

MASTER THESIS

TITLE: Reconfigurable Medium Access Control Solutions for Resource
Constrained Wireless Networks

MASTER DEGREE: Master in Science in Telecommunication Engineering &
Management

AUTHOR: Noemí Arbós Linio

DIRECTOR: Prof. Dr. Petri Mähönen, Xi Zhang, M. Eng. and Junaid Ansari, M.Sc.

DATE: September 25th 2012

PREAMBLE

This thesis presents the design, implementation and evaluation results of a toolchain
which allows a user to design a MAC protocol, load it onto a sensor platform and
perform runtime reconfiguration. This thesis uses the component based MAC de-
sign and Meta-language as its basis. The component based MAC design and Meta-
language have been developed by Luis Miguel Amorós in his thesis A Tool for Rapid
MAC Protocol Prototyping and Design for Wireless Sensor Networks [1] which was done
in collaboration with my work. Owing to this reason the two thesis have a tightly
coupling with the other.

I would thank very much my partner for all the work he does and its support
during the last 6 years. I thank also M. Sc. Junaid Ansari and M. Sc. Xi Zhang for their
supervising, ideas and support.

Finally, I would like to dedicate this thesis to my family for their support during
my studies and specially during my Erasmus. I dedicate also this thesis to the people
I met in Aachen, they are the reason that makes these 7 months an unforgettable
experience.

II

III

"Gewisse Bücher scheinen geschrieben zu sein, nicht damit man daraus lerne,
sondern damit man wisse, dass der Verfasser etwas gewusst hat."

from "Maximen und Reflexionen", Johann Wolfgang von Goethe (1833, p. p.)

CONTENTS

PREAMBLE II

CONTENTS IV

ABSTRACT VI

1 INTRODUCTION 1

2 RELATED WORK 3

2.1 COMPONENT ORIENTED DESIGN . 3

2.2 ADAPTABILITY . 4

2.3 RUNTIME RECONFIGURATION . 4

2.4 MAC SCHEMES FOR WSNS . 6
2.4.1 PREAMBLE-SAMPLING PROTOCOLS 6
2.4.2 COMMON ACTIVE PERIODS PROTOCOLS 6
2.4.3 HYBRID PROTOCOLS . 6

3 SYSTEM DESIGN 7

3.1 MAC FUNCTIONAL BLOCKS . 7

3.2 MAC META-LANGUAGES . 8

3.3 SENSOR INTERFACE . 9
3.3.1 EXECUTION LIST . 11
3.3.2 VARIABLE LIST . 13
3.3.3 METANODE COMPILER . 15

3.4 USER INTERFACE . 16
3.4.1 COMMAND SHELL . 17
3.4.2 SERIAL CONTROLLER . 18

4 IMPLEMENTATION 19

4.1 MAC FUNCTIONAL BLOCKS . 19

4.2 SENSOR INTERFACE . 20
4.2.1 EXECUTION LIST . 20
4.2.2 VARIABLE LIST . 25
4.2.3 METANODE COMPILER . 27
4.2.4 EXECUTIONSCHEDULER COMPONENT 31

IV

CONTENTS V

4.2.5 SENSOR NODE SERIAL CONTROLLER 31

4.3 USER INTERFACE . 32
4.3.1 COMMAND SHELL . 33
4.3.2 PARSER . 37
4.3.3 SERIAL CONTROLLER . 37

5 EXPERIMENTAL RESULTS AND EVALUATION 41

5.1 EXECUTION OVERHEAD . 41
5.1.1 BASIC FUNCTIONALITIES . 42
5.1.2 MAC PROTOCOLS . 46

5.2 RECONFIGURATION COSTS . 47

6 CONCLUSIONS 51

A ABBREVIATIONS 52

LIST OF TABLES 53

LIST OF FIGURES 54

BIBLIOGRAPHY 55

DECLARATION 58

ABSTRACT

Wireless Sensor Networks (WSNs) consist of several autonomous resource constrained
sensor nodes distributed over a geographical area. The sensor nodes can measure,
for instance humidity, temperature or vibration. Therefore, these networks can be
deployed in many different types of dynamic environments.

Traditionally, Medium Access Control (MAC) protocols used in WSNs are im-
plemented in a monolithic fashion with tight coupling to the underlying hardware.
Although this approach of design and implementation can usually make full use of
the capability of the underlying hardware, the MAC solution is static and provides sat-
isfying performance only under the pre-defined conditions. However, as application
requirements and network conditions may change, adaptability and reconfigurability
of MAC protocols are desired.

In this thesis, we have designed and implemented a toolchain which enables run-
time MAC protocol reconfiguration for WSNs. The toolchain has been implemented in
TinyOS using component-based design and hardware independence, allowing users
to develop MAC solutions for WSNs, execute and reconfigure them in many plat-
forms. Finally, a user is able to interact with the sensor node through a user interface
developed in Java. Furthermore, this toolchain has been enhanced by the features
introduced in [1] to enable also simplifying the design of MAC protocols, allowing
non-specific sensors users to implement and finally execute and reconfigure them in
sensor nodes.

The toolchain has been compared to monolithic implementations in terms of exe-
cution time and reconfiguration costs. The results show that the toolchain enables fast
runtime reconfiguration of MAC protocols with an quantify execution time overhead.
Our toolchain saves from 26 % up to 98 % the time needed to reconfigure a MAC
protocol compared to the monolithic approach.

VI

1

INTRODUCTION

Nowadays, smart environments represent an important evolution in building, in-
dustrial, home, utilities, health-care applications, traffic control, automation systems,
etc [2]. A smart environment needs information about its surroundings as well as
about its internal situation. This information can be provided by Wireless Sensor
Networks (WSNs), which are responsible for detecting, monitoring, collecting and
sending relevant data about the environment conditions.

A WSN is a network of several autonomous sensors distributed over a geograph-
ical area in an ad-hoc fashion which are used to monitor physical conditions, such
as temperature, vibration, pressure, humidity, motion, sound or pollutants [3]. These
sensors work together in a cooperative way to transmit the collected data through the
network to a main location. Sensors nodes are resource constrained platforms in terms
of energy, memory, computational speed and communications bandwidth. The most
significant constrain is energy, due to the fact that sensor nodes usually operated on
batteries.Since battery replacement can be cumbersome especially when sensor nodes
are deployed in remote areas, efficient usage of energy to extend the sensor node
lifetime becomes critical for sensor networks to be economically. In order to improve
the energy consumption, WSNs use power aware Medium Access Control (MAC)
protocols which govern efficiency the cost of radio communications to improve energy
efficiency for sensor nodes.

Traditionally, these MAC protocols are implemented in a monolithic fashion with
tight coupling to the underlying hardware which limits the adaptability and thus
leads to underperformance when application requirements and/or network condi-
tions change. Since, WSNs can be deployed in hostile and dynamic changing en-
vironment, the monolithically designed and implemented MAC protocol which is
optimized for a specific scenario would not deliver the same expected performance
when the scenario changes. For example, when a WSN would have to coexist with
other networks on the same frequency band, reconfiguration of the MAC procedure
would be necessary to allow the coexistence and fair sharing of spectrum resources.
Another relevant scenario would be a WSN monitoring seismic activity where sensors
nodes periodically send information about vibration [3]. However, when a earthquake
is detected, a higher data rate is expected to detect possible greater replicas. The
MAC protocol then needs to adapt itself to serve the new application requirements.
Without having a flexible architecture for reconfigurable MAC protocol realizations,
the existing MAC protocols perform poorly under the above mentioned situations.

In order to enable building MAC protocols on-the-fly without having to reprogram
the target sensor nodes, we have designed and implemented a toolchain to reconfigure
MAC protocols at runtime. If some modification is needed to adapt a MAC implemen-
tation into a new environment such as changing duty cycle from Low Power Listening,

1

2

there is no need to recompile source code. The development process has been done in
collaboration with [1]. For that reason, the main components of the toolchain, such as
the MAC Components or the languages used to design the MAC protocols, are tightly
coupled with this thesis.

Overall, in this thesis we present a toolchain designed to enable rapid and flexible
MAC protocol reconfiguration. It is implemented for TelosB [4] and Mica2 [5] as a
proof of concept. This thesis is organized as follows. Chapter 2 describes the related
work proposed for specific MAC protocols for WSNs, solutions for providing adaptive
and on-the-fly modified protocols in general. Chapter 3 explains the design of the
framework based on wiring engine concept which can be used to develop flexible
adaptive applications in an efficient and reliable way. In Chapter 4, the implemen-
tation is explained. The evaluation and experimental results of our toolchain are
presented in Chapter 5 to show the disadvantages of our solution. Finally, we present
some conclusions and future work.

2

RELATED WORK

In recent years, adaptation and reconfigurability are becoming important features
in WSNs due to they are usually deployed in very hostile and dynamic changing
environments. In this chapter, some approaches related with adaptation and reconfig-
uration in wireless communications are presented. In addition, MAC schemes most
commonly used in WSNs are explained.

2.1 COMPONENT ORIENTED DESIGN

Component oriented design consist of decomposing a system into independent units
which can be developed and deployed independently providing basic functionalities
of the application, as explained in [6] and [7]. The components are observed as black
boxes with defined inputs and outputs and the end users only need to know these
interfaces to be able to use them. This technique is becoming very popular to enable
simple adaptation in software. Many component-based platforms exist, for instance
COM/DCOM [8], .NET [9], EJB [10], TinyOS/nesC [11].

The use of this approach provides many advantages. First, as components are
totally independent, they can be interconnected in many different ways to create dif-
ferent applications based on the same components. This feature is called dynamic
composition and it can be shown in FIGURE 2.1, where different applications are
designed by interconnecting the existing components like in LEGO. Furthermore, as
the components are reusable, it allows to reduce the memory consumption of the final
application.

Application 1 Application 2

FIGURE 2.1: Different applications realized by a component-based design approach.
[1]

Component oriented design has been used in order to achieve adaptive MAC pro-
tocols design through the Decomposable MAC Framework [12]. It has been demonstrated
how MAC protocols are decomposed into independent elementary blocks based on

3

2.2. ADAPTABILITY 4

their services and how elementary blocks can be inserted and deleted as it is needed
to achieve the adaptation.

2.2 ADAPTABILITY

In dynamic environments, such as wireless networks or WSNs where medium condi-
tions or network topology can change very frequently, MAC protocols require flexible
adaptability in order to manage instability and unpredictability. There have been
many approaches related with this topic.

A protocol called Receiver-Based AutoRate Protocol (RBAR) is presented in [13]. Its
main goal is to allow modification of modulation schemes at runtime. It estimates
channel quality, executes runtime adaptation mechanism in the receiver side and noti-
fies transmitter to choose appropriate modulation schemes during RTS/CTS exchange.
However, this approach is quite limited because it only allows parameter adaptation
but it does not allow to change the functional behaviour of MAC protocols.

Hybrid MAC Protocols use different MAC protocols together as one MAC proto-
col. Rate Adaptive Hybrid MAC Protocol (RAH-MAC) [14] combines polling and con-
tention MAC protocols in order to benefit from the advantages of each one of them.

Related to the idea of combining protocols, Meta-MAC [15] is a systematic and
automatic method to dynamically combine any set of existing MAC protocols into a
single upper layer. It achieves the performance of the best protocol without knowing
in advance which of them will match the potentially changing and unpredictable
network conditions. In addition, this optimization works without any centralized
control or any exchange of messages, using only local network feedback information.
Meta-MAC is introduced as a higher layer above existing MAC layer and its model
compute the best decision of the protocol to be used. However, this technique has a
large memory footprint, large implementation effort and redundancy in source code.

2.3 RUNTIME RECONFIGURATION

Classical method to modify a MAC protocol consists in changing source code, re-
compiling and redeploying to the specific platform. However, time is wasted when
performing all this complex process. In order to improve it, some researches have
proposed runtime reconfiguration approaches for MAC protocols which are currently
running on the hardware platform.

Hermann S. Lichte and Stefan Valentin [16] show how to construct a compiler for
the proposed language that generates most of the required implementation (model
and MAC automaton) automatically. Basically, this approach pretends to define MAC
pattern as an ordered sequence of frames assigned to roles. With this kind of pat-
terns, MAC protocols can be easily described through a language called MAC Pat-
tern Description Language (MDPL). MDPL is very simple and intuitive for specifying
MAC protocol behaviour which enables an efficient way of MAC protocol design
and analysis. In addition, the developer only should care about the protocol design,
the implementation is simplified by compiler. However, this solution is designed as
domain-specific language which particularly concentrates on developing cooperative

2.3. RUNTIME RECONFIGURATION 5

relaying systems. It is not able to be used for those systems which cannot be expressed
by patterns.

Guangwei Yang [17] developed a toolchain which is able to run any of the available
MAC protocols for wireless networks using a language descriptor to describe the
MAC protocol design which is processed by a meta-compiler. Moreover, as it is
shown in FIGURE 2.2, this toolchain introduces few elements which allows runtime
reconfigurations, such as the wiring engine and the command shell. The wiring engine
is designed based on a linked list data structure in order to build MAC protocols by
wiring functional blocks in a logic way. The other element, command shell, takes
raw data from user input and interprets commands to decide which action has to be
executed. User is able to load a certain MAC protocol in the same way as he can
add some reconfigurations sending commands through this shell without the need
of compile again. This toolchain was initially designed and implemented for WARP
boards, but, after a time, it was ported to some sensor node platforms. The results of
the performance tests carried out for WSNs were acceptable. However, there was a
decrease of the toolchain efficiency in comparison with the WARPs results, due to the
high overhead introduced.

