
Universitat Politècnica de Catalunya

Master in Artificial Intelligence

Master Thesis

Moving objects and removing obstacles with two
robotic hands

Carlos Arturo Rodŕıguez Pacheco

Advisor: Raúl Suárez Feijóo

September 2012

Contents

Abstract 7

Acknowledgment 9

1 Introduction 11

1.1 Motivation . 11

1.2 Objectives and scope . 11

1.3 Related works . 12

1.4 Document structure . 14

2 Basic background 15

2.1 Deterministic methods . 15

2.1.1 Visibility graphs . 15

2.1.2 Potential field . 16

2.2 Random and Probabilistic methods . 17

2.2.1 Randomized path planner RPP . 17

2.2.2 Rapidly exploring random tree RRT 18

2.2.3 Probabilistic road map PRM . 19

3 Proposed Approach 23

3.1 Formal description of the approach . 24

3.1.1 Algorithm solvedProblem . 25

1

Moving objects and removing obstacles with two robotic hands 2

3.1.2 Algorithm findPath . 26

3.1.3 Algorithm testGrasps . 26

3.1.4 Algorithm PRMwO . 28

3.1.5 Algorithm obstaclesRecognition . 30

4 Implementation 33

4.1 Hardware tools . 33

4.1.1 Stäubli TX90 Indutrial Robot . 33

4.1.2 Schunk Dexterous Hand SDH2 . 34

4.1.3 Schunk Anthropomorphic Hand SAH 36

4.1.4 Sony Camera FCB-IX45CP . 37

4.2 Software tools . 38

4.2.1 Robot Operating System ROS . 38

4.2.2 The Kautham Project . 39

4.2.3 Kautham ROS . 39

5 Experimental Results 45

5.1 General Considerations . 45

5.2 Experiments . 47

5.2.1 Experiment 1 . 47

5.2.2 Experiment 2 . 49

5.2.3 Experiment 3 . 50

6 Conclusions and Future works 55

6.1 Conclusions . 55

6.2 Future works . 56

Bibliography 57

List of Tables

4.1 D-H parameters for the robot Stäubli TX90. 34

4.2 Joint range of values in degrees for the Stäubli TX90 robot. 35

4.3 Value range in degrees of joint fingers SDH2. 35

4.4 Value range in degrees of joint fingers SAH. 37

5.1 Running information for the experiment 1. 48

5.2 Running information for the experiment 2. 50

5.3 Running information for the experiment 3. 53

3

List of Figures

2.1 Visibility graph. 16

2.2 Potential fields. 17

2.3 Randomized path planner RPP. 18

2.4 Rapidly exploring random tree RRT. 19

2.5 Probabilistic road map PRM. 20

3.1 General procedure. 24

3.2 Example of a precedence tree PT . 26

3.3 solvedProblem Algorithm diagram. 28

3.4 findPath Algorithm diagram. 30

3.5 PRMwO Algorithm diagram. 32

4.1 Robot Stäubli TX90. 34

4.2 Virtual model of the robot Stäubli TX90. 35

4.3 CS8 controller. 36

4.4 Schunk Dexterous Hand SDH2. 37

4.5 Virtual model of the Schunk Dexterous Hand SDH2. 38

4.6 Schunk Anthropomorphic Hand SAH. 39

4.7 Virtual model of the Schunk Anthropomorphic Hand SAH. 40

4.8 Sony Camera FCB-IX45CP. 40

4.9 Kautham ROS graphic interface. 43

5

Moving objects and removing obstacles with two robotic hands 6

5.1 Four different positions of the hand SAH for grasping a can. 46

5.2 Four different positions of the hand SDH2 for grasping a can. 46

5.3 Work-cell model for the experiment 1. 47

5.4 Precedence tree PT for the experiment 1. 48

5.5 Configuration RM colliding. 48

5.6 Snapshots of the solution paths for the experiment 1. 49

5.7 Work-cell model for the experiment 2. 50

5.8 Precedence tree PT for the experiment 2. 50

5.9 Collision in example 1. 51

5.10 Snapshots of the solution paths for the experiment 2. 51

5.11 Work-cell model for the experiment 3. 52

5.12 Precedence tree PT for the experiment 3. 52

5.13 Snapshots of the collision for the experiment 3. 53

5.14 Snapshots of the solution paths for the experiment 3. 54

Abstract

This work deals with the problem of planning the movements of a two-hand system in
order to grasp an object with one hand and using the other to remove potential obstacles.
The approach is based on a Probabilistic Road Map that does not rule out samples with
collisions with removable objects but instead classifies them according to the collided
obstacle(s), and allows the search of free paths with the indication of which objects must
be removed from the work-space to make the path be valid. The approach has been
implemented and some examples are presented in this work.

7

Acknowledgment

To God, and the Virgin Mary for guiding me and fill me with
blessings in this way.

To my family for their love, unconditional support, being a life
model to follow, and also for giving me all the necessary tools to
advance.

To my Tutor, Dr.Raúl Suárez for his dedication, ideas and support
during the development of this project.

To all my friends and fellows of the IOC and master that in one
way or another have given me their help and time.

Thanks to all!

.

9

Chapter 1

Introduction

In this chapter it is presented the introduction of the work; divided into the motivation
that describes a general vision of the problem, the scene where the experimentation of
the proposed solution was made, and the objectives and scope of the work. Finally the
document structure is described.

1.1 Motivation

The majority of robotized tasks, require adequate grasping and manipulation of objects
whether in industrial or service robotics. This fact, together with advances in design,
construction and control of electromechanical systems, has led to the development of
sophisticated and versatile grasping elements. Frequently, it is necessary to hold and
manipulate an object in an optimal fashion for a given purpose; this may involve solving a
number of associated problems, such as determining adequate contact points on the object,
appropriate hand configurations, correct grasping forces, and collision-free trajectories for
hands and robots, among other related problems, which are always characterized by a
high computational complexity.

1.2 Objectives and scope

The principal objective of this work is to develop a Probabilistic Road Map (PRM)
that do not rule out samples with collisions with removable objects of the workspace but
instead classify them according to the colliding obstacles, and allows the search of free
paths, with the indication of which objects must be removed from the workspace to make
the path valid.

Pattern recognition methods are used to recognize the obstacles in the scene to obtain
the movable obstacles position.

11

Moving objects and removing obstacles with two robotic hands 12

Since robotic hands may be different the position of movable gripping objects in the
scene should be given for each robotic hand separately. This will identify a set of grasp
positions, that must then be evaluated to verify if they are achievable by the robots.

The tasks to be executed by each robot must be defined, thus a robot will be defined
as the master which is in charge to grasp the goal object, while the other robot will be
the assistant in charge of removing the movable obstacles of the scene.

The planification of the robots task must be done off-line, and the executions of the
tasks of each robot must be performed sequentially following a task graph, ensuring that
there are no collisions between the robots when executing their respective tasks.

The scope of this work is framed in the development of a valid path planner for
the robots, that can detect collisions with moving obstacles to be removed from the
scene. Simulation tests have been carried out in a virtual environment to verify the
correct performance of the implemented algorithms, thus ensuring that each robot fulfill
its objective.

1.3 Related works

The planification problem of movement of a two-hand robotic system can be treated as
the decomposition of two or more interacting robots in a workspace. This type of problem
has been addressed and studied extensively in the field of robotics, the most relevant
methods are centralized planning and decoupled planning [1]. Centralized planning
has been underutilized due to the need to search in a configuration space with a high
dimension. On the other hand decoupled planning uses ”divide and conquer” philosophy
by splitting the planification problem into smaller pieces, meaning if it is a two-arm
robotic system it is made a plan for each arm as an unit, this facilitates the resolution of
the problem, note that the decoupled planning is an incomplete method [2].

In the study of robotics for nearly three decades there has been great interest in
the development of path planning algorithms that allow a robot to move from an
initial position to a final position. These algorithms have been tested and improved
over extensive research in recent years, currently there are various approaches for path
planning of a robot, sampling-based planning, potential field techniques and combinatorial
methods.

