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Abstract

Nowadays, there is an active field of research in neuroscience trying to find
relations between neurofunctional abnormalities of brain structures and neu-
rological disorders. Previous statistical studies on brain functional Magnetic
Resonance Images (fMRI) have found Attention Defficit Hyperactivity Dis-
order (ADHD) patients are characterized by reduced activity in the inferior
frontal gyrus (IFG) during response inhibition tasks and in the Ventral Stria-
tum (VStr) during reward anticipation tasks.

Interpreting brain image experiments using fMRI requires analysis of com-
plex data and different univariate or multivariate approaches can be chosen.
Recently, one analysis approach that has grown in popularity is the use of
machine learning algorithms to train classifiers to discriminate abnormal be-
havior or other variables of interest from fMRI data.

The purpose of this work is to apply machine learning techniques to per-
form fMRI group analysis in an adult population. We propose a multivariate
classifier using different discriminative features. Furthermore, we show how
temporal information of fMRI data can be taken into account to improve the
discrimination.

We demonstrate that our new approach is able to diagnose the ADHD
characteristics based on the activation in the executive functions. Previous
results on the response inhibition task did not find differences between acti-
vation responses. Opposite to these results, we achieve accurate classification
performance for this task. Moreover, in this case, we show that classification
rates can be significantly improved by incorporating temporal information
into the classifier.
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Chapter 1

Introduction

Attention-deficit /hyperactivity disorder (ADHD) is a development disorder
characterized by inattentiveness, motor hyperactivity and impulsiveness and
it represents the most prevalent childhood psychiatric disorders. It is esti-
mated that in a 50% of the cases its symptoms persists into adulthood. These
symptoms come from disruptions in executive functions, especially poor inhi-
bition control and abnormalities in the motivational system related to reward
anticipation, each one developed in a Region Of Interest (ROI). The first, de-
veloped in Inferior Frontal Gyrus (IFG) and the second in Ventral Striatum
(VStr). Both functions, response inhibition and reward anticipation, can be
addressed in a subject with the specifics tasks which called Go-NoGo task
and Monetary Incentive Delay (MID) task as done in [1].

Functional Magnetic Resonance Imaging (fMRI) is a non invasive tech-
nique based in the Blood Oxygenation Level Dependent (BOLD) effect [2].
It has enabled scientists to look into the active human brain by providing
sequences of 3D brain images. This has revealed exciting insights into the
spatial and temporal changes underlying a broad range of brain functions,
such executive functions or brain states.

A wide range of statistical methods are being increasingly applied to the
analysis of fMRI time series. For example, Statistical Parametric Mapping
(SPM)[15] is a tool based on the General Linear Model (GLM) [3] which
can fit the response signal from a region of the brain given an experiment
design [3]. These methodological developments are providing cognitive neu-
roscientists with the opportunity of tackling new research questions that are
relevant for the understanding of the functional organization of the brain.
fMRI data were originally analysed in statistics and machine learning. In
practice,the analysis depend on how well the classifier’s implicit assumptions
hold in the domain in which is applied and on how much data are available

[4]-



In the literature about machine learning framework most of the approaches
for fMRI data analysis are multivariate classifiers based on dimensionality
reduction, on feature selection techniques and on the signal of the region
without using GLM. These studies are always related to detect brain states
in a subject when he receive a specific stimulus. Some approach is made
using the GLM obtained from a experiment design as in [5], but in this case
they do not use temporal information and also is for brain state applications.
To our knowledge, [6], which is a recent study, is the first study that learning
on fMRI data that is used for classification purposes. They perform a group
analysis, separating drug addicted subjects from healthy non-drug-using con-
trols, and it is performed explicitly on temporal information observed fMRI
time sequences in a ROIL.

Regarding SPM, once the subject has been exposed to the experimental
task and the fMRI data is acquired, it performs a statistical analysis about
the signal in a ROI. It fits the ROI to an activation pattern (activation-rest-
activation-...) based, as we said, on GLM. In particular, given an experiment
design it return as an output all the parameters from the GLM. These are, for
example the beta parameters, which are the parameters from the regressors
in the BOLD signal. Most of beta parameters, each reflecting the activation
level (effect size) of the ROI, come from specific conditions of the experiment
(for example when a subject is waiting a signal to do something or when he
gains a reward). Then the contrasts, also obtained by SPM, allow analysing
the differences between two (or more) activation patterns defined by betas
(for example, which is the effect size with a specific condition respect to the
rest condition). Finally, fitted data gives the activation pattern for a ROI
modelled by GLM with specific contrast.

In addition to analyse the BOLD signal in a single subject, SPM also is
able to perform a subject group comparison (second level analysis). In [1],
authors use SPM to see, first if there is activity (i.e. the activation pattern is
significant) in each ROI (first level analysis) and second, to perform a second
level analysis to find significant differences in BOLD signal between ADHD
patients (adult medical-naive patients) and controls (group analysis). As a
result, they find that activation pattern in both ROIs, IFG and VStr, during
the tasks; there is a reduced VStr activity in the ADHD group; and they did
not find significant differences between groups in IFG activity.

Our purpose is to apply machine learning techniques to perform the group
analysis using data in [1]. We propose a multivariate classifier based on
the GLM parameters obtained in the first level analysis. We use different
features: the beta parameters, the contrasts, and also temporal features
such as fitted data. Thereby, we want to show if using a machine learning
approach and analysing the temporal changes we can obtain an accurate
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classifier between the two groups, ADHD patients and controls. Thus, we
want to validate the hypothesis of [1]| for VStr activity and IFG activity.



Chapter 2

Problem definition

2.1 ADHD and Functionality of ADHD

What i1s ADHD?

Attention-deficit /hyperactivity disorder (ADHD) is a syndrome character-
ized by symptoms of inattention, hyperactivity, and impulsivity. This syn-
drome is one of the most prevalent childhood psychiatric disorders. Around
5% of children are diagnosed worldwide [7].

Although symptoms commonly tend to improve with age, only a minority
of ADHD children attain to complete remission in adult life [8]. In fact, a re-
cent 10-year follow-up study indicates that symptoms persist into adulthood
in more than 50 % of cases, and reach complete remission around adult life.

Given the disabling nature of ADHD, it is important to understand the
neural base of the disorder, particularly in those subjects that do not ame-
liorate with age.

IFG - VStr

Figure 2.1: At Left, left and right Inferior Frontal Gyrus. At Right, Ventral
Striatum VStr. Bothe images are obtained using Marsbar tool from Matlab
and correspond to one of the subjects for the experiment.



Biology and analysis
Based mostly on studies of children with ADHD, current accounts of the
disorder propose the implication of at least two relatively independent but
not mutually exclusive ADHD endophenotypes': those characterized by dis-
ruptions in executive functions, especially poor inhibition control, and those
characterized by abnormalities in the motivational system, particularly in
relation to reward anticipation.

Previous functional magnetic resonance imaging (fMRI) studies of ADHD
have predominantly focused on the assessment of executive functions, in par-
ticular response inhibition, which is often addressed using the Go-NoGo task.
This paradigm has been shown to rely on inferior frontal functioning (Figure
2.1) in the healthy population, and ADHD imaging studies have consistently
found hypoactivation in this region during childhood phase of the disorder
[9].

On the other hand, the Monetary Incentive Delay (MID) task is used in
ADHD research to investigate the neural bases of reward management. It
is used to target reward-related regions such as the Ventral Striatum (VStr)
(Figure 2.1) and it has been used by different groups to study motivational
processes in ADHD. To date, the few studies assessing reward anticipation
in ADHD have reported reduced recruitment of the VStr in both child and
adult patients as compared to control subjects, and nearly all such studies
have observed a negative association between VStr activation and hyperac-
tive/impulsive symptoms [10, 11, 12].

Two new paradigms has emerged related to the ADHD studies which are
also in [1]. The first is that both the Go-NoGo and MID task have previously
been applied in ADHD research, but no studies have implemented those
tasks in an intra-subject manner. The intra-subject application of the two
tasks is important to exclude the variability between subjects and between
studies. Secondly no previous fMRI studies have applied either of these tasks
in adults with ADHD who have never received medication for their condition.
Since methylphenidate /atomoxetine administration has been shown to render
short-term and long-term synaptic, structural, and functional changes in key
region like inferior frontal gyrus (IFG) [13, 14] and VStr , the assessment of
medication-naive patients is essential to relate IFG and VStr alterations to
the neurobiology of the disorder.

In [1], the paradigms cited above are addressed. They explore weather
medication-naive adults with ADHD exhibit behavioural and neural distur-

!Endophenotype is a genetic epidemiology term which is used to parse behavioral symp-
toms into more stable phenotypes with a clear genetic connection. A phenotype is the
composite of an organism’s observable characteristics or traits: such as its morphology,
development, biochemical or physiological properties or behavior.



bances in both response inhibition and reward anticipation. Their hypothesis
is that unmedicated adults with ADHD show deficient IFG activation during
response inhibition and deficient VStr activation during reward anticipation.
However in the results, they only observe reduced bilateral VStr activity in
adults with ADHD during reward anticipation and no differences are detected
in TFG activation during response inhibition task.

In the present study, we propose to use machine learning techniques in
the same fMRI data and the same paradigms used in [1]. Our aim is to
apply these new techniques to their result on reward anticipation and check
the hypothesis that unmedicated adults with ADHD will show deficient IFG
activation during response inhibition.



2.2 Medical Imaging Techniques

2.2.1 MRI

Magnetic resonance imaging (MRI) is a no invasive technique which allows
to study the body structure under different parameters and any spatial ori-
entation.

As it is stated in [2], MRI uses nuclear magnetic resonance (NMR) signals
to create images of the brain and uses hydrogen nuclei as the basis for the
signal.

Elementary particles (electrons, protons and neutrons) have a quantum
property called spin. For a particular atom, these particles combine each
other in pairs of opposite spin. The hydrogen nuclei’s spin make them to
behave like small magnetic dipoles which is the basis for the NMR signal.

Figure 2.2: Water molecule

Hydrogen is chosen because is the most abundant nuclei with that spin
in body tissue due to the water. Humans composed by a between 60 and 70
percent water and it is formed by a particle of hydrogen and two oxygen as
is shown in Figure 2.2

Note that the following is a classical physics description of a phenomenon
that can only be accurately described by quantum physics. While we cannot
really know how individual protons are behaving, this is an approximation
of the net action of a lot of protons, just useful for visualization.



