
MASTERS IN COMPUTING

MASTER THESIS

Uniform Accelerated Motions

Student:

Prithiviraj K. Muthumanickam

Supervisor:

Dr. Alvar Vinacua

Associate Professor

September 4, 2012

Acknowledgements

I would like to thank Dr. Prof. Alvar Vinacua for his supervision of the thesis and also as an advisor for my

complete Masters Program. His technical mastery, immense zeal of passion, enthusiasm and sense of humour

has droved me towards completing my Thesis and in turn my Masters degree. Without his support as an advisor

from day 1, I wouldnt have landed up here on working on my final Thesis. I would like to thank Dr. Prof. Jarek

Rossignac of Georgia Visual Computing Centre for his ideas, recommendations and comments on our work. Also,

thanks to both of them for their source code library which avoided me to reinvent the wheel from scratch. Lastly

I would like to thank my Parents for their support from home, love and affection and my Friends at the Virtual

Reality Centre of Barcelona for all the good times I had with them.

Abstract

An Affine matrix which maps an initial and final pose can be computed by solving a system of linear equa-

tions. Then there exists an interesting problem of finding a time varying affinity which maps the given set of poses

and if it exists is always unique and should hold some interesting properites such as affine-invariant, reversible,

preserve rigidity, similarities and volume. The Steady Affine Motions and Morphs (SAM) introduced by Jarek

Rossignac and Alvar Vinacua solved this problem of time varying affinity and defines the quality of such affinity

by the term steadiness. Until SAM, no mathematical definition of steadiness was available and intuitively SAM

defined a steady animation to be continuous, to vary dimensions and angles monotonically and rather uniformly,

and to move points along pleasing arcs that are free of unnecessary kinks or loops. The authors defined the term

”Steady” as a constant velocity motion in the local moving frame. SAM creates pleasing in-betweening motions

that interpolates between an initial and final pose, B and C and the derived equation of beauty was At • B with

A = C • B−1. SAM is affine-invariant, reversible, preserves isometries (i.e., rigidity), similarities and volume.

Previously proposed approaches came up with a solution for the time varying affinity problem, but there was no

proper definition of how beautiful or how good the motion was. With the advent of SAM, the beauty of a motion

can now be measured by the unsteadiness and Steady Affine motions and morphs is the one solution which comes

to have a value of zero for the unsteadiness term.

Uniform Accelerated Motions (UAM) carries forward the above definition of steadiness into a constant accel-

eration motion in the local moving frame. The time varying affinity At is computed using closed form expressions

and some of its interesting properties are studied. The constant acceleration motion (in local frame) in UAM is

then compared with the constant velocity motion (in local frame) of SAM and the resuls are discussed.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Affine Motions . 2

2 State of the Art 6

2.1 Special case of Screw Motions . 6

2.2 Numerical solutions for extracting roots and logarithms of linear transformations 7

2.3 Unsteady morphs . 8

2.3.1 Rigid body transformations . 8

2.3.2 Interpolations of L . 10

2.3.3 Steadiness and Rigidity . 11

2.4 Steady Affine Motions . 11

3 Uniform Accelerated Motions 14

3.1 Introduction . 14

3.2 Affine Spaces, Affine Frames and Affine Transformations . 15

3.3 Definition . 17

3.4 Case 1: Initial Velocity set to zero . 19

3.5 Case 2: Intermediate Affinity . 22

3.6 Comparison of SAM and biSAM . 23

3.7 Properties . 27

4 Implementation 30

4.1 Software . 30

4.2 Functionalities . 32

5 Second kinetic fundamental form of affine motions 34

6 Future Work 49

7 Conclusion 51

i

Chapter 1

Introduction

1.1 Motivation

Motion design has found its applications in the areas of Computer Graphics and Animations, CAD/CAM and

Robotics. In case of an animation, an initial and final control poses and optionally some intermediate poses are

provided and the job of an animation artist is to interpolate them to create a pleasing animation. Motion design

is a powerful technique for generating surfaces and volumes in CAD/CAM. A swept surface is usually generated

by sweeping a 2 or 3-dimensional curve along a 3D trajectory [Wang, 1997, Klok, 1986]. In case of Robotics,

we need to trace and represent a moving object and we have to represent the volume swept by the moving object

by evaluating the envelope of it [Martin and Stephenson, 1990, Roschel, 1998]. With such interpolation systems,

one could encounter problems such as dependency on the coordinate system of the control poses, complex motion

sequences and parameters. Hence an in-betweening motion should present a solution free of the above mentioned

drawbacks and should posses some nice and unique properties. Lot of techniques were proposed to make use of

Euler angles and Quaternions to produce motion interpolation consisting of a time varying rotation and translation.

The latest solution to this time varying affinity problem was proposed in [Rossignac and Vinacua, 2011] which

gives a formal definition of the beauty of an interpolating motion along with closed form solutions for computing

the same. The Steady Affine Motions and Morphs (SAM) introduced by Jarek Rossignac and Alvar Vinacua

solved the problem of time varying affinity and provided a formal definition for the quality of affine interpolation

through the term steadiness. Until SAM, no mathematical definition of steadiness was available and based on

intuition SAM defined a steady animation to be continuous, to vary dimensions and angles monotonically and

rather uniformly, and to move points along pleasing arcs without any singular points. The authors defined the term

”Steady” as a constant velocity motion in the local moving frame. SAM creates pleasing in-betweening motions

that interpolates between an initial and final pose, B and C and the derived equation of beauty was At • B with

A = C • B−1. SAM is affine-invariant, reversible, preserves isometries (i.e., rigidity), similarities and volume.

Previously proposed approaches came up with a solution for the time varying affinity problem, but there was no

proper definition of how beautiful or how good the motion was. With the advent of SAM, the beauty of a motion

can now be measured by the unsteadiness factor and Steady Affine motions and morphs is the only solution which

produces a value of zero for the unsteadiness term.

1

The motivation for the Uniform accelerated motions comes from the SAM’s notion of steadiness being defined

as a constant velocity motion. There exists an interesting question of what will happen if the notion of steadiness

is defined as a constant acceleration motion. This interest then drives us towards studying the properties of a

steady motion defined under the banner of constant acceleration and to compare those properties with those of

SAM. Also SAM deals with first order differential equations for calculating the constant velocity in local frame

and when we extend into the space of constant acceleration, we will deal with second order differential equations

along with additional initial conditions. The second order differential equations along with their initial conditions

in turn would increase the flexibility of further possibilities of performing the interpolation.

Figure 1.1: SAM Morph between two triangles.

1.2 Affine Motions

Geometric transformation make up one of the building blocks of computer graphics. We represent transforma-

tion as a square real matrix and to apply the transformation we multiply the matrix with a co-ordinate vector.

Homogeneous coordinates helps us to represent additive transformations (translations) and multiplicative trans-

formations (rotation, scaling, and shearing) as matrix multiplications. Since matrix multiplication is associative,

all transformation matrices are multiplied and the concatenation of the transformations are represented as a single

matrix.

Affine Space

We will discuss briefly about Affine space and Affine transformations, extensive definition of which can be found

in numerous texts, for example in [Agoston, 2005]. A brief explanation is presented below from the webpage

http://www.cs.washington.edu/education/courses/cse557/98wi/readings/xforms/Affine

spaces consists of points(locations in 3D space) and vectors(quantity with a direction and magnitude with no fixed

position) existing independently of any specific reference system. The operations that can be applied to points and

vectors include,

1. Subtracting two points gives us a unique vector.

2

http://www.cs.washington.edu/education/courses/cse557/98wi/readings/xforms/

P

Q

v

v = P - Q

2. Point-Vector addition: Given a point Q and a vector v there is a unique point P such that, P = ~v + Q.

3. Vector addition can be performed using the head-to-tail rule.

P

Q

u + v

u

v

R

P, Q, R (P-Q) + (Q-R) = P - R

4. Adding a point and a vector times a free scalar parameter defines a line in the affine space.

P0

V
P(α)=P0+αV

5. The affine combination of two points α1Q1 + α2Q2 where α1 + α2 = 1 is defined to be the point Q =

Q1 + α2 (Q2 −Q1). When the cooefficients are positive, the point Q divides the segment connecting the

two original points in a ratio proportional to the two coefficients. As long as the coefficients still sum to 1,

this can be generalized to an arbitrary number of points:

α1Q1 + α2Q2 + ...+ αkQk where
∑

αi = 1

3

Q1

Q2

Q
α2

α1

Frames for Affine Spaces

If O is any point in space and vi is a basis for the vectors in the space, then (~v1, ~v2, ..., ~vn, O) is called a frame for

the space. The frame is called Cartesian if the basis vectors are orthonormal(pairwise perpendicular unit vector).

Given any frame, any point P can be written uniquely with respect to that frame as, P = p1 ~v1+p2 ~v2+...+pn ~vn+O

where the pi are real coefficients. Similarly any vector u can be written uniquely as ~u = u1 ~v1+u2 ~v2+ ...+un ~vn.

The above equations can be represented in a matrix form as below,

P =
[
p1 p2 ... pn 1

]
×

~v1

~v2

...

~vn

O

~u =

[
u1 u2 ... un 0

]
×

~v1

~v2

...

~vn

O

Affine Transformations

Definition Given affine spaces A and B, a function F from A to B is an affine transformation if it preserves the

above discussed affine combinations. Mathematically this means that F : A→ B

F (α1Q1 + ...+ αkQk) = α1F (Q1) + ...+ αkF (Qk)
∑

αi = 1

Understanding Affine Transformations The main difference between an affine plane and the familiar cartesian

plane is the lack of origin with the former. Since operations such as scaling and rotation are defined in terms of

the origin in the cartesian system, the calculations becomes more complicated.

If we impose the usual cartesian coordinates on the affine plane, any affine transformation can be expressed

as a linear transformation followed by a translation. Note that translations cannot be expressed as linear transfor-

mations in cartesian coordinates. Once we move up to the general affine space, all these transformations become

linear. Affine transformations can be expressed as matrix multiplications in homogeneous coordinates. They are

a special case of matrices in homogeneous coordinates, they map points with w=1 to points with w=1.

4

Properties of Affine Transformations

Hyperplanes map to Hyperplanes The important property of Affine transformation is points map to points,

lines map to lines and planes map to planes. In general a one-to-one and onto map of Rn onto itself that preserves

collinearity. This can be seen to be true by observing that,

Q (t) = tQ1 + (1− t)Q2 −→ F (Q (t)) = tF (Q1) + (1− t)F (Q2)

Therefore we can calculate the image of a polygon once we know the images of its vertices. Of course, in fact,

you can compute the image of anything once you know the image of a spanning set of points, i.e., (n+1) linearly

independent points in dimension n.

Parallelism is preserved Two vectors which are parallel remain parallel under an affine transformation F:

~v = c~v′ −→ F (~v) = F
(
c~v′
)
= cF (~v)

and hence parallelograms map to parallelograms and ellipses map to ellipses.

Ratios are preserved Ratios are preserved in the sense of interpolation and this doesnt mean that ratios

between lengths of line segments are preserved. That is, if the point R is x of the way from P to Q, and F is

an affine transformation, then F(R) is x of the way from F(P) to F(Q). One implication of this is that an object

moving at a constant speed gets mapped to an object moving at a constant speed.

5

Chapter 2

State of the Art

When we wish to perform an animation/motion, we need to interpolate the transformation matrix. Motion inter-

polation is an important subject of research in computer graphics and animation. Several approaches have been

proposed to solve the time varying affinity problem. The approach used by [Shoemake, 1985] uses a four co-

ordinate system based on quaternion for describing the rotation of the object. Quaternions on the unit sphere are

of a particular interest for the time varying affinity problem and various methods provide varying approaches for

constructing curves on spheres. [Shoemake, 1985] uses a spline curve created on a sphere for smoothly interpolat-

ing sequences of arbitrary rotations. [Rossignac and Kim, 2001] use Screw motions for interpolating two arbitrary

control poses of an object. The approach in general is unique and combines a minimum-angle rotation around an

axis A with a translation by a vector parallel to A. Methods such as [Davies and Higham, 2010], [Higham, 1986],

[Kavan et al., 2008] use numerical solutions for computing the linear part of the affine matrix. [Shoemake, 1985]

and [Shoemake and Duff, 1992] use spherical linear interpolation to interpolate orientations represented using

quaternions and combine it with a linear interpolation of the coefficients of a stretch matrix. [Alexa et al., 2000]

uses a decomposition similar to the polar decomposition in [Shoemake and Duff, 1992], but instead of finding the

rotation through a minimization, they use the SVD (Singular Value Decomposition) [Golub and Van Loan, 1996]

of Linear part of the Affine Matrix, L. Few approaches like [Alexa et al., 2000], [Hyun et al., 2002] try to address

the rigidity of an affine motion but fail to provide a formal definition of rigidty.

