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Abstract

The main purpose of Feature Subset Selection is to find a reduced subset of attributes
from a data set described by a feature set. The task of a feature selection algorithm
(FSA) is to provide with a computational solution motivated by a certain definition of

relevance or by a reliable evaluation measure.

Feature weighting is a technique used to approximate the optimal degree of influence
of individual features using a training set. When successfully applied relevant features
are attributed a high weight value, whereas irrelevant features are given a weight value
close to zero. Feature weighting can be used not only to improve classification accuracy
but also to discard features with weights below a certain threshold value and thereby

increase the resource efficiency of the classifier.

In this work several fundamental feature weighting algorithms (FWAs) are studied to
assess their performance in a controlled experimental scenario. A measure to evaluate
FWASs score is devised that computes the degree of matching between the output given
by a FWAs and the known optimal solutions. A study of relation between the score
obtained from the different classifiers, variance of the score in the different sample size
is carried out as well as the relation between the score and the estimated probability
of error of the model (P.) for the classification problems and the square error (e?) for

the regression problem.
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INTRODUCTION

1.1 Introduction

The feature selection problem is ubiquitous in an inductive machine learning or data mining
and its importance is beyond doubt. The main benefit of a correct selection is the improvement
of the inductive learner, either in terms of learning speed, generalization capacity or simplicity of
the induced model.

The high dimensionality problems has brought an interesting challenge for machine learning
researchers. Machine learning gets particularly difficult when there are many features and very
few samples, since the search space will be sparsely populated and the model will not be able to
distinguish correctly the relevant data and the noise.

In this work several fundamental algorithms are studied to assess their performance in a con-
trolled experimental scenario. A measure to evaluate feature weighting algorithms (FWAS) ’scoring
measure’ is devised that computes the degree of matching between the output given by a feature
weighting algorithm (FWAs) and the known optimal solutions score. An extensive experimental
study on synthetic problems is carried out to assess the behaviour of the algorithms in terms of
solution accuracy and size as a function of the relevance, irrelevance and size of the data sam-
ples. The controlled experimental conditions facilitate the derivation of better-supported and

meaningful conclusions.

1.2 Motivation and Related work

Previous experimental work on feature selection algorithms for comparative purposes include
[Aha and Bankert, 1994], [Doak, 1992], [Jain and Zongker, 1997], [Kudo, 1997] and [Liu, 1998].
Some of these studies use artificially generated data sets, like the widespread Parity, Led or Monks
problems [Thrun et al., 1991]. Demonstrating improvement on synthetic data sets can be more
convincing that doing so in typical scenarios where the true solution is completely unknown.
However, there is a consistent lack of systematical experimental work using a common benchmark
suite and equal experimental conditions. This hinders a wider exploitation of the power inherent in
fully controlled experimental environments: the knowledge of the (set of) optimal solution(s), the

possibility of injecting a desired amount of relevance and irrelevance and the unlimited availability
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of data.

Another important issue is the way feature weighting algorithms (FWAs) (A) performance
is assessed. This is normally done by handing over the solution encountered by the FWAs to
a specific inducer (during of after the feature selection process takes place). Leaving aside the
dependence on the particular inducer chosen, there is a much more critical aspect, namely, the
relation between the performance as reported by the inducer and the true merits of the subset
being evaluated. In this sense, it is our hypothesis that feature selection algorithms (FSAs) are
very affected by finite sample sizes, which distort reliable assessments of subset relevance, even
in the presence of a very sophisticated search algorithm [Reunanen, 2003]. Therefore, sample
size should also be a matter of study in a through experimental comparison. This problem is
aggravated when using filter measures, since in this case the relation to true generalization ability
(as expressed by the Bayes error) can be very loose [Ben-Bassat, 1982].

A further problem with traditional benchmarking data sets is the implicit assumption that the
used data sets are actually amenable to feature selection. By this it is meant that performance
benefits clearly from a good selection process (and less clearly or even worsens with a bad one).
This criterion is not commonly found in similar experimental work. In summary, the rationale for

using exclusively synthetic data sets is twofold:

1. Controlled studies can be developed by systematically varying chosen experimental condi-

tions, thus facilitating the derivation of more meaningful conclusions.

2. Synthetic data sets allow full control of the experimental conditions, in terms of amount of
relevance and irrelevance, as well as sample size and problem difficulty. An added advantage
is the knowledge of the set of optimal solutions, in which case the degree of closeness to any

of these solutions can thus be assessed in a confident and automated way.

The procedure followed in this work consists in generating sample datasets from synthetic
functions of a number of discrete relevant features. These sample data sets are handed over to
different FWAs to obtained a hypothesis. A scoring measure is used in order to compute the
degree of matching between this hypothesis and the known optimal solution. The score takes
into account the amount of relevance and irrelevance in each suboptimal solution as yielded by an

algorithm.

1.3 Goals

Machine learning can take advantage of feature selection methods to be able to confront prob-
lems such as noise or large number of features. Feature selection (FS) is the process of detecting
the relevant feature and discarding the irrelevant ones, with the goal of obtaining a subset of
features that can give relatively the same performance without significant degradation.

Feature weighting is a technique used to approximate the optimal degree of influence of individ-
ual features using a training set. When successfully applied relevant features are attributed a high
weight value, whereas irrelevant features are given a weight value close to zero. Feature weighting
can be used not only to improve classification accuracy but also to discard features with weights

below a certain threshold value and thereby increase the resource efficiency of the classifier.

MSc in Artificial Intelligence Kashif Javed Butt
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The main goals of this study are expose the relation using feature weighting algorithm (FWAS)
between ’Estimated probability of error of the model’ (I:’e), which we obtain predicting from the
huge test set (T'E) and how well the estimation of the relevance of the variables has been done by
the FWAs (A), called score. We also study the relation between the score and the square error
(€2) obtained from the regression type of problems. The aim is to evaluate the Linear correlation
between these variables and finally analyse the influence of classifier in the dataset sample size.

For the classification and regression type of datasets we have used the feature weighting al-
gorithms (FWAs) instead of purely features selection algorithms. In the next chapter details of
differences between the two methods can be found, as well as the explanation of FWAs (A) used

for this approach.

1.4 Organization

The work is organized as follows. We first overview the methods in section 2.1 for feature
selection and in section 2.2 for feature weighting, present them and explain how these method
works to obtain the weight of each feature f;. In section 3 we will describe the type of datasets
used in this experiment and how they are constructed. Following the resampling process in section
4.1 will be describe along with the score measurement in section 4.2. We then present our empirical

analysis of the methods on synthetic datasets 4.3. We conclude our study in Section 5.

Kashif Javed Butt MSc in Artificial Intelligence
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METHODS

Variable and feature selection have become the focus of much research in areas of application
for which datasets with tens or hundreds of thousands of variables are available. These areas
include text processing of Internet documents, gene expression array analysis, and combinatorial
chemistry. The objective of variable selection is three-fold: improving the prediction performance
of the predictors, providing faster and more cost-effective predictors, and providing a better un-
derstanding of the underlying process that generated the data. The contributions of this special
issue cover a wide range of aspects of such problems: providing a better definition of the objec-
tive function, feature construction, feature ranking, multivariate feature selection, efficient search

methods, and feature validity assessment methods.

2.1 Feature Selection

In machine learning and statistics, feature selection, also known as variable selection, feature
reduction, attribute selection or variable subset selection, is the technique of selecting a subset of
relevant features for building robust learning models. Feature selection is a particularly important
step in analysing the data from many experimental techniques in biology, such as DNA microarrays,
because they often entail a large number of measured variables (features) but a very low number
of samples. By removing most irrelevant and redundant features from the data, feature selection

helps improve the performance of learning models by:
e Alleviating the effect of the curse of dimensionality.
e Enhancing generalization capability.
e Speeding up learning process.
e Improving model interpretability.

Feature selection also helps people to acquire better understanding about their data by telling
them which are the important features and how they are related with each other.

Feature selection has been an active research area in pattern recognition, statistics, and data
mining communities. The main idea of feature selection is to choose a subset of input variables

by eliminating features with little or no predictive information. Feature selection can significantly
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improve the comprehensibility of the resulting classifier models and often build a model that
generalizes better to unseen points. Further, it is often the case that finding the correct subset of
predictive features is an important problem in its own right. For example, physician may make a
decision based on the selected features whether a dangerous surgery is necessary for treatment or
not.

Feature selection in supervised learning has been well studied, where the main goal is to find a
feature subset that produces higher classification accuracy. Recently, several researches (Dy and
Brodley, 2000b, Devaney and Ram, 1997, Agrawal et al., 1998) have studied feature selection and
clustering together with a single or unified criterion. For feature selection in unsupervised learning,
learning algorithms are designed to find natural grouping of the examples in the feature space.
Thus feature selection in unsupervised learning aims to find a good subset of features that forms
high quality of clusters for a given number of clusters. However, the traditional approaches to
feature selection with single evaluation criterion have shown limited capability in terms of knowl-
edge discovery and decision support. This is because decision-makers should take into account
multiple, conflicted objectives simultaneously. In particular no single criterion for unsupervised
feature selection is best for every application (Dy and Brodley, 2000a) and only the decision-maker
can determine the relative weights of criteria for her application. In order to provide a clear pic-
ture of the (possibly nonlinear) tradeoffs among the various objectives, feature selection has been
formulated as a multi-objective or Pareto optimization.

Simple feature selection algorithms are ad hoc, but there are also more methodical approaches.
From a theoretical perspective, it can be shown that optimal feature selection for supervised
learning problems requires an exhaustive search of all possible subsets of features of the chosen
cardinality. If large numbers of features are available, this is impractical. For practical supervised
learning algorithms, the search is for a satisfactory set of features instead of an optimal set.

Feature selection algorithms typically fall into two categories: feature ranking and subset
selection. Feature ranking ranks the features by a metric and eliminates all features that do not
achieve an adequate score. Subset selection searches the set of possible features for the optimal
subset.

In statistics, the most popular form of feature selection is stepwise regression. It is a greedy
algorithm that adds the best feature (or deletes the worst feature) at each round. The main
control issue is deciding when to stop the algorithm. In machine learning, this is typically done
by cross-validation. In statistics, some criteria are optimized. This leads to the inherent problem
of nesting. More robust methods have been explored, such as branch and bound and piecewise

linear network.

2.1.1 Subset selection

Subset selection evaluates a subset of features as a group for suitability. Subset selection
algorithms can be broken into Wrappers, Filters and Embedded. Wrappers use a search algorithm
to search through the space of possible features and evaluate each subset by running a model on
the subset. Wrappers can be computationally expensive and have a risk of over fitting to the
model. Filters are similar to Wrappers in the search approach, but instead of evaluating against

a model, a simpler filter is evaluated. Embedded techniques are embedded in and specific to a

MSc in Artificial Intelligence Kashif Javed Butt



2.1. FEATURE SELECTION 7

model.

Many popular search approaches use greedy hill climbing, which iteratively evaluates a candi-
date subset of features, then modifies the subset and evaluates if the new subset is an improvement
over the old. Evaluation of the subsets requires a scoring metric that grades a subset of features.
Exhaustive search is generally impractical, so at some implementor (or operator) defined stopping
point, the subset of features with the highest score discovered up to that point is selected as the
satisfactory feature subset. The stopping criterion varies by algorithm; possible criteria include:
a subset score exceeds a threshold, a program’s maximum allowed run time has been surpassed,
etc.