Spin axis

magnetic dipole

Figure 2.3: The magnetic field B, exerts a torque on a nuclear magnetic
dipole that would tend to make it align with By. However, because the nu-
cleus also has angular momentum (spin), it instead precesses like a spinning
top at an angle to the gravitational field. The precession frequency v is
proportional to the magnetic field and is the resonant frequency of NMR. 2]

In MRI, the brain is placed in string magnetic field B. Hydrogen nuclei
(like small magnets) align with the magnetic field producing their own net
longitudinal magnetization (in the same direction as B). This alignment, a
relaxation towards the equilibrium state, occurs with a time constant T1.
Full alignment is never reached and the nuclei precess around the axis of the
field at a frequency (v) proportional to the strength of the magnetic field
(Figure 2.3). The precession frequency (v), also called Larmor frequency, is
given by:

v="B (2.1)

where ~ is a constant (the gyromagnetic ratio equal to 42.6Mz/T for the
hydrogen nucleus). v = 128 MHz in a 3 Tesla? field.

2The Tesla (symbol T) is the International System of Units (SI) derived unit of magnetic
flux density.
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Figure 2.4: A sample is placed in a large magnetic field By, and hydrogen
nuclei partially align with the field creating a net magnetization M. In the
transmit part of the experiment an oscillating current in a nearby coil creates
an oscillating RF magnetic field in the sample which causes M to tip over
and precess around By. In the receive part of the experiment, the precessing
magnetization creates a transient oscillating current (the NMR signal) in the
coil

Next in MRI, a radio frequency pulse (generated by an oscillating current
in a coil) is transmitted to the sample at the resonant frequency. The Ra-
dio Frequency (RF) pulse tips over the acquired longitudinal magnetization
by 90 degrees into the transverse plane. The magnetization now precesses
around B in the transverse plane (Figure 2.4). The precessing nuclei absorb
that energy and re-emit a portion of it back at the same frequency, this is
the detected signal. Due to this precessing transverse magnetization, a de-
tector located in the transverse plane will feel a small oscillating magnetic
field. The changing magnetic field induces a current in the detector coil
(electromagnetic induction) that can be measured.

The resulting MR image will be an image of the transverse magnetiza-
tion of hydrogen nuclei at the time when the signal is detected. The trans-
verse magnetization is a transient phenomenon and now we will see how the
strength of the signal depends critically on timing parameters during imag-

ing. [2]
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Free Induction Decay (FID)

NMR Signal

T, Time

Figure 2.5: The FID. After a 90° RF pulse tips the longitudinal magnetization
into the transverse plane, a detector coil measures an oscillating signal which
decays in amplitude with a time constant T2 in a perfectly homogeneous
magnetic field. The plot is not to scale; typically the signal will oscillate
more than a million times during the interval T2. [2]

After the magnetization is tipped by the RF pulse, the transverse com-
ponent (and thus the signal) decays with a time constant T2 and the longi-
tudinal component regrows (towards equilibrium) with a time constant T1.
The signal decay is called Free Induction Decay (FID) and a plot example is
shown in Figure 2.5.

As shown in Figure 2.6, in a MR imaging sequence successive RF pulses
are transmitted and successive FID signals are measured. The strength of
the signal measured depends critically on the imaging parameters TE (time
between RF pulse and measurement) and TR (time between successive RF
pulses).

The time constants T2 and T1 are on the order of one second but the
actual rates depend on intrinsic properties of the tissue surrounding the nu-
clei. As a result, the strength of the signal will vary for different body tissues
with different intrinsic T2 and T1 values (i.e. gray matter compared to white
matter) creating the primary contrast in an MR image of the brain. Figure
2.7 shows MR images of the same anatomical section showing a range of
tissue contrasts varying T1, T2 and also TR and TE. When the contrast can
be manipulated by varying TR and TE:

e If TR is short, the longitudinal magnetization will not have a chance
to fully regrow between pulses. The size of the next FID signal will
be reduced (because there is less magnetization to tip) by an amount
that depends on the T1 of each tissue (see Figure 4). If TE is also
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short, little T2 decay will have occurred before measurement. Thus,
the contrast in the MR image will depend primarily on the intrinsic T1
values of the tissues. Such an image is said to be T1-weighted.

e If TR is long, the longitudinal magnetization will fully regrow between
pulses and T1 will provide no image contrast. If TE is long enough for
some (but not all) T2 decay occur, then the signal strength will depend
on the intrinsic T2 values of the tissues. The resulting image is said to
be T2-weighted.

e If TR is long, so that the magnetization fully regrows between pulses,
and TR is short, so that Little T2 decay occurs before measurement,
then the signal will depend little on the T1 and T2 values of the tissue.
Rather it will depend absolute strength of the acquired magnetization
in each tissue (which depends primarily on proton density). The re-
sulting image is said to be density weighted.

MRI is not based on a single parameter as the attenuation coefficient
of X-ray, but some independent parameters like TI, T2, TR and TE vary
considerably from one tissue to another in MRI. While the absorption co-
efficient of X-rays varies only 1% between different tissues, the spin density
and relaxation time T1 of these tissues differ by 20-30%. The T2 relaxation
time differs by 40% for the same tissues. These differences are responsible
for its excellent low-contrast resolution which is the main advantage of this
technique.
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Effect of Repetition Time (TR)

long TR

I
short TR i

NMR Signal

long TR

1-e-TRT;

~—/short IR

Longitudinal Magnetization

T Time

Figure 2.6: The effect of Time Repetition (TR). Repeated RF pulses generate
repeated FID signals, but if the TR is short, each repeated signal will be
weaker than the first (top). The magnitude of the signal with a 90° RF pulse,
is proportional to the magnitude of the longitudinal magnetization just prior
to the RF pulse. After a 90° RF pulse the longitudinal magnetization recovers
toward equilibrium with a relaxation time T1(bottom). If this recovery is
incomplete because TR<T1, the next FID signal is reduced. [2]
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T)-weighted Density-weighted T,-weighted
(TR=600, TE=11) (TR=3000, TE=17) (TR=3800, TE=102)

Figure 2.7: In the first image (left to right) Cerebrospinal Fluid (CSF) is
black, while in the last image CSF is bright. Contrast is manipulated by
adjusting several parameters during image acquisition, such as the repetition
time TR and the echo time TE (times given in milliseconds), which control
the sensitivity of the signal to the local tissue relaxation times T1 and T2,
and the local proton density. [2]

MRI Voxels
‘; ‘ Voxel Vy
: Voxel V,
Voxel V4

Figure 2.8: Here there is a visual representation of voxels from a MRI.

In the way to represent a MRI, are used small geometric elments called
vozels. A wozel is a volumetric pixel representing a value on a regular grid
three dimensional space and it is used for the visualization and analysis of
medical and scientific data. MRI is a 3D image and formed by a lot of small
cubes as is shown in 2.8.
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2.2.2 Functional MRI

Visual Stimulation: 3T BOLD

BOLD change (%)

o S

0 10 20 30 40 50 60
TimeBL

Figure 2.9: Example BOLD response in the visual cortex measured at 37T.
Subjects wore goggles that flashed a grid of red lights at 8 Hz. The stim-
ulus (indicated by a horizontal bar) lasted for 20 sec, followed by 40 sec of
darkness. The data shows the average response of 32 cycles of stimulus/rest
for 3 subjects. Characteristic features of the BOLD response are a delay of
a few seconds after the start of the stimulus, a ramp of about 6 sec up to a
plateau, and a post-stimulus undershoot before the signal returns to baseline

Functional MRI (fMRI) is a non-invasive technology born in 1990 which
goal is to understand the complex relationships between neuronal activity,
metabolism, and blood flow. Until now, the accumulating evidence suggests
that the blood oxygenation response is roughly a linear function of neuronal
activity (at least to a first approximation).

The basic idea behind fMRI is simple: we measure a series of MRIs (like
a movie) and look for small changes in MR signal intensity over time caused
by changes in brain activity. This change in the MR signal depends on two
factors:

e First, brain activity is accompanied by a local increase in blood flow
that supplies oxygen at a rate faster than its consumption. As a re-
sult of the oversupply, brain activity leads to an increase in the local
concentration of oxygenated haemoglobin compared to de-oxygenated
haemoglobin in venous blood.

e Second, deoxygenated hemoglobin is paramagnetic and attenuates the
MR signal more quickly than oxygenated hemoglobin (because it gen-
erates local field inhomogeneities). As a result, the increase in the ratio
of oxygenated /deoxygenated hemoglobin leads to a local increase in the

16



MR signal (the image becomes brighter). This change in signal inten-
sity is called the Blood Ozygenation Level Dependent (BOLD) effect.
An example of BOLD effect is shown in Figure 2.9

Figure 2.10: An axial plane of fMRI in different time points.

fMRI as MRI is represented by wvozels and fMRI is a set of MRIs (in
consecutive different time points) measuring intensity changes in a same voxel
across the time. Thus MRI studies brain anatomy while fMRI studies brain
function. A single voxel’s response signal over time is called its timecourse.
In Figure 2.10 there is an example of intensity changes from a group of voxels.
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Chapter 3

State of the Art

The analysis of brain activation experiments by means of fMRI data was
originally faced using statistics studies. Different useful softwares, as the
powerful Statistical Parametric Mapping (SPM) [15], have helped in this
work carried out mainly by phycologist and medical doctors, which are used
to work in the statistical field.

Different univariate analysis approaches have been presented to analyse
several mental disorders [16]. Functional MRI has been a standard tool for
visualizing regional brain activations during sensorimotor or cognitive tasks.
The properties of fMRI data are well understood and, usually, modeled by
using General Linear Model (GLM) [17, 18, 19]. GLM based approach con-
sists on the following: fMRI time series data are fitted to an a priori defined
reference function; the fitting parameters are then contrasted to produce a
test statistic at each voxel. In [20], fMRI data are widely processed using
a general linear model (GLM) based approach. Assuming linear brain re-
sponses to the functional stimuli and modelling each voxel’s time series with
a canonical HRF |21, 22|, this univariate GLM approach may by subopti-
mal for fMRI data analysis. To consider the HRF discrepancies, a HRF
model-free approach is highly preferred for fMRI data analysis.

Recently, machine learning algorithms have grown in popularity to anal-
yse behaviours and other variables of interest from fMRI data. However,
performance of machine learning techniques, in practice, will depend on how
well the classifier’s implicit assumptions hold in the domain in which is ap-
plied and on how much data are available [4].

Following that, [23] states that fMRI data analysis methods can be roughly
divided into two main classes: the hypothesis-driven methods and the ex-
ploratory methods. The hypothesis-driven fMRI data analysis methods, rep-
resented by the conventional GLM, have a strictly defined statistical frame-
work for assessing regionally specific activations but require prior brain re-
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sponse modeling that is usually hard to be accurate [24]. On the contrary,
exploratory methods, like the support vector machine (SVM), are indepen-
dent of prior hemodynamic response function (HRF). In [20], the hybrid
SVM-GLM combines both to take the advantages of both kinds of meth-
ods. SVM is used to learn the data-driven response function and GLM is
applied to fitted the signal. SVM-GLM showed better results than regular
GLM for detecting the sensorimotor activations. Moreover, SVM is a machine
learning-based auto-classification method which has been demonstrated to be
useful for analysing neuroimaging data in many applications. Particularly,
it has shown good promise for exploring the spatial brain discriminance pat-
terns (SDP) between different populations or between different brain states
[25, 20, 26, 27, 6, 28, 29, 30].