The solutions provided for the time varying affinity problem can be braodly classified into four categories,

1. Special case of Screw Motions

2. Numeric Solutions for extracting roots and logarithms of linear transformations.

3. Unsteady Morphs

4. Steady Motions

2.1 Special case of Screw Motions

Need for using Screw motions in motion Interpolation In case of key frame interpolations, we specify initial

and final control poses to perform an interpolation and in some cases intermediate control poses are added for

6

flexibilty and in such cases the interpolation has to pass through the intermediate control poses. Time varying

interpolations are very useful in the area of Computer Graphics and an interpolation method independent of a

coordinate system will provide an aesthetic appeal to an animation artist. Screw motions comes with its unique

properties such as intuitive result, independence on the history and choice of a coordinate system, and stability of

the result under subdivision.

Definition A screw motion is a special combination of two simultaneous motions: a linear translations along a

vector s and a rotation around a constant axis (screw axis) parallel to s. During a screw motion, the amount of

translation and the amount of rotation are linear functions of t. In 2D, the interpolation is a rigid body transforma-

tion with either a steady constant angular velocity rotation around a fixed point q or a constant velocity translation

(when L = 1). In 3D, the interpolation is a screw motion [Rossignac and Kim, 2001] with a combination of a

constant angular velocity rotation (by angle ta) around a fixed axis (with direction ~d and passing through the fixed

point q) and a constant velocity translation (by distance td) in the direction ~d. The screw motions are rigid mo-

tions. Conversely, given any rigid transformation (an isometry), there is a screw motion that interpolates between

the identity and that isometry. Screw motions are in fact an example of steady motion (but only for isometries).

Computing the screw parameters Several methods from the areas of kinematics and robotics have been devel-

oped for computing screw parameters from displacement matrices. In [Rossignac and Kim, 2001, Llamas et al., 2003]

the problem of computing the parameters of the screw motion (~d, q, a, d) are solved using closed-form expressions

by using a variation of the Rodrigues formula. The screw motion may also be computed using a dual quaternions

approach [WK, 1882] and it suits well to the SIMD architecture of the GPU. It can also be used for computing

weighted averages of more than two rigid body transformations. For example, the Screw Linear Interpolation

(ScLERP) proposed in [Kavan et al., 2008] as a generalization of SLERP [Shoemake, 1985] produces screw mo-

tions.

Figure 2.1: A stair case generated by pure translation(left) and by a screw (right).

2.2 Numerical solutions for extracting roots and logarithms of linear trans-

formations

The basic challenge of the time varying affinity problem is to compute log(L) and to eventually compute At with

the value of t ranging between 0 and 1. Numerous texts provide solutions for computing logarithms, exponential

and square root of matrices in arbitrary dimension, e.g. [Meini, 2004], [Cheng et al., 2000], [Golub and Van Loan, 1996],

7

[Davies and Higham, 2010], or [Higham, 1986]. The reported algorithms are also available on standard platforms,

such as Matlab [Higham and Higham, 2000].

[Davies and Higham, 2010] suggested an approach based on Schur decomposition which performs a change of

basis to obtain an upper triangular matrix. This decomposition is known (see, for example [Golub and Van Loan, 1996])

to be less expensive to compute than the Jordan normal form, and to be also more stable numerically. Since the

change of basis commutes with logarithm and exponentiation, the problem is reduced to the simpler problem of

computing the log of an upper-triangular matrix. But [Kavan et al., 2008] pointed out that solutions to arbitrary

dimensions are bound to numerical errors. [Rossignac and Vinacua, 2011] provided a closed form solution for

computing log(L) when it exists for a 2 × 2 and 3 × 3 matrices. The derived closed form solution has low

computational cost and high numerical stability.

2.3 Unsteady morphs

The unsteady interpolation techniques can be classified broadly into below categories,

1. those dealing with rigid body transformations,

2. those dealing only with the linear submatrix L and hence ignoring the translation part of the motion (such

an approach is appropriate when only the shape and orientation of the moving object are important or when

its center of mass must follow a trajectory prescribed by physics or artistic concerns) and

3. those dealing with more general affinities.

2.3.1 Rigid body transformations

The computation of Rigid body transformations revolve mainly around variations of Spherical splines, B-Splines

and Quaternions. We can classify the different techniques along the same lines and the different techniques used

are briefly discussed below.

Spherical Splines In the case of Spherical Splines, several authors have proposed different techniques for blend-

ing the spherical spline curves on the S3 unit sphere [Buss and Fillmore, 2001a, Shoemake, 1985, Wang and Joe, 1993,

Roberts et al., 1988, Kim and Nam, 1995]. Some methods compute weighted averages on spheres based on least

squares minimization that respect spherical distances. Properties of such methods include uniqueness, fast iter-

ative algorithms with linear and quadratic convergence rates and a novel method for defining Bezier and spline

curves on spheres, which provides direct generalization of Bezier and B-spline curves to spherical spline curves.

B-Splines [Ma et al., 2000] proposes a method to represent moving frames using B-splines to compute smooth

interpolating rigid body motions. They first approximate the reference frames by B-splines that do not preserve

orthogonality, and then compute the best orthogonal approximation through a Newton iteration (for each frame).

They analyze the matrix representation of the moving frames, a simplified optimization functional is derived

and then a recursive iteration method is presented for approximating orthogonal frames at any positions. But the

8

Figure 2.2: Blending spherical spline curves on the S3 unit sphere.

approximation and the interpolation steps are bound to errors but they are shown to be controllable and the method

runs very fast. Using B-Splines provides us the below advantages,

1. The resulting motion can be represented using polynomial B-Spline. The transformation matrix has the

same degree k of the interpolating spline basis.

2. The iteration method is efficient for finding an orthogonal frame that best approximates the pseudo coordi-

nate. Initial results are rough, but successive iterations makes the animation smooth.

3. The proposed approximate solution converges very fast and the error of approximation is controllable.

Quaternions As explained above, the use of spline curves to smoothly interpolate mathematical quantities in

flat Euclidean spaces is a well-studied problem in computer graphics. Many quantities important to computer

graphics, such as rotations, lie in non-Euclidean spaces. [Shoemake, 1985] proposed a method to interpolate

rotations using quaternion curves.

Definition A quaternion represents a number system which defines basic elements such as 1,i,j,k. Quaternion

has the form q0 + q1i + q2j + q3k. Unit quaternions provide a convenient mathematical notation for representing

orientations and rotations of objects in three dimensions.

Advantages of quaternions There are several reasons to use quaternions to describe rotations.

1. First, the quaternion space has the same local topology and geometry as the set of rotations (this is not true

of the space of Euler angles, for example, but is true of the 3× 3 orthogonal matrices of determinant 1).

2. Second, the number of coordinates used in describing a quaternion is small (4 numbers, in contrast to the 9

in a 3× 3 matrix).

3. Third, the number of constraints on these coordinates is small: the only constraint on a quaternion repre-

senting a rotation is that it have unit length; a 3× 3 matrix must satisfy six equations to represent a rotation.

4. Finally, the extrinsic equations for quaternions turn out to be fairly simple.

9

Disadvantages of quaternions The main disadvantage of using quaternions is that their 2-to-1 nature ne-

cessitates a preprocessing step, to choose whether the plus or minus keyframe quaternion is the appropriate one to

use.

[Barr et al., 1992] use quaternions that smoothly interpolates a given sequence of constraint poses. The al-

gorithm characterizes a spline in the quaternion 3-sphere and such splines are natural generalizations of splines

in Euclidean space, and are particularly amenable to solution on the 3-sphere. They use numerical methods to

determine several points between the key orientations. Slerping method of [Shoemake, 1985] is applied to the

points, the resulting splines are smooth, and have the desirable property that they pass through their control points

exactly. [Kim et al., 1995] generalize the previous approach by providing a general construction method for unit

quaternion curves. Simple closed form expresseions are derived for the quaternion curves and their higher order

derivatives. [Kavan et al., 2008] uses a novel skinning algorithm based on linear combination of dual quaternions.

It provides us an efficient GPU implementation and has little impact on runtime performance.In their approach

they compare their (ScLERP) approach to two other unsteady solutions: DLB and DIB. Their Dual quaternion

Linear Blending (DLB) is a generalization of the QLB [Kavan and Žára, 2005], which performs a linear interpo-

lation of quaternions, followed by a normalization. DLB uses the same fixed screw axis as ScLERP, but changes

the rotation angle and translation distance nonlinearly and differently and the discrepancy is small. The Dual

quaternion Iterative Blending (DIB) is a generalization of spherical averages [Buss and Fillmore, 2001b].

2.3.2 Interpolations of L

Numerous methods have been proposed for interpolating the linear part of the affine matrix. The linear interpola-

tion is not often used because it has a tendency to temporarily invert the shape, and may evolve the area/volume

in a nonmonotonic fashion. [Shoemake and Duff, 1992] deals with manipulating and interpolating the parametric

forms of 4 × 4 homogenous matrices into primitive components such as Simple perspective matrix, Translation

Matrix, Rotation Matrix and Skew Matrix. This is achieved using PolarDecomposition which is useful for renor-

malizing a rotation matrix containing excessive error.

[Alexa, 2002] discusses the main problem of matrix or quaternion representations where the standard operators

are not commutative. To explain in simple terms, we would expect that the half of a transformation T applied twice

would yield T. Yet this is not the case in general because the factorization uses the matrix product, which is not

commutative. In addition, this factorization inturn produces an order dependence when handling more than two

transformations.

Figure 2.3: Scalar multiples of transformations: half of a given transformation T should be defined so that applying it twice
yields T and is also expected for arbitrary parts of transformations.

In order to overcome this problem, the method uses scalar multiplication and commutative addition of trans-

10

formations to produce geometrically meaningful and easy to compute transformation matrices.

[Alexa et al., 2000] uses a decomposition similar to the polar decomposition in [Shoemake and Duff, 1992],

but instead of finding the rotation through a minimization, they use the SVD (Singular Value Decomposition;

[Golub and Van Loan, 1996]) of L.

In their Dual quaternion Iterative Blending (DIB), [Kavan and Žára, 2005] proposes an iterative extension of

Alexas log-matrix blending [Alexa, 2002] that makes a constant-speed, shortest path solution, but warn that the

matrix exponential and logarithm routines it uses require numeric solutions to be applied iteratively, which reduces

performance and accumulates numeric errors.

2.3.3 Steadiness and Rigidity

None of the conteomporary approaches provide a formal definition on the behaviour of a time varying affinie

motion. Few methods refered to the rigidity of an affine motion but there was no formal definition for the rigidity.

[Hyun et al., 2002] presented a simple spline technique for the design of affine motions that interpolate a given

sequence of affine keyframes. Experimental results have shown that cubic splines (with a few additional knots

in between the interpolation nodes) are effective in generating affine spline motions that interpolate keyframes

smoothly. On the whole the problem of affine motion design is reduced to a curve fairing problem in a 12-

dimensional space, which can be solved in a way similar to the three-dimensional case. This reduction is possible

since there are no additional constraints such as orthogonality conditions. Geometric constraints such as the

rigidity of the moving object, and other optimization criteria, can still be imposed to our system with great ease

and also in a systematic way. We may apply the whole toolbox of variational design to affine motions. Rigidity is

measured by integrating over time the first or second derivatives of the lengths of a certain set of witness vectors

as they are transformed. Because of the nonlinear nature of the problem, their solution requires an iterative

minimization. However, in other more general cases, the measure will depend on the choice of witness vectors.

Changing those will likely yield a different solution.

2.4 Steady Affine Motions

The Steady Affine Motions and Morphs (SAM) introduced by Jarek Rossignac and Alvar Vinacua solved the prob-

lem of time varying affinity and define the quality of affinity by the term steadiness. Untill SAM, no mathematical

definition of steadiness was available and intuitively SAM defined a steady animation to be continuous, to vary

dimensions and angles monotonically and rather uniformly, and to move points along pleasing arcs that are free

of unnecessary kinks or loops. The authors defined the term ”Steady” as a constant velocity motion in the local

moving frame. SAM creates pleasing in-betweening motions that interpolates between an initial and a final pose,

B and C and the derived equation of beauty was At • B with A = C • B−1. Based on the above definition the

equation of beauty is derived and an affine motion At is steady if and only if there exists an affinity A such that,

At = At (2.1)

11

Figure 2.4: Steady Affine Motions - 2D.

Figure 2.5: Steady Affine Motions - 3D.

