the vessels have their own resistance to the blood flow, which depends on their radius,
the viscosity of the blood, etc. ([1]). They are not rigid - their elasticity is called the compliance,
and is very different in each kind of vessel. While the aorta is almost rigid, the arteries are a
little bit compliant. But, most important of all, the veins have a much higher compliance than
the other vessels. This is because they have an additional function - they store blood.

We call blood pressure the pressure exerted by circulating blood upon the walls of blood
vessels. In the aorta, the pressure is very high; it decreases in the arteries; when it gets into
the veins, the pressure is much lower; and when it gets into the heart again, the blood pressure
is almost 0.

The most important measure of the blood pressure is the arterial one.
The blood pressure is usually measured in millimeters of mercury, mmHg. The most common

tool to measure it is the sphygmomanometer - the cuff placed around the arm which inflates for
about a minute. However, this gives a measure at a single point in time. When a continuous
arterial pressure measure is needed, an arterial catheter is placed in the radial or femoral artery.
This happens mainly in ICUs with very critical patients.

In figure 1.2 we can see an example of the countinuous signal that the arterial catheter
provides.

From this signal, we may observe some things:

• It is an oscillating signal. Each oscillation corresponds to one heart beat, one ejection of
blood.

• In the example, the higher value of the oscillations is near 135 mmHg. This is called the
systolic pressure. The lower value of the oscillations (here 60) is the diastolic pres-
sure. When the pressure is measured with a cuff, it provides two numbers, corresponding
to the previous two pressures. In this case, we would say that the patient has an arterial
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Figure 1.2: An arterial catheter signal

pressure of 135/60.

• We can also see that the systolic pressure (and, less visible, the diastolic pressure and
the heart rate) also oscillates. The frequency for this particular subject is more or less a
cycle every five beats. This oscillation is caused by the patient’s respiration. During the
inspiration, there is a cardiac acceleration and an increase in pressure. When the lungs
eject the air, the heart rhythm and the blood pressure decrease again. This motion is
called respiratory sinus arrhythmia.

• The last thing we should observe is a small peak at the end of every beat. This is the
dicrotic notch. This does not always look like a clear peak but sometimes may be a flat
part or a change in slope. The dicrotic notch appears due to the aortic valve closing. Just
before it happens, the pressure inside the heart is lower than in the aorta, and this makes
the valve close. But sometimes there is a little backflow due to this pressure difference,
which makes this small peak appear in the wave.

With the knowledge of all these elements of the circulatory system, we can now start thinking
of a way of modelling the arterial pressure signal.

6



Chapter 2

Review of mathematical models for
blood pressure

2.1 Introduction

In this section we summarize some popular models for the circulatory system. We also compute
solutions for two of the simple and discuss their applicability to the actual blood pressure signal.

2.2 The Ottesen model

2.2.1 Description

The first example of a blood pressure model we will see is the baroreflex-feedback, published
by Johnny T. Ottesen in [2, 3].

This model does not model the pulsatile blood pressure signal, but the variations in blood
pressure due to the baroreflex mechanism. The baroreflex is the part of the autonomic nervous
system which regulates the heart rate and the blood pressure. It consists of sensors placed in
the heart and the aortic arch, connected to the posterior part of the brain.

Two nervous systems carry the brain’s decision to increase or decrease the blood pressure
to the corresponding destination. They are:

• The sympathetic nervous system: when it is activated, it produces an increase in heart
rate (and so in cardiac output), and vasoconstriction (increase in vessel’s resistance). The
consequence is that the blood pressure increases. The effects of the sympathetic system
are almost instantaneous.

• The parasympathetic nervous system: it has the opposite effect. It decreases the heart
rate to decrease the blood pressure. The parasympathetic acts with a small time delay,
which we will call τ .

In this mathematical model, resistances and compliances are assumed to be constant during
a short period of time in which the model is integrated, and the baroreflex acts only on the
heart rate. The stroke volume (volume of blood ejected in each heart beat) is also taken as
constant.

The model takes into account the variations in two different types of vessels, arteries and
veins. In each of them, the pressure is assumed to be homogeneous. Let Pa(t) be the arterial
pressure, Pv(t) the venous one, and H(t) the heart rate. These three are the dependent variables
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Parameter Meaning Value Units

ca Arterial compliance 1.55 ml/mmHg
cv Venous compliance 519 ml/mmHg
R Peripheral resistance 1.05 mmHg·s/ml
r Venous outflow resistance 0.068 mmHg·s/ml
Vs Stroke volume 67.9 ml
H0 Typical mean heart rate 1.24 1/s
Pa0 Typical mean arterial pressure 100 mmHg
Pv0 Typical mean venous pressure 7 mmHg

Table 2.1: Meaning and nominal values of the parameters

in Ottesen’s model. Every time, the change in arterial pressure depends on the two pressures
and the volume of blood ejected; the change in venous pressure depends on both pressures,
including a resistance of the heart’s valve. The variation in heart rate is modelled as a function
which will reflect the baroreflex feedback, and here is where the time delay τ plays a role.

Ṗa(t) = − 1

caR
Pa(t) +

1

caR
Pv(t) +

1

ca
VsH(t) (2.1)

Ṗv(t) = − 1

cvR
Pa(t)−

(
1

cvR
+

1

cvr

)
Pv(t) (2.2)

Ḣ(t) = f
(
Pa(t), Pa(t− τ)

)
(2.3)

The meaning of each parameter and its nominal value can be found in table 2.1.
What is the function that regulates the heart rate? In [2] some physiologically realistic as-

sumptions are made, such as differentiability or sign. Based on these assumptions, the following
ad-hoc function is suggested:

f
(
Pa(t), Pa(t− τ)

)
=

αHTs
1 + γHTp

− βHTp (2.4)

where Ts and Tp are the sympathetic and the parasympathetic tone respectively, and are mod-
elled as the following sigmoidals:

Ts(t, τ) =
1

1 +
(
Pa(t−τ)
αs

)βs (2.5)

Tp(t) =
1

1 +
(
Pa(t)
αp

)βp (2.6)

The values suggested in [2] of the heart rate function are shown in table 2.2.

2.2.2 Integration

If we integrate numerically the equations 2.1, 2.2 and 2.3, with the suggested sigmoidals for
the baroreflex feedback mechanism, and the suggested parameters, the arterial pressure signal
we obtain is the one shown in figure 2.1. As we can see, the resulting signal oscillates near the
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Parameter Value Units

αH 0.84 s−2

βH 1.17 s−2

γH 0
αs 93 mmHg
βs 7
αp 93 mmHg
βp 7

Table 2.2: Suggested values of the parameters

Figure 2.1: Arterial pressure
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typical mean arterial pressure (between 75 and 105 mmHg), in very slow oscillations (near 10
seconds each full cycle).

This baroreflex-feedback model is good to predict the behaviour of the mean arterial pressure
during a certain period of time in steady patients. Moreover, the author claims that it has been
tested against real data and it has given good results. However, it does not reflect the pulsatile
component of the blood pressure signal, which we want to model. Nevertheless, it is a good
example of a mathematical model, in the sense that it is reasonably accurate enough, but also
very simple and easy to interpret.

In [4], Fowler and McGuiness rescale the model and simplify it to investigate the roles played
by gain and delay, and the effects of ageing.

2.3 The windkessel model

2.3.1 Description

Compartment models are a particular type of lumped parameters model. They consist in
splitting the system into sections, named compartments. The main assumption is that each
comparment is homogeneous - in this case, each compartment has got the same blood pressure.
The windkessel model is a simple example of a compartment model. We will focus a little on
the understanding, integration and result of this model, since our model is also a compartment
model.

The first description of the cardiovascular system as a compartment model was published
in 1733 by the physiologist Stephen Hales, who compared the dampening blood pressure due to
compliance of blood vessels with an air chamber from some 18th century machines. He named
this a windkessel model (german translation of air chamber). Nevertheless, that description
was very qualitative. It became a mathematical model in 1899 thanks to another physiologist,
Otto Frank. He quantified the concept in the basis of conservation of mass. [5].

The windkessel model consists of two compartments: the heart (which induces pulsatility)
and the systemic arteries (which have a vascular resistance and some distensibility). The flow
into the arteries (Qin) can be split into flow stored and flow outgoing, this way:

Qin = Qstored +Qout (2.7)

The distensibility, also named compliance, is defined as

C =
dV

dPin
(2.8)

And so Qstored is

Qstored =
dV

dt
=

dV

dPin

dPin
dt

= C
dPin
dt

(2.9)

The resistance is related to how easily the blood flows.

Qout =
Pin
R

(2.10)

If we substitute Qout and Qstored in equation 2.3.1, we obtain the following:

Qin = C
dPin
dt

+
Pin
C

(2.11)
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C Rp(t) Q(t)

Figure 2.2: Windkessel model as a circuit

Parameter Value Units

C 1.55 ml/mmHg
R 1.05 s·mmHg/ml
Vs 67.9 ml
H 1.24 beat/s
T 1/H s
Tsys T/3 s
P0 100 mmHg

Table 2.3: Nominal values of the parameters

Dividing by the compliance and renaming Qin and Pin to Q and P , we have the governing
differential equation of the windkessel model:

dP

dt
+

P

RC
=
Q

C
(2.12)

A very common representation of the windkessel system is an analogy with an electric
circuit, with the heart as the current source Q, a resistance and a capacitance (equivalent to
arterial compliance). The equivalent to the voltage would be the blood pressure, P . This
formulation fulfills Ohm’s and Kirchoff’s laws of the electric circuits. Figure 2.2 shows the
two-compartment windkessel model drawn as an electric circuit.