On the other hand, the fMRI data are multivariate in nature since each
fMRI volume contains information about brain activation at thousands of
measured locations (voxels). Multivariate techniques have been applied to
neuroimage data in many studies (for review, see [31]). For example, [18]
introduced a multivariate approach using standard multivariate statistic and
GLM to make inferences about effects of interest and canonical variates anal-
ysis (CVA) to describe the important feature of these effects. [32] describes
a multivariate method for analyzing fMRI data based on independent com-
ponents analysis (ICA) [33], which can be used to distinguish between non-
task-related signal components, movements and other artifacts, as well as
consistently or transiently task-related fMRI activations.

The previous use of classifiers for fMRI data analysis can be divided in
two groups. The first group applied classifiers after preprocessing using a
feature selection methods based on prior hypotheses [27, 34, 25, 35]. Also
in [36, 37, 38, 39] a multivariate feature selection has also been applied to
fMRI data. In these studies, the data were encoded as a vector of features,
one feature for each voxel (hundred of thousands of features). Because of the
high dimensionality of this feature vector, a feature selection method based
on prior hypotheses was applied to the data set to reduce the dimensionality,
and afterwards the selected features were used as inputs to a classifier, that
is, the discriminating regions were chosen a priori and given as input to the
classifiers. The second group used Principal Components Analysis (PCA) or
Singular Value Decomposition (SVD) analysis as dimensionality reduction
method and applied the classifier on PCA/SVD basis without prior selection
of spatial features, (e.g. [40, 41, 42, 43]|). They introduced the concept
of models of functional activation for classification. In [30], authors use
a SVM algorithm to perform multivariate classification of brain states from
whole fMRI volumes without prior selection of spatial features. This classifier
predicts the subject’s instantaneous brain state.
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In [5]], the response pattern from stimuli with multivariate classifier is
decoded in specified ROI using beta values. They compare 6 multivariate
classifiers and investigate how response how response-amplitude estimated
(beta-value) affect classification performance. The classifiers are: pattern
correlation classifier, k-nerest neighbours, Fisher’s linear discirminant, Gaus-
sian naive Bayes, and linear and non-linear (radia-basis-function kernel)
SVM. Each method is evaluated for different combinations of several variables
(multivariate) as: ROI, pattern normalization, cross-validation scheme, cat-
egorical stimulus. Also in the literature, [44, 37|, some pattern-information
studies used beta-estimates to define the response patterns

In [45], there is an analytical strategy focused on the mapping of a
“stimulus-single location response”. A statistical pattern recognition exploits
and integrates the information available at many spatial locations thus allow-
ing the detection of perceptual and cognitive differences that may produce
only weak single-voxel effects. Analysing the relation between a stimulus and
the responses simultaneously measured at many locations (spatial response
patterns or multivolxel response patterns) allow to localize effects that may
remain invisible to the conventional analysis with univariate statistical meth-
ods. This approach is named Multivariate Pattern Analysis (MVPA). In this
approach, a spatially invariant model of the BOLD response is fitted indepen-
dently at each voxel’s time course (massively univariate analysis), and using
machine learning and pattern recognition techniques (SVM) differences be-
tween estimated activation levels during two or more experimental conditions
are tested.

From the point of view of group analysis, to our knowledge, [6] is the first
approach in which learning on fMRI data is performed explicitly on temporal
information for classification. The application is group analysis: separating
drug addicted subjects from healthy non-drug-using controls based on their
observed fMRI time sequences. By selecting discriminative features, group
classification can be successfully performed on the case of study, although
training data are exceptionally high dimensional, sparse and noisy fMRI se-
quences.
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Chapter 4

Methodology

4.1 Statistical Parametric Mapping

Inferences in neuroimaging may be about differences expressed when com-
paring one group of subjects to another or, within subjects (intra-subject),
changes over a sequence of observations. They may pertain to structural dif-
ferences (e.g. in voxel-based morphometry) or neurophysiological measures
of brain functions (e.g. fMRI).

As it is stated in [3]| Statistical parametric mapping (SPM 1) is a para-
metric map of physiological or physical parameters (e.g. parametric maps
of regional Cerebral Blood Flow (rCBF) or volume). SPM is used to iden-
tify regionally specific effects in neuroimaging data and is a prevalent ap-
proach for characterizing functional anatomy, specialization and disease-
related changes. Specifically SPM is a voxel-based approach, employing
topological inference, to analyse regionally specific responses to experimen-
tal factors. In order to assign an observed response to a particular brain
structure, or cortical area, the data are usually mapped into an anatomical
space.

Functional mapping studies are usually analysed with some form of SPM?2.
Thus, SPM entails the construction of continuous statistical processes to
test hypotheses about regionally specific effects. SPMs are images (Figure
4.1) or fields with values that are, under a null hypothesis, distributed ac-
cording to a known probability density function, usually the Student’s t or
F-distributions. These are known colloquially as t- or F'-maps.

LSPM is also referred to the software package from Matlab and it is used to compute
statistical parametric map

2Parametric statistics is a branch of statistics that assumes that the data has come
from a type of probability distribution and makes inferences about the parameters of the
distribution.
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Over the years, statistical parametric mapping has come to refer to the
conjoint use of the General Linear Model (GLM) and Random Field Theory
(RFT)3.

This provides analysis and make classical inferences about topological
features of the SPM. The GLM is used to estimate some parameters that
explain continuous data in exactly the same way as in conventional analyses
of discrete data. RFT is used to resolve the multiple comparison problem
making inferences over the volume analysed.
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Figure 4.1: Statistical Parametric Map extracted from SPM interface which
represents the region of the brain which is activated as experimental task
response. [15]

4.2 GLM and SPM Analysis

The GLM is a strategy to express a measure (such as rCBF) in a experiment
conducted. The GLM is based in the equation

Y=XB+e¢ (4.1)

3A random field is a generalization of a stochastic process which is a collection of
random variables. Instead of describing a process which can only evolve in one way (as in
the case, for example, of solutions of an ordinary differential equation), in a stochastic or
random process there is some indeterminacy
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that expresses the observed response variable in terms of a linear combination
of explanatory variables X plus a well behaved error term e.

The matrix X that contains the explanatory variables (e.g. designed
effects or confounds) is called the design matriz. Each column of the de-
sign matriz corresponds to an effect that build the experiment or that may
confound the results. These are referred to as explanatory variables or re-
gressors. The relative contribution of each of these columns is assessed using
standard maximum likelihood and inferences about these contributions using
t or F-statistics, depending upon whether one is looking at a particular linear
combination, or all of them together.

w+ Bl Action Action Action
n Rest Rest Rest Rest
| Il L
| [ | | | |
t t t t t. ts
Y] 01 S
Vv | V0L 8
. & o1 |8 F s
Ys 11 B4
Y5 0 1. &5

Figure 4.2: It is a simple case (univariate approach, i.e. for only one voxel)
where GLM represents an experimental task with action and rest condition.
In This case there are only 2 regressors. In his case if we want to test the
activation pattern, we need to compare the condition action and condition
rest, so the contrast used would be [1, —1].

Each column [ from the design matrix X has associated a parameter which
is the [th element from B. Each element from B is called 8. Some of these
parameters will be of interest (e.g. the effect of a particular sensorimotor or
cognitive condition or the regression coefficient of haemodynamic responses
on reaction time). This means that any condition effect of interest can be
represented using its correspondent [ (Figure 4.2 shows the simplest case
where the design matrix represents an experimental task). Each parameter
of interest also reflects the activation level (in terms of rCBF) for a specific
condition, this is also called the effect size for this condition. The remaining
parameters will be of no interest and pertain to confounding effects (e.g. the
effect of being a particular subject or the regression slope of voxel activation
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on global activity), these parameters are removed by SPM and are not shown
in the design matrix used to do the analysis.

Is needed to keep in mind that it’s an experiment to measure a response
variable which is the rCBF at a particular voxel Y; where j = 1,..., J indexes
the observation, and Yj is the jth element from the vector Y. Suppose now
that, for each observation, we have a set of L (L < J) explanatory variables
(each measured without error) denoted by z;;.

Then GLM explains the response variable Y; in terms of linear combination
of the explanatory variables plus an error term as follows:

Y;’:leﬂl+-"+leﬁl+“-+ijﬁL+€j (42)
Here the 5, [ = 1,..., L, are (unknown) parameters, corresponding to
each of the L explanatory variables ;. The errors ¢; are independent and

2 idd

identically normal distributed with zero mean and variance o, written ¢; ~

N(0,0?).

The design matrix X defines the experimental design and the nature
of the hypothesis testing and Y is the measured response. The goal is to
estimate 3 parameters.

4.2.1 Parameter Estimation

Usually, the simultaneous equations implied by GLM (with € = 0) cannot be
solved, because the number of parameter L is typically less than the number
of observationsJ. Therefore, some method of estimating parameters that
'best fit” the data is to required. This can be achieved by the method of
ordinary least squares.

Denote the set of parameters estimates by § = [51, . ,BL]T. Those
parameter lead to fitted values § = [Yi,...,Y;]T = X3, where X is the
design matrix and giving the residual errors € = [ey,...,e,]T =YV —Y =
Y — XB. The residual sum-of-squares S = 23'721 6? = €’¢ is the sum of
squares differences between the observed and fitted values*. The least squares
estimates are the parameter estimates which minimize the residual sum-of-
squares, i.e.:

J
S:Z(Y; _:Ujlgl —...—.I'jLBL)Q (43)
j=1

4¢T¢ is the Lo norm which is equivalent to the distance between the model and the

data
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And this is minimized when:

J

aﬁl 2];1 $]l le/Bl — l’ngL) = O (44)

This equation is the ' row of XY = (XTX)A3. Thus, the least squares
estimates, denoted by [, satisfy:

XTy = (XTX)p (4.5)

For the GLM, the least squares estimates are the mazimum likelihood
estimates. If (XTX) is invertible, which it is if, and oly if, the design matrix
X is full rank, then the least squares estimates are:

g=(X"X)"'XTy (4.6)

4.2.2 Contrasts

For an independent and identical error, the residual variance o2 is estimated

by the residual sum-of-squares divided by the appropriate degrees of freedom:

- X2
02 = <€ g2 —~2 where p = rank(X) and X the design matrix.
p

-p
It is not too difficult to show that the parameter estimates are normally
distributed: if X is full rank then 5 ~ N (8, 02(X7X)~1). From this it follows
that for a column vector ¢, named contrast vector containing L weights:

'S~ N(B, o2 (XTX) ) (4.7)
Furthermore, 5 and 2 are independent (Fisher’s law). Thus, prespecified
hypothesis concerning linear combination of the model parameters c'/3 can
be assessed using:

CTB —c'p
V2T (XTX) e

~ty, (4.8)
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where ¢;_, is a Student’s t-distribution with J — p degrees of freedom. For
example, the hypothesis H : ¢/ 8 = d can be assessed by computing

B CTB —d
\/5'20T(XTX)_1C

(4.9)

and computing a p-value by comparing 7" with a ¢-distribution having J — p
degrees of freedom. In SPM, all null hypotheses are of the form ¢'3 = 0.