Properties of Steady Affine Motions A Steady Affine Motion with constant velocity in local frame creates

pleasing arcs and smooth trajectories and its interesting to study the properties of such motions. Below is a list of

desired properties and a goodness measure of a Steady Affine Motion:

1. The motion interpolates the given set of Affinities: A(0) = A0 and A(1) = A1 and is always unique.

2. The interpolation is frame independent, i.e., it is not dependant on the choice of the co-ordinate system.

3. The affine matrix is non-singular and hence reversible.

4. Integral measures such as area(2D) and volume(3D) evolves in a monotonic fashion.

5. When interpolating rigid transformations (isometries) in 3D, the SAM is a screw motion and hence preserves

rigidity (which is often desired in animation [Alexa et al., 2000]) and satisfies the shortest path (smallest

rotation angle) and constant speed (linear variation of rotation angle and translation distance) properties

advocated in [Kavan et al., 2008].

6. The property of constant velocity in local frame simplifies the computation of the envelope of the swept

region.

7. The pleasing arcs created by Steady Affine Motion would be naturally preferred by animation artists to

linear motions.

Comparison - Measure of steadiness As there is no formal definition for the term ”beauty”, based on intu-

ition, we can try to give a formal intuitive definition for how beautiful a motion should be.Few methods men-

tioned about how rigid a motion should be, but no formal definition for beauty was provided based on intuition.

12

[Rossignac and Vinacua, 2011] presented us a formal intuitive definition for the beauty of an affine motion by

offering a definition of ”steady” as one having constant velocity in local frame and also provided a measure for the

beauty of an affine motion as an integral measure of change in velocity in local frame. The Figure. 2.6 compares

the integral measure of change in velocity in local frame and it is zero for SAM and considering the picture from

left to right the beauty of the motion increases with decrease in the integral measure of change in velocity in local

frame.

Figure 2.6: A comparison of different motions acting on a triangle (top) and on a textured quad (bottom). Notice also that,
during a SAM (right column), the velocity vectors drawn at the triangle vertices remain constant, in the local frame. For
example, the velocity of the top vertex of the triangle always ends at the same relative place near the opposite edge. - 3D.

13

Chapter 3

Uniform Accelerated Motions

3.1 Introduction

In this chapter we will delve into the deeper prospects of Uniform Accelerated Motions and the methodologies

involved in deriving the same. Steady Affine Motions and Morphs allows us to create a motion interpolation

where each point moves with a constant velocity in the local frame. If we represent the affinity as a function

of time t it interpolates the initial pose/triangle at that time t. The computation of Uniform Accelerated Motion

revolves around the acceleration in the local frame of the point being constant. The derivation of Steady Affine

Motion involves a first order differential equation representing the velocity of the moving point and a unique

solution is derived for the time varying affinity. UAM would be dealing with a second order differential equations

representing the acceleration of the point and the derivation would revolve around solving a second order ODE

that describes the constraints on the acceleration. The standard method of representing a 2nd order ODE in terms

of a 1st order one can be in the form of matrix with a size double that of the matrix representation for the 1st order

ODE.

Figure 3.1: UAM Morph between three triangles.

14

3.2 Affine Spaces, Affine Frames and Affine Transformations

Let’s discuss the concept of Affine Spaces, Affine Frames and Affine Transformations along with the illustration

in figure 3.2. As explained in Chapter 1, a point in an affine space can be represented in terms of an affine frame

consisting of a point and base vectors. In our case in 2D, we take, equivalently, a set of three non-collinear points.

We define two affine spaces using them and as described in the below figure 3.2, there exists always a unique

affine transformation which maps between them. This affine transformation can be computed by solving a system

of linear equations.

O0

O1

Q0

Q1P0

P1

Affine Space 1

Affine

Transformation

Frame 1

Affine Space 2

Frame 2

O0P0

O0Q0

O1P1

O1Q1

Figure 3.2: Affine Space, Affine Frame and Affine Transformation.

O0 =

(0,0)

Affine Space 0

A(t)

Frame 0

V0
1 = (1,0)

V0
2 = (0,1)

P0 = (α0 ,β0)

P0 = O0 + α0V0
1+β0V0

2

Ot =

(c(t),f(t))

Affine Space t

Frame t

Vt
1 = (a(t),d(t))

Vt
2 = (b(t),e(t))

Pt = (αt ,βt)

Pt = A(t) * P0

Vt
2 = A(t) * V0

2

Vt
1 = A(t) * V0

1
O1 =

(c(1),f(1))

Affine Space 1

Frame 1

V1
1 = (a(1),d(1))

V1
2 = (b(1),e(1))

P1 =(α1 ,β1)

time=0 time=t time=1

P1 = O1 +α1V1
1+β1V1

2 Pt = Ot +αtV
t
1+βtV

t
2

Figure 3.3: Affine Frame and Local coordinates.

Our aim is to compute a time varying affine transformation which interpolates between two affinities. From

our previous definition of frames for affine spaces, we can represent any point P in affine space using an origin O

and basis vectors. If P (x0, y0) be any point, it can be represented in a frame with origin (0,0) and unitary basis

vectors (1,0) and (0,1). We can represent them in a matrix form as,

15

P (x0, y0) = x0

1
0

+ y0

0
1

+

0
0

 (3.1)

We can express the above in homogeneous coordinates as,

P (x0, y0) =

1 0 0

0 1 0

0 0 1

×

x0

y0

1

 (3.2)

If we assume P (x0, y0) is the point at time t=0, we can then calculate P (xt, yt) at any time t by multiplying

the time varying affinity A(t). Since a point is represented in affine space using both origin and basis vectors, an affine

transformation of a point is a matrix containing the basis vectors as the first two columns and translation vector as the third

column. The Affine matrix A(t) can then be expressed in homogeneous coordinates as,

A(t) =

a(t) b(t) c(t)

d(t) e(t) f(t)

0 0 1

 (3.3)

P (xt, yt) =

a(t) b(t) c(t)

d(t) e(t) f(t)

0 0 1

×

x0

y0

1

 (3.4)

The concept of co-ordinates in a local frame is described in the figure 3.3. Any point can be expressed in terms of an

origin and basis vectors and hence we can represent P (xt, yt) as,

P (xt, yt) = αt

a(t)
d(t)

+ βt

b(t)
e(t)

+

c(t)
f(t)

 (3.5)

We can express the above in homogeneous coordinates as,

P (xt, yt) =

a(t) b(t) c(t)

d(t) e(t) f(t)

0 0 1

×

αt

βt

1

 (3.6)

In order to represent the point in the local coordinates of the current frame, we can rearrange the above relation as,
αt

βt

1

 = A(t)−1 × P (xt, yt), where, A(t) =

a(t) b(t) c(t)

d(t) e(t) f(t)

0 0 1

 (3.7)

Similarly, we can represent a vector in a frame for affine space using only the basis vectors,

V (v1, v2) = αt

a(t)
d(t)

+ βt

b(t)
e(t)

 (3.8)

In order to represent the vector in the local coordinates of the current frame, we can rearrange the above relation as,
αt

βt

1

 = L(t)−1 × V (v1, v2), where, L(t) =

a(t) b(t)

d(t) e(t)

 (3.9)

16

3.3 Definition

The concept of Affine Space, Affine Frame, local coordinates in Affine Frame, representation of points and vectors

in Affine spaces and frames are covered in detail in the above discussion. Now lets proceed to our definition of

constant acceleration motion in the local moving frame.

Let P (x0, y0) be a point and A(t) is the time varying affinity, expressed as,

P =

x0

y0

1

A(t) =

a(t) b(t) c(t)

d(t) e(t) f(t)

0 0 1

Multiplying the point P (x0, y0) with A(t) which gives us the trajectory of the point P(t) at any time t

We differentiate P(t) to calculate the velocity at time t,

d

dt
P (t) =

 d
dta (t)x0 +

d
dtb (t) y0 +

d
dtc (t)

d
dtd (t)x0 +

d
dte (t) y0 +

d
dtf (t)

When we differentiate further the velocity, we obtain the acceleration at time t,

d2

dt2
P (t) =

 d2

dt2 a (t)x0 +
d2

dt2 b (t) y0 +
d2

dt2 c (t)

d2

dt2 d (t)x0 +
d2

dt2 e (t) y0 +
d2

dt2 f (t)

The above representation of acceleration is not expressed in the current frame/local frame and in order to represent

them in terms of the local frame, we multiply it with L(t)−1 as explained in our previous discussion.

The acceleration in the local frame can then be expressed as,u′ (t)
v
′
(t)

 =
1

δ

(
e (t) d2

dt2 a (t)− b (t)
d2

dt2 d (t)
)
x0 +

(
e (t) d2

dt2 b (t)− b (t)
d2

dt2 e (t)
)
y0 +

(
e (t) d2

dt2 c (t)− b (t)
d2

dt2 f (t)
)

(
e (t) d2

dt2 a (t)− b (t)
d2

dt2 d (t)
)
x0 +

(
e (t) d2

dt2 b (t)− b (t)
d2

dt2 e (t)
)
y0 +

(
e (t) d2

dt2 c (t)− b (t)
d2

dt2 f (t)
)

where δ = a (t) e (t) − b (t) d (t), the determinant of the linear part of the affinity. As per our definition, we

want the acceleration in local frame to be constant for each choice of x0 and y0. So the following set of equations

should be satisfied:

17

e (t)
d2

dt2
a (t)− b (t) d

2

dt2
d (t) = C1δ (3.10)

−d (t) d
2

dt2
a (t) + a (t)

d2

dt2
d (t) = C2δ (3.11)

e (t)
d2

dt2
b (t)− b (t) d

2

dt2
e (t) = C3δ (3.12)

−d (t) d
2

dt2
b (t) + a (t)

d2

dt2
e (t) = C4δ (3.13)

e (t)
d2

dt2
c (t)− b (t) d

2

dt2
f (t) = C5δ (3.14)

−d (t) d
2

dt2
c (t) + a (t)

d2

dt2
f (t) = C6δ (3.15)

for some constants C1, C2, C3, C4, C5, C6. These constants in turn define the acceleration of each point in

the local frame. From the above equations, we can group 3.10 and 3.11, 3.12 and 3.13 from which we derive

equations of the form,

d2

dt2
a (t) = a (t)C1 + b (t)C2 (3.16)

d2

dt2
b (t) = a (t)C3 + b (t)C4 (3.17)

When we express the above equations in matrix form,

A(t) =

a (t)
b (t)

 (3.18)

M =

C1 C2

C3 C4

 (3.19)

A′′ (t) =M.A (t) (3.20)

Representing the above second order DE in terms of first order DE we get,

Z ′(t) = B.Z(t) (3.21)

where Z(t) and B are represented below,

Z(t) =

A(t)
A′(t)

 (3.22)

B =

0 0 1 0

0 0 0 1

c1 c2 0 0

c3 c4 0 0

(3.23)

Any differential equation of the form in 3.21 has a unique solution of the form,

Z(t) = e(t.B) . Z(0) (3.24)

Now our primary work is to find the exponential of matrix B of the equation 3.24. The complete mathematical

18

derivation of the exponential of the matrix is handled in Chapter 4:Second kinetic fundamental form of affine

motions. The above equations can be expanded as,

a(t)

b(t)

a′(t)

b′(t)

= etB ×

a(0)

b(0)

a′(0)

b′(0)

(3.25)

d(t)

e(t)

d′(t)

e′(t)

= etB ×

d(0)

e(0)

d′(0)

e′(0)

(3.26)

Equations from 5.5 to 5.20 represent the entries of the exponential matrix. From our description of the time

varying affinity A(t), the value of it at time t=0 should be equal to the identity and at time t=1 it should be equal to

the final affinity. Conforming to this condition, in the above matrix relation the values should be a(0)=1, b(0)=0,

d(0)=0, e(0)=1 and the initial velocity - a′(0), b′(0), d′(0), e′(0) can be any values.

3.4 Case 1: Initial Velocity set to zero

In the process of solving for the linear part of the time varying affinity we start with setting the initial velocity -

a′(0), b′(0), d′(0), e′(0) to be zero. From the below figure 3.4, we can clearly notice that the interpolations start

with zero initial velocity and the velocity shoots up towards time t=1.

