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1. Introduction 

 

Chemical Space (which encompasses all possible small organic molecules, including 

those present in biological systems) is vast, vast in terms of number of chemicals that 

may contain and in terms of the number of available descriptors for each of these 

chemicals (van Deursen et al. 2007). 

 Theoretically the chemical space is formed by all possible stable molecules. Even 

small parts of this chemical space contain large amounts of information. Actually the 

largest chemical databases contain up to 25 million different molecules which are far 

from the amount of information contained in the total chemical space. However, the 

analysis of these large scale chemical databases could reveal which regions of the 

chemical space have been extensively explored and which remain relatively 

uncharted (Yamashita et al. 2006; Larsson et al. 2007). These would have a direct 

application in drug discovery, where there is always the need of generate new 

compounds and detect small molecules whose properties enable them to interact 

with biological molecules without generating adverse effects (O’Driscoll 2004). 

The development of advanced visualization and navigation techniques is required to 

analyze these databases. It is know that the human brain is capable of visually 

detecting non evident relationships or patterns from data representations. 

Techniques for the virtual screening of chemicals could benefit from the information 

that can be visually extracted from a graphical representation of the chemical space. 

The combination of virtual screening techniques with tools for advanced 

visualization of high dimensional data would result in a new generation of virtual 

visual screening tools that will facilitate the extraction of relationships between the 

molecular structure of a chemical and their physicochemical and biological 

properties.  

Nowadays computers hardware performance is good enough to manage and 

process a huge part of available chemical and biological data. However, the visual 

inspection and analysis of high dimensional data spaces is a difficult task which 
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requires the use of appropriate projection techniques to reduce the dimensions of 

the original space up to a dimension suitable for its visualization (usually 2D or 3D).  

Our project is based on providing exploratory data analysis as a first step towards 

modeling and interpretation of the chemical and biological activity. Direct 

interaction from the user in the process of data analysis facilitates the discovery of 

cause-effect relationships between the studied parameters (e.g., establishing 

structure-activity relationships). 

 

1.1. REACH regulatory framework 

Current regulations for the use of chemicals in the European Union require the 

complete characterization of the potential environmental and human health impact 

of chemicals. Central to this characterization is the assessment of persistence, 

bioaccumulation and toxicity (PBT) profiles for chemicals produced or imported in 

amounts above 100 Tm/year. As a consequence, chemical industries must invest a 

significant amount of economic resources to accomplish with regulatory 

requirements. In this context, the use of non-testing methods is emerging as an 

alternative to reduce the costs, both economic and in terms of animal use, associated 

with the implementation of REACH (Registration, Evaluation, Authorization and 

Restriction of Chemicals) regulatory framework.  

Non-testing methods for chemicals are based on the use of existing data to infer the 

PBT properties of new chemicals. The experimental assessment of new chemicals can 

be waived when non-testing methods provide enough evidence to support the 

waiving decision. Data analysis and modeling via diverse machine learning 

algorithms are the most used techniques to implement non-testing strategies for 

chemicals.  

 

1.2. Similarity measures 

The concept of molecular similarity is widely used in medicinal chemistry and 

cheminformatics. The basic idea is that when molecules have similar chemical or 
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structural properties, they will probably behave in a similar fashion in biological 

assays (Dean 1995; Maldonado et al. 2006). Choosing the appropriate combination of 

molecular properties (descriptors) and analysis methods (metrics) for the estimation 

of similarity between molecules is vital for this process. However, this approach has 

grown to be a key factor in improving the efficiency of modern virtual screening 

programs. Experienced medicinal chemists often use visual inspection of structurally 

distinct molecules to look for similarity in structure that might translate to biological 

activity in novel series (Glen et al. 2006). 

The similar property principle, which states that structurally similar molecules tend to 

have similar properties, constitutes the underlying idea of many applications in 

cheminformatics such as compound ranking (chemical similarity searching), ligand-

based virtual screening, and diversity analysis for compound library design. These 

applications are utilized by employing chemical descriptors together with a measure 

of (dis)similarity defined on the descriptors (Rupp et al. 2008). 

 

1.3. Visual Data Mining 

Data Mining is commonly defined as the extraction of patterns or models from 

observed data, usually as part of a more general process of extracting high-level, 

potentially useful knowledge, from low-level data. Data visualization and visual data 

exploration play an important role in this process. If the data is presented textually, it 

is very difficult to deal with data sets containing millions of data items. Analysts need 

tools for creating hypotheses about complex data sets, a process that requires 

capabilities for exploring and understanding them (Oliveira et al. 2003). 

For data mining to be effective, it is important to include the human in the data 

exploration process and combine the flexibility, creativity, and general knowledge of 

the human with the enormous storage capacity and the computational power of 

today’s computers. Visual data exploration aims at integrating the human in the data 

exploration process, applying its perceptual abilities to the large data sets available 

in today’s computer systems. The basic idea of visual data exploration is to present 

the data in some visual form, allowing the human to get insight into the data, draw 



4 
 
 

conclusions, and directly interact with the data. Visual data mining techniques have 

proven to be of high value in exploratory data analysis and they also have a high 

potential for exploring large databases (Keim 2002).  
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2. Aims and scope of the project 

 

The goal of this master thesis is to develop and validate a visual data-mining 

approach suitable for the screening of chemicals in the context of REACH. The 

proposed approach will facilitate the development and validation of non-testing 

methods via the exploration of environmental endpoints and their relationship with 

the chemical structure and physicochemical properties of chemicals.  

The use of an interactive chemical space data exploration tool using 3D visualization 

and navigation will enrich the information available with additional variables like 

size, texture and color of the objects of the scene (compounds). The features that 

distinguish this approach and make it unique are (i) the integration of multiple data 

sources allowing the recovery in real time of complementary information of the 

studied compounds, (ii) the integration of several algorithms for the data analysis 

(dimensional reduction, generation of composite variables and clustering) and (iii) 

direct user interaction with the data through the virtual navigation mechanism. All 

this is achieved without the need for specialized hardware or the use of specific 

devices and high-cost virtual reality and mixed reality. 

The space visualization and data analysis using a large number of variables is a 

difficult task that requires the use of appropriate projection techniques to reduce the 

number of variables of the original space to a size suitable for its visualization. The 

project aims to build a tool that provides multiple options to allow this visualization. 

A dimensional reduction module allows selecting desired variables and dimensional 

reduction algorithm to locate elements in a three-dimensional space. After this 

process that assigns the coordinates values in the space for each represented 

compound, the 3D space creation module also allows the user to specify the 

variables that are to be assigned to the size, color and texture of the elements 

(compounds) located in space. Note that the three spatial coordinates are not 

distances but values of the three variables (relevant physicochemical properties and 

molecular descriptors) chosen for viewing/representing the elements studied. So, 

user can see 6 variables, 3 coordinates and 3 characteristics of compounds. 
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In an area like chemical and biological data, the number of chemical compounds is 

very large and the number of properties for each chemical compound also is. To 

analyze similarities between different compounds we can represent them as spheres 

and place them in space in a particular way to visually see the differences between 

them. These differences will be stated not only by the different situation in 3D space 

but also by differences in color, size (radius sphere) and texture (e.g., transparency), 

as shown in Figure 1. This will make the user move from having large volumes of 

data in Excel sheets or 3D bar charts to have a representative and orderly 3D 

chemical space where it will be easy to see at a glance the differences and similarities 

between the compounds. 

 

  

  

Figure 1. General appearance of the graphical interface of the tool
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3. Related work and tools 

 

Several projects and tools have tried to address the chemical space data analysis and 

exploration issue. From last decade, some of them have also tried to incorporate a 3D 

visualization of chemical space. Our project presents an innovative solution with 

respect to most of the existing works. At the conceptual level, our tool places the 

expert in the application domain within the data space to increase the effectiveness 

of the process of data analysis and decision-making mechanisms. In terms of 

hardware needed, the tool simplifies viewing and other mechanisms of interaction in 

the market that require the use of specialized and expensive devices. Another 

advantage of the tool is the support it has had from scientists from different 

disciplines (chemistry, bioinformatics and biostatistics). 