After that, models with more compartments (more windkessels) have been built, to intro-
duce the heart valve’s own resistance and the inertia of the blood flow ([6], [7]).

2.3.2 Integration

We are now going to focus on the two-compartment windkessel model. The equation of the
model is

dP

dt
+

P

RC
=
Q

C
(2.13)

Nominal parameters of the resistance, the compliance, the stroke volume, the heart rate,
the systolic fraction of each beat and the initial mean pressure, taken from the previous model
[2], are shown in table 2.3.

We have to choose a flow, Q(t), such as the volume in a whole beat corresponds to the
stroke volume, i.e. ∫ t0+T

t0

Q(t) dt = Vs (2.14)
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Figure 2.3: Pressure computed with constant Q(t)

2.3.2.1 Constant flow

If we take the flow to be a constant, Q(t) = Q0, it must satisfy∫ t0+T

t0

Q0 dt = Q0T = Vs (2.15)

Then,

Q0 =
Vs
T

= VsH = 67.9 · 1.24 = 84.196 ml/s (2.16)

Immediately, equation 2.13 becomes linear, with constant coefficients, and can be solved
analytically, giving as a result

P (t) = Q0R + (P0 −QR)e−
t
RC (2.17)

We can see how the pressure looks like in figure 2.3.

2.3.2.2 Train of pulses flow

From the previous subsection it is clear that we need to induce pulsatility in the flow. We
can do so with a pulse train which has value Qm = 0 during diastole diastole and QM during
the systole, and whose integral during a whole beat is Vs. If t̄ is the time modulo the cardiac
period, t̄ ∈ [0, T ], then the flow will be

Q(t̄) =

{
QM t̄ ≤ 1

3

0 otherwise
(2.18)
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Figure 2.4: Q(t) as a pulse train

We impose the volume in a beat equals to Vs.∫ t0+T

t0

Q(t) dt =
T

3
QM = Vs (2.19)

Then,

QM = 3
Vs
T

= 3VsH = 3 · 67.9 · 1.24 = 252.588 ml/s (2.20)

We can see the flow as a pulse train in figure 2.4, and the pressure obtained from this flow
in figure 2.5.

As we can see, the pressure obtained is pulsatile but too sharp. We can also note that the
pressure values are not realistic (the amplitude of oscillation is too small). In order to solve
this problem, a proper set of parameters should be found.

2.3.2.3 Sine flow

We can try with a smoother pulsatile flow, such as a sine wave. Imposing that Q(t) oscillates
between 0 and QM , it must be

Q(t) =
QM

2

(
1 + sin

(
2πt

T
− π

2

))
(2.21)

Imposing also that the volume ejected each beat is Vs,∫ t0+T

t0

Q(t) dt =
T

2
QM = Vs (2.22)
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Figure 2.5: Pressure computed with pulse train Q(t)

and so

QM = 2
Vs
T

= 2VsH = 2 · 67.9 · 1.24 = 168.392 ml/s (2.23)

Figure 2.6 shows the smooth sine flow, and figure 2.7 the pressure obtained from this flow.

2.3.2.4 Sine squared flow

As we can see, the pressures obtained in subsections 2.3.2.1, 2.3.2.2 and 2.3.2.3 follow the same
baseline, but oscillate in a different way, depending on the imposed flow.

While in the constant flow case the pressure does not oscillate, in the sine case it does, but
the resulting pressure waveform is too much similar to a sine. Actual pressure waves are not
so symmetric (beat to beat), i.e., the slope in the systole (pressure going up) is much greater,
in absolute value, than the slope of the diastole. The pressure obtained with a pulse train flow
does fulfill this asymetry, but the waveform is too spiky to be realistic.

So we need something as smooth as the sine but asymetric as the pulse train. We can take
a pulse which is a sine squared in the systole and zero in the diastole.

Q(t̄) =

{
QM sin2

(
πt̄
TsT

)
t̄ ≤ 1

3

0 otherwise
(2.24)

We calculate the value of QM as in previous cases.∫ t0+T

t0

Q(t) dt =
(3
√

3 + 8π)T

48π
QM = Vs (2.25)

Then,

QM =
48π

3
√

3 + 8π

Vs
T

=
48π

3
√

3 + 8π
· 67.9 · 1.24 = 418.626 ml/s (2.26)
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Figure 2.6: Q(t) as sine wave

Figure 2.7: Pressure computed with sine Q(t)
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Figure 2.8: Q(t) as a sine squared

We can see the flow as a sine squared in figure 2.8, and the pressure obtained from this flow
in figure 2.9.

The obtained pressure shows the desired asymetry but is still too spiky, and the downslope
part of the beat too linear. The type of flow we induce affects the solution but it is never good
enough.

Therefore, we can claim that the windkessel model itself is too poor to provide a good
representation of the pressure.

2.4 The Chapman-Fowler-Hinch model

2.4.1 Description

In the book [8], the authors suggest a more refined compartment model.
Three compartments are used: arteries (suffix a), veins (v), and the heart’s left ventricle

(LV ). Each chamber has volume V and pressure p. Both flow rates to and from the left
ventricle are denoted by Q− and Q+, respectively, and the blood flow through the capillaries is
denoted by Qc. Conservation of blood volume is then expressed by the following equations:

V̇a = Q+ −Qc (2.27)

V̇v = Qc −Q− (2.28)

V̇LV = Q− −Q+ (2.29)

Let Rc be the capillary resistance. Then, the capillary blood flow is

Qc =
pa − pv
Rc

(2.30)
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Figure 2.9: Pressure computed with sine squared Q(t)

The resistances associated with the flow to and from the left ventricle are Rv and Ra. To
represent the effect of the heart valves, which do not allow backflow, heaviside functions are
used. They represent them as [x]+ = max{x, 0}. Then, the flows are the following:

Q+ =
[pLV − pa]+

Ra

(2.31)

Q− =
[pv − pLV ]+

Rv

(2.32)

In order for incompressible blood to circulate, compartment models must be able to change.
The simplest assumption is linear dependence through compliances, C.

Va = Va0 − Capa (2.33)

Vv = Vv0 − Cvpv (2.34)

VLV = VLV 0 − CLV pLV (2.35)

The inverses of the compliances are called elastances, E. In particular, the left ventricle’s
elastance varies between the values Ed and Es (diastolic and systolic elastance) to represent the
heart’s cycles of contraction and relaxation. The elastance function is modelled with function
valued Es during the first time of the cardicac cycle, ts, and Ed during the diastole, td. The
other two compliances are assumed to be constant.

Substituting the flows and the volumes in equations 2.27 to 2.29, we obtain the model’s
system of equations, which is the following:
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Parameter Meaning Value Units

Va0 Initial arterial blood volume 0 ml
Vv0 Initial venous blood volume 4500 ml
VLV 0 Initial heart blood volume 17 ml
Ra Arterial resistance 0.06 mmHg·s/ml
Rv Venous resistance 0.016 mmHg·s/ml
Rc Capillary resistance 1.2 mmHg·s/ml
Ca Arterial compliance 1.5 ml/mmHg
Cv Venous compliance 50 ml/mmHg
Es Systolic elastance 3.0 mmHg/ml
Ed Diastolic elastance 0.06 mmHg/ml
Ts Systolic time 0.3 s
Td Diastolic time 0.6 s

Table 2.4: Meaning and nominal values of the parameters

RcCaṗa = −(pa − pv)−
Rc

Ra

[pLV − pa]+ (2.36)

RcCvṗv = (pa − pv)−
Rc

Rv

[pv − pLV ]+ (2.37)

˙(
pLV
ELV

)
=

[pv − pLV ]+
Rv

− [pLV − pa]+
Ra

(2.38)

Suggested values from the parameters, which the authors have adapted from [9], can be
found in Table 2.4.

This model is more refined than the windkessel model, despite being also a compartment
model. However, it does not model certain features such as respiratory variations in frequency
and pressure or the dicrotic notch (although it does have two valves opening and closing).

As we will see in chapter 3, the model we suggest can be thought as a more complex version
of this one, adding one additional compartment and some refinements to model some additional
features.

2.5 The Seidel-Herzel model

In [10], a much more complex model of the cardiovascular system is presented. It takes into
account the baroreflex-feedback loop but also includes the pulsatility of the blood flow. Al-
though it is very complete, in the sense that it takes into account a lot of factors, and so it is
very accurate, the fact that it consists in a set of 14 differential equations, including delays,
variables calculated in each heart cycle, etc. makes it very difficult to deal with.

Since our goal is to develop a model which we can easily interpret and understand, we will
neglect Seidel-Herzel’s model, which is far from simple and definitely lacks interpretability.
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2.6 Ursino

If the previous model is difficult to understand, Ursino’s [9] is even more so. It combines the
concept of compartment model, a pulsatile heart, and the baroreflex mechanism, to create a
42-equation system, with a great amount of parameters.

