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A B S T R A C T

This master thesis explores a dual-tree framework with underlying
kd-tree space partitioning data structure as applied to a particular
class of machine learning problems that are collectively referred to as
generalized n-body problems. We propose a novel algorithm based
on the dual-tree framework to accelerate the task of discovering char-
acterizing boundary points (CBP) – a set of data points defined by
geometry rules and representing an optimal robust interclass bound-
ary. Designed with support for both approximate and exact compu-
tations, experimental results confirm superior runtime properties of
the algorithm compared to a state-of-the-art solution. Furthermore,
we propose an improvement of the Boosted Geometry-Based Ensem-
bles algorithm that constructs a CBP-based strong classifier. Owning
to our modification of the original learner, the scalability of the al-
gorithm is improved to be able to operate on the datasets of higher
size and dimensions while improving speed and maintaining high
accuracy of classification.
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1
I N T R O D U C T I O N

1.1 motivation

Many of the machine learning methods – including all-nearest-
neighbors problem, range search, kernel density estimation, and
two-point correlation – are naively quadratic in the number of data
points [11]. This time complexity compromises their use in the
large-scale machine learning applications thus demanding more
efficient solutions to accelerate the naive approaches.

One commonly used method to reduce the time complexity of
solving these problems is application of space-partitioning data struc-
tures, such as kd-trees, and use of branch-and-bound algorithms to
improve the runtime speed [7]. This idea has been further developed
for a subset of the problems falling in the class of generalized n-body
problems by applying a dual-tree framework.

Initially introduced by Alexander Grey [12], the dual-tree frame-
work has been claimed and theoretically proven to achieve a near-
linear performance for a range of n-body problems. Nevertheless,
beyond a narrow circle of researchers, the dual-tree approach has
not yet been adopted in broader scientific community. With relative
scarce coverage which is limited by a few papers and presentations,
we believe that dual trees deserve a more exploration.

1.2 objectives

This thesis sets forward several objectives:

1. To implement a dual-tree framework based on the general algo-
rithm provided in [7, 12] and to apply it to one of the machine
learning problems that would benefit from complexity reduc-
tion.

2. To explore the behavior of the proposed algorithm on the
datasets of different size and dimensionality comparing the per-
formance with a state-of-the-art solution.
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introduction

3. To provide an approximate solution based on dual trees as an
acceptable trade-off between computational complexity of the
algorithm and accuracy of the results.

1.3 contributions of the research

This work makes several contributions:

1. It provides a workable reference implementation of the dual-
tree framework based on the kd-tree data structure and written
in python programming language.

2. The reference implementation of the dual tree framework is ap-
plied to one of the machine learning problems: finding charac-
terizing boundary points [24, 23]. Possible dual-tree architec-
tures as well as relevant pruning and local search strategies are
compared.

3. The performance of the devised framework is verified against
datasets of different size and dimensionality, reporting the gains
in speed, worst and real cases of required computations.

4. Along with the exact solution an approximate technique to find
characterizing boundary points is developed and applied to the
Boosted OGE problem [23] in order to achieve computational
tractability for datasets of bigger size and higher dimensions.

1.4 organization

This report takes off with the review of kd-tree (Section 2.1), a space-
partitioning data structure, and moves on to introduce a dual-tree
framework (Section 2.3) that integrates kd-trees into a new higher-
order divide-and-conquer algorithm to solve generalized n-body prob-
lems. A description of the Geometry-Based Ensembles, a new classi-
fier based on the characterizing boundary points (CBP), ensues in Sec-
tion 2.4.

Following review of the state-of-the-art in Section 3.1 we formulate
a proposal for a novel algorithm to construct CBPs that applies the
dual-tree framework with custom developed pruning strategies and
a local search in order to gain speed improvements over the state-
of-the art technique. Subsequently, in Section 3.2, we propose two
alternative models to the Boosted OGE classifier (that uses CBPs as
its building blocks) that significantly improve its time performance
on larger datasets.

Peculiarities of the new algorithm for CBP computation and pro-
posed Boosted OGE models are analyzed in Section 4.1, while the

18



1.4 organization

summary of the experimental results is provided in Section 4.2.

Lastly, in Chapter 5 we conclude the report with the short summary
of the scope of work conducted and the new areas of research that this
master thesis has opened.
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2
B A C K G R O U N D A N D S TAT E O F T H E A RT

The following sections will present a common space partitioning data
structure called kd-tree enabling execution of fast data queries. It is
then followed by discussion of the dual-tree approach that builds on
top of kd-trees to provide an efficient algorithm for a range of n-body
problems. The section concludes with an overview of the promising
geometry-based ensemble technique used for classification tasks.

2.1 kd-trees

Kd-tree (short for k-dimensional tree) is a space-partitioning data
structure, which can be viewed as special case of the binary space par-
titioning tree. It was invented by J.L. Bentley [1] to provide support
for efficient range and nearest neighbor searches in multidimensional
spaces.

Generalizing the binary search tree from one to higher dimensions,
the kd-trees recursively partition space into half-spaces at each level
of the tree. Each node in a kd-tree represents a hyperrectangle whose
faces are aligned with the axes of coordinates.

Algorithm 1 lists the main steps involved in the construction of the
kd-tree. Given a set S of data points in space Rd the algorithm pro-
ceeds to recursively bisect the space into adjacent cells. Partitioning
of a relevant branch stops once the cell defined by the bounding hy-
perrectangle contains at most a given number of data points.

Figure 1 is a visual representation of the resulting space partition-
ing when applied to a three-dimensional data set. The root cell is
bisected with a red hyperplane into two halfspaces, which are then
recursively split by other hyperplanes (marked with green and blue
colors).

There are two important considerations that need to be taken into
account when constructing a kd-tree:

Leaf size. The algorithm stops dividing the space as soon as the
current node has at most the amount of data points specified by this
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background and state of the art

Algorithm 1: Kd− tree. Kd-tree construction

Input: Set of data points = {xi}, xi ∈ Rd, depth
Output: kd-tree
begin

axis := select axis()
splitting point := by axis from data points
// create node and subnodes

node := new node()
node.split = splitting point
new depth := depth + 1
node.le f t child := kdtree(points ∈ data points ≤
splitting point, new depth)
node.right child := kdtree(points ∈ data points >
splitting point, new depth)

end

parameter. While a too low value for the leaf (or bucket) size would
increase overhead of traversing the nodes [22], letting this value ap-
proach the size of the dataset makes queries become a brute force
computation. As it will be demonstrated later, in the context of the
dual-tree framework, the leaf size will have a direct impact on the
ability to perform efficient pruning.

Splitting rules. The exact structure of the tree and associated spa-
cial subdivision depends on the procedure called splitting rule which
selects a splitting hyperplane at each recursive step [17].

Standard split. The original paper on kd-trees has proposed to de-
termine the axis to split on by the formula D = L mod k + 1; D is the
axis to be chosen for the node at level L for the dataset dimensionality
k [1, 9], whereas the partition point at the established dimension is
chosen to be a random value. If, for instance, we have a two dimen-
sional dataset, then the algorithm will split on the x dimension at the
first level, on y at the second level, and then on x again. The splitting
stops when the value of points held by each leaf is reached.

A further extension of the standard splitting rule is to split on the
median value of the selected axis [2] in order to achieve a balanced
kd-tree where each node is equally distanced from the root.

Midpoint split. The splitting hyperplane bisects the longest side of
the cell. In contrast to the standard splitting rule, the spread measure
has no importance in that case.
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2.1 kd-trees

Figure 1.: A 3-dimensional kd-tree [3]

Sliding-midpoint. This rule is a combination of the previous two
strategies, where first a provisional split is made along the longest
side of the cell. In case that all the points appear only on one side of
the hyperplane, the splitting hyperplane is moved along the axis to
capture some of them. The result of application of this rule is that the
cells satisfy a packing constraint, that bounds the number of disjoint
cells of a given size that can overlap a ball of certain radius [17].

Figure 2 compares the effect of using the three splitting rules in
the kd-trees. In this work, the kd-trees were built using the sliding-
midpoint rule for the reasons that will become obvious later on.

Figure 2.: Splitting rules [17]
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2.2 nearest-neighbor search

As has been mentioned, one of the primary applications of the kd-
trees is nearest-neighbor search. Given a query dataset XQ containing
NQ points and a point xr from a reference dataset XR of size NR, the
nearest neighbor algorithm is defined as follows (a most commonly
used euclidean distance is assumed):

Compute NN (xq) = arg min ||xq − xr|| (1)

The most straightforward solution for the problem – a linear search
has a running time of O(dN), where d is a dimensionality of the met-
ric space.

Meantime, it has been shown that one of the two primary applica-
tions of the kd-trees – finding a nearest point – has O(log N) com-
plexity given random distributed points [9].

Algorithm 2 provides a highly abstract perspective of nearest neigh-
bor queries with kd-trees. It is implemented as a 2-way recursion
where first the root node of the kd-tree is queried for the point xq.
To find the exact nearest neighbor it proceeds to traverse through its
child nodes provided that the distance of the nearest neighbor found
so far to the query point xq is larger then the distance of the current
node to the query point.

Algorithm 2: NN. Nearest-neighbor search
Input: query point xq,
node root node on first entry,
d initial distance set to ∞ on entry,
xbest best candidate found so far,
dbest corresponding best distance
Output: xbest, dbest
begin

if d > dbest then
// disregard (prune) the node

return
end
if is lea f node(node) then

[xbest, dbest] = NNBase(xq, node, dbest)

else
[nodecloser, dcloser, node f urther, d f urther] =

order by dist(xq, node.le f t child, node.right child)
NN(xq, nodecloser, dcloser, xbest, dbest)

NN(xq, node f urther, d f urther, xbest, dbest)

end
end
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2.3 dual trees

2.3 dual trees

There is a class of problems in machine learning, such as all-nearest-
neighbors, kernel density estimation, n-point correlation that require
comparison of each pair of points individually in order to provide a
solution. This class of problems was described by Alexander G. Gray
in his Ph.D. dissertation and was given a name generalized N-body prob-
lems [12].