 

3.1. State of art 

(Dobson 2004) predicts that, using the types of computational methods pioneered 

by the flourishing bioinformatics community, the analysis of databases obtained 

from large-scale screening exercises of small molecules on biological systems should 

lead to major advances, both in our understanding of biological chemistry and in our 

ability to identify promising therapeutic compounds and therapeutic targets. 

Although progress is now being made in developing tools for mining chemical 

information, such progress is often limited by the difficulty in accessing much of the 

data of interest. He also proposes that to exploit fully chemical tools and new 

methodologies in molecular and structural biology, chemist must increasingly 

develop strong interactions with scientist from different disciplines. 

A framework for compound classification and comparison is provided in (Larsson et 

al. 2007). The tool presented allows identifying volumes related to particular 

biological activities and track changes in chemical properties. It is also capable of 

charting biologically relevant chemical space and provides an efficient mapping 
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Figure 2. HeiankyoView hierarchical 
data visualization 

device for selection of high-probability hits and prediction of their properties and 

activities. 

(Feher and Shcmidt 2003) show in their study how compounds can be separated in 

three different groups based on the value of its descriptors (number of chiral centers, 

the prevalence of aromatic rings, the introduction of complex ring systems, and the 

degree of the saturation of the molecule as well as the number and ratios of different 

heteroatoms). A PCA-based scheme is presented that differentiates the three classes 

of compounds. 

Related to drug discovery, (van Deursen and Reymond 2007) opt to report a 

“spaceship” program in a known drugs region which travels from a starting molecule 

A to a target molecule B through a continuum of structural mutations, and thereby 

charts unexplored chemical space. The compounds encountered along the way may 

provide valuable starting points for virtual screening. 

The use of neural networks based on self-organizing maps is proposed in (Matero et 

al. 2006). By using a tree-structured self-organizing map it is possible to construct a 

chemical space of compounds.  Using neural networks based on Kohonen 

unsupervised learning, the neural networks train themselves without any external 

information. They learn the data and categorize it according to common features in 

the data. Thus, the user can visually inspect which of the original variables are 

responsible for the clustering results. The recognition of clusters, however, is more or 

less in the eyes of the observer and no formal clustering exists. 

Another approach using a novel hierarchical 

data visualization technique (HeiankyoView) 

can be found in (Yamashita et al. 2006) study. 

With this technique it is possible to visualize 

large-scale multidimensional chemical 

information using 2D square images of 

subspaces, allowing the analysis of the 

structure-activity relationship of compounds. 

HeiankyoView represents hierarchically 
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organized data objects by mapping leaf nodes as colored square icons and non-leaf 

nodes as rectangular borders (Figure 2). In this way, data objects can be expressed as 

equishaped icons without overlapping one another in the two-dimensional display 

space. Thus, we can recognize trends in molecular physical properties relevant to a 

specific chemical class and optimize potential compounds. 

(Petalson et al. 2007) explains the concept of activity landscapes, hypersurfaces in 

biologically relevant chemical space, where biological activity (compound potency) 

adds another dimension. In these landscapes smooth regions that are reminiscent of 

hills correspond to areas where gradual changes in chemical structure are 

accompanied by moderate changes in biological activity (Compounds mapping to 

such areas are related by so-called continuous Structure-Activity Relationships). By 

contrast, rugged regions in activity landscapes that are canyon-like correspond to 

areas where small chemical changes have dramatic effects on the biological 

response, and hence, compounds mapping to these areas form discontinuous 

Structure-Activity Relationships (Figure 3). 

 

Figure 3. 3D and 2D activity landscape representations 

 

3.2. Similar tools 

By the finalization of our project, a very similar tool was developed by (Gütlein et al. 

2012).  Ches-Mapper is presented as an application to visualize and explore chemical 

datasets. In a preprocessing step, a chemical dataset is mapped into a virtual three-

dimensional space. A key part of the preprocessing is the choice of features done by 

the user. The selected features are then used for clustering and 3D embedding. Thus, 
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compounds that have similar feature values are likely to be clustered together, and 

are closed to each other in 3D space (Figure 4). 

 

Figure 4. CheS-Mapper 3D chemical space visualization 

  

The process of generating the 3D chemical space is very similar to the one followed 

in our tool: 

 Load dataset. The first step is the dataset selection. User can select an 

existing dataset or import a new one. 

 Create 3D structures. 3D structure can be calculated for the compounds in 

case it is not already present in the original dataset. CDK (Chemical 

Development Kit) and Open Babel libraries are used for this purpose. 

 Extract features. User can select which features to employ in the subsequent 

steps (clustering and embedding). Three different types of features are 

available: included in dataset, CDK descriptors and structural fragments. 

 Cluster dataset. Clustering divides the dataset into subgroups. Only features 

that have been selected in the previous step are used as input to the 
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clustering algorithm. Cluster algorithms from the statistics library R and the 

data-mining library Weka can be employed. 

 Align compounds. User can chose the alignment method that will be used 

for the alignment of the compounds inside a cluster according to a common 

substructure. 

After evaluating the tool, we realize that Ches-Mapper has many similarities with the 

work presented in this thesis, but there are some points that could make our tool 

preferred to this one: 

 Web application vs Java application. Ches-Mapper is a Java application, 

which means that needs to be downloaded in each computer where we want 

to use it. Our tool is a web application which needs only one installation in a 

web server. User can access the tool from any computer having an internet 

connection, and the used data is always available from any computer. This 

also facilitates sharing data and visualization with different users. 

 Use of 6 variables. In Ches-Mapper compounds are flying in the space and 

are colored depending on the cluster they belong to. In our tool, dimensional 

reduction and clustering are done in different steps, like this each compound 

have a fixed position in a 3 coordinates space (which provides the value of 

relevant physicochemical properties and molecular descriptors) and its size, 

color and texture, which enriches the visualization having up to 6 variables to 

differentiate the elements.  

 Communication with external components. Once user is visualizing a 

compound in detail, our tool offers all compound available information from 

the external PubChem database. 

 Maximum number of compounds. Ches-Mapper allows working with up to 

6000 compounds, assuring a good response with up to 1500 compounds. Our 

tool offers an extra clustering option to group compounds inside a single 

element and showing them only when user is near their cluster. This way 
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navigation is smoother and users can work with large data sets (e.g., more 

than 10 thousand compounds). 

 Data mining module. The tool provides a data mining module that offers the 

possibility to build ‘visualization trees’ in order to facilitate multiple chemical 

spaces visualization corresponding to a particular compound collection. 

 

3.3. Commercial tools 

There exist also in the market other tools for commercial use. These tools are based 

on the use of proprietary databases and focus to facilitate the use of various 

predictive schemes: 

• LeadScope Inc.1 is an American company leader in the field of predictive 

models for chemical compounds. In its portfolio of products and services offers 

access to proprietary databases with relevant information for the prediction of 

toxicity and / or chemical properties. The company allows the user to buy the 

software to develop their models, or alternatively the user can access the service 

“QSAR as You Go”, which allows predictions for a single compound. 

• Derek Nexus (Lhasa Technologies)2 is a tool that allows the study of the 

toxicity of chemicals. The principle of operation is similar to the one by LeadScope 

mentioned before. The application provides access to a proprietary database that is 

used to predict certain end-points of toxicity (carcinogenicity, mutagenicity, skin 

irritation, etc.). 

• MultiCase Inc.3 is an American company that provides knowledge-based 

systems for predicting properties and biological activity of chemical compounds. 

Among the products provided we can find: MCASE/MC4PC, a system for building 

structure-activity relationships; CASETOX, a tool based on MCASE specializing in 

predicting toxicity. 

                                                 
 
1 http://www.leadscope.com 
2 https://www.lhasalimited.org/derek_nexus/DX 
3 http://www.multicase.com 
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4. Technical development 

 

The tool has been implemented using the Java language to ensure cross-platform 

compatibility and integration of new components. Open source libraries of machine 

learning algorithms have been included in the tool to provide the basic 

preprocessing, dimensional reduction and clustering capabilities. X3D language has 

been chosen to build the tri-dimensional chemical space scenes. 