This allows one to test the null hypothesis, that all the estimates are zero
when is needed to show the significance of activation pattern for a specific
condition. The t-statistic uses a contrast (a linear combination expressed as
a vector specifying the contrast weights). These contrasts allow to compare
the difference in responses between some conditions in the experimental task,
or to see if the activation the significant for only one condition.

While beta parameters of interest (section 4.2) from the GLM show the
effect size (activation level) for a specific condition, the contrast is able to
compare the activation level from two or more beta parameters of interest.
An example of a contrast weight vector would be [1,—1,0,...,0] to compare
the difference in responses evoked by two conditions, modelled by the firsts
two condition-specific regressors in the design matrix (defined by 51 and 5,).
Sometimes is needed to analyse if the effect size in a voxel is significant for
a specific condition, which means if there is activation for that condition
in that voxel, in this case the contrast is [0,...,1;,...,0], where [th is the
regressor corresponding to that condition.

4.2.3 Convolution, Noise and Filtering

A timecourse (section 2.2.2) defined by a voxel signal typically has some
unwanted signal called noise, produced by the scanner, random brain activity
and similar elements, which are big as the signal itself (Figure 4.3). These are
removed from fMRI data when is neeeded to analysed only the data included
in the experimental design.
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Figure 4.3: Example to show the noise in a signal. Both figures represent the
same timecourse signal for a voxel. In the left the exactly signal extracted
from the intensity of the voxel during timeis presented and in the right is the
signal removed the noise (the dashed line is the fitted data and the solid line,
the adjusted data), in this case we can appreciate a clear activation pattern
of the signal. [3]

fMRI time-series can be viewed as a linear mixture of signal and noise (as
explained before the signal would correspond to the parameters of interest,
and the noise the remaining parameters which are not shown in the design
matrix). Since data is a mixture of activation and noise that share some
frequency bands a filtering is needed in order to increase the sensitivity. In
the following paragraphs we tell the basis of this filter.

Signal corresponds to neuronally mediated haemodynamic changes that
can be modelled as a convolution of some underlying neuronal process, re-
sponding to changes in experimental factors, by a haemodynamic response
function.

There are two important considerations that arise from this signal per-
spective on fMRI time-series: the first pertains to optimal experimental de-
sign and the second to optimum de-convolution of the time-series to obtain
the most efficient parameter estimates.

After the stimulus functions have been specified in terms of onsets and
durations, we need to describe the shape of the expected response. This is
done using temporal basis functions. The underlying assumption is that the
BOLD response follows the haemodynamic® response function. The basis
function is used to convert the assumed neural activity into haemodynamic
activity and this is expressed as regressors in the design matrix. The optimum
design in fMRI should present those signals that survive (pass the filter)
convolution with the haemodynamic response function (HRF). Figure: 4.4
shows two GLMs; the first one is the simplest one and the second is a more

5Haemodynamics is a medical term for the dynamic regulation of the blood flow in the
brain. It is the principle on which functional magnetic resonance imaging is based
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Figure 4.4: Top, is shown the simplest GLM model as in Figure 4.2. Bottom,
is shown a model with more than two regressors. In both cases the firsts
regressors refers to the experiment design and the second to the base signal.
In the bottom figure, the rest of regressors are the result of the convolution
function (section 4.2.3). Usually, movement regressors (section 4.2.4) are in
the last columns from the design matrix. [15]
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A signal processing perspective
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Figure 4.5: Transfer function of a canonical Haemodynamic Response Func-
tion (HRF), with (broken line) and without (solid line) the application of a
highpass filter. This transfer function corresponds to the spectral density of
a white-noise process after convolution with the HRF and places constraints
on the frequencies that survive haemodynamic convolution. The top right
figure is the filter expressed in time, corresponding to the spectral density
that obtains after convolution with the HRF and highpass filtering. [3|

realistic because there are more than two regressors; in the same Figure,
bottom the regressors, except the first two, express these convolutions.

By the convolution theorem, the frequency structure of experimental vari-
ance should therefore be designed to match the transfer function of the HRF.
The corresponding frequency profile of the transfer function is shown in Fig-
ure 4.5 (solid line). It can be seen that frequencies around 0.03 Hz are opti-
mal, corresponding to periodic designs with 32-second periods (i.e. 16-second
epochs).

The BOLD impulse response in this voxel loads mainly on the canonical
HRF, but also significantly on the temporal and dispersion derivatives. The
canonical HRF combined with time and dispersion derivatives comprise a ba-
sis set, as the shape of the canonical response to conform the haemodynamic
response that is commonly observed. The incorporation of the derivative
terms allow for variations in subject-to-subject and voxel-to-voxel responses.
The time derivative allows the peak response to vary by plus or minus a
second and the dispersion derivative allows the width of the response to vary
by a similar amount.
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4.2.4 Movement Regressors and Others

It is possible to add regressors to the design matrix without going through the
convolution process described above. An important example is the modelling
of movement-related effects, which are reflected in the processing. Movement
expresses itself in the data directly, and not through any haemodynamic
convolution, these are added directly as explanatory variables in the usual
way.

Because of these movement regressors and other regressors needed to adjust
the signal, the design matrix is presented with many regressors (columns),
but only the columns at the beginning are effects of interest to explain the
behaviour of the activation the voxel during specific task.

4.2.5 Fitted and Adjusted Data

Once the model is estimated two new concepts appear: these are fitted and
adjusted data. Adjusted data is the measure response of rCBF (section 4.1)
obtained by the GLM, and fitted data is the same without the error term.
Both, fitted and adjusted data can be expressed using just one (or more)
regressors model or a linear combination of them (using contrast), this gives
the response obtained by the model just for a specific condition of the exper-
iment.

In the right side of Figure 4.3 are showed two types of signals which are
estimated from the model. The fitted data, dashed line, is obtained from
the model only with the design matrix and parameters. Otherwise, adjusted
data, solid line, is the same as before, but also adding the estimated error e.

4.3 SPM data analysis

4.3.1 Uni-voxel Model

As is said in section 4.2, GLM gives a model for the response variable rCBF
measure for a voxel. Here is described the matrix formulation of the GLM.
Rewriting 4.2, for one voxel (uni-vozel or univariate regression) we have this
set of simultaneous equations which correspond to T' different time points:

Yi=zubi+.. . +oufbi+.. . +riuB+a

Yi=x0Bi+...+xaBi+. .. FraBte

Yr=xpmbBi+...+xpfi+ ...+ +er
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This has an equivalent matrix form:

Yi 11 .. X1y ... 1L 61 €1
Yi = 20 .. g .0 x| B |+ &
YT rry ... X ... TTL BL €T

At that point all is applied to only one voxel, but it is easy to see the
same model can be applied to a set of voxels (for example, the set of voxels
corresponding to a ROI). We call this set of voxels mega-vozel. In this case,
each component Y; from the response variable Y, corresponds to the average
of all values from the mega-voxel at time ¢.

4.3.2 Multi-voxel Model

As is stated in [39], the multi-vozel (or multivariate) fMRI regression model,
is a generalization of the univariate regression model from a single voxel to
N voxels. The model Y = X B + E, represents a model where Y is an n X p
matrix of the measure response where nth column, Y, the response for the
nth voxel; X is the T'x L design matrix containing regressors; B is the matrix
of regressor coefficients with nth column, 5", being for the nth voxel; and F
is the matrix of error terms where nth column, F,,, are the errors for the nth,
alternatively, the rows of E, ¢; ~ N(0,X) where X is the spatial covariance
matrix between voxels.

Let us suppose in the fMRI the whole brain is formed by N voxels. Fol-
lowing, the matrix formulation for N voxels is presented in 7' time points.

1 N 1 N 1
Y’l Yi X1 ... X17 ... 1L ﬁl ﬁl €]

1 N _ 1 N 1
Y, Y, =| zua Ty Ty, B B |+ &

1 N 1 N 1
YT YT Ty ... X1 ... XTI ﬁL 6L €T1

Notice that the design matrix, and therefore the number of parameters
B, is the same as in previous section and the model corresponds to a single
subject which was exposed to specific task (Figure 4.6). This is because the
design matrix encodes and quantifies our knowledge about how the expected
signal was produced.

In some cases, when is needed to analyse the response
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Figure 4.6: This is an example of multivariate approach where the model is
estimated for all the voxels from whole brain (multivariate model)

4.3.3 First Level Analysis

Given the specification of the GLM design matrix and after the estimation
of the GLM parameters, the objective of the first level analysis is to analyse
the presence of the defined activation pattern in a single voxel or mega-voxel.

In other words, SPM performs a statistical test to see how the signal
voxel (noise removed) follow a activation pattern which is defined by the
main regressors in the design matrix and the contrasts.

The model information is stored in beta and contrast images. Since this is
a multivariate model we have only one design matrix and the same number
of parameters (8 for each voxel. A beta image has exactly the same number
of voxels as one fMRI, and there is as many beta images as the number of
[ parameters from the model ( L). Figure 4.7 shows a diagram to visualise
what beta image is.

Each parameter 3 in the model is associated with a condition effect of
interest (section 4.2.1). On the other hand, a contrast (section 4.2.2) allows
to compare the difference in responses between some conditions. A contrast
image contains the contrast values, and there is as many contrast images as
the number of defined contrasts (C).
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Figure 4.7: This is a visual explanation for the definition of beta images

4.3.4 Second Level analysis

The objective of the second level analysis is to perform a subject group com-
parison. It uses the statistics summary from the first-level approach where
contrast images from each subject are used as measures of subject responses.
These are entered into the second level analysis as the new dependent vari-
ables and are analysed across subjects (group analysis).

Let us suppose we want to distinguish between two groups.Actually, we
want to see if there is a significant difference between them. This is a special
case of the GLM. The two-sample ¢-test assumes Y, W N~ (g, 0%), for
g = 1,2, and assesses the same null hypothesis Hy : uy = po, where py and
1o are the statistic measures from two different groups. The index j indexes
the observation point in both groups.

The standard statistical way of writing the model is:

Yoi = Tgjipa + Tgjo + €

The ¢ from i, indicates the group. Here the regressors indicate the group
membership, where x,;, indicates whether observation Y¢j is from the first

group, in which case we have the value 1 when ¢ = 1, and 0 when ¢ = 2.
o _J 0 ifg=1
Similarly, x40 = { | ifg=2
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Here a two sample t-test is used because there are two groups, and the
null hypothesis is Hy=pu; = po. But in case we want to see if there are
differences between many groups, then the null hypothesis is all the groups
have the same, which is Hy : a1 = ay = ... = ag, where @ is the number of
groups. This tests can be solved using a specific F-statistic.