The particularity of these problems is that it is generally not possi-
ble to determine the relationships between individual pairs of points
analytically without considering each pair of the points individu-
ally [12]. Thus, the straightforward solution dictates an O(N2) time
complexity.

However, several approaches in computational geometry achieve
an O(N log N) runtime performance [12]. Consider for instance the
nearest neighbor problem described in Equation (1). A related ‘N-
body problem’ would be finding all nearest neighbors:

∀xq, Compute NN(xq) = arg min ||xq − xr|| (2)

Using kd-trees as a supporting structure for the task will reduce
the computation cost from O(N2) to O(N log N) [12]. The assump-
tions in that case is that NR = NQ = N and we can ignore the cost
of constructing a kd-tree as it will be amortized over time. However,
even this cost is prohibitive for the massive datasets in machine learn-
ing.

In his Ph.D. thesis and subsequent publications A. Grey devises a
dual-tree framework that builds on top of the existing space partition-
ing data structures, such as kd-trees but also ball trees, and applies
divide-and-conquer algorithmic strategy to bring forward a O(N) ex-
pected runtime algorithm [12]. It exploits the characteristic of N-body
problems that each data point in the reference dataset NR has to be
compared with all of the data points from the query dataset QR and
introduces pruning rules to be able to reduce the required number
of operations. Instead of using a single space-partitioning data struc-
ture, the algorithm utilizes two trees and extends a single tree traver-
sal to a dual tree traversal. It needs to be mentioned, that oftentimes,
the reference and query datasets are the same (NR = NQ). The dual
tree framework is best exemplified on the all-nearest neighbor search.

The fundamental idea is to process the points in chunks instead of
making individual queries for each point xq. As the space-partitioning
data structures group similar points together, work of finding nearest
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neighbor will be shared among the similar query points.

Algorithm 3 extends the single tree Algorithm 2 to support a dual-
tree traversal. In contrast to the single tree traversal where an input
query point xq is checked against the nodes of the kd-tree, the dual-
tree version compares the tree nodes to each other, that is complete
chunks of points at once that a particular tree node references.

The main modifications as compared to the single tree traversal
Algorithm 2 are:

1. xq → query node

2. dist(xq, node)→ dist(query node, re f erence node)

3. 2-way recursion transforms to the 4-way recursion

As the result, the runtime complexity of the algorithm is reduced
from O(N log N) to O(N).

Figure 3 visualizes the difference between single and dual tree
traversal algorithms. Whereas in the single-tree traversal individual
query points are compared to the nodes in order to find the nearest
neighbor, the dual tree traversal compares chunks of points (refer-
enced by the tree nodes) first and resolves to brute force point-to-
point comparisons only when the traversal reaches two leaf nodes.

Figure 3.: Single-tree vs dual-tree traversal [13]

Two important operations in dual tree traversal is the exclusion and
inclusion. First set to infinity, as we traverse the nodes, we store the
maximum distance between two nodes as a future threshold value.
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2.3 dual trees

Algorithm 3: AllNN. All-nearest-neighbor search [12, 13]
Input: query point xq,
query node query node (set to the tree root on the first entry),
re f erence node reference node (set to the tree root on the first
entry), d initial distance set to ∞ on entry,
xbest best candidate found so far,
dbest corresponding best distance
Output: xbest, dbest
begin

if d > Q.dbest then
// disregard (prune) the node

return
end
if is lea f node(query node) and is lea f node(re f erence node)
then

[xbest, dbest] =

AllNNBase(query node, re f erence node, dbest)

Q.dbest = maxQ dbest
else if
!is lea f node(query node) and is lea f node(re f erence node)
then...
else if
is lea f node(query node) and !is lea f node(re f erence node)
then...
else if
!is lea f node(query node) and !is lea f node(re f erence node)
then

[re f erence nodecloser, re f erence dcloser,
re f erence node f urther, re f erence d f urther] =

order by dist(query node.le f t child,
re f erence node.le f t child, re f erence node.right child)
AllNN(query node.le f t child, re f erence nodecloser,
re f erence dcloser, xbest, dbest)

AllNN(query node.le f t child, re f erence node f urther,
re f erence d f urther, xbest, dbest)

[re f erence nodecloser, re f erence dcloser,
re f erence node f urther, re f erence d f urther] =

order by dist(query node.right child,
re f erence node.le f t child, re f erence node.right child)
AllNN(query node.right child, re f erence nodecloser,
re f erence dcloser, xbest, dbest)

AllNN(query node.right child, re f erence node f urther,
re f erence d f urther, xbest, dbest)

Q.dbest = max(Q.le f t childbest, Q.right childbest)
end

end

27



background and state of the art

Subsequently the value is updated to a smaller number if the maxi-
mum distance between two nodes is below the threshold.

We do not need to explore a branch, therefore pruning it, when the
minimum distance between corresponding nodes is greater than the
maximum distance of two nodes for the candidate nearest neighbors.
Conversely, the branch needs to be explored further if the minimum
node-to-node distance is smaller than the threshold value. This rule
exploits properties of triangle inequality.

applications of the dual tree framework The dual tree
framework has been credited to be applicable to a range of machine
learning tasks some of these applications are referenced below. In “‘N-
Body’ Problems in Statistical Learning” [11] and later in ““Fast Algo-
rithms and Efficient Statistics: N-Point Correlation Functions”” [21]
the authors present a range searching and a two-point correlation
algorithm based on single-tree traversal, followed by dual-tree ap-
proaches to the algorithms. Along with the proposed transition from
a single to dual tree implementation of the algorithms, the paper also
introduces several important concepts:

• Use of the cached sufficient statistics [19] – extra information
that can be stored inside of the kd-tree nodes, such as number of
points belonging to the node and coordinates of the bounding
rectangles – to accelerate the computations.

• Redundancy elimination during the dual-tree traversal to avoid
computations which have already been compared in reverse or-
der.

• Extendibility of the-dual tree framework to a multiple tree ap-
proach as dictated by the problem.

The speed-ups achieved by the dual-tree approach on the two-point
correlation function have reduced the time complexity from O(N2) to
O(N

√
N) which translates to a computation time of 10 hours for a

database of 107 compared with 10, 000 hours (> 1 year) using a naive
method [21].

In “Nonparametric Density Estimation: Toward Computational
Tractability” [14] the dual-tree framework is applied to kernel density
estimation rendering an empirically estimated runtime performance
of O(N), which is significantly faster than existing approaches.
The authors propose to make use of the kd-trees as an underlying
data structure for the datasets of up to 10 dimensions. For higher
dimensions, where kd-trees are known to perform much worse due
to exponential requirements as to the size of underlying dataset, a
better scaling data structure called ball-tree [20] should be used.
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“Tree-Independent Dual-Tree Algorithms” [7] presents a meta-
algorithm to allow for the development of the dual-tree algorithms
in a tree-independent manner. In particular, the meta-algorithm con-
sists of the four parts: a space partitioning tree, pruning dual-tree
traversal, point-to-point base case, and a pruning rule. The paper
formalizes a tree traversal (single and dual) as well as a pruning dual-
tree tree traversal. The meta-algorithm is then applied to the tree
problems: all-k-nearest neighbor search, range search, Boruvka’s al-
gorithm, and kernel density estimation.

2.4 geometry-based ensembles

We have described kd-trees and the dual-tree framework that enables
extending a single tree to a dual tree traversal with custom inclu-
sion/exclusion rules to achieve a near-linear performance for a num-
ber of n-body problems. This section puts spotlight on one promis-
ing machine learning classification technique which could potentially
benefit from the application of the dual trees.

characterizing boundary points . Geometry-based ensem-
bles (GE) is a simple classification algorithm that exhibits superior
performance compared to some machine-learning techniques, while
being commensurate to the kernel methods. GE are build upon the
notion of characterizing boundary points (CBP) – dataset points that
form an optimal boundary between two classes based on a specific
notion of robustness and margin [23].

Consider an illustrative example depicted by Figure 4. The CBPs
are the black-colored points (b) that are formed at half the distance be-
tween the generating points that belong to opposing classes {+1,−1}.
The set CBPs forms an optimal geometric boundary (a) between two
classes.

Formally, given a labeled training set of M points S = (xi, yi),
where xi ∈ Rd belonging to class yi ∈ +1,−1, i = 1...M, a charac-
teristic boundary point xi,j

cp ∈ Rd is defined between any two training
points (xi, xj) that fulfill following conditions:

1. xi and xj belong to different classes.

2. There is no other point in the dataset M that is located closer to
the xi,j

cp than the corresponding xi and xj that form it. Given any
point xk : {xk ∈ Rd|(xk, yk) ∈ S}, then:

||xi − xcp|| ≤ ||xk − xcp|| (3)

||xj − xcp|| ≤ ||xk − xcp|| (4)
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Figure 4.: Decision boundary formed by the CBPs (a) and their areas
of influence (b) [24]

3. The characteristic boundary point is located at half distance
from both of the generating points (middle point between xi
and xj):

xi,j
cp =

1
2
(xi + xj) (5)

These conditions defining CBPs are illustrated in Figure 5. Point
xi,j

cp is a CBP, as there is no other point – including xk – which is
located closer to xi,j

cp than xi and xj are. Note that xi and xj belong to
different classes.