The project has been developed following a 3-tier programming model, thus 

separating the presentation (GUI), business logic (application functionality), and the 

logic of data (databases and other information sources). As can be seen in Figure 5, 

the client layer contains the browser (which will load HTML pages, JavaScript code 

and XML files). Using the browser the user will interact with the application, the 

requests will be sent to the application server (Apache Tomcat in our case), which will 

process and build new dynamic HTML pages with the results. In the application layer 

we can see the web server that receives the requests, the J2EE modules and external 

resources they can use (e.g., machine learning libraries). J2EE modules will interact 

with the database, updating or requesting information as needed. 

 

 

 

 

 

 

 

 

 
Figure 5. 3-tier programming model 
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4.1. Functional and non-functional requirements 

The main functional requirements of the tool can be summarized as:  

 FR1. Data import and export capabilities. The tool should be able to import 

and export its data to common formats like comma-separated text files. 

 FR2. Communication with external components. The tool must be able to 

communicate through a well-defined interface with external components 

such as databases or web services. 

 FR3. Data selection and transformation. The user has to be able to select 

and manipulate the data used by the tool to create the representation of the 

chemical space. This will include (i) the selection of the information to be used 

in the visualization from all the available information in the databases or 

external data sources, and (ii) the basic transformation of the data either as 

individual variables or as a group. The set of data transformations will include 

diverse normalization techniques and linear data transformations. 

 FR4. Projection techniques for dimension reduction. To visualize these 

high dimensional data spaces the tool would require the implementation of a 

set of projection techniques capable of reducing the dimension of the input 

data and preserving the data relationships found in the original 

(untransformed) space. The result of this dimension reduction process will 

provide a set of coordinates defining the location of each compound in the 

chemical space representation. 

 FR5. Classification and labeling engine. The user must be able to explore 

the clustering structure of the chemical space. To this end the tool must 

provide basic support and algorithms to classify and label the chemical 

compounds according to their structural characteristics or biological activity. 

The classification engine will also provide basic similarity metrics to generate 

similarity matrices for the components of the chemical space. 

 FR6. Three-dimensional navigation and interaction. The user must be able 

to navigate interactively into a 3D representation of the chemical space 
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analyzed. The tool will incorporate basic 3D viewers that will permit the 

interaction of the user with the 3D scene. The user must be able to visualize 

physicochemical, molecular and biological information of the chemicals 

during the 3D navigation.  

The additional non-functional requirements considered for the tool can be 

summarized as:  

 NFR1. Use of open source components. The tool must be based in open 

source components to ensure the compatibility across systems and also to 

provide a solution independent of any specific software provider. 

 NFR2. Internationalization of the user interface. The user interface of the 

tool will initially be provided in English. The tool will include the necessary 

mechanisms to ensure the easy internationalization of the user interface. 

 NFR3. Extension mechanism allowing the inclusion of user-defined 

components. Several of the tool components will require the addition of new 

user-defined modules. To this end the tool will include a basic API definition 

for user added extensions. 

 

4.2. Conceptual Model and building blocks 

Figure 6 shows the conceptual model of the tool based on the functional 

requirements presented in the previous subsection. The main building blocks of the 

proposed tool are specified from the conceptual model. 
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Data Management Module. This will be the component responsible of the 

communication between the tool and their data providers (data sources). Three basic 

types of data sources are proposed for the tool: 

 Data files. This data source will provide access and compatibility with data 

stored in most of the data management applications (for instance, CSV 

formatted files resulting from a data export from an EXCEL spreadsheet).  

 Database connector. The tool should be able to use several databases as a 

native data source providing direct access to the chemical and biological 

information stored in the database. A mechanism to control and grant access 

levels should be included in order to preserve the confidentiality of the 

proprietary information stored in the database.  

  
  

databases 

  
Data Management

  
  Data 

files 

Data sources

  
Data Preprocessing

  Dimensional
Reduction

  
Clustering

  
Visualization 

and  
Navigation 

 Web 
services 

Figure 6. Conceptual model of the tool showing the data flows between components 
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 Communication with web services. The tool will provide bidirectional data 

exchange between several chemical web services and the tool.  

Preprocessing Module. According to the basic functional requirements of the tool, a 

basic set of preprocessing primitives will be needed. The proposed set of 

functionalities provided by this module is: 

 Data filtering and selection. The preprocessing module should permit the 

user of the tool to select among all the available data the most appropriate 

information to be used for the generation of the map of the chemical or 

biological space. The tool must be able to distinguish between molecular 

information (i.e., the chemical space descriptors) and biological information 

(i.e., environmental endpoints).    

 Basic data transformations including diverse normalization schemes (range, 

variance), linear transformation (scaling and shifting), as well as user defined 

non-linear transformations. 

Projection and dimensional reduction Module. The set of chemical and biological 

space descriptors will define a high dimensional space in which the visualization and 

navigation tasks will be very difficult. The tool must incorporate a set of lower 

dimensional projection components aimed to reduce the dimensionality of the 

original input space. The dimensional reduction will usually transform the high 

dimensional original space into 1D, 2D, 3D or even 4D spaces suitable for its 

visualization and manipulation. The projection methods must allow preserving the 

relationships of data in the original high dimensional space. The dimensional 

reduction module provides the tool with the appropriate coordinate system to locate 

compounds in the chemical and biological space map. 

Clustering Module. In addition to the dimensional reduction process, a set of 

automated procedures for data classification and labeling would be needed. The 

clustering module will complement the dimensional reduction component providing 

chemical similarity estimations. 
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Visualization and Navigation Module. The purpose of the navigation module is to 

offer a mechanism to interact in 3D with the visual representation of the chemical 

and biological space. This module will use the information provided by the 

dimensional reduction component to associate a point coordinate in the chemical 

space to each compound. A data mining 3D visualization option will offer the 

possibility to build ‘visualization trees’ in order to facilitate multiple chemical spaces 

visualization corresponding to a particular compound collection. 

 

4.3. Database design 

The tool needs to efficiently manage a huge amount of information to process all 

user selected data and show the results. Not only chemical information must be 

saved, but also the result data obtained applying dimensional reduction and 

clustering methods. Thus, we can use the processed data in future actions. Figure 7 

shows the Entity-Relationship diagram used at the beginning of the project to build 

the database. The database contains three different types of information: (i) chemical 

compounds data, (ii) dimensional reduction data, and (iii) clustering data. 
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Figure 7. Entity-Relationship diagram 

 

  

(i) 

(ii) 

(iii) 
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4.4. Implementation details 

Following sections will describe how was addressed the implementation of the 

different tool conceptual blocks. 

 

4.4.1. Data management 

All Java database access classes implemented in the tool are fully independent and 

allow the use of different database management systems (through the Java 

Database Connectivity, JDBC). The database model has been designed to achieve a 

clear organization of data. The following code shows how database connection is 

initialized taking in account the specific connection parameters: 

        // get DB params 
        String useDatasource = servletContext.getInitParameter("useDatasource"); 
        String dataSource = servletContext.getInitParameter("dataSource"); 
        String jdbcDriver = servletContext.getInitParameter("jdbcDriver"); 
        String connectStr = servletContext.getInitParameter("connectStr"); 
        String dbUser = servletContext.getInitParameter("user"); 
        String dbPassword = servletContext.getInitParameter("password"); 
 
        // get DB connection     
        DatabaseConnectionFactory dbCF = new DatabaseConnectionFactory(); 
        Connection conn = new Connection(); 
 
        // set DB connection 
        conn.setConnection(dbCF.getDatabaseConnection(useDatasource, dataSource,  

jdbcDriver, connectStr, dbUser, dbPassword)); 
        servletContext.setAttribute("conn", conn); 

 

The communication with other external sites that offer additional chemical or 

biological information is also implemented. In the 3D navigation window, user can 

access to the information provided by the PubChem data repository. 