Alternative search-based techniques are based on targeted projection pursuit which finds low-
dimensional projections of the data that score highly: the features that have the largest projections
in the lower dimensional space are then selected.

Search approaches include:

e Exhaustive

e Best first

e Simulated annealing

e Genetic algorithm

e Greedy forward selection

e Greedy backward elimination

e Targeted projection pursuit

e Scatter Search

e Variable Neighbourhood Search

Two popular filter metrics for classification problems are correlation and mutual information,
although neither are true metrics or ’distance measures’ in the mathematical sense, since they fail
to obey the triangle inequality and thus do not compute any actual 'distance’ they should rather
be regarded as ’scores’. These scores are computed between a candidate feature (or set of features)
and the desired output category.

Other available filter metrics include:

e (Class separability

Error probability

Inter-class distance

Probabilistic distance

Entropy
e Consistency-based feature selection

o Correlation-based feature selection

Kashif Javed Butt MSc in Artificial Intelligence
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2.1.2 Wrapper and filter approach

Feature selection algorithms can be divided into two basic approaches. First is the wrapper
approach, where the selection of features is 'wrapped’ within a learning algorithm. The second
method is called the lter approach, where the features are selected according to data intrinsic
values, such as information, dependency or consistency measures. The differences between these
approaches is in the way the quality of the feature subset is measured. For wrapper approaches,
a common method is to measure the predictive accuracy for a given subset. Then, applying some
forward or backward selection method, the subset is changed and the accuracy is re-evaluated. If
it is better, the new subset is retained, otherwise the old one is kept. You can iterate this until
you reach a given number of features, some accuracy threshold, after a xed number of iterations,
or when you have explored the whole search space. For this method, the learning algorithm has to
run for each subset, so it should not be too demanding.This is the main drawback of this approach.
The other method is the lter method. As mentioned, this method uses the intrinsic properties
of the data and therefore is not dependent on the learning algorithm. Information, dependency
or consistency measures are usually less complex (in time). Therefore these algorithms can be
used on large datasets, to reduce the input dimensionality. After that, you can use a classier or a
wrapper to deal with the reduced dataset. Another advantage of this approach is that you can use
any classier to evaluate the accuracy of the testset. In the wrapper approach, if we use a different
classier for the testset and trainingset, results may be negatively affected.

The differences is in the evaluation method, where filter approaches use a evaluation measure
independent of the learning algorithm. In the wrapper approach, the evaluation is performed by

the learning algorithm itself, taking the predictive accuracy as a measure for feature quality.

MSc in Artificial Intelligence Kashif Javed Butt
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2.2 Feature Weighting

Feature weighting is a technique used to approximate the optimal degree of influence of indi-
vidual features using a training set. When successfully applied relevant features are attributed
a high weight value, whereas irrelevant features are given a weight value close to zero. Feature
weighting can be used not only to improve classification accuracy but also to discard features
with weights below a certain threshold value and thereby increase the resource efficiency of the
classifier. Feature weighting is a crucial process to identify an important subset of features from
a data set. Due to fundamental differences between classification and ranking, feature weighting
methods developed for classification cannot be readily applied to feature weighting for ranking. A
state of the art feature selection method for ranking has been recently proposed, which exploits
importance of each feature and similarity between every pair of features. However, this ranking
methods must compute the similarity scores of all pairs of features, thus it is not scalable for

high-dimensional data and its performance degrades on nonlinear ranking functions.

2.2.1 Random Forests

This section gives a brief overview of random forests and some comments about the features
of the method.

2.2.1.1 Overview

Random Forests grows many classification trees. To classify a new object from an input vector,
put the input vector down each of the trees in the forest. Each tree gives a classification, and
we say the tree ”votes” for that class. The forest chooses the classification having the most votes
(over all the trees in the forest).

Each tree is grown as follows:

1. If the number of cases in the training set is N, sample N cases at random - but with re-
placement, from the original data. This sample will be the training set for growing the

tree.

2. If there are M input variables, a number mj;M is specified such that at each node, m variables
are selected at random out of the M and the best split on these m is used to split the node.

The value of m is held constant during the forest growing.
3. Each tree is grown to the largest extent possible. There is no pruning.

In the original paper on random forests, it was shown that the forest error rate depends on

two things:

e The correlation between any two trees in the forest. Increasing the correlation increases the

forest error rate.

e The strength of each individual tree in the forest. A tree with a low error rate is a strong

classifier. Increasing the strength of the individual trees decreases the forest error rate.

Kashif Javed Butt MSc in Artificial Intelligence



10 2. METHODS

Reducing m reduces both the correlation and the strength. Increasing it increases both. Some-
where in between is an ”optimal” range of m - usually quite wide. Using the oob error rate (see
below) a value of m in the range can quickly be found. This is the only adjustable parameter to

which random forests is somewhat sensitive.

2.2.1.2 Features of Random Forests

e [t is unexcelled in accuracy among current algorithms.

e It runs efficiently on large data bases.

e It can handle thousands of input variables without variable deletion.
e It gives estimates of what variables are important in the classification.

e It generates an internal unbiased estimate of the generalization error as the forest building

progresses.

e It has an effective method for estimating missing data and maintains accuracy when a large

proportion of the data are missing.
e It has methods for balancing error in class population unbalanced data sets.
e Generated forests can be saved for future use on other data.

e Prototypes are computed that give information about the relation between the variables and

the classification.

e It computes proximities between pairs of cases that can be used in clustering, locating

outliers, or (by scaling) give interesting views of the data.

e The capabilities of the above can be extended to unlabelled data, leading to unsupervised

clustering, data views and outlier detection.

e It offers an experimental method for detecting variable interactions.

2.2.1.3 Remarks

Random forests does not overfit. You can run as many trees as you want. It is fast. Running
on a data set with 50,000 cases and 100 variables, it produced 100 trees in 11 minutes on a 800Mhz
machine. For large data sets the major memory requirement is the storage of the data itself, and
three integer arrays with the same dimensions as the data. If proximities are calculated, storage

requirements grow as the number of cases times the number of trees.

2.2.1.4 The algorithm

The random forests algorithm (for both classification and regression) is as follows:

1. Draw ntree bootstrap samples from the original data.

MSc in Artificial Intelligence Kashif Javed Butt



2.2. FEATURE WEIGHTING 11

. For each of the bootstrap samples, grow an unpruned classification or regression tree, with

the following modification: at each node, rather than choosing the best split among all
predictors, randomly sample mtry of the predictors and choose the best split from among
those variables. (Bagging can be thought of as the special case of random forests obtained

when mtry = p, the number of predictors.)

Predict new data by aggregating the predictions of the ntree trees (i.e., majority votes for

classification, average for regression).

An estimate of the error rate can be obtained, based on the training data, by the following:

1.

At each bootstrap iteration, predict the data not in the bootstrap sample (what Breiman
calls out-of-bag, or OOB, data) using the tree grown with the bootstrap sample.

Aggregate the OOB predictions. (On the average, each data point would be out-of-bag
around 36% of the times, so aggregate these predictions.) Calculate the error rate, and call

it the OOB estimate of error rate.

Algorithm 1 Pseudo code for the random forest algorithm

1
2
3
4
5:
6
7
8
9

: To generate c classifiers:
:fori=1—cdo

Randomly sample the training data D with replacement to produce D;
Create a root node, N; containing D;
Call BuildTree(V;)

: end for

: BuildTree(V):

: if N contains instances of only one class then return
. else

10:
11:
12:
13:
14:
15:
16:
17:

Randomly select x > of the possible splitting features in N
Select the feature F' with the highest information gain to split on
Create f child nodes of N, Ny,..., Ny , where F' has f possible values (Fi, ..., F)
fori=1— fdo

Set the contents of N; — D; , where D; is all instances in IV that match F;

Call BuildTree(V;)
end for

end if

Figure 2.1: Algorithm: Random Forests

2.2.1.5 Extra information from Random Forests

The randomForest package optionally produces two additional pieces of information: a mea-

sure of the importance of the predictor variables, and a measure of the internal structure of the

data (the proximity of different data points to one another).

Variable importance This is a difficult concept to define in general, because the importance

of a variable may be due to its (possibly complex) interaction with other variables. The random

forest algorithm estimates the importance of a variable by looking at how much prediction error

increases when (OOB) data for that variable is permuted while all others are left unchanged. The

Kashif Javed Butt MSc in Artificial Intelligence



12 2. METHODS

necessary calculations are carried out tree by tree as the random forest is constructed. (There
are actually four different measures of variable importance implemented in the classification code.
The reader is referred to Breiman (2002) for their definitions.)

Proximity measure The (i, j) element of the proximity matrix produced by randomForest
is the fraction of trees in which elements ¢ and j fall in the same terminal node. The intuition is
that similar observations should be in the same terminal nodes more often than dissimilar ones.
The proximity matrix can be used to identify structure in the data (see Breiman,2002) or for

unsupervised learning with random forests.

MSc in Artificial Intelligence Kashif Javed Butt
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2.2.2 Relief

RELIEF is considered one of the most successful algorithms for assessing the quality of features
due to its simplicity and effectiveness. It has been recently proved that RELIEF is an online
algorithm that solves a convex optimization problem with a margin-based objective function.

Relief is a feature weight based algorithm inspired by instance-based learning. Given training
data S, sample size m, and a threshold of relevancy 7, Relief detects those features which are
statistically relevant to the target concept. 7 encodes a relevance threshold (0 < 7 < 1). We
assume the scale of every feature is either nominal (including boolean) or numerical (integer or
real). Differences of feature values between two instances X and Y are defined by the following
function diff.

When z; and y; are nominal,

) 0, if z; and yi are the same
dif f(xr, yx) =
1, if zx and y; are different

When z; and y; are numerical,

dif f(zk, yr) = (Tr — yr)/nug

where nuy, is a normalization unit to normalize the values of dif f into the interval [0, 1]

In Relief, both nominal and numeric features can be used, and they can also be used si-
multaneously. However in that case, one should be aware that numerical features tend to be
underestimated and compensate for this fact. I will not go into this, for I only have to deal with
nominal features. Therefore the distance for a feature between two instances is either 0 (they are
the same) or 1 (they are different). After each iteration, the weights for a feature are updated and
normalized within the interval [—1,1] by dividing it with the number of samples and iterations.
The output is a weight vector, with a weight W; for each feature i. In the original paper, the
authors propose a relevancy threshold 7. If you select all features with a weight > 7 you get a
subset selection algorithm. The authors describe a statistical mechanism to calculate 7 , but for
sequence alignments, a ranked list of all features is preferred in most cases. In this case, Relief
operates as a feature ranking mechanism. By now, it should be obvious that the key to the success
of Relief lays in the fact that it does a global and a local search. It does not rely on greedy heuris-
tics like many other algorithms that often get stuck in local optima. This idea is nicely illustrated
in [Liu and Motada, 1998]. The idea is that a relevant feature can separate two instances from
opposite classes that are closely related. Therefore it takes the most closely related instance from

an opposite class (the nearest miss) and from the same class (the nearest hit).