Figure 5.: Illustration of the characteristic boundary point defini-
tion [23]

The construction of CBPs is based on the restricted version of the
Gabriel graph [10], where edges are only allowed to form between
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points that belong to different classes. Figure 6 illustrates a full
Gabriel graph constructed on the dataset.

For reasons that will become apparent later it is important to estab-
lish the place that Gabriel graph takes in the hierarchy of proximity
graphs [6, 25]:

Nearest neighbor graph

⊆ Euclidean minimum spanning tree

⊆ Relative neighborhood graph

⊆ Gabriel Graph

⊆ Delauney triangulation

(6)

Nearest neighbor graph is built by connecting two vertices xi and
xj with an edge of length d(i, j) only if there exists no other vertex
xk whose distance with xi is smaller than d(i, j). Being more restric-
tive in terms of connecting the vertices than the Gabriel graph, the
nearest neighbor graph is a subgraph of it. Figure 7 illustrates the
result of the more restrictive nature of the nearest neighbor graph as
contrasted to the previously shown Gabriel graph (Figure 6).

Figure 6.: Gabriel graph [5]
Figure 7.: Nearest neighbor

graph [4]

A naive approach to computing CPBs would be to build a provi-
sional xi,j

cp for all the points in the dataset M and then check that there
exists no other point xk in the dataset M whose distance to one of
the generating points xi or xj is smaller than the distance between xi,j

cp
and xi or xj. The complexity of this solution is O(dM3).
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However, we could derive a better algorithm based on the formula
that Matula and Sokal provide to define the Gabriel graph edges [18].

d(i, j)2 < d(i, k)2 + d(j, k)2 ∀i, j, k ∈ M, i 6= j 6= k (7)

Accordingly, i and j form a valid edge of the Gabriel graph, if the
squared distance d(i, j)2 is smaller than the sum of the squared dis-
tances of i and j to any other point in the dataset. Adopting this
formula to the task of locating CBPs, we obtain a faster Algorithm 4.
In contrast to the naive brute-force approach it exhibits a lower com-
plexity of O(M3 + dM2) as no explicit computation of provisional
CBPs is required any longer.

Algorithm 4: Sokal. Sokal algorithm for CBP construction

Input: Set of data points S = {xi, yi} ∈ Rd belonging to class
yi ∈ {+1,−1}

Output: Set of tuples of indexes {(i, j)} that identify the
generating data points of CBP

Compute squared Euclidean distance d(i, j)2 from each point
xi to xj in M
Initialize the set of indexes that define the CBP, E = {} begin

foreach xi|yi = +1 do
foreach xj|yj = −1 do

foreach xk|yk = +1 or yk = −1 do
cbp found = true;
if xi 6= xk and xj 6= xk then

if d(i, j)2 ≥ d(i, k)2 + d(j, k)2 then
cbp found = false;
break;

end
end

end
if cbp f ound then

E = E ∪ {(xi, xj)}
end

end
end

end

boosted oge . Boosted Geometry-Based Ensembles [23] is a result
of applying gradient boosting to the original Geometry-Based Ensem-
bles (GE) framework [24] in order to achieve controlled complexity of
the model.
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GE constructs an additive model based on the linear combination of
classifiers. Based on the obtained CBPs, a set of base linear classifiers
is constructed in the following way [23]:

πxi,j
cp
(x) = (x− xi,j

cp)~nxi,j
cp

~nxi,j
cp
=

xi − xj

‖ xi − xj ‖
(8)

Having obtained the classifiers, the ensemble is created via an ad-
ditive model F:

F(x) =
N

∑
k=1

ρkhk(x) =
N

∑
k=1

ρksign(πk(x))

where N is the number of CBPs

and ρ is a weighting vector

(9)

The simplest approach to gradient boosting uses L2-penalized least
squares incremental residual minimization as described in Algorithm 5.

Algorithm 5: BoostedOGE. L2-penalized least squares GE boost

begin
A(k, i) = sign(πk(xi)) k ∈ {1...N}, i ∈ {1...M};
F0(x) = y;
for t = 1 to T do

ŷ = yi − Ft−1(xi) i = 1, M;

ρ = ŷT A
M+λ ;

at = arg mina ∑M
i=1(ŷi − ρah(xi; a))2;

Ft(x) = Ft−1(x) + ρth(x; at);
end

end

According to the experimental results [23] the regularized versions
of Boosted OGE with L2-penalization performed on par with the ref-
erence classifiers SVM and OGE, while outperforming Adaboost with
decision stumps.

Boosted OGE has a nice property that creation of the set of clas-
sifiers (predefined by CBPs) and the incremental optimizations are
decoupled. This makes the algorithm useful for online and parallel
extensions [23].

Nevertheless, Boosted OGE has clear inferior performance to the
reference classifiers on some of the datasets. The author contem-
plates, that it could be caused by the limited space of base classifiers
in the selection process. Being a subset of Gabriel graph, the number
of CBPs is limited by the same strict geometric rules narrowing the
space of potential classifiers. A relaxation of the CBP definition that
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would allow k points to intrude the hypersphere is recommended as
a potential strategy to expand the space of classifiers.
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P R O P O S A L

This master thesis proposes a novel application of a dual-tree frame-
work to a task of computing characteristic boundary points. Due to
the inherent O(N3) computational complexity of the state-of-the-art
Sokal algorithm the objective of devising a faster solution gains im-
portance for medium and large sized datasets.

3.1 faster cbp computations

Let us define the reference dataset XR as data points belonging to
class −1 and the query dataset XQ as the points of class +1. While
the task of computing CBPs is not strictly an n-body problem, it does
share one characteristic common to this class of problems: in the
worst case deriving a solution requires comparison of each data point
in the reference set XR to each data point in the query set QR. Fur-
thermore, according to the Equation 7, we also need to compare the
distances between the pairs of XR and XQ to the points XR ∪ XQ in
order to verify validity of a CBP.

weaknesses of sokal algorithm Consider for instance a re-
duced banana dataset plotted in Figure 8. The Sokal algorithm is
largely oblivious to the spatial location of the data points:

1. Even if there are interfering points between xi and xj that clearly
break their generating ability, the algorithm will still perform
the comparison.

2. When comparing the distance between xi and xj to the rest
of the dataset XR ∪ XQ, no heuristics is applied to ensure that
the point most capable of breaking the CBP tie are considered
first. The algorithm iterates sequentially through the elements
of XR ∪ XQ.

dual-tree algorithm to find cbps Observing this relation-
ship, it is reasonable to argue that bringing space-awareness to the
algorithm would make it more efficient by reducing excessive com-
putations. While we could start designing a point-to-point algorithm
based on a single kd-tree, our awareness that the task of computing
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CBPs is related to n-body class of problems suggests applicability of
a dual-tree approach. Algorithm 6 provides a conceptual skeleton for
the dual-tree algorithm we have developed to deal with CBP compu-
tations.

Figure 8.: banana (1192x2). Representation of the reduced banana
dataset.

Following the structure laid out by the all-nearest-neighbors Algo-
rithm 3, we start a depth-first dual-tree traversal where the reference
nodes are compared to the leaf nodes:

• At each step a possibility to prune the current pair (NR and NQ)
is evaluated and the pruning is performed: CBP Prune (Section
3.1.2)

• If the pair can not be pruned the recursive traversal through the
current node descendants (NR.less/greater and NQ.less/greater)
is continued until two leafs are reached.

• As soon as the reference and query nodes represent leaf nodes,
the CBP Local Search() (Section 3.1.6) is called. Its task is to
locate the potential generating points (i and j) as well as poten-
tial intruding points k and extend the relevant lists with their
indexes.

After the dual-tree traversal has completed and we have filled lists
of generating and intruding points, we feed these lists to the base-
line Sokal Algorithm 4 (slightly modified to work with adjusted in-
puts). Thus, the preprocessing with dual trees will help to reduce the
search space that the Sokal has to operate on when applied to the raw
datasets positively affecting the computation time.
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Algorithm 6: CBP Traversal. Dual-Tree traversal algorithm to
find characterizing boundary points

Input: NR reference node, NQ query node; i = [], j = [], k = []

three multidimensional lists, empty at the start
Output: 3 multidimentional lists: i, j, and k representing the

indexes of the data points from M that need to be
evaluated by the Sokal algorithm

begin
// see Section 3.1.2

if CBP Prune(NR, NQ) then
return;

end
if is lea f node(NR) and is lea f node(NQ) then

// see Section 3.1.6

CBP Local Search(NR, NQ, i, j, k);
else if is lea f node(NR) and !is lea f node(NQ) then

CBP Traversal(NR, NQ.less, i, j, k);
CBP Traversal(NR, NQ.greater, i, j, k);

else if !is lea f node(NR) and is lea f node(NQ) then
CBP Traversal(NR.less, NQ, i, j, k);
CBP Traversal(NR.less, NQ, i, j, k);

else if !is lea f node(NR) and !is lea f node(NQ) then
CBP Traversal(NR.less, NQ.less, i, j, k);
CBP Traversal(NR.less, NQ.greater, i, j, k);

CBP Traversal(NR.greater, NQ.less, i, j, k);
CBP Traversal(NR.greater, NQ.greater, i, j, k);

end
end
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3.1.1 Dual-Tree Architecture

We have considered two different choices to partition the data. The
first one is to construct two distinct kd-trees: one for XR and the
other one for XQ. An alternative solution is to build one tree on the
whole dataset M irrespective of the class labels and reuse it during the
dual-tree traversal. The result of both architectures are visualized in
Figures 9 and 10. The advantage of using two trees is the simplicity of
implementation and the resulting dual-tree traversal. However, using
a single tree on the whole dataset produces uniform tree cells which
would prove critical during for the pruning strategies. In order to
fully benefit from pruning, we have settled for the architecture where
the same tree data structure is used for query and reference nodes.