A data source management module has been developed allowing users to directly 

manipulate the application data. Sources can be created, edited and deleted. In 

source management window file headers are provided to build source data files 

related to compounds, endpoint values and descriptors values (Figure 8). 
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Figure 8. Data source management window 

 

4.4.2. Data preprocessing 

To simplify the process of data selection and increase the performance of the tool, 

the data filtering and selection is doing in the dimensional reduction module. When 

user creates or edits a dimensional reduction, he can use a filter to specify the set of 

rules to be satisfied by compounds he wants to use. These rules can affect to 

molecular descriptors or environmental endpoints. Compounds not satisfying 

selected rules will be added to a complementary chemical space. User can also 

choose if he wants compounds to satisfy all rules or only one of the specified rules 

(Figure 9). Issues related to data normalization are addressed in the 3D chemical 

space creation module. 
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Figure 9. Data filtering and selection popup 

 

4.4.3. Dimensional reduction  

To offer different dimensional reduction algorithms we have implemented an 

interface to allow the use of several machine learning libraries. In the actual version 

of the tool, Weka library1 is used and these 2 dimensional reduction algorithms are 

available: 

 Principal Component Analysis (PCA): performs an orthogonal 

transformation to convert a set of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal components. The 

number of principal components is less than or equal to the number of 

original variables. The first principal component has the largest 

                                                 
 
1 http://www.cs.waikato.ac.nz/ml/weka 
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possible variance (that is, accounts for as much of the variability in the data as 

possible), and each succeeding component in turn has the highest variance 

possible under the constraint that it must be uncorrelated with the preceding 

components. For the chemical space visualization we will use the first three 

principal components (one for each axis coordinate). 

 Random Projection: Reduces the dimensionality of the data by projecting it 

onto a lower dimensional subspace using a random matrix with columns of 

unit length (i.e., normalized). 

 

The following code shows how Weka library is used for the PCA execution. 

PrincipalComponents and Ranker objects are assigned to an AttributeSelection 

object in order to achieve the dimensional reduction. Specific algorithm parameters 

(like variance covered, original or principal components variables selection, 

standardize or center values) are provided by the user in the dimensional reduction 

module: 

_filter = new AttributeSelection();   
       _pca = new PrincipalComponents(); 
       _ranker = new Ranker(); 
       _pca.setVarianceCovered(_varianceParameter); 
       _pca.setTransformBackToOriginal(_originalSpaceParameter); 
       _pca.setCenterData(_centerParameter); 
       _filter.setEvaluator(_pca); 
       _filter.setSearch(_ranker); 
       _filter.SelectAttributes(_originalInstances); 
       newInstances =  

   _filter.reduceDimensionality(_originalInstances).enumerateInstances(); 
 

4.4.4. Clustering 

Different clustering algorithms are also implemented using machine learning 

libraries. In the actual version of the tool, also Weka library is used and these 3 

clustering algorithms are available: 

 K-Means: performs a partition of N observations into K clusters in which each 

observation belongs to the cluster with the nearest mean. 

 Hierarchical Clustering: is a general approach to cluster analysis in which the 

object is to group together objects building a hierarchy of clusters. 
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 Expectation Maximization: assigns a probability distribution to each 

instance which indicates the probability of it belonging to each of the 

clusters. 

Endpoints and descriptors can be selected in order to use their values in clustering 

algorithm. User can also specify the number of clusters to be obtained. 

 

4.4.5. 3D visualization and navigation 

Before the implementation of the tool, various 3D engines have been evaluated in 

order to choose the one who best fits our requirements. The standard X3D language1 

has been chosen to build the tri-dimensional chemical space scenes (Figure 10). 

 

 

 

 

 

 

 

 

 

 

X3D is a standard mark-up file format (XML, eXtensible Markup Language) designed to 

represent 3D computer graphics. The specification was developed by the Web3D 

Consortium and approved by the International Standards Organization (ISO). This 

                                                 
 
1 http://www.web3d.org 

<Scene> 
 <Shape> 
  <Sphere DEF='S'/>  
   <Appearance> 
    <ImageTexture  
     url=' "earth-topo.png" "earth-topo-small.gif" "http://www.web3d.org/x3d/content/examples/Basic/earth-topo.png"      
                  "http://www.web3d.org/x3d/content/examples/Basic/earth-topo-small.gif" '/> 
   </Appearance> 
  </Shape>  
  <Transform rotation='0 1 0 1.57' translation='0 -2 1.25'> 
   <Shape> 
    <Text string='"Hello" "world!"' solid='false'/>  
    <Appearance> 
     <Material diffuseColor='0.1 0.5 1'/> 
    </Appearance> 
   </Shape> 
  </Transform> 
</Scene>  

Figure 10. Example of X3D code 



25 
 
 

language is the successor of the Virtual Reality Modelling Language (VRML). The 

main advantages of X3D are: 

 Use of XML: structured data, strict grammar rules, modular, platform 

independent and well supported. 

 Various available browsers (e.g., Xj3D: open source browser, easy to use with 

java applications, implements several interfaces which facilitate the 

interaction within user and application). 

 Various available XML managers, which allow building automatically, X3D 

files from MS-Excel sheets or database records. 

 Excellent guide available and small learning curve. 

The main drawbacks of the X3D approach are mainly related to graphics 

performance issues and information and support: 

 Open source browsers such as Xj3D are not as fast as other commercial 

solutions (e.g., BS Contact). 

 The use of specific hardware acceleration optimizers such as OpenGL engines 

strongly depends of X3D browser. 

 The community of developers supporting X3D is not very large. 

Additional 3D engines that could be suitable to be used as a replacement for X3D 

have also been evaluated. The main advantage of these engines resides in the use of 

native image libraries that fully support the hardware acceleration capabilities of 

current graphic cards. The graphic engines assessed have been: 

 OGRE (Object-Oriented Graphics Rendering Engine). OGRE is an open 

source graphics engine written in C++ and designed to facilitate the 

implementation of applications using hardware-accelerated 3D graphics. The 

engine can be integrated in java applications by using the native libraries 

Ogre4j. The main advantage of this approach resides in its improved 

performance with respect to the X3D engines. The main drawbacks of OGRE 
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are that (i) require a C++ compiler and libraries to work, (ii) it is difficult to 

include as a simple library into a Java project, and (iii) requires advanced 

OpenGL programming skills. 

 JMonkey Engine (High performance scene graph-based graphics API). 

JMonkey is a full featured graphics engine written in Java. Its main features 

reside in the organization of the graphical data into a tree structure, where a 

parent node can contain any number of children nodes. The use of a tree 

structure results in improved performance in the manipulation of 3D 

scenarios. The main drawback of this approach resides in that it requires 

important OpenGL programming skills resulting in a slow learning curve. 

There exist many open source VRML/X3D auxiliary applications that have been 

assessed as potential components of the tool: 

 Xj3D is a Java-based toolkit and X3D browser for creating X3D-compliant 

products. Xj3D is often used to develop new extensions and features for X3D. 

It is highly componentized and can be used as the basis to develop 

lightweight X3D applications. 

 FreeWRL is a VRML/X3D browser for Mac OS X and Linux with support for 

JavaScript interfacing, the External Authoring Interface (EAI), and the X3D 

Scene Authoring Interface (SAI). 

 OpenVRML includes a cross-platform VRML/X3D runtime library written in 

C++ and available for use under the LGPL as well as a Mozilla browser plug-in 

for platforms using the X Window system. 

 BS Contact can be used as standalone viewer or embedded in web browsers 

based on DirectX or OpenGL. Is a cross-platform tool and can be tailored by 

functionality. 

After testing the different alternatives, the BS Contact plugin was the one that fitted 

better our tool.  
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4.5. Case Study: Analysis of the chemical space for aerobic biodegradation 
using the MITI-1 assay 

In this chapter the different parts of the tool are tested showing the full application 

capabilities and performance. Taking a chemical dataset as example, we will show 

how a user can extract valuable information from the chemical space visualization. 

For a detailed description of tool functional features see the User Guide (Annex I). 

For the evaluation, an Apache Tomcat webserver and a MySQL database have been 

used. The BS Contact X3D web plugin1 has been used for the 3D navigation. 

 

4.5.1. Background 

Persistent organic pollutants (POPs) and Persistent, Bioaccumulative and Toxic (PBT) 

substances are carbon based chemicals that resist degradation in the environment 

and accumulate in tissues of living organism, where they can produce undesirable 

effects on human health or the environment at certain exposure levels.  

