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ABSTRACT

Wireless Sensor Networks (WSNs)consists of several resource constrained sensor nodes
distributed over an specific geographical area. WSNs are typically energy constraint
due to the fact the sensor nodes are battery powered.

Medium Access Control (MAC) protocols used in WSNs are usually designed to
be power aware, i.e., they are more energy efficient than MAC protocols used for other
ad-hoc wireless networks such as IEEE 802.11 [2]; to increase the lifetime of the nodes.

Traditional MAC protocol implementations are done for specific hardware plat-
forms using a monolithic approach. Therefore, it is very difficult to port from one
platform to another without modifying the whole implementation protocol. This
reduces code reusage and increases the implementation efforts.

We have designed and implemented a toolchain which allows to design and proto-
type MAC protocols for WSNs in a simple manner. In addition, it allows non-specific
sensors users to implement and execute them in sensor nodes without worrying about
technical specifications of the platforms. The toolchain has been implemented in
TinyOS using a component-based design. Special care has been taken to ensure hard-
ware independence of the protocol implementations described in this thesis has been
integrated with [1] to allow runtime reconfiguration of MAC protocols.

We have evaluated our toolchain against monolithic implementations in terms of
memory consumption and execution time. The results show that the toolchain intro-
duces an acceptable memory and execution time overhead, less than 5 %, compared
to the monolithic approach and substantially eases the implementation efforts.

VI
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INTRODUCTION

Smart environments are becoming more and more popular nowadays. They have
provoked an evolution in many different aspects of the society, such as industrial,
home or health-care applications [3]. To ensure the operation of smart environment,
information about their surroundings as well as about their internal situation are
needed.

Wireless Sensor Networks (WSNs) are often used to obtain the surrounding in-
formation as they are able to detect many different physical magnitudes, such as
temperature, humidity, vibration, pressure, motion, etc. [4]. Mainly, a WSN consists
of several nodes working in a cooperative way and distributed over a specific geo-
graphical area which sense the mentioned physical magnitudes, collect relevant data
and send them to a main location in order to analyse and process the data obtained.

Sensor nodes are resource constrained with very limited processing and commu-
nication functions. For that reason, it is the coordinated and cooperative effort of these
sensing devices that brings a significant impact on a wide range of applications in the
areas of science and engineering, military settings, critical infrastructure protection
and environmental monitoring.

Size and cost constraints on sensor nodes result in corresponding constraints on
resources such as energy and memory consumption. Sensor nodes are usually battery
powered, therefore, efficiently usage of the limited energy is the key to maximally ex-
tend their lifetime. Medium Access Control (MAC) protocols can improve the energy
consumption efficiently and increase the overall lifespan of WSNs since they govern
several sources of energy spending, such as the radio chip. For instance, the network
usually consumes most of the energy while coordinating the access to the medium
between all the transmitter nodes and ensuring reliable communication. The design
of a power aware MAC protocol can lead to better energy efficiency for sensor nodes.

MAC implementations are usually closely coupled with the underlying hardware
due to power-management schemes like sleep-scheduling policies and transmission
power control which are specific for each radio stack layer. This fact restricts the
portability of MAC implementations among different platforms. In order to address
this shortcoming, we have developed a framework for enabling rapid MAC pro-
tocol prototyping and designing using TinyOS. TinyOS supports component based
implementation and allows us to separate all basic MAC features such as Carrier
Sensing or Send Packet. Once the basic MAC components are clearly separated and
defined, it is easier to build a MAC solution by using them as if filling a puzzle
with matched pieces. In addition to the basic blocks, some commonly used functions
such as Low Power Listening, are also identified and encapsulated within reusable
components resulting in a high degree of code reusability and MAC prototyping.

A Meta-language has been designed in order to allow the user design different
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MAC implementations in a simple manner. This Meta-lanaguage uses a syntax very
similar to popular languages, such as C, and it also expresses MAC specific syntax.
Another language is defined to be understood by the sensor node which is called
MetaNode-language. A parser has been designed and implemented to translate the
user input Meta-language to MetaNode-language for sensor nodes to operate on.
The sensor nodes executes the described MAC protocols by interpreting the code in
MetaNode-language.

Overall, in this thesis we present a toolchain which is designed for the prototyping
and designing of MAC protocols. It is implemented for TelosB [5] and Mica2 [6] as a
proof of concept. This thesis is organized as follows. Chapter 2 describes the re-
lated work proposed by the community giving solutions for hardware independence,
component-based design, as well as some introduction to typical MAC protocol im-
plementations for WSNs. Chapter 3 explains the design of the framework based on
component-based concept, the different languages used and the parser that is needed
to make the translation between them possible. The implementation is presented in
Chapter 4 along with the description of the problems encountered and solutions taken
during the implementation. The evaluation and experimental results of our toolchain
are presented in Chapter 5 to show the effectiveness and the possible disadvantages
of our solution. At the end, we present some conclusions after finishing our work and
point out possible future works.
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RELATED WORK

In the past few years, many Information Technology (IT) research communities are
focusing in developing prototypes and designs of efficient MAC protocols for WSNs.
However, most of the solutions found are specifically design for certain sensor plat-
forms. In this chapter, a brief review of some approaches related to this topic are given
below. Moreover, there is an introduction to MAC protocols specifically designed for
WSNs.

2.1 COMPONENT-BASED DESIGN

Component-based design is becoming very popular as one of the techniques used in
software design. This concept involves decomposing a system into independent and
simple units with certain functionalities e.g. control radio hardware or switch on a led,
as explained in [7] and [8]. The components should be observed as black boxes with
defined inputs and outputs which can be developed and deployed independently.
If the encapsulation is good, end users only need to know the specific interfaces
provided by the components to be able to use them. There are many component-based
platforms like COM/DCOM [9], .NET [10], EJB [11], TinyOS/nesC [12].

This approach has many advantages. It allows dynamic composition, i.e. applica-
tions made based on components that can be easily modified by adding/removing
components, or changing the relationships between them. For example, as shown in
FIGURE 2.1, a user can create an application connecting components to each other like
pieces of a puzzle. Another important advantage is that components are reusable and
extensible. Therefore, new components can be built by combining other components,
thus decreasing the code size of the final application, which facilitates the growth
of the maturity of the system. In addition, when an application requires changes,
a modification in a single component does not have a great impact in the whole
system because it can be easily done due to decoupling among components. Thereby,
components can be inserted and deleted in the system in an easy way according to
the needs in order to achieve the adaptation. Finally, it gives a clear structure of the
system, because each functionality can be represented by an specific component. The
business logic becomes more explicit as well due to the reasonable decomposition
and encapsulation. According to these advantages a rapid MAC prototype can be
realized by using this approach, as the components can be reused along the whole
MAC implementation.

Component-based design has been used in order to achieve adaptive MAC proto-
cols design through the Decomposable MAC Framework [13]. It has been demonstrated
how MAC protocols are decomposed into independent elementary blocks based on

3
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Application 1 Application 2

FIGURE 2.1: Different applications realized by a component-based design approach.

their services and how elementary blocks can be inserted and deleted as it is needed
to achieve the adaptation.

Similarly appeared a component-based architecture for WSNs known as MAC
Layer Architecture [14]. It consists of optimized and reusable components that im-
plement a common set of features shared by existing MAC protocols. In order to
design the components, MLA extract the most significant functionalities from Channel
Polling MAC Protocols, Contention MAC Protocols and TDMA, such as Radio Core or
Channel Poller. This architecture was designed with the aim that developers should be
able to treat the MAC protocol as a single coherent entity, and hence be able to insert,
replace or remove a MAC protocol with as little effort as possible.

nodes to send data with very short preambles. Z-MAC em-
ploys a TDMA-style slot allocation for all nodes, but allows
nodes to contend for access to other nodes’ slots using chan-
nel polling. This approach combines TDMA’s low channel
contention with channel polling’s high throughput. Finally,
nodes equipped with Funneling MAC contend for channel
access in the majority of the network via CSMA/CA, while
using TDMA in regions close to sink nodes, where nodes
experience high contention. Funneling MAC alleviates con-
tention in the most active areas of the network, without re-
quiring other nodes to create and maintain TDMA schedules.

From the various approaches presented above, a set of
common techniques can be seen to emerge. MLA identi-
fies these techniques — such as periodic channel polling and
time synchronization — and encapsulates them inside a set
of reusable, optimized components. Through the use of these
components, MLA is able to simplify the implementation of
existing MAC protocols on new platforms as well as facili-
tate the development of completely new MAC protocols.

3 Design of the MLA
Creating a low-level yet hardware-independent

component-based architecture poses three significant
design challenges. First, the architecture must present a
clean interface to upper layers, exposing as few hardware
details as possible. Second, the radio stack must export
needed low-level functionality using a set of platform-
independent interfaces. Third, functionality common across
MAC protocols must be identified and implemented inside
a set of optimized, reusable components. In this section, we
discuss how we have met these challenges and present the
interfaces and components that we identify as necessary for
an effective component-based MAC architecture.

Though MLA’s architectural design is not inherently tied
to the TinyOS operating system, we use TinyOS terminology
and naming conventions throughout this section. TinyOS’s
component-based design offers a well-known vocabulary for
discussing interactions among the components in MLA. We
express the interfaces described in this section using nesC
syntax [13] for analogous reasons.

For the purposes of discussion, we assume the use of
packet radios (e.g., the CC2420 radio used on TelosB and
MicaZ motes). We choose to focus on packet radios, since
industry standards like 802.15.4 reflect a shift away from bit
radios (e.g., the CC1000 radio used on Mica2 motes). This
decision does not generally affect MLA’s design, with the
exception of how preamble packets are sent and received by
the MAC layer. We defer a more detailed discussion of this
artifact to Section 3.3.3.

3.1 Overview of the Architecture
We define two types of components for use in MLA.

High-level, hardware-independent components are aimed at
supporting flexibility by allowing different MAC protocol
features to be composed together in a platform indepen-
dent manner. Low-level, hardware-dependent components
provide abstract, platform independent interfaces to features
otherwise specific to a particular radio or microprocessor
platform. Though the implementation of these hardware-
dependent components is inherently platform specific, they

MacC

Radio Core

MacControlC
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Receive
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AsyncSend
AsyncReceive

Param1 Param2 Param3

SplitControl

ReceiveSend

SplitControl

Interface to Upper Layers

ChannelMonitor
RadioPowerControl
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Figure 1. The application developer’s view of MLA

export interfaces which support the development of fully
platform independent high-level components. In this way,
porting the set of protocols developed in MLA to a new plat-
form is confined to providing new implementations of these
low-level components alone.

Figure 1 provides an overview of how these components
can be used to build sophisticated MAC protocols within
MLA. Various components are composed together inside of a
more general MacC configuration, using a set of unified inter-
faces provided by the radio, and exposing a set of (partially)
unified interfaces to the upper layers. The following sections
elaborate on these various interfaces, as well as provide de-
tailed descriptions of the components that provide them.
3.2 Interfaces with Upper Layers

The interfaces which MLA provides to upper layers are
driven by two specific design goals. First, the MAC proto-
cols’s runtime behavior should be as transparent as possible
to the user. Application developer effort is best spent de-
veloping applications which treat packet I/O as a black box;
the fact that packet transmission may be delayed for power-
savings purposes or due to radio contention should not affect
the application’s core behavior. Second, the application de-
veloper should not need to be aware of the MAC protocol’s
internal composition. Developers should be able to treat the
MAC protocol as a single coherent entity, and hence be able
to insert, replace, or remove a MAC protocol with as little
effort as possible.

We achieve both of these goals by exposing all MAC-
level interfaces to the application through two distinct com-
ponents, as shown in Figure 1. First, each MAC protocol de-
fines a MacC configuration that composes any resuable MLA
components and any protocol specific components together.
In order to make its operation as transparent to the user as
possible, the MacC component uses a fixed set of low-level in-
terfaces (described later in Section 3.4) and produces corre-
sponding application-level packet I/O (Send/Receive) and
power control interfaces (SplitControl).

Upper layers call the start() and stop() commands of
the SplitControl interface in order to enable/disable the

FIGURE 2.2: MLA architecture. [14]

As seen in FIGURE 2.2, each MAC protocol defines a MacC configuration that com-
poses any reusable MLA components and any protocol specific components together.
MacC should use a fixed set of low-level interfaces and produces: I/O interfaces
like Send and Receive; and power control interfaces such as SplitControl. Following
this scheme, it makes its operation as transparent to the user as possible. Thereby,
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designing a new MAC protocol only implies creating a new MacC configuration ac-
complishing the new functionalities, instead of modifying more components.

Obaid Salikeen in [15] developed a component-based framework known as MAC
Protocol Designer (MAC-PD) which encapsulated common tasks of MAC protocols
in reusable components. A wide range of WSN MAC protocols are realized using
these components. The main difference of this framework with MLA is the target
user. MAC-PD is thought for MAC designers while MLA is more suitable for MAC
developers. A MAC developer needs to have a good knowledge of the low-level
platform language syntax whereas a MAC designer needs to only focus on designing
the protocol without worrying about the implementation. According to that, MAC-
PD framework provides a drag-and-drop based user-friendly Graphical User Interface
(GUI) used to design and implement MAC protocols with mouse clicks and minimum
amount of entered user data.

2.2 HARDWARE INDEPENDENCE

Since the beginning of the WSNs there have been lots of researches on defining a
framework which is completely independent of the hardware platform in order to
provide flexibility to the system. Thereby, the framework could be ported and exe-
cuted in all the platforms available in the market without making any change.