Figure 9.: Dual-tree architecture:
one tree

Figure 10.: Dual-tree architech-
ture: two trees

3.1.2 Pruning Rules

We have devised several pruning rules to achieve two parallel objec-
tives: 1) to implement a strict pruning rule that reduces the dataset
by discarding only illegitimate points of the datasets, 2) to bring forth
a more relaxed pruning rule that would offer a good compromise be-
tween improved efficiency and accuracy of the results.

3.1.3 Exact CBP Computation

Given that the Sokal algorithm finds all CBPs, the processing of the
points after application of the strict pruning rule should provide re-
sults identical to the baseline solution.

Conservative maximum distance pruning. Having partitioned the
datasets either with a single or multiple tree, we can access the tree
cells which contain data points clustered according to their spacial
location. Consider a query and reference nodes as depicted in Fig-
ure 11. We want to prune these two nodes if it is certain that the
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other points located between the two nodes render their capacity to
generate CBPs void. We can reverse the inequality Equation 7 in order
to identify non-generating points and substitute point-wise distances
with distance measurements between the nodes, which renders Equa-
tion 10.

dmin(NR, NQ)
2 ≥ dmax(NR, k)2 + dmax(NQ, k)2 (10)

Thus, the first version of the pruning rule states that nodes NR and
NQ – and therefore any points they contain – are not generating nodes
if there exists a point k in the dataset the sum of maximum squared
distances to each one of the nodes NR and NQ is less than the mini-
mum squared distance between those nodes. This rule is visualized
in Figure 11.

Remember, that we only have two cheap distance functions at our
disposal: minimum and maximum distance. Having that in mind,
note the role that the choice of min/max distance plays in the defini-
tion of the rule:

1. Minimum distance between two hyperrectangles dmin(NR, NQ)
2

ensures that we consider the shortest possible distance between
any two points belonging to the respective nodes. While the
distance can be calculated, there is no information as to the
exact location of those points.

2. Instead of the minimum distance, a maximum distance between
hyperrectangles and point k – dmax(NR, k)2 and dmax(NQ, k)2 – is
used to consider the distances between k and the furthest points
in the hyperrectangle in order to ensure that point k would
break generating capacity of the most distant data points to it.
Compare that to the alternative – using minimum distance – as
indicated in on Figure 11 in red color. In that case, the formula
would indicate that the two nodes can be pruned whereas that
action would eliminate valid CBPs.

While this rule is valid, it is overly conservative by considering the
whole hyperrectangle areas when calculating the maximum distances
dmax(NR, k)2 and dmax(NQ, k)2. It is, in fact sufficient to calculate the
maximum distance between k and the side of the hyperrectangle that
faces the other hyperrectangle: see Figure 12.

Maximum distance pruning. One possible solution could be to
calculate all four distances in two dimensions, sort them, and take
the second smaller distance which should be the furthest distance of
the side facing the other node. However, this approach quickly be-
comes unfeasible in higher dimensions where the number of vertices
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Figure 11.: Pruning rule

Figure 12.: Tighter pruning rule

is 2d [26]. Instead, the proposed idea is to “squeeze” the hyperrect-
angles towards each other in order to produce modified tight rectan-
gles. Afterwards we can apply a cheap maximum distance function
to calculate the distance from the side of the rectangle to the point k
(Figure 12). Figure 13 shows a possible worst case to justify the use
of the maximum distance measure to the k from the tight nodes N′R
and N′Q: using the minimum distance (indicated by dashed red col-
ored lines) may in this case misleadingly suggest to prune the node
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Figure 13.: Worst case

Figure 14.: Strict pruning in 3D

pair, while a more conservative maximum distance measure ensures
that the furthest points within the nodes are considered during the
computation.

3.1.4 Approximate CBP Computation

Although a proposed conservative pruning strategy would lead to
the exact CBP computation, as the experiments show, the rate of suc-
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cessful prunings quickly degrades as we go into the higher dimen-
sions. Besides “curse of dimensionality” (see Section 4.1.4), another
reason for that is the maximum distance measure we use to establish
the validity of pruning: dmax(NR, k)2 and dmax(NQ, k)2. Observe for
instance Figure 14: it demonstrates that while in certain cases the min-
imum distances between two nodes remain unchanged as we ascend
into higher dimensions (when the hyperrectangles face each other),
the node-point distances grow due to the added dimension compo-
nent. Thus the result of same equation that defines if two nodes can
be pruned could be positive in 2d and negative in 3d, as the maxi-
mum distances to k would grow disproportionately to the distances
between the nodes.

Therefore, we propose alternative pruning rules, whose purpose
is two-fold: 1) guarantee execution of pruning in higher dimensions
where the first strategy has its limitations, 2) provide a more relaxed
pruning rule in order to accelerate computation of CBPs at the ex-
pense of accuracy. In this respect, two less strict pruning strategies
have been devised.

Minimum distance pruning. Lets revisit Figure 13. It was noted,
that we need to use the maximum distance between point k and the
nodes to ensure that k breaks the generating capacity of the most
remote points in NR and NQ. In order to relax the rule we now sub-
stitute maximum with the minimum distance (indicated in red color).
The effect of that relaxation will be felt most in the higher dimen-
sions, as indicated in Figure 15, as the distance between the k will
not grow disproportionately to the minimum distances between the
nodes. Equation 11 formalizes the new relaxed pruning rule.

dmin(NR, NQ)
2 ≥ dmin(N′R, k)2 + dmin(N′Q, k)2 (11)

Nonadjacent pruning. The second strategy takes the relaxation of
the pruning rule one step further. Instead of computing the intra-
node and point-node distances we prune two nodes if they are not
adjacent: that is, they have no common point of contact with each
other. Although, this strategy is severely aggressive, we can justify it
by expecting that a node NIB would contain enough points to break
the generating capacity of points within NR and NQ. In order to estab-
lish whether two nodes are adjacent, we use the minimum distance
between them: if the returned value is greater than 0 the nodes are
not adjacent. Figure 16 illustrates this pruning rule, formalized by
the Equation 12.

dmin(NR, NQ)
2 > 0 (12)

While the two relaxed pruning rules are expected to prune approx-
imately equal amount of nodes for the majority of trivial cases, the
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Figure 15.: Relaxed pruning rule: minimum distance to point

Figure 16.: Relaxed pruning rule: nonadjacent hyperrectangles
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nonadjacent pruning is computationally cheaper because we reduce
the number of distance measurements required from 3 to 1, but also
free ourselves up from the requirement of finding k.

3.1.5 Finding Reference Point k

Earlier the discussion has centered around computing the intra-node
and point-node distances required for the pruning rules. We have,
however, not addressed the task of finding point k based on which
the ability of nodes NR and NQ to generate CBPs is judged. Intu-
itively, a good choice for the point would be a centroid of the area
that encloses two nodes. Any point close enough to the centroid
would be a strong candidate to activate pruning.

Thus, we start with the most straightforward approach: construct-
ing a minimum bounding hyperrectangle that includes both NR and
NQ. As each node represented by the hyperrectangle is defined by
two vectors – minimum and maximum coordinates of all the points
that the node contains – we can easily devise Algorithm 7 that rear-
ranges the coordinates to produce two new vectors that define the
bounding hyperrectangle.

Algorithm 7: BoundingHyperrectangle. Constructing bounding
hyperrectangle that encloses nodes NR and NQ

Input: NR reference node, NQ query node
Output: bounding hyperrectangle bounding hyperrectangle
begin

bounding mins =
min(NR.mins, NR.maxes, NQ.mins, NQ.maxes)
bounding maxes =
max(NR.mins, NR.maxes, NQ.mins, NQ.maxes)
// Use scipy.spatial.Rectangle

bounding hyperrectangle =
Rectangle(bounding maxes, bounding mins)

end

The result of the algorithm in 2D is illustrated by Figure 17. We
can observe, however, that due to the unequal sizes of NR and NQ the
bounding hyperrectangle is biased toward fatter and taller boxes and
therefore has suboptimal centroid according to our intuition. Instead,
we want the tightest possible hyperrectangle that captures the space
between the nodes and does not include their outer sides. This de-
sired hyperrectangle and its centroid C are depicted in Figure 18.

Algorithm 8 details the procedure of finding the tight rectangle
visualized in Figure 18: 1) it merges the vectors of nodes NR and
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Figure 17.: Bounding
hyperrectangle

Figure 18.: Tight hyperrectangle

NQ together, 2) sorts them in ascending order, 3) then the algorithm
attempts to change the minimum coordinates (initially set to the min-
imum bounding hyperrectangle by Algorithm 7): if the first two suc-
cessive sorted values correspond to minimum and maximum of the
same hyperrectangle we can shift the boundary, because it would not
cross the axes of another hyperrectangle, 4) the procedure is analo-
gous for the vector of maximum values.

Algorithm 8: TightHyperrectangle. Constructing tight hyper-
rectangle that includes the minimum required side segments
of nodes NR and NQ

Input: NR reference node, NQ query node
Output: tight hyperrectangle
begin

// concatenate and sort points

sorted points =
sort([NR.mins, NR.maxes, NQ.mins, NQ.maxes])
tight mins = copy BoundingHyperrectangle(NR, NQ).mins;
next min = sorted points[1, :];
if (tight mins = NR.mins and next min = NR.maxes)
or (tight mins = NQ.mins and next min = NQ.maxes)
then

tight mins[idx] = next min;
end
// analogous but in reverse order for maxes

...
tight hyperrectangle = Rectangle(tight maxes, tight mins);

end

Based on the tight hyperrectangle found, we calculate its centroid.
We then use the one nearest-neighbor query of kd-tree upon which
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our dual tree is based to find a point in the dataset closest to the cen-
troid. One caveat is that both nodes NR and NQ should be excluded
from the search.