Sampling-based planners avoid explicit construction of the configuration space of
the robots, sampling different configurations to generate curves representing collision
free space [3]. Potential Fields Techniques construct features that attract the robot
towards the final configuration and take it away from static obstacles present in the
scene, combining strength vector fields [4]. Combinatorial methods build road maps in
the configuration space using techniques such as cell decomposition [5]. In chapter two
it is made a more detailed explination of the main path planning methods. Planners
run a series of processes for obtaining valid paths achievable for the robot; it is worth

Moving objects and removing obstacles with two robotic hands 13

noting the collision checking process in which each generated sample in the configuration
space should be checked to verify that it is free of collisions and that in turn is a sample
achievable by the robot, in this sense there have been developed different approaches for
the avoidance of collisions, one of the most popular methods used by planners as classic
PRM [3], Lazy PRM [6] and variants as RRT planners [7] this collision checking method
checks if the generated sample is in collision with an obstacle in the configuration space
and be certain the sample is discarded for planning. Moreover RU-PRM planner [8] raises
scenarios where there exist similar obstacles known, from this premise it is generated a
collision-free path that runs along the border of the obstacle and then tries to connect the
free paths generated around each obstacle to its nearest neighbor thus yields a solution
path that skirts the obstacles in the scene. Planners mentioned above are based on the use
of methods for obstacle avoidance, then it can be said that all the work scenario obstacles
remain fixed for an infinite time. Recent work in mobile robotics have considered changes
in the working environment of the robots, trying to emulate realistic scenarios where there
may be both fixed and movable objects that act as obstacles for the time of path planning.

Immovable obstacles should be treated the same way as it is planted by the approaches
mentioned above, meanwhile moving obstacles can be treated differently because they can
be removed or pushed (involving changes in the work environment) so that if there are
roads with movable obstacles these paths can be ”cleaned” for obtaining valid paths
without collision with obstacles in the environment.

Among the most important work made that allows planning with movable obstacles [9]
was the precursor and has shown that motion planning among movable obstacles is NP-
hard. Then in 1991 [10] created a grid based planner that heuristically tries to minimize
the cost to move obstacles out of the way. To reduce the cost, they only consider a very
limited number of different states. With their planner they are able to solve some simple
but realistic problems.

Another planner is the one developed by [11], their global approach uses the fact that
the free space of the entity consists of multiple connected components. If start and goal
are not in the same connected component then the entity uses manipulation to move
obstacles to try to join connected components. To detect if a manipulation action has
succeeded, a grid based approach is used. To manipulate an obstacle, contact points are
sampled and a set of primitive actions is applied to those points. The candidate obstacles
for manipulation are found by using an A* search on a grid from the current position of
the entity to the goal.

Works such as [11, 12, 13, 14, 15] in mobile robotics and humanoid robots in unknown
environments clear the way solution pushing the movable obstacles out of the found path,
thus they can advance to the final position, they use optical tracking models, active sensors
and of color range for real-time reconstruction of the scene, it is important to note the
high computational cost of the recognition and reconstruction of the scene to which we
must add also the cost related to the planner on calculating trajectories.

Another important aspect to consider is the planning of roads for the grasping
of objects. This has been a subject studied in the field of robotics, particularly by

Moving objects and removing obstacles with two robotic hands 14

stakeholders in grasping tasks (Grasp planning). There are two types of grasps [16]:
power grasps, in which the hand closes wrapping around the object, ignoring the points
that end up making contact with the fingers; and precision grasps (Accurately grasps)
where it is necessary to know the points of the object on which to place the fingers. There
is a large number of works that aim to find points on the surface of an object to perform a
precision grasp, which is the one that allows manipulation tasks (both 2D objects [17, 18],
and for 3D objects [19, 20, 21]). Once these points are recognized have to be evaluated if
are achievable by the robot (including the hand) and then pass to the motion planning,
particularly in motion planning for the tasks of collecting and depositing objects; there
are works that propose a solution to this problem exploring concepts such as re-grasping
of objects [22, 23] and pick and place planning.

1.4 Document structure

The document is distributed as follows, capter 2 present a basic background about the
related theory about planning. The proposed approach is described in capter 3 through the
created algorithms to generate the scene model based on shape recognition, the method for
choosing the best grasp for each robotic hand type, and then is explained the method and
algorithms to find path for a robot from the initial position to a given goal, in that case
it is made for two different strategies. In capter 4 is shown the used tools (hardware and
software) and the implementation, following the algorithms shown in the previus chapter,
then in chapter 5 is explained the experimental set-up of the scene for the experiments
executed and the results for each execution. Finally in chapter 6 the conclusion and future
works.

Chapter 2

Basic background

The robot motion planning problem has been studied in the last three decades, and
different approaches have been developed generating great interest in the research field.

The problem of planning is to generate a path between two points in order to move a
robot from the initial and goal position, this path must be ensured to be free of collisions
with the environmental obstacles and with himself. There are several techniques for
path planning considering the most relevant techniques it can be made the following
classification:

2.1 Deterministic methods

These methods consist of building a graph that connects the origin with the destination
and then find the most appropriated paths considering some performance index which is
usually the shortest distance.

2.1.1 Visibility graphs

Proposed by [24], consists of a geometric approach to construct the two-dimensional
graph assuming an environment where the obstacles can be represented by polygons. The
graph is determined by applying the concept of visibility which consist in determine if two
points on the space can be joined by a line segment that does not present interference with
any obstacle. It generates a graph of connectivity between visible vertexes and chooses
the best path. It has the disadvantage of generating paths which are very close to the
obstacles [24].

Visibility graphs may be used to find Euclidean shortest paths among a set of polygonal
obstacles in the plane: the shortest path between two obstacles follows straight line
segments except at the vertices of the obstacles, where it may turn, so the Euclidean

15

Moving objects and removing obstacles with two robotic hands 16

shortest path is the shortest path in a visibility graph that has as its nodes the start
and destination points and the vertices of the obstacles [25].Therefore, the Euclidean
shortest path problem may be decomposed into two simpler subproblems: constructing
the visibility graph, and applying a shortest path algorithm such as Dijkstra’s algorithm
to the graph.

Figure 2.1: Visibility graph.

2.1.2 Potential field

The idea of a potential field is taken from nature. For instance a charged particle
navigating a magnetic field, or a small ball rolling in a hill. The idea is that depending
on the strength of the field, or the slope of the hill, the particle, or the ball can arrive to
the source of the field, the magnet, or the valley in this example.

In robotics, it can be simulated the same effect, by creating an artificial potential field
that will attract the robot to the goal. The potential field method is found to be most
popular technique in the generation of trajectories for mobile robots, and to be an elegant
way in solving this problem. In the early development it is fund the one presented by [26],
in which is proposed that the obstacles and the robot have the same electric charge sign in
order to generate a repulsion while the target has an associated electric charge of opposite
sign to attract the robot destination point. To generate the path with these potentials
only requires the calculation of gradients [4].

For instance, lets assume that there is no obstacle in the environment, and that the
robot should seek his goal. To do that in conventional planning, one should calculate the
relative position of the robot to the goal, and then apply the suitable forces that will drive
the robot to the goal. In potential field approach, it is created an attractive field going
inside the goal. The potential field is defined across the entire free space, and in each
time step, it is calculated the potential field at the robot position, and then calculate the
induced force by this field. The robot then should move according to this force. Figure 2.2
illustrates this concept.

It can also define another behavior, that allows the robot to avoid obstacles. It simply
make each obstacle generate a repulsive field around it. If the robot approaches the
obstacle, a repulsive force will act on it, pushing it away from the obstacle.

Moving objects and removing obstacles with two robotic hands 17

Figure 2.2: Potential fields.

The two behaviors, seeking and avoiding, can be combined by combining the two
potential fields, the robot then can follow the force induced by the new field to reach the
goal while avoiding the obstacle (see figure 2.2).

2.2 Random and Probabilistic methods

These methods are based on random movements to determine the solution path in the
configuration space, this consists in generate a random sequence of configurations that
the robot can follow to move from the initial to final configuration, taking into account
the criteria laid down by different planners.

2.2.1 Randomized path planner RPP

The Randomized Path Planner algorithm RPP was developed by [1, 27] in the
Computer Science Robotics Lab at Stanford to solve path planning problems in high
dimensional configuration space.

The planner is probabilistically resolution complete, namely, if the running time is
not limited, the probability of finding a path approaches 1. However, in practice, it is
not wanted the planner to run indefinitely, and the planner is terminated after certain
prescribed time bound. Experiments with various kinds of robots have been conducted,
and the results show that, in most cases, this planner is very efficient in finding a path, if
there exists one, in high dimensional configuration space. This algorithm uses Brownian
motion to get out of local minims.

Moving objects and removing obstacles with two robotic hands 18

Figure 2.3: Randomized path planner RPP.

