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Preface

The aim of this document is to present the work done during the development
of my master thesis. The work belongs to the field of complex networks, more
concretely to the detection of communities in complex networks. Chapter 1 will
be an introduction of the basic concepts and motivations of this work, mainly
clarifying the fields of exploratory data analysis, data clustering and complex
networks. As all the work is about the finding of communities in complex net-
works, Chapter 2 is devoted to explain the concepts of mesoscopic structure of
networks and its importance in the analysis of real networks, along with the ex-
planations of some of the most well-known techniques to perform this analysis.
All the progress done during the master thesis relies on a method for detecting
communities developed in the past years by the research group I belong to. This
method is known as the AFG algorithm, named after the three authors Arenas,
Fernández and Gómez, and it is explained in section 2.5.2 with special emphasis.
The work that I have developed is composed of two separate problems: the first
one consists in designing an application to make possible the use of the AFG
community detection method to perform data clustering over real world multidi-
mensional datasets, which is explained in Chapter 3. The second work consists in
improving the AFG method to make possible the detection of communities even
when the difference of sizes of the communities make their detection impossible
for other community detection algorithms, which can be found in Chapter 4.
Chapter 5 contains the conclusions and the future lines of research derived from
the present work, and in the Appendix there is a list of publications that sustain
the contents presented in this document.

xiii
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Chapter 1

Introduction

In this chapter we present an overview of the area of study in which this work
is enclosed. As stated in the Preface, the work is mainly focused on the applica-
tions and improvements of a particular community detection method in complex
networks. For the applications side, as the purpose is to adapt this method to
perform in general exploratory data analysis and in particular data clustering,
these concepts are overviewed in the first two sections of this chapter. Next, there
is a brief introduction to complex networks that will help readers unfamiliar with
this research field to understand its purposes as well as some basic concepts that
will be used throughout the rest of the document.

1.1 Exploratory Data Analysis: A General Frame-

work

The largest representation of our world is written by data, usually digital data.
The analysis of these data is the key to understand our world better. Anal-
ysis of data is a process of inspecting, cleaning, transforming, and modeling
data with the goal of highlighting useful information, suggesting conclusions, and
supporting decision making. Data analysis has multiple facets and approaches,
encompassing diverse techniques under a variety of names, in different business,
science, and social science domains. There are many techniques to perform data
analysis, using previous knowledge about them, formulating hypothesis, or in the
most unfavorable case -but nonetheless the most common- without any previous
knowledge about the data relations. This last situation is usually tackled using
exploratory data analysis as an approach to analyze data sets to summarize their
main characteristics in an easy-to-understand form, often with visual graphs,
without using a statistical model or having formulated a hypothesis. One of the

1



2 Introduction

most commonly used techniques in the process of exploratory data analysis con-
sist on the unsupervised clustering of data. We revise these concept on the next
section.

1.2 Unsupervised Data Clustering

The problem of unsupervised data clustering consists in classifying elements so
that elements belonging to the same cluster are more similar between them than
with elements in a different cluster. An element, or pattern, is a vector of features
(usually understood as a point in a multidimensional space) that describes the
item we wish to classify. The goal of the process of data clustering is to organize
these patterns finding a partition of the sample according to the natural classes
that are present in it. Data clustering has been the subject of interest in many
disciplines where the mining of raw information is crucial to understand some
phenomenon or gain insight into a system. It has applications in several fields such
as pattern recognition, astronomic classification, biological taxonomy, marketing,
and more [17].

The process to obtain the clusters from the raw data is based on three steps:
the representation of the data, the calculation of the similarity and the group-
ing algorithm [24]. In the first step, a representation of the patterns has to be
chosen, which will normally be a multi-dimensional vector. There are no the-
oretical guidelines that suggest the appropriate patterns and features to use in
a specific situation. Indeed, the pattern generation process is often not directly
controllable; the user’s role in the pattern representation process is to gather facts
and conjectures about the data, optionally perform feature selection and extrac-
tion. Feature selection means choosing, from all the available features, those that
will make easier the process of clustering, leaving the redundant, correlated and
less informative features out of the analysis. On the other hand, feature extrac-
tion consists in transforming the original data set to a new one containing only
the most relevant information. A careful investigation of the available features
and any available transformations (even simple ones) can provide significantly
improved clustering results. A good pattern representation can often yield a sim-
ple and easily understood clustering; a poor pattern representation may yield a
complex clustering whose true structure is difficult or impossible to discern.

The second step of the process of data clustering is the definition of a measure
of similarity to be applied over the set of patterns. Because of the variety of
feature types and scales, the distance measure (or measures) must be chosen
carefully. It is most common to calculate the dissimilarity between two patterns
using a distance measure defined on the feature space, such as Euclidean distance,
although there are plenty of well known distance measures in the literature, see
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Distance measures Form

Minkowski distance Dij =

(

d
∑

l=1

|xil − xjl|
n

)

1

n

Euclidean distance Dij =

(

d
∑

l=1

|xil − xjl|
2

)

1

2

Manhattan distance Dij =
d
∑

l=1

|xil − xjl|

Sup distance Dij = max
1≤l≤d

d
∑

l=1

|xil − xjl|

Pearson correlation Dij =
(1− rij)

2
, where rij =

d
∑

l=1

(xil − xi)(xjl − xj)

√

√

√

√

d
∑

l=1

(xil − xi)2
d
∑

l=1

(xjl − xj)2

Mahalanobis distance Dij = (xi − xj)
TS−1(xi − xj),

where S is the within-group covariance matrix.

Cosine similarity Sij = cosα =
xT
i xj

||xi||||xj||

Table 1.1: Most common distance measures as proposed in [47].
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Figure 1.1: Taxonomy of the clustering algorithms as proposed
in [23].

Table 1.1. This step is necessary in clustering algorithms that work on a matrix
of proximity or distance values instead of working on the original pattern set. It
is then useful in such situations to precompute the n(n−1)

2 pairwise distance values
for the n patterns and store them in a symmetric matrix. Using the mapping to
complex networks this matrix can be understood as a graph, where each node is a
pattern and the links are the similarities or dissimilarities between them. Finally,
the main step of the process, is the grouping (or clustering) algorithm whose aim
is to decompose the similarity matrix and return the groups of data. There are
a variety of clustering algorithms and each is based on different principles. In
Fig. 1.1 there is a classification of clustering algorithms based on a classification
proposed in [23].

The problem of clustering is inherently ill-posed, i.e. any data set can be clustered
in drastically different ways, with no clear criterion for preferring one clustering
over another. In particular, in the case of unsupervised approaches, a satisfac-
tory clustering of data depends on the desired resolution which determines the
number of clusters and their size. For example, k-means clustering fixes a priori
the number of groups (k), which implies indeed a certain resolution of the clus-
tering. Other algorithms such as hierarchical clustering [27] group the patterns
extending the measure of distance between them to distances between clusters
of patterns. This process generates a complete dendrogram. Cutting the den-
drogram at different heights we obtain different partitions of the data, all them
hierarchically nested. In this situation the following question arises: at what
resolution should one look at the data to find a scientific meaning in the classi-
fication? We claim that the answer to this question is totally dependent on the
final purpose of the classification process, and that the concept of best solution
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should be reconsidered. Different partitions will be representative of properties
of the data at different scales and then all of them are worth to be studied.

1.3 Brief Introduction to Complex Networks

Complex networks science has been conformed as a discipline for the study
of graphs representing real systems. It is an interdisciplinary field borrowing
knowledge and techniques from graph theory, artificial intelligence and statistical
physics. The term complex network was coined during the analysis of the power
grid electricity distribution network and the Internet, to differentiate these net-
works from regular lattices, and perhaps more importantly, to differentiate its
study from the conventional mathematical techniques used in graph theory.

Indeed, complex networks were largely studied by social scientists in the early
fifties, when representing the relations between humans via social networks [44],
although the analysis techniques were relatively scarce. Graph theory was math-
ematically grounded during the sixties [9, 13, 14] and provided the qualitative
change needed for the accurate analysis of networks. Forty years later, at the
beginning of this century, the physicist community became specially interested
in this field and started using the common tools of statistical physics for their
study [2, 7, 31, 45]. From then on, we refer to the theory of complex networks
using this latter approach for their description and analysis.

Recent developments on Information and Communication Technologies have al-
lowed the analysis of many systems that can be represented as networks, where
the nodes, or vertices, represent the elements of the system, and links represent
the interactions between them. In this way, systems so diverse as the WWW or
Internet [22, 37], cellular metabolisms [25], or the world trade network [42], for
example, have been rigorously analyzed.

There are at least three topological properties that are common to many real
networks, and that differentiate these from regular lattices, or grids, namely: i)
the small-world property, ii) divergent fluctuations in the number of neighbors
per node (or degree) and iii) an unexpectedly large number of transitive relations,
i.e. triangles, at different scales of observation of the network. Here we present a
brief discussion about these properties.

1.3.1 Small-world property

From a mathematical point of view, this property can be stated as follows: the
average number of steps l (from node to node) on a network of N nodes, between
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Figure 1.2: Small-world model as proposed in [46], with n=20 ver-
tices and k=4 nearest neighbors.

any two nodes chosen at random, scales as

" ∝ (logN)µ. (1.1)

Comparing this scaling law with the law obtained for a regular lattice of dimen-
sion d:

" ∝ (N)1/d (1.2)

we can conclude that the small-world property is the responsible for the fast
spreading of any type of reaction-diffusion processes that can take place on the
network, as epidemic spreading, information diffusion, etc.