Figure 3.4: UAM - with zero initial velocity

The mathematical derivation goes below. The equations from 5.25 to 5.28 get simplified and we get the below

set of equations,

19

a11 =

(
eλ1 + e−λ1

) (√
dc + z

)
+
(
eλ3 + e−λ3

) (√
dc − z

)
4
√
dc

(3.27)

a12 =
c3
(
eλ1 + e−λ1 − eλ3 − e−λ3

)
4
√
dc

(3.28)

a21 =
c2
(
eλ1 + e−λ1 − eλ3 − e−λ3

)
4
√
dc

(3.29)

a22 =

(
eλ1 + e−λ1

) (√
dc − z

)
+
(
eλ3 + e−λ3

) (√
dc + z

)
4
√
dc

(3.30)

z =
(a11 − a22) c3

2a12
(3.31)

z =
(a11 − a22) c2

2a21
(3.32)

c3 =
c2a12
a21

(3.33)

2 (a11 + a22) = eλ1 + e−λ1 + eλ3 + e−λ3 (3.34)

The eigenvalues of B are given by,

λ1,2,3,4 = ±
√
c1 + c4

2
±
√
dc (3.35)

where ,dc =
(
c1 + c4

2

)2

− (c1c4 − c2c3) and z =
c1 − c4

2
(3.36)

Let λ1 =
√
x+ y and λ3 =

√
x− y where, x =

c1 + c4
2

and y =
√
dc (3.37)

Now we can write, y2 = z2 + c2c3 (3.38)

Substituting for the values of z and c3 in the above equation, we get

y2 =
(a11 − a22)2 c22

4a221
+
c22a12
a21

(3.39)

y2 =
(a11 − a22)2 c22 + 4c22a12a21

4a221
(3.40)

c2 =
2a21y√

(a11 − a22)2 + 4a12a21

(3.41)

Substituting for the values of y and a21 in the above equation, we get

eλ1 + e−λ1 − eλ3 − e−λ3 = 2

√
(a11 − a22)2 + 4a12a21 (3.42)

Summing up the equations 3.34 and 3.42, we get,

eλ1 + e−λ1 = (a11 + a22) +

√
(a11 − a22)2 + 4a12a21 (3.43)

2 coshλ1 = (a11 + a22) +

√
(a11 − a22)2 + 4a12a21 (3.44)

λ1 = cosh−1

 (a11 + a22) +

√
(a11 − a22)2 + 4a12a21

2

 (3.45)

Subtracting the equations 3.34 and 3.42, we get,

20

eλ3 + e−λ3 = (a11 + a22)−
√
(a11 − a22)2 + 4a12a21 (3.46)

2 coshλ3 = (a11 + a22)−
√
(a11 − a22)2 + 4a12a21 (3.47)

λ3 = cosh−1

 (a11 + a22)−
√

(a11 − a22)2 + 4a12a21

2

 (3.48)

x =
λ21 + λ23

2
(3.49)

y =
λ21 − λ23

2
(3.50)

Substituting y in equation 3.41 we obtain c2. Now substituting c2 back in equation 3.33, we obtain c3

Substituting c3 in equation 3.32 we obtain z. Finally c1, c4 can be computed using,

c1 = x+ z (3.51)

c4 = x− z (3.52)

Once we obtain the values of c1, c2, c3, c4 we can calculate the linear part of the time varying affinity. Calculation

of the translation part involves the below steps,

From the equations 3.14 and 3.15

e (t)
d2

dt2
c (t)− b (t) d

2

dt2
f (t) = c5δ (3.53)

−d (t) d
2

dt2
c (t) + a (t)

d2

dt2
f (t) = c6δ (3.54)

c5a (t) + c6b (t) = c′′ (t) (3.55)

c5d (t) + c6e (t) = f ′′ (t) (3.56)

Integrating the above two equations,

c′ (t) = c5

∫
a (t) + c6

∫
b (t) + S1 (3.57)

f ′ (t) = c5

∫
d (t) + c6

∫
e (t) + S3 (3.58)

Double integrating the above two equations,

c (t) = c5

∫∫
a (t) + c6

∫∫
b (t) + S1t+ S2 (3.59)

f (t) = c5

∫∫
d (t) + c6

∫∫
e (t) + S3t+ S4 (3.60)

where
∫∫

a (t) ,
∫∫

b (t) ,
∫∫

d (t) ,
∫∫

e (t) can be derived as follows,

21

a (t) =

(
etλ1 + e−tλ1

) (√
dc + z

)
+
(
etλ3 + e−tλ3

) (√
dc − z

)
4
√
dc

(3.61)

b (t) =
c3
(
etλ1 + e−tλ1 − etλ3 − e−tλ3

)
4
√
dc

(3.62)

d (t) =
c2
(
etλ1 + e−tλ1 − etλ3 − e−tλ3

)
4
√
dc

(3.63)

e (t) =

(
etλ1 + e−tλ1

) (√
dc − z

)
+
(
etλ3 + e−tλ3

) (√
dc + z

)
4
√
dc

(3.64)∫
a (t) =

1

4
√
dc

[(
etλ1 − e−tλ1

) (√
dc + z

)
λ1

+

(
etλ3 − e−tλ3

) (√
dc − z

)
λ3

]
(3.65)

∫
b (t) =

c3

4
√
dc

[(
etλ1 − e−tλ1

)
λ1

−
(
etλ3 − e−tλ3

)
λ3

]
(3.66)

∫
d (t) =

c2

4
√
dc

[(
etλ1 − e−tλ1

)
λ1

−
(
etλ3 − e−tλ3

)
λ3

]
(3.67)

∫
e (t) =

1

4
√
dc

[(
etλ1 − e−tλ1

) (√
dc − z

)
λ1

+

(
etλ3 − e−tλ3

) (√
dc + z

)
λ3

]
(3.68)

∫∫
a (t) =

1

4
√
dc

[(
etλ1 + e−tλ1

) (√
dc + z

)
λ21

+

(
etλ3 + e−tλ3

) (√
dc − z

)
λ23

]
(3.69)

∫∫
b (t) =

c3

4
√
dc

[(
etλ1 + e−tλ1

)
λ21

−
(
etλ3 + e−tλ3

)
λ23

]
(3.70)

∫∫
d (t) =

c2

4
√
dc

[(
etλ1 + e−tλ1

)
λ21

−
(
etλ3 + e−tλ3

)
λ23

]
(3.71)

∫∫
e (t) =

1

4
√
dc

[(
etλ1 + e−tλ1

) (√
dc − z

)
λ21

+

(
etλ3 + e−tλ3

) (√
dc + z

)
λ23

]
(3.72)

In the equations 3.59, 3.60, we have 6 unknowns c5, c6, S1, S2, S3, S4. Now substituting c’(t), f’(t)=0 in the

equations 3.57, 3.58 and substituting t=0,1 in equations 3.59, 3.60 and in turn for the single and double integrals

of a(t), b(t), d(t), e(t), we get a linear system of 6 equations with 6 unknowns. Solving them yields us the above

unknowns which in turn allow us to calculate c(t), f(t) for any time t.

3.5 Case 2: Intermediate Affinity

The complexity of the equations involved in the problem for solving the linear part of the affinity in turn has

provided some good flexibility of choosing an intermediate affinity, say at time t=0.5. Now, the number of

equations in our problem will increase by two fold. It will pave the way for solving the time varying affinity

problem along with the flexibility of choosing an intermediate triangle, which in turn plays a greater role in

determining the trajectory and acceleration of the interpolation between the initial and final affinities. The solution

for solving the problem is described in detail in Chapter3.

22

Figure 3.5: The degree of flexibility introduced by the intermediate affinity(triangle in dark brown)

Existence of a solution Uniform Affine Motion for three affinities doesnt have a solution in all cases. The values

of the entries of the affine matrix becomes a complex number when the initial velocity a’(0), b’(0), d’(0), e’(0)

values become complex.

Figure 3.6: No solution - Occurrence of complex case scenario

3.6 Comparison of SAM and biSAM

When we set the intermediate affinity (t=0.5) of UAM to be the same as the interpolated affinity of SAM at t=0.5,

we can observe the fact that UAM becomes a Steady Affine motion with zero constant acceleration in local frame.

The figure 3.7 portrays this scenario.

23

Figure 3.7: SAM is a UAM with zero acceleration in local frame

The figure 3.8 depicts us the higher flexibility obtained through the initial conditions for a second degree

differential equation in case of UAM. The addition of an intermediate affinity helps us to create a more flexible

trajectory when compared with SAM.

Figure 3.8: Comparison of SAM and UAM.

UAM deals with an intermediate affinity at time t=0.5 to make use of the flexibility arising out of the ad-

ditional initial conditions. SAM deals with the case of intermediate affinity by using a piecewise solution of

using a polySAM and biSAM. These strategies were exploited for dealing with situations where no SAM ex-

24

ists and the designer would chose an intermediate control pose. Let’s now discuss the techniques proposed in

[Rossignac and Vinacua, 2011] for handling intermediate affinities, such as polySAM and biSAM.

polySAM A polySAM is a continuous motion concatenating a sequence of SAM spans. This solution is only

piecewise-steady and typically exhibits a sharp discontinuity of velocity at the intermediate affinity. In order to

solve this, we can use a four-point subdivision between each control pose.

Figure 3.9: polySAM constructed using four-point subdivision.

biSAM We can use a motion defined by a quadratic Bezier motion (quadratic curve in the space of affinities)

with control poses (FA, FB , and FC) and SAM can be used instead of linear interpolation. We can retrofit a SAM

biarc that concatenates two quadratic Bezier motions connected at FB . Let SAM(FA, t, FB) return the pose at

time t along a SAM that interpolates between pose FA and pose FB . Let SAM(FX , FA, t, FB) return the image

of pose FX transformed by SAM(FA, t, FB). Now the bezier step can be computed as, bezier(FA, FB , FC , t)

returning the affinity for time parameter t on a quadratic Bezier curve in the space of affinities with control poses

(FA, FB , FC). But this technique creates a motion which is not truly steady and produces a C1 continuity. The

procedure goes as follows,

Pose bezier(Pose FA, Pose FB , Pose FC , float t)

return SAM(SAM(FA, t, FB), t, SAM(FB , t, FC));

We want to construct a motion that starts at the control pose FA, passes through FB at t = 1/2, and ends at FC .

When t ≤ 1/2, we use a bezier with control poses (FA, FL, FB) and parameter 2t, and when t > 1/2, we use the

symmetric construction.

25

Figure 3.10: Control poses for a Bezier SAM.

if(t≤0.5) return bezier(FA, FL, FB , t ∗ 2);

else return bezier(FB , FR, FC , (t− 0.5) ∗ 2);

We compute FL and FR as FL = leftControl(FA, FB , FC) and FR = leftControl(FC , FB , FA), using

Pose leftControl (Pose FA, Pose FB , Pose FC)

return SAM(SAM(FA,0.75, FB), FC , .25, FB);

We have here chosen a construction that only requires computing SAMs between FA and FB and between FB

and FC , since the SAM between FA and FC may not exist.

When comparing biSAM and UAM, the later interpolates between three affinities with constant acceleration

in local frame and hence it provides much smoother motions.

Figure 3.11: Comparison of biSAM and UAM(vertices with arc trail).

From the below figures, we can say that in case of biSAM there may arise some cases where there may not

be a SAM between one of the affinities. Likewise, UAM can have complete interpolation between three affinities,

yet if a complex case arises UAM will not exist altogether.

26

Figure 3.12: biSAM

Figure 3.13: UAM

3.7 Properties

When UAM exists, it holds the below properties:

1. Affine Invariant: Natural motions are produced by interpolations that involve a minimum angle rotation

for which we define the direction of the axis of rotation. However, there is a choice for selecting the location

of the axis of rotation and the translation vector. Most of the methods we choose lead to motions that are

affected by the selection of the coordinate system. An interpolation dependant on the coordinate system

will complicate the designer’s job. In their paper, [Rossignac and Kim, 2001] discuss the need for having a

motion interpolation free of coordinate system and they discuss in detail of the advantages that a coordinate

free interpolation would provide for a motion designer. Steady affine motion is Affine Invariant and Uniform

accelerated motion too follows its trail where interpolation between two or three affinities is not affected by

a change of the coordinate system.

2. Uniqueness: From the theory of ODE’s, UAM is unique in phase space and we are interested only in its

projection onto the (x,y) co-ordinates. Hence, we have a unique solution for a given(complete) set of initial

conditions in state space. However this does not settle the unicity of the motion captured in the projected

space from the initial data that we specify; to establish this issue solidly, we need further research.

27

Figure 3.14: UAM with zero initial velocity and UAM with intermediate affinity(with vertex trail)

3. Reversible: The reverse motion is obtained by swapping the first and last control poses. [Kavan et al., 2008]

discusses the importance of this property. This property holds for UAM2 and not for UAM1.

4. Constant Acceleration: UAM moves every point with a constant acceleration. The inclusion of accelera-

tion property to the interpolation provides us with low foot print trajectories as depicted in the figure 3.15.

Through observation we have found out that the non-existence of a UAM is infrequent when compared with

SAM.

Figure 3.15: Trajectory of UAM(zero initial velocity) and SAM

5. UAM Flips: When the affinities are placed such that any affinity is a 180◦ degree rotation of the previous

affinity, UAM flips the pose as portrayed in the figure 3.16 and in the process of flipping we observe that

the area of quad becomes zero twice instead of doing the ”more natural” full rotation(which would need a

sudden shoot in acceleration at the middle frame).