Algorithm 1 RRT(Ci,Cg)

Require: : Initial and Goal configurations Ci and Cg, maximum number of vertices K.
Ensure: : Solution graph G
1 Add Ci as initial position in G
2 for Vertex k=1 to the maximum number of vertices K do
3 Crand ← Generate a RandomConfiguration()
4 Cvertex ← Find the NearestVertex(Crand,G)
5 Cnew ← NewConfiguration()
6 Add Cnew as vertex of G
7 Add Cvertex and Cnew as edge of G
8 end for
9 return G

2.2.2 Rapidly exploring random tree RRT

An alternative in generating random paths are the Rapidly Exploring Random Tree
RRT, this method was proposed by [7] in 1998. This method creates trees that spread
at random to have a connection from the point of departure to the goal [28, 29]. A RRT
is a data structure and algorithm that is designed for efficiently searching nonconvex
high-dimensional spaces.

RRTs are constructed incrementally in a way that quickly reduces the expected
distance of a randomly-chosen point to the tree. RRTs are particularly suited for
path planning problems that involve obstacles and differential constraints (nonholonomic
or kinodynamic). RRTs can be considered as a technique for generating open-loop
trajectories for nonlinear systems with state constraints. An RRT can be intuitively
considered as a Monte-Carlo way of biasing search into largest Voronoi regions. Some
variations can be considered as stochastic fractals. Usually, an RRT alone is insufficient
to solve a planning problem. Thus, it can be considered as a component that can be
incorporated into the development of a variety of different planning algorithms. The
basic idea to build a RTT it is described in Algorithm 1

Moving objects and removing obstacles with two robotic hands 19

Figure 2.4: Rapidly exploring random tree RRT.

2.2.3 Probabilistic road map PRM

This method was proposed separately by [30, 3]. The probabilistic road map PRM
seek to create a map randomly generated collision-free which fast connects initial position
to the goal. In [31] it can be seen the implementation of the PRM algorithm applied to
robot manipulators.

The PRM basically are divided in two phases: preprocessing and query process, this
phases are describe as follow bellow

The preprocessing is computationally expensive, in this phase is generated a graph
called road map complex which is enough to solve any problem of motion. The cost to
adding a new node to the road map is expensive due that for each node is necessary
to make collision detection in the configuration space and run a local planner to proof
does that not exists collision between the two nodes that are to connect. The nodes are
randomly generated, the idea was innovative and interesting as well it is getting away
from the local minims, and this is an important advantage.

In the query phase the graph is used after generating the full road map, including in
the graph the initial and goal state, this ensures that exist at least one path that connect
the initial and goal samples. In order to find the optimal path for a given problem is often
used search algorithms like Dijkstra or A*, these algorithms ensure the shortest path for a
given graph. A different variant of PRM has been appeared in the last decade in order to
get a better performance of this method some of this PRM variants are describe bellow.

Obstacle-based PRM (OBPRM): This method is aimed to explore the configuration
space sites where there are obstacles and no over on free zones. The edges of the free
space, which are the same obstacles, are given by configuration free. After obtaining
the edges of the obstacles, you can perform a random or deterministic sampling to

Moving objects and removing obstacles with two robotic hands 20

Algorithm 2 PRM(Ci,Cg)

Require: : Initial and Goal configurations Ci and Cg

Ensure: : Solution path P
1 Add Ci and Cg to the graph G
2 while Exist samples S do
3 if Si is collision free then
4 Add Si a new vertex on the graph G
5 for Each neighborhood Q of Si on the graph G do
6 if Si is different to Q then
7 Connect Si and Q
8 end if
9 end for

10 if Ci and Cg connected then
11 Find the shortest path
12 return P
13 end if
14 end if
15 end while

Figure 2.5: Probabilistic road map PRM.

find a solution path skirting obstacles. This type of sampling routes makes that the
algorithm are obtained as short as possible [32].

Visibility-based PRM: This approach generates a reduced graph with a rejection point
method [33]. This type of algorithms base their effectiveness rejecting sample points
that are not considered useful. In this case, only selecting those who will fall into
the follow criteria:

Guards: A node belongs to this group when you try to include in the graph only
sees him.

Connectors: Those able to connect two different guards belonging to unrelated
groups of the graph.

In case of attempts to introduce a node that does not belong to either of the two
groups is rejected immediately. Figure shows the graph generated.

Moving objects and removing obstacles with two robotic hands 21

Reachability-based PRM: The idea of this approach is to make a small road map but
a large amplitude. It uses the technique of retraction to the median axis, that is, any
point that wants to be included in the graph must belong to the median axis. On
the other hand introduces interesting notions of nodes and useful paths. Basically,
a path is useful if the relationship between length and distance joins or two nodes
crossing the graph is greater than some constant k [34].

Lazy PRM: This approach is based on simple queries as opposed to the classic PRM
that is multi-queries. The pre-processing phase is performed similar to the PRM
procedure but with a difference which is that in this case is not performed collision
checking over the samples, this substantially accelerates this stage of the process [6].

In the query phase seek the shortest path, from the initial to the goal configuration
and also makes the collision detection of the found path; if there are collisions
it eliminates the stretches of the path that are in collision and try to connect with
neighbors to create a new path, if it does not exist more samples, these are generated
and the process is repeated until it is found a solution path without collisions.

Fuzzy PRM: The fuzzy PRM in which the paths are generated in the pre-processing is
not checked, they are assigned a probability to be free of collisions. In the query
phase, the less likely paths are checked until they have a fairly high probability to
be free of collision with the obstacles [35].

Chapter 3

Proposed Approach

Consider two robot arms and a scenario where there is an object of interest to be
grasped and some other removable objects, i.e. objects that can be removed from the
scene by the robots themselves. The removable objects may act as obstacles that do not
allow access to the object of interest. In this context the problem to be solved is: find a
path for one robot to grasp the desired object and a set of paths for the other robot to
remove (if necessary) all the obstacles.

Basically, the proposed approach is as follows. A PRM is used to find a path for the
robot in charge of grasping the object of interest (from now on referred to as the main
robot), but, as a difference with the typical use of PRM a sample of the robot configuration
that implies a collision of the robot with any removable object in the environment is not
neglected, instead it is considered for the PRM in an usual way but associating to it a list
with the collided obstacles. The same is done when a local planner checks the validity of
a local segment connecting two samples for the PRM construction, if there are collisions
with the removable objects these are just added to a list associated with the segment.
This approach is called as Probabilistic Road Map with Obstacles (PRMwO). Using the
PRMwO as a regular PRM it is possible to obtain a path for the main robot to grasp
the object of interest and at the same time an associate list of obstacles that must be
removed in order to make the path collision free (and therefore really valid) for the current
positions of the movable objects, figure 3.1 describe the general procedure.

Next step is the search of a path for the other robot (from now on referred to as
the assistant robot) to remove each of the obstacles for the main robot. This is done
using also a PRMwO for the assistant robot to grasp and remove each obstacle. Since
some other objects may act as new obstacles, the procedure is iteratively repeated until
a path without obstacles is found for each of the objects to be removed or a loop is
found (i.e one object is an obstacle to grasp another one and vice versa). In order to
increase the probability of finding feasible valid paths, it is considered that the objects
can be grasped with a set of different hand configurations, which are taken as different
goal points when the PRMwO is built. The grasping configurations can be obtained using
different procedures (see for instance [36]). In this work it is considered that the set of

23

Moving objects and removing obstacles with two robotic hands 24

Figure 3.1: General procedure.

possible grasping configurations of an object has been computed in advance and it is
provided with the model of the object.

Note that the collision check performed along the configurations of a robot path in
the environment must be done considering the arm and the hand when the robot is going
toward the object to be grasped, and considering the arm, the hand and also the grasped
object when it is removed from the scene. In practice, if the arm, the hand and the grasped
object are always considered while building the PRMwO, the robots can follow the same
path to go toward any object and to remove it from the scene after being grasped.

3.1 Formal description of the approach

This section formally presents the developed algorithms. The following basic
nomenclature is used:

R: A robot in the work-cell; it includes the hand.

Co: Initial configuration for R.

Cg: Goal (grasping) configuration for R.

Moving objects and removing obstacles with two robotic hands 25

path: Path of R from Co to Cg and return to Co.

SO: Set of obstacles (movable objects) for path.

O: Movable object in the environment; includes the object model, its configuration C in
the workspace and an associate set of configurations GO.

GO: Robot arm-hand configuration to grasp the object O referred to the object reference
system.

C: Robot arm-hand configuration to grasp the object O referred to the absolute world
reference system.

SC: Set of configurations C.