4.2. IMPLEMENTATION DETAILS 40

environment. The error checking mechanism can be performed either in developing
or running environment. With such component-based design, the toolchain does not
have to work as integration but can be divided and deployed on different platforms
according to their requirements.

Besides above five components, we also need to handle the interaction between
users and MAC protocols. For showing dynamic adaptation of the MAC protocol,
different actions must be able to be performed to the protocols on-the-fly. So there is
a need of command shell which takes raw data from user input and interprets com-
mand to the different components. The detailed deployment structure of our toolchain
is shown in FIGURE 4.2. For configuring the running list, first the command is sent
to the system as user input. Then a command shell interprets the command and dis-
patches it to the corresponding components. Different handling mechanisms are then
triggered. The compiler is invoked to compile a meta-language file to a running list.
Different changes are performed to the running list by wiring engine. Other func-
tions like error checking and list running are provided by other components. In this
way, different components interact and collaborate with each other to behave as an
integrated system.

List Driver

List Error Checker
Detect Error

Run List

On WARP Board

IF(RSSI>Threshold)

SendPacket()

CarrierSensing()

Function Pointer List

.

.

.

Decomposable System

Command Shell

Wiring Engine Compiler

Compile List
Command

Change List Generate List

Sending Command Message

Control Server

Resources

FIGURE 4.2: Deployment structure of our toolchain.

Now we have an overview on the whole architecture of the implementation. Next
we will describe how we implement these sub-components respectively. Note that in
order to make it compatible for running on WARP board, Windows and Linux, the

FIGURE 2.2: MAC runtime reconfiguration toolchain structure. [17]

Our toolchain will be based on the idea of the reconfiguration through a shell from
Yang’s work [17] and the decomposable MAC framework from Salikeen’s work [18].

2.4. MAC SCHEMES FOR WSNS 6

2.4 MAC SCHEMES FOR WSNS

The sensor nodes of WSNs work with batteries for a long time without human in-
tervention. For that reason, as it is explained in [19], WSNs uses optimized medium
access control protocols which their main design criteria is to extend the lifetime trying
to keep the radio off when it is unnecessary to listen the medium. The three MAC
schemes categories most commonly used in WSNs are the preamble-sampling, the
common active periods and the hybrid protocols. Each one of them is explained in
the next sections.

2.4.1 Preamble-sampling Protocols

Exists many protocols basic on preamble-sampling, such as B-MAC [20], MFP-MAC
[21] or X-MAC [22]. These protocols try to save a lot of energy performing idle
listening. The sensor node spends most of the time in sleep mode and wake ups
periodically to check if there is a transmission on the channel. Therefore, a sender has
to send a preamble long enough to assure that the transmission is detected by the the
receiver. Moreover, preamble-sampling protocols use contention based approaches to
listen the channel before transmitting the preamble in order to avoid collisions.

2.4.2 Common Active Periods Protocols

Some examples of common active periods protocols are S-MAC [23] and T-MAC [24].
The primary goal in these protocols is reducing energy, but they also achieve good
scalability and collision avoidance by using a combined scheduling and contention
scheme. As its name indicated, the sensors which use these protocols have com-
mon active/sleep periods. In active periods, sensors transmit data using RTS/CTS/-
DATA/ACK handshake and in the sleep periods, the sensors save energy by keeping
the radio in off state. As the periods are common, certain level of synchronization
between all nodes is required. For that reason, during the active period, sensors send
SYNC packets.

2.4.3 Hybrid Protocols

Hybrid protocols, like Z-MAC [25] or Funneling-MAC [26], combine two or more
different MAC protocols to take advantage of their characteristics. They switch their
behaviour depending on the network conditions allowing to achieve high perfor-
mance. For instance, they use preamble-sampling based protocols when the number
of nodes of the network is small and when this number increase, they change to
common active periods based protocols.

3

SYSTEM DESIGN

In this chapter, the design of the toolchain for reconfigure MAC protocols is described.
With our design, there is no need to modify a MAC protocol in a monolithic way of
changing source code, recompiling and redeploying to the specific hardware platform.
The developers can reconfigure protocols at runtime by simply sending commands
through a shell.

The design of our toolchain can be divided in four parts: MAC Functional Blocks,
MAC Meta-languages, Sensor Interface and User Interface. as explained in section
3.1, each MAC functional block represents a functionality of a MAC protocol, such as
turn on/off the radio. Section 3.2 describes the Meta-language and the MetaNode-
language; the Meta-language has been designed for the user and the MAC protocol
implementation and the MetaNode-language is the language used by the sensor node.
Thirdly, the Sensor Interface mechanism described in section 3.3 is designed for bind-
ing the MAC components together. This interface uses a MetaNode list to execute the
MAC protocol implementation. The MetaNode list also allows the runtime reconfigu-
rations by adding and removing nodes. Finally, we built a command shell for the user
to load the MAC protocols implementations on the sensor node and do the runtime
reconfigurations. In section 3.4, this shell is explained and also how it communicates
with the sensor node in order to execute the user commands.

3.1 MAC FUNCTIONAL BLOCKS

The first step in the design on the toolchain is to identify the most common function-
alities in MAC protocols. Then, following the component oriented design approach, a
set of independent components which provides these functionalities can be designed.

As it is explained in [1], in order to identify these basic functionalities, some MAC
protocols has been taken as example. For instance preamble-sampling protocols like
B-MAC, MFP-MAC and X-MAC, and common active periods protocols like S-MAC
and T-MAC. Moreover, the protocol IEEE 802.11 [27] which is based in CSMA/CA has
been included, since it is commonly used in the area of wireless networks.

After studying each one of them, a set of basic and complex functionalities shown
in TABLE 3.1 and TABLE 3.2 have been identified. Some examples of basic functional-
ities are Send and Receive which allow the nodes to communicate each other, or Radio
Control which controls the radio power state. Complex functionalities are the ones that
needs to call basic functionalities to be correctly executed, for instance, Carrier Sensing
needs Noise Floor Estimate, Radio Control and Timer basic functionalities to determine if
the medium is busy.

7

3.2. MAC META-LANGUAGES 8

Basic Functionality
Protocols

B-MAC MFP-MAC X-MAC S-MAC T-MAC 802.11
Noise Floor Estimate X X X X X X
Radio Power Control X X X X X X
Random Generate X
Receive Frame X X X X X X
Send Frame X X X X X X
Timer X X X X X X

TABLE 3.1: Summary of the basic functionalities of the most common MAC protocols.
[1]

Basic Functionality Protocols
B-MAC MFP-MAC X-MAC S-MAC T-MAC 802.11

Binary Exponential
Backoff X

Carrier Sensing X X X X X X
Low Power Listen-
ing X X X X X

Send Preamble X X X

TABLE 3.2: Summary of the complex functionalities of the most common MAC
protocols. [1]

3.2 MAC META-LANGUAGES

Since our toolchain aims to provide an easy and efficient way to design and reconfig-
ure MAC protocols and execute them in different platforms, we need a language to
make this process easy to the user and another one that the sensor nodes are able to
interpret. This toolchain will use the two languages explained in detail in [1].

The Meta-language is the one used by the user to design the MAC protocols. For
that reason, this language is designed to be simple and follows the basic syntax of C or
NesC. There are six basic operations which can be used in the Meta-language: variable
definition, expressions, event implementation, function calls, if-else structures and label-goto
structures.

The MetaNode-language is the one used by the sensor node to execute the func-
tionalities described in the MAC protocol design. As this language is a translation of
Meta-language used by the sensor to understand the instructions, it has the same basic
operations mentioned in Meta-language. As it is explained before, our toolchain uses
an Sensor Interface to execute the instructions allocated in an execution list. In order
to be able to allocate each instruction in this list, we define a MetaNode to represent
one of these instructions that appear in the MAC protocol. Therefore, the size of
the execution list will be the same as the number of lines of the file. The MetaNode
structure is composed by:

• MetaLabel: a numeric value which will specify the MetaNode type. For example,

3.3. SENSOR INTERFACE 9

if it is a variable definition (tag DEF), an if statement (tag IF) or a function call
(tag FUNC).

• IdLabel: a numeric value which will specify some characteristic of the MetaNode.
For example, if it is a function call, the idLabel will specify at which function
it refers. If it is a label or goto statement, it will specify the identifier of the
corresponding label. In case of a variable expression, IdLabel will specify if the
instruction is adding, subtracting or assign the value to this variable.

• Parameters: a set of attributes which will specify numeric values, variables or
function calls that a certain MetaNode may require. The structure which allo-
cates this parameters is called MetaParams and consists of two fields:

– Type: it indicates if it is a numeric value (tag VALUE), a variable (tag VAR)
or a function call (tag FUNC).

– Value: it can indicate three different concepts depending on the type. In
case of a numeric value indicates which value it is. If it is a variable, it
indicates the name of this variable. Otherwise, the value indicates to which
function it refers.

As it is explained in the implementation section of [1], for the MetaNode-language,
as in TinyOS is complicated to manage String variables, instead of using Strings,
numerical values will be used to describe the functionalities. For that reason, the
used implementation of MetaNode and MetaParam are as shown in FIGURE 3.1 and
FIGURE 3.2.

typedef struct MetaNode{
uint8_t metaLabel;
uint8_t idLabel;
MetaParam parameters[5];

}MetaNode;

FIGURE 3.1: Struct definition for MetaNode. [1]

typedef struct MetaParam{
uint8_t type;
int16_t value;

}MetaParam;

FIGURE 3.2: Struct definition for MetaParam. [1]

3.3 SENSOR INTERFACE

In order to develop a toolchain able to reconfigure the MAC protocol execution pro-
cess at runtime, some kind of dynamic structure is needed. This structure should
store all the instructions that MAC protocol needs to execute, allow any changes that
this protocol may need according to the situation and dynamically decides when a
function or command must be executed.

3.3. SENSOR INTERFACE 10

Nevertheless, as this toolchain is oriented to resource constrained networks such
as Wireless Sensor Networks, the algorithm must be designed according to the fea-
tures that TinyOS as Operating System and NesC as its own programming language
provided. We face to three important disadvantages:

• NesC does not allow dynamic memory allocation which is a problem for queue
resizing.Thereby, any kind of structure similar to Linked List provided by other
programming languages as C or C++ can not be used in TinyOS.

• In most C-like languages, callbacks have to be registered at run-time with a
function pointer. NesC interfaces are wired statically at compile time, for that
reason, the callbacks or events in TinyOS are very efficient. The compiler knows
exactly what functions are called where and can optimize heavily, so no function
pointer is provided.

• NesC is a component-based programming language and everything works through
events. It implies that the code is not completely sequential and it is more
difficult to control its execution progress. This is a problem because, for instance,
if a user programs that sendPacket() must be called after doing startRadio(), the
algorithm has to be able to relocate itself jumping through its code.

The design of our Sensor Interface is shown in FIGURE 3.3 and it has three com-
ponents:

• Execution List: is a list which stores the MetaNodes of the MAC protocol design.

• Variable List: is a list to store the variables defined in the MAC protocol design.

• MetaNode Compiler: a compiler which will translate the MetaNode to the corre-
sponding action that will be executed.

Variable ListExecution List

MetaNode
Compiler

Sensor Interface

MetaNode MetaNode MetaNode ... MetaVariable MetaVariable ...

add
variable

get variable
value

executeNode

pointer

FIGURE 3.3: Sensor Interface design.

3.3. SENSOR INTERFACE 11

3.3.1 Execution List

According to previous related works of reconfigurable toolchains at runtime, many
approaches used linked list structures to wire functional blocks or nodes in a logic
way to create an execution flow. That is a smart idea because it allows to indicate how
the execution will be and which component should be executed after that. One of the
most important advantages of this strategy is that it provides support to those logical
restrictions, such as a packet can not be send until the radio is started. Thereby, if we
need to be sure that the radio is started, the node responsible to send the packet must
be wired just after the node responsible of starting the radio.

In order to design the "hand-made linked list", it has been decided that a vector
or array structure of MetaNodes will be used as substitute of the Linked List. As
resizing is not possible, the size given to this structure will be selected during the
implementation after studying the average number of MetaNodes used to implement
most common MAC protocols and the RAM limitation of each platform.

Basically, Execution List must provide two basic functionalities:

• Transform an event-based environment to a sequential execution environment.

• Add or remove MetaNodes in order to make the toolchain adaptable at runtime.

Each of these functionalities determine the final design of the Execution List and
will be explained in next subsections.

3.3.1.1 Events execution in a sequential way

The design of the MetaNode-language Events implementation has been done think-
ing how to solve the problem of the sequentiality [1]. The process of defining an
event implementation implies using as minimum two MetaNodes: the first used to
define which event is and, the second (tag END_EVENT) used to define that the event
implementation is finished.

Using this strategy, sensor interface only needs to look for MetaNode event inside
the execution list when the event is fired and place the Execution Pointer in its posi-
tion. After that, it should execute each of the following MetaNodes and moving the
pointer until it finds END_EVENT MetaNode. Returning to the previous example, if
sendPacket() must be executed after startRadio(), the sensor interface only needs to find
MetaNode with StartRadioDone as MetaLabel. As following MetaNodes, it should
appear the SendPacket one, assuring that radio has been started previously.

Once a new event is fired, Sensor Interface must move the pointer to position
where event MetaNode is located inside the list. This process allow the toolchain
to jump inside the code freely and control the execution in a sequential way over a
event-based environment as it is shown in FIGURE 3.4. This process is also detailed
in Algorithm 3.1.