Although it has been an influence to the subsequent models of blood pressure, it is clearly
far from our objective, which is developing a model that is as simple as possible.

2.7 Fluid dynamics

The blood is a fluid which flows inside a system of tubes of different sizes. So why not model
it using classical fluid dynamics?

To model the blood flow using Navier-Stokes equations, we should have a very accurate
model of the cardiovascular system’s geometry: how vessels bifurcate, lengths and diameters of
every one of them, etc.

In [11], they assume that the blood flow in arteries can be modelled as a one-dimensional
axisymmetric flow of an incompressible and Newtonian fluid through a rigid vessel, and so they
simplify the N-S equations to the following:

ρ
∂u

∂t
+
∂p

∂x
=
µ

r

∂

∂r

(
r
∂u

∂t

)
(2.39)

where u(t, r) is the longitudinal velocity, ρ is the blood’s density, µ is the viscosity, and the
pressure p(x, t) is assumed to be constant over the cross-sectional area, and so independent of
the radius r. They use this model to study in detail the pressure and velocity in a large vessel,
and combine it with a windkessel model. They suggest that applications of this approach may
be the development of anesthesia simulators or the study of the blood flow in dynamic changes,
such as posture changes.

A similar model is used in [12] to study in detail the blood flow in large vessels. They carry
out two different simulations: the first one, in the aorta; the second one, the iliac bifurcation
including part of the femoral arteries.

In [13], the author model in an extremely detailed manner the geometry of curved tubes,
and study the radial changes in blood velocity inside a vessel. A very precise geometry of a
cardiovascular system from a particular subject is obtained by means of magnetic resonance
imaging which is then used in the model.

To sum up, the fluid dynamics approach may be useful to model very precisely pressure
and velocity in a certain vessel when the geometry is well known. However, with the current
computational power a fluid dynamics model of the whole cardiovascular system is not possible.

Note that this model can also be coupled with elasticity of blood vessels.
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Chapter 3

Four compartment model of the
cardiovascular system

3.1 Introduction

Some models seen in chapter 2 only take into account the main blood pressure and its variations,
but do not model the pulsatile component. Others, such as [8], model the blood pressure wave
including the pulsatile component but miss some additional details. The goal of this project
is to provide a simple mathematical model capable of reproducing a blood pressure signal and
so use this model to aid in the automatic interpretation of certain medical conditions. For this
purpose we require a model that includes details of the aortic valve and its closing time, the
dicrotic notch (due to the valve closing) and the variation in pulse pressure and heart rate as
a consequence of respiration (respiratory sinus arrhytmia).

Our model is derived from the three compartment model of [8] but introduces various
changes to more accurately predict the blood pressure curve.

3.2 Desription of the model

3.2.1 Compartments

First of all, we define the compartments needed. We model the systemic circulation with
two compartments, one for the arteries and the other for the veins (since venous return is
important for heart performance). These compartments will be denoted by subscripts a and
v, respectively. The heart is the region between veins and arteries. A human heart actually
has four different sections - two atria and two ventricles. However, for simplicity, we will only
model the left ventricle, which is the part that pumps blood into the arteries. We will denote
it by LV . Finally, to model properly the aortic valve closure (that will take place when the
pressure outside the heart is greater than the left ventricle pressure) we need to introduce
another compartment, denoted e, which accounts for the aortic arch (the region between the
heart, after the aortic valve, and the arteries).

Since the volume variation in a compartment is the difference between the incoming and
the outgoing flux, we can state the following conservation of mass equations:
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V̇e = QLV −Qe (3.1)

V̇a = Qe −Qa (3.2)

V̇v = Qa −Qv (3.3)

V̇LV = Qv −QLV (3.4)

Compliance of a vessel is defined as change in volume for unit change in pressure [1, 14, 15].
Using this, we can write V̇∗ = C∗ṗ∗ (replacing the asterisk with each vessel’s name). Then,

Ceṗe = QLV −Qe (3.5)

Caṗa = Qe −Qa (3.6)

Cvṗv = Qa −Qv (3.7)

The heart is not a compliant vessel like the others. It pumps due to a stimulation from
the nervous system, so we have to prescribe this also. We will write an elastance (inverse of
the compliance) function which oscillates between two values, Es and Ed (systolic and diastolic
elastances). So the fourth equation will be

˙(
pLV
ELV

)
= Qv −QLV (3.8)

Now we apply Poiseuille’s law to replace the fluxes, which are proportional to the pressure
difference between the vessel’s ends. This constant of proportionality is denoted R∗ and named
resistance. In consequence, we can write Q∗ = ∆p∗

R∗
.

We will use the resistance in the e compartment to model the aortic valve, so Re will be a
variable function, depending on the pressure difference, insted of a constant. The valve will be
open when the pressure is lower in the exit region than in the heart, and closed otherwise. The
mitral valve (between the veins and the heart) also needs to be modelled, but no closing time
is needed (this valve does not affect the dicrotic notch). Hence we can model it as a Heaviside
function.

At the end, our system of equations will be:

Ceṗe =
pLV − pe

Re

− pe − pa
Ra

(3.9)

Caṗa =
pe − pa
Ra

− pa − pv
Rc

(3.10)

Cvṗv =
pa − pv
Rc

− pv − pLV
Rv

H(pv − pLV ) (3.11)

˙(
pLV
ELV

)
=

pv − pLV
Rv

H(pv − pLV )− pLV − pe
Re

(3.12)

A diagram of the compartments of the model including pressures, compliances and resis-
tances is shown in figure 3.1.

Canonical values of the compliances and resistances are provided in [8]. The aorta is taken
to be as compliant as the arteries, but since it is wider, its resistance is set Re0 = Rv. The
values of the parameters are shown in 3.1.

A more detailed description of each function of the model is provided below.
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Figure 3.1: Compartments of the model

Parameter Value Units

Ce 1.5 ml/mmHg
Ca 1.5 ml/mmHg
Cv 50 ml/mmHg
Re0 0.016 s·mmHg/ml
Ra 0.06 s·mmHg/ml
Rc 1.2 s·mmHg/ml
Rv 0.016 s·mmHg/ml

Table 3.1: Nominal values of the parameters
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Figure 3.2: Elastance

3.2.2 Elastance function

The elastance is a function that simulates the heart contraction. In [1, 8] it is mentioned that
the systole lasts about φ = 1

3
of a heart period, and the diastole the other 2

3
. Moreover, in [8]

the elastance is described as an oscillating function which is a constant value, Ed, during the
diastole, and increases to reach a value Es and decreases again during the systole.

A function that fits this description is the following:

ELV (t̄) =

{
Ed + (Es − Ed) sin2(ωt̄) t̄ ≤ φ

Ed otherwise
(3.13)

Here ω is the heart angular frequency, and t̄ the time modulo the cardiac period: t̄ ∈ [0, T ],
where T = 2π

ω
, so total time is t = nT + t̄ for some n ∈ Z.

If we plot this function for constant values Ed = 0.06mmHg/ml, Es = 3.0mmHg/ml and
T = 0.9s (values taken from[8]), we obtain figure 3.2.

3.2.3 Aortic valve

In equations (3.9) and (3.12) there appears Re, which is not a constant but a variable function
that represents the aortic valve opening and closing in each cardiac cycle. Since we need
a closure time to model the dicrotic notch, it has to be a continuous function instead of a
Heaviside, but tending to a step function (closure is fast). We choose an exponential function
which increases from Re0 (the aortic resistance when valve is open) and saturates when it
reaches ReM (large enough to consider the valve completely closed at this resistance). The
parameters ε and A model the velocity at which the valve closes, and depend on the subject’s
health (the healthier the valve, the faster it closes). The valve starts closing when the pressure
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Figure 3.3: Valve resistance

is greater in the aortic arch than in the left ventricle, to prevent influx. Then,

Re(pLV − pe) = min
{
Re0

(
1 + εe−A(pLV −pe)

)
, ReM

}
(3.14)

Figure 3.3 is a plot of the valve resistance function, if we put ε = 10−5, A = 0.5 and
maximum resistance ReM = 10.

Figure 3.4 shows how the arterial pressure looks like with elastance and resitance as de-
scribed before.

3.2.4 Respiratory sinus arrhytmia

Respiration makes heart frequency change, although the subject stays still. This motion, named
respiratory sinus arrhytmia, produces a cardiac acceleration during inspiration and the inverse
effect during exhalation [16].

We can model this variation as

ω(t) = ω0 + c3 sin

(
ω0t

c2

)
(3.15)

where c3 is the amplitude of the oscillation and c2 the respiratory frequency with respect to the
heart rate, i.e., how many times the heat beats in a breath.

In figure 3.5 we can see how the heart frequency (in beats per minute, F = 60ω
2π

) changes, if
c3 = 0.01 and c2 = 6.