The first model that represents the construction of a small-world network was
proposed by Watts and Strogatz [46]. It works as follows: we start with a ring
of n vertices, each connected to its k nearest neighbors by undirected edges. We
choose a vertex and the edge that connects it to its nearest neighbor in a clockwise
sense. With probability p, we reconnect this edge to a vertex chosen uniformly at
random over the entire ring, with duplicate edges forbidden; otherwise we leave
the edge in place. We repeat this process by moving clockwise around the ring,
considering each vertex in turn until one lap is completed. Next, we consider
the edges that connect vertices to their second-nearest neighbors clockwise. As
before, we randomly rewire each of these edges with probability p, and continue
this process, circulating around the ring and proceeding outwards to more distant
neighbors after each lap, until each edge in the original lattice has been considered
once. (As there are nk/2 edges in the entire graph, the rewiring process stops
after k/2 laps.) Three realizations of this process are shown, for different values
of p, see Fig. 1.2. For p = 0, the original ring is unchanged; as p increases, the
graph becomes increasingly disordered, until for p = 1, where all edges have been
randomly rewired. The main result is that for intermediate values of p, the graph
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is a small-world network: highly clustered like a regular graph, yet with small
characteristic path length, like a random graph.

1.3.2 Scale-free degree distribution

Many networks present clear fluctuations in the number of neighbors that different
nodes have, something that has been, generally speaking, known as scale-free
networks. Strictly speaking, a network is scale-free when the distribution of the
number of neighbors per node (called degree k) follows a power law of the type:

P (k) ∝ k−γ (1.3)

where the exponent of the distribution in most real networks is observed to be
γ ∈ (2, 3]. Note that in this case the variance of the distribution diverges when
the number of nodes grows up. This feature implies that the network is highly
heterogeneous in degree and that there exists a finite probability of finding nodes
with very high degree whereas most of them have low degree. Nodes with signif-
icantly high degree are called hubs.

The discovery of many real networks whose degree distribution is scale-free [4]
is one of the most prominent observations of the field. This distribution has
deep implications on the robustness of the topology (removing hubs would be
catastrophic) and on the persistence of epidemic infections which again, due to
the existence of hubs, make infections endemic.

1.3.3 Clustering and modular structure

The third property commonly observed in complex networks is the topological
transitivity, usually called clustering. Because of the unfortunate choice of names,
we have to be cautious to not mix the definition of clustering in complex networks
with the problem of data clustering stated in the above section.

Clustering is a measure of the presence of triangles in the network. In social net-
works it is exemplified by the sentence, the friends of my friends are my friends,
outside this scope the explanation is not so straightforward. Mathematically one
of the measures of the clustering coefficient is expressed as follows:

C =
Number of closed triplets

Total number of triplets of vertices
(1.4)

Clustering is one of the main elements of the complexity of networks, they are
essentially the building blocks of groups of nodes highly connected between them
with respect to the rest of the nodes of the network. The resulting supra-structure
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of the high clustering in networks are what is called modular, or community
structure. Community structure will be presented in deep in the next section,
being this property the central object of our approach in this thesis.



Chapter 2

Mesoscopic Structure of
Networks

2.1 Community Structure

The first problem encountered when working in community detection problems
is the definition of community itself. We will see that various definitions of com-
munity coexist in the literature, and while there is not a universally accepted
definition, all of them share the same idea. We will first present some real world
networks that have community structure and will try to unveil an intuitive defi-
nition. Afterwards, we will revise the definitions existing in the literature.

2.1.1 Real World Networks with Community Structure

In this section we shall present some examples of real networks with community
structure. In this way we will see how communities look like and why they are
important to understand the structure and functionality of complex networks.
Social networks are paradigmatic examples of graphs with communities. The
word community itself refers to a social context. People naturally tend to form
groups, within their work environment, family, friends, defining communities of
people. Let us show an example of social network, the Zachary’s karate club,
Fig. 2.1. It is a network representing the members of a karate club in the United
States [48], a well-known graph regularly used as a benchmark to test community
detection algorithms. It consists of 34 vertices, which are the members of this
karate club, who were observed during a period of three years. Edges connect
individuals who interacted outside the activities of the club. At some point,
a conflict between the club president and the instructor led to the fission of

9
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Figure 2.1: Representation of the social network corresponding to
the Zachary Karate Club, a standard benchmark in community de-
tection. Numbers correspond to different people, and triangles and
squares, denote the two different groups in which the network splits.
The challenge for a community detection algorithm is to unveil these
groups from the original graph.

the club into two separate groups, supporting the instructor and the president,
respectively. The question is whether from the original network structure it is
possible to infer the composition of the two groups. Indeed, by looking at the
figure one can distinguish two aggregations, one around vertices 33 and 34 (34 is
the president), the other around vertex 1 (the instructor). One can also identify
several vertices lying between the two main structures, like 3, 9, 10; such vertices
are often misclassified by community detection methods. The original network is
weighted, that is, their links have a certain weight representing the strength of
the interaction between two people, however, many scientists have worked with
the unweighted version of the network, something that makes more difficult the
correct assignment of members to the groups they belong.

Another example of real networks are found in biology, the protein-protein inter-
action (PPI) networks. PPI networks are a subject of intense research in biology
and bioinformatics, as the interactions between proteins are crucial to under-
stand each metabolic process of the cell. Fig. 2.2 illustrates the PPI network of
the rat proteome [26]. Each interaction (link) is derived by comparing experi-
mentally observed interactions in other organisms. Communities (or modules)
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in this case correspond to functional groups, i.e. to proteins having the same or
similar functions, which are expected to be involved in the same processes. Some
communities are associated to cancer and metastasis processes, which indirectly
shows how important detecting modules in PPI networks is.

The two networks presented have in common that they have reciprocal edges
between nodes. But relationships or interactions between elements of a system
do not have to be necessarily reciprocal. In many cases they have direction, that
have to be taken into account to understand the system as a whole. For exam-
ple, the networks representing the predator-prey models in ecosystems are one
of this kind. In this kind of network, the elements of the graph represent the
animals, and a directed link between them means that one of them is predator of
the other. Another example, this time taken from technology, is the World Wide
Web, which can be seen as a graph by representing web pages as vertices and
the hyperlinks that make users move from one page to another as edges. This is
also a case of directed graph, as hyperlinks are directed: if there is a link that
takes the user from web page A to B, normally there is not a link that goes back
from B to A. In fact, only 10% of the hyperlinks are reciprocal. This feature of
real networks should be taken into account when designing community detection
methods. Edge directness is not the only complication to deal with when facing
the problem of community detection. In many real networks vertices may belong
to more than one group, a phenomena which is known as overlapping communi-
ties. As we can see, real networks represent the complicate interconnections and
relations between elements in real world, and therefore they are as complicated
as the real world can be. In the end, we want to be able to extract relevant and
useful information from real networks, and therefore the community detection
methods have to support as many real-world features as possible.

2.1.2 Basic Definitions of Communities

The problem of community structure, intuitive at first sight, is actually ill-posed.
The main elements of the problem themselves, i.e. the concepts of community
and partition, are not rigorously defined, and require some degree of arbitrariness
and/or common sense. Indeed, some ambiguities are hidden and there are often
many equally legitimate ways of resolving them. Therefore, it is not surprising
that there are plenty of recipes in the literature and that scientists do not even
try to ground the problem on shared definitions.

First we have to look for a quantitative definition of community. No definition
is universally accepted. As a matter of fact, the definition often depends on the
specific system at hand and/or application one has in mind. From intuition and
the examples of the previous section we get the notion that there must be more
edges inside the community than edges linking vertices of the community with the
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Figure 2.2: Representation of a protein-protein interaction network
corresponding to the rat proteome. The links have been derived from
many experimental observations in different organisms. The colors
correspond to well-known functional groups according to biological
knowledge of the system. The question is whether or not they also
correspond to topological communities.



2.1 Community Structure 13

rest of the graph. This is the reference guideline at the basis of most community
definitions. But many alternative recipes are compatible with it. Moreover, in
most cases, communities are algorithmically defined, i.e. they are just the final
product of the algorithm, without a precise a priori definition.

Let us put some notation. For a network that is undirected and has no self-loops:
start with a subgraph C of a graph G, with |C| = nc the number of nodes in
this community, and |G| = n the number of nodes. We define the internal and
external degree of vertex v ∈ C as kint

v and kext
v , which are the number of edges

connecting v to other vertices of C or to the rest of the graph, respectively. The
internal degree kint

C of C is the sum of the internal degrees of its vertices. The
external degree kext

C is then the sum of the external degrees of its vertices. We
also have to define the intra-cluster density ρint(C), which is the ratio between
the number of internal edges of C and the number of all possible internal edges:

ρint(C) =
# internal edges of C

nc(nc − 1)/2
(2.1)

Likewise, the inter-cluster density ρext(C) is defined as the ratio between the
number of edges running from the vertices of C to the rest of the graph and the
maximum number of inter-cluster possible edges:

ρext(C) =
# inter-cluster edges of C

nc(n− nc)
(2.2)

For the subgraph C to be a community, we expect the intra-cluster density ρint(C)
to be appreciably larger than the average link density of G. Similarly, the inter-
cluster density ρext(C) is expected to be considerably lower than the the average
link density. The goal in most of the community detection algorithms is precisely
to find the best tradeoff between a large ρint(C) and a low ρext(C). Another
required property for C to be a community is connectedness. The existence of a
path between each pair of the vertices in C, running only through vertices of C,
is expected.

With these basic requirements clarified, we will now briefly introduce the two
main definitions of community which are local definitions and global definitions.