3.3.1.2 Adding and removing MetaNodes

Until the moment the design of the Execution List gives to the toolchain a static
environment. However, it is very important to provide some dynamism to the system,
allowing to modify the currently running MAC protocol.

3.3. SENSOR INTERFACE 12

MetaNode
Event_name

MetaNode MetaNode
MetaNode
END_EVENT

Execution List

...

i

..
.

MetaNode MetaNode

MetaNode
Event_name

MetaNode MetaNode
MetaNode
END_EVENT

Execution List

...

exec_pointer = i

MetaNode MetaNode

MetaNode
Event_name

MetaNode MetaNode
MetaNode
END_EVENT

Execution List

...

exec_pointer

MetaNode MetaNode

MetaNode
Event_name

MetaNode MetaNode
MetaNode
END_EVENT

Execution List

...

exec_pointer

MetaNode MetaNode

FIGURE 3.4: Procedure to execute sequentially an event implementation.

In order to achieve this, it is important to allow the list may grow or shrink depend-
ing on the instructions given by the user. As it has been explained before, dynamic
memory allocation is not allowed by TinyOS, therefore, the list will consist of an
array of MetaNodes with an static size enough big to implement most common MAC
protocols and not collapse hardware of the sensor node.

However, the Execution List should allow to introduce new elements to its struc-
ture based on the user requirements. The selected strategy to do it is based on the
displacement of MetaNodes inside the list. The position where the new MetaNode
is going to be inserted has to be provided by the user. Once the desired location is
known, from this position until the last occupied position of the list, all the implied
MetaNodes are going to be displace one position to the right as FIGURE 3.5 shows.
All the procedure can be simply translated into the Algorithm 3.2.

In a similar way, the list should allow to remove a certain MetaNode selected by
the user based on displacement too. Once the desired location to be deleted is known,
from the last occupied position of the list to the posterior position of the selected, all
the implied MetaNodes are going to be displace one position to the left as FIGURE 3.6
shows. In the same manner as the case of adding a new MetaNode, all the procedure
can be described using Algorithm 3.3.

3.3. SENSOR INTERFACE 13

Algorithm 3.1: Sequencial Execution
Data: event_name, list
Result:

1 i = 0, exec_pointer = 0;
2 while i < list.size do
3 if list[i].metaLabel == event_name then
4 exec_pointer = i;
5 break;
6 else
7 i++;
8 end
9 end

10 if i >= list.size then
11 event not found in execution list;
12 else
13 exec_pointer++;
14 while exec_pointer < list.size do
15 if list[exec_pointer].metaLabel == END_EVENT then
16 break;
17 else
18 executeNode(exec_pointer);
19 exec_pointer++;
20 end
21 end
22 end

3.3.2 Variable List

Implementing a MAC protocol usually involves using a lot of variables. We use
an array to store all the variables used by the toolchain due to the lack of dynamic
memory allocation.

The toolchain has four types of variables:

• System variables: the ones already defined by the toolchain. These variables will
be used to provide some information to the user, for example the tos_node_id of
the sensor node.

• Event attributes: the ones that an event return when is triggered. These variables
are used by the events to give some information to the user, for example if the
medium is busy after execute carrier sensing. As the system variables.

• Local variables: the ones defined by the user inside an event implementation. The
context of these variables is the event inside they are defined and they can only
be used inside it. Two variables can have the same name only if they belong to
two different events.

3.3. SENSOR INTERFACE 14

position - 1 position position + 1 position + 2

MetaNode MetaNode MetaNode MetaNode

Execution List

New
MetaNode

...

position - 1 position position + 1 position + 2

MetaNode MetaNode MetaNode

Execution List

New
MetaNode

...

position - 1 position position + 1 position + 2

MetaNode MetaNode MetaNode

Execution List

New
MetaNode

...

position + 3

MetaNode

position + 3

MetaNode

FIGURE 3.5: Procedure to add a new MetaNode to the Execution List.

• Global variables: the ones defined by the user at the top of the code outside the
events. These variables do not have context, but they belong to all of them.
For that reason, they can be used inside all the event implementations and their
value will be the same. However, the name cannot appear in another variable
definition again inside the code.

In order to represent a variable and store its value, it has been defined a new
structure called MetaVariable which consists of:

• Name: a name for the specific variable which will allow to identify and make
references to it during the execution of the code.

• Value: the currently value stored by the variable.

• Context: a value which identifies where the variable has been defined. If the
context is DEF, it means that the variable has been previously defined by the
system and can be used by the user but not modified (system variable); or it is
a variable which can be used throughout the code (global variable). In other
cases, context will contain the MetaLabel of the event where the variable has
been defined and the use of this variable will be only valid inside the event of
definition (local variable).

Therefore, the Variable List will consist of an array of MetaVariables with an spe-
cific size selected according to hardware limitations. Once a variable is defined by the

3.3. SENSOR INTERFACE 15

Algorithm 3.2: Add new MetaNode to Execution List
Data: position,node, list

1 i = occupancy− 1;
2 if position+ 1 > occupancy then
3 trying to fill one position isolated from the rest of the list;
4 break;
5 else
6 while i >= position do
7 list[i+ 1] = list[i];
8 i−−;
9 end

10 list[position] = node;
11 occupancy++;
12 end

position - 1 position position + 1 position + 2

MetaNode MetaNode MetaNode MetaNode

Execution List

...

position - 1 position position + 1

MetaNode

Execution List

...
MetaNode MetaNode

position + 2

position - 1 position position + 1

MetaNode

Execution List

...
MetaNode MetaNode

FIGURE 3.6: Procedure to remove a MetaNode from the Execution List.

user, a MetaVariable is created and inserted as the last element of the array. Every
time a MetaNode which makes reference to a certain variable is read, it is only needed
to look for the variable name inside the Execution List and verify that the context
coincides. Verification of the context is very important because it is possible to have
different variables with the same name but having different contexts.

3.3.3 MetaNode Compiler

MetaNode Compiler is the main block from the Sensor Interface design. Its primary
purpose is to get MetaNodes from the Execution List, analyse them and execute the
corresponding action.

3.4. USER INTERFACE 16

Algorithm 3.3: Remove a MetaNode from Execution List
Data: position, list

1 i = position;
2 while i < (occupancy− 1) do
3 list[i] = list[i+ 1];
4 i++;
5 end
6 occupancy−−;

As many MetaNodes exist, many actions can be taken by the MetaNode Compiler
as listed below:

• Variable definition: it must create a new MetaVariable, taking the name from the
MetaNode and value 0 due to it is a definition. As context, it will take the name
of the event where it is defined or DEF if it is a general variable. After that, it
will insert the MetaVariable inside the Variable List.

• Expression: it will get the variables implied from the Variable List and will mod-
ify their value according to the expression.

• Function call: it will translate the IdLabel from the MetaNode into a certain
function of MAC Basic Components designed in 3.1 and execute it.

• Event implementation: it will move the Execution Pointer to the position where
the event is located inside the Execution List using MetaLabel as identifier. After
that, it will begin to execute one by one each of the elements contained by that
event, until it finds a notification of event ending.

• If-else structure: it will separate the condition elements from the if statement and
identify if they are variables or simple values. After that, it will check if the
condition is true. In that case, it will execute all the elements following the if
MetaNode until it finds an else or endif MetaNode. In case that the condition is
false, it will move the pointer to next else MetaNode to execute the appropiate
MetaNodes.

• Label-goto structure: in case of a label definition it will not do anything. However,
in case of a goto statement, it will move backwards the Execution Pointer to the
position where the label has been defined.

3.4 USER INTERFACE

One of the most important features of this thesis is the reconfigurability of the MAC
protocol at runtime. A user interface is designed to read the user commands, interpret
and send them to the sensor node through the serial port.

Mainly, the user interface will consist of three components which can be seen in
FIGURE 3.7:

3.4. USER INTERFACE 17

• Command Shell: a command-line shell through which the user sends commands
to the sensor node and receives some feedback. In addition, it translates user
commands into real actions, such as load and parse a new MAC protocol design,
add or remove an instruction, etc.

• Meta-language Parser [1]: it translates MAC protocol instructions from Meta-
language to MetaNodes. As this is a hard process and sensor nodes are resources
constrained platforms with a very limited ROM and RAM, the user interface will
include it.

• Serial Controller: responsible of the communication between the user/computer
and the sensor node.

Serial
Controller

UserUser

Command
Shell

Commands

Feedback

load
add

remove

MetaNode list
Parser

feedback

Meta-language
Parser

run
stop

Sensor node feedback

Serial
Communication

User Interface

Sensor node

FIGURE 3.7: User Interface design.

3.4.1 Command Shell

Main functionality of Command Shell is to translate user commands into real actions.
Therefore, it has been designed to understand functionalities according to the actions
that can be performed by the user which are listed below:

• Load new MAC protocol: The user can load a text file which contains the instruc-
tions of the specific MAC protocol. If there are some errors, the user will be
notified about that. Otherwise, MAC protocol will be loaded into the sensor
node which will be ready to execute it.

• Run a loaded MAC protocol: After loading a certain MAC protocol, the user should
be able to execute it.

• Stop a running MAC protocol: In the same way that a user can execute a MAC
protocol, the user should be able to stop it.

• Add or remove instructions to a loaded MAC protocol: In some cases, the user will
need to modify the currently running MAC protocol. For instance, the user

3.4. USER INTERFACE 18

will need to modify the sleep interval from the Low Power Listening functionality
without recompiling again the MAC protocol code. In order to be able to do that,
add and remove functionalities must be provided by Command Shell. They allow
to introduce or eliminate instruction lines from the preloaded MAC protocol text
file.

• Help: In addition to the previous functionalities, a Help functionality is necessary
to let the user know how Command Shell works and how the Meta-language
syntax is.

3.4.2 Serial Controller

As a communication between the computer and the sensor node is needed, a com-
ponent to control that communication should exist. This component will be the re-
sponsible of sending all the commands (load, run, stop, etc.) from the computer to the
sensor node and transferring the MAC protocols instructions. In a similar manner, it
will notify when a feedback from the sensor node is received.

4

IMPLEMENTATION

This chapter describes the implementation details of the reconfigurable toolchain. It
can be divided in three parts: MAC Functional Blocks, Sensor Interface and User
Interface. In section 4.1, implemented MAC Components and their relationships are
described. Finally, the Sensor Interface implementation and the User Interface imple-
mentation are described in section 4.2 and 4.3 respectively.

4.1 MAC FUNCTIONAL BLOCKS

Our toolchain follows a component structure, starting with very simple and inde-
pendent blocks which can be used to build more complex blocks quickly [1]. In
this section, the MAC components implemented following the basic and complex
functionalities of section 3.1 are presented.

In TABLE 4.1 a list of basic and complex components and their composition is
defined. The basic components are the simplest ones built using only TinyOS com-
ponents. The complex components are built combining existing components of the
framework and TinyOS components.

Basic Component Composition
MACNoiseFloorEstimator QueueC, HplCC1000C or CC2420ControlC
MACRadioPowerControl ActiveMessageC, StateC
MACRandomNumGenerator RandomC
MACReceive AMReceiverC, ActiveMessageC
MACSend AMSenderC, ActiveMessageC
MACTimer TimerMilliC
Complex Component Composition
MACCarrierSensing MACTimer, MACNoiseFloorEstimator, StateC

MACLowPowerListening
MACTimer, MACRadioPowerControl, MAC-
CarrierSensing, StateC

MACBinaryExponentialBackoff MACRandomNumGenerator
MACReceivePacket MACReceive
MACSendPacket MACSend
MACSendPreamble MACTimer, MACSend, StateC

TABLE 4.1: MAC components library and their composition. [1]

FIGURE 4.1 shows the final structure of our MAC protocols implementation and
the relationships between them. The arrows indicate that the complex component has
been built using the indicated basic or complex component.

19

4.2. SENSOR INTERFACE 20

MAC

Carrier

Sensing

MACLow

Power

Listening

MACBinary

Exponential

Backoff

MAC

Receive

Packet

MACSend

Packet

MACSend

Preamble

MACRandom

Num

Generator

MACTimer MACSend
MAC

Receive

MACRadio

Power

Control

MACNoise

Floor

Estimator

Complex

Components

Basic

Components

FIGURE 4.1: Diagram of reusable components. [1]

4.2 SENSOR INTERFACE

In this section we explain how the Sensor Interface has been implemented. It is written
in NesC. As it is explained in section 3.3, the Sensor Interface consists of three compo-
nents: the execution list, the variable list and the MetaNode compiler. This is the part
of the project which introduces dynamism and allows reconfigurability at runtime by
adding and removing nodes from the execution list. In the implementation, as it is
shown in FIGURE 4.2, two more components are included:

• ExecutionScheduler Component: the execution scheduler will be implemented as a
TinyOS independent component which will include and manage the other three
components. Moreover, it will be built using all the MAC components making
possible to call their commands and listen to their events. Finally, the compo-
nent will have a TinyOS interface which will provide commands to execute the
principal functionalities of the execution scheduler.

• Sensor Node Serial Controller: it is responsible for the communication between
the computer and the sensor node. It reads the messages sent by the computer
through the serial port and sends messages to the computer. This component
will be the main one and will call the Execution Scheduler interface to execute
the required functionalities.