GPRM: Graph describing the PRM for the search of path.

Q: Vertex of GPRM.

Vs: Set of vertices of GPRM.

Es: Set of edges of GPRM.

S: Scene model; it includes the model of the environment, the models and initial
configurations of the robots and hands, and the models, positions and grasping
configurations of the movables objects (including the object that must be
manipulated).

PT : Obstacle precedence tree.

The subindices M and A will be used to indicate that the items R, Co, Cg, path
are associated to the “Main” or “Assistant” robot respectively (e.g. RM and RA, pathM

and pathA). The supraindice ∗ indicates the object to be grasped as the final goal, i.e.
O∗.

3.1.1 Algorithm solvedProblem

The main procedure is presented as Algorithm 3. First, PT is created with O∗ as
the root node and no descendants, and then a path pathM is sought for RM using the
algorithm findPath(R,O) (describe below). If there are no obstacles along pathM then
it is already a solution to the problem, otherwise each obstacle Oi is added to PT as
descendant of O∗ and an iterative procedure is started looking for paths pathAi

for RA

that allows the grasping and removing of the obstacles Oi. If the path pathAi
has no

obstacles it can be added to the plan and the corresponding obstacle Oi is removed from
PT , otherwise the obstacles along pathAi

are added to PT as descendants of Oi (i.e.
a new level of descendants is generated, see an example in figure 3.2). Note that the
maximum number of pathAi

to be determined is bounded by the maximum number nmax

of obstacles in the scene. The procedure is iteratively repeated for the nodes of lower level

Moving objects and removing obstacles with two robotic hands 26

O∗

O1 O2

O3 O4 O3

Figure 3.2: Example of a precedence tree PT .

in PT , adding new levels of descendants or removing the nodes once their descendants
have been removed. The procedure ends with success when we are able to remove the root
node and therefore the selected object O∗ can be successfully grasped and manipulated,
or the procedure ends with failure when a lower node of PT cannot be removed because it
appear at a upper level in the same branch of the tree. This type of failure can eventually
be solved considering that the robots can exchange their roles as RM or RA.

3.1.2 Algorithm findPath

The Algorithm findPath(R,O) is described in Algorithm 4, given a robot R and an
object O this algorithm returns: a path for R starting at an initial configuration, going to
a grasping configuration Cg associated to O and coming back (with O grasped in the hand)
to the initial configuration and the set SO of obstacles that must be removed in order to
make the path being collision-free. The first step in this algorithm is the determination
of a set of valid grasp configurations SC from those already associated to the model of
the O, this is done using the algorithm testGrasp(R,O) described in Algorithm 5. After
this, for each reachable grasping configuration Ci a path for the robot is searched using
the probabilistic roadmap with obstacles PRMwO(Co,Cg,R), that, besides the geometric
path path, returns the list of objects that are obstacles for R when moving along path. A
path with minimum number of obstacles is selected as candidate to solve the task.

3.1.3 Algorithm testGrasps

The algorithm testGrasp(R,O) simply takes each grasping configuration GOi
,

transforms it to Ci according to the current configuration of O in the workspace and
check whether Ci can be reached by the robot R (i.e. verifies that inverse kinematics of
R has a valid solution for Ci) and returns the set SC with the reachable configurations
Ci.

Moving objects and removing obstacles with two robotic hands 27

Algorithm 3 solveProblem(S)

Require: S
Ensure: {pathA1 ...pathAn , pathM}, n ∈ {0....nmax}
1 Plan = ∅
2 Add O∗ to PT (i.e. create PT)
3 pathM , SOM ← findPath(R1,O

∗)
4 if pathM = ∅ then
5 pathM , SOM ← findPath(R2,O

∗)
6 if pathM = ∅ then
7 return Exception: No solution
8 else
9 RM , RA ← R2, R1

10 end if
11 else
12 RM , RA ← R1, R2

13 end if
14 if SOM ̸= ∅ then
15 ∀Oi ∈ SOM add Oi to PT as descendent of O∗

16 while there are terminal nodes Oj ̸= O∗ in PT do
17 for each terminal node Oj do
18 pathAj , SOAj ← findPath(RA,Oj)
19 if SOAj ̸= ∅ then
20 ∀Ok ∈ SOAj add Ok to PT as descendent of Oj

21 else
22 Add pathAj to Plan
23 Remove Oj from PT
24 end if
25 end for
26 end while
27 end if
28 Add pathM to Plan
29 return Plan

Algorithm 4 findPath(R,O)

Require: : R, O
Ensure: : path for R and the set of obstacles SO
1 SC ← testGrasp(O,R)
2 define N > #objects in workspace
3 for each Ci ∈ SC do
4 pathi, SOi ← PRMwO(Co,Cg)
5 if range(SOi) < N then
6 path ← pathi
7 SO ← SOi

8 N ← range(SOi)
9 end if

10 end for
11 return path, SO

Moving objects and removing obstacles with two robotic hands 28

Figure 3.3: solvedProblem Algorithm diagram.

3.1.4 Algorithm PRMwO

The algorithm PRMwO(Co,Cg,R) is shown in Algorithm 6. It initializes a PRM with
the initial and goal configurations Co and Cg for the robot R. Then, Nm samples Smp are
generated. If a sample Smp is close to a distance smaller than a given threshold Dm to a
vertex Q of GPRM the segment defined by Smp and Q is checked for collisions of R with
the environment. If there are collisions the sample is rejected, otherwise the segment is
added as an edge Es of GPRM. Then, the edge Es is checked for collisions of R with the
movable objects Oi and if there are collisions the set of collided objects are associated to
Es. The procedure is repeated until Co and Cg are connected. At that point the graph
GPRM is searched for the shortest path between Co and Cg, which is return as solution
path together with the set of objects SO that generates collisions along the path.

Moving objects and removing obstacles with two robotic hands 29

Algorithm 5 testGrasp(R,O)

Require: : O and R
Ensure: : A set SC(O) of configurations C reachable by R
1 SC = ∅
2 for each GOi ∈ to SGO do
3 Compute C by combining C and GOi

4 if Inverse Kinematics of (R) in C is reachable then
5 Add C to SC
6 end if
7 end for
8 return SC

Algorithm 6 PRMwO(Co,Cg,R)

Require: : R, Co and Cg

Ensure: : path and SO
1 Es = ∅, SO = ∅
2 Vs ← {Co, Cg}
3 for N = 0 to N < Nm (Nm: given maximum size of the sample set) do
4 Smp= getSample()
5 Select Q ∈ Vs

6 Add Smp to Vs

7 if distance(Q,Smp) < Dm (Dm: given maximum neighborhood distance) then
8 Esi ← connectSamples(Smp,Q)
9 if Esi does not imply collision of R with the environment then

10 if Esi implies collision of R with Oi ∈ Es then
11 SOi ← Oi

12 end if
13 end if
14 end if
15 if Co and Cg are connected then
16 Break
17 end if
18 end for
19 path ← {shortest path between Co and Cg ∈ GPRM}
20 SO ← {SOi associate with Esi ∈ path}
21 return path and SO

Moving objects and removing obstacles with two robotic hands 30

Figure 3.4: findPath Algorithm diagram.

3.1.5 Algorithm obstaclesRecognition

The method obstaclesRecognition() is shown in Algorithm 7. This method is
completely independent of the planning approach, it is used a camera to capture
an image image of the movable obstacles that are in the scene, then is used the
method cvtColor (image, imagegray) to convert the image to grayscale imagegray
. After it is reduced the image noise using the method GaussianBlur(imagegray,
imageblur) this method is used to ensure false recognition of objects in the image.
Since we are interested only in recognize the cans that are in the scene we have used
the method HoughCircles(imageblur, MinDiametre, MaxDiametre) for recognizing of
circumferences, which uses the generated image the method GaussianBlur and fixing
minimum and maximum values of the diameter for the recognition of the circles. The
recognized figures are stored in a vector and subsequently it is made their position
transformations to the reference system of the virtual scene. Finally using the method
sceneXML() is generated a virtual scene that includes the two arms system, the metal
base in which are located the robots, and the table with the objects recognized from the
actual scene.