• Local definitions: Communities are parts of the graph with a few ties with
the rest of the system. To some extent, they can be considered as separate
entities with their own autonomy. So, it makes sense to evaluate them inde-
pendently of the graph as a whole. Local definitions focus on the subgraph
under study, including possibly its immediate neighborhood, but neglecting
the rest of the graph. Four types of criterion are used in local definitions:
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complete mutuality, reachability, vertex adjacency and comparison of inter-
nal versus external cohesion. Complete mutuality is a very strict condition,
as it requires each vertex of a community to be adjacent to the rest of the
vertices in the community, which translates the definition of community to
a clique. A clique with a missing link should certainly be considered as a
very cohesive group and therefore a community, but it would not be consid-
ered a community under this recipe. Reachability offers a more relaxed way
to express the latter condition, as it requires the vertices to have a path be-
tween them that does not exceed a certain number of steps to consider them
a community. Vertex adjacency is another criterion for subgraph cohesion.
The idea is that a vertex must be adjacent to some minimum number of
other vertices in the subgraph. Finally, the comparison of internal versus
external cohesion is usually done by a fitness measure, which expresses to
which extent a subgraph satisfies a given property related to its cohesion.
The larger the fitness, the more defined the community is. The simplest
fitness measure for a cluster is its intra-cluster density ρint(C).

• Global definitions: Communities can also be defined with respect to the
graph as a whole. This is reasonable in those cases in which clusters are
essential parts of the graph, which cannot be taken apart without seriously
affecting the functioning of the system. The literature offers many global
criteria to identify communities. In most cases they are indirect definitions,
in which some global property of the graph is used in an algorithm that
delivers communities at the end. However, there is a class of proper def-
initions, based on the idea that a graph has community structure if it is
different from a random graph. A random graph à la Erdös–Rényi (where
links between nodes appear with constant probability) is not expected to
have community structure, as any two vertices have the same probability
to be adjacent, so there should be no preferential linking involving special
groups of vertices. Therefore, one can define a null model, i.e. a graph
which matches the original in some of its structural features, but which is
otherwise a random graph. The null model is used as a term of compar-
ison, to verify whether the graph at study displays community structure
or not. The most popular null model is that proposed by Newman and
Girvan and consists of a randomized version of the original graph, where
edges are rewired at random, under the constraint that the expected degree
of each vertex matches the degree of the vertex in the original graph [35].
This null model is the basic concept behind the definition of modularity,
a quality function which evaluates the goodness of partitions of a network
into communities, which we will see in the following sections.
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2.2 Community Detection Methods

The aim of community detection methods is to find partitions of nodes in a net-
work. A partition is a division of the network in clusters, such that each vertex
belongs to one cluster. As we can observe from real networks, some vertices could
be shared among different communities. A division of a graph into overlapping
communities is called a cover. In some cases, communities have hierarchical struc-
ture, this happens when the graph has different levels of organization. Then the
communities are divided into new smaller communities and so on. And last but
not least, it is also possible that communities are different levels of organization
are part hierarchical, part overlapped. In this last case multiresolution methods
are necessary. One should really analyze the system one has in hand in order to
choose, from all the community detection methods available, the one that suits
better the problem one wants to solve. Next, the most popular classification of
community detection methods is presented.

2.2.1 Classical Methods

Graph partitioning

The problem of graph partitioning consists in dividing the vertices in g groups
of predefined size, such that the number of edges lying between the groups is
minimal. The number of edges running between clusters is called the cut size.
Specifying the number of clusters of the partition is necessary. If one simply
imposed a partition with the minimal cut size, and left the number of clusters
free, the solution would be trivial, corresponding to all vertices ending up in the
same cluster, as this would yield a vanishing cut size. Specifying the size is also
necessary, as otherwise the most likely solution of the problem would consist of
separating the lowest degree vertex from the rest of the graph, which is quite
uninteresting. Graph partitioning is a fundamental issue in parallel computing,
circuit partitioning and layout, and in the design of many serial algorithms, in-
cluding techniques to solve partial differential equations and sparse linear systems
of equations. The Kernighan–Lin algorithm [28] is one of the earliest methods
proposed and is still frequently used, often in combination with other techniques.
The authors were motivated by the problem of partitioning electronic circuits
onto boards: the nodes contained in different boards need to be linked to each
other with the least number of connections. It works by swapping nodes from
cluster to cluster while minimizing the cut size.

In general, very little is known about the community structure of a graph. It
is uncommon to know the number of clusters in which the graph is split, or
other indications about the membership of the vertices. In such cases clustering



16 Mesoscopic Structure of Networks

procedures like graph partitioning methods can hardly be of help, and one is
forced to make some reasonable assumptions about the number and size of the
clusters, which are often unjustified.

Hierarchical clustering

The network may have a hierarchical structure, i.e. may display several levels of
grouping of the vertices, with small clusters included within large clusters, which
are in turn included in larger clusters, and so on. Social networks, for instance,
often have a hierarchical structure. In such cases, one may use hierarchical clus-
tering algorithms, that is clustering techniques that reveal the multilevel structure
of the graph. It is essential to define a measure of similarity between vertices,
and calculate this similarity between all pairs of vertices, even if they are not con-
nected by a link. According to the way the similarity is used, hierarchical methods
can be classified into two categories. In agglomerative algorithms, one starts from
the vertices as separate clusters and creates the communities by putting together
those nodes that are similar enough. The other type of algorithms follow the
opposite approach, as divisive algorithms start from the graph as a whole cluster
and the division is done by removing the edges between nodes with low similar-
ity. The drawback of this method is that the assumption of hierarchical structure
could not be exact.

Partitional Clustering

Partitional clustering is another traditional class of methods for classifying data
points into clusters. The number of clusters has to be decided beforehand, say
k clusters. The data points are embedded into a metric space, therefore a dis-
tance function between pairs of points can be defined in order to calculate the
dissimilarity between these points or vertices. The goal is to separate the points
into k vertices in a way that minimizes the distance function chosen. One of the
most used function is the minimum k-clustering, in which the cost function is the
diameter of the clustering. The diameter is the distance between the two farthest
points in a cluster, so the aim in this methodology is to classify the points in a
way that the diameters of each cluster are minimum. Other distance functions
widely used are k-clustering sum, k-center or k-median. Again, the guess about
the number of partitions determines the output, and this is something difficult
to assess a priori.
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Spectral Clustering

The family of spectral clustering includes all methods that perform the clustering
of the data points by using the eigenvectors of matrices. The transformation to
be done consists in calculating the elements of the eigenvectors of the original
set of objects. The result is a set of points in space, which will then be clustered
using any other clustering technique. Methods in spectral clustering are able
to separate data points that could not be resolved by directly applying other
traditional methods, as the change of representation induced by the eigenvectors
could make the cluster properties of the initial data set much more evident.

2.3 Modularity

In the first section of this chapter we mentioned modularity as a quality function.
It is used to assess the user on the quality of the partitions obtained through
a community detection algorithm. By assumption, high values of modularity
indicate good partitions, so the partition which has maximum value of modularity
in a graph should be considered the best one, or at least a very good one. This
is the reasoning behind modularity optimization, by far the most used technique
for community detection. Note that modularity does not assume any a priori
information about the number of partitions, the number of partitions is an output
of the optimization problem. It is known as modularity optimization instead
of modularity maximization because it is impossible to find the highest value
of modularity in a reasonable amount of time, since the number of different
partitions is equal to the Bell [5] or exponential numbers, which grow at least
exponentially in the number of nodes N .

The way in which modularity evaluates the goodness of a partition is by com-
paring its communities with a null case. This null case is a representation of the
same network we are willing to detect communities in, but with some variations.
The modification made in the original network to form the null model is that
it has been randomly rewired preserving the degree of each node. That means
changing the links within the network but keeping to each node its original de-
gree. Note that for weighted networks the strength (sum of weights per node)
has to be preserved. This null model provides us with a network very similar
to the original one but as it is random, it is expected not to have communities.
The value of modularity represents the deviation of the original network from
the randomized version for the same partitioning. If the network does not have
community structure, it will be very similar to a random one and the value of
modularity will be low. If the network has well defined communities, then the
deviation from the null case is more accentuated and the value of modularity is
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high.

Given a network partitioned into communities, being Ci the community to which
node i is assigned, the mathematical definition of modularity is expressed in terms
of the weighted adjacency matrix wij, that represents the value of the weight in
the link between nodes i and j, this weight would be 0 if no link existed, and the
strengths wi =

∑

j wij as [32]

Q =
1

2w

∑

i

∑

j

(

wij −
wiwj

2w

)

δ(Ci, Cj) , (2.3)

where the Kronecker delta function δ(Ci, Cj) takes the values, 1 if node i and j
are into the same community, 0 otherwise, and the total strength 2w =

∑

i wi.
The modularity of a given partition is then, the probability of having edges falling
within groups in the network minus the expected probability in the equivalent
(null case) network with the same number of nodes, and edges placed at random
preserving the nodes’ strength.

The generalization of Eq. (2.3) to directed networks simply reads [1]

Q =
1

2w

∑

i

∑

j

(

wij −
wout

i win
j

2w

)

δ(Ci, Cj) , (2.4)

where wout
i =

∑

k wik is the output strength of node i and win
j =

∑

k wkj is the
input strength of node j.