4.2.1 Execution List

As it is explained in section 3.3, in NesC it is not possible to use dynamic memory allo-
cation. For that reason, the execution list which allocates the MetaNodes of the MAC
protocol is an array of MetaNode structures. Moreover, as resizing is not possible, the
array has a predefined size. The size depends on the RAM of the platform; due to it is
the most restrictive feature. In addition, we decide to do not select the size of the array
depending on the MAC protocols sizes because a user can implement a new protocol
which needs more instructions than an existing protocol.

For TelosB platforms which have 10 kB of RAM the size of the execution list will be
of 300 MetaNodes. In case of Mica2 platform, the size is only 130 due to they have only
4 kB of RAM. In order to make our toolchain platform independent, we use the syntax

4.2. SENSOR INTERFACE 21

ExecutionScheduler Component

MetaNode
Compiler

add
variable

get variable
value

executeNode

Sensor
Node
Serial

Controller

Sensor Interface

PCPC

Serial
Communication

Ex
ec

u
ti

o
n

Sc
h

ed
u

le
r

In
te

rf
ac

e

Variable ListExecution List

MetaNode MetaNode MetaNode ... MetaVariable MetaVariable ...

pointer

FIGURE 4.2: Sensor Interface implementation.

shown in FIGURE 4.3 which can be used in TinyOS. Thereby, we define the maximum
size in a header list with the name MAX_EXECBUFFERSIZE and depending on the
platform the proper value will be selected.

#if defined(PLATFORM_MICA2) || defined(PLATFORM_MICA2DOT)
#define MAX_EXECBUFFERSIZE 130

#else
#define MAX_EXECBUFFERSIZE 300

#endif

FIGURE 4.3: Definition of the maximum size of Execution list.

Therefore, Execution List consists of an array of MetaNodes called execBuffer which
its size is specified by the constant MAX_EXECBUFFERSIZE. It is also an integer
variable of type uint16_t called execBufferSize which will contain the actual occupation
of the list. When a new node is added to the list, the variable is incremented by
one unit and, in the same manner, when a node is removed, the variable will be
decremented by one. Thereby, the number of nodes occupying the list is always
known.

4.2.1.1 Events execution in a sequential way

In NesC language everything works through events which implies that the code is not
completely sequential. The only sequential part of the code is the one that is executed
inside an event. However, when an event is triggered, the execution jump from
on event execution to another. As it is explained in sections above, our MetaNode-
language has been designed to follow the same idea: in the execution list, there are
events definitions delimited by two MetaNodes, the first indicates which event will be
defined and the other indicates that the event implementation is finished. Therefore,
when an event is triggered, the Sensor Interface has to look for the MetaNode of this
event inside the execution list and execute the following MetaNodes until the end of
the event implementation is found.

In order to do that, each time that an event is triggered the MetaNode which
indicates the beginning of the event implementation is searched in the execution list.

4.2. SENSOR INTERFACE 22

Once the position is found, it is stored in a variable called pointer and incremented
in one unit, then, a loop starts. In this loop, pointer is incremented each time and
the MetaNode placed in this new position is executed. When the MetaNode with
MetaLabel END_EVENT is found the loop is stopped. In section 4.2.3, it will be
explained how the pointer is incremented, due to the units to increment it depends
on the type of MetaNode executed. Each time that pointer is incremented, it is checked
whether its value is lower than the actual list occupation. This process can be seen in
FIGURE 4.4.

The variable context indicates the event that is running and attributesList is an array
of MetaVariables. In this array are stored attributes that the event may return and the
user is able to check. In order to use the attributes, they are included in the array
when the event is triggered. The MetaVariable structure and its characteristics will be
explained in the next section. FIGURE 4.5 shows an example of how the attributes are
included in the array. The identifier of each variable is described in [1].

Boot event is a special case, because the existence of global variables definition
must be checked. As it explained before, these variables are defined in the first lines
of the MAC protocol, thus the corresponding MetaNodes are placed in the first posi-
tions of the execution list outside any event implementation. For that reason, before
executing the Boot event we include the process in FIGURE 4.6 in order to execute
these MetaNodes and define the variables before executing the rest of the code. In the
loop, we execute all the MetaNodes placed in the first positions until a MetaNode with
a MetaLabel different of DEF is found, because it means that the following MetaNodes
is an event implementation.

4.2. SENSOR INTERFACE 23

pointer = 0
context = EVENT_NAME

attributeList = getEventAttributes()

execBuffer[pointer].MetaLabel
== EVENT_NAME?

pointer ++

YES

pointer ++NO

execBuffer[pointer].MetaLabel
== END_EVENT?

NO

ENDNO

YES

pointer = executeNode(pointer, attributeList, context)

pointer <
execBufferSize?

YES

pointer <
execBufferSize?

YES

NO

BEGIN

FIGURE 4.4: Execution of an event.

4.2.1.2 Adding and removing MetaNodes

As it is commented before, in order to provide some dynamism to the system, there
is an array of MetaNodes with a static size enough big to implement most common
MAC protocols and to not collapse hardware of the sensor node. This array allows
introducing new elements in the first empty position or between already occupied
positions.

4.2. SENSOR INTERFACE 24

event void MACCarrierSensing.firedCS(bool mediumBusy){
MetaVariable att[3];
MetaVariable mediumBusyVar;
mediumBusyVar.name = 7;
mediumBusyVar.value = mediumBusy;
att[0] = mediumBusyVar;

...
}

FIGURE 4.5: Example of storage of the attributes of an event.

pointer = 0
context = DEF

attributeList = null

ENDNO

YES

Execute Boot eventNO

pointer = executeNode(pointer, attributeList, context)

YES

pointer <
execBufferSize?

execBuffer[pointer].MetaLabel
== DEF?

BEGIN

FIGURE 4.6: Execution of global variable definitions.

Add new elements in the first empty position is easy to implement. As it is shown
in FIGURE 4.7, the new MetaNode will be placed next to the last occupied position of
the list. This position is stored in the variable execBufferSize. Nevertheless, no more
new nodes cannot be placed in case the list is already full.

FIGURE 4.8 shows how to add a new element in a specified position between
already occupied ones. In this case, the element in the required position and the
following ones until the last occupied node will be displaced one position in order to

4.2. SENSOR INTERFACE 25

execBuffer[execBufferSize] = new_node;
execBufferSize ++;

FIGURE 4.7: Addition of a node next to last occupied position of the list.

leave this position empty and be able to place the new MetaNode. As in the previous
case, we can not place new nodes if the list is already full.

if(position+1 <= execBufferSize){
uint16_t i;
for (i = realExecBufferSize-1; i >= position; i--) {

execBuffer[i+1] = execBuffer[i];
}
execBuffer[position] = new_node;
execBufferSize ++;

}

FIGURE 4.8: Addition of a node in a specified position of the list.

Moreover, the array allows removing elements from the list. In order to do that, the
position of the element which have to be removed is specified. Then, as it is shown in
FIGURE 4.9, from the node placed next to the position until the last occupied position
of the list, all the nodes are moved one position to the left. Thereby, the node in the
position specified is overwritten and the occupation of the list is decremented by one
unit.

uint16_t i;
for (i = position; i < execBufferSize-1; i++) {

execBuffer[i] = execBuffer[i+1];
}
execBufferSize--;

FIGURE 4.9: Removal of a node in a specified position of the list.

4.2.2 Variable List

In the MAC protocol implementation, it is possible to define general and context
variables and change their values. For that reason, the Sensor Interface needs some
structure to store them and access to them when it needs. As with the execution list,
an array with a predefined size will be used. In this case, an array of MetaVariable
structures and a size of 50. FIGURE 4.10 shows MetaVariable structure which has
three fields: name, value and context.

A variable of type uint8_t called variablesBufferSize will contain the actual occupa-
tion of the list of variables. When a variable is defined, it is inserted next to the last
occupied position of the array and the occupation is incremented by one unit. In the
same manner, when a variable is removed, the following positions are displaced one
position to the left and the occupation is decreased one unit.

4.2. SENSOR INTERFACE 26

typedef struct MetaVariable{
int16_t name;
int16_t value;
uint8_t context;

}MetaVariable;

FIGURE 4.10: MetaVariable structure.

Every time a MetaNode which makes reference to a certain variable is executed,
MetaVariable position inside the variable list is searched. In order to do that, its name
and its context are verified as it is shown in FIGURE 4.11. Its name should coincide
with the name given by the MetaNode and its context should coincide with the actual
context (the event that is being executed) or it should be DEF, which means that the
variable is general and can be used in all the events. The context verification is very
important, due to it is possible to have different variables with the same name but in
different contexts.

uint8_t getVariablePosition(int16_t name, uint8_t context){
uint8_t pos;
bool found = FALSE;
for (pos = 0; pos < variablesBufferSize; pos++) {

if(variablesBuffer[pos].context == DEF ||
variablesBuffer[pos].context == actual_context){

if(variablesBuffer[pos].name == name){
found = TRUE;
break;

}
}

}
return pos;

}

FIGURE 4.11: Search for a variable position inside Variable list.

This list will include three types of variables:

• System variables: they are those defined previously by the toolchain. Their con-
text is DEF, they can be used in all the code and they are included in the list when
the sensor node starts to run the MAC protocol. These variables are used to help
the user and provide some information, i.e. the node_id of the sensor node.

• Local variables: they are those defined inside an event implementation. The
context of these variables is the event inside they are defined and they can only
be used inside it. In order to not waste space in the list, these variables are
removed when the event execution is finished. In order to do that, the code in
FIGURE 4.12 is used to remove only the variables with the context specified.

• Global variables: they are those defined by the user at the top of the code, outside
the events. The context value of these variables is DEF. They cannot be removed
from the list, because they can be used in all the events.

4.2. SENSOR INTERFACE 27

void deleteLocalVariables(uint8_t context){
uint8_t pos;
uint8_t i;
for (pos = 0; pos < variablesBufferSize; pos++) {

if(variablesBuffer[pos].context == context){
for (i = pos; i < variablesBufferSize-1; i++) {

variablesBuffer[pos] = variablesBuffer[pos+1];
}
variablesBufferSize--;
pos--;

}
}

}

FIGURE 4.12: Removal of local variables when an event execution is finished.

4.2.3 MetaNode Compiler

As it is mentioned above, NesC language does not provide function pointers. For that
reason, in the Sensor Interface a compiler is needed to translate the MetaNodes into
real functions calls. This compiler will also define new variables, change their values
and interpret if-else and label-goto structures.

When an event is triggered, the pointer is placed to the position where the event
is located, the actual context is changed and its attributes are stored in an attribute
list. After that, the pointer is incremented by one unit and all the following elements
are executed until the MetaNode with MetaLabel END_EVENT is found. For each
MetaNode that has to be executed, first of all, the compiler chooses which action it
has to be performed depending on the MetaLabel using a switch condition. Below it
is explained the actions carried out for each one of them, except for events and end of
event implementation:

• DEF: It is a variable definition. A new variable with specified name, value 0 and
the actual context is added to the variable list. Finally, the pointer is incremented
by one unit and returned.

• EXP: It is an expression. First of all, the position of the variable which its value
has to be changed is searched. Then, the second parameter is evaluated follow-
ing the scheme shown in FIGURE 4.13: it can be a numerical value, another
variable or a function call. In the first case, the value is taken directly from
the MetaNode. In the second case, the variable is searched in the attributes list
of the event. In case of existing as attribute, its value is taken. Otherwise, the
position of this variable is searched in the variable list and its value is taken from
there. In the last case, the function is executed like a MetaNode FUNC with the
parameters indicated and the returned value is taken. Once variable position
is known as well as the value of the second parameter of the expression, the
arithmetical operation is performed over the mentioned variable depending of
IdLabel field. Finally, the pointer is increment one unit and returned.

• FUNC: It is a function call. Depending on the IdLabel, the corresponding com-

4.2. SENSOR INTERFACE 28

param2 = execBuffer[pointer].parameters[1]

value = param2.valueYESparam2.type ==
VALUE?

param2.type ==
VAR?

NO

YES

i = getVariablePosition(param2.value)

value = variableList[i].value

param2.type ==
FUNC?

NO

YES

i = getAttributePosition(param2.value)

i > 0?

NO

value = attributeList[i].valueYES

nodeFunc = new MetaNode()

nodeFunc.MetaLabel = FUNC
nodeFunc.Idlabel = param2.value

nodeFunc.parameters[0] = execBuffer[pointer].parameters[2]
nodeFunc.parameters[1]= execBuffer[pointer].parameters[3]
nodeFunc.parameters[2]= execBuffer[pointer].parameters[4]

value = executeFunction(nodeFunc, attributeList, context)

FIGURE 4.13: Get the value of a parameter flowchart.

mand call is selected using a switch condition. Before executing the function, if
it needs parameters, they are taken from the MetaNode. They can be numerical
values or variables. As in the expression, if the parameter is a number, its value
is taken directly from the MetaNode. Otherwise, the position of the variable is
searched in the attributes list of the event and in the variable list and its value is
taken from where it is found. Once all the parameters are found and recognized,
it is executed. In case of having a value to be returned, it is returned to the

4.2. SENSOR INTERFACE 29

compiler. If the function is called in an expression, this value is the one that
used inside the expression. Otherwise, the value returned is ignored, the pointer
is incremented by one unit and returned while the compiler continues executing
the rest of the nodes.