28

Figure 3.16: UAM Flips

6. Appearance of ”cusp” in the trajectory: UAM produces us a smooth and nice interpolation. When we

consider the below figure 3.17 the cusp is originated because the speed vector field of UAM is not stationary

and so the speed at which point P0(red) reaches the original position of point P2(green) at time t=1, is

different from the speed at which P3(blue) had left its position at time t=0.

Figure 3.17: UAM - Appearance of ”cusp” in the trajectory

29

Chapter 4

Implementation

4.1 Software

Application - Processing

The framework used for the implementation of Uniform Accelerated Motions is Processing - http://processing.

org/download/. The reason for choosing Processing is its ease of use and the availability of necessary

tools for the implementation, thanks to Prof. Dr.Jarek Rossignac and Prof. Dr.Alvar Vinacua for providing the

framework containing the implementation of [Rossignac and Vinacua, 2011]. With a base framework containing

the necessary tools for interaction and manipulation of the application, it also facilitates for the comparison of

SAM and UAM. A basic tutorial for working with Processing can be found at http://processing.org/

learning/.

Figure 4.1: Processing Sketchbook

30

http://processing.org/download/
http://processing.org/download/
http://processing.org/learning/
http://processing.org/learning/

Library - Apache Common Maths

The implementation of Uniform Accelerated Motions involves complex number arithmetic and since Processing

is based on Java, we do not have built-in capabilities for complex number computations. Hence we resort to Ap-

pache Commons Math library. It is a library of lightweight, self-contained mathematics and statistics components

addressing the most common problems not available in the Java programming language or Commons Lang. It

can be downloaded from http://commons.apache.org/math/download_math.cgi and the online

documentation is available at http://commons.apache.org/math/userguide/index.html. Un-

fortunately, this library doesnt have overloaded arithmetic operators for dealing with complex numbers and so the

functionality of arithmetic operators is replaced with function calls on a complex number object.

Installation of an external library for Processing

Processing allows for libraries to be placed inside the Processing sketchbook, which is a more convenient method

rather than installing them in the Processing application folder.

1. We have to locate the default directory of Processing Sketchbook.

2. On a PC it is under ”c:/My Documents/Processing/”, on a MAC it is under ”/Users/Username/Documents/Processing”

and on Linux it is under ”/home/Username/sketchbook”.

3. The library should be placed under a folder named ”libraries” under the sketchbook folder of Processing.

The order should be ”/libraries/libraryName/library/libraryName.jar”. Make sure that the name of the li-

brary folder and the library itself do not contain any space or special characters as alphanumeric characters

are the only valid file names for Processing.

4. Restart Processing for changes to take effect.

31

http://commons.apache.org/math/download_math.cgi
http://commons.apache.org/math/userguide/index.html

4.2 Functionalities

Help Menu The Space key is used to display the Help Menu containing information about the control keys to

be used for interacting with the application, the screen shot of which is displayed below,

Figure 4.2: Help Menu

Vertex Trail The flexibility of Uniform Accelerated Motions with intermediate affinity provides us with some

intricate interpolation which leaves us with a difficult to visualize vertex trail. In order to follow the complex

vertex trail during the occurrence of such interpolation, we use a highly sampled arc to join the vertices of the

entire interpolation. At any point, irrespective of the number of frames used for interpolation, this vertex trail is

sampled at a preconfigured number of frames. The below figure contains the vertex trail for UAM.

32

Figure 4.3: Arcs for Vertex trail

Acceleration Vectors The presence of acceleration vectors at each and every vertex of the interpolation helps

us to understand the concept of constant acceleration in local frame. We can have a picturesque representation of

our definition of UAM in the below figure,

Figure 4.4: Acceleration Vectors at the vertices

33

Chapter 5

Second kinetic fundamental form of affine

motions

From the equations of 3.22 and 3.24 we can ascertain that our main mathematical computation revolves around

finding out the exponential of the matrix B. In this chapter we start with our derivation of the exponential of the

matrix B.

The eigenvalues of B are given by,

λ1,2,3,4 = ±
√

c1+c4
2 ±

√
dc

where dc =
(
c1+c4

2

)2 − (c1c4 − c2c3)

We form a matrix having as columns the linearly independent eigenvectors of B,

V =

−c2
z−
√
dc

−c2
z−
√
dc

−c2
z+
√
dc

−c2
z+
√
dc

1 1 1 1

−λ1c2
z−
√
dc

−λ2c2
z−
√
dc

−λ3c2
z+
√
dc

−λ4c2
z+
√
dc

λ1 λ2 λ3 λ4

Now we can write,

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

= V −1.C.V

and therefore, since the exponentiation commutes with the change of basis, we can then compute the exponential

of B as follows,

34

etB = V.

etλ1 0 0 0

0 etλ2 0 0

0 0 etλ3 0

0 0 0 etλ4

.V −1 (5.1)

Let z = c1−c4
2 and computing V −1 we get,

V −1 =

c3
4
√
dc

√
dc−z
4
√
dc

c3
4λ1

√
dc

√
dc−z

4
√
dcλ1

c3
4
√
dc

√
dc−z
4
√
dc

−c3
4λ1

√
dc

z−
√
dc

4
√
dcλ1

−c3
4
√
dc

√
dc+z
4
√
dc

−c3
4λ3

√
dc

√
dc+z

4
√
dcλ3

−c3
4
√
dc

√
dc+z
4
√
dc

c3
4λ3

√
dc

−
√
dc−z

4
√
dcλ3

Now we perform the computation of the equation 5.1 to calculate etB .

a(t)

b(t)

a′(t)

b′(t)

= etB ×

a(0)

b(0)

a′(0)

b′(0)

(5.2)

d(t)

e(t)

d′(t)

e′(t)

= etB ×

d(0)

e(0)

d′(0)

e′(0)

(5.3)

etB =

e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

(5.4)

where the terms e11 ... e44 are expanded below,

35

e11 =
c2c3

4
√
dc

[
etλ1 + e−tλ1

√
dc − z

+
etλ3 + e−tλ3

√
dc + z

]
(5.5)

e12 =
c2

4
√
dc

[(
etλ1 + e−tλ1

)
−
(
etλ3 + e−tλ3

)]
(5.6)

e13 =
c2c3

4
√
dc

[
etλ1 + e−tλ1(√
dc − z

)
λ1

+
etλ3 + e−tλ3(√
dc + z

)
λ3

]
(5.7)

e14 =
c2

4
√
dc

[(
etλ1 − e−tλ1

λ1

)
−
(
etλ3 − e−tλ3

λ3

)]
(5.8)

e21 =
c3

4
√
dc

[(
etλ1 + e−tλ1

)
−
(
etλ3 + e−tλ3

)]
(5.9)

e22 =

√
dc − z
4
√
dc

[
etλ1 + e−tλ1

]
+

√
dc + z

4
√
dc

[
etλ3 + e−tλ3

]
(5.10)

e23 =
c3

4
√
dc

[(
etλ1 − e−tλ1

λ1

)
−
(
etλ3 − e−tλ3

λ3

)]
(5.11)

e24 =

√
dc − z

4
√
dcλ1

[
etλ1 − e−tλ1

]
+

√
dc + z

4
√
dcλ3

[
etλ3 − e−tλ3

]
(5.12)

e31 =
c2c3

4
√
dc

[
λ1
(
etλ1 − e−tλ1

)
√
dc − z

+
λ3
(
etλ3 − e−tλ3

)
√
dc + z

]
(5.13)

e32 =
c2

4
√
dc

[
λ1
(
etλ1 − e−tλ1

)
− λ3

(
etλ3 − e−tλ3

)]
(5.14)

e33 =
c2c3

4
√
dc

[
etλ1 + e−tλ1

√
dc − z

+
etλ3 + e−tλ3

√
dc + z

]
(5.15)

e34 =
c2

4
√
dc

[(
etλ1 + e−tλ1

)
−
(
etλ3 + e−tλ3

)]
(5.16)

e41 =
c3

4
√
dc

[
λ1
(
etλ1 − e−tλ1

)
− λ3

(
etλ3 − e−tλ3

)]
(5.17)

e42 =

(√
dc − z

)
λ1

4
√
dc

[
etλ1 − e−tλ1

]
+

(√
dc + z

)
λ3

4
√
dc

[
etλ3 − e−tλ3

]
(5.18)

e43 =
c3

4
√
dc

[(
etλ1 + e−tλ1

)
−
(
etλ3 + e−tλ3

)]
(5.19)

e44 =

√
dc − z
4
√
dc

[
etλ1 + e−tλ1

]
+

√
dc + z

4
√
dc

[
etλ3 + e−tλ3

]
(5.20)

36

a(t) =

etλ1

[(√
dc + z

)
+

(
(
√
dc+z)∗a′(0)

λ1

)
+
(
c2∗b′(0)
λ1

)]
+ e−tλ1

[(√
dc + z

)
−
(
(
√
dc+z)∗a′(0)

λ1

)
−
(
c2∗b′(0)
λ1

)]
4
√
dc

+

etλ3

[(√
dc − z

)
+

(
(
√
dc−z)∗a′(0)

λ3

)
−
(
c2∗b′(0)
λ3

)]
+ e−tλ3

[(√
dc − z

)
−
(
(
√
dc−z)∗a′(0)

λ3

)
+
(
c2∗b′(0)
λ3

)]
4
√
dc

(5.21)

e(t) =

etλ1

[(√
dc − z

)
+
(
c3∗d′(0)
λ1

)
+

(
(
√
dc−z)∗e′(0)

λ1

)]
+ e−tλ1

[(√
dc − z

)
−
(
c3∗d′(0)
λ1

)
−
(
(
√
dc−z)∗e′(0)

λ1

)]
4
√
dc

+

etλ3

[(√
dc + z

)
−
(
c3∗d′(0)
λ3

)
+

(
(
√
dc+z)∗e′(0)

λ3

)]
+ e−tλ3

[(√
dc + z

)
+
(
c3∗d′(0)
λ3

)
−
(
(
√
dc+z)∗e′(0)

λ3

)]
4
√
dc

(5.22)

b(t) =

etλ1

[
c3 +

(
c3∗a′(0)
λ1

)
+

(
(
√
dc−z)∗b′(0)

λ1

)]
+ e−tλ1

[
c3 −

(
c3∗a′(0)
λ1

)
−
(
(
√
dc−z)∗b′(0)

λ1

)]
4
√
dc

+

etλ3

[
−c3 −

(
c3∗a′(0)
λ3

)
+

(
(
√
dc+z)∗b′(0)

λ3

)]
+ e−tλ3

[
−c3 +

(
c3∗a′(0)
λ3

)
−
(
(
√
dc+z)∗b′(0)

λ3

)]
4
√
dc

(5.23)

d(t) =

etλ1

[
c2 +

(
(
√
dc+z)∗d′(0)

λ1

)
+
(
c2∗e′(0)
λ1

)]
+ e−tλ1

[
c2 −

(
(
√
dc+z)∗d′(0)

λ1

)
−
(
c2∗e′(0)
λ1

)]
4
√
dc

+

etλ3

[
−c2 +

(
(
√
dc−z)∗d′(0)

λ3

)
−
(
c2∗e′(0)
λ3

)]
+ e−tλ3

[
−c2 −

(
(
√
dc−z)∗d′(0)

λ3

)
+
(
c2∗e′(0)
λ3

)]
4
√
dc

(5.24)

Substituting t = 1 in the above equations and solving for the affinity, we get,

37

4a11
√
dc = a′(0)

[(√
dc + z

) eλ1 − e−λ1

λ1
+
(√

dc − z
) eλ3 − e−λ3

λ3

]
+ b′(0)

[
c2
eλ1 − e−λ1

λ1
− c2

eλ3 − e−λ3

λ3

]
+(√

dc + z
) (
eλ1 + e−λ1

)
+
(√

dc − z
) (
eλ3 + e−λ3

)
(5.25)

4a22
√
dc = e′(0)

[(√
dc − z

) eλ1 − e−λ1

λ1
+
(√

dc + z
) eλ3 − e−λ3

λ3

]
+ d′(0)

[
c3
eλ1 − e−λ1

λ1
− c3

eλ3 − e−λ3

λ3

]
+(√

dc − z
) (
eλ1 + e−λ1

)
+
(√

dc − z
) (
eλ3 + e−λ3

)
(5.26)

4a12
√
dc = a′(0)

[
c3
eλ1 − e−λ1

λ1
− c3

eλ3 − e−λ3

λ3

]
+ b′(0)

[(√
dc − z

) eλ1 − e−λ1

λ1
+
(√

dc + z
) eλ3 − e−λ3

λ3

]
+

c3
(
eλ1 + e−λ1 − eλ3 − e−λ3

)
(5.27)

4a21
√
dc = e′(0)

[
c2
eλ1 − e−λ1

λ1
− c2

eλ3 − e−λ3

λ3

]
+ d′(0)