3.1.6 Local Search

To recap, two noted weaknesses of the Sokal algorithm (see Para-
graph 3.1) where 1) excessive comparisons of potential generating
points and 2) absence of meaningful heuristics when validating the
generating points against potential intruders. Both result from the
unawareness of the spacial structure of the dataset.

proximity heuristics Pruning strategies are used to resolve the
first weakness, whereas local search will be mainly beneficial for the
heuristics that it brings to the Sokal Algorithm 4 when comparing the
generating points with a list of intruding points. If we come back to
the illustration demonstrating the concept of CBPs (Figure 5), then we
could draw following conclusion: ordering potential intruding points
according to their distance from prospective xi,j

cp beforehand will re-
sult in Sokal performing a more optimal reduced search. Clearly, the
points that would break the capacity of i and j to generate a CBP are
located close enough to the center xi,j

cp.

According to the dual-tree representation of the partitioned space
(Figure 18), the most intuitive center is the centroid of the tight hyper-
rectangle between NR and NQ. Thus, if we sort the intruding points
in the dataset according to the approximate remoteness from the cen-
troid Ctight, we would achieve a similar helping effect from a higher
perspective. Fortunately, the k-nearest neighbor query of kd-trees re-
turns the list of matching points ordered by the distance from the
query point x (our centroid).

minimum local boundary Aside from the introduced meta-
heuristics, we can also further limit the dataset to the points that can
potentially break emerging CBPs. Figure 19 exemplifies how we re-
strict the space by a sphere boundary. The sphere boundary has its
origin at the centroid of the bounding hyperrectangle with the radius
set to the space diagonal [27] of this hyperrectangle: when perform-
ing a k-nearest neighbor search, the query will return only the points
of the hyperrectangles within the boundary.

The choice of the rather large value for the sphere – diameter, as
opposed to half of diagonal – is intentional. It is designed to prevent
border cases, as depicted by Figure 20, where potential CBPs can be
formed by the generating points at the vertices of the hyperrectangles.
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Figure 19.: Local Search

Figure 20.: Overly restrictive spheric boundary

We have extended the implementation of the kd-tree provided by
scipy scientific package of python programming language [16] to
support the following n-nearest-neighbor query operations:

• List of blocked node IDs tells the query to skip the passed nodes
when performing a search. This is done to accelerate the opera-
tion as we already know which points belong to the nodes NR

and NQ.
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• In order to accelerate the query performance, we have added an
option to the kd-tree to perform approximate nearest-neighbor
queries: instead of strictly fetching the specified by k-nearest
neighbors, the query returns all the points within the cells that
are at the specified distance.

Setting n parameter to the size of the dataset achieves the desired
result of filling a list of potential intruding points with indexes.

3.2 a cbp-based classifier

One of the weaknesses of the original Boosted OGE classifier is its
poor scalability in respect to the surge in dimension and size of un-
derlying datasets. This goes back to the fact that the base classifiers
are constructed on top of the CBPs.

The author argues that the Boosted OGE’s subprime results on
some of the datasets could be attributed to low number of base clas-
sifiers, due to the stringent rules of building CBPs. However, as we
increase the dataset sizes and dimensions the number of CBPs has
a drastic and unpredictable growth. Tables 1 and 2 expose the CPB
growth.

Table 1.: Growth of CBPs as dataset gains more dimensions

EEGeye CBPs Twonorm CBPs
Size Dim. (count) (%) Size Dim. (count) (%)

7200 2 9942 6660 2 3485

7200 4 11199 112.64 6660 4 9237 265.05

7200 6 17276 154.26 6660 6 22095 239.20

7200 8 34494 199.66 6660 8 44796 202.74

7200 10 48507 140.62 6660 10 78571 175.40

7200 12 69765 143.82 6660 12 132153 168.20

7200 14 69854 100.13 6660 14 201042 152.13

Table 2.: Growth of CBPs as dataset increases in size

EEGeye CBPs Twonorm CBPs
Size Dim. (count) (%) Size Dim. (count) (%)

1800 14 10751 1665 14 46354

3600 14 58785 546.79 3330 14 115334 248.81

5400 14 45827 77.96 4995 14 201042 174.31

7200 14 69854 152.43 6660 14 303220 150.82
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Consider, for instance, that we want to run Boosted OGE on EEG-
eye dataset with 7200 instances and 10 dimensions, then the original
Boosted OGE algorithm would need 1) to construct a matrix A of
base classifiers applied to the training dataset (resulting dimension is
7200x48507) and 2) to calculate the best performer at each boosting
iteration in order to augment the set of the strong classifiers. Clearly,
that introduces both immense storage but also computational com-
plexity making the use of the classifier limited to the smaller datasets.

We propose two alternative modifications to Boosted OGE to ad-
dress its scalability issues (visualized in Figures 21 and 22).

Figure 21.: Boosted OGE: filtered
merge

Figure 22.: Boosted OGE:
cascade

Both modifications apply ideas from divide-and-conquer algorithm
design paradigm to reduce computational and storage costs. They,
however, approach the task in somewhat different manner.

Filtered merge (Figure 21). The first strategy is to split dataset in
random feature subsets and to compute CBPs on these subsets. Af-
terwards, all the computed CBPs are merged into a single set and
the base linear classifiers are built on top of them. While the default
strategy is to merge all the CBPs together into one single set, we pro-
pose a selection criteria by which only a certain percentage of CBPs
ranked according to their strength are chosen. We define strength
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as frequency with which the same CBP appears in different feature
subsets; if there is no overlap between CBPs from different feature
subsets, then the algorithm simply selects a given share of CBPs.

Cascade (Figure 22) This modification resembles more the approach
taken by random forest. Again, random feature sets are extracted
from the dataset and the CBPs are computed based on them. How-
ever, instead of merging the CBPs into a single set, the cascade pro-
ceeds to generate base classifiers on each individual set, runs the
boosting OGE on top of it and finally utilizes majority voting to make
the prediction of the final label.

Both of the proposed solutions should provide computational speed
improvements and reduction of storage requirements.

1. As we have seen, we can expect less CBPs in lower dimensions
than in higher. Although filtered merge by combining the CBPs
into a single set can potentially undo the gain of operating in
lower dimensions, the filtering procedure ensures that a thresh-
old value for CBP count is not exceeded.

2. Having less base classifiers reduces the computational cost of
boosting iterations. Moreover, it adds a nice property that por-
tions of the algorithm can be trivially parallelized.

Thus, we have obtained two models, tuned by the following param-
eters: 1) size of feature subsets, 2) number of CBP generators (filtered
merge) or CBP generators/classifiers (cascade).
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4

E X P E R I M E N T S A N D R E S U LT S

4.1 understanding the model

Prior to jumping to the final results obtained with our algorithm, this
section will attempt to give insight into the various factors of the
model that are otherwise too easy to overlook if only the final values
are considered. To support the findings, we would interchangeably
consider only a small selection of the datasets as they adequately re-
flect general patterns of the model.

Specifically, we will discover the effects that leaf size of the under-
lying kd-trees, dimensionality of the dataset, and local search have
on our dual-tree algorithm for faster CBP computations. This will be
followed by the analysis of aspects related to the proposed modifi-
cations of the Boosted OGE classifiers: effect of thresholding on the
CBP count, performance of the classifier based on genuine or weak
CBPs.

Table 3.: Datasets

Dataset Size Dim

banana 5300 2

EEGEye 14980 14

Example 1014 5

magic 19020 10

ringnorm 7400 20

skin 245057 3

svmguide1 3089 4

transfusion 748 4

Twonorm 7400 20

waveform 5000 21

Table 3 lists the original datasets that have been used in the ex-
periments (Table 11 in Appendix A provides the sources of these
datasets). In order to explore effects of dimensionality and size but
also to ensure that available hardware resources are able to operate
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on the datasets, these where reduced in dimensions and size. To pro-
vide reader with information about which particular version of the
dataset is used in an experiment, we follow the convention of writing
the name of the dataset followed by “(size x dimension)” information.

4.1.1 Effect of Leaf Size

We have conjectured (Section 2.1) about the influence that the leaf size
setting can have on our algorithm: while small value for the number
of data points in leaf nodes leads to expensive dual-tree traversals, too
large values would convert the kd-tree queries to a brute force proce-
dure. However, the true situation in context of the CBP computations
appears to have even more variability.

Figure 23.: EEGEye (7200x2): Leaf size growth

Figures 23 and 24 demonstrate the impact that the set leaf size (as
percentage of the dataset size) values have on the time performance
of the dual-tree algorithms compared to the baseline. While the re-
lation between leaf size and execution ratio is clearly defined in a
two-dimensional space, the picture is more vague in four dimensions.
After a sharp rise in computation cost further increases in leaf sizes
(19-31%) seem to have no correlation with algorithm performance.

We can take a look at the leaf size problem from a different per-
spective plotting the breakdown between dual-tree time and CBP
computation time: Figures 25 and 26 represent performance of the
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Figure 24.: EEGEye (7200x4): Leaf size growth

conservative strategy for different leaf sizes.

Figure 25.: EEGEye (7200x2): Break-down of dual-tree algorithm (con-
servative pruning) time consumption.
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Figure 26.: EEGEye (7200x4): Break-down of dual-tree algorithm (con-
servative pruning) time consumption.