• IF: It indicates the start of an if-else structure. First of all the two values to
be compared are taken. As in function calls, they can be numerical values or
variables. Once the compiler has the two values, the condition is taken from the
MetaNode and it is checked.
If the condition is true, the pointer is incremented by one unit and a loop starts.
Inside this loop, if the node placed in the pointer position has the MetaLabel
ELSE or END_IF and the same IdLabel, the loop is stopped. Otherwise, the node
is executed, the pointer gets the returned value and the loop continues. In case
END_IF is found, the loop stops and the pointer is incremented by one unit and
returned. Otherwise, if ELSE is found, the loops stops and starts another one
which increments the pointer by one unit until END_IF with the same IdLabel
is found. As in the other case, when END_IF is found the pointer is incremented
by one unit and returned.
If the condition is false, another loop starts. In this case, the pointer is incre-
mented by one unit until ELSE of END_IF with the same IdLabel is found.
If the END_IF is found the pointer is incremented by one unit and returned.
Otherwise, the pointer is directly returned in order to the compiler reads the
ELSE node and executes it.

• ELSE: If the compiler found a MetaNode ELSE, it means that the condition
checked in the MetaNode IF has been false. The pointer is incremented by one
unit and a loop starts. Inside the loop, the node located in the position which
the pointer indicates is executed. As in MetaNode IF, the pointer is incremented
depending on the MetaNode executed and the node located in this new position
is executed, and so on, until a MetaNode with MetaLabel END_IF and the same
IdLabel is found. Then, the loop ends and the pointer is incremented by one unit
and returned.

• END_IF: As it is explained in the previous cases, this MetaNode is looked for in
the loop of the MetaNode IF or ELSE. It marks the final of an if-else structure but
cannot be executed in the compiler due to the pointer is increment in one unit
after it is found.

• LABEL: It is a label definition. The Sensor Interface does not have to do any
action. In this case, only the pointer is incremented by one unit and returned.

• GOTO: It is a goto statement. A MetaNode with LABEL tag as MetaLabel and
with the same IdLabel is searched in the same context. If it is not found, the
pointer is incremented by one unit. Otherwise, the pointer is moved to the next
position after the MetaNode LABEL and returned.

4.2. SENSOR INTERFACE 30

condition = checkcondition(conditionToCheck, value1, value2)

pointer ++

condition?

ifLabel = execBuffer[pointer].idLabel
conditiontoCheck = execBuffer[pointer].parameters[0].value
value1 = getParamValue(execBuffer[pointer].parameters[1])
value2 = getParamValue(execBuffer[pointer].parameters[2])

execBuffer[pointer].MetaLabel
== ELSE &&

execBuffer[pointer].idLabel
== ifLabel?

execBuffer[pointer].MetaLabel
== END_IF &&

execBuffer[pointer].idLabel
== ifLabel?

NO

execBuffer[pointer].MetaLabel
== END_IF &&

execBuffer[pointer].idLabel
== ifLabel?

YES

Pointer ++
return pointer

YES

NO

YES

execBuffer[pointer].MetaLabel
== ELSE &&

execBuffer[pointer].idLabel
== ifLabel?

NO

execBuffer[pointer].MetaLabel
== END_IF &&

execBuffer[pointer].idLabel
== ifLabel?

NOpointer ++

YES

NO

pointer = executeNode(pointer, attributeList, context)

pointer ++

NO

YES

YES

return pointer

FIGURE 4.14: Execution of an if MetaNode.

4.2. SENSOR INTERFACE 31

4.2.4 ExecutionScheduler Component

The execution list, the variable list and the MetaNode compiler are implemented
inside a TinyOS component called ExecutionScheduler. Thereby, this component will
allow to add or remove a node, run or stop the actual execution list. An interface for
this component must be created in order to make public these functionalities.

The implemented interface is shown in FIGURE 4.15 and it provides seven com-
mands. The command executeList() puts the execution pointer in the first position of
the execution list and starts the execution of MetaNodes included in the list. The next
command is stopExecution(), it stops the execution of the MAC protocol. Regarding to
adding a node, two commands are provided. The first one is loadNode(node) is used
when a new MetaNode list is loaded, thus each new MetaNode is added in the last
free position of the execution list. The other one is addNode(node, position), as it is
can be observed, when this command is used the position should be provided and
this MetaNode is added in this certain position to the list. The command removeN-
ode(position) allows to remove the MetaNode which corresponds to the position of the
list. The command getListSize() returns the actual occupation of the execution list.
Finally, the command initListSize() changes the value of the occupation of the list to 0,
thus it provokes a behaviour very similar as when the list is empty.

interface ExecutionScheduler{
command void executeList();
command void stopExecution();
command void loadNode(MetaNode* node);
command void addNode(MetaNode* node, uint16_t position);
command void removeNode(uint16_t position);
command uint16_t getListSize();
command void initListSize();

}

FIGURE 4.15: Interface of ExecutionScheduler component.

This component is built using all the MAC Components implemented and ex-
plained in section 4.1, as well as it is included the TinyOS component LedsC to manage
the leds behaviour. This will allow the MetaNode compiler to listen to their events and
call their commands. There is a special case; in the implementation are instantiated
9 MACTimer components in order to give the user the possibility to create and use
many timers. Thereby, user will not be limited to use only one timer in the MAC
protocol design.

4.2.5 Sensor Node Serial Controller

As it is explained in section 3.4.2, the user will need a communication with the sensor
node in order to interact with it. This communication will be performed through a
computer connected to the sensor node via USB or serial cable. In the sensor node
side, a TinyOS component called SerialActiveMessageC is used to manage this com-
munication. It provides the interfaces Receive and AMSend in order to read and write
data in the serial port.

4.3. USER INTERFACE 32

The main component of the toolchain in the sensor node side is the one built using
SerialActiveMessageC and it is the responsible to receive user commands through the
computer. In order to be able to execute the desired task, i.e. load a new MAC protocol
or run it, this component should use the ExecutionScheduler interface. Thereby, the
main component is built using the SerialActiveMessageC and the ExecutionScheduler
components.

As it will be explained in section 4.3.3, the sensor node will receive specific com-
mands for each action that user wants to do. In that moment, Receive interface will
trigger an event with the message. The node will check for errors, send a feedback
and execute the required task. There are five cases and they are explained below:

• Load: The sensor node checks that the number of lines to load is lower than the
maximum number of lines allowed. As it explained before, for TelosB platforms
the execution list size is 300, but for Mica2 it is only 130. If the number of
lines is greater, the sensor node will send a feedback error to the computer.
Otherwise, it will initialize the lists of the Execution Scheduler component using
the command initListSize() and it will listen for the next messages which contain
the MetaNode list of the MAC protocol. For each MetaNode it will call the
command loadNode(node) to add it to the execution list.

• Add new node: In this case, first of all, the sensor node will check if the execution
list is already full. If it is full, it will return an error. Otherwise, it will check
the line when the new node should be placed. If this number is greater than
the actual occupation of the list which can be consulted using the command
getListSize(), it will return an error. This means that no empty positions can exist
between two consecutive MetaNodes in the execution list. Otherwise, the sensor
node will place the new MetaNode in the specified position using the command
addNode(node, position).

• Remove node: The sensor node checks if the specified position to remove is greater
or lower than the actual occupation of the list. If the number is greater, it means
that this node is already removed and the sensor node will return an error.
Otherwise, this node will be removed using the command removeNode(position).

• Run: The sensor node checks if the list is empty, in affirmative case, it will
return an error. Otherwise, it starts to execute the MAC protocol loaded in the
execution list using the command executeList().

• Stop: The sensor node stops the execution of the whole execution list using the
command stopExecution(). In this case, if the execution is already stopped, it does
not return an error. The sensor node always sends a feedback message to report
that the execution is stopped.

4.3 USER INTERFACE

One of the most important features of this thesis is that user is able to interact with
the sensor node and change its behaviour at runtime. In order to achieve it, a user
interface is necessary to communicate each other. This section will describe the imple-
mentation of the design described in section 3.4.

4.3. USER INTERFACE 33

All the implementation of the user interface has been programmed in Java for
many reasons. First, TinyOS provides native libraries for different programming lan-
guages like Java, C or Python; giving access to TinyOS serial stack in order to be able
to interact with the different platforms. Moreover, Java is multiplatform which means
that any Java application can run on any computer architecture or operative system if
Java Virtual Machine (JVM) is installed. Therefore, the user interface which is going
to be implemented will work in Windows, Linux or MacOS.

4.3.1 Command Shell

As it has been previously mentioned in 3.4.1, Command Shell is designed to be able
to provide 6 basic functionalities: load a new MAC protocol, run a loaded MAC
protocol, stop the execution, add new instructions to the running MAC protocol,
remove instructions from the running MAC protocol and provide some help to the
user.

First of all, the user will input commands in text format, thus these commands
should be parsed, identify properly and execute its action. In order to manage it, a
simple enumeration of constants has been created as FIGURE 4.16 shows. Each of
these constants makes reference to a certain command, except for the last three which
are arguments of the HELP command.

public final static int LOAD = 0,
ADD = 1,
REMOVE = 2,
RUN = 3,
STOP = 4,
HELP = 5,
EXIT = 6,
SYNTAX = 7,
FUNCTION = 8,
CONSTANT = 9;

FIGURE 4.16: Definition of Commands enumeration.

In order to recognize a command properly independently if user inputs the com-
mands in lowercase or uppercase, the code in FIGURE 4.17 shows how a command
can be recognized and translated to a numeric value. First, the command is capitalized
and compared one by one with the name of the different elements of the commands
enumeration defined in FIGURE 4.16. If it matches, the value of this field is stored
in commandType which will be used to decided which action should be taken. In
addition, a boolean variable called commandRecognized is set to true to indicate that
the command has been finally recognized. If this variable is false, an error is indicated
to the user through the shell.

Once the command is translated from a string to a numeric value, through a switch
condition it will be examined. Depending on the case, different actions can be carried
out as FIGURE 4.18 shows.

• LOAD: This command is used to load a file containing a MAC protocol descrip-
tion. It must follow the next structure:

4.3. USER INTERFACE 34

for(java.lang.reflect.Field f : fields){
if(f.getName().equals(command.toUpperCase())){

commandType = f.getInt(Shell.class);
commandRecognized = true;

}
}

FIGURE 4.17: Recognition of a command.

>> LOAD [filename]

After entering LOAD, a valid file path must appear as parameter of the com-
mand in order to open and read it. Once the number of parameters and its
validity have been checked, the Parser is called with file path as parameter and
it will return a list of MetaNodes after processing the file. After that, the list of
MetaNodes are sent to the sensor node using the SerialController.

• ADD: This command allows to add a new line or instruction to the previously
loaded MAC protocol. It must follow the next structure:

>> ADD [numLine] [func/exp/def/if-else/label&goto]

As first parameter must appear the line number where the instruction is going
to be added. The second parameter must be the instruction to insert into the
MAC protocol following Meta-language syntax explained in [1]. It can be a
function call, a expression, a definition of a variable or an if-else or label-goto
statement. The instruction is processed by the Parser and it returns a certain
MetaNode which is stored in a general list of MetaNodes called nodeList and in
a list of changes called modifiedNodeList. NodeList is the list where all MetaNodes
are stored after parsing the text file. Thereby, the MetaNode is inserted in the
position indicated as numLine parameter. On the other hand, it is inserted at the
end of the modifiedNodeList indicating that the change to be made is ADD.

If the MetaNode returned after parsing the instruction of ADD command is an
IF, ELSE, ENDIF, EVENT or END_EVENT; a boolean variable called reload is
set to true. This step is very important as it determines when a big change is
introduced into the MAC protocol. The main difference between a big and a little
change is the instruction inserted. In case of instructions like mentioned before
includes other instructions inside them. For that reason, all the code should be
checked after introducing all the changes to check if there is no new errors, e.g.
if each curly bracket is closed. It implies to resend all the MetaNodes again i.e.,
it is necessary to make a LOAD of the nodeList. On the other hand, the other
instructions must be checked individually and there is no need to check the rest
of the code. In that case, it is not necessary to send nodeList which is quite big,
but modifiedNodeList which its size is smaller must be sent .

In any case, all the instructions used in ADD command are inserted in the text
file previously loaded.

4.3. USER INTERFACE 35

• REMOVE: This command allows to remove a line or instruction from the previ-
ously loaded MAC protocol. It must follow the next structure:

>> REMOVE [numLine]

As first parameter must appear the line number of the instruction is going to be
removed. In the same manner as ADD command, it is important to distinguish
between big or little changes introduced. If the MetaNode to be removed is an IF,
ELSE, ENDIF, EVENT, END_EVENT, LABEL or DEF; a boolean variable called
reload is set to true. As a difference with ADD command, LABEL and DEF are
taken into account when distinguishing a big change, because removing one of
these MetaNodes generates broken references, e.g. expressions using variables
which are not defined anymore. Therefore, all the code must be checked before
running again. Regarding to the lists of MetaNodes, the MetaNode in the posi-
tion determined by the numLine parameter is removed from nodeList. Moreover,
the MetaNode will be inserted in modifiedNodeList but, in this case, indicating
that the action to be taken is REMOVE.

In any case, all the instructions used in REMOVE command are removed from
the text file previously loaded.

• RUN: This command is used to initiate the execution of the previously loaded
MAC protocol. It must follow the next structure:

>> RUN

As a difference to other commands, it does not need any parameter. Before
sending the order of running the loaded code, nodeList is checked to find some
error. After that reload variable is checked. In case of reload value is true, all
the nodeList will be sent again. Otherwise, modifiedNodeList will be sent instead.
Using this approach, it allows us to improve the efficiency of modifying a MAC
protocol due to when just an little change is introduced modifiedNodeList which is
smaller than nodeList is sent. Finally, the order of running the code is sent to the
sensor node, reload variable is set to false again and modifiedNodeList is emptied.