[(√
dc + z

) eλ1 − e−λ1

λ1
+
(√

dc − z
) eλ3 − e−λ3

λ3

]
+

c2
(
eλ1 + e−λ1 − eλ3 − e−λ3

)
(5.28)

By comparing equations 5.25 and 5.27, for affinity at time t=1 and at time t=0.5 and using the relation

c2c3 =
(√
dc + z

) (√
dc − z

)
we get,

a′(0)

(
eλ1 − e−λ1

λ1

)
+ b′(0)

(
eλ1 − e−λ1

λ1

c2√
dc + z

)
+
(
eλ1 + e−λ1

)
= 2

(
a11 +

a12c2√
dc + z

)
(5.29)

a′(0)

(
e
λ1
2 − e

λ1
2

λ1

)
+ b′(0)

(
e
λ1
2 − e−

λ1
2

λ1

c2√
dc + z

)
+
(
e
λ1
2 + e−

λ1
2

)
= 2

(
a′11 +

a′12c2√
dc + z

)
(5.30)

By comparing equations 5.28 and 5.26, for affinity at time t=1 and at time t=0.5 and using the relation

c2c3 =
(√
dc + z

) (√
dc − z

)
we get,

e′(0)

(
eλ1 − e−λ1

λ1

)
+ d′(0)

(
eλ1 − e−λ1

λ1

c3√
dc − z

)
+
(
eλ1 + e−λ1

)
= 2

(
a22 +

a21c3√
dc − z

)
(5.31)

e′(0)

(
e
λ1
2 − e−

λ1
2

λ1

)
+ d′(0)

(
e
λ1
2 − e−

λ1
2

λ1

c3√
dc − z

)
+
(
e
λ1
2 + e−

λ1
2

)
= 2

(
a′22 +

a′21c3√
dc − z

)
(5.32)

Multiplying 5.29 by
(

λ1

eλ1−e−λ1

)
and 5.30 by

(
λ1

e
λ1
2 −e

−λ1
2

)
we get,

a′(0) + b′(0)
c2√
dc + z

+ λ1
eλ1 + e−λ1

eλ1 − e−λ1
= 2

(
a11 +

a12c2√
dc + z

)
λ1

eλ1 − e−λ1
(5.33)

a′(0) + b′(0)
c2√
dc + z

+ λ1
e
λ1
2 + e−

λ1
2

e
λ1
2 − e−

λ1
2

= 2

(
a′11 +

a′12c2√
dc + z

)
λ1

e
λ1
2 − e−

λ1
2

(5.34)

Subtracting 5.33 and 5.34 we get,

38

[
eλ1 + e−λ1

eλ1 − e−λ1
− e

λ1
2 + e−

λ1
2

e
λ1
2 − e−

λ1
2

]
= 2

(
a11 + a12

c2√
dc+z

)
eλ1 − e−λ1

−

(
a′11 + a′12

c2√
dc+z

)
e
λ1
2 − e−

λ1
2

 (5.35)

eλ1 − e−λ1

e
λ1
2 − e−

λ1
2

=

(
a11 + a12

c2√
dc+z

+ 1
)

(
a′11 + a′12

c2√
dc+z

) (5.36)

Multiplying 5.31 by
(

λ1

eλ1−e−λ1

)
and 5.32 by

(
λ1

e
λ1
2 −e−

λ1
2

)
we get,

e′(0) + d′(0)
c3√
dc − z

+ λ1
eλ1 + e−λ1

eλ1 − e−λ1
= 2

(
a22 +

a21c3√
dc − z

)
λ1

eλ1 − e−λ1
(5.37)

e′(0) + d′(0)
c3√
dc − z

+ λ1
e
λ1
2 + e−

λ1
2

e
λ1
2 − e−

λ1
2

= 2

(
a′22 +

a′21c3√
dc − z

)
λ1

e
λ1
2 − e−

λ1
2

(5.38)

Subtracting 5.37 and 5.38 we get,[
eλ1 + e−λ1

eλ1 − e−λ1
− e

λ1
2 + e−

λ1
2

e
λ1
2 − e−

λ1
2

]
= 2

(
a22 + a21

c3√
dc−z

)
eλ1 − e−λ1

−

(
a′22 + a′21

c3√
dc−z

)
e
λ1
2 − e−

λ1
2

 (5.39)

eλ1 − e−λ1

e
λ1
2 − e−

λ1
2

=

(
a22 + a21

c3√
dc−z

+ 1
)

(
a′22 + a′21

c3√
dc−z

) (5.40)

Equating 5.36 and 5.40 we get,
a11 + a12

c2√
dc+z

+ 1

a′11 + a′12
c2√
dc+z

=
a22 + a21

c3√
dc−z

+ 1

a′22 + a′21
c3√
dc−z

(5.41)

[(a22 + 1) a′12 − a′22a12]
√
dc − z
c3

+

[− (a11 + 1) a′21 + a21a
′
11]

√
dc + z

c2
= (a11 + 1) (a′22)+

a12a
′
21 − (a22 + 1) a′11 − a21a′12

(5.42)

By comparing equations 5.25 and 5.27, for affinity at time t=1 and at time t=0.5 we get,

a′(0)

(
eλ3 − e−λ3

λ3

)
+ b′(0)

(
eλ3 − e−λ3

λ3

−c2√
dc − z

)
+
(
eλ3 + e−λ3

)
= 2

(
a11 −

a12c2√
dc − z

)
(5.43)

a′(0)

(
e
λ3
2 − e

λ3
2

λ3

)
+ b′(0)

(
e
λ3
2 − e−

λ3
2

λ3

−c2√
dc − z

)
+
(
e
λ3
2 + e−

λ3
2

)
= 2

(
a′11 −

a′12c2√
dc − z

)
(5.44)

By comparing equations 5.28 and 5.26, for affinity at time t=1 and at time t=0.5 we get,

−e′(0)
(
eλ3 − e−λ3

λ3

)
+ d′(0)

(
eλ3 − e−λ3

λ3

c3√
dc + z

)
−
(
eλ3 + e−λ3

)
= 2

(
a21c3√
dc + z

− a22
)

(5.45)

−e′(0)

(
e
λ3
2 − e−

λ3
2

λ3

)
+ d′(0)

(
e
λ3
2 − e−

λ3
2

λ3

c3√
dc + z

)
−
(
e
λ3
2 + e

−λ3
2

)
= 2

(
a′21c3√
dc + z

− a′22
)

(5.46)

Multiplying 5.43 by
(

λ3

eλ3−e−λ3

)
and 5.44 by

(
λ3

e
λ3
2 −e

−λ3
2

)
we get,

39

a′(0) + b′(0)
−c2√
dc − z

+ λ3
eλ3 + e−λ3

eλ3 − e−λ3
= 2

(
a11 −

a12c2√
dc − z

)
λ3

eλ3 − e−λ3
(5.47)

a′(0) + b′(0)
−c2√
dc − z

+ λ3
e
λ3
2 + e−

λ3
2

e
λ3
2 − e−

λ3
2

= 2

(
a′11 −

a′12c2√
dc − z

)
λ3

e
λ3
2 − e−

λ3
2

(5.48)

Subtracting 5.33 and 5.34 we get,[
eλ3 + e−λ3

eλ3 − e−λ3
− e

λ3
2 + e−

λ3
2

e
λ3
2 − e−

λ3
2

]
= 2

(
a11 − a12 c2√

dc−z

)
eλ3 − e−λ3

−

(
a′11 − a′12 c2√

dc−z

)
e
λ3
2 − e−

λ3
2

 (5.49)

eλ3 − e−λ3

e
λ3
2 − e−

λ3
2

=

(
a11 − a12 c2√

dc−z
+ 1
)

(
a′11 − a′12 c2√

dc−z

) (5.50)

Multiplying 5.45 by
(

λ3

eλ3−e−λ3

)
and 5.46 by

(
λ3

e
λ3
2 −e−

λ3
2

)
we get,

−e′(0) + d′(0)
c3√
dc + z

− λ3
eλ3 + e−λ3

eλ3 − e−λ3
= 2

(
a21c3√
dc + z

− a22+
)

λ3
eλ3 − e−λ3

(5.51)

−e′(0) + d′(0)
c3√
dc + z

− λ3
e
λ3
2 + e−

λ3
2

e
λ3
2 − e−

λ3
2

= 2

(
a′21c3√
dc + z

− a′22
)

λ3

e
λ3
2 − e−

λ3
2

(5.52)

Subtracting 5.51 and 5.52 we get,[
e
λ3
2 + e−

λ3
2

e
λ3
2 − e−

λ3
2

− eλ3 + e−λ3

eλ3 − e−λ3

]
= 2

(
a21

c3√
dc+z

− a22
)

eλ3 − e−λ3
−

(
a′21

c3√
dc+z

− a′22
)

e
λ3
2 − e−

λ3
2

 (5.53)

eλ3 − e−λ3

e
λ3
2 − e−

λ3
2

=

(
a21

c3√
dc+z

− a22 − 1
)

(
a′21

c3√
dc+z

− a′22
) (5.54)

Equating 5.50 and 5.54 we get,
a11 − a12 c2√

dc−z
+ 1

a′11 − a′12 c2√
dc−z

=
a21

c3√
dc+z

− a22 − 1

a′21
c3√
dc+z

− a′22
(5.55)

[a′11a21 − (a11 + 1) a′21]

√
dc − z
c2

+

[(a22 + 1) a′12 − a12a′22]
√
dc + z

c2
= − (a11 + 1) (a′22)−

a12a
′
21 + (a22 + 1) a′11 + a21a

′
12

(5.56)

Let,

P1 = a′11a21 − (a11 + 1) (a′21) (5.57)

P2 = (a22 + 1) (a′12)− a′22a12 (5.58)

P3 = (a11 + 1) (a′22) + a12a
′
21 − (a22 + 1) a′11 − a21a′12 (5.59)

P1, P2, P3 are known values and considering the equations 5.42 and 5.56 we find that,
√
dc+z
c3

,
√
dc−z
c3

are

the unknowns in the equations. So the equations are rewritten in the form,

40

−P3 = P1

√
dc − z
c2

+ P2

√
dc + z

c3
(5.60)

P3 = P2

√
dc − z
c3

+ P1

√
dc + z

c2
(5.61)

Also,
(√
dc + z

) (√
dc − z

)
= c2c3, and using this relation, we find that

(√
dc+z
c3

)
=
(

c2√
dc−z

)
Considering the above relation, we can rewrite the equations 5.60, 5.61 as,

−P3 = P1

√
dc − z
c2

+ P2
c2√
dc − z

(5.62)

P3 = P2

√
dc − z
c3

+ P1
c3√
dc − z

(5.63)

Now the above two equations are second degree polynomials and solving the roots yields us
√
dc+z
c3

,
√
dc−z
c3

From our previous derivations, we have calculated the below relation,

eλ1 − e−λ1

e
λ1
2 − e−

λ1
2

=

(
a11 + a12

c2√
dc+z

+ 1
)

(
a′11 + a′12

c2√
dc+z

)
eλ1 − e−λ1

e
λ1
2 − e−

λ1
2

=

(
a22 + a21

c3√
dc−z

+ 1
)

(
a′22 + a′21

c3√
dc−z

)
eλ3 − e−λ3

e
λ3
2 − e−

λ3
2

=

(
a11 − a12 c2√

dc−z
+ 1
)

(
a′11 − a′12 c2√

dc−z

)
eλ3 − e−λ3

e
λ3
2 − e−

λ3
2

=

(
a21

c3√
dc+z

− a22 − 1
)

(
a′21

c3√
dc+z

− a′22
)

Let,

r1 =

(
a′11 + a′12

c2√
dc+z

)
(
a11 + a12

c2√
dc+z

+ 1
) (5.64)

r2 =

(
a′11 − a′12 c2√

dc−z

)
(
a11 − a12 c2√

dc−z
+ 1
) (5.65)

Rearranging the equations 5.25, 5.26, 5.27, 5.28

41

4a11
√
dc

c2
= a′(0)

[(√
dc + z

c2

)
eλ1 − e−λ1

λ1
+

(√
dc − z
c2

)
eλ3 − e−λ3

λ3

]
+ b′(0)

[
eλ1 − e−λ1

λ1
− eλ3 − e−λ3

λ3

]
+(√

dc + z

c2

)(
eλ1 + e−λ1

)
+

(√
dc − z
c2

)(
eλ3 + e−λ3

)
(5.66)

4a22
√
dc

c3
= e′(0)

[(√
dc − z
c3

)
eλ1 − e−λ1

λ1
+

(√
dc + z

c3

)
eλ3 − e−λ3

λ3

]
+ d′(0)

[
eλ1 − e−λ1

λ1
− eλ3 − e−λ3

λ3

]
+(√

dc − z
c3

)(
eλ1 + e−λ1

)
+

(√
dc − z
c3

)(
eλ3 + e−λ3

)
(5.67)