David Culler, Joseph Polastre et al. [16, 17] have defined an unified link layer
abstraction that can be instantiated over different platforms, in a similar fashion as the
Internet Protocol stack. The architecture proposed is called Sensor-net Protocol (SP) and
resides between network and link layer. It provides flexible link-layer interfaces for
different WSNs applications residing on network layer, to optimize their performance
and perform power aware operations independent of link layer.

Unified Link-Layer API (ULLA) [18] offers a common interface to retrieve link layer
information as well as sensor measurement data independently of the deployed radio
technology. It has considerably simplified the development process of link-aware
protocols and applications. Using ULLA, applications can use a common interface
to fetch link layer information regardless of the underlying hardware with negligible
performance overheads. The main component in the ULLA architecture is ULLA
Core in the middle of the FIGURE 2.3. It is an intermediate entity which connects
Link Provider (LP) and Link User (LU). Link Provider is an interface which abstracts
the sensor radio interface through its specific platform Link Layer Adapter (LLA).
Basically, Link User (LU) is the application which is taking advantage of ULLA to
read link layer information or sensor measures.

Similar to this work, Department of Computer Science and Engineering of Wash-
ington University developed Unified Power Management Architecture (UPMA) [19] which
is another approach to provide a unifying abstraction for WSNs in order to provide
portable solutions. MAC Layer Architecture (MLA) which has been mentioned in pre-
vious point, is an extended idea of UPMA specifically designed to facilitate power-
efficient MAC protocol realizations. Two types of components are defined in this
framework: High-level and Low-level. High-level or hardware-independent com-
ponents allow different MAC protocol features to be composed together in a plat-
form independent manner providing flexibility. The implementation of Low-level
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The prototype implementation shows that all of these can be
introduced without high overhead and that good performance
can be achieved.

The rest of the paper is organized as follows. We start with
giving some more insights about our motivation for the pre-
sented work in section II. In section III we describe the general
ULLA architecture which is common to all platforms it has
been implemented on. The prototype implementation of ULLA
on TinyOS is then described in detail in section IV together
with some modifications to the basic architecture to make the
implementation for WSNs feasible. The last part of section IV
presents first but promising performance evaluation results.
Finally, in section V we discuss some potential application
domains which would benefit from ULLA, before concluding
the paper in section VI.

II. MOTIVATION: WHY A UNIFIED LINK-LAYER API FOR

SENSORS?

Before going into the implementation details of the Uni-
fied Link-Layer API for TinyOS, we shall briefly discuss
the motivation in providing a powerful API like ULLA to
access link-layer information. After all, sensor networks being
very resource constrained all the functionality and portability
offered by an API like ULLA might seem like an overkill.
Additionally, present WSN nodes typically have only one radio
interface, reducing the functionality required from a link-layer
API even further.

We argue strongly that even in the single-radio case
adoption of ULLA would bring significant benefits. The
technology-independence of the API allows link-aware pro-
grams to be written in a portable manner, significantly reduc-
ing the overhead of porting a link-aware protocol implemen-
tation from one platform to another. Additionally, availability
of the same API both in ”high-end” wireless devices (such
as laptops, PDAs and smartphones) and sensor platforms
reduces the learning curve for programmers switching from
one platform to another. In commercial development settings
this kind of advantage should not be underestimated. We also
argue that WSN platforms are not going to be exclusively
using a single radio interface. Compact gateway designs with
multiple wireless interfaces are already being introduced [4],
[10], and the suggestions on using separate wake-up radios
to coordinate the medium access amongst the nodes before
utilizing the “main” radio for actual data transfer are gaining
momentum.

Finally, in many cases we expect the adoption of ULLA
as part of the functionality offered by the operating system
to actually improve performance instead of degrading it. This
is because many of the powerful functions offered (such as
asynchronous notifications) would most likely be implemented
by programmers themselves using application-layer primitives
due to their necessity. Letting a single operating system entity
handle these functions makes it possible to optimize the
implementation of these features to the fullest, for example
exploiting different hardware-specific solutions such as pro-
grammable hardware timers if available.
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Fig. 1. Architecture of the ULLA implemented on sensor nodes.

III. ULLA ARCHITECTURE

The ULLA was initially prototyped on more powerful
devices but characteristics of embedded devices were con-
sidered throughout the whole design process. We shortly
introduce the main ULLA architecture for convenience of
the reader and continue with the WSN-specific adaptations.
Further architectural details and design rationales are available
from [5]. In this paper we focus specifically on the extensions
and enhancements developed to apply the ULLA concept to
WSNs.

ULLA design follows a modular approach as shown in
Fig. 1. The main component in the ULLA framework is ULLA
Core in the middle of the figure. It is an intermediate entity
connecting Link Providers (LPs), an abstraction of the sensor
radio interface, and Link Users (LUs), the applications1 taking
advantage of ULLA. The two interfaces between these three
architectural levels form the Unified Link-Layer API.

Link Layer Adapters (LLAs) are the major part of the
software implementation of an LP. They implement the LP in-
terface towards ULLA Core and cope with technology-specific
ways to retrieve lower layer information. In the first step LLAs
will be implemented as wrapper units utilizing proprietary
functions offered by existing link layer and radio components.
Later on ULLA-enabled components might incorporate the
LLA-functionality from the beginning avoiding the need for
an extra block.

In case of sensor networks the application using the sensor
readings will often be placed in a PC with the gateway node
connected to it instead of running locally on the nodes. In
order to use ULLA also in such scenarios we differentiate

1In this context we do not only foresee link users being applications
working on layer seven but also entities such as routing daemons may benefit
from ULLA.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 
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FIGURE 2.3: ULLA architecture. [18]

or hardware-dependent components is inherently platform specific, however, they
export interfaces which support the development of fully platform independent high-
level components. Thereby, porting the set of protocols developed in MLA to a new
platform, it is only needed to provide new implementations of these low-level com-
ponents alone.

2.3 SOLUTIONS FOR PROTOCOL PROTOTYPING AND DESIGNING

Many solutions have been proposed along the history of telecommunications regard-
ing to the design of system and protocols. In this section, we are going to mention the
most interesting and useful for the development of this thesis.

Specification and Description Language (SDL) [20] is a tool widely extended in the
field of communications engineering in order to realize system design, prototyping,
testing and verification. It was proposed by the International Telecommunication
Union (ITU) inside its standard called Z.100. It can be used to specify and visualize
a formal model in the form of state machines that can be executed for testing and
verification purposes. However, it is very complex and difficult to use by a non-
technical users.

Obaid Salikeen in [15] developed a component-based framework known as MAC
Protocol Designer (MAC-PD) which enables to design MAC protocols through a GUI.
However, the language generated by this toolchain was in eXtensible Markup Lan-
guage (XML) format which was not very easy to remember the specific tags and not
very understandable by a normal user.
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Gwangwei Yang [21] designed and implemented a toolchain which was able to
run any of the available MAC protocols for WARP boards using a language descriptor
to describe the MAC protocol design which is processed by a meta-compiler. This
language descriptor has a very easy syntax which was similar to some well-known
programming languages, like C or C++.

According to previous contributions on this topic, our toolchain will be based in
similar ideas as proposed by Yang, in order to provide an easy language that the user
was able to use during the implementation of MAC protocols.

2.4 MAC PROTOCOLS FOR WSNS

As the wireless medium is highly affected by interferences it requires highly opti-
mized medium access control protocols. As it is explained in [22], for WSNs is still
more important to use this type of protocols due to sensors should work with batteries
for a long time without human intervention. For that reason, the main design criteria
is to extend the lifetime trying to keep the radio off when it is unnecessary to listen the
medium. To achieve the desired optimization several solutions have been designed.
The preamble-sampling, the common active periods and the hybrid protocols are
three major categories which are widely used by WSNs.

2.4.1 Preamble-sampling Protocols

In these type of protocols each node maintains its own active schedule independently.
Normally, a node spends most of the time in sleep mode and only wakes up periodi-
cally to check if there is a transmission on the channel. Each data frame is preceded by
a preamble long enough to make sure that the transmission is detected by the the re-
ceiver. The duration of the preamble has to be at least as long as the duration between
two consecutive instants of node wakeups. To avoid collisions, these protocols use
contention based approaches to listen the channel before transmitting the preamble.

2.4.1.1 B-MAC

B-MAC [23] is a CSMA/CA based preamble-sampling protocol. So, it is asynchronous
and employs LPL and CCA operations. As it is explained before, the idea of this
protocol is to keep most of the time the sensor in sleep mode in order to save energy
and only wake it up for a short time to check if there is activity on the channel. In
order to achieve that, as it can be seen in FIGURE 2.4, each sensor follows its own
schedule and performs CCA in the active period; if the channel is clear it goes again
to sleep and wakes up in the next cycle, otherwise it keeps its radio on to listen to the
data packet. Moreover, when a node has a packet to transmit, first of all, it performs
CCA to check that nobody is transmitting, then, it sends a preamble frame to assure
that the receiver node turns its radio on and, finally, sends the data. This protocol
saves a lot of energy in idle listening, but it also wastes a lot of energy in order to send
the preamble frames. As the preamble frames are broadcast, the sensors that receives
the preamble but are not the destination of the data packet are also wasting energy
keeping its radio on during the preamble time.
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FIGURE 2.4: An illustration of a sender/receiver pair running B-MAC.

2.4.1.2 MFP-MAC

MFP-MAC [24] works in the same way that B-MAC but it splits the monolithic pream-
ble into multiple micro frames and adds more information about the the contents of
subsequent data frame inside them. This allows a node to make a decision of receiving
or not in a timely manner without having to keep listening to the preamble until
the data frame. As FIGURE 2.5 shows, this approach allows to save energy in two
ways: avoiding listening to irrelevant data and reducing the duration of listening to
the preamble. The node id of the receiver is included in these micro frames, so the
nodes which are not the targets of the data can go back to sleep without listening
the rest of the preamble and the data packet. Moreover, information about the total
preamble length and the actual preamble time are included, allowing the receiver
node to turn its radio off during the transmission of the rest of the preamble and
turn it on again just to receive the data frame. MFP-MAC solves the problem of
waste energy when receiving data, but sensors continue wasting energy by sending
preamble frames during two consecutive instants of node wakeups.
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Micro Frame Preamble

Another 
sensor

Radio off
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intervalRadio off

Avoid receiving irrelevant preamble

Avoid receiving irrelevant data

Reception of this 
type of packet.

FIGURE 2.5: An illustration of a sender/receiver pair running MFP-MAC.
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2.4.1.3 X-MAC

X-MAC [25] works like B-MAC too, but the main design goals of X-MAC are energy-
efficiency, low-overhead, low latency and high throughput for data. In order to achieve
all of these goals, X-MAC follows the idea of the micro-frames from MFP-MAC and
introduces a new concept: the receiver sends an ACK packet to stop sending the
preamble. As FIGURE 2.6 shows, when the target node receives a micro frame pream-
ble, as the receiver node id is included inside them, it knows that it is the target and
sends an ACK packet to indicate that it has its radio on. The sender receives this
packet, immediately, it stops sending preamble frames and sends the data frame. This
approach allows avoid listening to irrelevant data like MFP-MAC and save energy
when transmitting and receiving data.
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Data

Data
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Receiver

Radio onRadio off

Check 
interval

C
C
A

Micro Frame Preamble

A
C
K

Avoid sending irrelevant preamble

Reception of this 
type of packet.

FIGURE 2.6: An illustration of a sender/receiver pair running X-MAC.

2.4.2 Common Active Periods Protocols

The sensors which use these protocols have common active/sleep periods. The active
periods are used for communication using RTS/CTS/DATA/ACK handshake and the
sleep periods are used to save energy by keeping the radio in off state. As the periods
are common for all nodes, this approach requires a certain level of synchronization
between all the nodes. For that reason, during the active period, sensors also send
SYNC packets with this type of information. These protocols use contention based
approaches to listen the channel before transmitting SYNC and RTS packets in order
to avoid collisions too.

2.4.2.1 S-MAC

The basic idea of S-MAC [26] is repeatedly put nodes in active and sleep periods,
nodes turn their radio off in sleep periods to save energy and turn them on in active
periods to exchange packets. As the active/sleep periods are shared by the nodes,
it requires synchronization establishment and maintenance between them. S-MAC
splits the active period in two parts: one to exchange SYNC packets with synchroniza-
tion information and another to exchange data packets. The first time, a node listens to
the channel for a duration of at least one active plus one sleep period to receive a SYNC
packet, if it does not receive a packet then adopts its own schedule and disseminates
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it. As it is shown in FIGURE 2.7, during the active time, a node can communicate with
its neighbours following the RTS/CTS/DATA/ACK handshake. This scheme helps
to reduce collisions, but in order to do that CCA is also used before sending SYNC
and RTS packets. The primary goal in S-MAC design is reducing energy, but it also
achieves good scalability and collision avoidance by using a combined scheduling and
contention scheme. However, the use of SYNC frames, RTS/CTS control frames and
ACKs increases the transmission overhead.
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FIGURE 2.7: An illustration of a sender/receiver pair running S-MAC.