Both in two and four dimensional datasets dual-tree traversal cor-
responds to a significant portion of the total execution time. This
implies that the algorithm is hard at work pruning the dataset and
performing local search leading to the reduced time needed for the
CBP computation. This relative ratio of dual-tree to CBP computation
components gets distorted when the nodes become larger limiting the
capacity of dual-tree traversal.

However, the question of the sudden performance plunge in EEG-
Eye (7400x4) as well as reasonably good results for higher leaf sizes
are still puzzling until we look at Figures 27 and 27.

The graphs demonstrate percentage of worst-case computations
that the dual-tree versions have to perform as a percentage of the
baseline Sokal worst case. Whereas the Sokal worst case is calcu-
lated as |NR| ∗ |NQ| ∗ |NR ∪ NQ|, the dual tree worst case is defined
by ∑|S|s=1 |NRs | ∗ |SQs | ∗ |SRs ∪ SQs |, where S is a set of subspaces that
are extracted from NR, NQ, and NQ ∪NR during the local search stage
of the dual-tree traversal.

As can be seen, growing node sizes correspond to the general in-
crease of computation count. While the trend is stronger in two di-
mensions, it is still notable in the four-dimensional dataset. The exe-
cution time bump reported in the EEGEye (7200x4) dataset is likely
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Figure 27.: EEGEye (7400x2). Worst case vs real computations in rela-
tion to the leaf size

Figure 28.: EEGEye (7400x4). Worst case vs real computations in rela-
tion to the leaf size

an outlier that can be ignored, as the computation time diverges from
the real computations line without any underlying cause (for instance,
the dual-tree traversal time at this leaf size can be neglected, as indi-
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cated in Figure 26). The sudden rise could be caused by numeric
calculations made by the Sokal subtask.

Another interesting observation is the ever increasing gap between
worst case and real computations. This particularity has less to do
with the leaf size, but is rather a property of local search which is
investigated in Section 4.1.3.

We have settled to run the experiments with a leaf size set to 3%
of the dataset as it seems to be a value at which the combination of
dual-tree traversal and CBP computations are well-balanced and ex-
hibit superior performance. Nevertheless, while outside of the report
scope, the issue of optimal setting for leaf sizes as proportion of the
dataset size and dimension needs further investigation.

4.1.2 Effect of Dimensionality

Figure 29.: Absolute time performance of Sokal and Dual-Tree algo-
rithms as dataset dimensionality increases.

Figures 29 and 30 demonstrate a general behavior of Sokal and
dual-trees with three pruning strategies. While the data is based
on dataset EEGEye, the trend of worsening performance is observed
across all datasets. Two aspects are of particular importance to us:
1) the increase of computational time of the Sokal algorithm as the
dimensions grow, 2) the steep increase of the dual-tree solutions. In a
2-dimensional space the dual-tree algorithm demonstrate over a one
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Figure 30.: Relative time performance of Dual-Tree algorithms com-
pared to Sokal in as dataset dimensionality increases.

order of magnitude performance improvement over the Sokal. That
gain, however washes off as we go into the higher dimensions until
the relative performance of the dual-tree even outs at 12 to 14 dimen-
sions to be merely twice as fast as Sokal.

One valuable observation that we can gain from Figure 30 is that at
around 10 dimensions, all three versions of the dual-tree algorithms –
conservative, minimum distance and nonadjacent pruning strategies
– gravitate toward similar execution times. We can conclude than,
that at that point, it is not the pruning strategies that distinguish
each version but rather some other common factor that aligns their
performance. Section 4.1.3 looks deeper into the role the local search
plays in the performance yields we have witnessed.

4.1.3 Effect of Local Search

As mentioned in Section 3.1.6, local search fulfills two goals: in lower
dimensions due to application of the sphere boundary we are able
to achieve the reduction of the potential intruding points. This addi-
tional pruning ability is not sustainable in higher dimensions due to
the “curse of dimensionality” (see Section 4.1.4).

In addition, the underlying k-nearest neighbor query introduces
the space-aware metaheuristic which the baseline Sokal lacks: the
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retrieval of potential candidates in an ordered fashion (Section 3.1.6)
helps the Sokal algorithm to discard potential generating points
sooner than otherwise would be possible.

Figure 31.: Relative time performance of Dual-Tree algorithms with-
out local search compared to Sokal in as dataset dimen-
sionality increases.

Table 4 and Figure 31 confirm the dramatic effect that local search
has on the performance of the dual-tree algorithm. As can be seen,
without local search, even the best case performance of the dual-tree
algorithm (in a 2-dimensional setting) is only approximately 33% bet-
ter than the baseline, which contrasts with the stellar improvement of
95% on a 2d data with local search.

However, apart from the awareness of its significance, we can not
trace back which specific property of local search has stronger impact
without some further analysis. To do this, let us take a look at two
graphs: the worst case computations and the real computations made
by the Sokal sub-task of the dual-tree algorithms as a proportion of
those made by the pure algorithm.

The solid lines in Figure 32 represent dual tree versions and the
dotted lines their correspond to the same algorithm with local search
turned off. One critical observation is that at around 6-8 dimensions,
both dotted and the solid lines merge. This signifies that the local
search ceases making any additional contributions in terms of search
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Table 4.: Dataset EEGEye (7200 instances). Effect of dimensionality
growth on the performance of Sokal and Dual-Tree algo-
rithms without local search

Sokal Conservative Minimum Nonadjacent
Dim. (s) (s) (%) (s) (%) (s) (%)

2 233 170 72.87 160 68.83 160 68.69

4 359 342 95.38 300 83.62 297 82.67

6 492 490 99.59 442 89.89 433 88.04

8 780 739 94.72 731 93.66 705 90.33

10 1011 1005 99.48 979 96.84 997 98.66

12 1282 1282 100.06 1259 98.23 1258 98.18

14 1291 1288 99.73 1265 97.97 1238 95.88

Figure 32.: Worst case computation ratio.

space reduction. Another point, is the relative insignificant contribu-
tion of the local search towards improving the worst case scenario.
Finally, as the dimensions increase so does the worst case computa-
tion count, as the pruning and local search pruning abilities lessen.

However, if we plot the real computation counts as a proportion of
the baseline Sokal (Figure 33), a far more divisive picture shapes up.
The gap between the computation count achieved by the dual-tree
strategies as compared to the Sokal baseline is compellingly large.
The difference is distinct from the worst case plots in three points
identified before: 1) the divergence between dual-trees with and with-

59



experiments and results

Figure 33.: Real computation ratio

out local search continues even after 6-8 dimensions whereas the cor-
responding worst cases align, 2) unlike the marginal contribution of
the local search on the worst case computations, it is compellingly
large in the real case, ca. 60%, 3) the real computations never reach
the baseline values.

Our investigative experiments bring us to several conclusions re-
garding the local search: 1) it is an adequate additional pruning tech-
nique in the window of 1 to 6 dimensions, 2) its metaheuristic prop-
erties are of prime importance to reducing the runtime computation
count of the Sokal subtask in the dual-tree algorithm, 3) this meta-
heuristic effect is equally potent across all the dataset dimensions,
improving on the worst case scenario and outperforming Sokal even
in higher dimensions.

4.1.4 Curse Of Dimensionality

As the dimensions of the dataset grow, curse of dimensionality [8,
15] becomes more of a problem. It affects our dual-tree algorithm in
several ways:

• Pruning. The conservative pruning strategy is the first one to be
hit, as the k-point-to-node distance becomes much larger than
the distances between nodes.
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The number of sides of the kd-tree, and consecutively adjacent
nodes, becomes exponential to the dimensionality [26]. There-
fore even the most aggressive pruning – nonadjacent – becomes
of less use as ever less nodes become non-neighboring ones.

• Local Search. As the distances in high dimensions become very
big, the local search stops fulfilling one of its two properties –
additional data reduction mechanism.

• Nearest-neighbor query. In high dimensions querying becomes
an ever more expensive operation eventually equaling linear
search.

Therefore, to stay effective as dimensions grow, the dual tree requires
corresponding growth of the dataset size. The exact correlation be-
tween dimensionality and desired dataset size is not explored in this
work.

4.1.5 A CBP-Based Classifier

Experimental results lead us to several observations. Consider Fig-
ure 34 that highlights several particularities of the presented strate-
gies.

Figure 34.: CBP count vs classifier accuracy on selected datasets

Filtered merge without a threshold value controlling the number of
the strong CBPs that should be retained – that is, practically a full
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merge – runs against the same limitations that the original Boosted
OGE does. The number of CBPs in the merged set is too high and
hits the storage restrictions, on some datasets it even exceeds the CBP
count of the original Boosted OGE. Therefore thresholding is critical.
Although the bars of cascade strategy are the highest, the values are
not generally comparable with the other strategies: they represent the
sum of CBPs of all the classifiers and are not merged into one set of
CBPs as is the case in other strategies.

Raising the threshold to select only 25% instead of 50% of the
strongest CBPs does not compromise the quality of prediction. Thus,
we can conclude that even more aggressive thresholding would be
possible. Moreover, when applied to one particular dataset – banana
(4770x2) – thresholding improves accuracy of prediction as compared
to original Boosted OGE or a full merge / cascade strategies, as re-
ducing CBP leads to improved generalization.