As we have seen in previous sections, real world networks have often weighted
links, and possibly positive and negative values coexist. This leads us to have to
adapt the formulation of modularity for the case of weighted undirected signed
networks, leaving the directed case to the end of this section. To do so, we have
to introduce the following notation: first let us separate the positive and negative
weights:

wij = w+
ij − w−

ij , (2.5)

where

w+
ij = max{0, wij} , (2.6)

w−
ij = max{0,−wij} . (2.7)

The positive and negative strengths are given by

w+
i =

∑

j

w+
ij , (2.8)

w−
i =

∑

j

w−
ij , (2.9)
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and the positive and negative total strengths by

2w+ =
∑

i

w+
i =

∑

i

∑

j

w+
ij , (2.10)

2w− =
∑

i

w−
i =

∑

i

∑

j

w−
ij . (2.11)

Obviously it is satisfied that
wi = w+

i − w−
i (2.12)

and
2w = 2w+ − 2w− . (2.13)

With these definitions at hand, the connection probabilities with positive and
negative weights are respectively

p+i =
w+

i

2w+
, (2.14)

p−i =
w−

i

2w−
. (2.15)

Now there are two terms which contribute to modularity: the first one takes
into account the deviation of actual positive weights against a null case random
network given by probabilities p+i , and the other is its counterpart for negative
weights. Thus, it is useful to define

Q+ =
1

2w+

∑

i

∑

j

(

w+
ij −

w+
i w

+
j

2w+

)

δ(Ci, Cj) , (2.16)

Q− =
1

2w−

∑

i

∑

j

(

w−
ij −

w−
i w

−
j

2w−

)

δ(Ci, Cj) . (2.17)

The total modularity must be a trade off between the tendency of positive weights
to form communities and that of negative weights to destroy them. If we want
that Q+ and Q− contribute to modularity proportionally to their respective pos-
itive and negative strengths, the final expression for modularity Q is

Q =
2w+

2w+ + 2w−
Q+ −

2w−

2w+ + 2w−
Q− . (2.18)

An alternative equivalent form for modularity Q shown in [20] is

Q =
1

2w+ + 2w−

∑

i

∑

j

[

wij −

(

w+
i w

+
j

2w+
−

w−
i w

−
j

2w−

)]

δ(Ci, Cj) . (2.19)
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The main properties of Eq. (2.19) are: without negative weights, the stan-
dard modularity is recovered; modularity is zero when all nodes are together
in one community; and it is antisymmetric in the weights, i.e. Q(C, {wij}) =
−Q(C, {−wij}) .

The extension of modularity to signed directed networks is simply obtained by
the substitutions

w±
i → w±,out

i =
∑

k

wik , (2.20)

w±
j → w±,in

j =
∑

k

wkj . (2.21)

This form of modularity allows to deal with weighted signed and even directed
networks, and has been widely used in a lot of algorithms that optimize modu-
larity.

2.3.1 Optimization algorithms for modularity

Here there is a summary of the main algorithms used to this end:

• Greedy techniques. The first algorithm devised to optimize modularity was a
greedy method by Newman [33]. Just as in the hierarchical agglomerative
methods explained earlier, this algorithm forms communities by merging
groups of nodes starting out from all nodes being isolated. Instead of doing
that according to some measure of similarity of the nodes, now the groups
of vertices are merged such that modularity increases after the merging.
Other algorithms that use greedy procedures to optimize modularity are
[6, 41, 18], all of them perfom a local search in the space of solutions taking
the best available solution at each step.

• Simulated annealing. It is a stochastic greedy method in which the search
on the space of solutions is not always optimal at each step. The algo-
rithm is controlled by a parameter β, called temperature, that determines
the probability of choosing a solution in the space of partitions that does
not improve the last solution found. This temperature is going to zero as
the algorithm evolves making the process deterministic at the end. The
advantage in front of greedy algorithms relies on the relative independence
of the initial state on the final outcome. Simulated annealing can be used
for small graphs, with up to about 104 vertices.

• Extremal optimization. As an alternative for simulated annealing, Boettcher
and Percus proposed an heuristic that would have an accuracy comparable
to simulated annealing but in substantially less computer time [8]. This
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technique was first used to optimize modularity by Duch and Arenas [12]
and its basis is to calculate locally the contribution of each vertex to the
global modularity. The starting point is a random partition of the graph
into two groups with the same number of vertices. Then, at each time step,
the vertex with lower contribution to the global modularity is shifted to
the other community. As the partition now has changed, the local values
of modularity have to be recalculated. This two steps are repeated until
there is no further improvement of modularity.

• Spectral optimization. Modularity can be optimized by calculating the
eigenvectors and eigenvalues of a modularity matrix B, whose elements
are Bij = Aij −

kikj
2m . One has to look for the eigenvector of B with the

highest positive eigenvalue, and group the vertices according to the signs of
its components.

• Tabu optimization. This method to optimize the modularity is based on
Tabu search [3, 19].The algorithm proceeds as follows: the starting point
is a random partition of the network, and we have an operator called move
that allows us to transform a certain partition into a new one by moving
randomly a node from one community to another. With the starting parti-
tion and the move operator we can calculate, from the initial partition, a set
of new partitions that we will call its neighbors. Then, we choose, from all
the neighbor partitions, the one that has higher modularity, and discard the
initial one. The neighborhood from this new current partition is calculated
again and a new partition is chosen until there is no further improvement
of modularity. However, during this process, we could get trapped in local
optima or even in cycles. In order to avoid that, a list of tabu moves is used.
This tabu list stores and forbids the most recently accepted moves and it is
updated as the algorithm proceeds, and it also controls that the node that
has been moved lastly and has lead to an improvement in modularity is not
moved back again in the next step [3].

For the purpose of the work presented in this document, I have concentrated
mainly on two methods explained above: the extremal and the tabu optimization.
Moreover, they have been used in combination with the fast optimization greedy
technique, in order to achieve better modularity results.

2.4 Limitations of modularity

A lot of work has been done to devise reliable techniques to maximize modular-
ity [11, 12, 21, 33, 34, 38]. However, very little has been done to analyze the
concept of modularity itself and its reliability as a method for community detec-
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Figure 2.3: Network formed by n cliques of m nodes each, joint by
a single link. For n = 30 and m = 5 the modularity optimization
solution groups the cliques in pairs.

tion. To a large extent, the success of modularity as a quality function to analyze
the modular structure of complex networks, relies on its intrinsic simplicity. The
researcher interested in this analysis is endowed with a non-parametric function
to be optimized: modularity. The result of the analysis will provide a partition
of the network into communities such that the number of edges within each com-
munity is larger than the number of edges one would expect to find by random
chance. As a consequence, each community is a subset of nodes more connected
between them than with the rest of the nodes in the network. However, recently
it has been shown that modularity is not the panacea of the community detection
problem; in particular it suffers from a resolution limit that avoids grasping the
modular structure of networks at some scales of resolution. As Fortunato and
Barthélemy pointed out, there are some situations in which modularity cannot
detect certain communities although they belong to networks with clear commu-
nity structure [16].

See for example the network in Fig. 2.3, in which each circle represents a clique
formed by m nodes and all cliques are connected in a ring, by a single link. The
traditional modularity optimization result for this setup where n=30 and m=5
would be that each community is formed by two cliques, as it is represented by
the dotted lines. The authors in [16] pointed out that this was not the right
division of the network into communities, as the cliques are the most densely
connected structures possible and they should be considered a community alone.
The authors were right about this counter-intuitive behavior of modularity; how-
ever some clarification should be made. Modularity involves an implicit definition
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of what a community is. In fact, it is considered that a community is the result
of maximizing modularity, with no further assumptions of what a community
should look like. From this point of view then we should say that there exist
some substructures of networks that although they might be considered commu-
nities according to other definitions of the term, they does not suit the modularity
definition. The reason for modularity not detecting certain substructures of the
network properly in this setup can be explained mathematically. For the setup in
Fig. 2.3 each clique is a complete graph Km which has m nodes and m(m− 1)/2
links. If we assume that there are n cliques (being n an even number), the net-
work then has a total of N = nm nodes and L = nm(m−1)/2+n links. Starting
out from the original formulation of modularity, the contributions to modularity
made by the communities formed by one or two cliques can be calculated and are
as follows:

Qsingle = 1−
2

m(m− 1) + 2
−

1

n
(2.22)

Qpairs = 1−
1

m(m− 1) + 2
−

2

n
(2.23)

Qsingle > Qpairs ⇐⇒ m(m− 1) + 2 > n (2.24)

Equations 2.22 and 2.23 measure the contribution to modularity of the partitions
formed by communities of two cliques or one clique respectively. As shown in
Eq. 2.24, for modularity detecting the communities as single cliques, the contri-
bution of Qsingle should be greater than Qpairs, but this depends on a relation
between the number of cliques n and the number of nodes each clique has m. In
this example, m and n are independent variables, so it is easy to find a case in
which the inequality in 2.24 is not satisfied. For example, for the values m = 5
and n = 30, the modularity values are Qsingle = 0.876 and Qpairs = 0.888, being
this latter value greater than Qsingle. Therefore the communities found by a mod-
ularity optimization should group the cliques in two. This would also happen for
larger values of n, if m is fixed.

Although that finding does not act in favor of modularity being considered a
reliable method for community detection, it is worth saying that the setups pre-
sented are synthetic networks whose structure does not have much in common
with real world networks. Therefore, and taking into account the great results
obtained through optimization of modularity in more realistic scenarios, we feel
it is worth trying to deal with the resolution limit in modularity, and to try to
solve it or at least, palliate its effects.
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2.5 Multi-scale Community Detection Methods

Due to the recent findings about the resolution limit of modularity, some scientists
have tried to adapt the classical methods for community detection to be able to
diminish the effect of this limit of resolution. To do so, one of the most well-
known techniques is to try to analyze the community structure from different
levels of resolution. In this section we will explain the benefits of this kind of
approach as well as the two most famous multi-scale algorithms that are widely
used nowadays.