2.2.2.1 Algorithm

The algorithm finds weights of continuous and discrete attributes basing on a distance between
instances. The algorithm samples instances and finds their nearest hits and misses. Considering
that result, it evaluates weights of attributes.

Relief 2 picks a sample composed of m triplets of an instance X, its Near — hit instance' and

1We call an instance a near-hit of X if it belongs to the close neighbourhood of X and also to the same category
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Near — miss instance. Relief uses the p — dimensional Euclid distance for selecting Near — hit
and Near — miss. Relief calls a routine to update the feature weight vector W for every sample
triplet and to determine the average feature weight vector Relevance (of all the features to the
target concept). Finally, Relief selects those features whose average weight (‘relevance level’) is

above the given threshold 7.

Algorithm 2 Relief algorithm

function RELIEF(S,m, T)
2: Separate S into ST = {positive instances} and
S~ = {negative instances}
& W =(0,0,..,0)
fort=1—mdo

6: Pick at random an instances X € S

Pick at random one of the positive instances closet to X, Z+ € S+
8: Pick at random one of the negative instances closet to X, Z~ € S~

if X is a positive instance then Near — hit = Z+ Near — miss = Z~
10: elseNear — hit = Z~ Near — miss = Z+

end if
12: update-weight(W, X, Near — hit, Near — Miss)

end for

14: Relevance = (1/m)W
fori=1—pdo

16: if relevance; > t then f; is a relevant feature
elsef; is an irrelevant feature
18: end if
end for

20: end function
function UPDATE-WEIGHT(W, X, Near — hit, Near — Miss)
22: fori=1—pdo
W; = W; — dif f(zs, near — hit;)? + dif f (z;, near — miss;)?
24: end for
end function

Figure 2.2: Algorithm: Relief

2.2.2.2 Theoretical Analysis

Relief has two critical components: the averaged weight vector Relevance and the threshold
7. Relevance is the averaged vector of the value — (x; — near — hit;)* + (z; — near — miss;)”
for each feature f; over m sample triplets. Each element of Relevance corresponding to a feature
shows how relevant the feature is to the target concept. 7 is a relevance threshold for determining
whether the feature should be selected.

The complexity of Relief is #(pmn). Since m is an arbitrarily chosen constant, the complexity
is O(pn). Thus the algorithm can select statistically relevant features in linear time in the number

of features and the number of training instances.

as X. We call an instance a near — miss when it belongs to the properly close neighbourhood of X but not to the
same category as X.
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Relief is valid only when the relevance level is huge for relevant features and small for irrelevant

features, and 7 retains relevant features and discards irrelevant features.

2.2.3 Linear Support Vector Machine (SVM-Linear)

Linear SVM is the newest extremely fast machine learning (data mining) algorithm for solving
multi-class classification problems from ultra large data sets that implements an original propri-
etary version of a cutting plane algorithm for designing a linear support vector machine. Lin-
earSVM is a linearly scalable routine meaning that it creates an SVM model in a CPU time which
scales linearly with the size of the training data set.

Classifying data is a common task in machine learning. Suppose some given data points each
belong to one of two classes, and the goal is to decide which class a new data point will be in. In
the case of support vector machines, a data point is viewed as a p-dimensional vector (a list of p
numbers), and we want to know whether we can separate such points with a (pl) — dimensional
hyperplane. This is called a linear classifier. There are many hyperplanes that might classify
the data. One reasonable choice as the best hyperplane is the one that represents the largest
separation, or margin, between the two classes. So we choose the hyperplane so that the distance
from it to the nearest data point on each side is maximized. If such a hyperplane exists, it is known
as the maximum-margin hyperplane and the linear classifier it defines is known as a maximum
margin classifier; or equivalently, the perceptron of optimal stability.

Given some training data D, a set of n points of the form
D= {(xi,y:) | xi €RY, y; € {=1,1}}],

where the y; is either 1 or -1, indicating the class to which the point x; belongs. Each x; is a
p-dimensional real vector. We want to find the maximum-margin hyperplane that divides the
points having y; = 1 from those having y; = —1. Any hyperplane can be written as the set of
points x satisfying

w-x—b=0,

where - denotes the dot product and w the normal vector to the hyperplane. The parameter m
determines the offset of the hyperplane from the origin along the normal vector w.

If the training data are linearly separable, we can select two hyperplanes in a way that they
separate the data and there are no points between them, and then try to maximize their distance.
The region bounded by them is called ”the margin”. These hyperplanes can be described by the

equations

w-x—b=1

and

w-Xx—b=-1.
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By using geometry, we find the distance between these two hyperplanes is HzTH’ so we want to
minimize ||w||. As we also have to prevent data points from falling into the margin, we add the

following constraint: for each ¢ either

w-x;,—b>1 for x; of the first class
or
w-x; —b< -1 for x; of the second.
This can be rewritten as:
yi(w-x;,—b)>1, foralll<i<n. (1)

We can put this together to get the optimization problem: Minimize (in w,b)
[[wll

subject to (for any i =1, ..., n)
yi(w-x; —b) > 1.

Below we present the popular feature selection algorithm (FSA) SVM - Recursive Feature
elimination (SVM-RFE). However, we do not use this algorithm directly because this belong to
the family of FSA and it is not purely a Feature weighting algorithm. Instead, we have adapted
the SVM-RFE algorithm 3 for this approach. In this case we are not working with the returned
list of features L. Instead, we return the vector of weights (w) where each feature is assigned by

his correspondent weight.

Algorithm 3 SVM-RFE algorithm

1: function SVM-RFE(T, fs)

2: T: Set of training examples; each example is described by a vector of feature values (z) and
its class (y)

3: fs: Set of features describing each example in T;

4: L: Ordered list of feature subsets; each subset contains the remaining features at every iteration

5: F,=7fs > m is the number of features
6: L =[F,] > Initially, one subset with all the features
7 for j =m — 2 do

8: a=SVM(T) > Train SVM
9: w = DapYkTk > w: the hyperplane coefficients
10 r=argmin(w?:i=1,...,|F|) > The smallest ranking criterion
11: Fi_1 = F\fr > Remove 1-th feature from F
12: L=L+F;, > Add the subset of remaining features
13: T ={at;: xt; is ¢; € T with f, removed} > Remove r-th feature from examples in T
14: end for

15: return(L)

16: end function

Figure 2.3: Algorithm: SVM-RFE
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2.2.3.1 Primal form

The optimization problem presented in the preceding section is difficult to solve because it
depends on ||w||, the norm of w, which involves a square root. Fortunately it is possible to
alter the equation by substituting ||w|| with 1|w||? (the factor of 1/2 being used for mathematical
convenience) without changing the solution (the minimum of the original and the modified equation
have the same w and b). This is a quadratic programming optimization problem. More clearly:
Minimize (in w,b)

1
Sliwl?

subject to (for any i =1,...,n)
yi(w-x3 —b) > 1.

By introducing Lagrange multipliers a, the previous constrained problem can be expressed as

. Lo
min max {2||W|| - Z;ai[yz-(w -x; —b) — 1]}
i=
that is we look for a saddle point. In doing so all the points which can be separated as y;(w -
x; —b) — 1 > 0 do not matter since we must set the corresponding «; to zero. This problem can
now be solved by standard quadratic programming techniques and programs. The ”stationary”
Karush-Kuhn-Tucker condition implies that the solution can be expressed as a linear combination

of the training vectors
n
W = Z QY X .
i=1

Only a few a; will be greater than zero. The corresponding x; are exactly the support vectors,
which lie on the margin and satisfy y;(w - x; —b) = 1. From this one can derive that the support
vectors also satisfy

w-xi—b=1/y, =y, < b=w -x; — Y

which allows one to define the offset b. In practice, it is more robust to average over all Ngy

support vectors:

1 Nsv
b= —— W X; — Y
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2.2.3.2 Dual form

Writing the classification rule in its unconstrained dual form reveals that the maximum margin
hyperplane and therefore the classification task is only a function of the support vectors, the
training data that lie on the margin. Using the fact that ||w||? = w - w and substituting w =
Z?Zl @;Y;Xj, one can show that the dual of the SVM reduces to the following optimization problem:

Maximize (in «;)
7 T
L(a) = ;ai ~5 izj:aiajyiiji X, = ;ai ~5 lz]: ooy k(% X5)

subject to (for any i =1,...,n)
Qa; 2 07

and to the constraint from the minimization in b
n
Z a;y; = 0.
i=1

Here the kernel is defined by k(x;,x;) = x; - x;.

W can be computed thanks to the «a terms:

w = E Q3YiXi.
i
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2.2.4 Nonlinear classification

The original optimal hyperplane algorithm proposed by Vapnik in 1963 was a linear classifier.
However, in 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik suggested a
way to create nonlinear classifiers by applying the kernel trick (originally proposed by Aizerman
et al. [Aizerman et al., 1964]) to maximum-margin hyperplanes. [Boser et al., 1992] The resulting
algorithm is formally similar, except that every dot product is replaced by a nonlinear kernel
function. This allows the algorithm to fit the maximum-margin hyperplane in a transformed
feature space. The transformation may be nonlinear and the transformed space high dimensional;
thus though the classifier is a hyperplane in the high-dimensional feature space, it may be nonlinear
in the original input space.

If the kernel used is a Gaussian radial basis function, the corresponding feature space is a
Hilbert space of infinite dimensions. Maximum margin classifiers are well regularized, so the

infinite dimensions do not spoil the results. Some common kernels include:

e Polynomial (homogeneous): k(x;,x;) = (x; - x;j)¢
e Polynomial (inhomogeneous): k(x;,x;) = (x; - xj + 1)<

e Gaussian radial basis function: k(xj,x;) = exp(—v||xi — x;[|?), for v > 0. Sometimes

parametrized using v = 1/202

e Hyperbolic tangent: k(x;,x;) = tanh(kx; - xj + ¢), for some (not every) x > 0 and ¢ < 0

Figure 2.4: Kernel Machine

The kernel is related to the transform ¢(x;) by the equation k(x;, X;) = ¢©(xi)-¢(x;). The value
w is also in the transformed space, with w = . a;y:¢(x;). Dot products with w for classification
can again be computed by the kernel trick, i.e. w-¢(x) = >, a;y;:k(x;,x). However, there does

not in general exist a value w’ such that w - p(x) = k(w', x).

2.2.4.1 Properties

SVMs belong to a family of generalized linear classifiers and can be interpreted as an extension
of the perceptron. They can also be considered a special case of Tikhonov regularization. A special
property is that they simultaneously minimize the empirical classification error and maximize the

geometric margin; hence they are also known as maximum margin classifiers.