Frequency change in time causes sine-shaped oscillations of the systolic and diastolic pres-
sures. However, the amplitude of oscillation of the diastolic pressure is much greater than this
amplitude for the systolic. In figure 3.6 we can see this effect (this may be compared to figure
3.4 where the maximum and minimum values are constant).
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Figure 3.4: Arterial pressure

Figure 3.5: Heart frequency
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Figure 3.6: Arterial pressure

Nevertheless, experimental data shows that systolic pressure actually oscillates more than
the diastolic. In order to adjust the model to this fact, we make the elastance height, Es,
oscillate at the same rhythm as ω does. This affects, mainly, the systolic pressure. So, instead
of a constant, elastance height is

Es(t) = Es0 + c1 sin

(
Es0t

c2

)
(3.16)

Notice that the parameter c2 is the same in equations (3.15) and (3.16), so both have the same
oscillation frequency.

Figure 3.7 is how the elastance looks like with this new Es.
Figure 3.8 shows the arterial pressure with varying elastance height if c1 = 0.1, and c3, c2

remain the same as before.

3.2.5 Dicrotic notch

Now that we have the four compartment model, including the aortic valve and respiration, we
want a dicrotic notch to appear when the arterial pressure has negative slope, given that the
dicrotic notch appears when the valve closes, due to an increase in pressure in the e region
and a decrease inside the heart. Hence, we add a Gaussian impulse to the ṗe equation and we
substract it from ṗLV ’s: this ensures conservation of mass. It is like a wave propagation in a
very small scale. The system becomes the following:
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Figure 3.7: Elastance

Figure 3.8: Arterial pressure
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Figure 3.9: Dicrotic notch

Ceṗe =
pLV − pe

Re

− pe − pa
Ra

+ f(t, t1,∆t) (3.17)

Caṗa =
pe − pa
Ra

− pa − pv
Rc

(3.18)

Cvṗv =
pa − pv
Rc

− pv − pLV
Rv

H(pv − pLV ) (3.19)

˙(
pLV
ELV

)
=

pv − pLV
Rv

H(pv − pLV )− pLV − pe
Re

− f(t, t1,∆t) (3.20)

We take an impulse of the form:

f(t, t1,∆t) = c4e
− c5

∆t2
(t−t1−c6∆t)2

(3.21)

This has three parameters: c4 determines the notch’s height; c5 its width and sharpness; and
c6 the notch position in the downslope (time delay since the valve starts closing).

It also has three variables: t refers to the time, as usual; t1 is the particular time when the
valve has started closing, so the time when pe(t1) − pLV (t1) = 0−; and ∆t is the total closure
time of the valve (it must be computed each time in the previous cardiac cycle, since we start
adding the notch when the valve is not closed yet).

Notice that the Gaussian impulse is only added when the blood pressure goes downslope
and the valve starts closing; otherwise, it is equal to zero. Figure 3.9 shows how these impulses
look like if c4 = 500, c5 = 4 log(100).
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Figure 3.10: All pressures

3.3 Integration

We now apply all the model refinements and integrate the system of equations. The chosen
method is a fourth order Runge-Kutta with time step h = 0.01s. We integrate between t0 = 0s
and tF = 60s and, once we have got the solution, we only pick the last 10 seconds of it (to
ensure it has reached its stationary state). Initial conditions are chosen to make the arterial
pressure give realistic values:

pe0 = 35 mmHg (3.22)

pa0 = 35 mmHg (3.23)

pv0 = 5 mmHg (3.24)

pLV 0 = 35 mmHg (3.25)

Then, the stationary solution we obtain for all the pressures is shown in figure 3.10
Our main interest is arterial pressure, which can be seen in figure 3.11.
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Figure 3.11: Arterial pressure
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Chapter 4

Parameter sensitivity analysis

4.1 Introduction

In the next chapters we will try to adjust the model’s parameters to fit the blood pressure
signal of particular patients. This will be done step by step.

In our model there are 21 parameters and 4 initial conditions. To simplify, we can say that
the model has 25 parameters in total. Therefore, choosing the appropiate set of parameters to
make the result fit a particular patient signal can be difficult. Do we need to optimise all the
parameters at the same time? If not, in which order? Or maybe only some of them? Which is
the best estimation method?

In [17] a sensitivity analysis is suggested to determine which parameters are more important,
and after that a parameter estimation based on the results of such analysis. Although the
mathematical model they use is not the same, we will use a procedure based on theirs.

The only pressure data we have is arterial so this is the only one taken into account in the
analysis and parameter estimation.

The sensitivity analysis consisted in perturbing each parameter of the model and integrating
the system of equations to see how the resulting arterial pressure changes with such perturba-
tions.

4.2 Methods

For each parameter θ, with nominal value θ0, and for given perturbations q, the system was
integrated for θ = (1− q)θ0 and θ = (1 + q)θ0, while all the other parameters were set to their
respective nominal values.

Let pa
(
(1−q)θ0

)
and pa

(
(1+q)θ0

)
be the output arterial pressures for a perturbed parameter

θ (and the remaining 24 parameters set to their nominal value). Five values of the perturbation
q were used: 0.01, 0.05, 0.1, 0.2 and 0.5. As we will see, the perturbation q = 0.01 led to very
small changes in the output signal. The perturbation q = 0.5 led to chaotic behaviour for some
of the parameters. In consequence, these two values of q were dismissed and only the other
three were used for the analysis.

Three different measurements of the influence of parameters were used. They were the L2

distance between both signals, equation 4.1, the absolute difference of each signal’s mean value,
equation 4.2, and the absolute difference of each signal’s standard deviation, equation 4.3.
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Figure 4.1: Signals for a perturbation 0.1 of Rc

δ2 =

(∫ 20T

0

(
pa
(
(1 + q)θ0

)
− pa

(
(1− q)θ0

))2
) 1

2

(4.1)

δµ =

∣∣∣∣µ(pa((1 + q)θ0

))
− µ

(
pa
(
(1− q)θ0

))∣∣∣∣ (4.2)

δσ =

∣∣∣∣σ(pa((1 + q)θ0

))
− σ

(
pa
(
(1− q)θ0

))∣∣∣∣ (4.3)

These three measures were taken over a signal window of 20 beats of length in the stationary
part of the solution. For instance, figure 4.1 shows the two signals, pa

(
(1− q)θ0

)
and pa

(
(1 +

q)θ0

)
, where the perturbed parameter was θ = Rc and the perturbation value was q = 0.1,

while figure 4.2 shows them for θ = Ed (the large perturbation value causes the large difference
in results), and q = 0.5 and figure 4.3 shows them for θ = Ce and q = 0.01.

For each of the three measures, a ranking of the parameters (ordered by influence) was
made. This classification was made dismissing the two extreme values of perturbations, as said
before. The other three values led to very coherent results, so parameters were easy to classify.

Since our objective was reducing the number of parameters to estimate as much as possible,
some physiologically relevant relationships between parameters were kept when classifying the
parameters. For instance, in the previous chapter we defined the diastolic elastance as the
inverse of the venous compliance (the heart, when it relaxes, is as stiff as a vein). Then in the
rankings both Cv and Ed will appear in the same position (the highest of the two). This is also
coherent because, for each set of related parameters, when one of them showed to be influent on
the result, the others also did. Particularly, the fixed relationships between parameters were:
Cv = Ed, Ca = Ce = Es0, Re0 = Rv and pa0 = pe0 = pLV 0.
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Figure 4.2: Signals for a perturbation 0.5 of Ed

Figure 4.3: Signals for a perturbation 0.01 of Ce
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q = 0.01 q = 0.05 q = 0.1 q = 0.2 q = 0.5

φ 17.87 Ed 22.66 Ed 32.26 Ed 39.52 Ed 88.13
ω0 16.52 pa0 20.27 pa0 28.73 pa0 34.90 pa0 70.73
Ed 10.17 φ 19.75 φ 20.35 Es0 28.41 A 53.03
pa0 9.10 ω0 10.10 Es0 20.01 Cv 23.99 Es0 47.59
Es0 6.38 Es0 14.17 ω0 17.75 A 20.23 Cv 38.49
c2 5.69 Cv 12.01 Cv 16.96 ω0 20.10 Rc 33.29
Cv 5.41 Rc 9.92 Rc 14.04 Rc 20.04 ω0 32.31
A 4.52 A 9.69 A 13.81 φ 19.66 Re0 25.44
Rc 4.49 Ca 7.79 Ca 10.96 Ca 15.48 Ca 24.49
Ca 3.65 Re0 7.09 Re0 9.93 Re0 14.11 φ 22.83
Re0 3.55 Ce 6.34 Ce 8.89 Ce 12.53 Ce 19.85
Ce 2.81 c2 6.19 Rv 8.56 Rv 12.07 Rv 18.82
Rv 2.71 Rv 6.08 pv0 7.23 pv0 10.20 pv0 16.10
pv0 2.28 pv0 5.15 c6 6.51 Ra 9.16 Ra 14.31
c6 2.17 c6 4.78 Ra 6.49 c6 8.60 c4 11.82
Ra 2.05 Ra 4.62 c4 5.88 c4 8.35 c6 11.69
c4 1.86 c4 4.16 c2 5.37 c2 6.81 c5 10.17
c5 1.31 c3 3.18 c5 4.16 c5 5.94 ε 9.43
ε 1.26 ε 3.17 ε 4.13 ε 5.76 ReM 8.29

ReM 0.99 c5 2.94 c3 3.64 ReM 4.70 c2 5.94
c1 0.57 ReM 2.23 ReM 3.51 c3 4.32 c3 4.74
c3 0.55 c1 1.28 c1 1.81 c1 2.56 c1 4.28

∆t0 0 ∆t0 0 ∆t0 0 ∆t0 0 ∆t0 0

Table 4.1: L2 distance between signals for each parameter and perturbation

4.3 Results

4.3.1 Influence on L2 distance

Table 4.1 shows the resulting L2 distance between pa
(
(1 − q)θ0

)
and pa

(
(1 + q)θ0

)
for each

parameter and perturbartion. Each column is already ordered from greatest to smallest L2

distance.
The first fact we can see is that the bigger the perturbation q is, the bigger the effect

on the result is (in terms of L2 distance, but later we will see that the other two measure
functions behave the same way). This may seem obvious but it is good to see that results are
the expected. We can also see that, as it was said before, perturbations 0.05, 0.1 and 0.2 give
pretty coherent results, whilst 0.01 and 0.5 sometimes don’t. This will happen again with the
other measurement functions.