• STOP: This command is used to stop the execution of the running MAC protocol.
It must follow the next structure:

>> STOP

In the same manner as RUN command, it does not need any parameter. After
recognizing the command, it is sent directly to the sensor node.

• HELP: This command is used to visualize some helpful information that user
may need , e.g. information about the previously explained commands or about
Meta-language syntax. It must follow the next structure:

>> HELP [load/add/remove/run/stop/syntax/function/variables]

4.3. USER INTERFACE 36

As first parameter must appear one of the options shown above. First five op-
tions are used to show information about the previously explained commands.
Last three commands five information about: syntax of Meta-language, func-
tions available to be used in Meta-language and default variables or attributes
provided by the toolchain. This command does not interact with the sensor
node.

Read
Command

Recognize
Command

(text to num)

LOAD?

ADD?

NO

REMOVE?

NO

RUN?

NO

STOP?

NO

HELP?

NO

Show
command
type error

NO

Parse MAC
protocol

YES
Send

nodeList

Parse lineYES
Add to

nodeList
Check errors

Important
change?

NO

reload = TRUEYES

Add to
modifiedNodeList

Remove from
nodeList

YES Check errors
Important
change?

NO

reload = TRUEYES

Add to
modifiedNodeList

reload?YES

TRUE
Send

nodeList
Send run

Send
modifiedNodeList

FALSE

Send stopYES

Show helpYES

reload = FALSE
nodeList = new ArrayList()

modifiedNodeList = new ArrayList()

reload = FALSE
modifiedNodeList = new ArrayList()

FIGURE 4.18: Command Shell flowchart.

4.3. USER INTERFACE 37

4.3.2 Parser

One of the most important components of the User Interface is the Parser which is the
responsible of reading text files written using Meta-language and translate them into
MetaNode-language. Mainly, the process of parsing consists of four basic steps: init,
read line, identify node and parse node. This process is explained with more details
in [1].

4.3.3 Serial Controller

In order to establish a communication between the user and the sensor node, it is
necessary to implement the module designed in 3.4.2.

According to TinyOS 2.1 documentation [28], the basic abstraction for sensor node-
PC communication is a packet source. A packet source is a communication medium
over which an application can receive packets from and send packets to a sensor
node. Examples of packet sources include serial ports, TCP sockets, etc. Therefore,
the communication is based on packets using basic structure message_t and it can be
performed in a similar way as radio communication works.

Rather than directly writing and reading the payload area of the message_t with the
data to be sent, we will use a structure to hold them and then use structure assignment
to copy the data into the message payload area. Using a structure allows reading and
writing the message payload more conveniently when the message has multiple fields
or multi-byte field, like uint16_t or uint32_t, because it is possible to avoid reading and
writing bytes from/to the payload using indices and then shifting and adding (e.g.
uint16_t x = data[0] « 8 + data[1]).

As it has been explained in previous section 4.3.1, a list of MetaNodes must be
sent to the sensor node due to it is the way the sensor node loads a MAC protocol.
Thereby, we have decided to use it as data structure to fill the message payload of the
communication between PC and sensor node. It will be used for sending the MAC
protocol as well as the user commands.

We have programmed a class called Serial that allows us to connect to the sensor
node, send and receive messages and close the connection. In order to implement
that, we used MoteIF, an object from TinyOS Java Library. Taking the URL of the
serial device as a parameter in the constructor of the class, it establishes a connection
between them. Every time a message is desired to be sent, it is only needed to call
the send method which takes as parameter a MetaNode. In addition, it is necessary
that Serial implements the interface MessageListener and register it as listener from the
MoteIF to be able to listen the packets sent by the sensor node. Once a message is
received, the method messageReceived is called and the message is returned to the Shell
class which will interpret it.

Toolchain Serial Protocol has been designed and implemented to establish some
rules in the communication process an allow us to transfer commands as well as MAC
protocol description.

4.3.3.1 Toolchain Serial Protocol

The protocol has been designed according to the functionalities that the user may
request to the sensor node. Thereby, we will describe the protocol distinguishing the

4.3. USER INTERFACE 38

three functionalities which requires some message exchange:

• LOAD: Before initiating the transfer of MetaNodes generated after parsing the
text file, it is necessary to create a new MetaNode with LOAD tag as MetaLabel
value. Besides, it needs one parameter indicating that the type field is a value
(tag VALUE) and in the value field the number of MetaNodes that the sensor
node should expect before concluding the MAC protocol description transfer.

After receiving this MetaNode, the sensor node may answer with two differ-
ent messages. In case there is any error, sensor node answers with an spe-
cific MetaNode with tag ERROR as MetaLabel and IdLabel LOAD. Usually, this
MetaNode is sent when the size of nodeList is too big for the buffer permitted by
the sensor node. On the other hand, if there is no error, sensor node will answer
with a MetaNode whose MetaLabel will contain the tag LOAD and 0 as IdLabel.
It will notify the Shell that it can initiate the transfer nodeList.

After transferring one by one all MetaNodes from nodeList, the sensor node will
answer with a MetaNode with LOAD as MetaLabel and 1 as IdLabel, to indicate
that everything went fine. All this procedure is shown in FIGURE 4.19.

a) Load nodeList

Computer Sensor node

LOAD - VALUE numLines

LOAD 0 -

MetaNode 1

..
.

MetaNode numLines

LOAD 1 -

b) Error in load nodeList

Computer Sensor node

LOAD - VALUE numLines

ERROR LOAD -

FIGURE 4.19: Messages exchange during LOAD process.

• RUN: As it has been described in section 4.3.1, before sending a RUN command,
it is necessary to check if its necessary to make a reload of nodeList or only send
the changes made by the user which are stored in modifiedNodeList.

In case it is necessary to make a reload of nodeList, the protocol acts in the same
manner as in the previous case.

In case of sending the changes stored in modifiedNodeList, it is a bit more compli-
cated. All the MetaNodes inside modifiedNodeList are extracted and sent one by
one. As it has been mentioned previously, user can make two types of changes:
add or remove instructions. Regarding to adding instructions, the way to send
these MetaNodes consists in sending two MetaNodes at the same time. First
MetaNode will have ADD_NODE tag as MetaLabel and one parameter indicat-
ing that the type field is a value (tag VALUE) and in the value field the position
where it is desired to be inserted. Second MetaNode will be the MetaNode to be

4.3. USER INTERFACE 39

inserted. If there is an error regarding to an invalid position to insert the MetaN-
ode, the sensor node will answer with another MetaNode containing tag ERROR
as MetaLabel and IdLabel ADD_NODE. In case of removing instructions, it is
only needed to send one MetaNode with REMOVE_NODE tag as MetaLabel
and one parameter indicating that the type field is a value (tag VALUE) and in
the value field the position of the MetaNode to be removed. In case of error
with the position indicated, the sensor node will answer in the same manner as
adding case but using REMOVE_NODE as IdLabel.

After checking that reload or changes load process is finished, it is time to send
the order of starting the execution. It is only needed to send one MetaNode
with RUN tag as MetaLabel. None parameter is needed as difference with the
other messages. In case there is no code loaded in the sensor node, it will send a
MetaNode with tag ERROR as MetaLabel and IdLabel RUN. All this procedure
is shown in FIGURE 4.20.

Computer Sensor node

RUN - -

RUN 0 -

a) Run without changes

Computer Sensor node

RUN - -

ERROR RUN -

b) Error in run without changes

RUN - -

RUN 0 -

c) Load nodeList and run

Computer

LOAD - VALUE numLines

LOAD 0 -

MetaNode 1

..
.

MetaNode numLines

LOAD 1 -

Sensor node

RUN - -

RUN 0 -

d) Send modifiedNodeList and run

Computer

ADD_NODE - VALUE numLine

New MetaNode

..
.

Sensor node

REMOVE_NODE - VALUE numLine

e) Error in add new MetaNode

Computer

ADD_NODE - VALUE numLine

New MetaNode

Sensor node

ERROR ADD_NODE -

f) Error in remove a MetaNode

Computer Sensor node

ERROR REMOVE_NODE -

REMOVE_NODE - VALUE numLine

REMOVE_NODE - VALUE numLine

FIGURE 4.20: Messages exchange during RUN process.

4.3. USER INTERFACE 40

• STOP: In order to stop the execution of a running MAC protocol, it is only
needed to send one MetaNode with STOP tag as MetaLabel and none Parameter.
Once the sensor node stops the execution, it answers by sending back the same
MetaNode. All this procedure is shown in FIGURE 4.21.

Computer Sensor node

STOP - -

STOP - -

FIGURE 4.21: Messages exchange during STOP process.

5

EXPERIMENTAL RESULTS AND EVALUATION

The main goal of the toolchain is to provide reconfigurability at runtime of MAC
protocols. Moreover, it is necessary to assure that the behaviour of the MAC protocols
executed in the sensor nodes following this approach is comparable to the behavior of
monolithic implementation.

In this chapter, the experimental results and evaluation in terms of execution time
overhead and reconfiguration costs are presented. These metrics will allow us to
determine the disadvantages of the toolchain. As it is mentioned, the two metrics
used to perform the evaluation are:

• Execution time overhead: it refers to the time that the toolchain needs to execute a
function or a MAC protocol.

• Reconfiguration costs: it evaluates the cost of the reconfigurations operations for
monolithic implementations and for the toolchain.

All the experiments were carried out on TelosB [4] and Mica2 [5] platforms. TelosB
sensors use the radio chip Chipcon CC2420 [29] and the chip Chipcon CC1000 [30]
is used by Mica2 sensors. The basic functionalities, the monolithic MAC protocol
implementations and our toolchain which have been used to make the evaluation
were implemented in TinyOS 2.x.

5.1 EXECUTION OVERHEAD

In order to evaluate the time that the toolchain needs to execute a task, we mea-
sured the execution time for a monolithic approach and for our toolchain. The two
results have been compared in terms of absolute time and the overhead added by the
toolchain. There are two type of measurements: first, we have taken measurements
for basic functionalities like the time needed to start the radio or send a packet; after
that, the total time needed to send a packet using a defined MAC protocol have been
measured. Before presenting the experimental results, the setups which have been
used will be explained.

First of all, execution time for the monolithic approach have been measured using
the experimental setup shown in FIGURE 5.1. This setup consists of four components.
The resistor R is formed by three 10 Ω resistor connected in parallel to make its
resistance very small and not interfere in the measurements. The resistor value is
3.33 Ω. The resistor is connected in series with the sensor node which is powered up
by a power supply set to 3.0 V, due to it is the voltage provided by the batteries used
by the sensor node. Finally, an oscilloscope is used to measure the voltage across the
resistor.

41

5.1. EXECUTION OVERHEAD 42

Sensor
Node

Power
Supply

Resistor (R)

V+

GND

Probe (V)

Oscilloscope

FIGURE 5.1: Block diagram of the experimental setup for monolithic execution time
measurements.

The execution time measurements for the toolchain cannot be performed using the
experimental setup explained above, because the sensor should be connected through
a USB cable to a PC, in order to receive user commands and load the MAC protocol de-
sign. For that reason, another experimental setup which is shown in FIGURE 5.2, have
been used to measure the toolchain execution time. There are also four components,
the resistor R is the same used in the first setup and is connected in series with the
sensor node. However, in this case, the sensor node is powered up by the PC through
the USB connection and can receive data from or send data to the PC. Finally, two
probes with their grounds connected together are used, one to measure the voltage
before the resistor and the other to measure the voltage after the resistor. Thereby,
an oscilloscope is used to measure the voltage across the resistor by subtracting the
voltage of the one probe to the other. In this case, the main difference is the USB
port provides 5 V as a difference with the 3 V provided by the power supply and the
batteries of the sensor node. Thereby, all the measurements will be amplified in terms
of voltage. However, since we are only interested in the time domain, no modification
is necessary for our results.

In order to have statistically significant results, 10 samples have been taken for
each execution time experiment and the average is presented.

5.1.1 Basic Functionalities

Five basic functionalities measurements have been selected due to they are commonly
used in all the MAC protocols: start the radio, stop the radio, read the actual RSSI
value, perform carrier sensing and send a packet.

For the monolithic approach, the time since the specific command is called until the
corresponding event is fired has been measured. However, for the toolchain, the time
since the Execution Scheduler finds a MetaNode with FUNC as MetaLabel and the
specific function as IdLabel, until the event is fired has been measured. For instance,
to measure the time overhead when a packet is sent for the monolithic approach,
the time since the command sendData() of MACSendPacket component is called until
SENDDATA_EVENT is fired has been measured. For the toolchain, the time since the

5.1. EXECUTION OVERHEAD 43

Sensor
Node

Resistor (R)

VCC

GND

Probe 1
(V1)

DATA+

DATA-

Probe 2
(V2)

PC
(USB connection)

Oscilloscope
(V1 – V2)

FIGURE 5.2: Block diagram of the experimental setup for toolchain execution time
measurements.

Execution Scheduler finds a MetaNode with FUNC as MetaLabel and SENDDATA as
IdLabel until SENDDATA_EVENT is fired has been measured. Therefore, theoreti-
cally, the time added in our toolchain is the one it needs to compile the MetaNode into
the corresponding command call.

TABLE 5.1 and TABLE 5.2 shows the results for start the radio, stop the radio, read
the actual RSSI value and perform carrier sensing in TelosB and Mica2, respectively.
In TelosB, the worst time overhead in percentage is 37 % when the radio is stopped.
However, the time added in the worst case is 180 µs which is an acceptable time. The
same happens in Mica2, the worst time overhead in percentage is 39 % when the radio
is stopped too. However, the time added in the worst case is only 120 µs. The time
fluctuations depend on the position of the function calls and their events inside the
execution list and the number of variables which those functions take as parameters.
Due to the execution list and variable list search algorithms need a certain time to
located them.