Persistent substances resist physical, biological and chemical degradation. The 

molecular structure of these compounds resists degradation processes that break 

down other pollutants in the atmosphere, water, and biota. A bioaccumulative 

substance concentrates in fatty tissue and tends to build-up higher concentrations in 

humans and other living organisms. These substances are also more likely to transfer 

and accumulate in the upper levels of the food chain. Usually, bioaccumulation is 

measured and modeled in terms of the bioconcentration factor (BCF). Some of these 

persistent or bioaccumulative chemicals are toxic since they cause or are suspected 

to cause adverse effects to humans and wildlife in ways that range from minor skin 

irritation to cancer.  

POP and PBT chemicals are of particular concern if their release rates are higher than 

their rate of disappearance because in this case will accumulate in the environment. 

                                                 
 
1 http://www.bitmanagement.com/products/interactive-3d-clients/bs-contact 
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The concern is that their accumulation may result in effects that are difficult to detect 

in early stages and that once detected are difficult to reverse. 

The duration and level of exposure of living organisms to a toxic substance increases 

when it is persistent and bioaccumulative, in which cases it leads to higher risk of 

harm. Potential chronic effects resulting from long-term exposure to low levels of a 

toxin are relatively difficult to predict from current laboratory tests. This results in a 

high uncertainty in the corresponding evaluation of risk.  

POP and PBT substances are at present the subject of growing attention and interest, 

with  risk management procedures and regulations being implemented all over the 

world. The United Nations Environment Program has two POP initiatives: the UN-ECE 

Protocol (Aarhus Protocol), and the UNEP POPs Convention (Stockholm Convention). 

The convention includes a set of procedures for identifying new POPs put under 

global control and surveillance. Modeling has been introduced as one of the new 

criteria for persistence and long-range transport (LRT) evaluation (Pavan et al. 2006). 

The new REACH (Registration, Evaluation and Authorization of Chemicals) legislation 

in the EU requires companies to assess PBT and vPvB (very Persistent and very 

Bioaccumulative) characteristics of chemicals being manufactured or imported into 

EU (European Commission, 2003) over certain annual amounts. Other countries such 

as Canada and Japan have already started the screening process for chemicals in 

their national inventory lists, and implementing restrictions whenever necessary.  

 
4.5.2. Overview of Biodegradation modeling 

The persistence of manufactured chemicals in the environment is governed by the 

rate of their biochemical and chemical transformations in the environment. 

Biodegradation is often the most important transformation process occurring in 

water, soil and sediments. However, the generation of reliable experimental data is 

very difficult (Aroson et al. 2006). Generally speaking, biodegradability can be 

defined as the molecular degradation of a substance resulting from the complex 

action of microorganisms. According to the Organization for Economic Co-operation 

and Development (OECD) Guidelines for QSAR validation (OECD, 2007), 
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biodegradation is an endpoint where special care is needed for the development of 

models as well as the interpretation of their predictions. 

Many methods have been developed to estimate the biodegradation potential of 

chemicals with the purpose of predicting their ultimate fate. These methods have 

initially relied on correlations of degradation rates with physicochemical properties 

and subsequently evolved towards the use of molecular information. Examples of 

modeling techniques based on molecular descriptors include group contribution 

approaches (Alikhannidi and Takahashi 2004; Aronson et al. 2006) and quantitative 

and qualitative-structure-biodegradability relations (QSBRs/SBR); (Baker et al. 2004; 

Jaworska et al. 2003; Dzeroski et al. 1999). Additional modeling efforts have focused 

in the metabolic transformations that occur during the degradation process. The 

most probable biodegradation pathway is used in the CATABOL approach (Dimitrov 

et al. 2007; Sakuratani et al. 2005) which is a probabilistic approach with the 

assumption of first order kinetics for catabolic transformations. QSBR/SBR models 

rely on the complete characterization of the chemical structure to understand the 

mechanisms of biodegradability as well as to reliably predict biodegradation rates for 

new chemicals (Baker et al. 2004; Jaworska et al. 2003; Aronson et al. 2006; Hongwei 

et al. 2006). Several reviews have been published recently (Raymond et al. 2001; 

Jaworska et al. 2002; Cronin et al. 2003).  

Several initiatives have recently emerged to increase acceptance of QSARs for 

regulatory purposes. The OECD principles for validity, applicability and acceptance of 

QSARs are becoming a standard in Europe. These principles can be summarized as 

follows: defined endpoint; unambiguous algorithm; defined domain of applicability; 

appropriate measures of goodness of fit, robustness and predictability; and 

mechanistic interpretation, if possible.  

 

4.5.3. Defined endpoint 

The data set consist of experimental biodegradation rates. Data fulfill the first 

principle, since it is referred to OECD guideline 301-C. The biodegradation rates were 
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obtained from the National Institute of Technology and Evaluation web site1 (MITI-I 

Data peer-reviewed by the Chemical Products Council of the Ministry of Economy, 

Trade and Industry, Japan). A total of 1456 compounds were selected with their 

biodegradability values. 178 compounds were not processed due to specific 

conditions in compounds structure which did not allow descriptor calculations. The 

remaining set of 1278 chemicals characterizes the current endpoint for 

biodegradation that will be used for model training and testing.  

The MITI-I test is a screening test for “ready” biodegradability in an aerobic aqueous 

medium, as described by OECD and EU test guidelines (OECD 301-C; EU C.4-F). The 

MITI-I test was developed in Japan and it constitutes one of the six standardized 

“ready” biodegradability tests described by EU and OECD regulations. For the MITI-I 

test, 100 mg/l of test substance are inoculated and incubated with 30 mg/l of sludge. 

Biological oxygen demand (BOD) is measured continuously during a 28-day test 

period. The pass level for ready biodegradability is reached if the BOD amounts to 

≥60% of theoretical oxygen demand (ThOD).  The reported data for each chemical 

consists of biodegradation yields measured indirectly, through biological oxygen 

demand (% BOD), the test period (usually 4 weeks) and direct biodegradation 

measures using total organic carbon (TOC) determined by chromatographic 

techniques (high performance liquid chromatography and gas chromatography).  

Other techniques related to data uncertainty reduction may be applied to further 

refine the quality of these experimental data. This would be of specific interest in 

those cases in which contradictory information is present. 

 

  
                                                 
 
1 http://www.safe.nite.go.jp 
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4.5.4. Algorithms selection 

Calculation of molecular descriptors.  

Molecular descriptors of the 1278 compounds were calculated by Talete Dragon 6 

software1. Table 1 shows the block of constitutional descriptors that we will use as 

input for the Weka algorithms and for the navigation tool. 

 

Name  Symbol  Min 
value 

Max 
value 

Avg. 
value 

Std. 
Dev. 

molecular weight MW 26.04 1177.8 202.010 128.320 

average molecular weight AMW 4.01 50.544 8.484 4.598 

sum of atomic van der Waals volumes (scaled on Carbon atom) Sv 2.527 110.03 16.119 10.627 

sum of atomic Sanderson electronegativities (scaled on Carbon atom) Se 3.884 196.71 26.850 18.949 

sum of atomic polarizabilities (scaled on Carbon atom) Sp 2.67 122.43 17.335 11.826 

sum of first ionization potentials (scaled on Carbon atom) Si 4.415 228.1 30.292 22.062 

mean atomic van der Waals volume (scaled on Carbon atom) Mv 0.455 1.144 0.623 0.103 

mean atomic Sanderson electronegativity (scaled on Carbon atom) Me 0.95 1.316 1.014 0.049 

mean atomic polarizability (scaled on Carbon atom) Mp 0.496 1.367 0.665 0.107 

mean first ionization potential (scaled on Carbon atom) Mi 1.022 1.381 1.132 0.033 

number of atoms nAT 4 201 26.755 19.422 

number of non-H atoms nSK 2 85 13.141 8.192 

number of bonds nBT 3 200 26.739 19.668 

number of non-H bonds nBO 1 88 13.125 8.711 

number of multiple bonds nBM 0 48 5.459 5.448 

sum of conventional bond orders (H-depleted) SCBO 1 104 16.420 10.705 

number of rotatable bonds RBN 0 68 3.750 5.946 

rotatable bond fraction RBF 0 0.389 0.104 0.094 

number of double bonds nDB 0 9 1.006 1.248 

number of triple bonds nTB 0 2 0.041 0.245 

number of aromatic bonds nAB 0 48 4.411 5.307 

number of Hydrogen atoms nH 0 124 13.614 12.440 

number of Carbon atoms nC 1 73 9.890 7.174 

number of Nitrogen atoms nN 0 8 0.649 1.063 

number of Oxygen atoms nO 0 12 1.714 1.715 

number of Phosphorous atoms nP 0 2 0.037 0.192 

number of Sulfur atoms nS 0 6 0.113 0.440 

                                                 
 