The parameters which seem to have a greater influence on the result are the compliances
and elastances, the resistances, the initial frequency, the systolic fraction of the beat, the valve
parameter A, and the initial conditons. The parameters related to details, such as height and
shape of the dicrotic notch, or rate of change in frequency and pressure due to respiration,
appear in the final positions.

Note that ∆t0 has no influence at all on the result. This is because it has only influence in
the first beat, and from the second the ∆t is computed from the previous beat.
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q = 0.01 q = 0.05 q = 0.1 q = 0.2 q = 0.5

Ed 2.516 Ed 12.52 Ed 25.40 Ed 52.42 Ed 190.04
pa0 2.019 pa0 10.01 pa0 20.16 pa0 40.68 pa0 122.24
φ 1.928 Es0 4.86 Es0 9.77 Es0 19.72 A 65.83
Es0 0.975 Cv 3.518 Cv 7.01 Cv 14.04 Es0 55.05
Cv 0.698 Rc 2.381 Rc 4.777 Rc 9.703 Cv 36.183
Rc 0.466 A 2.123 A 4.466 A 9.623 ω0 28.540
A 0.434 ω0 2.042 ω0 3.963 ω0 8.262 Rc 26.914
ω0 0.293 φ 1.754 Ca 2.837 Ca 5.659 Re0 15.122
Ca 0.276 Ca 1.430 Re0 2.164 Re0 4.555 Ca 14.152
Re0 0.215 Re0 1.101 φ 1.894 Ce 3.584 φ 10.642
Ce 0.181 Ce 0.913 Ce 1.802 Rv 3.553 Ce 8.975
Rv 0.179 Rv 0.888 Rv 1.782 pv0 2.533 Rv 8.627
pv0 0.128 pv0 0.629 pv0 1.267 φ 2.191 pv0 6.316
Ra 0.092 Ra 0.445 Ra 0.892 Ra 1.795 Ra 4.573
c4 0.074 c4 0.369 c4 0.731 c4 1.481 c4 3.743
c2 0.055 c6 0.244 c6 0.487 c6 0.975 c6 2.492
c6 0.049 c5 0.185 ε 0.375 c5 0.758 c5 2.211
ε 0.038 ε 0.182 c5 0.372 ε 0.758 ε 2.055
c5 0.037 ReM 0.112 ReM 0.235 ReM 0.475 ReM 1.522
ReM 0.022 c2 0.019 c2 0.038 c3 0.030 c2 0.040
c1 0.001 c3 0.008 c1 0.005 c2 0.020 c3 0.031
c3 0.000 c1 0.003 c3 0.005 c1 0.010 c1 0.005

∆t0 0.000 ∆t0 0.000 ∆t0 0.000 ∆t0 0.000 ∆t0 0.000

Table 4.2: Difference of means between signals for each parameter and perturbation

From the L2 distances seen in table 4.1, dismissing perturbations 0.01 and 0.5, and grouping
parameters if they were related in the model (such as Ed to Cv), the following rating of the
influence of the parameters was made:

1. Ed, Cv

2. pa0, pe0, pLV 0

3. Es0, Ca, Ce

4. φ

5. ω0

6. Rc

7. A

8. Rv, Re0

9. pv0

10. c6

11. Ra

12. c2

13. c4

14. c5

15. ε

16. c3

17. ReM

18. c1

19. ∆t0

4.3.2 Influence on absolute difference of mean values

Table 4.2 shows the resulting absolute difference of means between pa
(
(1−q)θ0

)
and pa

(
(1+q)θ0

)
for each parameter and perturbartion. Each column is already ordered from greatest to smallest
δµ.

As said before, larger perturbations q lead to larger differences of the mean of the signals.
Again, the three central perturbations classify the parameters in a similar order, while the two
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others don’t.
The parameters with greater influence on the results are similar to those with greatest

influence in the L2 distance, although they are not exactly in the same order in all cases. And,
again, ∆t0 has no influence in the result.

So, if we use the sensitivity function δµ instead of δ2, the obtained results are not exactly the
same (since δ2 sums all the differences in signals and δµ only measures the difference between
their mean values). However, both measures rank, approximately, the same parameters to be
influent, and the others to be not so influent.

From the δµ distances seen in table 4.2, dismissing extreme perturbations, and grouping
parameters, the following ranking of the influence of the parameters was made:

1. Ed, Cv

2. pa0, pe0, pLV 0

3. Es0, Ca, Ce

4. Rc

5. A

6. ω0

7. Rv, Re0

8. φ

9. pv0

10. Ra

11. c4

12. c6

13. c5

14. ε

15. ReM

16. c2

17. c3

18. c1

19. ∆t0

4.3.3 Influence on absolute difference of standard deviations

Table 4.3 shows the resulting absolute difference of standard deviations between pa
(
(1− q)θ0

)
and pa

(
(1 + q)θ0

)
for each parameter and perturbartion. Each column is already ordered from

greatest to smallest δσ.
Once more, larger perturbations q lead to larger differences of the standard deviation of the

signals. And again, the three central perturbations classify the parameters in a similar order,
but now parameters related to time (ω0 and φ) appear in higher positions, and we can see
that compliances tend to influence more than resistances in the variability of the signal, while
resistances influenced more than compliances in the mean value. Anyway, the classification is
very similar to that for δµ. And, again, ∆t0 has no influence in the result.

From the δσ distances seen in table 4.3, the following classification was made:

1. ω0

2. Ed, Cv

3. Es0, Ca, Ce

4. pa0, pe0, pLV 0

5. A

6. Rc

7. Rv, Re0

8. φ

9. Ra

10. c4

11. c5

12. ReM

13. c6

14. ε

15. pv0

16. c3

17. c2

18. c1

19. ∆t0

4.4 Discussion

If we look at the three previous rankings, we can see a clear similarity between them. This
coherence from a sensitivity function to another is very good news.

If we pick any of the coherence functions and we look at the classifiacion for each pertur-
bation value in the range q = 0.05 to q = 0.2, we can see also a similarity. This similarity of
ranking for different values of the perturbation applied is another good news.
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q = 0.01 q = 0.05 q = 0.1 q = 0.2 q = 0.5

φ 1.950 ω0 0.564 φ 1.310 ω0 2.606 A 19.050
ω0 0.123 Ed 0.465 ω0 1.250 Ed 1.852 ω0 9.569
Ed 0.078 pa0 0.366 Ed 0.809 A 1.466 pa0 5.342
Ca 0.074 Ca 0.334 Ca 0.684 Ca 1.407 φ 3.943
Ce 0.065 Ce 0.320 Ce 0.656 Ce 1.329 Ca 3.809
pa0 0.056 Rc 0.284 pa0 0.612 Rc 1.164 Ce 3.469
0 A 0.056 A 0.234 A 0.602 pa0 1.161 Re0 3.291
Rc 0.049 Re0 0.184 Rc 0.570 Es0 0.711 Rc 3.190
Es0 0.034 Es0 0.173 Es0 0.351 Re0 0.707 Ra 1.552
Re0 0.032 Ra 0.155 Re0 0.311 Ra 0.617 Ed 1.409
Ra 0.029 c4 0.131 Ra 0.309 c4 0.522 c4 1.309
c4 0.026 Cv 0.099 c4 0.254 Cv 0.490 Cv 1.137
Cv 0.024 c5 0.066 Cv 0.232 c5 0.267 c5 0.745
c5 0.013 φ 0.049 c5 0.132 ReM 0.167 ReM 0.541
c2 0.012 ReM 0.038 ReM 0.084 φ 0.144 Es0 0.525
ReM 0.008 Rv 0.035 c6 0.069 c6 0.134 Rv 0.347
c6 0.007 c6 0.034 Rv 0.063 Rv 0.127 c6 0.330
ε 0.006 pv0 0.023 ε 0.052 ε 0.106 ε 0.281
Rv 0.006 ε 0.022 pv0 0.038 pv0 0.076 pv0 0.199
pv0 0.003 c3 0.008 c3 0.008 c2 0.016 c1 0.014
c1 0.001 c1 0.003 c1 0.006 c3 0.016 c3 0.014
c3 0 c2 0.001 c2 0.002 c1 0.012 c1 0.003

∆t0 0.000 ∆t0 0.000 ∆t0 0.000 ∆t0 0.000 ∆t0 0.000

Table 4.3: Difference of standard deviations between signals for each parameter and perturba-
tion
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The objective of this analysis was to determine which parameters are the most important
and the ones to be estimated, or the ones to be estimated first, when fitting the model’s signal to
a real one. At some point, it is necessary to decide how many parameters it is worth estimating.
A good number may be 5. It is small enough to make the estimation feasable, and large enough
to contain the most important parameters (if we look at the sensitivity tables, we can see that
the first parameters show a much higher sensitivity than the middle or bottom ones).