2.5.1 Multiple scales of resolution in complex networks

Facing a famous painting by Salvador Dali (see Fig. 2.4) we can observe that in
complex systems there is not only one scale of resolution which may be interesting
to analyze, but there are many which coexist at the same time and contain
relevant information. If we observe the painting close enough, we can see that
the picture is actually formed by small tiles which have drawings in them (see
Fig. 2.4 Left). They are the minimum unit of the painting and altogether they
form what we should call the microscale. Instead, if we place ourselves 20 meters
from the painting, as the author suggests, what we see is that all those tiles join to
form the face of Abraham Lincoln (see Fig. 2.4 Right). In that position, we would
observe the macroscale of the system. However, there exist some intermediate
scales of resolution between the microscale and the macroscale, and we will call
them the mesoscales. In one of those intermediate scales we can see what the
author is trying to represent, which is his wife Gala, looking at the sea through
a window.

Using the mapping of complex systems into complex networks, the three terms
introduced before have a precise meaning. The microscale of a network is formed
by the features of the individual nodes, while the macroscale is defined by the
statistical properties of the whole network. Then, the mesoscales would be the
result of analyzing the structure of the network with an intermediate resolution,
and they would be represented by the substructure of the network, say the com-
munities or modules. Successfully detecting the mesoscales of complex networks
is a relevant issue as these internal substructures play an important role for the
understanding of the relationship between topology and functionality of the net-
works.

There are plenty of community detection methods that work well for detecting
communities in networks. However, most of them deliver only a single snapshot of
the substructure of the network, that is, a single scale of the mesoscales. What we
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Figure 2.4: “Gala contemplating the Mediterranean sea which at
twenty meters becomes a portrait of Abraham Lincoln”, by Salvador
Dali, 1974. Left, at closer distance, and right, at larger distance.

will try to stress is that one single division of the network into communities (one
partition) is not enough to understand completely the structure of the network.

Fig. 2.5 is the representation of a synthetic network made to illustrate the fact
that sometimes several mesoscales coexist. It is a network with hierarchical com-
munity structure, with 256 nodes. Each node is connected to other nodes in the
smallest communities by 13 links, to the nodes within the big communities with
4 links and to a node of the rest of the network with one single link. If we were
about to perform community detection on this network, what partition would we
find? From a topological point of view we can see that there are two possible
solutions to the problem, one that divides the network into four communities
of 64 nodes each, and the other that divides the network into 16 communities
formed by 16 nodes each (see Fig. 2.6). The question is then, which one of these
two solutions is the correct one? The answer is that there is not such thing as
a good partition and a bad one, both solutions coexist in the same network and
therefore both are representative of its internal structure, it would only depend
on the final purpose of the clustering which of the two partitions is more conve-
nient. However, as it is normal not to have any previous knowledge about the
communities in a network, it is important to have a criterion to decide which
one of the partitions is more representative in terms of structure. This criterion
should depend on the community detection method used and will be discussed
in the following section.
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Figure 2.5: Synthetic network that presents internal community
structure at different scales, formed by 256 nodes. Each node has 13
links within the smaller communities, 4 links within the big commu-
nities, and 1 link connecting this node to a node in any of the three
other big communities.

Figure 2.6: Two possible partitions of the same network. Left, the
division into four communities of 64 nodes each. Right, the division
into 16 communities of 16 nodes each.
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2.5.2 Multiresolution algorithms

RB algorithm

There are other multi-scale methods for optimizing modularity. One of them is
the one by Reichardt & Bornholdt (RB) [40]. Their approximation starts out from
the original formulation of modularity as well, consists in adding a parameter γ
to the null case term. This is the parameter that will be tuned and will provide
the access to the mesoscale. The formulation is shown in Eq.2.25.

Q =
1

2w

∑

i

∑

j

(

wij − γ
wiwj

2w

)

δ(Ci, Cj) , (2.25)

What it is achieved by tuning the γ parameter is to move the change the null term
at each step. Consequently, different resolutions are obtained for each γ value,
but the semantics of modularity is not preserved. Furthermore, there is a problem
when using negative values of γ. This factor is affecting the null term, which is
the probability of two nodes having a link between then in a randomized version
of the network. When the γ goes negative, the probability becomes negative and
loses its meaning. This method and the AFG algorithm presented previously are
not equivalent, so there is not a translation between γ and r. For a more detailed
comparative, see [3].

Original AFG algorithm

One of the most well-known solutions for performing modularity optimization at
different levels of resolution is the Arenas-Fernández-Gómez (AFG) algorithm [3].
This is the method we will refer to in the following sections. This method is based
on the idea that, to analyze the network at different levels of resolution we need
to be able to observe the network from different distances. Imagine you have got
to take a picture from an elephant next to a mouse. With one single snapshot it is
impossible to capture all the details of both animals, as they are very different in
size. On the contrary, you would have to make two different pictures and play with
the zoom to achieve the information you want. How to achieve that magnifying
lens effect when optimizing modularity on a network? The idea is to introduce
a global magnitude to the network, but in a way that the statistical properties
of the network (degree distribution, degree-degree correlation, spectrum...) are
preserved. This global magnitude will then be a self-loop added to each node,
with a value of r equal to all nodes in the network. In that way, the modification
to the network remains in the diagonal of the (weighted) adjacency matrix and
does not change any of the statistical properties. The formulation for modularity
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containing the parameter r is explained below. First of all, we have to rewrite
(2.3) in terms of contribution of modules instead of nodes:

Q =
m
∑

s=1

(

wss

w
−
(ws

2w

)2
)

, (2.26)

where the sum is over the m modules of the partition, wss is the internal strength
of module s and ws the total strength of module s. For unweighted networks wss

reduces to the number of internal links and ws to the sum of degrees of the nodes
in module s.

The problem now is how to increase the strength of nodes without altering the
topological characteristics of the original network. We solve this problem by
rescaling the topology defining Wr, from the original weighted adjacency matrix
W of the graph with entries wij, as follows

Wr = W + rI , (2.27)

where I is the identity matrix. In terms of graphs, this new matrix represents
the original network with self-loops of weight r for every node. Note that the
prescription in (2.27) supposes a constant shift (translation) r of the strength of
each node.

Denoting Qr the modularity of the network at scale r, the equivalent expression
to (2.26) reads

Qr =
m
∑

s=1

(

2wss + nsr

2w +Nr
−

(

ws + nsr

2w +Nr

)2
)

. (2.28)

The parameter r accounts for resistance parameter, which should be interpreted
as the resistance a node has to form part of a community. Loosely speaking,
when the resistance parameter is positive and has its maximum value (rmax), the
nodes are reinforced and each would form its own community. This means that
the partition obtained is dividing the network in singletons. On the other case, if
the value of r is negative and has its minimum value (rmin), the nodes are weak
and they have to attach to other nodes in the network in order to form a commu-
nity, therefore the partition obtained is formed by a single community containing
all nodes. Tuning this parameter ranging from rmin to rmax and performing a
modularity optimization at each step, we are provided with a partition for each
level of resolution of the network and we are able to observe the whole mesoscale
as intended. Note that the original formulation of modularity is recovered when
r = 0.
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Figure 2.7: Representation of the number of communities of the
network as a function of the resistance parameter. The length of the
plateaus is representative of the relevance of each partition.

The topological scale corresponding to all nodes separated is found by maximizing
Qrmax

, where rmax is the smallest positive value of r that satisfies

wij <
(wi + r)(wj + r)

2w +Nr
, ∀i (= j (2.29)

The topological scale corresponding to a unique module formed by the whole
network is found by maximizing Qrmin

, where rmin has a lower bound defined by
the asymptote rasymp = −2w

N .

To illustrate the performance of this algorithm, we will use the synthetic network
in Fig. 2.5. As we have previously pointed out, there are two possible configura-
tions of communities when observing the mesoscale of that network. So a good
multi-scale algorithm should be able to reveal both solutions. Indeed, what it is
found by using the AFG algorithm is a partition containing 4 communities with
64 nodes each and a partition formed by 16 communities of 16 nodes each, among
other partitions that divide the nodes in different setups.

Plotting the different partitions as a function of r is providing us with the criterion
needed to distinguish which of the partitions obtained are more or less relevant. If
we observe Fig. 2.7 we realize that there are two partitions that remain unchanged
during more values of r than others. The first plateau (I) corresponds to the
division into four communities, and the second (II) is the division of the network
in 16 communities. We can observe that both partitions are more stable than the
rest of possible divisions of the network, which is giving us information about the
relevance of those two configurations.
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2.5.3 Evolution of AFG method for weighted signed net-

works

The first contribution of this Master Thesis to the object of study considered, con-
sisted in to provide a new formulation of the AFG method to deal with weighted
and signed networks. This aspect is crucial to have a versatile algorithm for re-
solving the multiple scales of the community structure of complex networks in the
most general scenario. This modification is specially interesting to analyze corre-
lation data sets as complex networks given that these kind of data is intrinsically
signed (correlated and anti-correlated values).

Let us start by resuming the generalization of modularity Eq. (2.19) for undirected
weighted signed networks:

Q =
1

2w+ + 2w−

∑

i

∑

j

[

wij −

(

w+
i w

+
j

2w+
−

w−
i w

−
j

2w−

)]

× δ(Ci, Cj) . (2.30)

where

w+
i =

∑

j,wij>0

wij , (2.31)

w−
i =

∑

j,wij<0

|wij| , (2.32)

are the positive and negative strengths of node i, and

2w+ =
∑

i

w+
i , (2.33)

2w− =
∑

i

w−
i , (2.34)

the positive and negative total strengths respectively. Please note that these four
strengths are defined to be non-negative.