2.4.2.2 T-MAC

T-MAC [27] works identically to S-MAC, but it introduces the idea of adaptive duty
cycle.The idea of T-MAC is to adapt dynamically the active time according to the
current traffic. To accomplish that it uses a time-out mechanism like in FIGURE 2.8:
after the node wakes up a timer starts (TA), if any RTS packet is detected, the node
goes to sleep again. Otherwise, the node waits for the data packet and starts again
the timer and so on. The duration of this timer should be long enough to span the
contention duration and the RTS/CTS exchange. This scheme reduces the energy
wasted by listening to the channel when there is no transmission. However, it also
might lead to early sleeping problem: the nodes goes prematurely to sleep while
another node still has some data for it.
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FIGURE 2.8: An illustration of a sender/receiver pair running T-MAC.
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2.4.3 Hybrid Protocols

Hybrid protocols combine two different MAC protocols to take advantage of their
characteristics. They achieve high performance under variable traffic patterns by
switching their behavior depending on the network conditions. For example, when
there is a small number of nodes a protocol should use contention-based approaches,
like preamble-sampling based protocols; however, when there is a large number of
nodes the best choice is to use scheduled protocols, like common active periods based
protocols.

2.4.3.1 Z-MAC

Z-MAC [28] increases the throughput in networks with variable traffic patterns fol-
lowing the idea of use CSMA inside large TDMS slots. Basically, this protocol runs
CSMA in low traffic conditions achieving high channel utilization and low-latency.
However, under high traffic conditions it switches to TDMA achieving high channel
utilization and reducing collision among two-hop neighbors. In conclusion, by mixing
CSMA and TDMA patterns, Z-MAC becomes more robust to clock synchronization
or slot assignment failures, topology changes and time-varying channel conditions
changes than a stand-alone protocol.

2.4.3.2 Funneling-MAC

Funneling-MAC [29] makes a spatial separation to mitigate funneling effect. This
effect is caused by the many-to-one and hop-by-hop traffic pattern used in sensors
networks and results in a significant increase in transit traffic intensity, collision, con-
gestion, packet loss and energy drain in the regions closest to the sink. Accordingly,
as it is shown in FIGURE 2.9, this MAC protocol uses a hybrid protocol TDMA/C-
SMA in these high traffic regions in order to increase channel utilization and reduce
collision. However, it uses CSMA in regions which traffic is less intense to have better
energy/throughput performance.

 

MAC that operates in the intensity region. The funneling-
MAC mitigates the funneling effect by using local TDMA 
scheduling in the intensity region only, providing additional 
scheduling opportunities to nodes closer to the sink, which 
typically carry considerably more traffic than nodes further 
away from the sink. The funneling-MAC is sink-oriented 
because the burden of managing TDMA scheduling of 
sensor events in the intensity region falls on the sink node, 
and not on resource limited sensor nodes. The funneling-
MAC is localized in operation because TDMA only operates 
in the intensity region close to the sink and not across the 
complete sensor field. The burden of computing and 
maintaining the depth of the intensity region also falls on the 
sink. We assume that the sink is likely to have more 
computational capability and energy reserves than simple 
sensors; however, the funneling-MAC does not rely on this 
to operate efficiently. By using TDMA in this localized 
manner, and putting more management onus on the sink not 
the sensors, we offer a scalable solution for the deployment 
of TDMA scheduling in sensor networks, one that is capable 
of boosting application fidelity as measured at the sink, but 
does not have the scalability problems associated with the 
network-wide deployment of TDMA, which, we believe, is 
untenable today as a network-wide deployment strategy for 
large-scale sensor networks. 

The structure of the paper is as follows. In Section 2 we 
show the impact of the funneling effect using results from an 
experimental sensor network. The effectiveness of existing 
MACs to counter the funneling effect is discussed in Section 
3. Following this, we present the detailed design of the 
funneling-MAC algorithms in Section 4 that include: on-
demand beaconing, which both provides light-weight clock 
synchronization for TDMA scheduling in the intensity region, 
and regulates effectively boundary of that region; sink-
oriented scheduling, which computes and distributes new 
schedules when needed in an efficient low cost manner; and 
dynamic depth-tuning, which dynamically adjusts the depth 
of TDMA operating in the intensity region with the goal of 
maximizing the throughput of the sink choke point while 
minimizing the packet loss in the funnel. The Appendix in 
our technical report [23] provides important analytical 
foundations that justify the choice of dynamically controlling 

the depth of the intensity region in response to measured 
traffic conditions at the sink node. We take an experimental 
systems approach to the validation of the funneling-MAC’s 
performance. Section 5 presents results from a number of 
experiments using a 45 mica-2 mote network. We consider a 
number of different node densities, and traffic characteristics 
to study the performance of the funneling-MAC in 
comparison to other representative protocols such as the 
TinyOS [11] default protocol B-MAC [3], and more recently 
proposed, and comparative protocol Z-MAC [10], which is 
also based on a hybrid TDMA/CSMA approach. We show 
by simply exerting control over the first few or more hops 
from the sink that the funneling-MAC significantly 
outperforms B-MAC and Z-MAC, which we show are not 
capable of dealing with the funneling effect. 

2. Funneling Problem 
We begin by first quantifying the impact of the funneling 

effect in a sensor network using the TinyOS CSMA-based B-
MAC protocol, the MintRoute routing protocol, and the 
Surge application in a 45 mica-2 testbed. The network is 
deployed as a 5x9 rectangular grid of equally spaced motes 
in a large open room, making sure there are no interference 
and near-field issues [12] during the experiments. The mote 
at the bottom left corner operates as the sink in the grid, as 
illustrated in Figure 4. Node spacing and transmission power 
are set such that one-hop neighbors achieve > 80% delivery, 
while two-hop neighbors achieve < 20% delivery. In this 
way, a fairly strict and dense multi-hop radio environment is 
constructed for experimentation.  

We randomly select 16 of the 44 sensing nodes to 
generate event rates ranging from 0.2-5 packets/sec (pps) 
where the packet size is 36 bytes. The goal is to gradually 
drive the sensor network from low to moderate load and then 
into a congested and saturated state, while studying the choke 
point throughput measured at the sink and the loss in the 
network. Typically, events travel over multiple hops, 2-5 
hops in the case of the experiment. Figure 2 shows the 
resulting fidelity (i.e., throughput curve), as measured at the 
sink as we increase the event rate of all 16 sources. Note that 
we exclude the preamble and CRC sizes, and count the 
packet size as 36 bytes when calculating the throughput 
fidelity. We can clearly see that the throughput measured at 

Figure 2. Throughput of 
CSMA with varying data rates Figure 1. Funneling effect in sensor networks 
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3

SYSTEM DESIGN

In this chapter, the design of our toolchain for realizing prototype and design MAC
protocols is described.

The design of our toolchain can be divided in three parts: MAC Components,
the Languages used for MAC Protocol Design and the Meta-language Parser. Each
MAC Component represents a functionality of a MAC protocol, such as MACRa-
dioPowerControl is the responsible of turn on/off the radio, as explained in section
3.1 the components are used to form MAC protocols. Section 3.2 describes the Meta-
language and the MetaNode-language which specify each MAC functionality; the
Meta-language has been designed for the user and the MAC protocol implementation
while the MetaNode-language is the language used by the sensor node. Finally, the
Meta-language Parser is the element that allows the translation from Meta-language
instructions into MetaNodes which the sensor node is able to understand and execute.

3.1 MAC COMPONENTS

One of the first steps in the design of our toolchain is to identify which are the most
common functionalities in MAC protocols. The main goal is to create components that
provides these functionalities and can be reused in different parts of a MAC protocol
design.

As it has been mentioned previously in section 2.4, there are 3 different types of
MAC protocols which are widely used in WSNs: preamble-sampling, common active
periods and hybrid protocols. In order to take the most common basic functionalities,
some MAC protocols of each type has been taken as example. For preamble-sampling,
B-MAC, MFP-MAC and X-MAC have been selected; and for common active periods
protocols, S-MAC and T-MAC have been selected. As hybrid protocols are combina-
tion of two different MAC protocols, we did not select any example as they usually
combine previously mentioned types. In addition, we have included the protocol
IEEE 802.11 [2] which is based in CSMA/CA, since it is commonly used in the area of
wireless networks.

After studying each of them, it can be possible to extract some of the most basic
functionalities which are illustrated in TABLE 3.1, such as Send and Receive which
allow the nodes to communicate each other, or Radio Control which controls the radio
power state (ON/OFF).

These functionalities will be the base to design more complex components such as
Carrier Sensing which needs Noise Floor Estimate, Radio Control and Timer functionalities
to determine if the medium is busy or nobody is transmitting. These little more
complex functionalities are shown in TABLE 3.2.

12
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Basic Functionality
Protocols

B-MAC MFP-MAC X-MAC S-MAC T-MAC 802.11
Noise Floor Estimate X X X X X X
Radio Power Control X X X X X X
Random Generate X
Receive Frame X X X X X X
Send Frame X X X X X X
Timer X X X X X X

TABLE 3.1: Summary of the basic functionalities of the most common MAC protocols.

Basic Functionality Protocols
B-MAC MFP-MAC X-MAC S-MAC T-MAC 802.11

Binary Exponential
Backoff X

Carrier Sensing X X X X X X
Low Power Listen-
ing X X X X X

Send Preamble X X X

TABLE 3.2: Summary of the complex functionalities of the most common MAC
protocols.

3.2 LANGUAGES USED FOR MAC PROTOCOL DESIGN

Since our toolchain aims to provide an easy and efficient way to design MAC protocols
and execute them in different platforms, we have designed a Meta-language in order
to facilitate this work to the user.

Moreover, in order to execute the user design, we design a MetaNode-language. It
describes the MAC protocol using a list of nodes which can be loaded in any platform.

Finally, we need a parser which checks format errors of the MAC protocols designs
described using Meta-language and translates them to a list of MetaNodes which will
be explained in section 3.3.

3.2.1 Meta-language Definition

The Meta-language defined in this section is the one used by the user to describe the
MAC implementations. For that reason, this language is designed to be as simple as
possible. It follows the basic syntax of C or NesC.

Mainly, there are six basic operations which can be used in the Meta-language:
variable definition, expressions, event implementation, function calls, if-else structures and
label-goto structures. Each one of them will be explained in the following sections.



3.2. LANGUAGES USED FOR MAC PROTOCOL DESIGN 14

3.2.1.1 Variable definition

The concept of variable exists in all programming languages. A variable is a storage
location and an associated symbolic name which contains a value. The variable name
is the usual way to reference the stored value; this separation of name and content
allows the name to be used independently of the exact information it represents.

In our Meta-language, there is an important restriction: it is only possible to use
numerical variables inside the code. This is due to all the functions that can be called
need only numbers as parameters. All the user variables must be defined before being
used in a function call, in an expression or in an if-else structure. After defining a
variable, its default value is always 0. The basic instruction to define a new variable is
the next one:

int variable_name;

In our toolchain, it only exists four types of variables:

• System variables: the ones already defined by the toolchain. These variables will
be used to provide some information to the user, for example the tos_node_id
of the sensor node. They will be defined in section 4.2. As they are predifined
by the toolchain, the user will be able to use them in all the event implementa-
tions. However, the user cannot define new variable with the same name as the
existing system variables anywhere inside the code.

• Event attributes: the ones that an event returns when it is triggered. These vari-
ables are used by the events to give some information to the user, for example
if the medium is busy after executing carrier sensing. As the system variables,
they will be defined in section 4.2. However, in this case, the user can only use
them inside the events which have them as attributes. In the same way that in
system variables, the user cannot define new variables with the same name as
the event attributes anywhere inside the code.

• Local variables: the ones defined inside an event implementation. The context of
these variables is the event inside they have been defined and they can only be
used inside it. Two variables can have the same name only if they belong to two
different events.

• Global variables: the ones defined by the user at the top of the code outside the
events. These variables do not have context, but they belong to all of them.
For that reason, they can be used inside all the event implementations and their
value will be the same. However, the name cannot appear in another variable
definition again inside the code.

3.2.1.2 Expressions

Expressions are those operations which allow changing the value of previously de-
fined variables. It has been designed three ways to change the value of a variable:

• Assign a value. It is possible to assign the value of a number, of another variable
or the returned value of a function. The instructions to assign a value must
follow the next structures:
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variable_name = 3;
variable_name = other_variable_name;
variable_name = function_call();

• Add a value. In this case, the value specified is added to the actual value of the
variable. As in the previous case, the value that will be added can be the value of
a number, of another variable or the returned value of a function. The structures
of these operations are the next ones:

variable_name = variable_name + 3;
variable_name = variable_name + other_variable_name;
variable_name = variable_name + function_call();

• Subtract a value. It is the same case as add a value, but subtracting it instead of
adding. The structures of these operations are the next ones:

variable_name = variable_name - 3;
variable_name = variable_name - other_variable_name;
variable_name = variable_name - function_call();

3.2.1.3 Event implementation

NesC [30] is an event-driven programming language, for that reason, it is necessary
that our Meta-language follows the same scheme. An event is an action that is initiated
somewhere inside the program and that is handled by a piece of code in another place
inside the program. For example, once the program starts, the function StartRadio is
called. After executing this action, an event called StartRadioDone is fired and the code
to be executed after starting the radio should be inside this event.

The structure to implement an event is shown below. The events are predefined by
the toolchain, in section 4.2 is provided the list of all the possible events that the user is
able to implement. Between the parentheses the name of some attributes can appear
to inform the user if there is an error, the data received in a packet, etc. The event
implementation is described between the brackets, so the last bracket indicates that
the event implementation is finished. Inside an event, all the operations are permitted
except for another event implementation. It means that the user can declare variables,
change variables’ value, call functions or use if-else and label-goto structures.