When ranking them, one of these five appeared to be the initial frequency, ω0, which will
not be estimated but calculated directly from the signal (number of peaks divided by time, and
a change of units). Therefore, a sixth parameter was included in the list of the significant ones,
so the estimation was still made with five parameters.

Putting together the three different sensitivity functions and the three chosen perturbation
values, we can conclude that the significant parameters, in order of influence, are the following:

1. Ed, Cv

2. Es0, Ca, Ce

3. pa0

4. A

5. Rc

6. ω0
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Chapter 5

Parameter estimation

5.1 Introduction

In chapter 4 we have seen which parameters of the model have the greatest influence on the
result. Now it’s time to apply this knowledge to find sets of parameters which make the model’s
arterial pressure signal fit a real one.

We have recorded signals from nine real patients who where in the hospital’s ICU. Addi-
tionally, we have some information about their pathology, drug administration, etc. The main
purpose was to automate the parameter estimation. As we will see, it has not been completely
possible.

The first approach was to estimate the 21 parameters and 4 initial conditions at the same
time, using one of the Matlab’s built-in optimization functions. Although the algorithm was
set to achieve a huge number of iterations, it did not seem to converge in a long time period
(more than 48 hours of computation). It was clear that all the parameters at the same time
could not be estimated, and we decided to run a sensitivity analysis to decide which parameters
should be estimated first.

After that, we could apply the sensitivity analysis’ results. A four stage algorithm was
chosen. The first and second stages consisted in estimating only the parameters tagged as
important in the sensitivity analysis, using two different automatic methods. The third stage
was estimating the rest of the parameters, also automatically. The last step was adjusting
manually some of them, mainly the ones related to the signal’s shape (dicrotic notch, variability
due to respiration, etc.). This had to be done manually since the objective function did not
capture properly those kind of shape details.

For each patient, the parameter estimation was made over a time window of three respiratory
cycles of length (so the respiratory variations were visible although the length was different from
one patient to another). We will see that, although the final parameters do not always have
a clear physiological sense, the results look good and the model can be adapted to fit a wide
range of signal’s values and shapes.

As a convention, in all plots in this chapter, the blue line will represent the patient’s recorded
arterial signal, and the magenta one will be the model’s output arterial pressure.

39



5.2 Methods

5.2.1 Stage 1: Approximate gradient method for the five significant
parameters

Each patient had their own values of systolic, diastolic and mean pressure. The first goal was
to get a signal which oscillated with the same amplitude as the patient’s, and near the same
average value.

Which objective function reflects mean value and amplitude of oscillations? It can be a
double objective function: the mean of the signal and the standard deviation.

Let pa = pa(t) be the arterial pressure signal obtained by integration of the model with a
certain set of parameters, and let p̂a = p̂a(t) be the arterial pressure signal recorded from a
patient. Then we define the two objective functions, in a very similar way as in the sensitivity
analysis, as following:

δµ =
∣∣µ(pa)− µ(p̂a)

∣∣ (5.1)

δσ =
∣∣σ(pa)− σ(p̂a)

∣∣ (5.2)

It was tried first to do this stage directly with a Matlab optimization function. However,
with a very large number if iterations it did not converge in most cases, since the result of the
model with nominal values of parameters can be very different from the recorded signal.

Therefore, a simpler method was necessary. The most popular optimization method is the
so-called Gradient Descent. If we want to minimize an objective function F (x), we start with
an initial value x0 and iterate in the following way:

xn+1 = xn − α∇F (xn) (5.3)

Unluckily, an explicit, analytic expression of the objective functions (and their gradients) is not
available. Can we approximate this gradient somehow? In the previous chapter, we have seen
how the mean and standard deviation of pa change for small perturbations near the nominal
value of the parameters. In consequence, we have seen an approximation of the gradient near one
point. Calculating the gradient for a lot of points would be very expensive computationally,
so we will use the gradient near the origin as a very coarse approximation of the gradient
everywhere.

To calculate the derivative of an objective function with respect to a certain parameter θ
near its nominal value θ0, we will use the results of perturbing θ a certain value q. Then, the
derivative is computed this way:

∂µ

∂θ
≈
µ
(
pa
(
(1 + q)θ0

))
− µ

(
pa
(
(1− q)θ0

))
(1 + q)θ0 − (1− q)θ0

(5.4)

The same can be done for the standard deviation instead of the mean, and we will have an
approximation of the gradient of each objective function.

More particularly, we only need to know the derivative of the mean and deviation respect
to the five parameters tagged as important in chapter 4, which were Cv, pa0, Ca, Rc and A (and
their associates). Remember that ω0 does not need to be estimated, it can be calculated from
the patient’s signal. To calculate the derivatives, the perturbation q = 0.1 was picked.

40



For instance, let’s calculate the derivative of µ respect to Cv. Remember that the nominal
value of Cv was 50 ml/mmHg.

∂µ

∂Cv
≈
µ
(
pa
(
(1 + 0.1) · 50

))
− µ

(
pa
(
(1− 0.1) · 50

))
(1 + 0.1) · 50− (1− 0.1) · 50

(5.5)

Repeating this operation for each significant parameter and for µ and σ, we obtain the
following approximations to their gradients:

∇µ ≈ (−0.700, 6.671,−9.457, 19.902, 44.661) (5.6)

∇σ ≈ (−0.023, 0.204,−2.28,−2.375,−6.020) (5.7)

After that, an iterative process was built. Let Θ = (Cv, pa0, Ca, Rc, A) be the vector of
parameters to estimate, and Θ0 = (50, 35, 15, 1.2, 0.5) the vector of their nominal values. A
step of α = 0.0005 was chosen. In case no chaos was reached, the maximum number of iterations
was set to 100. The heart frequency and the respiratory frequency were computed from the
signal (with additional information from the patient’s monitor). The algorithm, then, was the
following:

• Set Θ = Θ0 and compute ω0 and c2 from the patient’s signal.

• While there is not chaos or iteration number is less than 100,

– Compute δµ and δσ.

∗ If δµ
µ(p̂a)

> δσ
σ(p̂a)

, then do Θn+1 = Θn − α∇µ.

∗ Else, do Θn+1 = Θn − α∇σ.

– Compute parameters depending on Θn+1.

– Plot together pa(Θ) and p̂a.

• Save resulting Θ.

In each iteration, the δµ δσ distances between the model and the recorded signal are com-
puted. Then, the algorithm decides if it is more important to change the mean or the standard
deviation of the model’s output. To do so, it compares δµ

µ(p̂a)
to δσ

σ(p̂a)
. Both distances are nor-

malized because, if they were not, δµ would always be bigger, since the average of the signal is
greater than the amplitude of the oscillations.

Once it was decided which is the function to optimize, it applies the gradient method to it.
The parameters depending on the estimated ones, such as the elastances (which depend on the
compliances), were calculated from the new ones. So, while the dimensionality of the method
is 5, we are estimating many more parameters at the same time.

The process usually stopped after less than 25 iterations, when the system reached chaos
(the signal from the model suddenly reached extremely high values or infinity). This meant
that some of the parameters had passed their maximum or minimum acceptable value. We can
see an example of this chaotic behaviour in figure 5.1.

We can also see the performance of this coarse approximation to the gradient method for a
particular patient in figures 5.2 (first iteration) and 5.3, from the second iteration to the best
one, showing only the result of one of every two iterations.

Figure 5.4 shows the result of this method on this patient.
The parameters obtained in this first stage were used in the second stage as initial param-

eters, so we forget about their nominal values from now on and go to the second stage of the
parameter estimation.
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Figure 5.1: Beginning of chaotic behaviour

Figure 5.2: Initial iteration
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Figure 5.3: How the method works
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Figure 5.4: Result of stage 1

5.2.2 Stage 2: Nelder-Mead method for the five significant param-
eters

The previous stage was an approximate way to obtain a signal oscillating near the same values
than the desired one. Now we want to refine the result, but still using the five significant
parameters.

From the multiple possibilities in optimization methods in which it is not necessary an
explicit expression of the objective function, the Nelder-Mead method was chosen. It is the
algorithm used in Matlab’s built-in function fminsearch, whose use is quite simple.

The method uses the idea of a simplex (a polytope of n+1 vertices in a n-dimensional space)
to find a local minima of the function to be minimized. Instead of trying in random points,
the algorithm uses the information it has of the objective function in a simplex’s vertices and
changes one point every time. The result is that it returns the point where the function reaches
a local minimum with a relatively low computational cost.

In this case, the function’s parameter corresponding to the maximum number of iterations
was set to 2000. In this 5-dimensional problem, this corresponds to a maximum of 10000
evaluations of the function, i.e. 10000 integrations of the model.