To simplify the notation, we make use of the modularity matrix

Bij = wij −

(

w+
i w

+
j

2w+
−

w−
i w

−
j

2w−

)

, (2.35)

therefore

Q =
1

2w+ + 2w−

N
∑

i=1

N
∑

j=1

Bijδ(Ci, Cj) . (2.36)

Following [3], the analysis of the mesoscale is performed with the addition of
a common self-loop to all the nodes in the network. The boundaries of the
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mesoscale are the macroscale, a partition in which all nodes belong to the same
community, and the microscale, a partition in which each node is isolated in its
own community. The determination of these boundaries is equivalent to finding
two values of the self-loops, rmin and rmax, for which the maximum of modularity
QAFG(r) is achieved at the macroscale and microscale respectively. The solution
is quite simple: if all the non-diagonal terms of the modularity matrix are positive
or zero, modularity is optimized at the macroscale, and if they are negative, it
is optimized at the microscale. Diagonal terms are irrelevant since δ(Ci, Ci) = 1
for all nodes.

If we introduce a positive self-loop r+, the modularity matrix becomes

BAFG
ij (r+) = wij + r+δij −

(

(w+
i + r+)(w+

j + r+)

2w+ +Nr+
−

w−
i w

−
j

2w−

)

, (2.37)

and with a negative self-loop −r−

BAFG
ij (−r−) = wij − r−δij −

(

w+
i w

+
j

2w+
−

(w−
i + r−)(w−

j + r−)

2w− +Nr−

)

. (2.38)

The existence of rmax is straightforward, since BAFG
ij (r+) ∼ −r+ < 0 for large

enough r+ and i (= j. Its determination is just an exercise of solving the system
of inequations BAFG

ij (r+) ≤ 0 for i < j, and taking the smallest solution as rmax.
More precisely,

rmax = max
i<j

D2
ij≥4Eij

(

−
Dij

2
+

1

2

√

D2
ij − 4Eij

)

, (2.39)

where
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, (2.40)
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. (2.41)

In the same way, BAFG
ij (−r−) ∼ r− > 0 proves the existence of rmin, and it is

calculated by solving BAFG
ij (−r−) ≥ 0 for i < j, and taking the largest solution

as rmin, i.e.

rmin = − max
i<j

D2
ij≥4Eij

(

−
Dij

2
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2

√

D2
ij − 4Eij

)

, (2.42)
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where
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(
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, (2.43)

Eij = w−
i w

−
j + 2w−

(
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)
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When the network is directed, the analysis of the AFG mesoscale is exactly the
same, but with the substitutions

w±
i → w±,out

i =
∑

k,±wik>0

|wik| , (2.45)

w±
j → w±,in

j =
∑

k,±wkj>0

|wkj| , (2.46)

Dij →
1

2
(Dij +Dji) , (2.47)

Eij →
1

2
(Eij + Eji) . (2.48)

With this analytical development we are able to apply the multi resolution anal-
ysis to any type of complex network.



Chapter 3

Data Clustering Using a
Multiresolution Community
Detection Method

In this chapter we present one of the original works developed. The purpose is
to adapt a community detection method that is specially designed to be applied
on a network to the problem of data clustering. Data clustering and community
detection share the same nature as their final purpose is to classify elements into
groups, but there are some differences that make the mapping not so straight-
forward. In data clustering the raw material is a set of data or elements, each of
them usually represented by a multidimensional vector, being each component of
the vector one of the features of an element. Each element is isolated in the sense
that there is not an explicit relationship between each element and the others,
something strictly necessary when building a network, since this is what defines
the meaning of a link between two nodes. Furthermore, the higher the dimen-
sionality of the dataset, the more difficult it is for data clustering algorithms to
classify them properly, not only because it is computationally more costly but
also because the presence of correlated data can mask the correct classification of
the elements. In this chapter we will present one of the most famous real datasets
that has nowadays become a classical benchmark for evaluating data clustering
algorithms, the Iris dataset. Next, we will present the adaption of the AFG
algorithm to perform the clustering of this data along with some encouraging
results.

33
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Figure 3.1: Pictures of the three subtypes of Iris flowers present in
the dataset. From left to right: Iris setosa, Iris versicolor and Iris
virginica.

3.1 A Case Study: The Iris Dataset

The Iris flower dataset is a multivariate data set introduced by Sir Ronald Fisher
in 1936 as an example of discriminant analysis. Sometimes it is called the Ander-
son’s dataset, as the information was originally collected by Edgar Anderson, an
american botanist. The dataset is formed by 150 samples of Iris flowers, which
are known to be divided into three groups of 50 each, corresponding to three
subtypes of Iris: Iris setosa, Iris versicolor and Iris virginica, see Fig. 3.1 for a
picture. For each sample four features were measured, which were the length
and width of the sepals and the petals, in centimetres. This dataset was used by
Fisher to test the accuracy of a linear discriminant model to classify the three
types of flowers.

The reason why this dataset has become a classical benchmark for data clustering
algorithms is because the setosa group is linearly separable from the other two,
but versicolor and virginica are quite mixed. Even nowadays there is no algorithm
that solves this problem correctly in an unsupervised way. In Fig. 3.2 there is a
plot of the 150 patterns when taking into account only two of the features at a
time. It is clear that in none of the configurations the versicolor and virginica
subgroups are clearly distinguishable.

The question that arises is whether a community detection algorithm could be
suitable for the solution of this classification problem. Using the mapping from
the dataset’s multidimensional points to complex networks, it seems viable to use
a community detection method. Moreover, a multi-scale community detection
algorithm would be specially suitable for this problem, as its classification is
not straightforward and it seems that the exploration of the whole mesoscale is
necessary in this context. In the following section we will explain the methodology
used and the results obtained.
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Figure 3.2: Plot of the 150 samples of flowers taking only into con-
sideration two features at a time. Blue dots represent Iris setosa,
green correspond to Iris virginica and red is for Iris versicolor.

3.2 AFG Solution to the Iris dataset clustering

problem

For the process of extracting the clusters from the Iris dataset we will perform
some steps that belong to the data clustering procedure that were explained in
section 1.2. The basic steps for data clustering are: choosing the appropriate
representation of the data (with or without performing feature selection or ex-
traction), calculating the similarity matrix and applying the clustering algorithm.

3.2.1 Data representation

For the representation of the data, we start out from the original Iris dataset,
consisting of 150 patterns of four features each. As seen in the Fig. 3.2 we can
discern some pairs of features that seem to facilitate the analysis. For example,
when plotting the petal length vs. the petal width, we can see that the two non-
linearly separable groups are more easily distinguishable from each other. A first
approach then could be to take into consideration only these two features and
discard the other two for the analysis from now on. However, there is a more
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Figure 3.3: Results of the two principal components of the PCA
analysis of Iris dataset. We observe a better differentiation between
data in this spectral plot. The color code is blue for setosa, green for
virginica and red for versicolor.

convenient approach, which consists in performing feature extraction instead of
feature selection.

As the information of the sepal length and width is also relevant and maybe could
be helpful, what we did is to perform a Principal Component Analysis (PCA)
of the four features. PCA is a mathematical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables called principal components.
The number of principal components is less than or equal to the number of original
variables. This transformation is defined in such a way that the first principal
component has the largest possible variance (that is, accounts for as much of
the variability in the data as possible), the second principal component has the
second largest possible variance, and so on. For the analysis of the Iris dataset
we choose to work with the first and second principal components resulting from
the PCA, see Fig. 3.3.
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3.2.2 Similarity matrix as a network

After the transformation of the data, our new dataset is formed by 150 patterns
with two features each. Our proposal relies on defining a network, linking the data
in such a way that more similar patterns have a stronger link intensity (weight).
To calculate the similarity between all pairs of patterns we used the Minkowski
distance function (which actually accounts for the dissimilarity between patterns
if the distance is large). The Minkowski distance between two points is defined
as:

dist(x, y) =

(

n
∑

i=1

|xi − yi|
p

)
1

p

, (3.1)

where n is the number of dimensions, and xi and yi are the ith components of
patterns x and y respectively. Note that when p = 2 the formula reduces to the
Euclidean distance, which is the value of p used in the current work. We tried
with some other values of p and have obtained equivalent results, therefore we
will use only the Euclidean distance for the purpose of this work.

The idea behind our proposal is to use a community detection algorithm based
on modularity. As we have explained before, modularity is a quality function
that evaluates the partitions against a null case (the randomized version of the
original network). Modularity, a a global function, measures the tendency of a
node to form part of a community compared to the forces that could attract the
same node to other communities. A way to favor this tendency is to weight the
forces in terms of attraction and repulsion, i.e. using signed weights. To facilitate
the process of clustering, we want to turn the values of the links into positive and
negative values. To do so, we calculate the average of the distances d̄, and then
the similarity between two nodes is defined as:

similarity(x, y) = d̄− dist(x, y) (3.2)

This matrix of positive and negative values is our similarity matrix. It can be
easily represented as a fully connected network, where each node is a pattern
and the link between them has a signed value (weight) corresponding to the
similarity. With this setup, the AFG multi-scale community detection algorithm
can be applied straightforward.

3.2.3 The clustering algorithm

We have used the AFG multi resolution method to find the communities of our
network, and identify these communities as the natural clusters on the original
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Figure 3.4: Results of the community detection of the Iris dataset.
Plot of the number of communities of each partition as a function of
the resolution parameter r.

data. The results of the algorithm are presented in Fig. 3.4, and a discussion
about its interpretation follows.