2.2.4.2 Parameter selection

The effectiveness of SVM depends on the selection of kernel, the kernel’s parameters, and soft

margin parameter C.
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A common choice is a Gaussian kernel, which has a single parameter . Best combination of
C and 7y is often selected by a grid search with exponentially growing sequences of C' and +, for
example, C' € {275,273 ... 213 215}, 5 ¢ {2715 2713 21 231 Typically, each combination of
parameter choices is checked using cross validation, and the parameters with best cross-validation
accuracy are picked. The final model, which is used for testing and for classifying new data, is

then trained on the whole training set using the selected parameters. [Hsu et al., 2003]

2.2.4.3 Issues

Potential drawbacks of the SVM are the following three aspects:
e Uncalibrated class membership probabilities

e The SVM is only directly applicable for two-class tasks. Therefore, algorithms that reduce

the multi-class task to several binary problems have to be applied.

e Parameters of a solved model are difficult to interpret.
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2.2.5 Linear Regression

In statistics, linear regression is an approach to modelling the relationship between a scalar
dependent variable y and one or more explanatory variables denoted X. The case of one explana-
tory variable is called simple regression. More than one explanatory variable is multiple regression.
(This in turn should be distinguished from multivariate linear regression, where multiple correlated
dependent variables are predicted,[citation needed] rather than a single scalar variable.)

In linear regression, data are modelled using linear predictor functions, and unknown model
parameters are estimated from the data. Such models are called linear models. Most commonly,
linear regression refers to a model in which the conditional mean of y given the value of X is
an affine function of X. Like all forms of regression analysis, linear regression focuses on the
conditional probability distribution of y given X, rather than on the joint probability distribution
of y and X, which is the domain of multivariate analysis.

Linear regression was the first type of regression analysis to be studied rigorously, and to be
used extensively in practical applications. This is because models which depend linearly on their
unknown parameters are easier to fit than models which are non-linearly related to their parameters
and because the statistical properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications of linear regression fall into one

of the following two broad categories:

e If the goal is prediction, or forecasting, linear regression can be used to fit a predictive model
to an observed data set of y and X values. After developing such a model, if an additional
value of X is then given without its accompanying value of y, the fitted model can be used

to make a prediction of the value of .

e Given a variable y and a number of variables X3,..., X, that may be related to y, linear
regression analysis can be applied to quantify the strength of the relationship between y and
the X, to assess which X; may have no relationship with y at all, and to identify which

subsets of the X; contain redundant information about y.

Linear regression models are often fitted using the least squares approach, but they may also
be fitted in other ways, such as by minimizing the lack of fit in some other norm (as with least
absolute deviations regression), or by minimizing a penalized version of the least squares loss
function as in ridge regression. Conversely, the least squares approach can be used to fit models
that are not linear models. Thus, while the terms ”least squares” and ”linear model” are closely
linked, they are not synonymous.

Given a data set {(y;,x;1,...,z;p)}., of n statistical units, a linear regression model assumes
that the relationship between the dependent variable y; and the p-vector of regressors x; is linear.
This relationship is modelled through a disturbance term or error variable ¢ an unobserved
random variable that adds noise to the linear relationship between the dependent variable and

regressors. Thus the model takes the form

Yi =Bl + 4 Bpripte =] B+, i=1,...,n

where T denotes the transpose, so that 7 3 is the inner product between vectors x; and 3.
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Often these n equations are stacked together and written in vector form as

y=XB+e,
where

Y1 a:lT r1l ... x1p €1

T B1
Yo Ty ol ... xop ' €9

y=|.] x= = CoB=|]. e=

B

Un xg Tl .. Tpp P €p

Some remarks on terminology and general use:

e y,; is called the regressand, exogenous variable, response variable, measured variable, or
dependent variable (see dependent and independent variables.) The decision as to which
variable in a data set is modelled as the dependent variable and which are modelled as the
independent variables may be based on a presumption that the value of one of the variables

is caused by, or directly influenced by the other variables.

e x; are called regressors, endogenous variables, explanatory variables, covariates, input vari-
ables, predictor variables, or independent variables (see dependent and independent vari-
ables, but not to be confused with independent random variables). The matrix X is some-

times called the design matrix.

— Usually a constant is included as one of the regressors. For example we can take x;; = 1
fori =1,...,n. The corresponding element of 3 is called the intercept. Many statistical
inference procedures for linear models require an intercept to be present, so it is often

included even if theoretical considerations suggest that its value should be zero.

— Sometimes one of the regressors can be a non-linear function of another regressor or
of the data, as in polynomial regression and segmented regression. The model remains

linear as long as it is linear in the parameter vector 3.

— The regressors x;; may be viewed either as random variables, which we simply observe,
or they can be considered as predetermined fixed values which we can choose. Both
interpretations may be appropriate in different cases, and they generally lead to the
same estimation procedures; however different approaches to asymptotic analysis are

used in these two situations.

e 3 is a p-dimensional parameter vector. Its elements are also called effects, or regression

coefficients. Statistical estimation and inference in linear regression focuses on f.

e ¢; is called the error term, disturbance term, or noise. This variable captures all other factors
which influence the dependent variable y; other than the regressors z;. The relationship
between the error term and the regressors, for example whether they are correlated, is a
crucial step in formulating a linear regression model, as it will determine the method to use

for estimation.
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2.2.6 Logistic Regression

Logistic regression is an approach to prediction, like Ordinary Least Squares (OLS) regression.
However, with logistic regression, the researcher is predicting a dichotomous outcome. This situa-
tion poses problems for the assumptions of OLS that the error variances (residuals) are normally
distributed. Instead, they are more likely to follow a logistic distribution. When using the logis-
tic distribution, we need to make an algebraic conversion to arrive at our usual linear regression
equation (Y = By + B1 X +e).

With logistic regression, there is no standardized solution printed. And to make things more
complicated, the unstandardised solution does not have the same straight-forward interpretation
as it does with OLS regression.

One other difference between OLS and logistic regression is that there is no R? to gauge
the variance accounted for in the overall model (at least not one that has been agreed upon by
statisticians). Instead, a chi-square test is used to indicate how well the logistic regression model
fits the data.

Probability that Y = 1

Because the dependent variable is not a continuous one, the goal of logistic regression is a
bit different, because we are predicting the likelihood that Y is equal to 1 (rather than 0) given
certain values of X. That is, if X and Y have a positive linear relationship, the probability that
a person will have a score of Y = 1 will increase as values of X increase. So, we are stuck with
thinking about predicting probabilities rather than the scores of dependent variable.

In logistic regression, a complex formula is required to convert back and forth from the logistic
equation to the OLS-type equation. The logistic formulas are stated in terms of the probability
that Y = 1, which is referred to as p. The probability that Y is0is 1 —p

ln( P A):Bo—i—BlX
1-p

The In symbol refers to a natural logarithm and By + B1X is our familiar equation for the
regression line.
P can be computed from the regression equation also. So, if we know the regression equation,

we could, theoretically, calculate the expected probability that Y =1 for a given value of X.

eBO+BliD

p= 1 + eB0+B1$

Definition An explanation of logistic regression begins with an explanation of the logistic
function, which, like probabilities, always takes on values between zero and one [Hosmer and
Lemeshow, 2000]

Deviance. With logistic regression, instead of R? as the statistic for overall fit of the model,
we have deviance instead. Chi-square was said to be a measure of ”goodness of fit” of the observed
and the expected values. We use chi-square as a measure of model fit here in a similar way. It
is the fit of the observed values (Y) to the expected values ( Y ). The bigger the difference (or
”deviance”) of the observed values from the expected values, the poorer the fit of the model. So,
we want a small deviance if possible. As we add more variables to the equation the deviance

should get smaller, indicating an improvement in fit.
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Maximum Likelihood. Instead of finding the best fitting line by minimizing the squared
residuals, as we did with OLS regression, we use a different approach with logistic Maximum
Likelihood (ML). ML is a way of finding the smallest possible deviance between the observed and
predicted values (kind of like finding the best fitting line) using calculus (derivatives specifically).
With ML, the computer uses different ”iterations” in which it tries different solutions until it gets
the smallest possible deviance or best fit. Once it has found the best solution, it provides a final
value for the deviance, which is usually referred to as "negative two log likelihood” (shown as ”-2
Log Likelihood” in SPSS). The deviance statistic is called 2LL by Cohen et al. (2003) and Pedazur
and D by some other authors (e.g., Hosmer and Lemeshow, 1989), and it can be thought of as a

chi-square value.

2.3 R functions of the classifiers

2.3.1 Random Forests

We have used the function 'randomForest’ defined in the package 'randomForest’, which imple-
ments Breimans random forest algorithm (based on Breiman and Cutler’s original Fortran code)

for classification and regression.

2.3.2 Relief

We have used the function ’relief’ defined in the package 'FSelector’, this algorithm finds
weights of continuous and discrete attributes basing on a distance between instances. The al-
gorithm samples instances and finds their nearest hits and misses. Considering that result, it

evaluates weights of attributes.

2.3.3 Linear-SVM

We have adapted the SVM-RFE algorithm so that we return the weights of each feature instead

of the list of relevant features.

2.3.4 Linear and Logistic Regression

For both linear and logistic regression we use the glm function defined in the package ’glm’.
The only difference is that if we want to perform linear regression we set the value of the parameter
family =" gaussian” and if we want to perform logistic regression then we define the parameter

family = "binomial” in the glm function.

MSc in Artificial Intelligence Kashif Javed Butt



DATASETS

Only Synthetic Datasets were used for this work. Following we will explain in details the type
of datasets used and how they have generated.
Basically two type of synthetic datasets were used in this approach: classification and regres-

sion.

3.1 Datasets

We have two types of classification datasets. The differences between them are the way that
covariance matrix and mean vector are defined. In the following sections we will describe the

whole process of these datasets.

3.1.1 Classification dataset (I)

This type of dataset is also called 'probability of density’. Because it is generated following
the next equation
P(z) = P(w1)P(z|wy) + P(ws2)P(x|ws),

P(z|w;) is the density of N (uo,0) and P(z|ws) is the density of N (u1,31), where po and pq
are the mean vector of class 0 and 1, respectively, and ¥y and X; the covariance matrices. The
distributions are multivariate gaussians.
dr
In this model type, we let pug = m,o, ---,0 | and g1 = —pg, where d is the total
d

length of the mean vector and d/ is the length of the relevance features.

We use a block-based structure for the covariance matrices.In our distribution models we let

Y0 and ¥; have the identical structure and we call them 3, where ¥ is of the form

D 0

b))
Ydzd =

Sk
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The covariance matrix 3; used as the diagonal values for the big ¥;4,4 is of the form

1 0.8

Yok = 1

0.8 1

Let’s have a look on the parameters used to generate this type of dataset in the following table:

Parameters ~ Values/descriptions

N sample size

N = 10? (for small sample size)
N =103 (for medium sample size)
N = 10* (for big sample size)

d d = 50 (Total number of features)
dr dr = 30 (# of relevant features)
m value for the mean vector components
k dimension of covariance sub matrix
a a = 0.8 (upper and lower triangle values
of the covariance sub matrix)
b b =1 (diagonal value of the covariance sub matrix)

Table 3.1: Classification (I): Distribution model parameters

Before starting with the dataset generation process we have to take into account the following

restrictions on the parameters seen in the previous table:

Restrictions Description

P(wy) + P(wz) =1 The sum of both probabilities must be equal to one

dr<d The total number of relevant feature should be lower
or equal the total number of features

d+k=0 k must be divisor d

a>0 The upper and lower triangular values of the

covarianve matrix must be positive

Table 3.2: Classification (I): Parameters Restrictions
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Now we want to distribute the data among two classes, which means we will work with binary

class datasets. The next equation is used to divide data between two classes:

y= Sign(Z:?:1 ri%;)

where we choose sign(z) to assign the sample to one class or another. Detailed description is in

the following equation:

] 1, z >0, if z is positive, sample belongs to class 1
sign(z) =
—1, =z < 1,if zis negative, sample belongs to class 2
Another important concept is the relevance vector (r}) also known as optimal solution where
we will have the relevance given to the features in the dataset generation process. To assign the

relevance to the features we follow the next equation:

|74 N(0,0%), i=1,...,d
LY Il 0, i=dr+1,....d

In the previous equation we can see the vector r; is generated as a normal distribution of length
dr and then is filled with the value 0 from d’ + 1 since d.