Moving objects and removing obstacles with two robotic hands 31

Algorithm 7 obstaclesRecognition()

Require: : Null
Ensure: : Virtual scene SceneXML

1 define image, imagegray, and imageblur
2 if can not capture the image then
3 return Exception
4 end if
5 imagegray ← cvtColor(image, imagegray)
6 imageblur ← GaussianBlur(imagegray, imageblur)
7 vector pcircles
8 pcircles ← HoughCircles(imageblur, MinDiametre, MaxDiametre)
9 for c = 0 to c < sizeofpcircles do

10 pcirclesTransform ← getTransformation()
11 end for
12 SceneXML ← sceneXML(pcirclesTransform)
13 return SceneXML

Moving objects and removing obstacles with two robotic hands 32

Figure 3.5: PRMwO Algorithm diagram.

Chapter 4

Implementation

In order to test the developed algorithms in a virtual representation of the IOC
work-cell, the implementation of the proposed algorithms have been developed using
the programming language C++ and was coupled to The Kautham Project. This is a
planning and simulation platform developed at the Institute of Industrial Systems and
Control (IOC), also OpenCV [37] which was used in order to detect the movable obstacles
in the scene and then build the virtual scene used on the simulations. Kautham ROS was
used for the communication layer between applications developed through communication
nodes (will be explained in detail below), you can find more information about ROS [38].
Below are the most important elements for the implementation.

4.1 Hardware tools

The IOC work-cell have two industrial robots Stäubli TX90, one Shunk
anthropomorphic hand (SAH) and one Shunk Dexterous hand (SDH2), bellow is describes
each robot and the models used for the experimental simulations.

4.1.1 Stäubli TX90 Indutrial Robot

The Stäubli TX90 is a industrial robot (see figure 4.1) with 6 degrees of freedom all of
them rotational actuated by servo motors. Using the values of θ from The parameters of
Denavit-Hartenberg (D-H) is possible to move the robot to a given position, the table 4.1
shows the values of the parameters D-H for the home position. This is a medium sized
robot and is oriented towards the industrial field, its structure gives it great versatility
and can be used in multiple applications, and this robot can be mounted both on the
floor or ceiling. The table 4.2 shows the maximum and minimum values for each joint of
the robot, using the parameters D-H is possible to describe the inverse kinematic of the
robot model by the sequences R(x, α)T (x, a)R(z, θ)T (z, d).

33

Moving objects and removing obstacles with two robotic hands 34

Figure 4.1: Robot Stäubli TX90.

Segment α a θ d

Shoulder 0 0 0 478
ForeArm -90 50 -90 50
Elbow 0 425 90 0
Arm 90 0 0 425
Wrist -90 0 0 0
TCP 90 0 0 100

Tabla 4.1: D-H parameters for the robot Stäubli TX90.

Using the mesh models provided by the manufacturer and all the information presented
before is possible to build a virtual model of the robot in order to do the simulation
experiments, the figure 4.2 shows the virtual model of the robot used for the simulations.

The Stäubli TX90 robot has an associated CS8 controller (see figure 4.3) from the same
manufacturers, the driver uses the VxWorks operating system that provides different
services to operate the robot. In addition, the controller has a power module and a
communication module, the latter module has a service called SOAP which is a standard
protocol that allows communication via XML data exchange, this allows to develop
applications in C++ to operate the robot using ROS nodes.

4.1.2 Schunk Dexterous Hand SDH2

The Schunk Dexterous Hand (SDH2) is a robotic hand that have three identical fingers
with 7 degrees of freedom (dof) that are distributed as follows, each finger have two dof
(one rotational between the palm and the proximal segment and one between the segments

Moving objects and removing obstacles with two robotic hands 35

Joint Minimum Maximum

Shoulder -180 180
ForeArm -130 147.5
Elbow -145 145
Arm -270 270
Wrist -115 140
TCP -270 270

Tabla 4.2: Joint range of values in degrees for the Stäubli TX90 robot.

Figure 4.2: Virtual model of the robot Stäubli TX90.

proximal and distal). Two of the fingers are mechanically coupled share the joint and the
third can’t do this rotations, figure 4.4 shows the SDH2 hand. In the other side each
finger has two tactile sensor. The physically limits of the joints are given in angles as
shows the table 4.3.

Joint Minimum Maximum

1 0 90
2 - 7 -90 90

Tabla 4.3: Value range in degrees of joint fingers SDH2.

Using the D-H parameters that describe the kinematics of the hand SDH2 and
triangular mesh models provided by the manufacturers [39] the virtual model was built for
the experimental simulations, figure 4.5 shows the SDH2 model used. The robotic hand
comunication between SDH2 and a computer is done through industry standard interface
EN ISO 9404-1-50 with RS232 serial interface for the touch sensor controller and serial

Moving objects and removing obstacles with two robotic hands 36

Figure 4.3: CS8 controller.

interface RS232 or CAN controller joints. In the other side the manufacturer provides
libraries in C + + and Python that develop programs that can be used for commanding
the hand.

4.1.3 Schunk Anthropomorphic Hand SAH

Trying to emulate the human hand Schunk-hand SAH has been developed by The
German Aerospace Center (DLR) which consists of four identical fingers, one of this
fingers that functions as an thumb finger. The dimensions of the hand is more or less
double that human hand with a modular design and actuated by servomotors, figure 4.6
shows the SAH.

The sensors at the fingers provide the force and positioning data for each joint (4 for
each finger). the palm is the base of the hand system and is connected with the first
two joints of each finger, this correspond to the movements of flexion and abduction. The
third and fourth joints for flexion movements; this two joints are coupled with a one to one
relationship, and have an additional articulation at the base of the thumb which allows
this to a further rotation of ninety degrees. The SAH has 17 joints but four of this joints
are coupled so the total degrees of freedom are 13. The table 4.4 shows the maximum and
minimum values for each joint. The perfect integration of all drives including electronics
in fingers and palm enables the mounting to any robot arms. In other to connect the
hand physically SAH have a base mount that allows the hand to be connected to the
industrial robot; the base has electrical connections for power supply and to command
the hand. On the other side, the manufacturer provides libraries in C++ that develop
programs that can be used as ROS nodes to command the hand.

Using the D-H parameters that describe the kinematics of the hand SAH and triangular
mesh models provided by the manufacturers [40] the virtual model was built for the
experimental simulations, as shown in figure 4.7.

Moving objects and removing obstacles with two robotic hands 37

Figure 4.4: Schunk Dexterous Hand SDH2.

Joint Minimum Maximum

0 0 90
1 -15 15
2 -4 65
3 5 60

Tabla 4.4: Value range in degrees of joint fingers SAH.

4.1.4 Sony Camera FCB-IX45CP

Today computer vision plays an important role in developing multiple applications
areas, the field of robotics is not immune from the advances and advantages of computer
vision systems, for this work has been developed a vision system basic for the detection
of plane figures to determine the position of the movable obstacles that are involved in
the workspace of the robots. To develop this small vision system was used a Sony FCB-
IX45CP (see Figure) available on the IOC laboratory of robotics.

The Sony FCB-IX45CP colour block camera series incorporates high-performance
Digital Signal Processing (DSP) and firmware that greatly enhance their operation and
picture quality compared to conventional block cameras. Is ideal for numerous of general
purpose applications. For example, they can be integrated into low vision systems, photo
booths, etc.This camera feature a 72x zoom ratio (18x optical, 4x digital) and a minimum
illumination of 1.0 lx. The camera is working on the scene, provides a complete view of
the worktable of the robots, so it is possible the detection of objects with basic shapes

Moving objects and removing obstacles with two robotic hands 38

Figure 4.5: Virtual model of the Schunk Dexterous Hand SDH2.

such as cylinders and cubes using only 2D. The system has been implemented using the
OpenCV API available in ROS.

4.2 Software tools

The Kautham Project allows to describe the kinematics chains from a simple free
flying robot to a complex multi-robot system with terminal elements like grippers or
robotic hands, on other side ROS is a OS for robots that facilitates the communications
between software and hardware tools through nodes, below are described how ROS and
The Kautham Project are coupled in Kautham ROS of the development for this work.

4.2.1 Robot Operating System ROS

The Robot Operating System ROS is a multi-platform open source system that offers
different libraries and tools for the development a robotic system. The principal objective
of ROS is to provide a comprehensive solution to the problem of robot development,
providing solutions to the areas of: Hardware abstraction layer (HAL),Robotic algorithms
low coupling, development tools, deployment and monitoring of robotic systems.

ROS provides a communication mechanism (middleware) between nodes distributed
robotic system. The objective of this system is twofold: first encapsulated, abstraction
and reuse software and second the ubiquity, that is, no matter where this node is located
(a robotic system may have many processors). These nodes communicate with each other

Moving objects and removing obstacles with two robotic hands 39

Figure 4.6: Schunk Anthropomorphic Hand SAH.

through message passing mechanisms Server/Client or Publish/Subscribe, service lookup,
etc. For other hand ROS use OpenCV API, this tool helps to develop a visual detection
system, this is used in this work in order to detect the movables obstacles in the work-cell
and rebuild the virtual scene.