EVENT_NAME(attributes){
Operations to do when the event is fired;

}

3.2.1.4 Function calls

The basic components explained in section 4.1 provide functionalities to the user in
order to implement MAC protocols. The way to use these functionalities inside the
code is through function calls that the user can call inside an event implementation.
As the events, these functions are predefined by the toolchain and they are defined in
section 4.2. The instruction to call a function has to follow the next structure:
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function_call();

Between the parentheses should be included, if it is necessary, the parameters
that the function may need. As the next examples shows, the parameters should be
numbers or variables.

function_call(2, 3);
function_call(variable_name_one, variable_name_two);

3.2.1.5 If-else structures

In the MAC protocol implementations which can be designed using our toolchain,
if-else structures can be used. These structures work in the same way that in other
languages like C, Java, etc. The restriction that our structure has is that is not possible
to create else if statements, the Meta-language only allows if, else and endif. Just like in
other if-else structures, a condition must be included in if statement. If this condition is
true, the code inside if block will be executed. Otherwise, the code in else block will be
executed, in case there is one. As the else block can be included or not, to indicate that
the if-else structure is finished the endif statement must be always included. An example
of how to use this structure is showed below.

if(variable_name == 2){
Operations to do when the condition is true;

}else{
Operations to do otherwise;

}endif;

The condition of if statement can be created using numbers or variables. However,
the return value of a function cannot be included. If someone wants to use it, first of
all, it is necessary to use an expression in order to store the return value into a variable.
After that, this variable can be included inside the if condition. There are five possible
conditions: equal "==", greater than ">", greater than or equal to ">=", less than "<"
and less than or equal to "<=".

3.2.1.6 Label-goto structures

In the Meta-language, label-goto structures that can be used work in the same way
as in other languages like C. However, a restriction appears in our Meta-language
description: the label and goto statements must be included inside the same event
implementation. If they are in different event implementations, it will be impossible
to execute the instructions which the label refers.

In the label statement a number must be indicated which will be the identifier of
the label. On the other hand, in the goto statement, a number also has to be included
which is the identifier of the referenced label to jump. The basic structure is showed
below.

label 2;
...
goto 2;
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In FIGURE 3.1 an example of how to use the Meta-language is given. In the first
line, a global variable called myVar is defined. In the rest of the code, BOOT_EVENT
and RADIOSTART_EVENT are implemented. When the protocol starts to run, the
BOOT_EVENT is triggered and its operations are executed: assign value 1 to myVar
and starts the radio. Once the radio is started, the RADIOSTART_EVENT is triggered.
Then, if myVar has value 1, a packet is sent. Otherwise, a local variable called anoth-
erVar is defined, its value is assigned to 1 and added to value of myVar. Finally, the
goto sentence makes the code jump to the label definition and the code bellow the label
sentence is executed again.

   int myVar;

   BOOT_EVENT(){
myVar = 1;
startRadio();

   }

   RADIOSTART_EVENT(){
label 0;
if(myVar = 1){

sendDATA(2, myVar);
else{

int anotherVar;
anotherVar = 1;
myVar = myVar + anotherVar;
goto 0;

}endif;
   }

Protocol description
(Meta-language)

FIGURE 3.1: Example of MAC Protocol design using Meta-language.

3.2.2 MetaNode-language Definition

The MetaNode-language is the one used by the sensor node to execute the function-
alities described in the MAC protocol definition (Meta-language). As this language
is a translation from the Meta-language in order that a sensor node can understand
the instructions, the basic operations that compose it are the same as the explained
in section 3.2.1. However, our toolchain will use a Sensor Interface to execute the
instructions allocated in an execution list where each instruction occupies one posi-
tion, as explained in [1]. In order to be able to allocate each instruction in this list,
we define a MetaNode to represent one of these instructions that appear in the MAC
protocol description file. Therefore, the size of the execution list will be the same as
the number of lines of the file, due to each MetaNode makes a reference to a line of
the text file.

Thus, MetaNode-language will be the one which specifies the syntax of each MetaN-
ode. First of all, we need to define the MetaNode structure which will be composed
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by:

• MetaLabel: a numeric value which will specify the MetaNode type. For example,
if it is a variable definition (tag DEF), an if statement (tag IF) or a function call
(tag FUNC).

• IdLabel: a numeric value which will specify some characteristic of the MetaNode.
For example, if it is a function call, the idLabel will specify at which function
it refers. If it is a label or goto statement, it will specify the identifier of the
corresponding label. In case of a variable expression, IdLabel will specify if the
instruction is adding, subtracting or assign the value to this variable.

• Parameters: a set of attributes which will specify numeric values, variables or
function calls that a certain MetaNode may require. The structure which allo-
cates this parameters is called MetaParams and consists of two fields:

– Type: it indicates if it is a numeric value (tag VALUE), a variable (tag VAR)
or a function call (tag FUNC).

– Value: it can indicate three different concepts depending on the type. In
case of a numeric value indicates which value it is. If it is a variable, it
indicates the name of this variable. Otherwise, the value indicates to which
function it refers.

Once MetaNode structure is well specified, the translation from Meta-language
to MetaNode-language for each one of the six available operations can be easily ex-
plained.

3.2.2.1 Variable definition

This type of MetaNodes is used to define new variables. As it is explained in section
3.2.1.1, a user can define two types of variables: local and global variables, depending
on where they are defined, inside or outside an event implementation. To express it
using MetaNodes, it is necessary to indicate that the value for MetaLabel is DEF and,
in this case, none IdLabel is needed. Nevertheless, one Parameter of variable type (tag
VAR) will be necessary to indicate the name of the defined variable.

MetaNode

MetaLabel
DEF

IdLabel
-

Parameters

Type
VAR

Value
Variable_name

MetaParam

FIGURE 3.2: Structure of MetaNode in case of a Variable definition.
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3.2.2.2 Expressions

MetaNodes can also describe an expression to change the value of previously defined
variables. In this case, they will use the tag EXP as MetaLabel value. As it is explained
in section 3.2.1.2, there are three ways to change the value, thus to identify which of
them is, Idlabel should be used: assign a value (tag EQUAL), add a value (tag ADD) or
subtract a value (tag SUBTRACT).

The variable whose value will be changed must be specified as the first parameter
of the list. In addition, it must be of variable type (tag VAR) and its value field must
specify the name of the referenced variable. The second parameter can be defined in
three different ways, depending on its type:

• A number: the type field is a numeric value (tag VALUE) and the value indicates
what number it is.

MetaNode

MetaLabel
EXP

IdLabel
EQUAL / ADD / SUBTRACT

Parameters

Type
VAR

Value
Variable_name

MetaParam

Type
VALUE

Value
2

MetaParam

FIGURE 3.3: Structure of MetaNode in case of a Expression and its second parameter
is a number.

• Another variable: the type field is a variable (tag VAR) and the value field indi-
cates its name.

MetaNode

MetaLabel
EXP

IdLabel
EQUAL / ADD / SUBTRACT

Parameters

Type
VAR

Value
Variable_name

MetaParam

Type
VAR

Value
Other_variable_name

MetaParam

FIGURE 3.4: Structure of MetaNode in case of a Expression and its second parameter
is another variable.

• Returned value by a function call: the type field indicates a function call (tag FUNC),
the value field indicates the name of the called function and the rest of Pareme-
ters are the parameters that the specific function might need. The way to specify
the function parameters is the same as when making a function call which is
explained in section 3.2.2.4.

3.2.2.3 Event implementation

As it is explained in section 3.2.1.3, the operations which will be executed when an
event occurs must be included inside the event implementation. In the MetaNode-
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MetaNode

MetaLabel
EXP

IdLabel
EQUAL / ADD / SUBTRACT

Parameters

Type
VAR

Value
Variable_name

MetaParam

Type
FUNC

Value
Function_name

MetaParam

...

FIGURE 3.5: Structure of MetaNode in case of a Expression and its second parameter
is a returned value by function call.

language, two types of MetaNode exist to define the limits of the event implementa-
tion.

The first one indicates in the MetaLabel which event will be implemented by the
following MetaNodes. The second one indicates that this implementation is finished
by using the tag END_EVENT as MetaLabel. Both of these Metanodes does not use
any IdLabel or Parameters. Thereby, every MetaNode which is included between
these tags will be executed after the event is fired.

MetaNode

MetaLabel
Event_name

IdLabel
-

Parameters
-

MetaNode

MetaLabel
END_EVENT

IdLabel
-

Parameters
-

FIGURE 3.6: Structure of MetaNode in case of an Event implementation.

3.2.2.4 Function calls

In case of translating a function call, it will be necessary to use a MetaNode with
the tag FUNC as MetaLabel. The name of the specific function must be included as
IdLabel and, if the function needs some parameters, they must be included in the
Parameters list. As it is explained in section 3.2.1.4, the parameters used in a function
call can be numbers or variables. If the parameter is a number, the type field must be
a numeric value (tag VALUE) and the value field must be the number. Otherwise, the
type field must indicate a variable and its name must be indicated in the value field.
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MetaNode

MetaLabel
FUNC

IdLabel
Function_name

Parameters

Type
VAR

Value
Variable_name

MetaParam

...Type
VALUE

Value
2

MetaParam

FIGURE 3.7: Structure of MetaNode in case of a Function call.

3.2.2.5 If-else structures

In order to define if-else structures in MetaNode-language, three kinds of MetaNodes
must be used. First, it must be defined the if condition which is the main one. Second,
the else condition to execute in case of the result of first condition is false. Finally, an
EndIf statement is used to indicate that all the conditional block is finished.

The if condition is specified by using the tag IF as MetaLabel and it must be accom-
panied by three Parameters. The first one with type VALUE will indicate which opera-
tion must be checked inside the condition. The five possibilities are differentiated with
tags that suggest the operation type: EQUAL, GREATER, GREATER_OR_EQUAL,
LESS or LESS_OR_EQUAL. Next Parameters must be the elements to be compared
which can be numeric values or variables, as it is explained in section 3.2.1.5.

On the other hand, the else condition is specified by using the tag ELSE as MetaLabel
while the EndIf statement uses the tag END_IF.

However, sometimes it is necessary to include if-else structures inside other, thus
a way to identify the MetaNodes’ hierarchical level. To achieve that, IdLabel is used
to indicate the actual level. Thereby, the highest level will have a 0 as IdLabel, the
following will be the number 1, and so on.

3.2.2.6 Label-goto structures

Translating this kind of structures, implies using two MetaNodes, one used for the
label statement and the other for the goto one.

In case of the MetaNode for the label, the tag LABEL must be used as MetaLabel
and the numeric value which identifies this specific label must be indicated inside
IdLabel.

On the other hand, the MetaNode used for the goto must use the tag GOTO in the
as MetaLabel and indicate in the IdLabel the numeric value of the label which it refers
too. Both MetaNodes do not need to specify any type of Parameter.

3.3 META-LANGUAGE PARSER

Once it has been specified how to define all the possible operations from the Meta-
language in the MetaNode-language, FIGURE 3.10 shows an example of the transla-
tion from the code of FIGURE 3.1 into MetaNodes.

As it has been explained in section 3.2, the Meta-language used to describe MAC
protocols using text files is not the same as MetaNode-language. The last one is the



3.3. META-LANGUAGE PARSER 22

MetaNode

MetaLabel
IF

IdLabel
0

Parameters

Type
VALUE

Value
EQUAL/LOWER...

MetaParam

Type
VAR

Value
Variable_name

MetaParam

Type
VALUE

Value
2

MetaParam

MetaNode

MetaLabel
ELSE

IdLabel
0

Parameters
-

MetaNode

MetaLabel
END_IF

IdLabel
0

Parameters
-

FIGURE 3.8: Structure of MetaNode in case of an If-else structure.

MetaNode

MetaLabel
LABEL

IdLabel
1

Parameters
-

MetaNode

MetaLabel
GOTO

IdLabel
1

Parameters
-

FIGURE 3.9: Structure of MetaNode in case of a Label-goto structure.

language used by the sensor node to execute MAC protocols by interpreting an execu-
tion list. Therefore, it is necessary a parser which is able to read the text file, translate
the protocol description into an execution list formed by MetaNodes, allowing the
sensor node to run it.

Furthermore, the parser will also check syntax and logical errors that may appear
in Meta-language in order to send a feedback to the user. If there is no code error
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inside the file, the execution list will be created.
As this can be a hard process, the Meta-language Parser will be implemented

inside a User Interface designed in [1] which enables fast runtime reconfiguration of
MAC protocols. This User Intarface is able to establish a communication with the
sensor node. Thereby, the transfer of all execution list of MetaNodes generated by the
parser can be transfer using it.

   int myVar;

   BOOT_EVENT(){
myVar = 1;
startRadio();

   }

   RADIOSTART_EVENT(){
label 0;
if(myVar = 1){

sendDATA(2, myVar);
else{

int anotherVar;
anotherVar = 1;
myVar = myVar + anotherVar;
goto 0;

}endif;
   }

DEF -

BOOT_EVENT -

EXP EQUAL

FUNC startRadio

END_EVENT

Protocol description
(Meta-language)

Execution list
(MetaNode-language)

VAR myVar

-

VAR myVar VALUE 1

-

- -

RADIOSTART_EVENT - -

LABEL 0 -

IF 0 VALUE EQUAL VAR myVar VALUE 1

FUNC sendData VALUE 2 VAR myVar

ELSE - -

DEF - VAR anotherVar

EXP ADD VAR myVar VAR anotherVar

GOTO 0 -

END_IF - -

END_EVENT - -

EXP EQUAL VAR anotherVar VALUE 1

FIGURE 3.10: Example of translation of a MAC Protocol design from Meta-language
to MetaNode-language.
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IMPLEMENTATION

This chapter describes the implementation details of the toolchain designed in order
to allow a rapid MAC protocol prototyping and designing. As introduced in chapter
3, it can be divided in three different parts: MAC Components, the Languages used
for MAC Protocol Design and the Meta-language Parser. In section 4.1, implemented
MAC Components and their relationships are described. The commands and events
which can be used in the Meta-language and the corresponding MetaNode-language
are defined in section 4.2. Finally, the Meta-language Parser implementation is de-
scribed in section 4.3.