4a12
√
dc

c3
= a′(0)

[
eλ1 − e−λ1

λ1
− eλ3 − e−λ3

λ3

]
+ b′(0)

[(√
dc − z
c3

)
eλ1 − e−λ1

λ1
+

(√
dc + z

c3

)
eλ3 − e−λ3

λ3

]
+(

eλ1 + e−λ1 − eλ3 − e−λ3
)

(5.68)

4a21
√
dc

c2
= e′(0)

[
eλ1 − e−λ1

λ1
− eλ3 − e−λ3

λ3

]
+ d′(0)

[(√
dc + z

c2

)
eλ1 − e−λ1

λ1
+

(√
dc − z
c2

)
eλ3 − e−λ3

λ3

]
+(

eλ1 + e−λ1 − eλ3 − e−λ3
)

(5.69)

4a′11
√
dc

c2
= a′(0)

[(√
dc + z

c2

)
eλ1 − e−λ1

λ1
r1 +

(√
dc − z
c2

)
eλ3 − e−λ3

λ3
r2

]
+

b′(0)

[
r1
eλ1 − e−λ1

λ1
− r2

eλ3 − e−λ3

λ3

]
+(√

dc + z

c2

)(
e
λ1
2 + e−

λ1
2

)
+

(√
dc − z
c2

)(
e
λ3
2 + e−

λ3
2

) (5.70)

4a′22
√
dc

c3
= e′(0)

[
r1

(√
dc − z
c3

)
eλ1 − e−λ1

λ1
+ r2

(√
dc + z

c3

)
eλ3 − e−λ3

λ3

]
+

d′(0)

[
r1
eλ1 − e−λ1

λ1
− r2

eλ3 − e−λ3

λ3

]
+(√

dc − z
c3

)(
e
λ1
2 + e−

λ1
2

)
+

(√
dc − z
c3

)(
e
λ3
2 + e−

λ3
2

) (5.71)

4a′12
√
dc

c3
= a′(0)

[
r1
eλ1 − e−λ1

λ1
− r2

eλ3 − e−λ3

λ3

]
+
(
e
λ1
2 + e−

λ1
2 − e

λ3
2 − e−

λ3
2

)
+

b′(0)

[
r1

(√
dc − z
c3

)
eλ1 − e−λ1

λ1
+ r2

(√
dc + z

c3

)
eλ3 − e−λ3

λ3

] (5.72)

4a′21
√
dc

c2
= e′(0)

[
r1
eλ1 − e−λ1

λ1
− r2

eλ3 − e−λ3

λ3

]
+
(
e
λ1
2 + e−

λ1
2 − e

λ3
2 − e−

λ3
2

)
+

d′(0)

[
r1

(√
dc + z

c2

)
eλ1 − e−λ1

λ1
+ r2

(√
dc − z
c2

)
eλ3 − e−λ3

λ3

] (5.73)

42

Multiplying 5.66 by r1 and subtracting 5.70 we get,

4a11
√
dcr1

c2
− 4a′11

√
dc

c2
= a′(0)

[(√
dc − z
c2

)
eλ3 − e−λ3

λ3
(r1 − r2)

]
+ b′(0)

[
eλ3 − e−λ3

λ3
(r2 − r1)

]
+(√

dc + z

c2

)(
eλ1 + e−λ1

)
r1 +

(√
dc − z
c2

)(
eλ3 + e−λ3

)
r1−(√

dc + z

c2

)(
e
λ1
2 + e−

λ1
2

)
−
(√

dc − z
c2

)(
e
λ3
2 + e−

λ3
2

)
(5.74)

4a12
√
dcr1

c3
− 4a′12

√
dc

c3
= a′(0)

[
eλ3 − e−λ3

λ3
(r2 − r1)

]
+ b′(0)

[(√
dc + z

c3

)
eλ3 − e−λ3

λ3
(r1 − r2)

]
+(

eλ1 + e−λ1
)
r1 −

(
eλ3 + e−λ3

)
r1−(

e
λ1
2 + e−

λ1
2

)
+
(
e
λ3
2 + e−

λ3
2

)
(5.75)

Considering the equations 5.74 and 5.75, we get,

(
eλ1 + e−λ1

) 2√dc
c2

r1 −
(
e
λ1
2 + e−

λ1
2

) 2
√
dc
c2

=
4
√
dc
c2

[a11r1 − a′11] +
4
√
dc
c3

[a12r1 − a′12]
√
dc − z
c2

(5.76)

Rearraging the equation 5.36, we get(
eλ1 − e−λ1

)(
a′11 +

a′12c2√
dc + z

)
−
(
e
λ1
2 − e−

λ1
2

)(
a11 +

a12c2√
dc + z

+ 1

)
= 0 (5.77)

Let,

a = 2

√
dc
c2

r1 (5.78)

b = 2

√
dc
c2

(5.79)

c =
4
√
dc
c2

[a11r1 − a′11] +
4
√
dc
c3

[a12r1 − a′12]
√
dc − z
c2

(5.80)

d = a′11 +
a′12c2√
dc + z

, (5.81)

e = a11 +
a12c2√
dc + z

+ 1, (5.82)

r1 =
d

e
(5.83)

From equations 5.76 and 5.77, since a,b,c,d,e are known values, we solve for the equations,

43

(
eλ1 + e−λ1

)
a−

(
e
λ1
2 + e−

λ1
2

)
b = c (5.84)(

eλ1 − e−λ1
)
d−

(
e
λ1
2 − e−

λ1
2

)
e = 0 (5.85)

Further simplifying the above equations,

2 cosh (λ1) a− 2 cosh

(
λ1
2

)
b = c (5.86)

2 sinh (λ1) d− 2 sinh

(
λ1
2

)
e = 0 (5.87)

Squaring on both sides of the above equations,

4 cosh2 (λ1) a
2 + 4 cosh2

(
λ1
2

)
b2 − 8 cosh (λ1) cosh

(
λ1
2

)
ab = c2

4 sinh2 (λ1) a
2 + 4 sinh2

(
λ1
2

)
e2

d2
a2 − 8 sinh (λ1) sinh

(
λ1
2

)
e

d
a2 = 0 (5.88)

Subtracting the above two equations, we get,

4a2 + 4b2 − 8ab cosh

(
λ1 −

λ1
2

)
= c2

cosh

(
λ1
2

)
=

4a2 + 4b2 − c2

8ab
(5.89)

λ1 = 2 cosh−1
(
4a2 + 4b2 − c2

8ab

)
(5.90)

Multiplying 5.66 by r2 and subtracting 5.70 we get,

4a11
√
dcr2

c2
− 4a′11

√
dc

c2
= a′(0)

[(√
dc + z

c2

)
eλ1 − e−λ1

λ1
(r2 − r1)

]
+ b′(0)

[
eλ1 − e−λ1

λ1
(r2 − r1)

]
+(√

dc + z

c2

)(
eλ1 + e−λ1

)
r2 +

(√
dc − z
c2

)(
eλ3 + e−λ3

)
r2−(√

dc + z

c2

)(
e
λ1
2 + e−

λ1
2

)
−
(√

dc − z
c2

)(
e
λ3
2 + e−

λ3
2

)
(5.91)

4a12
√
dcr2

c3
− 4a′12

√
dc

c3
= a′(0)

[
eλ1 − e−λ1

λ1
(r2 − r1)

]
+ b′(0)

[(√
dc − z
c3

)
eλ1 − e−λ1

λ1
(r2 − r1)

]
+(

eλ1 + e−λ1
)
r2 −

(
eλ3 + e−λ3

)
r2−(

e
λ1
2 + e−

λ1
2

)
+
(
e
λ3
2 + e−

λ3
2

)
(5.92)

44

Considering the equations 5.91 and 5.92, we get,

(
eλ3 + e−λ3

) 2√dc
c2

r2 −
(
e
λ3
2 + e−

λ3
2

) 2
√
dc
c2

=
4
√
dc
c2

[a11r3 − a′11]−
4
√
dc
c3

[a12r2 − a′12]
√
dc + z

c2
(5.93)

Rearraging the equation 5.36, we get(
eλ3 − e−λ3

)(
a′11 −

a′12c2√
dc − z

)
−
(
e
λ3
2 − e−

λ3
2

)(
a11 −

a12c2√
dc − z

+ 1

)
= 0 (5.94)

Let,

a = 2

√
dc
c2

r2 (5.95)

b = 2

√
dc
c2

(5.96)

c =
4
√
dc
c2

[a11r2 − a′11]−
4
√
dc
c3

[a12r2 − a′12]
√
dc + z

c2
(5.97)

d = a′11 −
a′12c2√
dc − z

, (5.98)

e = a11 −
a12c2√
dc − z

+ 1, (5.99)

r2 =
d

e
(5.100)

From equations 5.93 and 5.94, since a,b,c,d,e are known values, we solve for the equations,

(
eλ3 + e−λ3

)
a−

(
e
λ3
2 + e−

λ3
2

)
b = c (5.101)(

eλ3 − e−λ3
)
d−

(
e
λ3
2 − e−

λ3
2

)
e = 0 (5.102)

Further simplifying the above equations,

2 cosh (λ3) a− 2 cosh

(
λ3
2

)
b = c (5.103)

2 sinh (λ3) d− 2 sinh

(
λ3
2

)
e = 0 (5.104)

Squaring on both sides of the above equations,

4 cosh2 (λ3) a
2 + 4 cosh2

(
λ3
2

)
b2 − 8 cosh (λ3) cosh

(
λ3
2

)
ab = c2 (5.105)

4 sinh2 (λ3) a
2 + 4 sinh2

(
λ3
2

)
e2

d2
a2 − 8 sinh (λ3) sinh

(
λ3
2

)
e

d
a2 = 0 (5.106)

Subtracting the above two equations, we get,

45

4a2 + 4b2 − 8ab cosh

(
λ3 −

λ3
2

)
= c2 (5.107)

cosh

(
λ3
2

)
=

4a2 + 4b2 − c2

8ab
(5.108)

λ3 = 2 cosh−1
(
4a2 + 4b2 − c2

8ab

)
(5.109)

From the above solutions and equations, we have derived the terms
√
dc+z
c3

,
√
dc−z
c3

,
√
dc
c2
,
√
dc
c3
, λ1, λ3. Using λ1, λ3

we can compute
√
dc using the below formulation,

λ1 =

√
c1 + c4

2
+
√
dc (5.110)

λ3 =

√
c1 + c4

2
−
√
dc (5.111)√

dc =
λ1 − λ3

2
(5.112)

Substituting the above known values in the equations from 5.66 to 5.69 we derive a’(0), b’(0), d’(0), e’(0). Now

dividing the equations 5.21 and 5.24 by c2 , equations 5.23 and 5.22 by c3 and substituting the above derived

known values, we can derive a closed form solution for a(t), b(t), d(t), e(t). Now to derive the translation part of

the affinity, we proceed as below,

From the equations 3.14 and 3.15

e (t)
d2

dt2
c (t)− b (t) d

2

dt2
f (t) = c5δ (5.113)

−d (t) d
2

dt2
c (t) + a (t)

d2

dt2
f (t) = c6δ (5.114)

c5a (t) + c6b (t) = c′′ (t) (5.115)

c5d (t) + c6e (t) = f ′′ (t) (5.116)

Double integrating the above two equations,

c (t) = c5

∫∫
a (t) + c6

∫∫
b (t) + S1t+ S2 (5.117)

f (t) = c5

∫∫
d (t) + c6

∫∫
e (t) + S3t+ S4 (5.118)

where
∫∫

a (t) ,
∫∫

b (t) ,
∫∫

d (t) ,
∫∫

e (t) can be derived from the equations 5.21, 5.23, 5.24, 5.22,

46

∫∫
a (t) =

c2

4
√
dc

[
const1

etλ1

λ21
+ const2

e−tλ1

λ21
+ const3

etλ3

λ23
+ const4

e−tλ3

λ23

]
(5.119)∫∫

b (t) =
c3

4
√
dc

[
const5

etλ1

λ21
+ const6

e−tλ1

λ21
+ const7

etλ3

λ23
+ const8

e−tλ3

λ23

]
(5.120)∫∫

d (t) =
c2

4
√
dc

[
const9

etλ1

λ21
+ const10

e−tλ1

λ21
+ const11

etλ3

λ23
+ const12

e−tλ3

λ23

]
(5.121)∫∫

e (t) =
c3

4
√
dc

[
const13

etλ1

λ21
+ const14

e−tλ1

λ21
+ const15

etλ3

λ23
+ const16

e−tλ3

λ23

]
(5.122)

where the constants const1...const16 are given below,

const1 =

(√
dc + z

c2

)
+

(√
dc + z

c2

)
a′ (0)

λ1
+
b′ (0)