4.2.2 The Kautham Project

The Kautham Project is an open source tool that solves the motion planning and
robotic teleoperation (As haptic devices [41]) problems, this tool allows to describe the
kinematic chains and triangular mesh models of a robot, and fix the degrees of freedom
that can work for the robot. On the other side The Kautham Project provides different
sampling methods to generate samples in the configuration space in order to find a free
paths for motion planning, local planners and check collision methods are developed to
facilitated the development of a new application using as base The Kautham Project.

4.2.3 Kautham ROS

Coupling the motion planning and the visualization interface provided by The
Kautham Project and the communication mechanisms offer by ROS has been developed
Kautham ROS.

The Planner node is responsible to provide service to solve the motion planning
problem; in this work is used two different planner types, first has been used the classical
PRM planner, this planner operates as follows: generates a random sampling in the
configuration space then using nearest neighbor method tries to connect the free collision

Moving objects and removing obstacles with two robotic hands 40

Figure 4.7: Virtual model of the Schunk Anthropomorphic Hand SAH.

Figure 4.8: Sony Camera FCB-IX45CP.

samples (used a linear local planner for collision check between two samples that will
be connect) this process is repeated while Co and Cg are not connected when this two
configuration are connected it uses the shortest path method to find the solution path.

The second planner is a PRM with restriction, this planner takes into account how
the random samples are generated in the configuration space, this is, the sample are
generated trying to do a lineal connection following the goal configuration from the initial
configuration of the robots and then proceeds in the same way as the classic PRM, which
connects to the nearest sample taking into account the distance between samples in the
sample space generated toward the goal is checked for collisions, then runs the local
planner to check whether there are collisions between the connection of the two samples
which are to be connected, this process is an iterative process until the Co and Cg are
connected then it finds the shortest path to find the solution path.

On the other side this planner used the Principal Motion Directions, (PMD) [42]
based in the Principla Component Analysis, (PCA), the PMD approach provide degrees
of freedom reduction for the robotic hands (i.e: convert the 13 dof to 2,5,10; dependent
of the dof active for a given problem), for this work has been defined 2 different PMD for

Moving objects and removing obstacles with two robotic hands 41

the two robotic hand SAH and SDH2.

One of the key points of this work was to develop the check collision methods for
planners in the work-cell robots based in (Proximity Query Package, PQP) [43], for it, it
is taken into account that there are movable objects (obstacles) and static objects (robots,
tables, floor etc.). The premise for this development is that environmental objects are
known; two methods have been implemented that perform collision checking, the first
method detects all charged objects in the scene and fixed objects are added to the list of
prohibited objects with which can not be collisions.

The second method implemented is the one for the planner in the generation phase
of the sampling method samples support collision with movable objects but takes into
account collision of samples with the prohibited obstacles, these are discarded, this method
also is used for the test grasp phase in order to know with how many obstacles collided
the robotic hand in the grasp configuration . This method is also used when performing
collision checking local scheduler.

The advantage of both check collision methods is that can be applied to any planner
implemented; in this work we have used the both check collision methods for the classic
PRM and the PRM with restrictions.

To represent virtually the models of the robots in the workcell, PQP must be connected
to a graphics library as Coin3D. Coin3D [44] is a graphics library OpenInventor based and
offers a development environment similar to many CAD packages, which allows to build
models from basic shapes, allows the use of triangular meshes to represent more complex
models. Coin3D should be integrated with a library for developing user interfaces, in this
case uses the QT library [45].

Below are described the service nodes for planification and visualization for kautham
ROS based in the algorithm presented in the previous chapter.

problemSetup: This service allows to charge a XML file that provides the robots and
objects models that are involved in the scene and the planner parameters. Must be
taken into account that it is necessary to launch a node for each robot in the scene,
in this work are used two robots. This service is used for both, the planner and
visualization nodes, it is a boolean service so if the file is loaded correctly it returns
true in other case return false.

prohibitedCollisions: This service allows to add the fixed objects in the XML file
Described, the goal object is added Also Because the robot can not collide With
The object to find a valid path to it. This node is also used to add new obstacles
to the prohibited obstacles list when seeking new paths to eliminate obstacles that
block direct access to the goal.

findPath: This is a head service for the work, because all the logic of the PRMwO are
developed in this phase, it checks if a goal is reached by a robot and if collided with
a movable obstacles, then using the PRM try to find a solution path from the initial

Moving objects and removing obstacles with two robotic hands 42

configuration to the goal configuration, if is found it returns the solution path and
a list with the correspond movable obstacles that collide for this path.

moveRobots: With the purpose of determine a given configuration posture for a robot
is developed this service that allows testing the grasp configuration for a robot and
checks the valid inverse kinematic for this configuration posture of the robot due
that exist different grasp configuration for each object. On the other side this service
is used by the visualization node in order to animate the simulation when the paths
plan are executed.

attachObject: This service allows to attach a given object to a robot, providing the
manipulation of an object by the robot, when the attaching is done the object is
like a new link of the robot and is possible to find a new path taking into account
the object attached; this is important when the collision check phase is done. This
service takes into account the necessary transformations to be done on the object
when updated the robot configuration.

detachObject: This service do the inverse process of attachObject detach a given object
that previously has been attached, is a boolean service that return true if the task
is made correctly or false if it can’t be done. The two services attachObject and
detachObject has been implemented for the planner and visualization nodes.

Figure 4.9 is an example of the graphical interface Kautham ROS when loading a
problem.

Moving objects and removing obstacles with two robotic hands 43

Figure 4.9: Kautham ROS graphic interface.

Chapter 5

Experimental Results

In this chapter it is presented the performed experiments in a virtual environment to
validate the proposed algorithms that have been described in chapter 3. In this chapter
it is also made an analysis of the obtained results through tables and screenshots of the
realized experiments. The experiments were performed on a computer with a processor
Intel Core i5 2.27GHz and 4Gb RAM, this computer has the OS version Ubuntu 12.04
(Precise Pangolin) and ROS (Robot Operating System) Strong version.

It is important to note that the performed experiments correspond to real-world
scenarios, in order to be executed in the future in the work-cell of the IOC robotics
lab.

5.1 General Considerations

The experiments presented below consist of a work cell in which are two robotic arms
and two hands forming a bimanual system. This robotic system must perform grasping
objects tasks which are presented on the scene of work; the objects to hold are drink cans
that are located on a table or on the shelf of a bookcase. In each experiment it is assigned
the yellow drink can as the target object, this object must be grasped and removed from
the initial position in which it is on the scene. In each experiment the object of interest
will have a different position; also the initial setting of the robots varies. As it is advanced
in the experiments will be added a degree of complexity to the problem, for example by
increasing the number of movable obstacles in the scene, that makes more difficult the
shortcut to the desired object, it may also be added fixed objects that cannot be removed
which increases the complexity of the problem considerably. In this sense, a robot will
perform the tasks to remove movable obstacles off the scene that impede the access to
the assigned objective.

On each experiment was performed the finding of the necessary plans to complete
tasks, it is important to note that the proposed algorithms have a selection phase of
the tasks for the robots, this means that there will not always be the same robot that

45

Moving objects and removing obstacles with two robotic hands 46

perform the master or the assistant tasks. The experiments are accompanied by a table
which summarizes the relevant data of the execution results

For obtaining the relative positions to the object SGα
Oi

that allows the grasp with
robotic hands was used Kautham ROS with a scene that only contained the object model,
in this case the can, and of each of the hands. For SAH hand there was fixed on the object
8 positions symmetrically distributed about the axis of symmetry and that allow doing
the grasping. In Figure 5.1 it is shown four of these relative positions on the object.
For SDH2 hand were calculated 9 relative positions for grasping the can, 8 distributed
symmetrically around the axis of symmetry of the can and one allowing to grasp it by
the top, in Figure 5.2 are shown four of these positions.

Figure 5.1: Four different positions of the hand SAH for grasping a can.

Figure 5.2: Four different positions of the hand SDH2 for grasping a can.

Moving objects and removing obstacles with two robotic hands 47

5.2 Experiments

Below three experimental cases are presented in which different configurations of the
robots and hands are combined, varying configurations and positions of the robots in the
work cell. Each experiment is accompanied by the data of the executions of the proposed
algorithms.