Table 5.: Percentage of CBPs that proposed classifiers share with orig-
inal Boosted OGE

B. OGE Cascade Merge all
Dataset (count) (count) (%) (count) (%)
banana (4770x2) 1266 1266 100.00 1266 100.00

magic (7200x4) 11913 19282 13.32 23918 17.01

skin (7200x3) 204 1727 6.37 1758 12.25

svmguide1 (2780x4) 981 1502 8.66 3035 19.78

Twonorm (6660x4) 12733 13668 5.34 18325 6.91

B. OGE F. merge 50% F. merge 25%
Dataset (count) (count) (%) (count) (%)
banana (4770x2) 1266 633 50.00 316 24.96

magic (7200x4) 11913 6825 4.90 4976 4.49

skin (7200x3) 204 863 3.43 544 3.92

svmguide1 (2780x4) 981 1496 10.81 736 7.03

Twonorm (6660x4) 12733 9071 3.66 4547 2.08

If we analyze how many of the genuine CBPs which Boosted OGE
operates on are shared by the proposed classifiers (Table 5), a strik-
ing picture appears: in datasets beyond 2 dimensions the proposed
classifiers are built mostly on non-genuine CBPs. This seems to have
no adverse affect on accuracy. As we have mentioned before, au-
thor of Boosted OGE [23] has proposed to relax definition of CBPs in
order to increase the space of candidate classifiers. This relaxation is
effectively taking place when only a subset of features are considered.
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Cascade strategy is very susceptible to the choice of feature subset
size. In particular, building a cascade of classifiers based on subsets of
features with poor predicting ability produces a majority of unsatis-
factory base predictions, which the voting procedure can not improve.
The cascade predictors are self-contained and restricted to the predic-
tion power that a particular set of features gives them, whereas filtered
merge benefits from the full multidimensionality.

Table 6.: Classifiers performance based on available features

Boosted OGE Filtered merge (25%) Cascade
Dataset Acc. (%) Acc. (%) Acc. (%)

Skin (7200x2) 20.00 20.00 20.00

Skin (7200x3) 98.88 91.38 20.00

To make this claim more convincing, consider Table 6 which shows
particularly poor prediction ability (20% accuracy) that cascade strat-
egy has on the skin dataset with three dimensions, whereas other
filtered merge and original Boosted OGE predict with over 90% accu-
racy. If we, however, only leave the first two dimensions, then the
performance of the other methods plunges to the same depth of 20%.

4.2 results

4.2.1 CBP Computation

Table 9 in Appendix A provides detailed summary of the dual-tree
performance compared to the baseline Sokal algorithm. We have used
Jaccard similarity coefficient to calculate accuracy of the CBPs found
by dual trees:

|{CBPSokal} ∩ {CBPDual−Tree}|
|{CBPSokal} ∪ {CBPDual−Tree}|

(13)

Seeing that most of the accuracy values for all three pruning strate-
gies are around 99%, we can focus on the time performance parame-
ter of the dual trees as illustrated in Figure 35. As could be expected,
nonadjacent pruning strategy has the best time performance across al-
most the whole sample of the datasets. That allows us to focus our at-
tention in the further course of results analysis on this top-performer.

Table 7 presents the results of validating the approximate CBPs
(found with nonadjacent pruning strategy) based on the Boosted OGE
algorithm. Although nonadjacent pruning is only an approximation
mechanism to find the CBPs, the classifiers based on the exact CBPs
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Figure 35.: Time performance of the three dual trees in relation to
Sokal

(found by Sokal) and those based on the approximate points ren-
der almost identical results in respect to the accuracy percentage.
Simultaneously, the dual-tree solution manages to beat the Sokal-
based ensemble on each dataset in terms of time: the mere exception
is dataset Example (912x5) where due to the poor data-samples-to-
feature-count ratio the kd-trees become inefficient. Some of the val-
ues are not available (N/A) due to the growing storage cost: as we
ascend into higher dimensions, the Boosted OGE algorithm has to
create classifiers based on the growing number of points which does
not fit into the memory leading to the algorithm failure.

Table 7.: Validation of the CBPs found with dual-tree nonadjacent
pruning against baseline Boosted OGE classifier

Dataset Sokal Dual Tree (nonadjacent)
Time Acc. Time Rel.time Acc.
(s) (%) (s) (%) (%)

banana (4770x2) 73 59.25 9 12.44 59.25

EEGEye (7200x2) 273 54.38 36 13.16 54.38

EEGEye (7200x4) 427 65.63 88 20.60 65.63

EEGEye (7200x6) 603 67.88 179 29.64 67.88

EEGEye (7200x8) 1016 77.25 465 45.75 77.25

EEGEye (7200x10) 1296 78.38 676 52.17 78.38

EEGEye (7200x12) 1503 N/A 792 52.70 N/A
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Table 7.: Validation of the CBPs found with dual-tree nonadjacent
pruning against baseline Boosted OGE classifier

Dataset Sokal Dual Tree (nonadjacent)
Time Acc. Time Rel.time Acc.
(s) (%) (s) (%) (%)

EEGEye (7200x14) 1485 N/A 788 53.07 N/A

Example (912x2) 3 62.75 1 19.44 62.75

Example (912x4) 5 88.24 4 76.90 88.24

Example (912x5) 5 100.00 8 157.95 100.00

magic (7200x2) 376 72.50 52 13.95 72.50

magic (7200x4) 668 78.63 130 19.45 78.63

ringnorm (6660x2) 311 73.78 49 15.72 73.78

ringnorm (6660x4) 675 83.24 134 19.81 83.24

ringnorm (6660x6) 823 84.59 420 51.00 84.59

skin (7200x2) 131 20.00 23 17.43 20.00

skin (7200x3) 88 98.88 19 21.05 98.25

svmguide1 (2780x2) 17 94.17 1 8.70 94.17

svmguide1 (2780x4) 23 97.09 12 51.79 97.09

transfusion (673x2) 8 82.67 2 28.95 82.67

transfusion (673x4) 5 82.67 1 27.81 82.67

Twonorm (6660x2) 216 71.62 32 14.86 71.62

Twonorm (6660x4) 437 80.54 171 39.20 80.54

Twonorm (6660x14) 4138 N/A 2346 56.70 N/A

waveform (4500x2) 148 68.40 16 10.66 68.40

waveform (4500x4) 400 67.00 137 34.17 67.00

waveform (4500x8) 672 80.80 406 60.46 80.80

4.2.2 A CBP-Based Classifier

Having confirmed comparable accuracy achieved by the dual tree al-
gorithms we would now proceed to the analysis of the alternative
ensemble classifiers. The reader can refer to the detailed results in Ta-
ble 10 of Appendix A whereas this section concentrates on the main
aspects.

Among the three proposed classifiers – merge all, filtered merge (25%
and 50%), and cascade – only the last two will be extensively analyzed
in this section. The reason for this is, as also visible in Table 10, that
we can discard two classifiers from the detailed analysis: 1) full merge
tends to amass disproportionately many CBPs leading to the exces-
sive memory load; 2) as filtered merge with thresholds 25% and 50%
exhibit comparable performance we will only consider the former pa-
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rameterization of the classifier.

Figure 36.: Comparison of relative computation time with classifier
accuracy

Figure 36 puts a dual perspective on the performance of the classi-
fiers: relative computation time compared to Sokal vs classifier accu-
racy. Instead of presenting the datasets with different feature subsets
as was done in 7, Figure 36 selects one particular feature subset of the
dataset. Generally, a dataset with most complete feature set was taken
except when it was impractical as at least one of the classifiers would
collapse due to the storage cost of fitting multitude of resulting CBPs.

We observe that typically both cascade and filtered merge classifiers
outperform Sokal in terms of computational time. A notable excep-
tion is dataset Example (912x5) where due to the relatively small size
of the dataset, the new classifiers can not keep up with Sokal.

Barring for the datasets skin and banana, both cascade and filtered
merge have commensurate performance with Sokal in terms of
accuracy. While cascade performance is sensitive to the value of the
features used for the subclassifiers, being only 3-dimensional, dataset
skin leaves no space for the classifier improvement which could be
said to be unsuitable for the particular problem. On the other hand,
filtered merge displays admirable outstanding accuracy on the 2-d
dataset, where both Sokal and cascade are about 30% behind.
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Table 8.: Ranking of classifiers according to accuracy

Dataset Sokal Filtered Cascade Random
merge 25% Forest

banana (4770x2) 59.25 89.81 59.25 91.32

EEGEye (7200x10) 78.38 74.38 75.00 86.00

Example (912x5) 100.00 100.00 99.02 100.00

magic (7200x4) 78.63 78.38 68.63 78.38

ringnorm (6660x6) 84.59 83.78 82.03 86.89

skin (7200x3) 98.88 95.50 20.00 99.75

svmguide1 (2780x4) 97.09 96.44 94.17 96.76

transfusion (673x2) 82.67 82.67 82.67 78.67

Twonorm (6660x4) 80.54 78.78 78.38 76.08

waveform (4500x8) 80.80 82.00 75.40 77.60

Rank 1.6 2.2 3.1 1.7

Given that Sokal falls behind on the larger datasets in terms of time,
we aim the analysis on the accuracy aspect for the datasets that are
solvable by Sokal. Table 8 is a ranking of the classifiers. We provide
reference values for the results obtained with the random forest clas-
sifier in order to have an additional benchmark values. Sokal has a
narrow lead over filtered merge strategy with cascade trailing behind.

It is interesting to observe, that filtered merge, although ranked to
be the 3rd if only considering the raw values, has a very close general
performance with the random forest classifier, should we allow for a
tolerance value of 5% with respect to the accuracy values.

Figure 37 gives another view angle on the classification of the
datasets which the Boosted OGE classifier failed to crunch due to
the storage capacity required by the growing number of CBPs. The
time values are absolute because a baseline measurements are miss-
ing. We can, nevertheless, see that the filtered merge outperforms
cascade in computation by a wide margin while both classifiers have
achieved similar accuracy rates.