1 http://www.talete.mi.it/products/dragon_description.htm 
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number of Fluorine atoms nF 0 27 0.201 1.794 

number of Chlorine atoms nCL 0 12 0.412 1.146 

number of Bromine atoms nBR 0 10 0.110 0.712 

number of Iodine atoms nI 0 1 0.002 0.048 

number of Boron atoms nB 0 0 0.000 0.000 

number of heavy atoms nHM 0 12 0.687 1.389 

number of heteroatoms nHet 0 29 3.251 2.826 

number of halogen atoms nX 0 27 0.726 2.200 

percentage of H atoms H% 0 72.7 47.773 14.257 

percentage of C atoms C% 9.1 60.7 36.741 9.356 

percentage of N atoms N% 0 40 3.047 5.300 

percentage of O atoms O% 0 50 7.271 7.446 

percentage of halogen atoms X% 0 80 4.499 11.933 

number of sp3 hybridized Carbon atoms nCsp3 0 61 4.646 6.233 

number of sp2 hybridized Carbon atoms nCsp2 0 32 5.189 5.058 

number of sp hybridized Carbon atoms nCsp 0 2 0.055 0.291 

 

Table 1. Constitutional descriptors 

 

Algorithms for feature selection.  

The key to success in a classification task is the selection of the attributes used as the 

input to the algorithm. Finding the most suitable set of descriptors is a task that 

occurs in many contexts and involves techniques such as machine learning, pattern 

recognition and data mining. Feature selection methods are grouped in two 

categories: filter methods, which evaluate the parameters on heuristic-based general 

characteristics of the data (for example, correlations), and wrapper methods, which 

use the modeling algorithm as the feature evaluation function (Hall 1998).  

The correlation based feature selection (CFS) filter is an effective way for parameter 

selection (Hall 1998). It selects a parameter if it correlates with the decision outcome 

but not with any other parameter that has already been selected. In this study 

genetic algorithms provided the global search framework for the CFS filter, which in 

turn used its built-in functionality to optimize the parameters selected. CFS uses a 

best-first-search heuristic. This heuristic algorithm takes into account the usefulness 

of individual features for predicting the class along with the level of inter-correlation 
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among features. The method is based in the idea that “good feature subsets contain 

features highly correlated with the class, yet uncorrelated with each other”. The CFS 

first calculates a matrix of feature-class and feature-feature correlations from the 

training data. Then a score of a subset of features is assigned by the heuristic defined 

as:  
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where merits is the merit of a feature subset S containing k features, rcf is the mean 

feature-class correlation, and rff is the average feature-feature correlation. The 

numerator of equation (1) can be considered as an indicator of how predictive of the 

class group the selected features are and the denominator as an indicator of how 

much redundancy there is among features. 

A measure based on conditional entropy is used to measure correlations between 

features and class, and between features. Continuous features are transformed to 

categorical features using discretization methods. If X and Y are discrete random 

variables, equations (2) and (3) give the entropy of Y before and after observing X,  
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Equation (3) is known as the information gain and accounts for the amount of 

information gained about Y after observing X, which is equal to the amount of 

information gained about X after observing Y (Quinlan 1993). 

 

Algorithms for model development.  

SAR/QSAR models will focus on predicting the target endpoint for a specific 

compound from a vector representation of its molecular structure. A widely accepted 

family of machine learning methods is the decision tree, also known as recursive 

partitioning (Breiman et al. 1984; Quinlan 1993). Decision trees represent a 
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supervised approach to classification. A decision tree is a simple structure where 

non-terminal nodes represent tests on one or more attributes and terminal nodes 

reflect decision outcomes (Bauer and Kohavi 1999). The algorithms examined in this 

study are the tree J48 (C4.5 derivative), the instance-base learners IBk and Kstar, 

Random Tree, the ensemble of trees Random Forest, and logistic model trees (LMT). 

The Random Forest algorithm is the one that yields consistently better results 

because it is an ensemble technique based in random trees (Breiman 2001). The 

Weka software package provides implementations of the above classification 

algorithms. 

The J48 classifier is a simple C4.5 decision tree for classification which induces a 

binary tree structure in the data. A decision tree algorithm involves the following 

actions: 

(i) Choose an attribute that best differentiates the output attribute values  

(ii) Create a separate tree branch for each value of the chosen attribute.  

(iii) Divide the instances into subgroups so as to reflect the attribute values of the 

chosen node.  

(iv) Terminate the attribute selection process for each subgroup if  

 all members of a subgroup have the same value for the output attribute. In 

this case label the branch on the current path with the specified value;  

 the subgroup contains a single node or no further distinguishable attributes 

can be determined. Also in this case label the branch with the output value 

seen by the majority of remaining instances.  

The instance-based learner IBk (Aha and Kibler 1991) is similar to Instance Based 

classification (IB1) that is equivalent to the well-known K-nearest neighbor classifier 

(KNN). The main difference with KNN is that IBk processes the training sets 

incrementally and ignores missing values. In IBk it is possible to define the desired 

number of nearest neighbors. The advantage of this is to widen the numbers of 
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instances considered. However, this is very memory intensive, increasing memory 

requirements with the number of additional nearest neighbors considered.  

The Instance based learned K-star is another instance-based learning algorithm that 

uses entropy as a distance measure in the K-Nearest Neighbor transformation 

(Clearly and Trigg 1995). As a consequence, it shows good results in the management 

of missing values, real valued attributes and symbolic data.  

The logistic model tree (LMT) constructs a tree-structured classifier with logistic 

regression functions at the leaves. The classic logistic regression approach models 

log(p/(1−p) as a linear function of the features where p represents the probability of 

a feature vector x belonging to class i. It can be written as, 

 xp
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where the β vector and the scalar βo are parameters to be determined and x denotes 

the feature vector for each molecule. The LMT algorithm follows the “divide and 

conquer” principle in which a complex set of data is divided into smaller subsets in a 

way that a simple linear logistic regression model can adequately fit the data in each 

subset. 

Random Forest (RF), which was developed by (Breiman 2001), is an ensemble 

method that combines several individual classification trees. Prediction is made by 

aggregating (majority vote for classification) the predictions of the ensemble.  Two 

types of randomness, bootstrap sampling and random selection of input variables, 

are used in the algorithm to ensure that all the classification trees are dissimilar and 

uncorrelated. Growing a forest of trees and using randomness in building each 

classification tree in the forest leads to better predictions compared to a single 

classification tree and helps to make the algorithm robust to noise an uncertainty in 

the data set. Similar to most classifiers, RF can suffer from the curse of learning from 

an extremely imbalanced training data set. As it is constructed to minimize the 

overall error rate, it will tend to focus more on the prediction accuracy of the majority 

class, which often results in poor accuracy for the minority class.  
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4.5.5. Applicability domain 

The applicability domain of a SAR model is the chemical and response joint space in 

which the model makes predictions with a given reliability (Netzeva et al. 2005). 

Thus, it is the information space on which the training of the model has been carried 

out and for which it is applicable to make predictions for new compounds. 