The way to evaluate the t-statistic (or F-statistic) is not explained in
detail because second level analysis is not need to be used.

4.4 fMRI in ADHD Problem

4.4.1 Univariate Approach

In order to understand our contribution, first let us review the steps pre-
sented in [1]:

There is activation in IFG and VStr ROI?:

They perform a first-level analysis in order to assess the validity of the
paradigms to activate the selected ROIs. Using SPM they performed one-
sample t-test of IFG and VStr activity separately. They find, beta values
(for “nogo>>go” and “win>control” contrasts) extracted from individual ROIs
are significantly different from zero in the right IFG as well as in the VStr
during Go-NoGo and MID task respectively. This means that there is acti-
vation (specific activation pattern) in the target regions.

Whole brain group analysis:
After the first-level analysis, the main contrasts for each subject are entered
into a second-level two sample t-test. With a p-value p<0.0001 (which is
significant) the result revealed reduced activation in the patient group dur-
ing reward anticipation in VStr region. Otherwise they do not detect any
reduction of activity in IFG region in ADHD samples.

Standard ROI analysis:
They use the ROI as a mask to extract the beta values from the contrasts
derived from the second-level analysis and it shows reduced VStr activity in
the ADHD group analysis during the MID task. But they do not observe
significant differences with regard to IFG activity.
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4.4.2 Our Proposal: Multivariate Approach

Out aim is to investigate how can we use the data from first-level analysis
performed in [1] and apply machine learning methods to perform the group
analysis.

We suggest that through incorporation of machine learning tools into
functional neuroimaging studies we will be able to identify unique patterns of
variability in brain activation. Given fMRI data from specific tasks we want
to deduce the behavioural brain activation and use it to classify between
controls and patients.

In this project, we consider a classification problem: separating different
groups of human subjects based on the observed fMRI time sequences. We
contribute a comprehensive framework of spatially and temporally exploring
fMRI data, and apply it to a challenging case of study: separating ADHD
patients subjects from healthy controls based on their observed fMRI time
sequences.

Basically it can be done by extracting some features from the model
estimated and use them to build a classifier. We call it multivariate classifier
because the variable we use to classify are: the beta parameters from the
GLM; the linear combinations from the most important betas; and temporal
information performed by GLM from specific contrast (fitted data).

The features are obtained as follows: First, a multi-voxel model for each
subject will be created and therefore the design matrix and the beta pa-
rameters will be obtained, also the contrasts will be defined. This data,
particularly beta parameters and contrasts, only from the voxels from the
ROIs (IFS and VStr), will be used as a feature for a particular subject. Sec-
ondly, a uni-voxel model for just a selected ROI (mega-voxel) is generated
and we compute the fitted data for the main contrasts, these are the temporal
features for a subject.

Main characteristics of this approach (new paradigms):

e All features are obtained from the GLM estimated (without HRF-free)
as in |5, 44, 37|

e We perform dimensionality reduction, feature selection and feature ex-
traction, as is said in literature about machine learning approaches for
fMRI data analysis.

e Basically the classifier tested is linear and non-linear SVM, because it
is also used in the most of literature.

e The classifier must be able to perform a group analysis, it must be
accurate in classify between patients and controls.
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Figure 4.8: An example where features are voxels arrayed as a row vector
(left) and a dataset is matrix of such row vectors (right). The column vector
next to the dataset contain the label of each example (row).[46]

Actually, is expected to ratify machine learning approaches perform a
good classifications between groups using the data from VStr during MID
task. And also if we want to obtain a good classifier, using IFG for Go-NoGo
task, which is able to distinguish between controls and patients.

4.5 Pattern Recognition System

4.5.1 Classification

As is stated in [46] a classifier is a function that takes the values of various
features (independent variables in regression) in an example (the set of inde-
pendent variable values) and predicts the class that example belongs to (the
dependent variable). Each new example we want to classify or each example
already classified is called feature vector and is represented by x. A feature
vector with d features is represented by z = (x1,...,24). Given an example
x its class label is denoted as y. All the examples are organized in a dataset
matriz, where rows are examples and columns are features. In Figure 4.8
there is an illustration of a dataset matrix and a column vector which are
the labels.

A classifier has a number of parameters that have to be learned from
training data. A training data is a set of examples reserved for this purpose.
The learned classifier is essentially a model of the relationship between the
features and the class label in the training set. More formally, given a feature
vector z, the classifier is a function f that predicts the label y = f(x). Once
trained, the classifier can be used to determine whether the features used
contain information about the class of the example. This relationship is
tested by using the learned classifier on a different set of examples, the test
data (Figure 4.9). Intuitively, the idea is that, if the classifier truly captured
the relationship between features and classes, it has to be able to predict the

36



training data labels
aes H classifier training

predicted true
test data labels labels

+ | classifier — H Vs H

Figure 4.9: classifier is learned from the training set, examples whose labels
it can see, and used to predict labels for a test set, examples whose labels it
cannot see. The predicted labels are then compared to the true labels and
the accuracy of the classifier, the fraction of examples where the prediction
was correct, can be computed.|46]

classes of examples that hasn’t seen before.

We will denote the training and test sets by Xy.qim and Xy, matrices
with respectively ny.qin and ng.s examples as their rows, and their respective
labels by the column vectors ¥ qin and Yies.

4.5.2 Dimensionality Reduction

In most of the cases, if the subjects are patients, we don’t dispose of a big
sample because of the accessibility. So, maybe because we extract a many
features for one subject or may be because we have a very few number of
subjects, generally there are many more features than examples. As a con-
sequence, the classifier will be a function that can classify well the examples
in the training set, but not the examples in the test set. This phenomenon is
called overfitting. That is why it may be advantageous to reduce the number
of features considered. The crucial issue to keep in mind is that the choice
of features at this stage must not depend on the labels that will be used to
train a classifier. There are two alternatives to reduce the number of features
which a classifier has to consider:

o Feature Selection:
In this case the most relevant k features are selected (k < d), and the

remaining d — k features are ignored.

x=(r1,...,29) > x = (21,...,71), where d < k
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o Feature Frtraction:

An alternative path to reduce the number of features is the dimen-
sionality reduction. This is applied to the entire dataset matrix; they
transform the original feature space into a new low dimensional feature
space. © = (x1,...,2q) = 2 = (21,..., 2a), where d << k This yields a
new dataset matrix with the same number of rows but a reduced num-
ber of columns. However, it is not at all guaranteed to improve results,
partially because most dimensionality reduction techniques ignore class
labels in their criteria.

Principal Component Analysis

The feature extraction method we use here in this work is Principal Com-

ponent Analysis (PCA). The goal of PCA is to reduce the dimensionality of
the data while retaining as much as possible of the variation present in data
set.
The way is to find a new representation (basis) able to filter the noise and
reveal hidden dynamics. Using the eigenvectors from the covariance matrix,
a new coordinate system is formed and it’s defined by the significant axis.
Extract the eigenvectors with a high eigenvalue ad it leads to compress data:
reduce the dimension of feature vector in a new representation and keeps the
as much a possible the variability.

4.5.3 Support Vector Machine

In machine learning, Support Vector Machines (SVM) are supervised learning
models® with associated learning algorithms that analyse data and recognize
patterns, used for classification. Given a set of training examples labelled, the
basic SVM train an algorithm and build a model that assigns new examples
into one category or the other. It takes a set of input data and predicts, for
each given input, which of two possible classes forms the input, making a
non-probabilistic binary linear classifier.

A generally idea about how SVM works is that, given a d-dmensional fea-
ture space, SVM try to separate the points (features vectors in that space)
with a (d — 1)-dimensional hyperplane. There are many hyperplanes that
might classify the data; one reasonable choice as the best hyperplane is
the one that represents the largest separation, or margin’, between the two
classes. So SVM choose the hyperplane whose distance from it to the nearest

6Models where the examples are already labelled, i.e. the class of any example is known
"Margin is the perpendicular distance from the hyperplane to the closes samples
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Figure 4.10: The left figure shows the typical SVM Linear classification, and
the right figure, is exactly the same but in this case a misclassified is allowed,
so the margin is softer.

data point on each side is maximized. In Figure 4.10 (left side) the contin-
uous line is the hyperplane which maximise the distance between the two
classes, and the distance is the same between one class to the hyperplane
and between to the hyperplane to the other class.

Even if a decision boundary exactly separate the data, if the data has
noise and outliers, a soft margin decision boundary that ignores a few data
points is better, as is shown in Figure 4.10. The parameter C is called cost
of constrain violation and it permit the algorithm to misclassify some of the
data points without affecting the final result.

Since it is a linear classifier, which find the best hyperplane, it is called
Linear support vector machine (LinearSVM). But sometimes it is easy to
compute kernels which correspond to complex large-dimensional feature spaces,
for example the radial basis kernel, in this case the classifier is called Radial
Basis Function Support Vector Machine (RbfSVM). This kernel has the fol-
lowing formula:

"2
k(z,2") = exp(—W),v >0 (4.10)
Thus, changing the v parameter we obtain different classifiers
The choice of this method is due to the good performance in real world
applications, and also the most common classifier used in the literature. Also
it is advantageous to use SVM because of its Computational efficiency and
because our problem is not very high dimensional space.
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Chapter 5

Technical Development

5.1 Development Platforms
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Figure 5.1: SPM 8 interface

On one hand Matlab Version 7.9 (R2009b) was used to develop machine
learning algorithms. Matlab allows matrix manipulations, plotting of func-
tions and data and implementation of algorithms. It is is very simple to
extract individual rows, columns and submatrices using a very powerful in-
dexing system. That makes Matlab a programming environment optimized
for internal routines for matrix transformations very suitable for data anal-
ysis, visualization, and algorithm development.

To construct the Support Vector Machine (SVM) classifier was used OSU
SVM Vesrion 3.00 which is a SVM toolbox for the MATLAB environment.
The toolbox can be used to create models for regression and classification
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using SVM!.

On the other hand, to do the analysis of fMRI data we used the Matlab
toolbox SPM 8. Figure 5.1 hows the SPM 8 interface available. The SPM
software package is a suite of Matlab and it has been designed for the analysis
of brain imaging data sequences. Specifically this version is designed for
the analysis of fMRI, PET, SPECT, EEG and MEG. SPM is made freely
available to the neuro-imaging community, to promote collaboration and a
common analysis scheme across laboratories. The software represents the
implementation of the theoretical concepts of Statistical Parametric Mapping
(section 4.1) ) in a complete analysis package.

MarsBaR (MARSeille Boite A Région d’Intérét) is a region of interest
toolbox for SPM which provides routines for region of interest analysis. Fea-
tures include region of interest definition, combination of regions of interest
with simple algebra, extraction of data for regions with and without SPM
preprocessing (scaling, filtering), and statistical analyses of ROI data using
the SPM statistics machinery.