Furthermore, the algorithms are able to capitalize on growing num-
ber of features and consequently outperform the Boosted OGE values
achieved on the lower dimensional datasets. Accordingly, as we go
into higher dimensions and the storage cost becomes unbearable for
the baseline Boosted OGE, we can resort to the proposed alternative
ensemble-based models. Based on the experimental data, the transi-
tion from an “integral” to an ensemble-based model incurs no signif-
icant penalty in terms of prediction ability of the classifiers.
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Figure 37.: Comparison of computation time with classifier accuracy
for higher dimensions
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C O N C L U S I O N S A N D F U T U R E W O R K

conclusions . This work has started off with the exploration of
the dual-tree framework that was originally devised to bring tractabil-
ity to the class of generalized n-body problems. We have been able
to devise a dual-tree based algorithm to deal with the problem of
finding characterizing boundary points (CBP), a special case of the
Gabriel graph.

The proposed algorithm was devised in incremental fashion, propos-
ing and evaluating alternative solutions to the dual-tree architecture,
pruning rules, and a local search strategy. In this course, we have
been able to devise two types of pruning – exact and approximate –
offering a trade-off between accuracy of CBP computation and speed
gains.

Owing to the powerful metaheuristics implemented by the local
search and reduction of the dataset brought about by pruning, the
developed dual-tree algorithm has been able to both lower worst-case
and real-case computation measurements as compared to the baseline
Sokal solution. Based on the experimental evaluation, we have been
able to achieve about an order of magnitude performance increases
on the two-dimensional datasets. Gains in efficiency were also evi-
dent in higher dimensions ranging from 70% to 50% improvement of
the state-of-the-art method.

Having built a new algorithm for finding CBPs we have proceeded
to Boosted OGE [23], a CBP-based classification algorithm. We have
set a goal of improving one of the algorithm’s weaknesses – poor
scalability in higher dimensions. In order to do that, two alterna-
tive models where proposed that integrated original problem-solving
approach of the classifier into an ensemble-based framework. Both
models – filtered merge and cascade – were shown to be on par with the
original classifier in terms of predictive power on almost all datasets,
while outperforming it in computational speed. Above all, however,
the two ensemble-based models have been able to take up larger
datasets which the original Boosted OGE algorithm fails to tackle
due to the high memory cost it requires.
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conclusions and future work

future work . This work has opened up a number of areas that
further research should address.

CBP Computation. The proposed dual-tree algorithm is superior
to Sokal in performance, but also more complex as it requires param-
eterizing the node size. Experimentally shown to be an important
factor for the dual-tree performance and a non-trivial task, a stricter
methodology or a set of general observations should be developed
to determine optimal values for the leaf sizes. This would inevitably
depend on the implicit dimensionality of the datasets and their sizes
and is likely to be specific to the chosen dual-tree architecture.

It has been demonstrated that approximation strategies do not af-
fect the performance of the CBP-based classifier. Therefore, we could
hypothesize that even more aggressive pruning rules and restricted
local search could bring computational speed dividends without sac-
rifices of the performance. Having observed the non-linear growth
of CBPs attributed to the rise of dimensionality, we can even argue
that tightening the number of discovered CBPs may implicitly obtain
needed regularization in higher dimensions.

More awareness about the required size of the datasets in respect to
their implicit dimension is needed to be able to conclude beforehand
about the expected performance gain of the dual-tree algorithms com-
pared to Sokal. Due to the hardware considerations we were re-
stricted in the size of the datasets under test.

CBP-Based Classifier. The two developed ensemble-based mod-
els proposed have a comparable performance to the original Boosted
OGE classifier. However, inspecting the CBPs that the ensemble learn-
ers operate on has shown that they share only a small margin of the
“genuine” CBPs. This fact seems to have no adverse effect on the clas-
sification, but needs a more rigorous study of its own. Being just a
heuristic notion of goodness, CBPs do not necessarily represent the
most optimal imaginary classification boundary, whereas the newly
found “weak CBPs” could embody a better approximation.

The proposed filtered merge has proven to be robust to thresholding
as we have reduced the number of points retained from 50% to 25%.
Reducing the number of CBPs further will cut down the dimensions
of the ensuing weak classifiers, therefore it is certainly worthy to test
the limits of thresholding. Furthermore, instead of setting a percent-
age threshold the filtered merge can be set to retain a certain number
of CBPs based on the underlying dataset size and dimension.
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A
D E TA I L E D R E S U LT S

Table 9.: Comparison of the dual-tree performance with different
strategies to the baseline Sokal

Dataset Sokal Dual Tree Time Acc.
(s) (strategy) (s) (%) (%)

banana (4770x2) 76 Conservative 9 11.74 100.00

Minimum 5 6.47 100.00

Nonadjacent 5 6.62 100.00

EEGEye (7200x2) 251 Conservative 19 7.66 100.00

Minimum 13 5.07 100.00

Nonadjacent 11 4.51 99.99

EEGEye (7200x4) 395 Conservative 124 31.46 100.00

Minimum 64 16.28 100.00

Nonadjacent 59 14.81 99.96

EEGEye (7200x6) 520 Conservative 212 40.85 100.00

Minimum 131 25.23 99.99

Nonadjacent 116 22.36 99.92

EEGEye (7200x8) 828 Conservative 383 46.25 100.00

Minimum 334 40.32 100.00

Nonadjacent 305 36.83 99.86

EEGEye (7200x10) 1140 Conservative 498 43.65 100.00

Minimum 448 39.30 99.99

Nonadjacent 426 37.39 99.83

EEGEye (7200x12) 1307 Conservative 680 52.05 100.00

Minimum 654 50.03 99.87

Nonadjacent 594 45.46 99.46

EEGEye (7200x14) 1357 Conservative 699 51.50 100.00

Minimum 657 48.39 99.87

Nonadjacent 636 46.86 99.46

Example (912x2) 3 Conservative 1 25.91 100.00

Minimum 0 14.86 100.00

Nonadjacent 0 14.68 100.00

Example (912x4) 4 Conservative 6 166.44 100.00

Minimum 3 85.87 99.74
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detailed results

Table 9.: Comparison of the dual-tree performance with different
strategies to the baseline Sokal

Dataset Sokal Dual Tree Time Acc.
(s) (strategy) (s) (%) (%)

Nonadjacent 3 77.01 99.74

Example (912x5) 3 Conservative 6 199.49 100.00

Minimum 4 138.84 99.78

Nonadjacent 4 109.96 99.57

magic (7200x2) 203 Conservative 31 15.45 100.00

Minimum 14 7.11 100.00

Nonadjacent 14 6.89 100.00

magic (7200x4) 328 Conservative 98 29.98 100.00

Minimum 57 17.25 100.00

Nonadjacent 53 16.25 99.96

magic (7200x8) 685 Conservative 326 47.62 100.00

Minimum 266 38.80 99.93

Nonadjacent 239 34.90 99.56

ringnorm (6660x2) 182 Conservative 29 15.96 100.00

Minimum 15 8.16 100.00

Nonadjacent 14 7.96 100.00

ringnorm (6660x4) 350 Conservative 170 48.62 100.00

Minimum 104 29.73 100.00

Nonadjacent 101 28.77 100.00

ringnorm (6660x6) 638 Conservative 307 48.13 100.00

Minimum 294 46.17 99.98

Nonadjacent 287 44.96 99.97

skin (7200x2) 92 Conservative 17 18.72 100.00

Minimum 7 8.12 100.00

Nonadjacent 6 6.52 99.93

skin (7200x3) 67 Conservative 20 30.25 100.00

Minimum 8 11.63 97.85

Nonadjacent 6 9.14 96.77

svmguide1 (2780x2) 9 Conservative 2 18.22 100.00

Minimum 1 6.11 100.00

Nonadjacent 1 6.01 100.00

svmguide1 (2780x4) 19 Conservative 14 71.53 100.00

Minimum 5 26.40 100.00

Nonadjacent 4 22.33 100.00

transfusion (673x2) 3 Conservative 1 40.32 100.00

Minimum 1 22.88 95.60

Nonadjacent 0 17.64 79.69

transfusion (673x4) 2 Conservative 5 244.35 100.00

Minimum 1 75.63 99.94

Nonadjacent 1 46.93 95.43
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detailed results

Table 9.: Comparison of the dual-tree performance with different
strategies to the baseline Sokal

Dataset Sokal Dual Tree Time Acc.
(s) (strategy) (s) (%) (%)

Twonorm (6660x2) 177 Conservative 26 4.11 100.00

Minimum 16 9.19 100.00

Nonadjacent 16 8.89 100.00

Twonorm (6660x4) 353 Conservative 206 58.33 100.00

Minimum 119 33.80 100.00

Nonadjacent 94 26.70 100.00

Twonorm (6660x8) 1026 Conservative 509 49.56 100.00

Minimum 530 51.66 100.00

Nonadjacent 519 50.58 100.00

Twonorm (6660x14) 3426 Conservative 2402 70.12 100.00

Minimum 2524 73.68 100.00

Nonadjacent 2911 84.96 100.00

waveform (4500x2) 91 Conservative 12 13.17 100.00

Minimum 8 8.36 100.00

Nonadjacent 8 8.27 100.00

waveform (4500x4) 195 Conservative 90 46.02 100.00

Minimum 61 31.15 99.99

Nonadjacent 60 30.60 100.00

waveform (4500x8) 449 Conservative 252 56.11 100.00

Minimum 240 53.32 99.99

Nonadjacent 241 53.68 99.99
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detailed results
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http://mldata.org/repository/data/viewslug/banana-ida/
https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
http://www.maia.ub.es/~oriol/Personal/downloads.html
https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
http://mldata.org/repository/data/viewslug/ringnorm-ida/
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https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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