5.2.1 Experiment 1

In the first experiment, one of the robots RA o RB must perform the task of grasping
and removing the yellow can which is the goal object that is located above the work table.
In Figure 5.3 is shown a screen shot that corresponds to the work cell with the two robots,
the red drink cans that can act as movable obstacles and the yellow can as the desired
object . The two-hands robotics system includes two industrial arms Stäubli TX90, one
with a SAH right hand and in the other hand the SDH arm. The robotic system is located
on the workcell as follows, the robot RA on a metal base and the robot RB is located on
a movable rail, which allows the robot to be able to vary its position in the workspace.

Figure 5.3: Work-cell model for the experiment 1.

As a result of the motion planning for two-hands robotics system was obtained the
following, the robot in charge of performing the tasks of the master robot was RA robot
while the robot RB performs the assistant robot task. Were obtained 4 solution plans for
the robot RA(these plans correspond to 4 different ways of grasping the object) from which
two of the plans presented collision with a movable object O3 (red cans) and the other

Moving objects and removing obstacles with two robotic hands 48

O∗

O3

Figure 5.4: Precedence tree PT for the experiment 1.

Figure 5.5: Configuration RM colliding.

two calculated paths presented collision with two movable objects O3 and O4, according
to the algorithms presented in Chapter 3 of these 4 plans it was chosen the plan that
had less number of collisions with movable objects. The selected plan pathM consists of a
sequence of 62 configurations for the robot RA(these configurations include arm and hand
configurations). It is important to note that each calculated plan underwent a smooth
path for obtaining smoother trajectories for the robot.

Figure 5.4 shows the precedence tree PT which has as root node the goal object and
its descendants correspond to movable obstacles that must be removed from the scene for
RA to reach its goal. Figure 5.5 shows a zoom from the collision between the movable
object O3 and the robot RA in the plan pathM .

On the other side for the RB robot who is the responsible for removing the movable
obstacles in the scene, it was found a solution plan to grasp the obstacle and remove it
from the scene, the plan pathA has 394 positions for configurations for the RB robot.

Figure 5.6 illustrates with screen shots the execution of the experiment, and in addition
numerical details for this experiment can be seen in Table 5.1.

path time (s) #PRMwO #vertices #position smoothed path

pathM 32.68 4 159 62 11.45
pathA3 11.7 1 81 394 0.7

Total 44.38 5 240 456 12.15

Tabla 5.1: Running information for the experiment 1.

Moving objects and removing obstacles with two robotic hands 49

Figure 5.6: Snapshots of the solution paths for the experiment 1.

5.2.2 Experiment 2

In the second experiment, is wanted to emulate in a more realistic way the tasks that
can be performed by a human with its arms and hands, in order to do that, the robots has
been fixed in positions closer to each other (both on the metal table), in this opportunity
they are not faced as was shown in the previous experiment, to get a more illustrative
idea of the scene, figure 5.7 shows the workcell with both industrial arms Stäubli TX90,
in this case are used two SAH hands and in front of the two-hands system a shelf with
different movable objects. Following the proposed approach, one of the robots RA or RB

must perform the task of grasping and removing the yellow can.

The cans are on a shelf. pathM found a collision with only one red can (Figure 5.9
shows a configuration of RM colliding with the obstacle). Then, a path pathA was found
for the other robot to remove the red can from the scene. The execution of pathM and
pathA is illustrated in Figure 5.10, where snapshots of both paths are shown. Figure 5.8
shows the simple precedence tree for this example. The final solution (pathM and pathA)
was found in 80.6 s, which includes calculation of 3 PRMs with 155 vertices and 495
positions for robot configurations. Table 5.2 shows the numerical result of the second
experiment.

Moving objects and removing obstacles with two robotic hands 50

Figure 5.7: Work-cell model for the experiment 2.

O∗

O3

Figure 5.8: Precedence tree PT for the experiment 2.

5.2.3 Experiment 3

In the experiment 3, in a similar way as in experiment 1, one of the robots RA o RB

must perform the task of grasping and removing the yellow can which is located on the
worktable. In Figure 5.11 is shown a screen shot that corresponds to the work cell with
the two robots, one table to which has been added an obstacle in a the shape of ”L” and
red drink cans that can act as movable obstacles and the yellow can as the desired object.

The robotic two-hands system includes two-armed industrial robots Stäubli TX90,

path time (s) #PRMwO #vertices #position smoothed path

pathM 0.5 2 4 101 0.0
pathA3 80.1 1 151 394 7.76

Total 80.6 5 155 495 7.76

Tabla 5.2: Running information for the experiment 2.

Moving objects and removing obstacles with two robotic hands 51

(a) Configuration RM colliding (b) Zoom of Collision

Figure 5.9: Collision in example 1.

Figure 5.10: Snapshots of the solution paths for the experiment 2.

Moving objects and removing obstacles with two robotic hands 52

and two SAH hands. For this experiment the robot system is located on a metal base
which is available in the IOC laboratory robotics.

Figure 5.11: Work-cell model for the experiment 3.

To remove O4, a pathA4 was found but it has collisions with the red cans O2 and O3,
both obstacles were added to PT as children of O4 and new paths pathA2 and pathA3 were
found to remove O2 and O3. The path pathA3 generates a collision with O1, and using the
same procedure a pathA1 was found to remove O1. The execution of pathM and pathAi

is illustrated in Figure. 5.14, where a snapshots of each paths at the time of grasping the
corresponding can are shown; the sequence of objects to be removed before being able to
reach O∗ was O1, O2, O3, O4. Figure. 5.12 shows the precedence tree PT for this example.

The final complete solution was found in 291.78 s, the required time and number of
PRMs, vertices, positions for configurations, and smoothed paths are given in Table 5.3

O4

O2 O3

O1

O∗

Figure 5.12: Precedence tree PT for the experiment 3.

Moving objects and removing obstacles with two robotic hands 53

(a) Configuration RM colliding (b) Zoom of Collision

Figure 5.13: Snapshots of the collision for the experiment 3.

path time (s) #PRMwO #vertices #position smoothed path

pathM 35.2 4 14 99 10.3
pathA1 162.3 2 289 76 34.4
pathA2 22.8 2 13 83 5.9
pathA3 48.2 1 33 87 15.7
pathA4 23.1 1 14 90 4.1

Total 291.78 10 363 435 70.4

Tabla 5.3: Running information for the experiment 3.

Moving objects and removing obstacles with two robotic hands 54

Figure 5.14: Snapshots of the solution paths for the experiment 3.

Chapter 6

Conclusions and Future works

6.1 Conclusions

This work has proposed a new planning approach which has been called PRMwO based
on PRM method, for a two-hand robotic system. The system is able to use his arms to
perform grasp and manipulation tasks of movable objects. The robotics system used one
arm to remove the obstacles in order to clean the trajectory path for the other robot to
be able to complete his task.

It was developed a basic computer vision system that performs pattern recognizing
of planar figures, this system allows to obtain the locations of movable obstacles in the
actual work cell, and by using mathematical transformations is able to make a virtual
reconstruction of the work cell, in which the calculations for path planning using the
proposed method PRMwO is then executed.

To validate the proposed planning method it was used a software tool based on ROS,
developed at the IOC that allows to virtually represent the work-cell physically located
Robotics Laboratory Institute of Industrial and Control Engineering of the Technical
University of Catalonia. This tool is called Kautham ROS. Using this software tool a series
of experiments were executed, allowing to observe how the behavior of the algorithms with
real robot models will be.

The proposed approach used for obtaining the roads that allowed each robot to fulfill
the corresponding task is based on a scheduler that uses a PRM, on which modifications
were made to be able to use the calculated plans since the nature of the manipulating
problem requires special treatment of the restrictions to be considered to obtain viable
plans. It was also proposed a new approach to treat collision checking; allowing collisions
with movable obstacles that subsequently must be removed from the work scene.

The performed experimentation allowed to ascertained that the proposed method
works effectively, the calculated plans by the PRMwO are calculated separately for each
robot avoiding collisions between them.

55

Moving objects and removing obstacles with two robotic hands 56

6.2 Future works

During the progress in the development of this project different points that could be
improved were detected. One of the most relevant proposals for future work is to extend
the method, developing algorithms with artificial intelligence tools, this will allow to divide
the tasks among the robots in a more dynamic way and will provide to the system a faster
resolution of tasks; since so far it is only chosen which is the robot that will perform the
tasks as the master and which as the assistant. It is relevant to highlight that some work
was already done to develop algorithms that will allow to improve the proposed approach
in this regard.