All programs were executed in a machine equipped with an 15 processor
and 4GB of RAM memory.

5.2 Preprocessing
All preprocessing steps are done with SPM [15].

e Slice Timing:
Correct differences in image acquisition time between slices. The slice
order argument that specifies slice acquisition order is a vector of S
numbers, where S is the number of slices per volume. Each number
refers to the position of a slice within the image file. The order of
numbers within the vector is the temporal order in which those slices
were acquired. The function provided by SPM use this vector to correct
differences in slice acquisition times. The correction is necessary to
make the data on each slice correspond to the same point in time.
This routine “shifts” a signal in time to provide an output vector that
represents the same (continuous) signal sampled starting either later
or earlier. This is accomplished by a simple shift of the phase of the
sines that make up the signal. Recall that a Fourier transform allows
for a representation of any signal as the linear combination of sinusoids
of different frequencies and phases. A constant to the phase of every
frequency, shifting the data in time. Then a filter (called Shifter) is

Lhttp://sourceforge.net/projects/svm,/
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Figure 5.2: Example
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Figure 5.3: Example of segmenation of fMRI data. [15]

used and the signal will be convolved to introduce the phase shift. It
is constructed explicitly in the Fourier domain. In the time domain, it
may be described as an impulse (delta function) that has been shifted
in time the amount described by a time shift. The correction works
by lagging (shifting forward) the time-series data on each slice using
sinc-interpolation.

Realignment:

This routine realigns a time-series of images acquired from the same
subject using a least squares approach and a 6 parameter spatial trans-
formation (rigid transformation). The first image in the list specified
by the user is used as a reference to which all subsequent scans are
realigned. The reference scan does not have to the first chronologically
and it may be wise to chose a “representative scan” in this role. The
aim is primarily to remove movement artefact in fMRI time-series (or
more generally longitudinal studies). Given all fMRI data SPM write
realigned images based with respect to mean image. Then SPM plot
the estimated time series of rigid transformations, translations and ro-
tations, shown in Figure 5.2. A rigid-body transformation (in 3D) can
be parametrized by three translations and three rotations about the
different axes (in total 6 parameters as we said above). These variables
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Figure 5.4: Functional image (top) and 6mm-smoothed functional image
(bottom). [15]
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can be used as regressors when fitting GLMs. This allows movements
effects to be discounted when looking for brain activation.

Coregistration:

Image registration is the process of transforming different sets of data
into one coordinate system. Data may be data from different times.
Registration is necessary in order to be able to compare or integrate the
data obtained from these different measurements. An image similarity
measure quantifies the degree of similarity between intensity patterns
in two images. The choice of an image similarity measure depends
on the modality of the images to be registered. Common examples of
image similarity measures include mutual information 2. SPM imple-
ment a coregistration between the structural and functional data that
maximises the mutual information.

Segmentation:

SPM will segment the structural image using the default tissue prob-
ability maps as priors. Note that this module needs the images to
be roughly aligned with the tissue probability maps before you begin.
This model also includes parameters that account for image intensity
non-uniformity. Optimal results can be obtained reducing the num-
ber of Gaussians per class or increasing the sampling distance. This
model also includes parameters that account for image intensity non-
uniformity. Then, SPM will create gray and white matter images and
bias-field corrected structural image. Figure 5.3 shows the gray matter
image along with an original structural.

Normalise:

Thismodule spatially normalises images into a standard space defined
by some ideal model or template images. The template images supplied
with SPM and approximate to the space described in the atlas of Ta-
lairach and Tournoux (1988). The transformation can also be applied
to any other image that has been coregistered with these scans. Gener-
ally, the algorithms work by minimising the sum of squares difference
between the image which is to be normalised, and a linear combination
of one or more template images. For the least squares registration to
produce an unbiased estimate of the spatial transformation, the image

2This is a probability term. Given two random variables is a quantity that measures the
mutual dependence of the two random variables. In our case, given a reference image (for
example, a brain scan), and a second image which needs to be put into the same coordinate
system as the reference image, this image is deformed until the mutual information between
it and the reference image is maximized.
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contrast in the templates (or linear combination of templates) should
be similar to that of the image from which the spatial normalisation is
derived. The registration simply searches for an optimum solution. If
the starting estimates are not good, then the optimum it finds may not
find the global optimum.

e Smooth:
This is for smoothing (or convolving) image volumes with a Gaussian
kernel of a specified width. It is used as a preprocessing step to sup-
press noise and effects due to residual differences in functional and
gyral anatomy during inter-subject averaging. In Figure 5.4 there is an
smoothed functional image.

5.3 Feature Description

We want to use machine learning algorithms to classify between two groups,
so we need to define the feature vectors to describe the data.

We consider fMRI data from two groups, ADHD patients and controls
and the GLM is obtained as well as the first level analysis. Our objective
is to get feature from the GLM and model a classifier able to distinguish
between both groups given these features as input. We use two kinds of
feature as input. On one hand, features extracted explicitly from the GLM,
such as betas and contrast (section 4.2.2). And, on the other hand, features
extracted using the GLM for a specific contrast (the main contrast for the
task), such fitted data (section 4.2.5), which contain temporal information of
the data.

Thus, we consider three different feature vectors, which are Betas, Con-
trasts and Fitted Data, so we train three different classifiers. For the three
type of features, the feature values are computed by the average on the spe-
cific ROI. Summarizing, a subject can be characterized for three types of
feature vectors, as follows:

e Feature vector Betas: Tg = (x1,%2,...,21), where L is the number of
betas and x;,l € {1,..., L} is the mean of all [-th beta for all the voxels
from the ROI.

e Feature vector Contrasts: . = (x1,2a,...,2¢), where C'is the number
of contrasts and z.,c € {1,...,C} is the mean of al ¢-th contrast for
all the voxels from the ROI.

e Feature vector Fitted Data: Ty = (v1,%2,...,2r), where T is the num-
ber of time-points of the task and z;,t € {1,...,T} is the value at time
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t of the mega-voxel (corresponding to the ROI) obtained as the mea-
sure response, i.e. the column vector Y from the GLM model (Equation
(4.1)), for a particular contrast.

In Figures 5.5, 5.6 and 5.7 there is a visual representation of the three
types of features.

5.4 Efficacy of the Classifier

The most commonly used measure of how well a classifier does on the test
set is its accuracy. This is simply the fraction of feature vectors in the test
set for which the correct label was predicted. This is

#examples predicted correctly

Accuracy = (5.1)

Niest

In case it is a binary classification test there are other statistical measures
or rates, these are sensitivity and specificity. In a binary classification one
class is called the “positive” and the other, the “negative”. Then sensitivity
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measures the proportion of actual positives which are correctly identified and
specificity measures the proportion of negatives which are correctly identified.
These statistical measures are evaluated with the following measures:

TP + TN

A = 2
Ay = TP L TN+ FN + FP (5:2)

. TP
Sensitivity = TP+ PN (5.3)

TN
ificity = ———— A4
Specificity TN £ TP (5.4)

Where TP= “True Positive” correspond to the number of examples be-
longing to the positive class and are predicted correctly; TN= “False Nega-
tive” correspond to the number of examples belonging to the negative class
and are predicted correctly; FP= “False Positive” correspond to the number
of examples belonging to the positive class and are predicted as a negative
and

FN= “True Negative” correspond to the number of examples belonging
to the negative class and are predicted as a positive.

5.5 Validation

In the illustrative example of Figure 4.9 the data set is divided into halves,
one it’s used for training and the other for testing. In order to obtain the
most accurate classifier we would like to train a classifier as much as possible.
But we cannot train and test in the same data if we want to obtain a useful
estimate of the classifier’s accuracy. The procedure proposed is called cross-
validation. This process consists in divide all the data set in equal parts. One
part is used for the test set and the others are used as a training set. The
process is repeated for each part and then the averages of the rates called in
section 5.4 are computed in order to evaluate the efficacy of the method An
important consideration using these methods are that training data in each
fold must contain examples of all classes, otherwise the classifier for that fold
will not be able to predict the absent ones.

This method has to variants Leave One Out (LOO) and k-cross-validation:
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Figure 5.8: During cross-validation each of 6 groups of examples takes a turn
as the test set while the rest serve as the training set.

e LOO:

This method leaves one example out, train with the rest of the exam-
ples and a prediction is made of this example. This is repeated for each
example and then the accuracy and the other rates are computed aver-
aging all the predictions made for all the examples. In practice, leaving
each example out can be computationally expensive because the num-
ber of classifiers trained is the same as the number of examples, an
alternative is proposed bellow.

e k-cross-validation:
Where £ is the number of parts into which dataset is divided, and the
process is exactly the same. Common choices are £ = 10 or k = 5,
corresponding to leaving out 10% or 20% of the examples on each fold.
In the illustrative example shown in Figure 5.8 the data set is divided
in six groups and each one is used in turn as the test set in cross
validation, with the remaining groups used as the training set.
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Chapter 6

Experiments

6.1 Data Acquisition

As is stated in [1| during the fMRI acquisition, the subjects performed two
tasks: a Go-NoGo task (6 minutes and 59 seconds) and a Monetary Incentive
Delay (MID) task (14 minutes and 31 seconds). See Section 6.1.3 for details
of MID and Go-NoGo tasks. The order of presentation was counterbalanced
across participants to avoid undesirable confounding effects.

The series of temporal interpolation were performed over each voxels’
time course using sinc functions. (slice timing from section 5.2). Subse-
quently, spatial interpolation was applied to correct for head motion, using
parameters derived from a rigid body transformation. Specialists checked
the individual translation and rotation movement parameters, which did not
exceed a value of 4 mm/4 degrees for any of the subjects. The EPI! images
were subsequently smoothed by imposing an 8&-mm FWHM isotropic kernel
on the space domain. The normalization step was omitted from the prepro-
cessing of the fMRI data to avoid a potential bias in the results arising from
ADHD-associated volumetric and shape alterations in the IFG and the VStr.
Therefore, they created ROI of these areas in each individual’s anatomical
space.