Fig. 3.4 is a plot of the partitions obtained (the number of communities) as a
function of r, the resistance parameter that tunes the resolution at which the
optimization of modularity is performed in the AFG method. The length of the
plateaus is giving us an idea of the relevance of each partition obtained. From
the plot we can see that the more relevant partition is the one that divides the
dataset into two groups, which we know that corresponds to the exact division
of 50 patterns of setosa in one community and the rest in another one. The fact
that this setup is the most persistant makes total sense as the division of the
data into two linearly separable groups is driving the community detection as
expected. However, the second most resistant partition corresponds to a division
of the dataset into three communities. One of them contains exactly 50 patterns
of setosa, and the other two contain virginica and versicolor respectively with
some misclassified nodes between them. In this setup, if we compare to the
biological classification of the flowers, which is three groups of 50 each, we find
that the success ratio is exactly 94.6%. In the plot we can also see that if we set
r = 0, that is, if we used the original modularity formulation, the result obtained
would be a single partition that divides the flowers into the two linearly separable
groups, and we would not have more information about further possible divisions
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of the dataset.

3.2.4 Comparison with other methods

The main objective of the previous sections was to present the methodology to
map a problem of unsupervised data clustering into a problem of community de-
tection in complex networks. The performance of the method is reasonably good
for the Iris data set classification problem. Although our intention during the
development of the current work was not to make a large set of experiments in
different data sets, we thought relevant to compare the performance of other al-
gorithms on the same data set to assess the possibilities of the method presented.

To this end we have made an intense research in the literature for different ap-
proaches to solve the same problem on the same data set. We have noted that
many of the algorithms we find in the artificial intelligence literature use super-
vised learning to confront the problem. The comparison of results is not possible
in the cases that use part of the data for training an intelligent system. Only in
a few cases we find unsupervised algorithms to solve the classification of the Iris
dataset. We have selected four different algorithms to compare with ours: RB
multi resolution method [39], Hierarchical clustering (HC) with complete linkage
multidendrogram [15], the k-means algorithm [30] and the proposal by Ng et al.
[36].

First we will make the comparison with those algorithms that fix the number of
clusters to three groups: k-means and Ng et al. The k-means algorithm simply
assumes k spherical clusters in the multi-dimensional data space and looks for
their centers using Expectation-Maximization (EM) methods. Although it is
unsupervised it needs to be provided with the number of clusters we want to
obtain (3 in the case of the Iris dataset). Similarly, in Ng et al. the authors
use a k-means to classify the data in spectral form, considering a number of
k-eigenvectors, for a specific distance matrix called the ”affinity matrix” Aij =
exp(−‖xi−xj‖2/2σ2), being xi the data points. This particularity is considerably
less flexible that having the number of clusters undetermined and finding solutions
at the multiscale as our algorithm does.

As a second test, we compare our proposal with other two alternatives that in
principle can be adapted to the analysis the whole mesoscale, namely the RB
and the HC methods. In the RB formulation of mesoscales, a parameter γ is
introduced in front of the null-case term to weight its relative importance against
the real network, i.e.

BRB
ij (γ) = wij − γ

(

w+
i w

+
j

2w+
−

w−
i w

−
j

2w−

)

. (3.3)
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Method Errors

k-means 16

Ng et al 14

AFG 8

Table 3.1: Number of missclassified elements using unsupervised
methods on the Iris dataset.

It is also possible to have different parameters for the positive and negative
null-case terms as in [43], however this leads to a bidimensional analysis of the
mesoscales, which is almost unaffordable for most real networks. Thus, we will
focus on the single-parameter RB modularity matrix, see Eq. (3.3).

For the HC method, we constructed the hierarchical clustering using complete
linkage, where the distance between groups is defined as the distance between
the most distant pair of individuals, one from each group. In other words, the
distance between two clusters is given by the value of the longest link between
the clusters. At each stage of hierarchical clustering, the clusters at minimum
distance are merged. Moreover, instead of using the standard pair-group hier-
archical clustering approach, we take advantage of a recent development by [15]
that allows to solve the non-uniqueness problem when there are tied distances
during the agglomeration process. The result, known as a multidendrogram, is
presented in Fig. 3.5a. We plot the tag number of each specimen of Iris at the
leaves of the tree. The analysis of the multidendrogram can be performed as
follows: starting from the root of the tree, we can compute the distances between
different partitions of the data and analyze each of them separately.

The comparison between the three multi resolution methods AFG, RB and HC
can be done by computing the multiple scales of the topology in terms of com-
munity structure, screening the values of r in the AFG method, the values of γ
in the RB method, and the ultrametric distances in the dendrogram, see Fig. 3.5.

Note that, without negative weights, the macroscale is recovered at γmin = 0,
and the microscale at the γmax which makes all modularity terms negative. The
existence of γmax is guaranteed by the fact that all null-case terms are positive.
However, the addition of negative weights makes it possible to have both positive
and negative null-case terms, which does not allow to ensure the recovery of
macro and microscale. Therefore, RB signed modularity may not cover the whole
mesoscale. This is experimentally confirmed in Fig. 3.6 for the Iris data set, where
a larger interval of the γ parameter has been analyzed. While Fig. 3.5c only shows
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Figure 3.5: Mesoscales of the Iris data set, showing the number
of clusters as a function of the resolution parameter, for the three
multi resolution schemes: a) HC complete linkage multidendrogram;
b) AFG mesoscales; c) RB mesoscales; d) HC mesoscales from the
previous multidendrogram.
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Figure 3.6: Expanded Iris data set RB mesoscales analysis.

the useful part of the mesoscales range, where the number of clusters goes from 2
to 73 (γ ∈ [0.0, 4.2]), in Fig. 3.6 we show the inability of RB to find the macroscale
(microscale) for lower (larger) values of γ.



Chapter 4

Overcoming the Resolution Limit
of Multiresolution AFG Method

Some recent findings point out that the problem of resolution limit in modularity
has some other implications besides the problems previously explained. In this
chapter we will show the magnitude of this problematic and we will introduce
a new algorithm, which is a variation of the AFG method, whose purpose is to
overcome the resolution limit or at least, palliate its effects as much as possible.

4.1 Multiresolution community detection and the

problem of the resolution limit

In addition to the problem stated in section 2.4, which pointed out the problem
of merging clusters when optimizing modularity, Lancichinetti & Fortunato have
recently found another drawback of modularity. It seems that the well known res-
olution limit is not only affecting the merging of small well defined communities,
but it also presents a problem which is the splitting of large communities [29].
They claim that multiresolution modularity suffers from two opposite coexisting
problems: the tendency to merge small subgraphs, which happens when the res-
olution is low; and the tendency to split large clusters, which dominates when
the resolution is high. The authors claim that in benchmarks with heterogeneous
distributions of cluster sizes, the simultaneous elimination of both biases is not
possible and multiresolution modularity is not capable to recover the community
structure. Fig 4.1 is a synthetic representation of a network formed by a random
subgraph and two cliques, each joint to each other by a single link, where two
different cluster sizes coexist. Indeed, multiresolution modularity optimization
algorithms are suitable for discerning the internal structure of a network with
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Figure 4.1: Schematic network with two cliques and a random sub-
graph, which are the natural communities of the network.

different scales of resolution, but it fails to find them at the same time. Say
that we are using the AFG algorithm to detect communities on a network of this
type. If the resistance parameter is set to a value such as to correctly identify
the two cliques in different communities, then the random subgraph will also be
divided into different communities, which does not coincide with the natural di-
vision of the network. Again, if the resistance is such that we identify the random
subgraph as a single community, then the two cliques are merged into a single
community.

There is a big difference between the original explanation of the resolution limit
stated in section 2.4 and the one stated here, and therefore the way to solve
them is also different. In the first case all nodes of the network shared the same
structure. There was more than one solution to the clustering problem, as differ-
ent levels of resolution coexisted in the same network, but all nodes participated
in the same community structure. For this reason, the resolution limit could
be diminished by screening the network at different resolution levels in order to
unveil the whole structure. But in this new aspect of the resolution limit, the
problem is slightly different: not all nodes have the same community structure.
Instead, they form very different communities, in terms of configuration and size.
Therefore, a single community detection analysis is not enough to discover the
community structure, even if this analysis consists in screening different levels
of resolution. The explanation is straightforward. Imagine we have a network
consisting of two groups of densely connected nodes, very different in terms of
size. As the communities sizes are very different, it is likely that they belong to
different levels of resolution. As we are observing the whole network when per-
forming the community analysis, when the resolution is the right one to observe
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the small community, this resolution is not adequate for the observation of the big
community, and viceversa. The solution would then be to analyze the network
in different parts, each one with its own resolution parameter, in a hierarchical
way, which is the solution presented in the following section.

4.2 Hierarchical AFG solution to the resolution

limit

As stated before, this section presents the refinement of the AFG algorithm that
makes it suitable to use even in situations where the problem of the resolution
limit arises. This algorithm provides insight of the community structure present
in a network when different levels of resolution coexist. The new approach to solve
the resolution problem takes advantage of the capability of the AFG method to
find meaningful communities from the initial steps of the mesoscale analysis.
More precisely, we propose the use of an iterative scheme which combines the op-
timization of modularity close to the macroscale of the network with its splitting
in subgraphs, one for each of the previously found communities.

Supposing that our network is undirected, weighted, with positive weights and
no self-loops, the prescription of our algorithm is the following:

• Start out from the macroscale partition M, which has only one community
containing all nodes. Then, find the upper bound of this macroscale, which
is the minimum value of the resistance parameter (rmin) needed to find
a partition C of the network with optimal modularity QAFG[wij , C, rmin]
formed by more than one community.