4.1 MAC COMPONENTS

Our framework has been designed with the aim to simplify the creation of new MAC
protocols. In order to achieve this goal, the framework follows a component struc-
ture, starting with very simple and independent blocks which can be used to build
more complex blocks quickly. The possibility of using several existing blocks in the
development of other new blocks promotes the code reusability inside the framework.
Moreover, each block is independent and provides an interface to facilitate its use, this
approach allows designers to focus on the MAC protocol without worrying about the
complexities and dependencies between blocks. In this section, the MAC components
implemented following the basic and complex functionalities of section 3.1 will be
explained. These components have been implemented using the idea of component-
based design and hardware independence. Therefore, they can be used in the design
of any MAC protocol and deployed in any type of hardware.

In TABLE 4.1, a list of Basic and Complex Components and their composition are
defined. Basic Components are the simplest ones built using only TinyOS compo-
nents. Complex Components are built combining existing components of the frame-
work and TinyOS components.

As shown in TABLE 4.1, MACNoiseFloorEstimator and MACRadioPowerControl
are basic blocks which provides basic MAC operations like sensing the medium or
switching the state of the radio. However, MACCarrierSensing is a complex block
which provides operations of detecting activity in the channel and is built using the
Basic Components MACTimer and MACNoiseFloorEstimator. Complex Components
can be built using a combination of basic and other Complex Components. For in-
stance, MACLowPowerListening is built using MACTimer, MACRadioPowerControl
and MACCarrierSensing.

FIGURE 4.1 shows the final structure of our MAC protocols implementation and
the relationships between them. The arrows indicate that the complex component has
been built using the indicated basic or complex component.

24
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Basic Component Composition
MACNoiseFloorEstimator QueueC, HplCC1000C or CC2420ControlC
MACRadioPowerControl ActiveMessageC, StateC
MACRandomNumGenerator RandomC
MACReceive AMReceiverC, ActiveMessageC
MACSend AMSenderC, ActiveMessageC
MACTimer TimerMilliC
Complex Component Composition
MACCarrierSensing MACTimer, MACNoiseFloorEstimator, StateC

MACLowPowerListening
MACTimer, MACRadioPowerControl, MAC-
CarrierSensing, StateC

MACBinaryExponentialBackoff MACRandomNumGenerator
MACReceivePacket MACReceive
MACSendPacket MACSend
MACSendPreamble MACTimer, MACSend, StateC

TABLE 4.1: MAC components library and their composition.

MAC

Carrier 

Sensing

MACLow 

Power 

Listening

MACBinary 

Exponential 

Backoff

MAC

Receive 

Packet

MACSend 

Packet

MACSend 

Preamble

MACRandom

Num

Generator

MACTimer MACSend
MAC

Receive

MACRadio 

Power

Control

MACNoise 

Floor 

Estimator

Complex 

Components

Basic 

Components

FIGURE 4.1: Diagram of reusable components.

TABLE 4.2 shows the components used in each MAC protocol implementation.
Components MACRadioPowerControl, MACCArrierSensing, MACReceivePacket and
MACSendPacket are fundamental for all protocols. Other components, like MACLow-
PowerListening and MACSendPreamble are common for preamble-sampling proto-
cols. Some of the Basic Components are used not in the main implementation of
the protocol, but used inside complex blocks. For example, MAC protocols that use
MACLowPowerListening, use also MACRadioPowerControl since MACRadioPow-
erControl is used to implement MACLowPowerListening block.
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Component
Protocols

B-MAC MFP-MAC X-MAC S-MAC T-MAC
MACNoiseFloorEstimator X X X X X
MACRadioPowerControl X X X X X
MACRandomNumGenerator
MACReceive X X X X X
MACSend X X X X X
MACTimer X X X X X
MACCarrierSensing X X X X X
MACLowPowerListening X X X
MACBinaryExponentialBackoff
MACReceivePacket X X X X X
MACSendPacket X X X X X
MACSendPreamble X X X

TABLE 4.2: Component reusability for different MAC protocol implementations.

In next subsections, the MAC Components which have been finally implemented
are explained depending on their type: basic or complex.

4.1.1 Basic Components

As it has been mentioned before, Basic Components are the simplest ones due to
they are built using only the components provided by TinyOS. There are 6 Basic
Components implemented which allow to create the Complex Components, which
are explained in more detail in next subsections.

4.1.1.1 MACTimer

MACTimer component provides an interface similar to that of TinyOS Timer: it pro-
vides the basic timer functionalities, like isRunning() which return a boolean indicating
if the timer is active or not, and adds new ones more specific, like timeRemaining()
which returns the remaining time of an active timer.

A MACTimer instance can be instantiated once with startOneShot(duration) or peri-
odically with startPeriodic(duration, bound), where duration is the duration in millisec-
onds and bound is the number of periodic cycles. At the end of each cycle the event
fired() is triggered.

4.1.1.2 MACRadioPowerControl

MACRadioPowerControl component is used to switch the radio on and off. It has
been implemented using the TinyOS SplitControl interface. This component is very
important due to the radio have to be switched on in order to send and receive mes-
sages and also have to be switched off to extend the battery lifetime of the sensor
nodes.

The radio can be switched on using startRadio() and switched off using stopRadio(),
when the state is correctly changed the event radioStartDone() or radioStopDone(), re-
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interface MACTimer{
command void startOneShot(uint16_t duration);
command void startPeriodic(uint16_t duration, uint8_t bound);
command void stop();
command bool isRunning();
command uint32_t timeRemaining();
command uint32_t getDuration();
command uint32_t getNow();

event void fired();
}

FIGURE 4.2: Interface definition for MACTimer component.

spectively, is triggered. The startRadio() command turns on the voltage regulator and
the crystal oscillator of the sensor’s radio and makes sure that they are stable before
the user uses it. To inform about the actual state of the radio is used the command
getRadioPowerState() and in the case of the control state, for example if the radio is
already turning on, is used getSplitControlState().

interface MACRadioPowerControl{
command void startRadio();
command void stopRadio();
command uint8_t getRadioPowerState();
command uint8_t getSplitControlState();

event void radioStartDone();
event void radioStopDone();

}

FIGURE 4.3: Interface definition for MACRadioPowerControl component.

4.1.1.3 MACRandomNumGenerator

MACRandomNumGenerator component provides one command that returns a ran-
dom number within the specified range. It is based on TinyOS Random interface.

interface MACRandomNumGenerator{
command uint16_t randomNum(uint16_t range);

}

FIGURE 4.4: Interface definition for MACRandomNumGenerator component.

4.1.1.4 MACNoiseFloorEstimator

MACNoiseFloorEstimator component provides the basic commands to manage the
actual noise floor and to read the RSSI value .
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The actual noise floor can be consulted using getNoiseFloor() and it is a median
between 10 samples saved in a queue. This samples can be updated by the user using
setNewNoiseFloorSample(). TinyOS Queue interface is used in order to manage these
noise floor samples.

The TinyOS ReadNow or Read interface is used to read the RSSI value depending
on the platform. Because platform which use the radio chip CC1000, like Mica2
sensors, provides ReadNow interface through the HplCC1000C component. In this
case, it is also mandatory to use TinyOS Resource interface in order to request the
access to RSSI resource and be able to read the RSSI value once the it is granted. On
the other hand, the ones with radio chip CC2420, like TelosB sensors, provides only
Read interface through CC2420ControlC component.

These two ways of reading the RSSI value have been combined in one interface
and it is selected the appropriated one automatically. Thereby, the user has not take
into account the platform when designing the MAC protocol. It is used readRssi() to
read the value and it is returned when the readRssiDone(value) event is triggered.

interface MACNoiseFloorEstimator{
command void setNewNoiseFloorSample(int16_t noiseSample);
command float getNoiseFloor();
command void readRssi();

event void readRssiDone(int16_t value);
}

FIGURE 4.5: Interface definition for MACNoiseFloorEstimator component.

4.1.1.5 MACSend

MACSend component uses TinyOS AMSend, AMPacket and Packet interfaces and
provides an unique interface to manage messages and send tasks. This interface is not
available to the final user because it needs parameters of type message_t. Thereby,
MACSend components is an intermediate interface between another high level com-
ponents and the TinyOS AMSend interface. For example, MACSendPacket and MAC-
SendPreamble components use it to manage the send tasks.

interface MACSend{
command error_t send(am_addr_t addr, message_t* msg, uint8_t

length);
command error_t cancel(message_t* msg);
command error_t resend();
command void* getPayload(message_t* msg, uint8_t length);
command uint32_t getPacketTransmissionTime(uint8_t

payloadLength);

event void sendDone(message_t* msg, error_t error);
}

FIGURE 4.6: Interface definition for MACSend component.
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4.1.1.6 MACReceive

MACReceive component uses TinyOS Receive, AMPacket and PAcket interfaces and
provides an unique interface for all of them. The final user can not use this component
due to it returns a parameter of type message_t. Thereby, similar to MACSend com-
ponent, it is an intermediate interface between another high level components and the
TinyOS AMReceive interface. For example, MACReceivePacket uses it to manage all
the messages that the sensors receive.

interface MACReceive{
command void setAddressRecognitionEnabled(bool

enableAddressRecognition);

event void receive(uint8_t type, uint16_t preambleDuration,
uint16_t preambleTime, uint16_t destnode, uint16_t
srcnode, uint16_t counter);

}

FIGURE 4.7: Interface definition for MACReceive component.

4.1.2 Complex Components

As it has been mentioned before, Complex Components are built combining existing
components provided by the toolchain (Basic Components) and TinyOS components.
There are 6 Complex Components implemented which are explained in more detail in
next subsections.

4.1.2.1 MACCarrierSensing

Carrier sensing functionality is very important for MAC protocols to detect any ac-
tivity in the medium. For instance, a sender performs carrier sensing to conclude
whether or not to initiate data transmission in order to reduce collisions, or a receiver
performs it to know if there is data transmission in the channel and wake ups or goes
again to sleep in order to save energy.

MACCarrierSensing component provides this utility using our Basic Components
MACTimer and MACNoiseFloorEstimator. Carrier sensing is performed by calling
readRssi() command of MACNoiseFloorEstimator and comparing these RSSI values
with the actual Noise Floor get through getNoiseFloor() command. To prevent false
positives, the RSSI values have to be greater than the noise floor value three times to
consider that there a transmission in the channel.

To perform carrier sensing startCS(time) should be called. When three RSSI values
are greater than the noise floor firedCS(mediumBusy) event is triggered and mediumBusy
is TRUE. Otherwise, when the time expires this event is triggered but mediumBusy is
FALSE. The command stopCS() is used to stop the current carrier sensing and isIdle()
is used to know if carrier sensing is been performed in this moment. Finally, up-
dateThreshold() allows using only one command to read one RSSI value and update the
noise floor value using readRSSI() and setNewNoiseFloorSample() commands of MAC-
NoiseFloorEstimator component.
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interface MACCarrierSensing{
command error_t startCS(uint16_t time);
command bool isIdle();
command void updateThreshold();
command void stopCS();

event void firedCS(bool mediumBusy);
}

FIGURE 4.8: Interface definition for MACCarrierSensing component.

4.1.2.2 MACLowPowerListening

Preamble-sampling based protocols divides one period in active and sleep times. When
an sleep time ends, the channel is listened performing carrier sense, if the channel is
free the radio is switched off again. Otherwise, starts the active time and the radio
keeps turned on until this period is finished.

MACLowPowerListening components provides the functionalities to duty cycle
the radio and performs the carrier sense automatically. It uses the Basic Component
MACRadioPowerControl to switch the radio on and off, MACCarrierSensing to per-
forms carrier sense and MACTimer. The component duty cycle the radio depending
on two parameters: sleep interval and duty cycle. The first one indicates the total
time between two checks of transmissions on the channel. Duty cycle indicates in
percentage the time that the radio will keep turned on. For instance, if sleep interval
is 100 ms and duty cycle is 30 %, the radio will keep turned on during 30 ms and
turned on again after 70 ms.

This component provides two commands to change the sleep interval and the duty
cycle, setSleepInterval(interval) and setDutyCycle(dutyCycle) respectively. Moreover, to
consult the actual values are used getSleepInterval() and getDutyCycle().

In order to starts the cycle is used startLpl(), if during the carrier sense a trans-
mission in the channel is detected signalDetected() event is triggered and the cycle is
stopped. Also is provided the command stopLpl() to stop the cycle. It will be necessary
for example to send a packet. In this case, when the cycle is stopped and the radio is
turned on is triggered lplStopped() event.

interface MACLowPowerListening{
command void setSleepInterval(uint16_t interval);
command void setDutyCycle(uint16_t dutyCycle);
command uint16_t getSleepInterval();
command uint16_t getDutyCycle();
command error_t startLpl();
command void stopLpl();

event void signalDetected();
event void lplStopped();

}

FIGURE 4.9: Interface definition for MACLowPowerListening component.