The next figures gives us an idea of how is the composition of the dataframe

xAd' S
’f___._._,.-“"\-..._____\}ﬁ ¥y = sum{ri®xi)
T

® LT [

Figure 3.1: Dataframe
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and the composition of the relevance vector (r})

r1+|"23 & @ B W g W B @ rdﬂ

CRSEE———

Figure 3.2: Relevance vector (r*)

The classification dataset generating process is explained in the follow algorithm:

Algorithm 4 Classification dataset (I)

1: function GENERATECLASIFICATIONDATASET (n, d, d/, m, k, a, b, priors, sdr)

2: n: number of samples

3: d: total number of features

4: dr: number of relevant features

5: m: value of mean vector parameter

6: k: dimension of covariance matrix

7: a,b: diagonal and triangles values of covariance matrix

8: priors: P(wy), P(w2)

9: sdr: standard deviation for relevance vector

10:

11: if sum(priors)# 1 then

12: print(”ERROR: The sum of probabilities should be 1.”)

13: return()

14: else

15: Covar = getSigma(d, k,a,b) > Get covariance matrix Y g,q
16: alist = list() > Initialize the list that will contain the distribution
17: fori=1—ndo
18: pwl = runif(1l,min = 0,max =1) > Generate random number between 0 and 1
19: if pwl < priors[l] then > check to which P(w;) belongs
20: mu.f = get Mu(d, dr,m) > Get the mean vector for probability P(wy)
21: else
22: mu.f = —getMu(d,d/,m) > Get the mean vector for probability P(ws)
23: end if
24: zlist][i]] = mvrnorm(1, mu = mu.f, Sigma = Covar) > Generate one row of data
25: end for
26: x = matriz(unlist(zlist), ncol = d,byrow = TRUE) > Save the data matrix into x
27: r = GenerateRi(d, dR, sdr) > Generate the vector R;
28: classes = as. factor(apply(z, 1, function(z)sign(sum(x *r)))) > Assign each sample

to one class or another

29: r¥ = GenerateRiStar(r) > Generate the relevance vector r}
30: return(list(data. frame(classes, x), rStar)) > Return dataset and his Relevance vector
31: end if

32: end function

Figure 3.3: Algorithm: Classification dataset (I)
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3.1.2 Classification dataset (II)

Again we have two classes, two probabilities P(w;), P(ws) and P(z) follows the equation

P(z) = P(wy)P(x|wy) + P(wa)P(x|ws),

N
\/I?\/E) ’\/&

d
structure for the covariance matrices.In our distribution models we let g and X1 have the identical

In this case we let pg = and g1 = —pg, as before we use a block-based

structure and we call them X, where X is of the form

Ezdiag(a%,a%,...,oﬁ) =

*

The relevance vector (r}) is the same form as the previous type of dataset and follows the

equation
|

d
Zj:l ;]

but the difference is that the relevance vector 7; is exactly the same as the mean vector. Meanwhile

*
.=

in the previous case the r; was generated form a normal distribution of length dr for the relevant
features and zeros for the rest of the vector from d/ + 1 to d.

Let’s have a look on the parameters used to generate this type of dataset in the following table:

Parameters  Values/descriptions

P(wl) 07
N sample size

N = 10? (for small sample size)
N = 10? (for medium sample size)
N = 10* (for big sample size)

d d = 50 (Total number of features)
dr dr =30 (# of relevant features)
v diagonal value of the covariance matrix

Table 3.3: Classification (II): Distribution model parameters
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We have to take into account the following restrictions on the parameters seen in the previous

table while generating the distributions using these parameters. We can see the restrictions in the

next table:
Restrictions Description
P(wy) + P(wz) =1 The sum of both probabilities must be equal to one
dr<d The total number of relevant feature should be lower
or equal the total number of features
v >0 The diagonal values of the covariance matrix

must be positive

Table 3.4: Classification (IT): Parameters Restrictions

The classification dataset generating process is explained in the follow algorithm:

Algorithm 5 Classification dataset (II)

1: functi

on GENERATECLASIFICATIONDATASET(n, d, d/, m, k, a, b, priors, sdr)

2: n: number of samples

3: d: total number of features

4: dr: number of relevant features

5: v: diagonal values of covariance matrix

6: priors:

7: sdr: st
8:

P(’U)]_),P(U}Q)
andard deviation for relevance vector

9: if sum(priors)# 1 then

10 print("ERROR: The sum of probabilities should be 1.”)

11: return()

12: else

13: Covar = getSigma(d, k,a,b) > Get covariance matrix Xg.q

14: xlist = list() > Initialize the list that will contain the distribution

15: fori=1—ndo

16: pwl = runif(1,min = 0,max = 1) > Generate random number between 0 and 1

17: if pwl < priors[l] then > check to which P(w;) belongs

18: mu.f = getMu(d, dr,m) > Get the mean vector for probability P(w1)

19: else

20: mu.f = —getMu(d,d/,m) > Get the mean vector for probability P(ws)

21: end if

22: zlist[[i]] = mvrnorm(1, mu = mu.f, Sigma = Covar) > Generate one row of data

23: end for

24: x = matriz(unlist(zlist), ncol = d,byrow = TRUE) > Save the data matrix into x

25: r = GenerateRi(d, dR, sdr) > Generate the vector R;

26: classes = as. factor(apply(z, 1, function(z)sign(sum(xz *7)))) > Assign each sample
to one class or another

27: r¥ = GenerateRiStar(r) > Generate the relevance vector r}

28: return(list(data. frame(classes, x),rStar)) > Return dataset and his Relevance vector

29: end if

30: end function

Figure 3.4: Algorithm: Classification dataset (IT)
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Now we want to distribute the data among two classes, which means we will work with binary

class datasets. The next equation is used to divide data between two classes:

y= sign(Z::l:1 ri%;)

where we choose sign(z) to assign the sample to one class or another. Detailed description is in

the following equation:

n(2) 1, z >0, if z is positive, sample belongs to class 1
sign(z) =
—1, =z < 1,if zis negative, sample belongs to class 2
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3.1.3 Regression dataset

In regression type of dataset we have a set of feature X = (X,...,Xy) of length d and the

target is of the form

d
b:T‘()—FZT,L'l‘i—FE

i=1
where r; denotes the relevance of the feature z; and it is generated using the normal distribution
of the form

ri ~ N (0, (ff) ,  where 2 is the variance
In the target equation b, x; is generated from uniform distribution between [—5, 5] of the form
x; ~U(=5,5)
and the independent term ¢ is also obtained from normal distribution of the form
e~N (0, 03) ,  where af is the variance
The relevance vector (r}) is the same form as the previous types of datasets and follows the

equation
|

d
Zj:l 5]

The regression dataset generating process is explained in the following algorithm:

*
)

Algorithm 6 Regression dataset

1: function GENERATEREGRESSIONDATASET(n, d, 02,02, 07 ,02)
2: n: number of samples
3: d: total number of features
4: a: Range for the uniform distribution
5: 02+ Variance of the initial relevance vector
6: 02: Variance for relevance vector
7: 02: Variance for the independent term
8: Initialize the target vector b
9:
10: x=U(—a,a) > Generate the nzd dimension data-matrix
11: r=N(0,02) > Generate the relevance vector for d features
12: ro =N (0,02) > Generate the initial relevance vector
13: e=N (O7 O’?) > Generate the independent term
14: TE=T%T > dot product of the feature vector x and the relevance vector r
15: b=r0+rx+¢ > Calculate the target vector
16: dataframe = data. frame(cbind(z,b)) > Combine the data-matrix with the target vector
17: r* = Z‘lljil‘lm\ > Calculate the relevance vector
18: return(Jlist(data frame,r*)) > return the dataframe and the relevance vector

19: end function

Figure 3.5: Algorithm: Regression dataset
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EXPERIMENTAL
EVALUATION

Before we complete our description of the distribution model and move to the simulation setup,

we comment that the models designed here are not intended to cover every possible real scenario.

4.1 Resampling

The main question arising in a feature selection experimental design is: what are the aspects
that we would like to evaluate of a FWA (A)! solution in a given data set? Certainly a good
algorithm is one that maintains a well-balanced trade-off between small-sized and competitive
solutions. To assess these two issues at the same time is a difficult undertaking in practice,
given that their optimal relationship is user-dependent. In the present controlled experimental
scenario, the task is greatly eased since the size and performance of the optimal solution is known
in advance. The aim of the experiments is precisely to contrast the ability of the different FWAs

to hit a solution with respect to relevance, irrelevance and sample size.

Relevance: Different families of problems are generated by varying the number of relevant fea-
tures Ng. These are features that will have an influence on the output and whose role can not be

assumed by any other subset.

Irrelevance: Irrelevant features are defined as those not having any influence on the output.
Their values are generated at random for each example. For a problem with Ny relevant features,
different numbers of irrelevant features N are added to the corresponding data sets (thus providing

with several subproblems for each choice of Ng).

Sample Size: number of instances |S| of a data sample S. In these experiments,

2, for small size dataset
|S| = 10*, where k= ¢ 3, for medium size dataset

4, for big size dataset

IFeature weighting algorithms
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4.1.1 Process

1.

First of all we will generate independent data for the training set (T'R), validation set (V A)
and a huge test set (T'E) of fixed size 10°.

For each TR, VA and TE we have to adjust the learner (£)? in TRUV A.

For each learner (£) that applies, we have to readjust

e Relief, is adjusted in the union of both (TR UV A)
e Regressions, is adjusted also in TRUV A

e Random Forests® and SVM-Linear? we adjust; V value of the parameter we adjust
in training (TR) and we choose the value which gives the minimum error value in
validation (V' A).

. (SVM-Linear | RF) — readjust in (I'RUV A) with the best parameter found in the previous

step.

Extract the weights from the £, normalize them applying the same procedure when we

L
generate the relevance vector, the formula used for normalization is (rf = é‘r) and finally

compare the normalized weights with the known relevance applying the score formula.

Finally, predict the model in the huge TE generated previously, obtain the estimated prob-
ability of error in the classification problem, square error (e?) in the regression problem and
at last make the linear correlation between the score obtained in the previous step and the

variables calculated in this step.