Previous work done in the IOC focused on the development of methods of temporal
coordination of robots that share a work-cell, this would also help to get a quicker solution
to the problem. Currently, the system only allows a robot to perform its task and the
other robot should wait for it to finish in order to perform the task that has assigned.

Another potential improvement is that the planner allows to include constraints on
motion planning, considering the object manipulation, and not only the search of a path
between two configurations. Among the restrictions that are required for the manipulation
of certain objects there is keeping the orientation of the object once it has been grasped
by the robot.

Finally, one the most relevant future work is to test the developed algorithms with the
actual robots. The presented experiments in Chapter 5 were performed in simulations
emulating of the real work-cell of the IOC Robotics Lab. It has already been made some
progress in the development of ROS nodes to control, the real robots in the work cell.
Therefore the immediate future work is the implementation of the developed algorithms
applied to real robots.

Bibliography

[1] J.-C. Latombe, Robot motion planning. Kluwer international series in engineering
and computer science: Robotics, Kluwer Academic Publishers, 1991.

[2] G. Sanchez and J.-C. Latombe, “On delaying collision checking in prm planning –
application to multi-robot coordination,” International Journal of Robotics Research,
vol. 21, pp. 5–26, 2002.

[3] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, pp. 566–580, 1996.

[4] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field techniques
for robot path planning,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 22, pp. 224 –241, mar/apr 1992.

[5] M. Sharir, “Algorithmic motion planning,” Handbook of Discrete and Computational
Geometry, pp. 733–754, 1997.

[6] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in Robotics and
Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on,
pp. 521–528, 2000.

[7] S. M. LaValle, “Planning algorithms,” 2006.

[8] J.-M. Lien and Y. Lu, “Planning motion in environments with similar obstacles,” in
in Proceedings of Robotics: Science and Systems., 2009.

[9] G. Wilfong, “Motion planning in the presence of movable obstacles,” in In Proceedings
of the 4th Annual ACM Symposium on Computational Geometry, pp. 279–288, 1988b.

[10] P. Chen and Y. K. Hwang, “Practical path planning among movable obstacles,” in
Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference
on, vol. 1, pp. 444–449, 1991.

[11] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner, “Planning and executing
navigation among movable obstacles,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pp. 820–826, 2005.

57

Moving objects and removing obstacles with two robotic hands 58

[12] M. Stilman, J. ullrich Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in In IEEE Intl Conf. on Robotics and
Automation (ICRA07, 2007.

[13] M. Stilman, “Task constrained motion planning in robot joint space,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3074–3081, 2007.

[14] H.-N. Wu, M. Levihn, and M. Stilman, “Navigation among movable obstacles in
unknown environments,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pp. 1433–1438, 2010.

[15] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba, “Working with
movable obstacles using on-line environment perception reconstruction using active
sensing and color range sensor,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pp. 1696–1701, 2010.

[16] M. Cutkosky, “On grasp choice, grasp models, and the design of hands for
manufacturing tasks,” Robotics and Automation, IEEE Transactions on, vol. 5,
pp. 269 –279, jun 1989.

[17] J. Cornella and R. Suárez, “A new framework for planning three-finger grasps of 2d
irregular objects,” in Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pp. 5688 –5694, oct. 2006.

[18] J. Cornella and R. Suárez, “Efficient determination of four-point form-closure optimal
constraints of polygonal objects,” IEEE T. Automation Science and Engineering,
vol. 6, no. 1, pp. 121–130, 2009.

[19] J. Ponce, S. Sullivan, A. Sudsang, J. daniel Boissonnat, and J.-P. Merlet, “On
computing four-finger equilibrium and force-closure grasps of polyhedral objects,”
International Journal of Robotics Research, vol. 16, pp. 11–35, 1996.

[20] C. Borst, M. Fischer, and G. Hirzinger, “A fast and robust grasp planner for arbitrary
3d objects.,” in ICRA, pp. 1890–1896, 1999.

[21] M. A. Roa and R. Suárez, “Finding locally optimum force-closure grasps,” Robotics
and Computer-Integrated Manufacturing, vol. 25, no. 3, pp. 536 – 544, 2009.

[22] J.-P. Saut, M. Gharbi, J. Cortés, D. Sidobre, and T. Siméon, “Planning pick-and-
place tasks with two-hand regrasping.,” in IROS, pp. 4528–4533, IEEE, 2010.

[23] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann, “Humanoid
motion planning for dual-arm manipulation and re-grasping tasks,” in Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,
pp. 2464 –2470, oct. 2009.

[24] N. J. Nils, “A mobile automaton: an application of artificial intelligence techiques,”
in Proc. of the 1st. International Joint Conference on Artificial Intelligence, 1969.

[25] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, “Visibility graphs,”
in Computational Geometry (2nd ed.), pp. 307–317, 2000.

Moving objects and removing obstacles with two robotic hands 59

[26] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
in Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 500–505, 1985.

[27] D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient hierarchical path
planning,” in Robotics and Automation, IEEE Transactions on, vol. 7, pp. 9–20,
1991.

[28] S. Lindemann and S. LaValle, “Incrementally reducing dispersion by increasing
voronoi bias in rrts,” in Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004 IEEE International Conference on, vol. 4, pp. 3251–3257, 2004.

[29] S. Lindemann and S. LaValle, “Steps toward derandomizing rrts,” in Robot Motion
and Control, 2004. RoMoCo’04. Proceedings of the Fourth International Workshop
on, pp. 271–277, 2004.

[30] P. Svestka and M. Overmars, “Coordinated motion planning for multiple car-
like robots using probabilistic roadmaps,” in Robot Motion and Control, 2004.
RoMoCo’04. Proceedings of the Fourth International Workshop on, vol. 2, pp. 1631–
1636, 1995.

[31] J. Yakey, S. LaValle, and L. Kavraki, “Randomized path planning for linkages with
closed kinematic chains,” in Robotics and Automation, IEEE Transactions on, vol. 17,
pp. 951–958, 2001.

[32] N. M. Amato, O. Bayazit, and L. K. Dale, “Obprm: An obstacle-based prm for 3d
workspaces,” in Robotics and Automation, IEEE Transactions on, 1998.

[33] J.-p. Laumond and C. Nissoux, “Visibility-based probabilistic roadmaps for motion
planning,” Journal of Advanced Robotics, vol. 14, p. 2000, 2000.

[34] R. Geraerts and M. H. Overmars, “Reachability-based analysis for probabilistic
roadmap planners,” Robotics and Autonomous Systems, vol. 55, pp. 824–836, 2007.

[35] C. L. Nielsen and L. E. Kavraki, “A two level fuzzy prm for manipulation planning,”
in In Proceedings of the International Conference on Intelligent Robots and Systems,
pp. 1716–1722, 2000.

[36] C. Rosales, L. Ros, J. M. Porta, and R. Suárez, “Synthesizing grasp configurations
with specified contact regions,” International Journal of Robotics Research, vol. 30,
no. 4, pp. 431–443, 2011.

[37] R. Laganiere, OpenCV 2 Computer Vision Application Programming Cookbook. Packt
Publishing, 2011.

[38] M. Quigley, B. Gekey, K. Cnley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” Workshop on Open Source
Robotics in IEEE Intl. Conf. on Robotics and Automation (ICRA), Kobe, Japan, May
2009.

Moving objects and removing obstacles with two robotic hands 60

[39] D. Osswald, “Kinematic parameter of sdh2.” www.schunk.com, March 2008.

[40] C. Borst and M. Menner, “Kinematic specification schunk sah hand - version 1.1.”
www.schunk.com, March 2007.

[41] A. Pérez and J. Rosell, “A Roadmap to Robot Motion Planning Software
Development,” Computer Applications in Engineering Education, September 2009.

[42] J. Rosell, R. Suárez, C. Rosales, and A. Pérez, “Autonomous motion planning of a
hand-arm robotic system based on captured human-like hand postures,” Autonomous
Robots, vol. 31, pp. 87–102, 2011. 10.1007/s10514-011-9232-5.

[43] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity queries with
swept sphere volumes,” in Proc. of Int. Conf. on Robotics and Automation, pp. 3719–
3726, 2000.

[44] Kongsberg Oil and Gas Technologies, “Coin3D - 3d graphics development tools.”
www.coin3d.org, December 2010.

[45] J. Blanchette and M. Summerfield, C++ GUI Programming with Qt 4. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2006.