4.1. MAC COMPONENTS 31

4.1.2.3 MACSendPacket

MACSendPacket component provides a simple interface for sending different types of
packets, for example a data packet, an ACK, an RTS, etc. This component is built using
the basic component MACSend, so, it only has to include the user parameters and the
packet type in the corresponding message and call the command send() of MACSend
interface. Moreover, when the event sendDone() of this interface is triggered, it has to
trigger another event to the user.

MACSendPacket provides five commands to send a packet, each one of them
refers to a different type of packet:data, ACK, RTS, CTS and synchronization. When
the packer is correctly sent, an event is triggered. In the same way as for the com-
mands, five event exist depending of the type of packet sent.

interface MACSendPacket{
command error_t sendDATA(am_addr_t destnode, uint16_t

counter);
command error_t sendACK(am_addr_t destnode);
command error_t sendRTS(am_addr_t destnode);
command error_t sendCTS(am_addr_t destnode);
command error_t sendSyn(uint16_t timeToSleep);

event void sendDATADone(am_addr_t destnode, uint16_t counter,
error_t error);

event void sendACKDone(am_addr_t destnode, error_t error);
event void sendRTSDone(am_addr_t destnode, error_t error);
event void sendCTSDone(am_addr_t destnode, error_t error);
event void sendSYNCDone(error_t error);

}

FIGURE 4.10: Interface definition for MACSendPacket component.

4.1.2.4 MACSendPreamble

MAC protocols which use duty cycle strategies and no-synchronization need a way
to indicate the receivers that there is a data transmission and they should keep their
radio turned on. This strategy is to send a long preamble before sending the data
packet.

MACSendPreamble provides an interface to send these type of long packets. It
uses the Basic Component MACTimer and, as MACSendPacket component, MAC-
Send to manage the send tasks. This component allows the user to send three type
of preambles: monolithic preamble which is the one used in B-MAC protocol, micro
frame preamble or MFP which is the one used in MFP-MAC protocol and a short
preamble, called strobbed, which is the one used in X-MAC protocol. Each one of
them needs different parameters due to they have different behaviours. Nevertheless,
the preambleLength parameter is always needed in order to determine the maximum
time that the preamble has to be sent.

Three commands are provided in order to select the type of preamble ans start to
send it: sendPreambleMonolithic(preambleLength), sendPreambleMFP(destnode, preamble-
Length) and sendPreambleStrobbed(destnode, preambleLength). The command stopPream-
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ble() is used to stop sending the preamble before the time expires. Finally, when the
time expires, the event preambleSendDone() is triggered.

interface MACSendPreamble{
command error_t sendPreambleMonolithic(uint16_t

preambleLength);
command error_t sendPreambleMFP(am_addr_t destnode, uint16_t

preambleLength);
command error_t sendPreambleStrobbed(am_addr_t destnode,

uint16_t preambleLength);
command void stopPreamble();

event void preambleSendDone(am_addr_t destnode, error_t
error);

}

FIGURE 4.11: Interface definition for MACSendPreamble component.

4.1.2.5 MACReceivePacket

MACReceivePacket provides a simple interface to notify trough events that a message
is received. This component is built using the basic component MACReceive, so when
the event receive() of this basic component is triggered, the parameter of the packet
which indicates the type is read and is triggered another event indicating the type of
message and the value of the important parameters.

Following this idea, eight events are defined: receive a monolithic preamble, a
MFP preamble, a strobbed preamble, a data packet, an ACK, a RTS, a CTS or a syn-
chronization packet. The command setAddressRecognitionEnabled(enableAddressRecognition)
is used to enable or disable address recognition. When the parameter is FALSE, it is
disables, therefore the component will trigger receive events when a transmission is
detected without filtration. Otherwise, the component will trigger receive events only
for the messages with destination address equal to the node address or broadcast.

4.1.2.6 MACBinaryExponentialBackoff

MACBinaryExponentialBackoff components has been included to use it in collision
avoidance schemes. In case of collision, they delay the retransmission of packets
depending on the number of collisions accumulated. Specifically, a random number
of slot times between 0 and 2c - 1 is chosen, being c the number of collisions. So, for
the first collision each sender will wait 0 or 1 slot times. After the second collision, the
senders will wait anywhere from 0 to 3 slot times inclusive and so on.

So, this component select the range of slot times depending on the number of
collisions like is explained before and then, it selects one of them randomly using the
basic component MACRandomNumGenerator. In order to provide this functionality,
the component has the command getBinaryExponentialBO(numCollision).
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interface MACReceivePacket{
command void setAddressRecognitionEnabled(bool

enableAddressRecognition);

event void receivePreambleMonolithic();
event void receivePreambleMFP(uint16_t preambleDuration,

uint16_t preambleTime, uint16_t
destnode);

event void receivePreambleStrobbed(uint16_t destnode,
uint16_t srcnode);

event void receiveDATA(uint16_t destnode, uint16_t srcnode,
uint16_t counter);

event void receiveACK(uint16_t destnode, uint16_t srcnode);
event void receiveRTS(uint16_t destnode, uint16_t srcnode);
event void receiveCTS(uint16_t destnode, uint16_t srcnode);
event void receiveSYN(uint16_t time);

}

FIGURE 4.12: Interface definition for MACReceivePacket component.

interface MACBinaryExponentialBackoff{
command uint16_t getBinaryExponentialBO(uint16_t numCollision);

}

FIGURE 4.13: Interface definition for MACBinaryExponentialBackoff component.

4.2 LANGUAGES USED FOR MAC PROTOCOL DESIGN

Once MAC Components have been implemented, we need to define how their com-
mands and events are called in the Meta-language and in the MetaNode-language.
For the MetaNode-language, as in TinyOS is complicated to manage String variables,
instead of using Strings, numerical values will be used to describe the functionalities.
The structures of MetaNode and MetaParam are shown in FIGURE 4.14 and 4.15. The
MetaNode contains two numerical values of type uint8_t which are the MetaLabel
and the IdLabel and an array of MetaParams. The size of the array is five, due to
in the worst case is the maximum number of parameters that may be needed. The
MetaParam struct contains an uint8_t field which is the type and an int16_t which is
the value.

typedef struct MetaNode{
uint8_t metaLabel;
uint8_t idLabel;
MetaParam parameters[5];

}MetaNode;

FIGURE 4.14: Struct definition for MetaNode.

In order to translate from Meta-language to MetaNode-language as well as being
able to execute the operations described by MetaNodes, it is necessary to define the



4.2. LANGUAGES USED FOR MAC PROTOCOL DESIGN 34

typedef struct MetaParam{
uint8_t type;
int16_t value;

}MetaParam;

FIGURE 4.15: Struct definition for MetaParam.

numerical values that corresponds to each case for MetaLabel, IdLabel of the MetaN-
ode structure and for the type and value of the MetaParam structure.

In TABLE 4.3 the events that the user can implement inside the code are defined.
In the first column, it is shown how they have to be used in the Meta-language and
which are the attributes for each one. The MetaNode-language tag is the name used
in TinyOS to define them while the MetaNode value is the numerical value used in
the MetaLabel field.
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Meta-language MetaNode-language tag
MetaNode

value
BOOT_EVENT() BOOT_EVENT 6
SENDPREAMBLE_EVENT(
destAddr, error) SENDPREAMBLE_EVENT 7

SENDDATA_EVENT(destAddr, dat-
aCounter, error) SENDDATA_EVENT 8

SENDACK_EVENT(destAddr,
error) SENDACK_EVENT 9

SENDRTS_EVENT(destAddr, error) SENDRTS_EVENT 10
SENDCTS_EVENT(destAddr, error) SENDCTS_EVENT 11
SENDSYNC_EVENT(error) SENDSYNC_EVENT 12
RECEIVEMONOLITHIC_EVENT() RECEIVEMONOLITHIC_EVENT 13
RECEIVEMFP_EVENT( preamble-
Duration, preambleTime, destAddr) RECEIVEMFP_EVENT 14

RECEIVESTROBBED_EVENT(
destAddr, srcAddr) RECEIVESTROBBED_EVENT 15

RECEIVEDATA_EVENT( destAddr,
srcAddr, dataCounter) RECEIVEDATA_EVENT 16

RECEIVEACK_EVENT(destAddr,
srcAddr) RECEIVEACK_EVENT 17

RECEIVERTS_EVENT(destAddr, sr-
cAddr) RECEIVERTS_EVENT 18

RECEIVECTS_EVENT(destAddr, sr-
cAddr) RECEIVECTS_EVENT 19

RECEIVESYNC_EVENT(
timeToSleep) RECEIVESYNC_EVENT 20

LPLSIGNALDETECT_EVENT() LPLSIGNALDETECT_EVENT 21
LPLSTOP_EVENT() LPLSTOP_EVENT 22
FIREDCS_EVENT(mediumBusy) FIREDCS_EVENT 23
READRSSI_EVENT(value) READRSSI_EVENT 24
RADIOSTART_EVENT() RADIOSTART_EVENT 25
RADIOSTOP_EVENT() RADIOSTOP_EVENT 26
TIMER0FIRED_EVENT() TIMER0FIRED_EVENT 27
TIMER1FIRED_EVENT() TIMER1FIRED_EVENT 28
TIMER2FIRED_EVENT() TIMER2FIRED_EVENT 29
TIMER3FIRED_EVENT() TIMER3FIRED_EVENT 30
TIMER4FIRED_EVENT() TIMER4FIRED_EVENT 31
TIMER5FIRED_EVENT() TIMER5FIRED_EVENT 32
TIMER6FIRED_EVENT() TIMER6FIRED_EVENT 33
TIMER7FIRED_EVENT() TIMER7FIRED_EVENT 34
TIMER8FIRED_EVENT() TIMER8FIRED_EVENT 35

TABLE 4.3: Definition and numerical value of events.
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The rest of possible values that can be included in MetaLabel field are used for
function calls, end of an event implementation, if-else structures, label-goto structures,
variable definitions and expressions which are defined in TABLE 4.4.

Operation Meta-language MetaNode-language tag
MetaNode

value
Function call function_name(); FUNC 0

If-else structure
if(variable_name == 2){ IF 1

}else{ ELSE 2
}endif; END_IF 3

Label-goto
structure

label id; LABEL 4
goto id; GOTO 5

End of event im-
plementation } END_EVENT 36

Variable
definition int variable_name; DEF 37

Expression variable_name = 2; EXP 38

TABLE 4.4: Definition and numerical values of different operations.

MetaNodes of function type, as it is explained in section 3.2.2.4, should include
also to which certain function or command refers in the IdLabel field. TABLE 4.5
defines how they should be called in Meta-language and which parameters should be
provided, the name used in TinyOS and their values.
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Meta-language MetaNode-language tag
MetaNode

value
sendPreambleMonolithic( preambleLength); SENDMONOLITHIC 0
sendPreambleMFP(destination, preamble-
Length); SENDMFP 1

sendPreambleStrobbed(destination,
preambleLength); SENDSTROBBED 2

stopPreamble(); STOPPREAMBLE 3
sendData(destination, counter); SENDDATA 4
sendAck(destination); SENDACK 5
sendRts(destination); SENDRTS 6
sendCts(destination); SENDCTS 7
sendSync(timeToSleep); SENDSYNC 8
sendCancel(); SENDCANCEL 9
setSleepInterval(interval); LPLSETSLEEPINT 10
setDutyCycle(dutyCycle); LPLSETDUTYCYCLE 11
getSleepInterval(); LPLGETSLEEPINT 12
getDutyCycle(); LPLGETDUTYCYCLE 13
startLpl(); LPLSTART 14
stopLpl(); LPLSTOP 15
goSleepTime(time); LPLSLEEP_MFP 16
startCS(time); CSSTART 17
csIsIdle(); CSISIDLE 18
updateTreshold(); CSUPTADETRESH 19
stopCS(); CSSTOP 20
getBinaryExponentialBO( numCollisions); GETBINEXPBO 21
startRadio(); RADIOSTART 22
stopRadio(); RADIOSTOP 23
getRadioPowerState(); RADIOGETPOWERSTATE 24
getSplitControlState(); RADIOGETCONTROLSTATE 25
randomNum(); RANDOMNUM32 26
timerStartOneShot(id, duration); TIMERSTARTONESHOT 27
timerStartPeriodic(id, duration, bounds); TIMERSTARTPERIODIC 28
timerStop(id); TIMERSTOP 29
timerIsRunning(id); TIMERISRUNNING 30
timerTimeRemaining(id); TIMERTIMEREMAINING 31
timerGetDuration(id); TIMERGETDURATION 32
timerGetNow(id); TIMERGETNOW 33
setAddressRecognitionEnabled(boolean); SETADDRRECOGNITION 34
led0On(); LED0ON 35
led0Off(); LED0OFF 36
led1On(); LED1ON 37
led1Off(); LED1OFF 38
led2On(); LED2ON 39
led2Off(); LED2OFF 40
ledSetNum(num); LEDSET 41
setNewNoiseFloorValue(value); NEWNOISEFLOORSAMPLE 42
getNoiseFloor(); GETNOISEFLOOR 43
readRssi(); READRSSI 44

TABLE 4.5: Definition and numerical value of function calls.
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Another important element that has to be defined is the numerical value for each
of the operations used in expressions and in if conditions. As it is explained in section
3.2.2.2, expressions allow the user to assign, add or subtract a value to a variable and
the specific operation should be included in IdLabel field. In the case of the if-else
structures, as it is explained in section 3.2.2.5, the if condition can be equal to, greater than,
greater than or equal to, less than or less than or equal to. Therefore, all these possibilities
are defined in TABLE 4.6.