The characterization of the chemical space involves several actions: (i) data cleaning 

and conditioning; (ii) selection of the most relevant information to develop the 

model; and (iii) design of proper training and test sets. The most demanding 

validation procedure is to use an external set of compounds (validation set) that were 

not used at any stage of model development. These compounds should be 

structurally representative of the studied chemical domain (Jaworkska et al. 2007; 

Tropsha et al. 2006). The proper establishment of the application domain for a 

predictive model defines its validity limits. Predictions corresponding to compounds 

defined within the domain can be interpreted as interpolations. Accordingly, the 

response of compounds outside the domain are extrapolations and thus unreliable.  

 

4.5.6. Characterization of the Chemical Space for Biodegradation via the 
Navigation Tool 

The most relevant molecular descriptors were selected using the Weka 

implementation of the CFS algorithm. The merit of the best subset found is of 0.16 

and includes the following ten descriptors: {MW, Mp, Mi, RBF, nN, nHM, nHet, O%, 

X%, nCsp2}.  

Figure 11 depicts the distribution of BOD and non-BOD values for each of these 

descriptors. 
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Figure 11. Frequency histograms of the two biodegradation classes for each descriptor (nonBOD in 
blue and BOD in red) 

 

It is clear from the inspection of Figure 11 that there is no single descriptor which is 

capable of distinguishing between BOD and non-BOD chemicals. If we use the 

navigation tool to visualize the chemical space as a function of the three most 

relevant variables (MW, Mp, Mi) we obtain the following visualization:  
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Figure 12. Visualization of the three most relevant variables (green color indicates non BOD chemicals 
whereas red spheres correspond to BOD chemicals) 

 

In Figure 12 it can be observed that chemicals become persistent (non-

biodegradable) when the atomic polarizability increases.  Also the proportion of 

persistent chemicals increases with molecular weight (MW). 

The tool can also be used to embed the complete ten dimensional space into a three 

dimensional representation via dimension reduction. Figure 13 shows the 

application of PCA to project the complete chemical space over the three main 

principal components.  
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Figure 13. PCA-based projection of the chemical space (green color indicates nonBOD chemicals 
whereas red spheres correspond to BOD chemicals) 

 

From the analysis of Figure 13 it can be inferred that PC1 and PC3 are the most 

influential for grouping the biodegradable chemicals (red dots).  The expressions 

corresponding to the first three PCs are:  

PC1= 0.529Mp+0.499nHM+0.385X+0.319MW+0.246nHet+0.234nCsp2-0.23Mi-0.177RBF-0.142O+0.02nN 

PC2=0.567nHet+0.45 Mi+0.422RBF+0.35 MW+0.242O-0.19Mp+0.186nN+0.162X-0.129nCsp2+0.052nHM 

PC3=0.584nCsp2-0.487X-0.368Mi+0.337MW+0.303nN+0.192RBF-0.166nHM+0.082O+0.072nHet-0.07Mp 

 

It can be seen that the mean atomic polarizability and the number of heteroatoms 

are the most influential variables for PC1 and PC2.  These findings are consistent with 

previous results reported in the literature regarding the role of polarizability and the 
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presence of atoms different than C and H in the biodegradation potential of 

chemicals.   

The similarity in the profiles of the components of the chemical space can be 

analyzed with the Navigation Tool using the clustering feature. Figure 14 shows the 

K-means clustering obtained from the set of ten molecular descriptors. 

 

Figure 14. PCA projection of the clustered chemical space represented by the set of ten molecular 
descriptors. Colors indicate cluster assignment 

 

The analysis of figure 14 reveals similarities in different regions of the chemical space. 

In the above representation the size of the spheres is proportional to the 

biodegradation potential of each chemical (small: non BOD; large: BOD).  
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Outliers can be identified and inspected via the “near compounds view”. Figure 15 

and Figure 16 show the neighborhood of 2-tert-Butoxyethanol (white non BOD 

outlier located within a group of red BOD chemicals; grey spheres represent 

compound collisions). 

 

Figure 15. Neighborhood of 2-tert-Butoxyethanol (white sphere) 

 

Figure 16. Neighborhood of 2-tert-Butoxyethanol showing some molecular structures 
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Although there are similarities in the molecular descriptor profiles for this group of 

chemicals the analysis of the chemical structures in Figure 16 reveals significant 

structural differences. 

 

4.5.7. Development of BOD models 

After screening the performance of several classifiers, the Random Forest ensemble 

of trees was selected as the most suitable algorithm to build the current 

biodegradation model with the selected set of ten molecular descriptors. The model 

consisted of an ensemble of ten random trees and was evaluated via stratified 10-

fold cross validation.  The summary report of the model performance is: 

 

It is interesting to note that the outlier identified in Figure 15 and Figure 16 is also 

one of the misclassified chemicals in the above model. The navigation tool can be 

used as a diagnostic utility to inspect model predictions. Thus, by inspecting the 

structure of the chemical space near misclassified chemicals the user is able to 

improve model accuracy. The tool can also be used to explain the output of the 

models by identifying potential mechanistic interpretations via the inspection of the 

chemical space.  
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5. Conclusions and future work 

 

After the evaluation of the tool, we can conclude that the main objectives of the 

project have been achieved. The application provides an advanced virtual platform 

for visual screening of the chemical and biological space compounds that facilitates 

the analysis of the general structure of the chemical and biological space in terms of 

the environmental endpoints. 

As further work, the implementation of a user interface based in augmented reality is 

proposed. Augmented reality (AR) (Azuma 1997; Haller et al., 2006) is an environment 

that includes both virtual reality and real-world elements. For instance, an AR user 

might wear translucent goggles; through these, he could see the real world, as well 

as computer-generated images projected on top of that world. The fundamental 

characteristics of an augmented reality system are that (i) it combines real and virtual 

scenarios, (ii) the system is interactive in real-time, and (iii) it is presented in three 

dimensions. The implementation of a user interface based in augmented reality 

techniques in the navigation tool would increase the ways in which users may 

interact with the representation of the chemical space. These interfaces will permit 

the direct manipulation of the virtual models and will enable collaborative 

exploration of the chemical space. The prototype implementation of the AR interface 

will use open-source AR toolkits and low cost visualization devices.  
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Annex I – User Guide 

 

To get a 3D chemical space, user may follow next steps: 

 User login: user provides username and password to access application.  

 Open project: user selects an existing project or creates a new one selecting 

the source he wants to use. 

 Dimensional reduction: selection of desired molecular descriptors and 

application of dimensional reduction algorithm. Rules can be added to filter 

compounds in the exceptions filter pop-up. 

 Cluster analysis (optional): selection of desired endpoints and molecular 

descriptors and application of clustering algorithm. Once it is created, it can 

be assigned to radius or colour in the 3D navigation form. 

 3D chemical space creation: selection of dimensional reduction and endpoints 

(or clustering) to use for 3D coordinates, radius, and colour. User can also 

choose a normalization algorithm for each attribute and apply clustering to 

optimize graphics renderization in 3D navigation. When selecting colour 

endpoint, user can choose a “proximity clustering” in order to differ 

compounds groups. 

 

1. Entry point 

The entry point of the tool is the login page shown in Figure 1, where the user will 

introduce his credentials in the form of a username and password to access 

application. 
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Figure 1. Initial user validation window to access the application 

 

Once user has been authenticated, the welcome page is showed, asking the user to 

select a project to open (Figure 2). In this page the user also has the option to 

manage data sources and target substances. 

From every page the user can access the help page, manage projects, create new 

projects, and change current project tab. The user can have a maximum of 8 projects 

opened at the same time. A logout link is also provided. The lateral menu is the 

central navigation element of the tool once a project has been selected, and provides 

access to the main functionalities: dimensional reduction, cluster analysis, 3D 

navigation and data mining 3D navigation. 
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Figure 2. Welcome page of the tool showing the greeting message and asking the project to open 

 

2. Source management 

The default dataset used in the tool is composed by the 382 compounds of CEFIC 

database. User can also add his own sources or edit the existing ones clicking the 

“Manage sources” button in the “New Project” window, as showed in figure 3. 
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Figure 3. Source management popup 

 

Once user has provided a source name or has selected an existing source, he will be 

able to upload his own files with data related to compounds, descriptors and 

endpoints (figure 4). For every type of data user will specify: 

- Location: file path in user’s computer. User can also download the file header 

with the corresponding icon ( ). 