The objective function to minimize was the L2 distance between the model’s output and
the recorded arterial pressure,

δ2 =
(∫

(pa − p̂a)2
) 1

2
(5.8)

As in the previous two objective functions, this was evaluated over a time period of three
respiratory cycles.

The initial value of the parameters to be estimated fed to the algorithm was the result of
the first stage’s estimation, and still the parameters which depend on others were calculated in
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Figure 5.5: Result of stage 2

each iteration.
In figure 5.5 we can see the result of this stage in the same patient as before. If we compare

it to figure 5.4, we can easily see that there is an improvement of the result, which is still far
from perfect, but the signals look closer than before. Their oscillation amplitude and average
is more similar now than before.

5.2.3 Stage 3: Nelder-Mead method for all the parameters

In this stage, the previous step was repeated, but now all the parameters are estimated at the
same time. Now that both signals are closer than they were at the beginning, the method is
more likely to converge, and it effectively did.

The objective function was again the L2 distance between model’s oputput and patient’s
signal, and the initial parameters were the ones obtained in the previous stage.

Now the relationships between the parameters were ignored. It has physiological meaning
to think in Ed as the inverse of Cv, i.e., when the heart is relaxed is as stiff as a vein, but it
could be that for a particular patient it is not exactly the same stiffness but slightly different.
At this point, the dimensionality of the optimization problem becomes 25, and all parameters
are independent from all the others.

Again, the maximum number of iterations was set to 2000, but now the dimensionality is
higher, so there were a maximum of 25 · 2000 = 50000 evaluations of the function.

In figure 5.6 we can see the result of this stage in the same patient as the previous examples.
This part of the process gave a very good result in estimating the parameters related to

time-domain: variability of ω respect to respiration, fine-tuning of the calculated ω, etc. As we
can see in the plot, the respiratory variations of the systolic and diastolic pressures are very
well synchronized. Also the position of the dicrotic notch seems to improve, and each beat is
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Figure 5.6: Result of stage 3

perfectly aligned with its corresponding beat from the patient’s signal.
Nevertheless, this stage still failed at capturing properly some features such as the dicrotic

notch’s height or sharpness, the exact position, etc. This justified a last fine-tuning of the
parameters obtained, which is the next stage.

5.2.4 Stage 4: Manual refinement

As it was said, the automathic three-stage method of estimation was not enough for some
patients since it missed some details related mainly to the shape of the signal.

A possible solution could be building objective functions which reflected each detail, such
as the difference in heights of the dicrotic notches. But this would have meant repeating the
method again for each feature we wanted to represent, which would have been very long, and
also dangerous in a specfic sense. Let’s explain.

During the automatic parameter estimation, the model showed a strong interdependence
of the parameters. This is, for instance, that although the main parameters related to the
amplitude of oscillation were the resistances and compliances, a small change in another pa-
rameter, such as the notch’s height, c4, could also lead to a notorious change in the amplitude,
in combination with some other parameter’s certain values, whilst with other values it lead to
no significant changes.

This interdependence caused, sometimes, unexpected behaviours of the model due to a
particular combination of parameters.

Other times, a small change in a parameter led to a chaotic behaviour, as we have seen
before. A parameter, different from the five significant ones, that usually led to unexpected
results was the fraction of the beat corresponding to the systole, φ. Since the elastance function
depends on φ very much (it has a sine shape the first φ part of the beat and is flat the rest), a
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Figure 5.7: Result of stage 4

very small increase of φ led to ’double peaks’, like two heart beats where it should be one.
This odd behaviour of the model made dangerous to keep on automatically varying the

parameter’s values once the result was so close to the desired one. In consequence, the fine-
tuning of the parameters to better adjust to the patient’s signal shape was made manually,
varying only one parameter a very small quantity at the same time, in a careful way.

In figure 5.7 there is the result of this manual refinement in the same patient as previous
figures.

In this patient we can see, for instance, a small improvement in the dicrotic notch’s position,
closer in general to the original. In other patients it was also necessary to adjust parameters
such as systolic variation due to respiration. This one was delicate, because it cannot be
controlled independently from diastolic variation, and in most of the cases the first was too low
while the second was too big.

The manual refinement of the parameters concluded the four-stage method to estimate the
parameters for each patient, and now we will see the result for all the available patients.

5.3 Results

5.3.1 Patient 1

This patient shows normal values of blood pressure (120/70 mmHg) and heart rate (79 bpm).
The signal shows a tiny dicrotic notch, but not explicitly a peak in the notch. Respiratory
variations are very little. The patient’s pathology was tagged under the category ”transplan-
tation”.

The final parameters obtained are shown in table 5.1, and the comparison between patient’s
signal and model output in figure 5.8.
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Parameter Value

Re0 0.0055222
Ra 0.020797
Rc 0.41279
Rv 0.0055259
Ce 1.6946
Ca 2.0000
Cv 15.0000
pe0 49.896

Parameter Value

pa0 55.0000
pv0 16.628
pLV 0 49.714
ω0 8.3706
c3 0.00049874
c2 4.0153
c1 0.01000
Ed 0.065511

Parameter Value

Es0 0.57000
φ 0.33334

ReM 10.009
ε 0.00001
A 0.40341

∆t0 0.75786
c4 150.00
c5 18.445
c6 1.0000

Table 5.1: Parameter values for patient 1

Figure 5.8: Result of patient 1
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Parameter Value

Re0 0.0062786
Ra 0.023572
Rc 0.42
Rv 0.0062338
Ce 2.8126
Ca 2.8126
Cv 56.639
pe0 19.387

Parameter Value

pa0 19.442
pv0 5.9987
pLV 0 19.977
ω0 7.3437
c3 0.00088425
c2 4.0152
c1 0.02775
Ed 0.0177

Parameter Value

Es0 0.3555
φ 0.33337

ReM 10.199
ε 0.00001
A 0.45123

∆t0 0.8586
c4 0.000006
c5 18.435
c6 4.5189

Table 5.2: Parameter values for patient 2

Parameter Value

Re0 0.0038808
Ra 0.0154
Rc 0.29025
Rv 0.0038895
Ce 2.9196
Ca 2.9193
Cv 55.456
pe0 17.355

Parameter Value

pa0 17.355
pv0 5.7844
pLV 0 17.355
ω0 10.578
c3 0.0001
c2 7.003
c1 0.006
Ed 0.0181

Parameter Value

Es0 0.34
φ 0.33273

ReM 10.116
ε 0.00001
A 0.4515

∆t0 0.59617
c4 0.000001
c5 18.436
c6 4.5053

Table 5.3: Parameter values for patient 3

5.3.2 Patient 2

This patient shows normal-low values of blood pressure (100/60 mmHg) and normal heart rate
(69 bpm). The signal does not show a dicrotic notch, only a change in slope. Respiratory
variations are in the order of 5mmHg in systolic pressure. The patient’s pathology was tagged
under the category ”transplantation”.

We can see the patient’s estimated parameters in table 5.2 and the graphic result in figure
5.9.

5.3.3 Patient 3

This patient’s pathology was tagged under the category ”haemorrhagic”. The loss of blood led
to low values of blood pressure (85/45 mmHg). Due to this fact, the patient was administrated
norepirephrine (vasoconstrictor drug). The heart rate was high (100 bpm), as a natural reaction
to the low blood pressure. Absence of dicrotic notch and little respiratory variation in systolic
pressure may be observed.

Patient’s parameters are shown in table 5.3 and pressure signal in figure 5.10.
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Figure 5.9: Result of patient 2

Figure 5.10: Result of patient 3
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Parameter Value

Re0 0.007786
Ra 0.029788
Rc 0.536
Rv 0.0078384
Ce 0.9048
Ca 0.9028
Cv 38.997
pe0 27.124

Parameter Value

pa0 27.497
pv0 10.719
pLV 0 31.007
ω0 8.7974
c3 0.001002
c2 6.0683
c1 0.088016
Ed 0.056655

Parameter Value

Es0 0.76205
φ 0.33189

ReM 10.009
ε 0.00001
A 0.53013

∆t0 0.71476
c4 0.000002
c5 18.644
c6 4.5229

Table 5.4: Parameter values for patient 4

Parameter Value

Re0 0.0037297
Ra 0.014031
Rc 0.37623
Rv 0.0037171
Ce 2.5096
Ca 2.5087
Cv 60.775
pe0 17.993

Parameter Value

pa0 18.004
pv0 6.0008
pLV 0 18.012
ω0 10.581
c3 0.000125
c2 5.0652
c1 0.014987
Ed 0.019723

Parameter Value

Es0 0.39861
φ 0.33335

ReM 10.001
ε 0.00001
A 0.49395

∆t0 0.59383
c4 500.00
c5 18.417
c6 3.0758

Table 5.5: Parameter values for patient 5

5.3.4 Patient 4

This patient shows normal-low values of blood pressure (115/55 mmHg) and normal heart rate
(83 bpm). The signal does not show a dicrotic notch. Respiratory variations are very high
(more than 10 mmHg in systolic pressure). The patient’s pathology was tagged under the
category ”respiratory” and he/she was also given norepirephrine.

The final parameters obtained are shown in table 5.4, and the comparison between patient’s
signal and model output in figure 5.11.