In order to delimitate the IFG, the following steps were applied to the
data. For each subject, the T1-weighted image was co-registered to the mean
functional EPI, and subsequently segmented into grey matter, white matter,
and cerebrospinal fluid partitions. Then, the inverse parameters created

!'Echo Plannar Iaging (EPI) is a popular technique for rapid acquisition and is used
to extract our fMRI data. The main reason to use this technique is, for all studies, the
shape of an individual’s fMRI data will be more similar to their anatomical scan and
this improves the quality of the normalization leading to improved group level statistics
throughout the brain.
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Statistical analysis: Design
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Figure 6.1: This is the design matrix for the MID task. As is said in sec-
tion 5.2 about spatial preprocessing, specifically realignment, some regressors
refer to movement effects, these are the penultimate 6 in this design matrix

in the segmentation step were applied to anatomical ROIs representing the
left and right IFG. In addition, the individual grey matter partitions were
imposed on the created ROIs to restrict the regions to grey matter tissue.
These ROIs were then individually revised by a neuroradiologist and manu-
ally adjusted in MRIcroN. The VStr ROIs were manually delineated under
the guidance of an expert neuroradiologist. The criteria for Vstr demarca-
tion are described in detail in [47]. To ensure intra-rater reliability of the
VStr-ROI, we repeated the segmentation of 10 VStr (5 left and 5 right) and
calculated the overlap coefficient (intersection /union), resulting in an average
ROT overlap of 0.71 (0.65 for the left VStr and 0.76 for the right VStr), and
the Interclass Correlation Coefficient absolute agreement, which resulted in
an index of 0.84 (0.89 for the left VStr and 0.80 for the right).
Subsequently, voxel-wise changes in BOLD response across the conditions
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Statistical analysis: Design
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Figure 6.2: This is the design matrix for the Go-NoGo task. As is said in sec-
tion 5.2 about spatial preprocessing, specifically realignment, some regressors
refer to movement effects, these are the penultimate 6 in this design matrix.
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Figure 6.3: Contrast Manager. It displays the design matrix in the right
panel and lists specified contrast in the left panel. Most of the contrasts
are have been specified automatically. Here in this case are showed all the
contrast for the MID task, and the main contrast “win>control” is selected.

were assessed for each subject, according to the general linear model. The
Go-NoGo paradigm was applied to extract an indication of the inhibition
response, and time courses for the “nogo” and “go” trials were introduced
into the model. For the MID task, which was employed to assess reward
anticipation, the onset times of “win cue” and “control cue” comprised the
regressors of interest.

The regressors of interest were convolved with the canonical haemody-
namic response function implemented in SPM, and optimal parameter esti-
mates were computed using a least-squares function. Time and dispersion
derivatives were also included in the model, as were the individual translation
and rotation parameters in order to account for residual effects of movement.
In Figure 6.1 and 6.2 is shown the design matrix for each task obtained from
the model.

Finally, the linear contrasts “nogo>go” and “win>control” were applied
to estimate effect sizes, as is shown in Contrast Manager from Figure 6.3 and
6.4 respectively. For each subject, the first-level models were then imported
into Marsbar, and the individual ROIs representing the IFG and VStr in
the subject’s anatomical space were applied to these results. For each of
the ROIs, we extracted the beta values for the contrasts “nogo>go” and
“win>control”.
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6.1.1 Participants

Forty-six right-handed adult males (23 with ADHD and 23 healthy controls)
were included in the study. Eight subjects (4 ADHD and 4 controls) were
omitted from the analysis, due to problems understanding the tasks,to other
complications occurring in either of the fMRI paradigms, or for neurological
reasons. All the subjects were evaluated by a team of psychologists and
psychiatrists from Vall d’Hebron Hospital. All ADHD subjects fulfilled the
diagnostic criteria for ADHD and had never received any pharmacological
treatment for their condition. ADHD diagnosis was based on the Diagnostic
and Statistical Manual of Mental Diseases, Fourth Edition, Test Revised
(DSM-IV TR).

6.1.2 fMRI Acquisition Parameters

The MRI images were obtained in a GE 1.5T scanner, equipped with a
standard quadrature radiofrequency coil. A vacuum pillow was placed inside
the coil in order to restrict the subject’s head movement. For anatomical
reference, a T1-weighted pulse sequence was employed with the following
parameters: TR 11.5, TE 4.2, matrix 256 x 256 x 96, FA 15, slice thickness
1.6. Functional volumes were acquired using a T2*-weighted gradient echo
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Figure 6.5: This figure depicts the timeline of the experimental procedure
as well as the duration and different stimuli presented in each of the tasks.
Light grey boxes represent measures obtained outside the scanner and dark
gray boxes indicate the two fMRI paradigms measured inside the scanner [1].

sequence. For the MID task, the acquisition parameters were: TR — 3,000
ms; TE = 60 ms, FA = 90°, FOV = 30 cm, GAP = 0.5 and a matrix size
of 64 x 64 x 30. The Go-NoGo paradigm was acquired using the following
parameters: TR = 2,275 ms, TE = 60 ms, FA = 90°, FOV = 30 cm, GAP
= 0.5 and a matrix size of 64 x 64 x 23.

6.1.3 fMRI Procedure

During the fMRI acquisition, the subjects participated in two event-related
fMRI paradigms. The order of presentation was counterbalanced across sub-
jects.

The Go-NoGo task was similar to the ones used in previous studies com-
prising the presentation of individual letters on a screen. The subjects were
instructed to press the button when a letter appeared (go trials), but with-
hold their response when an “X” was presented (nogo trials). The stimulus
duration was 250 ms, and each stimulus was followed by a random inter-
stimulus interval between 1,000 and 2,000 ms. The total number of trials,
on average, was 225. The percentage of go trials was set to 70% [48, 49]. A
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higher percentage of go trials relative to no-go trials has been demonstrated
to enhance the MRI signal for the nogo trials, by increasing the preponder-
ance of the press response and consequently the difficulty of inhibiting it
[48].

To assess reward anticipation, we used a version of the MID task similar to
those employed in previous studies [11, 12]|. See Figure 6.5 for an illustration
of the timeline of the experimental procedure for MID task. For this task,
trials involved the presentation of a cue for 350 ms, followed by a variable
delay of between 2,000 and 2,500 ms, and then a target with a duration of
between 90 and 650 ms. The subjects were required to press the button
before the target disappeared from the screen; target duration was adjusted
to produce success in around 66% of the cases (short target duration between
90 and 120 ms; long target duration between 550 and 650 ms). The cues
comprised symbolic signs indicating trials with the possibility to win money
(+1/ + 2 euro), to lose money (—1/ — 2 euro), or to keep the same amount
regardless of the performance (control trials). The total number of trials
averaged 150, and each of the five conditions (+1/ + 2/ — 1/ — 2/control)
was presented for 20% of the trials. The target was followed by a delay (500
ms) and then a feedback screen (1,200 ms), depicting the amount gained
or lost by the subject in this trial and the total quantity earned so far. See
Supporting Information for a detailed description of the task and the timeline
of the experimental procedure.

6.2 Feature Analysis

Features defined in Section 5.3 are extracted for both tasks, MID and Go-
NoGo, and using the fMRI data from 38 subjects: 19 controls and 19 patients.
The design matrix in figures 6.1 and 6.2 show the betas and Contrast manager
in figures 6.3 and 6.4.

e MID task. In this case the ROI is the Left and Right VStr

— Beta Ezxperiment
There are 22 betas, so there are 22 features for each ROI (left
and Right).

Thus the feature vector will be Zg = (21, 29, ..., T44).

Also we want to do the same but only with main betas, this
means discarding movement regressors and the constant.
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There are 15 main betas, so there are 15 features for each ROI
(Left and Right). Thus the feature vector will be 75 = (x1, 2, ..., Z30).

— Contrasts Experiment
There are 12 contrasts, so there are 12 features for each ROI (left
and Right).
Thus the feature vector will be T, = (z1, 22, ..., T24).
Then, for some subjects all the values for one beta are NaN, we
remove the subject from the data. Thus we have 17 controls and
16 patients.

— Contrasts Experiment

x There are 286 time points contrasts, so there are 286 features
for each ROI (left and Right).
Thus the feature vector will be z; = (21, 22,. .., Z572).

*+ We also believe it is useful to consider the fitted data from
what SPM consider as a Effects Of Interest (EOI).
It has the same characteristics as before.

e (Go-NoGo task In this case the ROI is the Left and Right IFG.

— Beta Ezxperiment

There are 13 betas, so there are 13 features for each ROI (left
and Right).
Thus the feature vector will be Zg = (21, 29, ..., Za6).

Also we want to do the same but only with main betas, this
means discarding movement regressors and the constant.
There are 12 main betas, so there are 15 features for each ROI
(Left and Right). Thus the feature vector will be Zg = (21, 2, ..., Ta4).

— Contrasts Experiment

There are 8 contrasts, so there are 8 features for each ROI (left
and Right).

Thus the feature vector will be z. = (z1, 22, ..., Z16).

One control’s ROI are missing so 21 vs 21.

Finally: 42 subjects, this means all data is represented in a 42 x 16
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matrix.

— Fitted Data Erperiment

*x There are 180 time points contrasts, so there are 180 features
for each ROI (left and Right).
Thus the feature vector will be Ty = (21,22, . .., Z360)-
One control’s ROI are missing so 21 vs 21. Finally: 42 sub-
jects, this means all data is represented in a 42 x 360 matrix.

+ We also believe it’s useful to consider the fitted data from
what SPM consider as a effects of interest (EOI).
It has the same characteristics as before.

In order to see if a classification make sense with the selected features,
following we show some graphics where the mean of each feature for all the
controls and patients subjects is evaluated separately. The means are com-
puted with normalized data. Normalization of the data is performed by
subtracting the mean of all subjects and dividing by the standard deviation.
Figures 6.6, 6.7 and 6.8 show the mean of the controls (in blue) and the pa-
tients (in red). Two graphics are presented for each kind of feature separating
the right and the left ROI in the right and left side of the figure, respectively.
This way allow us to notice if any hemisphere of ROI give more information
than the other.

In Figure 6.6 we can appreciate a slight separation between the two
classes, more prominent in the MID task than the Go-NoGo and no dif-
ference are noted between the right and the left ROI. Also in Figure 6.7, we
can appreciate a slight separation between the two classes, more prominent
in the MID task than the Go-NoGo and no difference are noted between the
right and the left ROIL. Finally, in Figure 6.8 in both cases we can appreciate
a separation between the two classes more prominent in the left ROI than in
the right ROL.
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MID Task

Go-NoGo Task

Figure 6.6: At the top, the mean data for betas features in MID task. At
the bottom, the mean data for betas features in Go-NoGo task. The left side
corresponds to the left ROI and the right side to de right ROL.
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Figure 6.7: At the top, the mean data for contrasts features in MID task. At
the bottom, the mean data for contrasts features in Go-NoGo task. The left
side corresponds to the left ROI and the right side to de right ROI.
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Figure 6.8: At the top, The mean data of fitted data features in Go-NoGo
task. At the bottom, the mean data of effects of interest fitted data features

in Go-NoGo taskin Go-NoGo task. The left side corresponds to the left ROI

and the right side to de right ROI.

6.3 Parameters Setting

There is no previous work using this kind of features, so our contribution
must focus on finding an appropriate method, adjusting the parameters, and
selecting the correct features in order to find a good classifier able to find out

if a subject is ADHD patients or not with certain reliability.

Our experiments are made to find the best model in order to classify
between two classes, “patients” and “controls”. Since we classify between two
classes it is a binary problem in which we use the variants of SVM classifier.