λ1
(5.123)

const2 =

(√
dc + z

c2

)
−
(√

dc + z

c2

)
a′ (0)

λ1
− b′ (0)

λ1
(5.124)

const3 =

(√
dc − z
c2

)
+

(√
dc − z
c2

)
a′ (0)

λ3
− b′ (0)

λ3
(5.125)

const4 =

(√
dc − z
c2

)
−
(√

dc − z
c2

)
a′ (0)

λ3
+
b′ (0)

λ3
(5.126)

const5 = 1 +
a′ (0)

λ1
+

(√
dc − z
c3

)
b′ (0)

λ1
(5.127)

const6 = 1− a′ (0)

λ1
−
(√

dc − z
c3

)
b′ (0)

λ1
(5.128)

const7 = −1− a′ (0)

λ3
+

(√
dc + z

c3

)
b′ (0)

λ3
(5.129)

const8 = −1 + a′ (0)

λ3
−
(√

dc + z

c3

)
b′ (0)

λ3
(5.130)

const9 = 1 +

(√
dc + z

c2

)
d′ (0)

λ1
+
e′ (0)

λ1
(5.131)

const10 = 1−
(√

dc + z

c2

)
d′ (0)

λ1
− e′ (0)

λ1
(5.132)

const11 = −1 +
(√

dc − z
c2

)
d′ (0)

λ3
− e′ (0)

λ3
(5.133)

const12 = −1−
(√

dc − z
c2

)
d′ (0)

λ3
+
e′ (0)

λ3
(5.134)

const13 =

(√
dc − z
c3

)
+
d′ (0)

λ1
+

(√
dc − z
c3

)
e′ (0)

λ1
(5.135)

const14 =

(√
dc − z
c3

)
− d′ (0)

λ1
−
(√

dc − z
c3

)
e′ (0)

λ1
(5.136)

const15 =

(√
dc + z

c3

)
− d′ (0)

λ3
+

(√
dc + z

c3

)
e′ (0)

λ3
(5.137)

const16 =

(√
dc + z

c3

)
+
d′ (0)

λ3
−
(√

dc + z

c3

)
e′ (0)

λ3
(5.138)

In the equations 5.117, 5.118, we have 6 unknowns c5, c6, S1, S2, S3, S4. Now substituting t=0,0.5,1 in these

47

equations and in turn for the double integrals of a(t), b(t), d(t), e(t), we get a linear system of 6 equations with 6

unknowns. Solving them yields us the above unknowns which in turn would help us to calculate c(t), f(t) for any

time t.

48

Chapter 6

Future Work

UAM in 3D The concept of UAM in 2D can be extended to 3D to create smooth and nice interpolations. SAM

was extended to 3D using the idea that, in 3D, the linear part of the affinity L always has at least one real eigenvalue

with an associated eigenvector. Therefore, the problem may be split into a scaling along the direction of that

eigenvector, and a two-dimensional SAM in the directions of the other eigenvectors. This idea can be carefully

studied, but in our case, the size of the matrix is increased by two fold and hence we need two real eigenvalues and

eigenvectors. The problem of finding them and solving them using 2D UAM can be studied to solve the problem

in 3D.

Figure 6.1: SAM computed in 3D

Blended UAMs Multiple UAMs can be blended together to create a polyUAM. Assume we want to interpolate

four control triangles. The triangles are T0, T1, T2 and T3, we build two UAMs with control triangles T0, T1, T2

and T1, T2, T3 respectively. The animation is carried along the first half of the first UAM for time t=0 to t=1/3, at

which time it reaches the triangle T1(time is scaled up by 3/2). From then on, the two UAMs are blended linearly

49

for t=1/3 to t=2/3, at which time they both reach T2 (with same speed-up of 3/2), and from then on the motion

follows the second UAM for t=2/3 to t=1. The resulting motion is not a UAM for the portion between the two

middle triangles because the blending does not provide constant accelerations, but we achieve interpolation of 4

triangles (the procedure could be extended to any number) with trajectories that look pretty smooth and nice. For

future work, this approach can be refined further to produce even more pleasing and nice interpolations.

Figure 6.2: Two UAMs blended together to form the alphabet ’S’

Generalization of ideas SAM was derived using first order ODE’s, UAM is derived using second order ODE’s

by representing the second order ODE in terms of first order ODE and hence there is hope for generalizing these

results for higher order conditions by representing higher order ODE in terms of first order ODE.

Further properties We can study the problem of finding a connection between the data triangles of UAM and

therefore the existence or lack of UAM, geometric and differential properties of the projection of the integral

curves onto (x,y)-space.

50

Chapter 7

Conclusion

The problem of time varying and motion interpolation have been studied in the past and numerous formulations

have been proposed. Methods producing smooth and nice interpolation using co-ordinate free systems providing

some good aesthetic appeal to the artists makes a difference. Steady Affine Motions and Morphs came forward

with an intuitive definition for how good and beautiful a motion should be. We have carried this definition into the

subsequent level to find out if the definition of ”steady” with constant acceleration in local frame still produces

an aesthetic motion created by closed from expressions. We have successfully derived closed form expressions

for motion interpolation with constant acceleration in local frame and two separate cases were studied. In the first

case, we have derived a solution to the problem by setting initial velocity to be zero and in the second case, we

have made use of the flexibility arising out of the initial conditions for a second order ODE which we used to

allow the interpolation of an intermediate affinity at t=0.5. This inclusion has provided us with the flexibility of

interpolating three affinities and this would provide us to generate flexible trajectory in the interpolation. Also

through our observation we have found out that the case of UAM with initial velocity to be zero exists for all

configurations and the interpolation exists. In case of UAM with intermediate affinity, the interpolation exists

always except the case when initial velocity becomes a complex number. We have discussed some of the identified

properties of UAM such as affine invariance, existence of two solutions with initial velocity to be zero and the

other with intermediate affinity, reversible, low footprint trajectories achieved using a constant acceleration factor

and UAM Flips. In the future we intend to solve this problem for 3D and for multiple UAMs blended together

to create a polyUAM which gives a smooth but unsteady solution, currently we have proposed one such solution

for it. We have implemented UAM in a direct manipulation environment which provides numerous interaction

features and also supports a comparative study of UAM with SAM. We believe that the closed form expression

of UAM would provide a robust implementation and its properties such as affine invariance, constant acceleration

would certainly provide a constructive add-on for the approach.

51

Bibliography

[Agoston, 2005] Agoston, M. K. (2005). Computer Graphics and Geometry Modeling - Mathematics, volume

2011. Springer-Verlag New York Inc.

[Alexa, 2002] Alexa, M. (2002). Linear combination of transformations. ACM Transactions on Graphics,

21(3):380–387.

[Alexa et al., 2000] Alexa, M., Cohen-Or, D., and Levin, D. (2000). As-rigid-as-possible shape interpolation.

Proceedings of the 27th annual conference on Computer graphics and interactive techniques SIGGRAPH 00,

pages(3):157–164.

[Barr et al., 1992] Barr, A. H., Currin, B., Gabriel, S., and Hughes, J. F. (1992). Smooth interpolation of orien-

tations with angular velocity constraints using quaternions. In Proceedings of the 19th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’92, pages 313–320, New York, NY, USA. ACM.

[Buss and Fillmore, 2001a] Buss, S. R. and Fillmore, J. P. (2001a). Spherical averages and applications to spher-

ical splines and interpolation. ACM Trans. Graph., 20(2):95–126.

[Buss and Fillmore, 2001b] Buss, S. R. and Fillmore, J. P. (2001b). Spherical averages and applications to spher-

ical splines and interpolation. ACM Transactions on Graphics, 20(2):95–126.

[Cheng et al., 2000] Cheng, S. H., Higham, N. J., Kenney, C. S., and Laub, A. J. (2000). Approximating the

logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl., 22(4):1112–1125.

[Davies and Higham, 2010] Davies, P. I. and Higham, N. J. (2010). A schur–parlett algorithm for computing

matrix functions. SIAM Journal on Matrix Analysis and Applications, 25(2):464.

[Golub and Van Loan, 1996] Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, volume 10. Johns

Hopkins University Press.

[Higham, 1986] Higham, B. N. J. (1986). Newton s method for the matrix square root. Society, 46(174):537–549.

[Higham and Higham, 2000] Higham, D. J. and Higham, N. J. (2000). MATLAB Guide. SIAM.

[Hyun et al., 2002] Hyun, D.-e., Juttlerb, B., and Kim, M.-s. (2002). Minimizing the distortion of affine spline

motions. Graphical Models, 64(2):128–144.

[Kavan et al., 2008] Kavan, L., Collins, S., Žára, J., and O’Sullivan, C. (2008). Geometric skinning with approx-

imate dual quaternion blending. ACM Trans. Graph., 27(4):105:1–105:23.

52

[Kavan and Žára, 2005] Kavan, L. and Žára, J. (2005). Spherical blend skinning: a real-time deformation of

articulated models. In Proceedings of the 2005 symposium on Interactive 3D graphics and games, I3D ’05,

pages 9–16, New York, NY, USA. ACM.

[Kim et al., 1995] Kim, M.-j., Kim, M.-s., and Shin, S. Y. (1995). A general construction scheme for unit quater-

nion curves with simple high order derivatives, volume 29, pages 369–376. ACM Press.

[Kim and Nam, 1995] Kim, M.-S. and Nam, K.-W. (1995). Interpolating solid orientations with circular blending

quaternion curves. Computer-Aided Design, 27(5):1–29.

[Klok, 1986] Klok, F. (1986). Two moving coordinate frames for sweeping along a 3d trajectory. Computer Aided

Geometric Design, 3(3):217–229.

[Llamas et al., 2003] Llamas, I., Kim, B., Gargus, J., Rossignac, J., and Shaw, C. D. (2003). Twister: a space-

warp operator for the two-handed editing of 3d shapes. ACM Transactions on Graphics TOG, 22(3):663.

[Ma et al., 2000] Ma, L., Chan, K. Y. T., and Jiang, Z. (2000). Interpolating and approximating moving frames

using b-splines. In Proceedings of the 8th Pacific Conference on Computer Graphics and Applications, PG ’00,

pages 154–, Washington, DC, USA. IEEE Computer Society.

[Martin and Stephenson, 1990] Martin, R. and Stephenson, P. (1990). Sweeping of three-dimensional objects.

Computer-Aided Design, 22(4):223–234.

[Meini, 2004] Meini, B. (2004). The matrix square root from a new functional perspective: Theoretical results

and computational issues. SIAM Journal on Matrix Analysis and Applications, 26(2):362.

[Roberts et al., 1988] Roberts, K. S., Bishop, G., and Ganapathy, S. K. (1988). Smooth interpolation of rotational

motions.

[Roschel, 1998] Roschel, O. (1998). Rational motion design- a survey. Computer-Aided Design, 30(3):169–178.

[Rossignac and Vinacua, 2011] Rossignac, J. and Vinacua, A. (2011). Steady affine motions and morphs. ACM

Trans. Graph., 30(5):116:1–116:16.

[Rossignac and Kim, 2001] Rossignac, J. R. and Kim, J. J. (2001). Computing and visualizing pose-interpolating

3d motions. Computer-Aided Design, 33(4):279–291.

[Shoemake, 1985] Shoemake, K. (1985). Animating rotation with quaternion curves. In Proceedings of the 12th

annual conference on Computer graphics and interactive techniques, SIGGRAPH ’85, pages 245–254, New

York, NY, USA. ACM.

[Shoemake and Duff, 1992] Shoemake, K. and Duff, T. (1992). Matrix animation and polar decomposition. In

Proceedings of the conference on Graphics interface ’92, pages 258–264, San Francisco, CA, USA. Morgan

Kaufmann Publishers Inc.

[Wang, 1997] Wang, W. (1997). Robust computation of the rotation minimizing frame for sweep surface model-

ing. Computeraided Design, 29(5):379–391.

53

[Wang and Joe, 1993] Wang, W. and Joe, B. (1993). Orientation interpolation in quaternion space using spheri-

cal biarcs, pages 24–32.

[WK, 1882] WK, C. (1882). Mathematical papers. Macmillan and co, London.

54

	Introduction
	Motivation
	Affine Motions

	State of the Art
	Special case of Screw Motions
	Numerical solutions for extracting roots and logarithms of linear transformations
	Unsteady morphs
	Rigid body transformations
	Interpolations of L
	Steadiness and Rigidity

	Steady Affine Motions

	Uniform Accelerated Motions
	Introduction
	Affine Spaces, Affine Frames and Affine Transformations
	Definition
	Case 1: Initial Velocity set to zero
	Case 2: Intermediate Affinity
	Comparison of SAM and biSAM
	Properties

	Implementation
	Software
	Functionalities

	Second kinetic fundamental form of affine motions
	Future Work
	Conclusion