5.3.5 Patient 5

This patient shows low values of blood pressure (95/65 mmHg) and high heart rate (100 bpm).
The signal presents a small dicrotic notch. Respiratory variations are less than 5mmHg in
systolic pressure. The patient’s pathology was tagged under the category ”transplantation”.

The patient’s estimated parameters can be seen in table 5.5 and the graphic result in figure
5.12.
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Figure 5.11: Result of patient 4

Figure 5.12: Result of patient 5
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Parameter Value

Re0 0.0049252
Ra 0.018469
Rc 0.40001
Rv 0.0049253
Ce 1.5402
Ca 1.0459
Cv 49.9978
pe0 21.783

Parameter Value

pa0 21.781
pv0 7.2597
pLV 0 21.761
ω0 8.3339
c3 0.000125
c2 4.0001
c1 0.015
Ed 0.029022

Parameter Value

Es0 0.64627
φ 0.33338

ReM 10.004
ε 0.00001
A 0.43995

∆t0 0.75182
c4 400.00
c5 1.0009
c6 3.4889

Table 5.6: Parameter values for patient 6

5.3.6 Patient 6

This patient shows normal values of blood pressure (135/60 mmHg) and normal heart rate (80
bpm). The signal shows a large dicrotic notch. Respiratory variations are in the order of 5mmHg
in systolic pressure. The patient’s pathology was tagged under the category ”neurologic”. There
is also a small dose of vasoconstrictor drugs.

Patient’s parameters are shown in table 5.6 and pressure signal in figure 5.13.

5.3.7 Patient 7

Patient with extremely high blood pressure values (220/85 mmHg) and high heart rate (104
bpm). It was not possible to find a set of parameters for the model to fit this patient’s arterial
pressure signal. When any parameter was adjusted to increase the blood pressure values in the
resulting signal, the model went chaotic and the output went unstable.

Anyway, the patient’s recorded signal can be seen in figure 5.14. Notice the extremely high
values of the systolic pressure, near 220, and the high diastolic, higher than 80.

5.3.8 Patient 8

This patient shows normal values of blood pressure (140/60 mmHg) and high heart rate (95
bpm). The signal shows a small dicrotic notch at the end of the downslope part of the beat
(later than usual). Respiratory variations are normal (in the order of 5mmHg). The patient’s
pathology was tagged under the category ”post-surgery”.

We can see the patient’s estimated parameters in table 5.7 and the graphic result in figure
5.15. We can see that the patient’s blood pressure shows an ascending tendency, which the
model is not able to capture.

5.3.9 Patient 9

This patient shows normal values of blood pressure (125/65 mmHg) and normal-high heart rate
(88 bpm). The signal shows a very high dicrotic notch. Respiratory variations are normal (in the
order of 5mmHg). The patient’s pathology was tagged under the category ”transplantation”.
The patient was also given norepirephrine.

Patient’s parameters are shown in table 5.8 and pressure signal in figure 5.16.
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Figure 5.13: Result of patient 6

Figure 5.14: Signal of patient 7
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Parameter Value

Re0 0.0054166
Ra 0.021146
Rc 0.36564
Rv 0.0054171
Ce 1.3858
Ca 1.0786
Cv 27.171
pe0 21.03

Parameter Value

pa0 21.03
pv0 7.0892
pLV 0 24.265
ω0 10.134
c3 0.0001
c2 5.0002
c1 0.0016665
Ed 0.038919

Parameter Value

Es0 0.72163
φ 0.33322

ReM 10.002
ε 0.00001
A 0.52291

∆t0 0.62655
c4 150.00
c5 1.9999
c6 3.0001

Table 5.7: Parameter values for patient 8

Figure 5.15: Result of patient 8
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Parameter Value

Re0 0.0056467
Ra 0.017145
Rc 0.42314
Rv 0.005707
Ce 1.3753
Ca 1.335
Cv 30.492
pe0 26.146

Parameter Value

pa0 26.146
pv0 5.8856
pLV 0 21.146
ω0 9.2249
c3 0.0001447
c2 5.9999
c1 0.017459
Ed 0.031455

Parameter Value

Es0 0.7129
φ 0.33333

ReM 10.058
ε 0.000099
A 0.37178

∆t0 0.67807
c4 450.00
c5 1.5898
c6 3.534

Table 5.8: Parameter values for patient 9

Figure 5.16: Result of patient 9
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5.4 Discussion

From the previous nine patients, we can see that out mathematical model is able to reproduce
the blood pressure signal of a wide range of patients.

Proper sets of parameters were found for patients with average values of blood pressure,
such as 1, 2, 4, 6, 8 and 9. It was also possible for patients with low or very low blood pressure,
like 3 and 5. However, it was not possible to adjust the model to fit a very high blood pressure
signal (and with a high amplitude of oscillation), which was the case for patient 7. This was
due to the chaotic behaviour of the model at extreme values of the parameters.

The two main novel features included in the model were the variations of pressure and heart
rate due to respiration and the dicrotic notch. We can see that the model can perfectly deal
with small respiratory variations, like in patients 1, 3 and 5, regular variations, such as patients
2, 6, 8 and 9, and very high, like in patient 4. Moreover, the model can reflect the absence of
a dicrotic notch, or just a change in the slope (patients 1, 2, 3 and 4), notches with a small
peak (such as patient 5), big dicrotic notches (like in 6 and 9) and even notches placed in
an uncommon place of the wave (8). Nevertheless, the position of the notch is controlled by
one parameter, and is related to its position in the downslope part of the wave. During the
parameter estimation, it was found that the model lacks a way to control the slope itself, and
more important than this, a way to control the variability of the position of the notch. We can
see in all the signals with regular or big notches that their height, sharpness and position varies
in a very different manner than they do in the patient’s signal to be reproduced.

Another fact that was noticed during the parameter estimation was that it is not possible
to control the respiratory variations in systolic and diastolic pressures independently. In all
the cases, the variability of the systolic pressure was less than the desired one (the patient’s),
and the variability of diastolic was too high. The solution was finding a balance between them.
This fact can be seen in patient 4, the one with highest respiratory variation.

A minor detail that the model does not reflect is that the respiratory variation, now modelled
as a sinusoidal change in elastance height, does not always look like a sine in real signals. In
most of them, the decrease in systolic pressure is faster than the increase. See, for instance,
patient number 2: in the three respiratory cycles plotted, the lowest peak is the first after the
highest, and the next two are progressively higher.

Another feature not present in the model is the ascending or descending tendency in blood
pressure, which happens in patient 8. The model is thought to vary pressure due to respiration,
but not in a long-term. This may be solved with non-constant values of parameters (compliances
and resistances, mainly).

It has already been mentioned that there was some chaotic behaviours in the model due to
certain changes in parameters or, more specifically, certain combinations of parameters.

At the end of the estimation process, we can see that not all the parameters we have
obtained have a physiological meaning. For instance, patients who were given vasoconstrictor
drugs should have very low values of compliances and high resistances, and this is not always
the case (look at patient 6, for instance).

In any case, the parameter estimation has shown that the model can reproduce a wide
variety of real blood pressure signals.
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Conclusions

The objective of this work was to present a new mathematical model of the arterial pressure
signal and test it against real data.

As we have seen, the model provided here includes some features which had not been present
in any of the previous models. These are the respiratory variations of frequency and pressure,
the aortic valve closing and the dicrotic notch.

We have also seen that there are a few parameters which have a great influence on the
resulting signal, and should be the first to be estimated and the more important ones. Moreover,
we have also seen that some other parameters do not seem to make a big influence on the result
in terms of the distance between signals, but they can change the signal’s shape: respiratory
variation, dicrotic notch, etc.

The goal was not to develop a very efficient or accurate method for parameter estimation,
but only one that worked. The method presented here is not 100% automatic and consists of
many parts, but we can say that it worked as expected.

At the end, we have seen the model’s performance compared to recorded signals and it
reproduces very different kinds of arterial signals, with different values of pressure, shape, etc.

In consequence, we can claim that the model performs as expected in terms of accuracy.
Furthermore, each component has a clear meaning, so the parameters and results are inter-
pretable.

However, we can also seen some limitations. The main one may be the lack of simplicity,
although it was one of the objectives. The existence of a large number of parameters, the
interdependence between them and the chaotic behaviour of the model under certain values are
factors that add a difficulty in the interpretation of the results.

Additionally, the model failed to reproduce the more extreme example of signal available,
with very high values of blood pressure and a wide amplitude of oscillation of the signal. All
these and more technical limitations of the model, such as the dependence between systolic and
diastolic respiratory variations, or the lack of control of the position of the notch, are explained
in detail at the end of the fifth chapter.

Futher work would be a formal stability analysis, although the presence of variables com-
puted in each beat (in the valve close and the dicrotic notch) make it impossible to do using
classical methods (linearization, etc.). This might help us avoid chaos or unexpected results
under certain conditions. In addition, solving the technical limitations would be another inter-
esting progress. For instance, adding a way to control the variability of height and size of the
dicrotic notch, or making it possible to control variation of the systolic and diastolic pressures
independently.

Nevertheless, we have seen that the model is able to simulate a wide range of signals ac-
curately and so it can be used to understand how the cardiovascular system works, which was
the main goal.
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