Condition Meta-language MetaNode-language tag
MetaNode

value
Assign a value or con-
dition equal to == EQUAL 0

Add a value + ADD 1
Subtract a value - SUBTRACT 2
Greater than > GREATER 3
Greater than or equal to >= GREATER_OR_EQUAL 4
Less than < LESS 5
Less than or equal to <= LESS_OR_EQUAL 6

TABLE 4.6: Numerical values for expressions and if-else structures conditions.

Regarding to MetaParam structure, the numerical value for type field should be
defined due to it varies depending on if it is a numerical value, a variable or a function
call. This definition is shown in TABLE 4.7.

Parameter Type MetaNode-language tag MetaNode value
Numerical value VALUE 0
Variable VAR 1
Returned value of a function FUNC 2

TABLE 4.7: Numerical values for expressions and if-else structures conditions.

Finally, the MetaParam value field has to be defined which will have different
meanings depending on the three different cases:

• A number: the value indicates the number is. As the numerical value, in this case,
can be positive or negative; value field of MetaParam is an integer instead of an
unsigned integer.

• A variable: as it is explained before, Strings are complicated to manage in TinyOS.
For that reason, each variable (system, attribute, local or global) will have a nu-
merical value as identifier. System variables and event attributes have a number
which is predefined. However, the variables defined by the user in the MAC
protocol will have a number assigned by order. For instance, if variable1 is the
first defined will have the value 18, then when a variable2 is defined will have
the value 19, and so on.
System variables can be used in all the code while event attributes can be only
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used inside those events which have them as attributes. TABLE 4.8 defines
the names of these variables. The variables between success and ecancel, both
included, are the possible values of error when is returned by the events.

Meta-language Identifier Type Information

tos_node_id 0 System var.
It indicates the own id of the sensor
node.

destAddr 1 Attribute
Indicates the node id of the destina-
tion sensor node.

error 2 Attribute
Indicates if the function/event is
success/fail/ebusy/ealready/e-
cancel.

dataCounter 3 Attribute
Indicates the value of the counter
received.

srcAddr 4 Attribute
Indicates the node id of the source
sensor node.

preambleDuration 5 Attribute
Indicates in milliseconds the dura-
tion of the preamble.

preambleTime 6 Attribute
Indicates in milliseconds the time
since it has started to send pream-
ble.

mediumBusy 7 Attribute
Indicates if the medium is free
(false) or other sensor nodes are
transmitting (true).

timeToSleep 8 Attribute
Indicates the time until the sensor
node switches the radio off.

rssiValue 9 Attribute
Indicates the value of the RSSI mea-
sured.

true 10 System var.
Indicates a true like a boolean vari-
able.

false 11 System var.
Indicates a false like a boolean vari-
able.

success 12 System var. Indicates that there was no error.
fail 13 System var. Indicates that there was a fail.

ebusy 14 System var.
Indicates that the component is oc-
cupied.

ealready 15 System var.
Indicates that that the function is
already started.

ecancel 16 System var.
Indicates that the function has been
cancelled by the user.

broadcast_addr 17 System var. Indicates the broadcast id.

TABLE 4.8: System variables and event attributes.

• Returned value by a function call: the value indicates the function called, thus its
value is assigned like in TABLE 4.5.
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4.3 META-LANGUAGE PARSER

One of the most important components of the toolchain is the Meta-language Parser
which is the responsible of reading text files written using Meta-language and trans-
late it into MetaNodes.

As it has been mentioned before, this can be a hard process. Therefore, the Meta-
language Parser will be implemented inside a User Interface designed in [1] which
enables fast runtime reconfiguration of MAC protocols. This User Intarface has been
implemented in Java due to TinyOS provides some native libraries in order to establish
a communication with the sensor node using Java. For that reason, the Meta-language
Parser will be implemented in Java too.

Mainly, the process of parsing consists of four basic steps: init, read line, identify
node and parse node. They are explained below:

• Init: Before reading the text file, it is important to reset the variables used in
parsing process, such as number of line read, If counters, the context, etc.

• Read line: Once the variables are initiated, the text file is read line by line.

• Identify node: It consists in identify to which instruction refers the line read
previously according to some string patterns. There are some keywords which
allow us to carry out this process easily. If line begins with "int ", it means
a variable definition. In case of beginning with "label " or "goto ", it refers to
a label definition or goto statement respectively. Regarding to if statements, it is
easy to recognize them due to they start with "if(". However, else statements
and endif statement are recognizable because they are exactly like "}else{" and
"}endif;" respectively. In case the line starts in capital letters, it implies an event
implementation. If the line contains an "=" symbol but it does not start with "if(",
it is an expression. By elimination, if line does not match to none of the cases
explained above, it is a function call.

• Parse node: As the line has been identified, each line will be parsed to a certain
MetaNode filling all the fields according to its type and the Meta-language de-
scription. As a MetaNode object in Java is necessary, we will use MIG (Message
Interface Generator) which is a tool to generate code that processes TinyOS
messages. Thereby, MIG will convert TinyOS MetaNode structure into a totally
compatible Java MetaNode object by reading the header file where it is defined
using next command:

>> mig java -target=null -java-classname=MetaNode
MACDefinition.h MetaNode -o MetaNode.java

For each node, a verification of errors is carried out such as the node complies the
Meta-language syntax, variables used have been previously defined or functions
called are the ones provided by toolchain. In case of error, a message will be
sent to the shell so that it displays it to the user. Most of procedures to parse
a node are trivial, but others are quite peculiar, thus we will explained them
exhaustively in next subsections.
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Once the node is parsed, the process starts again by reading next line and so on.

4.3.1 Parsing a Variable definition

User is able to define as many variables as he desires, thus many variables should be
managed by the toolchain. As it is explained in section 4.2, Strings are complicated
to manage in TinyOS. Therefore, each variable (system, attribute, local or global) will
have a numerical value as identifier. However, the user is able to define variables
using Strings as name when writing the text file. For that reason, some kind of struc-
ture is needed to store the translation between the String name defined by the user
and the numerical identifier generated by the toolchain. An object called Variable has
been designed with this purpose. It contains the name in String format, the numerical
identifier and the context definition.

Once a variable definition is parsed, a new Variable object is instantiated and filled
all its fields. The name is the one used in the text file, the numerical identifier is
the identifier of the last defined variable incremented by one unit and the context of
the definition will be the number of the event where the variable is being defined
or DEF in case of being a global variable. This new Variable is stored in a list called
VariableBuffer. System variables and attributes are also stored inside this buffer due to
sensor node needs a numerical value to access them too.

Moreover, there is an additional field defined in Variable object, a boolean type
which indicates if the variable exists or it is not needed any more. This field is very
useful when user tries to modify MAC protocol at runtime and removes a line where
a variable is being defined. The toolchain will set this field to false such that when
the nodeList is checked, an error will appear because the variable will not appear in
VariableBuffer as existing. If the user redefine the variable again, the toolchain only
needs to set this field to true, an everything will work as before again, remaining the
same numerical identifier and all the references to this variable intact.

4.3.2 Parsing an If-Else statement

Other nodes which are difficult to parse are if-else statements due to they may include
other nodes inside itself.

The process begins recognizing an if statement. After verifying there is no error
related to the syntax, i.e. parentheses or curly brackets missing; an IF MetaNode is
created and added to nodeList. Before returning to the process of parsing the rest of
lines of text file, as if-statements usually include other instructions inside is necessary
to parse them before closing with an END_IF MetaNode.

For that reason, we have designed a complex procedure to interpret and parse
all the instructions included in the if-else statements before returning to the normal
procedure of parsing the text file as FIGURE 4.16 shows.

Initially, it is necessary to initialize some variables: counterIf must be incremented
by one unit due to an If node has been parsed, it will indicate the depth level of the
If when some if-else statements are defined inside others (chained if-else statements);
ifsOpened must be incremented by one unit too because it enables toolchain to detect
how many ifs has been opened but not successfully closed, in case this variable is
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different of 0 after the parsing process is finished; found must be set to false, in case of
being true, it indicates the process is already finished.

After that, the value of found is verified. In case of being true, the process of parsing
nodes would conclude. Otherwise, a new line must be read and interpreted. If line
does not start with character "}", it means it is a normal node so it should be identified
first, parsed and added to nodeList.

In case the line starts with this character, it has to be checked if an else or endif
statement is defined depending if the line matches with "}else{" or "}endif;" respectively.
Then, the specific MetaNode for each case must be created and inserted into nodeList.
However, some variables modifications are needed in endif statement case before cre-
ating the MetaNode: found should be set to true to indicate that the whole if-else block
has already finished, and the counters ifsOpened and counterIf should be decremented
by one unit. If the line does not match with any of these two strings, an error should
be shown by the shell indicating that there is an error in a certain line of the text file
and the process stops.

After that, the process go back to the verification of found variable and continue
parsing the rest of nodes in case the variable remains being false. This procedure
allow us to parse some chained if-else statements, e.g. one if-else statement defined
inside another one; due to there is a branch of the flowchart where allows to identify
a node and start the same process for this other if-else statement. Once this process has
finished, it will continue with the main process.
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counterIf ++
ifsOpened ++
found = false

found?

Read next line 
numLine ++

FALSE

STOP TRUE

Starts with 
“}”?

“}endif;” ?

YES

“}else{” ?

NO

Show error

NO

Identify NodeNO
Parse & Add 
to nodeList

found = true
ifsOpened --
counterIf --

YES
Create MetaNode END_IF 

& Add to nodeList

YES
Create MetaNode ELSE & 

Add to nodeList

FIGURE 4.16: Flowchart ot the procedure of parsing nodes included inside an If-else
statement.

4.3.3 Parsing an Event implementation

A similar case to if-else statements occurs when trying to parse an event implementation
as it may include other instructions inside itself.

The process begins recognizing an event. After verifying there is no error related
to the syntax, i.e. parentheses or curly brackets missing or that event has been al-
ready implemented; a MetaNode with its name as MetaLabel is created and added
to nodeList. Before returning to the process of parsing the rest of lines of text file,
as events usually include other instructions inside is necessary to parse them before
closing with an END_EVENT MetaNode.

For that reason, we have designed a complex procedure to interpret and parse all
the instructions included in the event implementation before returning to the normal
procedure of parsing the text file as FIGURE 4.17 shows which is very similar to the



4.3. META-LANGUAGE PARSER 44

one explained in subsection 4.3.2.
Initially, it is necessary to initialize some variables: eventsOpened must be incre-

mented by one unit because it enables toolchain to detect how many events has been
opened but not successfully closed, in case this variable is different of 0 after the
parsing process is finished; context should be set with the same tag as the MetaLabel
of the event MetaNode to indicate that next variables to be defined will belong to this
context; found must be set to false, in case of being true, it indicates the process of parse
this event is already finished.

After that, the value of found is verified. In case of being true, the process would
conclude and the Parser will continue to process the rest of the code. Otherwise, a new
line must be read and interpreted. If line does not start with character "}", it means it is
a normal node so it should be identified first, parsed and added to nodeList. An error
will be shown if the node is another event implementation due to this instruction is
not allowed in that location.

In case the line starts with this character, some variables modifications are needed
before creating the END_EVENT MetaNode and adding to nodeList: found should be
set to true to indicate that the whole event implementation has already finished, and
the counter eventsOpened should be decremented by one unit.

After that, the process go back to the verification of found variable and continue
parsing the rest of nodes in case the variable remains being false.

eventsOpened ++
context = Event name

found = false

found?

Read next line 
numLine ++

FALSE

STOP TRUE

“}” ?

YES

Identify NodeNO
Parse & Add 
to nodeList

found = true
eventsOpened --

Create MetaNode END_EVENT 
& Add to nodeList

FIGURE 4.17: Flowchart ot the procedure of parsing nodes included inside an event
implementation.
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EXPERIMENTAL RESULTS AND EVALUATION

The target of the toolchain is to make easier the process of prototyping and design-
ing MAC protocols for WSNs by abstracting the designer away the complexities of
TinyOS environment. However, it is also necessary to make sure that the behaviour
of the designed MAC protocols is comparable to their monolithically implemented
counterparts.

In this chapter, the experimental results and evaluation of different aspects for
some MAC protocols are presented. Metrics such as memory consumption or execu-
tion time are evaluated in order to determine the disadvantages and advantages of
the MAC protocols implemented with the toolchain compared to the monolithically
implemented ones. The monolithic approach consists of designing MAC protocols
using component-based design in a static manner.

All the experiments were carried out on two different platforms, such as TelosB
sensors [5] which use the radio chip Texas Instruments CC2420 [31] and Mica2 sensors
[6] which use Texas Instruments CC1000 [32] as radio chip.

The main metrics used to perform the evaluation of our toolchain are:

• Memory consumption: the targets of the toolchain are resource constraint embed-
ded platforms. For that reason, we are interested in the memory overhead that
the toolchain imposes to guarantee the proper execution of the MAC protocols
implementations designed by the toolchain.

• Execution time: it refers to the time that the toolchain needs to execute a certain
function. In addition, this term can be used when measuring the time needed by
a certain MAC protocol to perform all the operations needed to send a packet,
such as making Carrier Sensing, Sendig Preamble, etc.