Basic Functionality
Monolithic Toolchain Overhead

Overhead
Time Time Time

Start Radio 2.76 ms 2.94 ms 180 µs 7 %
Stop Radio 283 µs 387 µs 104 µs 37 %
Read RSSI 486 µs 622 µs 136 µs 28 %
Carrier Sensing (50 ms) 50.25 ms 50.35 ms 100 µs 0.2 %

TABLE 5.1: Time results for basic functionalities executed in a TelosB sensor node.

TABLE 5.3 shows the results obtained in a TelosB sensor node after measuring the
time needed to send a packet varying the packet payload. As it can be seen, the time
added in the worst case is 250 µs which it is an acceptable overhead time.

In FIGURE 5.3 is shown a graphic of the time needed to send a packet depending
on the size of the packet payload. The trend of the two approaches is to rise in a linear
way and almost parallel between them which means that the time difference between

5.1. EXECUTION OVERHEAD 44

Basic Functionality
Monolithic Toolchain Overhead

Overhead
Time Time Time

Start Radio 2.49 ms 2.57 ms 82 µs 3 %
Stop Radio 188 µs 262 µs 74 µs 39 %
Read RSSI 469 µs 534 µs 65 µs 14 %
Carrier Sensing (50 ms) 50.23 ms 50.35 ms 120 µs 0.24 %

TABLE 5.2: Time results for basic functionalities executed in a Mica2 sensor node.

Payload Monolithic Time Toolchain Time Overhead Time Overhead
11 bytes 8.74 ms 8.99 ms 250 µs 2.86 %
25 bytes 10.15 ms 10.26 ms 110 µs 1.08 %
50 bytes 12.41 ms 12.63 ms 220 µs 1.77 %
75 bytes 14.82 ms 14.99 ms 170 µs 1.15 %
100 bytes 16.78 ms 17.03 ms 250 µs 1.49 %
127 bytes 19.20 ms 19.42 ms 220 µs 1.15 %

TABLE 5.3: Time results when sending a packet using different payloads in a TelosB
sensor node.

them in all the cases is approximately constant. Therefore, we conclude that in TelosB
sensor nodes our toolchain performance do not depends on the payload size.

Moreover, in case the time added by our toolchain was always the same, in the
worst case it would be of 250 µs for a TelosB sensor node. In that case, as bigger size
of the payload was, lower would be the overhead since more time would be needed
to send the packet and the time added would be less significant.

The same evaluation has been performed to measure the overhead time when a
packet is sent in a Mica2 sensor node. TABLE 5.4 shows the final results in this case.
The most remarkable fact is that the time added in the worst case is 90 µs, which is an
acceptable overhead time.

Payload Monolithic Time Toolchain Time Overhead Time Overhead
11 bytes 22.83 ms 22.90 ms 70 µs 0.31 %
25 bytes 28.65 ms 28.74 ms 90 µs 0.31 %
50 bytes 39.17 ms 39.21 ms 40 µs 0.10 %
75 bytes 49.47 ms 49.54 ms 70 µs 0.14 %
100 bytes 59.88 ms 59.93 ms 50 µs 0.08 %
127 bytes 71.17 ms 71.23 ms 60 µs 0.08 %

TABLE 5.4: Time results when sending a packet using different payloads in a Mica2
sensor node.

In the same way as with the TelosB sensor node, in FIGURE 5.4 is shown a graphic
of the time needed to send a packet depending on the size of the packet payload.
The trend of the two approaches is to rise in a linear way and parallel between them
too; both are almost identical in this case. Therefore, as it happened in TelosB, our

5.1. EXECUTION OVERHEAD 45

0 20 40 60 80 100 120 140
8

10

12

14

16

18

20

Payload [bytes]

T
im

e
[m

s]

Monolithic
Toolchain

FIGURE 5.3: Time needed to send a packet using different payloads in a TelosB sensor
node.

toolchain performance do not depends on the payload size in Mica2 sensor nodes.

0 20 40 60 80 100 120 140
20

30

40

50

60

70

80

Payload [bytes]

T
im

e
[m

s]

Monolithic
Toolchain

FIGURE 5.4: Time needed to send a packet using different payloads in a Mica2 sensor
node.

5.1. EXECUTION OVERHEAD 46

5.1.2 MAC protocols

After measuring the overhead time added by the toolchain for basic functionalities,
it is important to measure which is the time added when executing a complete MAC
protocol or a set of functionalities.

The tests were carried out using B-MAC as preamble-sampling protocols example
and S-MAC as common period protocols example. Besides, another test was carried
out not using any protocol in order to measure the time added by the toolchain in a
very simple program.

In case of not using any protocol, the test consists in measuring the time needed
to start the radio and send a packet. In the other cases, the tests are very similar.
In B-MAC, the sensor node starts the radio, performs carrier sensing during 50 ms.
If the medium is free, it sends a preamble of 100 ms duration followed by a data
packet. Finally, using S-MAC, the sensor node starts the radio, starts two timers, one
for synchronization and another to go to sleep; and performs carrier sensing during
50 ms. Then, if the medium is free, it sends a packet of synchronization. When the
first timer fires, it makes again carrier sensing during 50 ms and if the medium is
free, the RTS-CTS-DATA-ACK exchange is carried out. All the messages used in the
communication during all the tests are 11 bytes of payload size.

As it can be observed in TABLE 5.5, the overhead percentage added by the toolchain
in TelosB is less than 5 % in all the cases. Taking into account that the number of
operations executed by each test: 4 for No-Protocol, 10 for B-MAC and 23 for S-MAC;
the time added by the toolchain for each operation oscillates between 100 and 160 µs,
which matches with the results obtained in section 5.1.1.

MAC Protocol Monolithic Time Toolchain Time Overhead Time Overhead
No protocol 10.53 ms 10.96 ms 427 µs 4.06 %
B-MAC 161.78 ms 163.36 ms 1.577 ms 0.97 %
S-MAC 195.84 ms 198.57 ms 2.727 ms 1.39 %

TABLE 5.5: Time results for different protocols executed in a TelosB sensor node.

For Mica2 platform, the same experiments have been carried out. However, in this
case, S-MAC has not been included in the test due to the hardware limitations does
not allow S-MAC implementation using the toolchain as explained in section 4.2.1.
The results are shown in TABLE 5.6. In this case, the time added by the toolchain for
each operation executed oscillates between 50 and 70 µs which is also very similar to
the results presented in section 5.1.1.

MAC Protocol Monolithic Time Toolchain Time Overhead Time Overhead
No protocol 26.67 ms 26.88 ms 211 µs 0.79 %
B-MAC 190.49 ms 191.13 ms 637 µs 0.33 %

TABLE 5.6: Time results for different protocols executed in a Mica2 sensor node.

5.2. RECONFIGURATION COSTS 47

5.2 RECONFIGURATION COSTS

Nowadays, a rapid reconfiguration of MAC schemes is required in order to achieve
Quality of Service (QoS) demands depending on the application. For instance, in
WSNs, applications of data weather collection might prioritize the energy efficiency
over other aspects, in order to extend sensors battery life; while for video streaming
applications, data rate and jitter might be the most important parameters. Another
possible situation where the reconfiguration can be very useful is in those environ-
ments where a WSN should coexist with other networks working at the same fre-
quency.

Therefore, the application should be able to specify the its preferences in order to
achieve the desired QoS. In the same manner, toolchain will enable MAC protocol to
reconfigure at runtime to accomplish that.

In the monolithic approach, in case some reconfiguration may be needed, the
only way to perform it is to modify the source code of the application, recompile
and deploy it again in the sensor node. In order to measure the time needed, a tool
provided in Linux operative systems has been used. This tool is called time and it
measures the total execution time of an application or command. It usually shows the
results distinguishing three different times:

• Real: it is wall clock time - time from start to finish of the call. This is all elapsed
time including time slices used by other processes and time the process spends
blocked, i.e. if it is waiting for I/O to complete.

• User: it is the amount of CPU time spent in user-mode code (outside the kernel)
within the process. This is only actual CPU time used in executing the process.
Other processes and time the process spends blocked do not count towards this
figure.

• Sys: it is the amount of CPU time spent in the kernel within the process. This
means executing CPU time spent in system calls within the kernel, as opposed
to library code, which is still running in user-space. Like ’user’, this is only CPU
time used by the process. See below for a brief description of kernel mode (also
known as ’supervisor’ mode) and the system call mechanism.

User+Sys will indicate how much actual CPU time the process or application has
used and, ideally, it would be equal to Real output. Unfortunately, this equality is
never fulfilled due to normal processor performances.

TABLE 5.7 shows the time needed by the two evaluated platforms, TelosB and
Mica2, to reconfigure a MAC protocol. Taking Real value as the worst result, it can
be observed that the time needed oscillates between 10.3 and 13.2 seconds depending
on the protocol in case of TelosB, and between 8.9 and 12.7 seconds in case of Mica2.
We consider that it would be better to compare our toolchain with the monolithic
approach best case which is the User+Sys. Therefore, the time needed to reconfigure
oscillates between 1.9 and 2.4 seconds in case of TelosB, and between 2.5 and 3.2
seconds in case of Mica2.

In order to evaluate the time needed to reconfigure a MAC protocol in case of using
the toolchain, we distinguish three different cases of reconfiguration:

5.2. RECONFIGURATION COSTS 48

Protocols
TelosB Times Mica2 Times

Real User Sys Real User Sys
B-MAC 13215 ms 2224 ms 180 ms 12715 ms 2816 ms 168 ms
MFP-MAC 13115 ms 2048 ms 124 ms 12881 ms 2908 ms 160 ms
X-MAC 13213 ms 2084 ms 124 ms 12944 ms 3060 ms 204 ms
S-MAC 13044 ms 2028 ms 148 ms - - -
T-MAC 11811 ms 1916 ms 152 ms - - -
No-Protocol 10273 ms 1772 ms 128 ms 8919 ms 2360 ms 152 ms

TABLE 5.7: Time needed to reconfigure a MAC protocol in TelosB and Mica2 using
monolithic approach.

• LOAD: which means that a new protocol replaces the running protocol. This
process includes reading and parsing the text file as well as transferring all
MetaNodes and sending the command needed to start the execution to the sen-
sor node.

• CHANGES + RELOAD: which implies to insert some changes into the protocol
which provokes a reload of all MetaNodes as explained in section 4.3.3.1. More-
over, it includes sending the command needed to start the execution. This test
will consist in adding an if statement with a function call inside.

>> add 5 if(tos_node_id == 1){
>> add 6 led0On();
>> add 7 }endif;

• CHANGES + LOAD CHANGES LIST: which implies to introduce some changes
and send them to the sensor node as well as sending the command needed to
start the execution. This test will consist in modifying some function parameters
or changing an expression of the running protocol. For instance, in preamble-
sampling protocols the sleep interval is set to 200 ms, in common period proto-
cols the time of wake up timer is set to 2 seconds and for the simple application
the data of the packet is changed.

>> remove 5
>> add 5 setSleepInterval(200);

>> remove 24
>> add 24 wakeupTime = 2000;

>> remove 5
>> add 5 sendData(2,30);

All the results of this experiment are shown in TABLE 5.8 and TABLE 5.9, for
TelosB and Mica2 platform respectively. As it can be observed, in all the possible cases
the toolchain offers a high performance in comparison with monolithic approach.

5.2. RECONFIGURATION COSTS 49

For instance, in case of introducing some little modifications into the B-MAC pro-
tocol design using TelosB, the toolchain only needs 54 ms to carry it out, while mono-
lithic approach needs 2.4 s due to it needs to recompile again the whole project. There-
fore, the reconfigurable toolchain saves more than 97 % of the time needed by the
monolithic approach, providing more flexibility which is ideal for dynamic environ-
ments such as those where WSNs are deployed. Another example can be the time
needed to perform a total change of MAC protocol, from S-MAC to B-MAC. For
TelosB, the toolchain needs 947 ms, while the monolithic approach needs the same
time as mentioned before, 2.4 s. In this case, the percentage of time saved is slightly
more than 60 %.

The same results are obtained for Mica2 platforms. In case of introducing some
little modifications into the B-MAC protocol, the toolchain needs 45 ms and the mono-
lithic approach 3.2 s, thereby it saves more than 98 % of time needed. In the other case,
to change from S-MAC to B-MAC the toolchain needs 1077 ms and the monolithic
approach 3.2 s, the time saved is approximately 66 %.

Protocols
TelosB Times

No. of Nodes
LOAD

CHANGES + CHANGES + LOAD
RELOAD CHANGES LIST

B-MAC 112 947 ms 898 ms 54 ms
MFP-MAC 122 988ms 955 ms 48 ms
X-MAC 125 1049 ms 1015 ms 41 ms
S-MAC 218 1603 ms 1562 ms 50 ms
T-MAC 194 1483 ms 1401 ms 54 ms
No-Protocol 12 225 ms 237 ms 31 ms

TABLE 5.8: Time needed to reconfigure a MAC protocol in TelosB using reconfigurable
toolchain.