The whole process from 1 to 6 is performed N times and it’s gives us three vectors of the form

P, — (C|R), errors in all sets of (T'E) (5)
€2 — Square error from the prediction done
V(L,|S], Dataset) < in the huge test set from step (5)

Scores — weight comparison between extracted normalized

weights (4) and the real weights or known relevance

where P, is the estimated probability of error of the model.

2classifiers such as Relief, Random Forests, etc.
3In RF we adjust the parameter mtry
4In SVM-Linear we adjust the cost parameter
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4.2 Score

In this section we will give and idea of having a scoring measure to compute the goodness
of a solution obtained from the Feature weighting algorithm (FWA) (A) with the known optimal
solution (r*). The idea is to check how much r 4, solution or features relevance estimated by the
A, and r*, theoretical relevance, have in common. To do this we compute the normalized distance
between the relevance vector generated at beginning (known solution) and the relevance estimated
by the Feature weighting algorithm. To sum up, the score Sx(A) : P(X) — [0,1] is defined in

terms of the normalized distance between the two weights vectors (74, 7).

4.2.1 Construction of the score
The score function receives two weights vectors of the same length d, if length of r* is different

from length of r 4 an error message will be produced. The score function follows the next equation

Sx(A) = 1—””‘\5“” €[0,1]

where difference between the two weights vector is the norm and is defined as

Il =

lra—r

So the correct solution given by the A scoring measure must be near 1 instead of 0.
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4.3 Experimental setup

The basic idea consists on generating sample data sets using synthetic functions f with known
relevant features (Xg) and irrelevant features (Xj). Up to five Feature weighting algorithms
(FWAs) were used in the experiments. These are RELIEF, RANDOM FORESTS, SVM-LINEAR for
both classification and regression, LOGISTIC REGRESSION for classification type of problem and
LINEAR REGRESSION for regression datasets. In this case I have adapted the SVM-LINEAR to
obtain the weights from the model return by the SVM with linear kernel. Also adapted version
of original RELIEF is used to extract the weights. As the FWAs, the idea is basically extract the
relevance given to each attributes.

All the experiments are carried out fixing the total numbers of features. In this case I have
used total number of features d = 50, where X = 30 are relevant features and X; = 20 are
irrelevant ones. A total number of three families of datasets were generated studying two different
problems (Classification and Regression).

The experiment is divided in two main groups. The first group explores the relationship
between score obtained from the FWAs and the known optimal solution. Meanwhile the second
studies the relationship of the linear correlation between the score, the estimated probability of
error (P.) and the square error (e?). Each group use the three families of problem (classification
(I), classification (II) and regression). Also consider that more than three hundreds datasets were
generated between training, validation and test set in this experiment, varying the number of

sample size from 100 to 1000.
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4.4 Summary of results

Details results of the experiments from the different problems can be found in the Appendix.

In this chapter I present a brief summary of the results and discuss about them.

4.4.1 Score, estimated probability of error (Pe) and square error

The next table contains a summary of the results presented in the previous tables. Each row
define the size of dataset. In the columns we have the average score, probability of error of the
model (Pe) and square error (e2) of fifty runs from all classifiers.

The square error (e?) is calculated as:

o2 = iz (bi — )

length(b) (41)
where ¥ is the predicted vector in the huge test set and b is the target vector
SCORE vs P./e?
Relief RF SVM Log-R/Linear-R®
550 mean | mean Pe/e? | mean Pe/e? | mean  Pe/e?
Classification(T) 100 0.89 0.88 0.52 0.88 0.51 0.88 0.44
1000 0.89 0.88 0.49 0.88 0.49 0.88 0.47
Classification (1) 100 0.87 0.88 0.06 0.87 0.26 0.87 0.31
1000 0.87 0.89 0.04 0.86 0.01 0.87 0.30
Regression 100 0.98 0.98 0.02 0.98 0.03 0.98 0.03
1000 0.98 0.99 0.03 0.98 0.04 0.98 0.03
1Log—R: Logistic regression for datasets of type classification
ILinear-R: Linear regression for datasets of type regression
2Sample size
Table 4.1: Average Score, Pe/(e?) after 50 runs - Classification (I - II) and Regression
SCORE vs SD
Relief RF SVM Log-R/Linear-R”
ssB mean SD mean SD mean SD mean SD
Classit. (1) 100 0.89 0.0035 | 0.88 0.0028 | 0.88 0.0027 | 0.88 0.0030
1000 || 0.89 0.0028 | 0.88 0.0022 | 0.88 0.0032 | 0.88 0.0033
Classif. (IT) 100 0.87 0.0019 | 0.88 0.0029 | 0.87 0.0011 | 0.87 0.0015
1000 || 0.87 0.0019 | 0.89 0.0014 | 0.86 0.0008 | 0.87 0.0010
. 100 0.98 0.0021 | 0.98 0.0015 | 0.98 0.0020 | 0.98 0.0020
Regression

1000 || 0.98 0.0025 | 0.99 0.0015 | 0.98 0.0025 | 0.98 0.0022

1Log-R: Logistic regression for datasets of type classification

1 inear-R: Linear regression for datasets of type regression

2Sample size

Table 4.2: Average Score and SD after 50 runs - Classification (I - IT) and Regression

The next table contains a summary of the both previous tables presented. In the columns we

have the average score, SD, Pe and the square error (e?) after fifty runs.
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In the previous table for the problems of type classification (I) and classification (II) for both
sample size (100 and 1000) we can see the mean score is around 90% in all classifiers, the SD vary
between the values 0.0008 and 0.0035; meanwhile, the probability of error of the model is around
45% in the classification (I) problem and between 1% and 30% for problems of type classification
(I1).

In regression type problems the mean score increase and goes around 98% in all classifiers for
both sample size. The SD measure oscillates between 0.0015 and 0.0025; meanwhile the square

error (e?) present also small values that goes from 0.02 to 0.04 for all classifiers and sample size.
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CONCLUSIONS

This work has presented various models working with feature weighting algorithms. This work
differs slightly from existing approach in that it uses feature weighting algorithms instead of pure
feature selection algorithms.

In the summary of results we can see that the scoring measure returns acceptable values
between 88% and 98% for all type of problems and all sample size. For classification (I) we have
obtained around 50% of probability of error (P.) when we predict the models returned from the
classifiers in the huge test-set of sample size (ss = 10°). The SD measure is really small in all
type of problems independently of sample size because the variance in the output vector given by
the classifiers over fifty runs is inappreciable. The mean value is also stable in all cases and there
is no dispersion or huge variation in the output.

For example, for classification (I) in the classifier RF for the sample size 100 we have got 0.52
of (P.) while for sample size 1000 it decrease three points and register the value of 0.49, this fact
indicates that increasing the sample size could improve the prediction of the model and reduce
the probability of error. It is also the same case in the classifier SVM. In this particular case the
model prediction done in the test-set is not as good as expected initially.

The (P.) decrease significantly for problems of type classification (IT). With ss=100 we have
0.06 of P, in RF, 0.26 of P, in SVM and 0.31 of P, in Logistic regression; increasing the sample
size to one thousand (ss=1000) the P, values is improved in all classifiers, decreasing to 0.04 in
RF, a huge improvement in the case of SVM! with the P, value of 0.01 and slightly better value
that falls to 0.30 in Logistic regression.

For the regression type of problems the mean score is around 98% in all cases independently of
sample size, which indicate that the model fitted well the data. Also the square error (e?) value is
very low in all cases and is around 0.03. So the estimation done by the classifiers does not differs
too much.

I would like to comment that I had execution problems with larger sample size of more than
1000 because apparently my computer was not able to produce results because of the memory
allocation failure. For this reason I could not perform the experiment with large sample size as

expected in the initial goals.

1Linear Support Vector Machines
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5.1 Future work

Future work could include more Feature Weighting Algorithms and run the experiment by
varying the sample size. Various cases can be analysed in the experimental part as analysing
the behaviour of classifiers varying the number of features. Another option could be to include
the concerns of working with different types of problems and datasets. This work has focused
primarily on two types of synthetic datasets (classification and regression problems). One could
look to work with real data.

Another interesting topic would be to extend the scoring measure and develop other scoring
system. Since in this work we focus on computing the normalized distance between relevance
vector obtained from the classifier and theoretical relevance vector.

In the synthetic datasets we worked with relevant and irrelevant features. It would be inter-
esting to introduce features redundant, corrupt and include noise datasets to see the behaviour
of classifiers in distorted environments. In the literature various works has been done using high-
dimension data but primarily these works are focused on pure feature selection. So, the carried

out experiments in this work are a small contribution in the works done in feature weighting area.
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Appendix A

The First Appendix

Detailed results of the experimental work can be found in this chapter.

A.1 Results of datasets classification (I)

In the next table we can find the score and the estimated probability of error (P.) obtained from

fifty runs for the small size of datasets with sample size (ss = 100) from the different algorithm

(Logistic Regression, Relief, Random Forest, SVM-Linear).

Score and Probability of error (P.)
Score Probability of error (P.)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
1 0.88 0.89 | 0.88 0.89 0.44 0.61 | 0.59
2 0.89 0.88 | 0.88 0.89 0.44 0.34 | 0.32
3 0.89 0.88 | 0.89 0.88 0.44 0.31 | 0.33
4 0.88 0.88 | 0.88 0.88 0.44 0.78 | 0.71
5 0.88 0.88 | 0.88 0.89 0.44 0.53 | 0.48
6 0.89 0.88 | 0.89 0.88 0.44 0.39 | 0.39
7 0.88 0.88 | 0.88 0.88 0.44 0.84 | 0.78
8 0.88 0.88 | 0.88 0.89 0.44 0.53 | 0.57
9 0.89 0.89 | 0.89 0.89 0.44 0.88 | 0.85
10 0.89 0.88 | 0.89 0.89 0.44 0.66 | 0.62
continued on next page
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APPENDIX A. THE FIRST APPENDIX