• Split the network in the subgraphs defined by the partition C just found.

• Repeat the previous steps with each subgraph until no further subdivisions
are needed.

To illustrate this process, let us take the synthetic benchmark in Fig. 4.1 as an
example. Starting out from the partition containing all nodes, we have to find the
value of r that gives us an optimal partition in terms of modularity. This parti-
tion is expected to divide the network in two communities: the random subgraph
and the two cliques together. Then, we separate the two communities in different
subgraphs (that is, cutting the links between those communities) and perform
the same analysis for each subgraph. When dividing the random subgraph, one
would expect to find a non-informative partition, and the same happens with the
further divisions of the new communities. However, when dividing the commu-
nity containing the two cliques, what should happen is that the partition found
consists in two communities of a clique each. Then the question is the following:
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how to distinguish between those divisions in the network that are relevant from
the ones that are not? The criterion will be the same as in the original AFG
method, which is that partitions that remain unchanged for a longer period of
the resistance parameter should be the most relevant ones. With the hierarchical
AFG the algorithm defines a hierarchical organization of the nodes, where the
values of rmin at each splitting define the ultrametric distances between nodes,
i.e. the heights in the dendrogram at which every pair of nodes first meet.

4.2.1 Fast-Tracking Resistance algorithm

The hierarchical algorithm presented includes a method designed to find the exact
value of r at which each subgraph splits for the first time. In fact, the calculations
for rmin and the partition with optimal modularity with more than one community
(C) are performed at the same time, therefore avoiding the costly scanning of the
whole mesoscale between the lower and upper bounds of the resistance. This a
consequence of the following properties.

• The value of rmin is negative, with the only exception in which the network
is just a clique.

• QAFG[wij,M, r] = 0, ∀r < 0, because:

QAFG[wij ,M, r] =
1

2w +N |r|

∑

i

∑

j

[

wij + rδij −

(

wiwj

2w
−

r2

N |r|

)]

=
1

2w +N |r|

[

2w +Nr −

(

(2w)2

2w
+

N2r2

Nr

)]

= 0 .(4.1)

In fact, modularity Eq. 2.19 is always zero for M, no matter the network
or the value of the self-loops.

• Since QAFG[wij,M, r] = 0 and modularity is a continuous and monotoni-
cally increasing function of the resistance for any given C (= M, the optimal
partition C at rmin must satisfy QAFG[wij, C, rmin] = 0.

• For any given partition C, the minimum meaningful value of the resistance
rmin(C) is the one for which QAFG[wij, C, rmin(C)] = 0. Thus, Eq. (4.1)
leads to

rmin(C) =
−2w

N −
1

N

∑

s∈C

n2
s

Q[wij, C] . (4.2)

• The upper bound of the macroscale is given by

rmin = min
C

{rmin(C)} (4.3)
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and C is the partition which minimizes rmin(C).

All these properties may be combined in the following fast-tracking resistance
(FTR) algorithm to find the upper bound of the macroscale:

1. Optimize modularity at r = 0, to obtain partition Cprev.

2. Calculate rmin(Cprev) using Eq. (4.2).

3. Optimize modularity at r := rmin(Cprev), to obtain the current partition
Ccurr.

4. If Ccurr = Cprev or Ccurr = M, then rmin := rmin(Cprev) and C := Cprev.

5. Otherwise, let Cprev := Ccurr and go back to the second step.

In practice, this algorithm converges in a few number of steps. It stops when a
value of r is found such that the optimization of modularity does not produce
any new partition. In this case, the modularity of both Cprev and M is zero,
and no known partition can be used to obtain a better upper bound of the
macroscale. Of course, we cannot claim that we have found the “real” rmin,
since no optimization heuristic can ensure the finding of the global maximum of
modularity (this problem is known to be a NP-hard problem, see [10]), but this
is the best approximation one may obtain.

4.2.2 Application and performance of the Hierarchical AFG

In this section we will apply the Hierarchical AFG algorithm to a benchmark
presented by Fortunato & Lancichinetti [29] specially designed to show that mul-
tiresolution algorithms fail to overcome the resolution limit. Our intention is to
show that the hierarchical version of the AFG algorithm is capable to find the
natural configuration of communities and that this solution is also the most per-
sistent throughout the screening of the mesoscale. The benchmark used consists
in a network formed by three natural communities: the first one is an Erds-Renyi
(ER) network formed by 400 nodes, and the others are two cliques of 13 nodes
each, all three connected between them by a single link. A representation of the
network is shown in Fig. 4.2. Although the difference of resolutions can be seen
from this representation at bare eye, there exists a mechanism to determine if a
network will present resolution problems or not. The way to do so is to plot a link
density map and detect if there are sharp contrasts. It is expected that if very
different topological scales coexist, there will also be jumps in the clustering coef-
ficient. In Fig. 4.3 the clustering coefficient of each node is represented. Is it easy
to see that nodes labeled from 1 to 400, which belong to the ER subgraph, have
a low clustering coefficient, while those labeled from 400 to 426, which belong to
the cliques, have a drastically higher clustering.
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Figure 4.2: Benchmark proposed by [29] to test the resolution limit
of multiresolution methods. The large component is a ER network
of 400 nodes with k = 100 linked to two cliques of 13 nodes each,
sharing only one link between them. The goal is to separate the
three subgraphs using a community detection algorithm aimed to
detect multiple resolutions.
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Figure 4.3: Clustering coefficient for the benchmark of Fig.4.2. Note
the sharp transition in the relative local density of links represented
by the clustering coefficient. This is indeed a hint to the coexistence
of very different topological scales in the network.

The benchmark presented is indeed difficult to partition into the intuitive com-
munities, even with multiresolution algorithms, as the author pointed out. The
original AFG method failed to unveil the natural structure of the network due to
the problem of analyzing all the network as a whole. However, next we show that
with the hierarchical version this can be done with great success. If we calculate
the upper bound of the macroscale with the Fast-Tracking Resistance algorithm,
the value is rmin = −12.50. For this value of the resistance, the partition obtained
is formed by two communities formed by 400 and 26 nodes respectively, which
correspond to the ER subgraph and the two cliques. Now, the algorithm separates
those two communities cutting the links between them, and now each one forms
a network by itself. Starting out from the network of 26 nodes, the value of rmin

is −11.69, and the configuration obtained is a partition with two communities of
13 nodes each. If we now perform the same procedure for each clique, we will see
that the partition containing all nodes together in the same community remains
the best option in terms of modularity for the whole screening of r, and therefore
these communities remain unchanged. As for the network formed by 400 nodes,
the next value of rmin is −8.97, which gives us the intuitively non-informative
partition that divides the network into two communities of 182 and 218 nodes.
Following the analysis, these networks are further divided into new communities,
until all nodes are isolated. The results obtained during this process can be more
clearly visualized when represented in a dendrogram form, as shown in Fig. 4.4,
in which the values of r at which every community is split are represented as the
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heights of the vertical lines. From this representation, is it easy to see that there
exists a configuration of nodes that remain unchanged for more values of r than
the rest. This happens when the network formed by 400 nodes is still not divided
but the network formed by 26 nodes has already split into two groups, which is
represented in the figure with a grey rectangle. A period of r longer than this one
is not found during the rest of the dendrogram. With the automatic detection of
this area, which is also included in the algorithm, the outcome of the algorithm
would be the proper partitioning of the original network in the three natural
communities that we were expecting to find, an encouraging result that reveals
the Hierarchical AFG algorithm as capable to overcome the resolution limit of
modularity in complex networks.
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Figure 4.4: Dendrogram resulting from the application of the hier-
archical multiresolution method on the benchmark of Fig. 4.2. The
grey region shows the range of the resistance parameter in which the
three communities searched coexist. Note that the vertical lines are
not scaled.
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Chapter 5

Conclusions and Future Work

In this document we have presented the work done for the master thesis, along
with the theoretical foundations of the field of research in which the work is
enclosed, complex networks. The original work developed along the thesis can
be divided in three main contributions: i) Theoretical analysis to evolve the
AFG method for weighted signed and directed networks, that can be found in
Section 2.5.3; ii) Conceptual and practical mapping of data clustering problem
into a community detection problem in networks; that corresponds to the whole
Chapter 3; and finally, iii) Design of a new algorithmic scheme to overcome the
resolution limit when using the AFG method, that corresponds to the whole
Chapter 4.

The first contribution is relevant in complex networks because it will allow the
mesoscopic analysis of networks in the most general case of weighted, signed, and
directed adjacency matrices. With this approach we have been able to boost the
computational capabilities of the AFG method, which is becoming a standard in
the field and is on the scope of the new applications to time-varying networks.

The second contribution presented is the adaption of network analysis to a very
important artificial intelligence problem: the data clustering problem. It has
been shown that the mapping of a dataset to a complex network is possible and
interesting as a new technique. For the case of the Iris dataset we have shown
that the results obtained are competitive with other data clustering algorithms
confronting the same problem.

The last work presented is not as focused to the applications of community de-
tection methods, instead its purpose is to improve the AFG method in order to
make it more resilient to the effects of the resolution limit, a major concern in the
optimization of modularity, and we have shown its success in a synthetic network
specially designed to prove the existence of the resolution limit.
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Although the work presented is wide, there are still a lot of lines of research
to be explored. The major goal from now on is to adapt the AFG and the
Hierarchical AFG methods to the new challenges in complex networks, mainly
time varying networks -networks where the nodes change their connections in
time- and multilayer networks -networks where the links have different meanings
depending on the categorical layer at which they belong-, as well as to design
new algorithms to make community detection more efficient and reliable.
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