Protocols
Mica2 Times

No. of Nodes
LOAD

CHANGES + CHANGES + LOAD
RELOAD CHANGES LIST

B-MAC 112 1077 ms 1100 ms 45 ms
MFP-MAC 122 1174 ms 1168 ms 44 ms
X-MAC 125 1273 ms 1222 ms 47 ms
No-Protocol 12 277 ms 297 ms 47 ms

TABLE 5.9: Time needed to reconfigure a MAC protocol in Mica2 using reconfigurable
toolchain.

In FIGURE 5.5 and FIGURE 5.6, a graphical comparison of the time needed to
change completely the running MAC protocol by a new one between the monolithic
approach and the toolchain is shown in TelosB and Mica2 respectively. As it can be
observed the difference is quite significant between the two approaches and the minor
time saved in TelosB is more than 25 % while in Mica2 is more than 60 %.

5.2. RECONFIGURATION COSTS 50

B−MAC MFP−MAC X−MAC S−MAC T−MAC No−Protocol
0

500

1000

1500

2000

2500

T
im

e
[m

s]

Monolithic
Toolchain

FIGURE 5.5: Comparison of the reconfiguration time in TelosB node.

B−MAC MFP−MAC X−MAC No−Protocol
0

500

1000

1500

2000

2500

3000

3500

T
im

e
[m

s]

Monolithic
Toolchain

FIGURE 5.6: Comparison of the reconfiguration time in Mica2 node.

6

CONCLUSIONS

In this thesis, we have designed and implemented in collaboration with [1] an efficient
toolchain to reconfigure MAC protocols at runtime and provide flexibility in dynamic
environments. In order to enable simple MAC protocol design, MAC components
which provide basic MAC protocol functionalities have been implemented following
a hardware independent approach. Therefore, a user can design a MAC protocol
without having knowledge of the platform for deployment. On sensor nodes, a sensor
interface has been implemented to execute and reconfigure the MAC protocol design.
In order to provide a simple way for the user to reconfigure the sensor node, a user
interface has been implemented. By sending commands the user can interact with the
sensor node: load a new protocol, reconfigure, run and stop it.

Our toolchain has been compared in terms of execution time and reconfiguration
costs with a monolithic approach. The experiments have been carried out in TelosB
and Mica2 which are two platforms with different radio chips. In both cases, the
results obtained show that the toolchain enables fast runtime reconfiguration of MAC
protocols with an acceptable execution time overhead. In the worst case, our toolchain
saves between 26 % and 88 % of the MAC protocol reconfiguration time; while in the
best case, the time saved is around 98 %.

In conclusion, our toolchain provides rapid runtime reconfiguration of MAC pro-
tocols for sensor nodes when applications requirements or networks conditions change.
Moreover, as MAC components and sensor interface have been designed and imple-
mented following the hardware independent approach, the toolchain can be executed
in any platform. Thereby, any MAC protocol designed by the user can be executed
and reconfigured in many platforms, such as TelosB or Mica2.

In order to achieve a better performance of the toolchain, the execution efficiency
can be optimized. One solution could be replacing all static arrays by hash-tables
implemented in TinyOS. If this is achieved, the time added by the toolchain would be
reduced due to the searches in hashtables are more efficient.

51

A

ABBREVIATIONS

ACK Acknowledgement

CCA Clear Channel Assesment

CTS Clear To Send

GUI Graphical User Interface

I/O Input and output

IT Information Technology

LPL Low Power Listening

MFP Micro-Frame Preamble

MAC Medium Access Control

MAC-PD MAC Protocol Designer

MDPL MAC Pattern Description Language

MLA MAC Layer Architecture

OS Operating System

RAH-MAC Rate Adaptive Hybrid MAC Protocol

RAM Random-Access Memory

RBAR Receiver-Based AutoRate Protocol

ROM Read-Only Memory

RSSI Received Signal Strength Indicator

RTS Request To Send

SNR Signal to Noise Ratio

SP Sensor-net Protocol

ULLA Unified Link-Layer API

UPMA Unified Power Management Architecture

WSN Wireless Sensor Network

52

LIST OF TABLES

3.1 Summary of the basic functionalities of the most common MAC protocols.
[1] . 8

3.2 Summary of the complex functionalities of the most common MAC proto-
cols. [1] . 8

4.1 MAC components library and their composition. [1] 19

5.1 Time results for basic functionalities executed in a TelosB sensor node. . . . 43
5.2 Time results for basic functionalities executed in a Mica2 sensor node. . . . 44
5.3 Time results when sending a packet using different payloads in a TelosB

sensor node. 44
5.4 Time results when sending a packet using different payloads in a Mica2

sensor node. 44
5.5 Time results for different protocols executed in a TelosB sensor node. 46
5.6 Time results for different protocols executed in a Mica2 sensor node. 46
5.7 Time needed to reconfigure a MAC protocol in TelosB and Mica2 using

monolithic approach. 48
5.8 Time needed to reconfigure a MAC protocol in TelosB using reconfigurable

toolchain. 49
5.9 Time needed to reconfigure a MAC protocol in Mica2 using reconfigurable

toolchain. 49

53

LIST OF FIGURES

2.1 Different applications realized by a component-based design approach. [1] 3
2.2 MAC runtime reconfiguration toolchain structure. [17] 5

3.1 Struct definition for MetaNode. [1] . 9
3.2 Struct definition for MetaParam. [1] . 9
3.3 Sensor Interface design. 10
3.4 Procedure to execute sequentially an event implementation. 12
3.5 Procedure to add a new MetaNode to the Execution List. 14
3.6 Procedure to remove a MetaNode from the Execution List. 15
3.7 User Interface design. 17

4.1 Diagram of reusable components. [1] . 20
4.2 Sensor Interface implementation. 21
4.3 Definition of the maximum size of Execution list. 21
4.4 Execution of an event. 23
4.5 Example of storage of the attributes of an event. 24
4.6 Execution of global variable definitions. 24
4.7 Addition of a node next to last occupied position of the list. 25
4.8 Addition of a node in a specified position of the list. 25
4.9 Removal of a node in a specified position of the list. 25
4.10 MetaVariable structure. 26
4.11 Search for a variable position inside Variable list. 26
4.12 Removal of local variables when an event execution is finished. 27
4.13 Get the value of a parameter flowchart. 28
4.14 Execution of an if MetaNode. 30
4.15 Interface of ExecutionScheduler component. 31
4.16 Definition of Commands enumeration. 33
4.17 Recognition of a command. 34
4.18 Command Shell flowchart. 36
4.19 Messages exchange during LOAD process. 38
4.20 Messages exchange during RUN process. 39
4.21 Messages exchange during STOP process. 40

5.1 Block diagram of the experimental setup for monolithic execution time
measurements. 42

5.2 Block diagram of the experimental setup for toolchain execution time mea-
surements. 43

5.3 Time needed to send a packet using different payloads in a TelosB sensor
node. 45

54

LIST OF FIGURES 55

5.4 Time needed to send a packet using different payloads in a Mica2 sensor
node. 45

5.5 Comparison of the reconfiguration time in TelosB node. 50
5.6 Comparison of the reconfiguration time in Mica2 node. 50

BIBLIOGRAPHY

[1] L. M. Amorós, “A Tool for Rapid MAC Protocol Prototyping and Design for
Wireless Sensor Networks,” M.S. thesis, Institute for Networked Systems, RWTH
Aachen University, September 2012.

[2] D.J. Cook, S.K. Das, and John Wiley, Smart Environments: Technologies, Protocols,
and Applications, Wiley, November 2004.

[3] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks: Technologies,
Protocols, and Applications, Wiley, April 2007.

[4] Crossbow Technology Inc., “Datasheet: TelosB Mote Platform,” May 2004.

[5] Crossbow Technology Inc., “Datasheet: Mica2 Mote Platform,” May 2004.

[6] D. G. Messerschmitt, “Rethinking Components: From Hardware and Software
to Systems,” Proceedings of IEEE, vol. 95, no. 7, pp. 1473–1496, July 2007.

[7] H. Liu, M. Parashar, and S. Hariri, “A Component Based Programming Frame-
work for Autonomic Applications,” Proceedings of the International Conference on
Autonomic Computing (ICAC 2004), 2004.

[8] D. Box, Essential COM, Addison-Wesley Professional, January 1998.

[9] J. Prosise, Programming Microsoft .NET, Microsoft, May 2002.

[10] R. Monson-Haefel, B. Burke, and S. Labourey, Enterprise JavaBeans, O’Reilly
Media, 4th edition, June 2004.

[11] P. Levis and D. Gay, TinyOS Programming, Cambridge University Press, 2009.

[12] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova, and P. Mähönen, “Decomposable
MAC Framework for Highly Flexible and Adaptable MAC Realizations,” Dys-
pan2010, pp. 222–248, September 2010.

[13] G. Holland, N. Vaidya, and P. Bahl, “A Rate-Adaptive MAC Protocol for
Multi-Hop Wireless Networks,” ACM/IEEE Int. Conf on Mobile Computing and
Networking, pp. 929–933, 2001.

[14] Z. Wang, U. Mani, M. Ju, and H. Che, “A Rate Adaptive Hybrid MAC Protocol
for Wireless Cellular Networks,” International Conference of Wireless and Mobile
Communications (ICWMC), 2006.

56

BIBLIOGRAPHY 57

[15] A. Faragó, A. D. Myers, V. R. Syrotiuk, and G. V. Záruba, “Meta-MAC Proto-
cols: Automatic Combination of MAC Protocols to Optimize Performance for
Unknown Conditions,” IEEE Journal on Selected Areas in Communications, vol. 18,
no. 9, September 2000.

[16] H. S. Lichte and S. Valentin, “Implementing MAC Protocols for Cooperative
Relaying: A Compiler-Assisted Approach,” Proceedings of the International Con-
ference on Simulation Tools and Techniques for Communications, Networks and Systems
(SIMUTools), March 2008.

[17] G. Yang, “A Toolchain for the Design and Implementation of Adaptive Medium
Access Control Protocols,” M.S. thesis, Department of Wireless Networks, RWTH
Aachen University, December 2010.

[18] O. Salikeen, “Enabling Flexible Medium Access Design for Wireless Sensor
Networks,” M.S. thesis, Department of Wireless Networks, RWTH Aachen
University, December 2010.

[19] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC Essentials for Wireless
Sensor Networks,” IEEE communications surveys and tutorials, vol. 12, no. 2, 2010.

[20] J. Polastre, “Sensor Network Media Access Design,” Tech. Rep., Computer
Science Division, EECS Department, University of California, Berkeley, 2003.

[21] A. Bachir, D. Barthel, M. Heusse, and A. Duda, “Micro-Frame Preamble MAC for
Multihop Wireless Sensor Networks,” ICC Istanbul, vol. 7, pp. 3365 – 3370, June
2006.

[22] M. Buettner, G. V. Yee, E. Anderson, and R.Han, “X-MAC: A Short Preamble
MAC Protocol for Duty-Cycled Wireless Sensor Networks,” Tech. Rep., Depart-
ment of Computer Science, University of Colorado, Boulder, November 2006.

[23] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for
Wireless Sensor Networks,” Procedings of the IEEE Infocom, vol. 3, pp. 1567–1576,
June 2002.

[24] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC Protocol
for Wireless Sensor Networks,” SenSys, pp. 171–180, 2003.

[25] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: A Hybrid MAC
for Wireless Sensor Networks,” IEEE/ACM Transactions on Networking, vol. 16,
pp. 511–524, June 2008.

[26] G. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong, and F. Cuomo, “Funneling-
MAC: A Localized, Sink-oriented MAC for Boosting Fidelity in Sensor Net-
works,” SenSys, pp. 293–306, November 2006.

[27] IEEE 802.11 Working Group, “IEEE Standard for Information technology -
Telecommunications and information exchange between systems - Local and
metropolitan area networks - Specific requirements / Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Tech.
Rep., (Institute of Electrical and Electronics Engineers (IEEE), 1999.

BIBLIOGRAPHY 58

[28] B. Greenstein and P. Levis, “TinyOS Enhancement Proposals: Serial Communica-
tion (TEP 113),” Tech. Rep., Computer Science Laboratory, Stanford University,
2007.

[29] Chipcon AS SmartRF, “Datasheet: CC2420 - 2.4 GHz IEEE 802.15.4 / ZigBee-
ready RF Transceiver,” June 2004.

[30] Chipcon AS SmartRF, “Datasheet: CC1000 - Single Chip Very Low Power RF
Transceiver,” April 2002.

DECLARATION

I declare that this thesis does not incorporate without acknowledgment any material
previously submitted for a degree or diploma in any university and that to the best
of knowledge it does not contain any materials previously published or written by
another person except where due reference is made in the text.

Aachen, September 25, 2012
Noemí Arbós

	Preamble
	Contents
	Abstract
	Introduction
	Related Work
	Component Oriented Design
	Adaptability
	Runtime Reconfiguration
	MAC Schemes for WSNs
	Preamble-sampling Protocols
	Common Active Periods Protocols
	Hybrid Protocols

	System Design
	MAC Functional Blocks
	MAC Meta-languages
	Sensor Interface
	Execution List
	Variable List
	MetaNode Compiler

	User interface
	Command Shell
	Serial Controller

	Implementation
	MAC Functional Blocks
	Sensor Interface
	Execution List
	Variable List
	MetaNode Compiler
	ExecutionScheduler Component
	Sensor Node Serial Controller

	User Interface
	Command Shell
	Parser
	Serial Controller

	Experimental Results and Evaluation
	Execution Overhead
	Basic Functionalities
	MAC protocols

	Reconfiguration Costs

	Conclusions
	Abbreviations
	List of Tables
	List of Figures
	Bibliography
	Declaration