continued from previous page
Score Probability of error (P,)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
11 0.89 0.88 | 0.89 0.89 0.44 0.13 | 0.18
12 0.88 0.88 | 0.88 0.89 0.44 0.34 | 0.39
13 0.88 0.89 | 0.89 0.89 0.44 0.51 | 0.49
14 0.89 0.88 | 0.89 0.89 0.44 0.24 | 0.30
15 0.88 0.88 | 0.88 0.88 0.44 0.44 | 0.42
16 0.88 0.88 | 0.88 0.88 0.44 0.27 | 0.39
17 0.89 0.89 | 0.89 0.89 0.44 0.38 | 0.36
18 0.89 0.88 | 0.88 0.88 0.44 0.63 | 0.65
19 0.89 0.89 | 0.89 0.89 0.44 0.16 | 0.27
20 0.88 0.88 | 0.88 0.89 0.44 0.40 | 0.40
21 0.89 0.88 | 0.89 0.89 0.44 0.70 | 0.62
22 0.88 0.88 | 0.88 0.88 0.44 0.74 | 0.67
23 0.89 0.88 | 0.89 0.89 0.44 0.33 | 0.39
24 0.89 0.88 | 0.89 0.89 0.44 0.49 | 0.44
25 0.88 0.88 | 0.88 0.88 0.44 0.51 | 0.54
26 0.89 0.88 | 0.89 0.88 0.44 0.71 | 0.69
27 0.89 0.89 | 0.89 0.89 0.44 0.76 | 0.62
28 0.88 0.88 | 0.88 0.89 0.44 0.34 | 041
29 0.89 0.88 | 0.89 0.89 0.44 0.79 | 0.69
30 0.89 0.88 | 0.89 0.89 0.44 0.41 | 0.42
31 0.89 0.88 | 0.89 0.89 0.44 0.47 | 0.44
32 0.88 0.88 | 0.88 0.88 0.44 0.71 | 0.63
33 0.89 0.88 | 0.89 0.89 0.44 0.31 | 0.40
34 0.89 0.88 | 0.89 0.88 0.44 0.53 | 0.55
35 0.88 0.88 | 0.88 0.88 0.44 0.79 | 0.75
36 0.89 0.88 | 0.89 0.88 0.44 0.62 | 0.63
37 0.88 0.88 | 0.88 0.88 0.44 0.80 | 0.74
38 0.89 0.88 | 0.89 0.89 0.44 0.51 | 0.53
39 0.88 0.88 | 0.88 0.89 0.44 0.20 | 0.29
40 0.88 0.88 | 0.88 0.88 0.44 0.61 | 0.53
41 0.89 0.88 | 0.88 0.89 0.44 0.58 | 0.54
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Score Probability of error (P,)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
42 0.89 0.88 | 0.89 0.89 0.44 0.67 | 0.63
43 0.89 0.89 | 0.89 0.90 0.44 0.54 | 0.49
44 0.88 0.88 | 0.88 0.89 0.44 0.51 | 0.54
45 0.89 0.89 | 0.89 0.89 0.44 0.61 | 0.56
46 0.89 0.88 | 0.89 0.89 0.44 0.35 | 0.38
47 0.89 0.88 | 0.88 0.89 0.44 0.53 | 0.51
48 0.89 0.89 | 0.89 0.89 0.44 0.80 | 0.76
49 0.89 0.88 | 0.89 0.89 0.44 0.35 | 0.36
50 0.89 0.89 | 0.89 0.89 0.44 0.34 | 0.43

Table A.1: Score and P, of small datasets with ss = 100 - Classification I
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The next table show the score obtained performing the experiment fifty times against a medium

size dataset with sample size ss = 1000.

Score and Probability of error (P.)
Score Probability of error (P,)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
1 0.88 0.89 | 0.88 | 0.89 0.47 0.40 | 0.46
2 0.88 0.88 | 0.88 | 0.89 0.47 0.71 | 0.66
3 0.88 0.88 | 0.88 | 0.89 0.47 0.47 | 0.52
4 0.88 0.88 | 0.88 | 0.89 0.47 0.58 | 0.56
5 0.87 0.88 | 0.88 | 0.88 0.47 0.23 | 0.29
6 0.88 0.88 | 0.88 | 0.89 0.47 0.50 | 0.51
7 0.88 0.88 | 0.88 | 0.89 0.47 0.63 | 0.62
8 0.88 0.88 | 0.88 | 0.89 0.47 0.59 | 0.56
9 0.88 0.88 | 0.88 | 0.89 0.47 0.45 | 0.47
10 0.88 0.88 | 0.88 | 0.89 0.47 0.48 | 0.49
11 0.88 0.88 | 0.88 | 0.89 0.47 0.56 | 0.53
12 0.88 0.88 | 0.88 | 0.89 0.47 0.50 | 0.50
13 0.88 0.88 | 0.88 | 0.89 0.47 0.64 | 0.61
14 0.88 0.88 | 0.88 | 0.89 0.47 0.43 | 048
15 0.88 0.88 | 0.88 | 0.89 0.47 0.48 | 047
16 0.88 0.88 | 0.88 | 0.89 0.47 0.25 | 0.29
17 0.88 0.88 | 0.88 | 0.89 0.47 0.39 | 0.39
18 0.87 0.88 | 0.87 | 0.89 0.47 0.32 | 0.32
19 0.88 0.88 | 0.88 | 0.89 0.47 0.64 | 0.58
20 0.88 0.88 | 0.88 | 0.88 0.47 0.43 | 0.42
21 0.88 0.88 | 0.88 | 0.89 0.47 0.74 | 0.61
22 0.88 0.88 | 0.88 | 0.89 0.47 0.62 | 0.61
23 0.88 0.88 | 0.88 | 0.89 0.47 0.60 | 0.60
24 0.88 0.88 | 0.88 | 0.89 0.47 0.54 | 0.53
25 0.88 0.88 | 0.88 | 0.89 0.47 0.19 | 0.23
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Score Probability of error (P,)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
26 0.88 0.88 | 0.88 0.89 0.47 0.41 | 0.43
27 0.87 0.88 | 0.87 0.89 0.47 0.33 | 0.35
28 0.88 0.88 | 0.88 0.88 0.47 0.63 | 0.58
29 0.88 0.88 | 0.88 0.88 0.47 0.23 | 0.26
30 0.88 0.88 | 0.88 0.89 0.47 0.73 | 0.65
31 0.89 0.88 | 0.88 0.89 0.47 0.66 | 0.60
32 0.87 0.88 | 0.87 0.89 0.47 0.79 | 0.72
33 0.88 0.88 | 0.88 0.89 0.47 0.41 | 0.42
34 0.88 0.88 | 0.88 0.89 0.47 0.24 | 0.31
35 0.88 0.88 | 0.88 0.89 0.47 0.53 | 0.54
36 0.88 0.88 | 0.88 0.88 0.47 0.48 | 0.48
37 0.88 0.88 | 0.88 0.89 0.47 0.38 | 0.42
38 0.89 0.88 | 0.89 0.89 0.47 0.42 | 0.46
39 0.88 0.88 | 0.88 0.88 0.47 0.58 | 0.55
40 0.88 0.88 | 0.88 0.88 0.47 0.24 | 0.28
41 0.89 0.88 | 0.89 0.89 0.47 0.51 | 0.51
42 0.88 0.88 | 0.88 0.88 0.47 0.73 | 0.71
43 0.88 0.88 | 0.88 0.89 0.47 0.38 | 0.38
44 0.89 0.88 | 0.88 0.89 0.47 0.46 | 0.48
45 0.88 0.88 | 0.88 0.89 0.47 0.44 | 0.48
46 0.88 0.88 | 0.88 0.89 0.47 0.51 | 0.50
47 0.88 0.88 | 0.88 0.89 0.47 0.45 | 0.49
48 0.89 0.89 | 0.89 0.89 0.47 0.71 | 0.69
49 0.88 0.88 | 0.88 0.89 0.47 0.43 | 0.45
50 0.88 0.88 | 0.88 0.89 0.47 0.42 | 0.43

Table A.2: Score and P, of medium size datasets with ss = 1000 - Classification (I)
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A.2 Results of datasets classification (IT)

In the next table we can find the score obtained from fifty runs for the small size of datasets

with sample size (ss = 100) from the different algorithm (Logistic Regression, Relief, Random

Forest, SVM-Linear).

Score and Probability of error (P.)
Score Probability of error (P.)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
1 0.87 0.88 | 0.87 0.87 0.31 0.07 | 0.31
2 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
3 0.88 0.88 | 0.87 0.88 0.31 0.07 | 0.31
4 0.87 0.88 | 0.87 0.87 0.31 0.04 | 0.31
5 0.87 0.88 | 0.87 0.87 0.31 0.05 | 0.31
6 0.87 0.88 | 0.87 0.87 0.31 0.04 | 0.02
7 0.87 0.88 | 0.87 0.88 0.31 0.05 | 0.31
8 0.87 0.88 | 0.87 0.87 0.31 0.05 | 0.31
9 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
10 0.87 0.88 | 0.87 0.87 0.31 0.05 | 0.01
11 0.87 0.88 | 0.87 0.88 0.31 0.05 | 0.31
12 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
13 0.87 0.88 | 0.87 0.87 0.31 0.05 | 0.31
14 0.87 0.87 | 0.87 0.87 0.31 0.06 | 0.31
15 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
16 0.87 0.88 | 0.87 0.87 0.31 0.05 | 0.31
17 0.87 0.88 | 0.87 0.87 0.31 0.04 | 0.31
18 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
19 0.87 0.88 | 0.87 0.88 0.31 0.04 | 0.31
20 0.87 0.87 | 0.87 0.87 0.31 0.06 | 0.02
21 0.87 0.88 | 0.87 0.88 0.31 0.05 | 0.31
22 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
23 0.87 0.88 | 0.87 0.87 0.31 0.08 | 0.31
continued on next page
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Score Probability of error (P,)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
24 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
25 0.87 0.88 | 0.87 0.88 0.31 0.06 | 0.02
26 0.87 0.88 | 0.87 0.87 0.31 0.07 | 0.31
27 0.87 0.88 | 0.87 0.88 0.31 0.08 | 0.31
28 0.87 0.87 | 0.87 0.87 0.31 0.08 | 0.31
29 0.87 0.88 | 0.87 0.88 0.31 0.06 | 0.31
30 0.87 0.87 | 0.87 0.87 0.31 0.09 | 0.31
31 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
32 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
33 0.87 0.87 | 0.87 0.88 0.31 0.05 | 0.02
34 0.87 0.88 | 0.87 0.88 0.31 0.06 | 0.31
35 0.87 0.88 | 0.87 0.87 0.31 0.05 | 0.31
36 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
37 0.87 0.88 | 0.87 0.87 0.31 0.08 | 0.31
38 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
39 0.87 0.87 | 0.87 0.87 0.31 0.06 | 0.31
40 0.88 0.88 | 0.87 0.87 0.31 0.05 | 0.02
41 0.87 0.88 | 0.87 0.87 0.31 0.07 | 0.31
42 0.87 0.88 | 0.87 0.87 0.31 0.04 | 0.31
43 0.87 0.88 | 0.87 0.88 0.31 0.06 | 0.31
44 0.87 0.88 | 0.87 0.87 0.31 0.04 | 0.31
45 0.87 0.88 | 0.87 0.88 0.31 0.07 | 0.31
46 0.87 0.88 | 0.87 0.87 0.31 0.06 | 0.31
47 0.87 0.87 | 0.87 0.88 0.31 0.05 | 0.02
48 0.87 0.88 | 0.87 0.87 0.31 0.05 | 0.31
49 0.87 0.87 | 0.87 0.87 0.31 0.06 | 0.03
50 0.87 0.87 | 0.87 0.87 0.31 0.05 | 0.31

Table A.3: Score and P. of small datasets with sample size (ss = 100) - Classification (IT)

Kashif Javed Butt MSc in Artificial Intelligence



52

APPENDIX A. THE FIRST APPENDIX

The next table show the score obtained performing the experiment fifty times against a medium

size of datasets with sample size ss = 1000.