5.1 MEMORY CONSUMPTION

Since our toolchain targets to run on resource constraint embedded platforms, mem-
ory consumption is an important metric. We have measured both RAM and ROM
in terms of memory consumption. We refer ROM consumption to the number of
ROM bytes occupied when a TinyOS project is deployed in a platform, while RAM
consumption is the number of bytes of RAM memory reserved to allocate variables or
objects before starting the execution.

A shell script has been used in order to realize the memory footprint tests. This
script analyses the executable files created after compiling TinyOS projects and extract
a complete trace indicating the ROM and RAM memory consumed by each compo-
nent. The next command should be used to run this script:

45
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>> ./memory_usage -v [path to executable file]

TABLE 5.1 shows the memory footprint results in terms of RAM and ROM con-
sumption for a TelosB sensor node for different MAC protocols. The tested MAC pro-
tocols were B-MAC, MFP-MAC, X-MAC as example of preamble-sampling protocols,
S-MAC and T-MAC as example of common active periods protocols. In addition,
we measure the memory footprint for a simple application which does not use any
MAC protocol; it only starts the radio, send one packet after that and stops the radio
cyclically.

The results indicate that the reconfigurable toolchain increases approximately be-
tween a 20 % and a 40 % the ROM consumption for the MAC protocols, and a 85 % for
the simple application. For the monolithic implementations the memory consump-
tion varies: as more complex the MAC protocol is, higher is the ROM consumption,
because more code lines are needed to implement all the functionalities. However,
for the implementations using our toolchain, the consumption is always the same, in
some cases the overhead is high, but as more complex the protocol is, it includes less
overhead.

In addition, the MetaNodes obtained after the parsing process are stored inside
an execution list which is inside the sensor node. Moreover, the variables are also
stored in a variable list in order to do all the operations needed, as explained in [1]. As
TinyOS does not allow Dynamic Memory Allocation, these lists have to be predefined
with an static size depending on the RAM of the platform. According to that, this can
be a reason of the high memory consumption obtained by our toolchain in terms of
RAM.

Protocols
Monolithic Implementation Toolchain

ROM RAM ROM RAM
B-MAC 25112 bytes 1242 bytes 31282 bytes 6836 bytes
MFP-MAC 25734 bytes 1242 bytes 31282 bytes 6836 bytes
X-MAC 25304 bytes 1242 bytes 31282 bytes 6836 bytes
S-MAC 24326 bytes 1306 bytes 31282 bytes 6836 bytes
T-MAC 22096 bytes 1140 bytes 31282 bytes 6836 bytes
No-Protocol 16978 bytes 1102 bytes 31282 bytes 6836 bytes

TABLE 5.1: Memory footprint in bytes of the implementation for different MAC
protocols on TelosB sensor nodes.

Although preamble-sampling protocols like B-MAC, MFP-MAC or X-MAC are
simpler than common active periods protocols like S-MAC or T-MAC, the results
show that for the last case the monolithic implementations with reusable components
have smaller ROM consumption. This effect is caused by the fact of the implemen-
tation of preamble-sampling protocols requires the use of more components. For
instance, in TABLE 4.2, we can see that these protocols use two components more than
S-MAC and T-MAC, in particular MACLowPowerListening and MACSendPreamble.

TABLE 5.2 shows the memory footprint for a Mica2 sensor node for different MAC
protocols. However, in this case, the test can be only carried out with B-MAC, MFP-
MAC and X-MAC, because Mica2 hardware limitations. As it is explained in [1],
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Mica2 has only 4 kBytes of RAM, thus it only allows to execute an execution list
of 130 MetaNodes as maximum, while 200 MetaNodes are needed to implement S-
MAC or T-MAC at least. In this case, ROM consumption increases approximately a
30 % for the MAC protocols and a 98 % for the simple application. RAM results for
the reconfigurable toolchain show lower numbers compared to TelosB results due to
the size restriction of the execution list, but it increases also a lot compared with the
monolithic approach.

Protocols
Monolithic Implementation Toolchain

ROM RAM ROM RAM
B-MAC 21366 bytes 1445 bytes 28306 bytes 3745 bytes
MFP-MAC 21686 bytes 1445 bytes 28306 bytes 3745 bytes
X-MAC 21708 bytes 1499 bytes 28306 bytes 3745 bytes
No-Protocol 14278 bytes 999 bytes 28306 bytes 3745 bytes

TABLE 5.2: Memory footprint in bytes of the implementation for different MAC
protocols on Mica2 sensor nodes.

5.2 EXECUTION TIME

As it has been explained before, once the MAC protocol description is translated from
Meta-language to MetaNodes by the Parser, the execution list which is running in
the sensor node is the responsible of the MAC execution. For that reason, we need
to measure which is the time needed by our toolchain to execute an instruction of a
MAC protocol and compare it with the results obtained using monolithic approach.
Both results have been compared in terms of absolute time and the overhead added
by the toolchain.

This experiment consists of two different parts. First, it has been measured which
is the time needed by our toolchain to execute simple MAC operations, such as start-
ing the radio or sending preamble. After that, an evaluation has been done while
measuring which is the time needed when performing a whole MAC operation. It
consists of measuring the total time needed by a MAC protocol to send a packet
performing all the operations that this specific protocol may require.

As the work realized during this thesis is related with the one done in [1], this ex-
periment is important to see how is the performance of both implementations joined.

Before starting to discuss about the results obtained, we need to specify which are
the two setups used to make the measurements.

In FIGURE 5.1, it is shown the experimental setup used to measure the execution
time in monolithic approaches. In this case, a very small resistor of 3.33 Ω is connected
in series with the sensor node. Moreover, the sensor is powered up by a power supply.
As batteries used by sensor nodes provide 3.0 V, this power supply is set to this
voltage. Finally, an oscilloscope measures which is the voltage across the resistor.
Using techniques, such as turning on different LEDs when the function starts and
finishes, allows us to easily mark the execution time of a function in the oscilloscope
screen because LEDs generate a peak of current consumption when they are turned
on.
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Sensor 
Node

Power
Supply

Resistor (R)

V+

GND

Probe (V)

Oscilloscope

FIGURE 5.1: Block diagram of the experimental setup for monolithic execution time
measurements. [1]

As the sensor node should be connected to a PC in order to receive the MetaNodes
obtained after the parsing process, the setup shown in FIGURE 5.1 cannot be used to
measure the execution time for our toolchain. In FIGURE 5.2 it is shown which is the
setup used to measure this time. In this case, the same resistor is connected in series
with the sensor node. However, the sensor node is connected to the PC trough the
serial port. Thereby, the sensor node is powered up by the PC and it can receive from
and send packets to it. As the power provided by the PC is 5 V, we cannot compare
the results in terms of voltage or current. However, since we are only interested in
the time domain, no modification is needed. Finally, an oscilloscope measures with is
the voltage across the resistor by subtracting the voltage provided by the PC and the
voltage in the sensor node.

Sensor 
Node

Resistor (R)

VCC

GND

Probe 1
(V1)

DATA+

DATA-

Probe 2
(V2)

PC
(USB connection)

Oscilloscope
(V1 – V2)

FIGURE 5.2: Block diagram of the experimental setup for toolchain execution time
measurements. [1]

In order to have statistically significant results, 10 samples have been taken for
each execution time experiment and the average is presented.
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5.2.1 Basic Functionalities

In order to measure which is the time needed by our toolchain to execute most com-
mon basic functionalities, we have selected these five: start the radio, stop the radio,
read the actual RSSI value, perform carrier sensing and send a packet. A comparison
between the execution time measured for our toolchain and the time needed by the
monolothic approach has been done in [1]. Most important results are summarized in
TABLE 5.3 and TABLE 5.2.

TABLE 5.3 shows the results obtained in a TelosB sensor node, while TABLE 5.2
shows the results for a Mica2 platform. The time added oscillates between 100 µs
and 250 µs for TelosB, and between 65 µs and 120 µs for Mica2 platform. This delay
introduced by toolchain can fluctuate depending on the position where the function
calls and their events are located inside the execution list, as well as the number
variables that these functions calls take as parameters. Mainly, the delay depends
on the search process described in [1].

Basic Functionality
Monolithic Toolchain Overhead

Overhead
Time Time Time

Start Radio 2.76 ms 2.94 ms 180 µs 7 %
Stop Radio 283 µs 387 µs 104 µs 37 %
Read RSSI 486 µs 622 µs 136 µs 28 %
Carrier Sensing (50 ms) 50.25 ms 50.35 ms 100 µs 0.2 %
Send Packet (11 bytes payload) 8.74 ms 8.99 ms 250 µs 2.86 %

TABLE 5.3: Time results for basic functionalities executed in a TelosB sensor node. [1]

Basic Functionality
Monolithic Toolchain Overhead

Overhead
Time Time Time

Start Radio 2.49 ms 2.57 ms 82 µs 3 %
Stop Radio 188 µs 262 µs 74 µs 39 %
Read RSSI 469 µs 534 µs 65 µs 14 %
Carrier Sensing (50 ms) 50.23 ms 50.35 ms 120 µs 0.24 %
Send Packet (11 bytes payload) 22.83 ms 22.90 ms 70 µs 0.31 %

TABLE 5.4: Time results for basic functionalities executed in a Mica2 sensor node. [1]

5.2.2 MAC protocols

Similarly to the previous case, a comparison of the execution has been done in [1]
between the monolithic approach and the toolchain when performing complete MAC
operations.

For this experiment, we have measured the time needed by a MAC protocol to
send a packet performing all the operations needed, such as Carrier Sensing, Sending
Preamble or making RTS-CTS-DATA-ACK exchange. In this case, an example of
preamble-sampling MAC protocol, B-MAC; and an example of common active period,
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S-MAC; have been used. In addition, an application which does not use any MAC
protocol has been used for this experiment.

The results obtained are summarized in TABLE 5.5 for TelosB and in TABLE 5.6
for Mica2 platforms. As it can be observed, the maximum overhead introduced is 4 %
in case of not using any protocol, which is not quite representative. In the other cases,
the results are around or below 1 % of overhead. In case of Mica2 platforms, as it has
been mentioned before, due to hardware restrictions an implementation of common
active period protocols are not possible.

MAC Protocol Monolithic Time Toolchain Time Overhead Time Overhead
No protocol 10.53 ms 10.96 ms 427 µs 4.06 %
B-MAC 161.78 ms 163.36 ms 1.577 ms 0.97 %
S-MAC 195.84 ms 198.57 ms 2.727 ms 1.39 %

TABLE 5.5: Time results for different protocols executed in a TelosB sensor node. [1]

MAC Protocol Monolithic Time Toolchain Time Overhead Time Overhead
No protocol 26.67 ms 26.88 ms 211 µs 0.79 %
B-MAC 190.49 ms 191.13 ms 637 µs 0.33 %

TABLE 5.6: Time results for different protocols executed in a Mica2 sensor node. [1]
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CONCLUSIONS AND FUTURE WORK

In this thesis, we present a toolchain which enables easy and fast MAC protocol
prototyping and designing. In order to allow simple MAC protocol design, we have
taken into account a component oriented approach in defining the MAC components
which provide basic functionalities. The components have been implemented follow-
ing a hardware-independent approach. Therefore, a user can design a MAC protocol
without having knowledge of the platform for deployment. Furthermore, the users
are also not required to know the specific programming environment of the target
platform, such as NesC [30], since we have designed a Meta-language specifically for
MAC design using our toolchain. The Meta-language has simple syntax and is C-like.
The Meta-language is translated by a corresponding parser to MetaNode-language
which is understood by the target platform. The MetaNode-language is transferred to
the sensor node through a User Interface as described in [1] which is a collaboration
work with this thesis.

We have evaluated the toolchain in terms of memory consumption and execution
time. We have compared the results obtained to monolithic MAC protocols implemen-
tations using two different platforms with different radio chips: TelosB and Mica2.
In both cases, the results show that the toolchain introduces an acceptable memory
and execution time overhead, which in most of the cases is below 5 %. However, it
allows to design MAC protocols in a simple manner by abstracting the designer away
the complexities of TinyOS environment. Our toolchain helps to achieve the rapid
reconfiguration of MAC protocols proposed by the work implemented in [1].

In conclusion, our toolchain provides two main contributions for MAC protocol
development. First, our Meta-language provides a simple way to design new MAC
protocols without having any knowledge about TinyOS programming. Second, as
basic MAC components has been designed and implemented following the hardware
independence approach, the toolchain can be executed in any platform.

In order to achieve a better performance of the toolchain, the memory consump-
tion can be reduced. One solution could be to think another structure very similar to
the existing MetaNode, in order to represent the same information but using less than
17 bytes which is the actual size of this structure. Taken into account all the possible
values that each MetaNode field may require, the total size of the structure should be
13 bytes. According to that, in case of TelosB platforms, 1200 bytes of RAM would be
free allowing us to increase the execution list size in 90 elements. In the same manner,
in case of Mica2 platforms, 520 bytes of RAM would be free and the execution list can
be enlarged in 40 elements. Thereby, more complex MAC protocols could be executed.
Furthermore, more MAC Components could be implemented in order to extend the
Meta-language with more functionalities to elaborate hybrid or centralized protocols
as well as introducing functionalities of reliability like checksums.
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Another important improvement that can be introduced to our toolchain is to
implement a Graphical User Interface (GUI). Similarly to [15], a GUI which supports
dragging and dropping components can be implemented to make easier the design of
MAC protocols.
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