For the parameter setting of the classifier we use two methods: LOO, since
we have just have not large amount of subjects, so it is not computationally

expensive, and on the other hand 5-cross-validation to have bigger subsets.
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In order to obtain an accurate validation of the classifier all the exper-
iments are done with stratified data. Each rate (accuracy, specificity and
sensitivity) is evaluated for each subset (subsets obtained in each iteration in
LOO and 5-cross-validation) and then the average is computed in all parts,
we use the value obtained to evaluate the efficacy of the method.

We have 4 different kinds of features: Betas, Contrasts, Fitted Data and
EOI Fitted Data. In all of them we applied a feature dimensional reduction.
Moreover, in case of Betas we applied a feature selection, discarding the
features that correspond to movement regressors and the base, we call the
selected features main betas. PCA is applied in all the features, because
we think it’s necessary because of the small number of subjects to train. In
Fitted data and EOI fitted data we apply the two alternative reducing feature
dimension. First we extract the features corresponding to the features from
the side ROI (right or left) where the classes are further apart, in this case
the Left ROI in case of VStr. But selecting the half of features (which
corresponds to the one side ROI) is still a high number of feature dimension
(note that in that case the features are time points, exactly 180 time points
per a side ROI in Go-NoGo task) so it can still be necessary to reduce the
dimension of feature, thus PCA is also applied. The number of eigenvectors
we choose to form the new basis are those to keep the 90% of variance. This
is calculated using the Portion of Variance (PoV) formula:

PoV — 6.1
RO VI VOVIRSES VI (6.1)

For SVM classifier we set the C' value parameter in different intervals and
we focused in the intervals with best accuracys. The intervals we tried were:

¢ —values = [0.01:0.01:1];[0.1:0.1:3] and [1:1:10]

Also we tried methods with C values bigger than 10, but the accuracy
reached was always the same or lower than the method with the other C'
values. In the intervals we focused the steps were 0.001.

In case of RbfSVM the parameter v is also tried in three intervals and we
focused in the intervals with best accuracys. These were:

~v — values = [0.001 : 0.001 : 1.0]; 0.1 : 0.01 : 3.0] and [1: 0.1 : 10];

For ~’s bigger than 10 the accuracy obtained was always worse than the other
values. In the intervals we focused the steps were 0.0001.
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6.4 Results

In this section, we summarize the obtained results for the two tasks.
MID Task
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Figure 6.9: Best methods using betas features in MID task. Top: (sensitivity
(red), Specificity (blue) and accuracy (green)) LinearSVM with C values from
0.001 to 0.5, at left the validation of the method with LOO and at right with
5-fold validation. Bottom: The accuracy, RbfSVM with C values from 1 to
10 and ~ from 0.1 to 3, at left the validation of the method with LOO and
at right with 5-fold validation

e Betas:
Figure 6.9 shows the results for this experiment for different C' values
using LOO (left) and cross-validation (right); and using LinearSV (top)
and RbfSM (bottom). The highest accuracy is around 85% of accuracy
with both methods, LinearSVM and RbfSVM with 7 less than 0.1. In
case of the Linear SVM C' value must be very small, around 0.5; and
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@
=

in case of RbfSVM it must be bigger than 2. PCA extract 3 features
but the best method using these features just reach 55% of accuracy.

Selecting the main betas features the highest accuracy is slightly bellow
80% of accuracy with both methods, LinearSVM and RbfSVM with ~
around 0.1. In the case of the Linear SVM C value must be between
0.1 and 0.2; and in case of RbfSVM it must be bigger than 0.5.
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Figure 6.10: Best methods using contrast features in MID task (Sensitivity

(red)
from
with

, Specificity (blue) and accuracy (green)).

LinearSVM with C values
0 to 0.5, at left the validation of the method with LOO and at right
5-fold validation.

Contrasts:

Figure 6.10 shows the results for this experiment for different C' val-
ues in LinearSVM using LOO (left) and cross-validation (right). The
highest accuracy reach 80% of accuracy with LinearSVM and C' value
must be between 0.15. The highest accuracy with RbfSVM is around
70% with ~ value around 0.1 and C value bigger than 8. PCA extract
2 features but the best method just reach 40% of accuracy.

Fitted Data

The highest accuracy reach with this data is around 60% of accuracy
with LinearSVM using only data from the Left ROI and C' value must
be between 0.2 and 0.5. The other models performed have an accuracy
around 50%.

Effects of Interest Fitted Data

These results are similar than before; the highest accuracy reach with
this data is around 60% of accuracy with LinearSVM using only data
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from the Left ROI and C value must be between 0.1 and 0.5. The other
models performed have an accuracy around 50%.

Go-NoGo Task

Leave One Out Fold Validation k=5

Gamma U0 C Parameter
Gamma C Parameter

Figure 6.11: Accuracy of the best methods RbfSVM with C values from 1 to
10 and v from 0.001 to 1, at left the validation of the method with LOO and
at right with 5-fold validation.

e Betas:

Figure 6.11 shows the results for this experiment for different C' values
in RbfSVM using LOO (left) and cross-validation (right). The highest
accuracy reach 60% of accuracy with RbfSVM and C value bigger than
4 and a very smally, around 0.001. The highest accuracy with Linear
SVM is around 55% . PCA extract 2 features but the best method just
reach 40% of accuracy.

Selecting the main betas the highest accuracy is slightly bellow 60% of
accuracy with both methods, LinearSVM and RbfSVM with v around
0.1. In case of the Linear SVM C' value must be between 1.2 and 1.5;
and in case of RbfSVM it must be bigger than 10.

o Contrasts:

The highest accuracy is slightly bellow 60% of accuracy with Lin-
earSVM method, using PCA and not. Using PCA, the best method is
with a C' value around 0.2 while without using PCA the best method
is with a C values around 1. The RbfSVM methods don’t reach the

50% of accuracy.
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Figure 6.12: Rates of the best methods (Sensitivity (red), Specificity (blue)
and Accuracy (green)). At the top LinearSVM using all features with PCA
and C value from 0.2 to 1.2 (left LOO and right 5-fold-validation). At the
bottom LinearSVM using the features only for the Left ROI with C' value
from 0 to 1 (left LOO and right 5-fold-validation).

o FHitted Data:

Figure 6.12 shows the results for this experiment for different C' values
and dimensionality reduction; using LOO (left) and cross-validation
(right); and using PCA (top) and feature selection (bottom). The
highest accuracy is around 70% for two LinearSVM methods. One is
using all features and PCA (obtaining 17 features) and with a C value
around 0.4. The other one is using the features only for the Left ROI
and the C value around 0.2.

Another LinearSVM method reach an accuracy between 60% and 70%
and it is using all the fatures and a C' value around 0.03. Using the
other methods the accuracy is around 60%.

67



Leave One Out Fold Validation k=5

8
2

3

~
o
o
]
(]

% values
& 8 8
% values
8

B8
5

=)

0.‘05 D.‘1 0.‘15 D.‘Z D.‘25 BI3 0‘35 04 200 005 0.1 015 02 0.25 03 035 0.4

C Values for SVM C Values for SVM

o

o

Figure 6.13: Rates of the best methods (sensitivity (red), Specificity (blue)
and accuracy (green)). LinearSVM using the features only for the Left ROI
with C value from 0 to 0.4 (left LOO and right 5-fold-validation).

o FEffects of Interest Fitted Data:

Figure 6.13 shows the results for this experiment for different C' val-
ues in Linear SVM using LOO (left) and cross-validation (right). The
higher accuracy is around 70% with the LinearSVM and C' value around
0.1, using all features from the Left ROI. Also a high accuracy, between
60% and 70%, but never reach 70%, with LinearSVM using all features,
from the whole ROI, with C' value between 0.05 and 0.07. RbfSVM
methods just reach the 60% of the accuracy using the features from
the left ROI, for 7’s from 0.2 to 0.4 and C values bigger than 1.5. In
all methods using PCA the accuracy is around 50% or 55%.

6.5 Discussion

In general, we can see that the best classification results are obtained using
betas as feature vector on the data from VStr ROI (MID task), with accu-
racies that reach 85%. We also find accurate results classifying data from
IFG ROI (Go-NoGo task) with the same features, their classification reach
70% of the accuracy as maximum. Thus, we can conclude that the machine
learning approach performs a good classification between groups using fMRI
data from both ROIs during the tasks.

The best features, comparing the betas to the contrasts, are betas in
both cases and without a previous feature selection, since worse results are
obtained using main betas. Given that the accuracy obtained with contrasts
features is always lower than the accuracy from the betas features, we can
say the best features to perform an accurate classifier are beta parameters.
This is probably due to the fact that beta parameters contains the effect
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size (activation level of the ROI) from specific conditions of the experiment
(for example, when the subject is waiting a go trial signal, or when there is
the possibility to win money) and it is more discriminative between groups,
rather than the contrasts, where the bigger discrimination is between different
conditions in the same task.

In case of fitted and EOI fitted data, we do not obtain an accurate clas-
sifier for the MID task. Otherwise these temporal features perform a good
work for IFG data (70% of accuracy), using feature dimensionality reduction
in both cases.

Analyzing the feature dimensionality reduction, in betas and contrasts
parameters, it is clearly seen that it does not improve the classification,
neither if it is a PCA nor a feature selection (main betas). In contrast,
in fitted and EOI fitted data, due to the large number of dimensions (the
feature is a time point, so it is 180 per side ROI), a dimensionality reduction is
useful. Thus, the feature extraction (left ROI) in fitted data and the feature
extraction (PCA) in EOI improve the results.

From the point of view of the classifier selection, LinearSVM is the best
model for classification in most of the cases, always choosing a very small
cost of constraint violation parameter (C' < 1). The parameters for which
the RbfSVM model works better are small 4’s (7<0.1) and C' values between
1 and 10.
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Chapter 7

Conclusions and Future Work

In this project, we have explored fMRI data to classify ADHD subjects.
We have reviewed the previous statistical study presented in [1] and we have
validated their clinical hypotheses using new machine learning strategies. We
have demonstrated that machine learning techniques in the analysis of fMRI
data provides a valid tool for clinical classification.

In particular, our proposed approach is able to distinguish the ADHD
characteristics in a subject based on the activation in the executive functions
(inhibition response and reward anticipation). Comparing to results in [1],
we have demonstrated that, by selecting discriminative features, group clas-
sification can be successfully performed. Moreover, opposite to the results
on Go-NoGo task in [1], we have found accurate classification performance.
We have also shown that classification rates can be significantly improved by
incorporating temporal information into machine learning analysis.

To our knowledge, this is the first time that the temporal/functional
information of the fMRI data is explicitly explored for machine learning clas-
sification purposes in ADHD patients.

Since feature selection is the key for pattern recognition problems, espe-
cially when only a small number of data are available, as in most human
subject research, one of our future research directions will be to explore ef-
ficient global dimensionality reduction techniques proposed in the literature
that can be applied on extremely high dimensional training data and exam-
ine more sophisticated classifiers. Another future work will be to apply the
same group analysis approach in other diagnosed brain disorder.
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