Score and Probability of error (P.)
Score Probability of error (P,)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
1 0.86 0.89 | 0.86 0.88 0.30 0.04 | 0.01
2 0.87 0.89 | 0.87 | 0.88 0.30 0.04 | 0.01
3 0.86 0.89 | 0.86 0.87 0.30 0.04 | 0.02
4 0.86 0.89 | 0.86 0.87 0.30 0.04 | 0.01
5 0.86 0.88 | 0.86 0.87 0.30 0.04 | 0.01
6 0.87 0.89 | 0.87 | 0.87 0.30 0.03 | 0.01
7 0.86 0.88 | 0.86 0.87 0.30 0.04 | 0.01
8 0.87 0.89 | 0.86 0.87 0.30 0.04 | 0.02
9 0.86 0.89 | 0.86 0.88 0.30 0.04 | 0.01
10 0.87 0.89 | 0.86 0.87 0.30 0.04 | 0.02
11 0.87 0.88 | 0.87 | 0.87 0.30 0.04 | 0.01
12 0.87 0.89 | 0.86 0.87 0.30 0.04 | 0.02
13 0.86 0.88 | 0.86 0.88 0.30 0.03 | 0.01
14 0.86 0.88 | 0.87 | 0.87 0.30 0.04 | 0.02
15 0.87 0.88 | 0.86 0.87 0.30 0.04 | 0.02
16 0.87 0.89 | 0.87 | 0.87 0.30 0.04 | 0.02
17 0.87 0.89 | 0.87 | 0.88 0.30 0.04 | 0.02
18 0.86 0.88 | 0.86 0.87 0.30 0.04 | 0.02
19 0.87 0.89 | 0.87 | 0.87 0.30 0.04 | 0.02
20 0.86 0.89 | 0.87 | 0.87 0.30 0.04 | 0.01
21 0.87 0.88 | 0.86 0.87 0.30 0.04 | 0.02
22 0.87 0.88 | 0.86 0.88 0.30 0.04 | 0.02
23 0.87 0.89 | 0.87 | 0.87 0.30 0.04 | 0.01
24 0.86 0.89 | 0.86 0.87 0.30 0.04 | 0.01
25 0.87 0.88 | 0.86 0.87 0.30 0.04 | 0.02
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Score Probability of error (P,)
Logistic-R | RF | SVM | Relief | Logistic-R | RF | SVM
26 0.87 0.89 | 0.86 0.87 0.30 0.04 | 0.01
27 0.86 0.88 | 0.86 0.87 0.30 0.04 | 0.01
28 0.87 0.88 | 0.87 0.87 0.30 0.04 | 0.01
29 0.87 0.88 | 0.87 0.88 0.30 0.04 | 0.01
30 0.86 0.89 | 0.86 0.87 0.30 0.04 | 0.02
31 0.86 0.88 | 0.86 0.87 0.30 0.04 | 0.01
32 0.87 0.89 | 0.87 0.87 0.30 0.04 | 0.01
33 0.87 0.88 | 0.87 0.87 0.30 0.04 | 0.02
34 0.86 0.88 | 0.86 0.87 0.30 0.04 | 0.01
35 0.87 0.89 | 0.87 0.87 0.30 0.04 | 0.02
36 0.87 0.89 | 0.87 0.87 0.30 0.04 | 0.02
37 0.87 0.88 | 0.87 0.87 0.30 0.04 | 0.02
38 0.87 0.89 | 0.87 0.87 0.30 0.04 | 0.02
39 0.87 0.89 | 0.87 0.87 0.30 0.04 | 0.01
40 0.87 0.89 | 0.86 0.88 0.30 0.04 | 0.02
41 0.87 0.88 | 0.87 0.87 0.30 0.04 | 0.01
42 0.86 0.89 | 0.87 0.87 0.30 0.04 | 0.01
43 0.87 0.88 | 0.86 0.87 0.30 0.04 | 0.02
44 0.86 0.89 | 0.86 0.87 0.30 0.04 | 0.02
45 0.87 0.89 | 0.87 0.87 0.30 0.04 | 0.02
46 0.87 0.89 | 0.86 0.87 0.30 0.04 | 0.02
47 0.86 0.89 | 0.86 0.87 0.30 0.04 | 0.01
48 0.87 0.89 | 0.87 0.87 0.30 0.04 | 0.01
49 0.87 0.88 | 0.86 0.87 0.30 0.03 | 0.01
50 0.86 0.88 | 0.86 0.87 0.30 0.04 | 0.02

Table A.4: Score and P, of medium size datasets with ss = 1000 - Classification (II)
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A.3 Results of datasets Regression

In the next table we can find the score and square error e? obtained from fifty runs for the
small size of datasets with sample size (ss = 100) from the different algorithm (Linear Regression,

Relief for regression, Random Forest for regression, SVM-Linear for regression).

Score
Score Square error (e?)

Linear-R | RF | SVM | Relief | Linear-R | RF | SVM

1 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
2 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.04
3 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
4 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.04
5 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.04
6 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
7 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04
8 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
9 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.03
10 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
11 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.04
12 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
13 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
14 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.04
15 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.03
16 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
17 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.03
18 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
19 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
20 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.04
21 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.04
22 0.98 0.98 | 0.98 0.98 0.04 0.02 | 0.04
23 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.04
continued on next page
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Score Square error (e?)
Linear-R | RF | SVM | Relief | Linear-R | RF | SVM
24 0.98 0.99 | 0.98 | 0.98 0.03 0.02 | 0.04
25 0.97 0.98 | 0.98 | 0.98 0.03 0.02 | 0.04
26 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.03
27 0.98 0.99 | 0.98 | 0.98 0.03 0.02 | 0.03
28 0.98 0.98 | 0.97 | 0.98 0.03 0.03 | 0.04
29 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.03
30 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.03
31 0.98 0.98 | 0.98 | 0.98 0.03 0.02 | 0.03
32 0.98 0.99 | 0.98 | 0.98 0.03 0.02 | 0.04
33 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
34 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.04
35 0.98 0.98 | 0.98 | 0.98 0.03 0.02 | 0.03
36 0.98 0.98 | 0.98 | 0.98 0.03 0.02 | 0.03
37 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
38 0.98 0.99 | 098 | 0.98 0.03 0.02 | 0.03
39 0.98 0.98 | 0.98 | 0.98 0.03 0.03 | 0.03
40 0.98 0.99 | 0.98 | 0.98 0.03 0.02 | 0.03
41 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
42 0.98 0.98 | 0.98 | 0.98 0.03 0.02 | 0.04
43 0.98 0.99 | 0.98 | 0.98 0.03 0.02 | 0.03
44 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
45 0.98 0.99 | 0.98 0.98 0.03 0.02 | 0.04
46 0.98 0.98 | 0.98 | 0.98 0.03 0.02 | 0.03
47 0.98 0.98 | 0.98 | 0.98 0.03 0.02 | 0.04
48 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
49 0.98 0.98 | 0.98 0.98 0.03 0.02 | 0.03
50 0.98 0.99 | 0.98 | 0.98 0.03 0.03 | 0.03

Table A.5: Score of small size of datasets with ss = 100 - Regression

Kashif Javed Butt MSc in Artificial Intelligence



56

APPENDIX A. THE FIRST APPENDIX

In the next table we can find the score obtained from fifty runs for the medium size of datasets

with sample size (ss = 1000) from the different algorithm (Linear Regression, Relief for regression,

Random Forest for regression, SVM-Linear for regression).

Score
Score Square error (e?)

Linear-R | RF | SVM | Relief | Linear-R | RF [ SVM

1 0.98 0.98 | 0.98 0.98 0.04 0.04 | 0.04
2 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.03
3 0.98 0.98 | 0.98 0.97 0.03 0.03 | 0.03
4 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.04
5 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.03
6 0.98 0.99 | 0.99 0.97 0.04 0.03 | 0.04
7 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04
8 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04
9 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.03
10 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.04
11 0.98 0.98 | 0.98 0.97 0.04 0.03 | 0.04
12 0.98 0.98 | 0.98 0.99 0.03 0.03 | 0.03
13 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04
14 0.98 0.98 | 0.98 0.98 0.04 0.03 | 0.04
15 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.03
16 0.99 0.99 | 0.98 0.98 0.04 0.03 | 0.04
17 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.03
18 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04
19 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.03
20 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04
21 0.98 0.98 | 0.98 0.97 0.03 0.03 | 0.03
22 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.03
23 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.03
24 0.99 0.99 | 0.99 0.98 0.04 0.03 | 0.04
25 0.99 0.99 | 0.99 0.98 0.04 0.03 | 0.04
continued on next page
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Score Square error (e?)
Linear-R | RF | SVM | Relief | Linear-R | RF | SVM
26 0.98 0.98 | 0.98 | 0.98 0.03 0.03 | 0.04
27 0.98 0.99 | 0.98 | 0.98 0.03 0.03 | 0.04
28 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.04
29 0.98 0.98 | 0.98 | 0.98 0.04 0.03 | 0.04
30 0.98 0.98 | 0.98 | 0.98 0.03 0.03 | 0.04
31 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04
32 0.98 0.98 | 0.98 0.98 0.03 0.03 | 0.04
33 0.98 0.98 | 0.98 | 0.98 0.04 0.03 | 0.04
34 0.98 0.99 | 0.98 | 0.98 0.04 0.03 | 0.04
35 0.98 0.98 | 0.98 0.98 0.04 0.03 | 0.04
36 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.03
37 0.98 0.99 | 0.98 | 0.98 0.04 0.03 | 0.04
38 0.98 0.98 | 0.98 | 0.98 0.03 0.03 | 0.03
39 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.03
40 0.98 0.98 | 0.98 | 0.98 0.04 0.03 | 0.04
41 0.98 0.98 | 0.98 | 0.98 0.04 0.03 | 0.03
42 0.98 0.99 | 0.98 | 0.98 0.03 0.03 | 0.04
43 0.98 0.99 | 0.99 0.98 0.04 0.03 | 0.04
44 0.98 0.99 | 098 | 0.98 0.03 0.03 | 0.03
45 0.98 0.99 | 0.98 | 0.98 0.03 0.03 | 0.03
46 0.98 0.99 | 0.98 0.98 0.03 0.03 | 0.04
47 0.98 0.98 | 0.98 0.98 0.04 0.04 | 0.04
48 0.98 0.98 | 0.98 | 0.98 0.03 0.03 | 0.04
49 0.98 0.98 | 0.98 | 0.98 0.03 0.03 | 0.04
50 0.98 0.99 | 0.98 0.98 0.04 0.03 | 0.04

Table A.6: Score and e? of medium size of datasets with ss = 1000 - Regression
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Appendix B

The Second Appendix

Here we present some graphics figures of the scores obtained in the experimental process.
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60 APPENDIX B. THE SECOND APPENDIX

B.1 Datasets classification (I)

Classification (l) -> Sample size (ss=100)
Relief
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Figure B.1: Classification (I) - Sample size (ss=100)
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Classification (1) —> Sample size (s5=1000)
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Figure B.2: Classification (I) - Sample size (ss=1000)
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B.2 Datasets classification (II)

Classification (Il) —> Sample size (s5=100)
Relief
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Figure B.3: Classification (IT) - Sample size (ss=100)
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Classification () —> Sample size (ss=1000)
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Figure B.4: Classification (IT) - Sample size (ss=1000)
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B.3 Datasets Regression

Regression —= Sample size (ss5=100)
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Figure B.5: Regression - Sample size (ss=100)
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Regression —> Sample size (ss=1000)
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Figure B.6: Regression - Sample size (ss=1000)
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