- Type: incremental (for modifications) or total (remove old data and put the 

new one). 
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Figure 4. Source edit window allowing data upload 

 

User can also manage his descriptors clicking the corresponding button in the source 

management window. This action will show a new window for user descriptors 

management (figure 5). Once descriptor is created, the application will provide a 

descriptor id which may be used to add/update descriptor values (figure 6). 
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Figure 5. Descriptors management popup 
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Figure 6. Descriptor edit window providing descriptor id 

 

3. Dimensional reduction 

Figure 7 shows the dimensional reduction option which presents a web form that 

permits the selection of the set of molecular descriptors that will be used in the 

dimension reduction calculations. Descriptors are grouped by blocks following the 

classification scheme used in Dragon 61. There is also a special block for user 

descriptors called “My Descriptors”. Descriptors can be selected from different blocks 

and included into the active descriptors list for its processing. A button for descriptor 

removal from the active list is also provided.  

                                                 
 
1 http://michem.disat.unimib.it/chm/Help/edragon/index.html 
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The next step is the selection of the dimension reduction algorithm (in the current 

version Principal Component Analysis and Random Projection algorithms are 

implemented). Finally, a name for this specific dimension reduction process is 

required since the application stores the results in an internal database for its 

posterior use in the generation of 3D scenes. The names for each projection 

coordinate are also required. If no dimensional reduction algorithm is selected, 

descriptor names are directly given to coordinates, assigning X, Y and Z to 1st, 2nd and 

3rd descriptors of the list respectively. 

 

Figure 7. Dimensional Reduction form showing the list of molecular descriptor, the selected 
descriptors list and the reduction algorithm 

 

Before submitting the form, the user has the possibility of adding or modifying rules 

for compounds selection by clicking the link “Add/modify filter”. Compounds not 
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complying selected rules in filter will be added to a complementary chemical space 

(figure 8). Once the form is submitted, a new popup window appears showing the 

algorithm parameters and asking for confirmation (figure 9). These parameters are 

specific for each dimension reduction technique.  

 

Figure 8. Popup window with filter 
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Figure 9. Popup window with algorithm parameters (if exist) 

Finally a new popup window appears showing information about compounds 

selection for the Dimensional Reduction (figure 10). From this windows user can go 

to the 3D navigation module or close the windows and continue in the dimensional 

reduction module. 
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Figure 10. Popup window with compounds selection information 

 
4.  Cluster analysis 

Another optional previous step to chemical space visualization is the cluster analysis. 

This module, showed in figure 11, presents a web form that permits the selection of 

the set of endpoints and molecular descriptors that will be used in the cluster 

analysis calculations. Descriptors appear in the same way as they did in dimensional 

reduction module (grouped by blocks following the classification scheme used in 

Dragon 6 plus special block with user descriptors). Endpoints and descriptors can be 

selected and included into the active endpoints and descriptors lists for its 

processing. A button for endpoint and descriptor removal from the active list is also 

provided.  

The next step is the selection of the cluster analysis algorithm (in the current version 

K-Means, Hierarchical Clustering and Expectation Maximization algorithms are 
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implemented). Finally, a name for this specific cluster analysis process is required 

since the application stores the results in an internal database for its posterior use in 

the generation of 3D scenes. The number of desired clusters is also required. When 

the user submits the form, a new popup window appears showing the algorithm 

parameters and asking for confirmation (figure 12). These parameters are specific for 

each cluster analysis technique. 

 

Figure 11. Cluster Analysis form showing endpoints, molecular descriptors, selected endpoints, 
selected descriptors and the clustering algorithm 
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Figure 12. Popup window with algorithm parameters (if exist) 

 

5.  Chemical space navigation 

Once the dimensional reduction process or cluster analysis complete the user is 

redirected to the 3D navigation options. This form can also be accessed directly from 

the main menu. Figure 13 shows the input information template corresponding to 

the configuration of the chemical space visualization. The parameters governing the 

visualization process include the stored dimensional reduction to use, the desired 

endpoints or cluster analysis to be mapped to colour and radius, the normalization 

mode for each attribute, and the number of clusters for visualization (0 indicates no 

clustering). In the case where a cluster analysis is selected, a new select box will 

appear to choose the desired cluster analysis. There is also a special option for colour: 
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the proximity clustering. In this case another text box will appear to indicate the 

number of proximity clusters. 

 

Figure 13. Parameters to generate the 3D representation of the chemical space 

 

When user clicks in the Generate 3D button the application searches in its database 

for stored clustering partitions (if number of clusters is greater than 0) and a new 

window is opened that allows the use of a pre-calculated clustering or to build a new 

one. Figure 14 shows the chemical space representation embedded in the web 

browser through the X3D plug-in.  

The modes available to navigate through the chemical space will depend on the 

installed browser plug-in. Generally a user can use both, keyboard and mouse to 
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move inside the scene. Right-clicking in the navigation window presents a menu of 

settings including: 

- Viewpoints: user can selected between four pre-defined viewpoints: the 

global view, the molecule structure, view focused in the substance, view 

from the substance studied. 

- Movement: fly is the default selected option for movement inside the 

scene. The user can select different modes such as walk, slide, examine, 

panoramic, game-like and jump. 

- Speed: allows the control of the navigation speed. 
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Figure 14. Initial 3D Chemical Space visualization showing the global view and a zoomed perspective
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When the mouse pointer is over a compound a popup window shows its name and 

clicking in the selected chemical gives access to access a new 3D scene focused in the 

selected compound and its closer topological neighbours. 

 

6.  Near compounds navigation 

In the near compounds mode, the user is able to visualize/examine the chemical 

structures and the projection properties in order to detect chemical similarity 

patterns. 

As shown in Figure 15, the window has three frames. The upper frame shows the 

selected compound, the lower frame shows the scene with the compounds 

surrounding the selected chemical, and finally the right frame shows the results of a 

query to PubChem database for the target compound. When different compounds 

belong to the same position in the space, user can click collision button to watch 

collision compounds in the upper frame (Figure 16). 
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Figure 15. Structural similarity screening in the neighbourhood of the selected chemical 
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Figure 16. Collision treatment in the neighbourhood of the selected chemical 

 

The ‘Viewpoints’ menu permits the selection of multiple viewpoints linked to the 

chemicals in the current scene.  Specific molecule viewpoint can be directly accessed 

by clicking on the molecule. 
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Figure 17. Selection of the pre-defined set of viewpoints in the neighbourhood of the chemical 
studied 

 

By default all molecules are rendered showing its 3D structure. The complexity of the 

scene can be reduced by clicking the ‘eye’ icon that converts the 3D molecule 

structure back to a sphere increasing the visualization performance. There is also the 

‘x’ icon that hides all molecules icons if user wants to see only molecules structures. 

The specific attributes of each molecule can we shown or hidden by using the ‘+’ and 

‘-‘ icons. Each molecule also has a ‘PubChem’ icon, which will refresh the right frame 

showing specific PubChem data for the selected chemical. 
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7.  Data mining with the chemical space navigation 

The tool offers the possibility to build ‘visualization trees’ in order to facilitate 

multiple chemical spaces visualization corresponding to a particular compound 

collection. Figure 18 shows the input information template corresponding to data 

mining and chemical space visualization. In this window user can choose between 

build a new tree or choose an existing one. The parameters governing the 

visualization process are the same as in the chemical space navigation window. 

 

Figure 18. Parameters to generate the data mining 3D representation 

 

As in standard 3D navigation window, when user clicks in the Generate 3D button the 

application searches in its database for selected tree or builds a new one depending 

on user selection. Figure 19 shows the window which contains the visualization of 
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different tree nodes. The upper-left chemical space corresponds to selected node by 

user, while complementary node is placed upper-right and parent node is in the 

bottom. The right frame offers the possibility to change node selection ( ) and edit (

) or delete ( ) tree nodes.  

User can also create new tree nodes providing node name and filter rules in the “New 

tree node” section. By clicking Split! button, new node and its complementary will be 

created and right frame will be refreshed. 

 

Figure 19. Chemical Space visualization showing the different tree nodes 

 


