
Non-centralized environment to
monitor and dynamically configure

highly distributed systems

Roger Hernandez

directed by

Yolanda Becerra Fontal
David Carrera Pérez

Department of Computer Architecture (DAC)

Informatics Engineering - Final Project
Barcelona, September 2012

Facultat d’Informàtica de Barcelona (FIB)
Universitat Politècnica de Catalunya (UPC) BarcelonaTech

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41807263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1

1.1 Document structure . 2

1.2 Motivation . 3

1.3 Statement . 5

1.4 Goals . 6

2 A glympse on distributed systems 8

2.1 Description . 9

2.2 Common properties and pitfalls in distributed systems 10

2.2.1 Messaging . 10

2.2.2 Scalability . 10

2.2.3 Single point of failure 11

2.2.4 Fault tolerance and recovery 11

2.2.5 Discovery . 12

2.2.6 Group Membership . 12

2.2.7 Leader Election . 13

2.2.8 Flexibility . 14

i

CONTENTS ii

3 System architecture 16

3.1 Introduction . 17

3.2 First approach: Chain model 18

3.3 Selected architecture: Group model 21

4 Technical background 26

4.1 Introduction . 27

4.2 JXTA . 28

4.2.1 Overview . 28

4.2.2 Cache files and configuration 28

4.2.3 Basic concepts . 30

4.2.4 Protocols and services 34

4.2.5 Connection management 36

4.2.6 Communication and data structure 39

4.3 Apache ZooKeeper . 47

4.3.1 Overview . 47

4.3.2 Infrastructure and configuration 47

4.3.3 Data model . 50

4.3.4 Interface and primitives 52

4.3.5 Command line client 53

4.3.6 Implementation . 54

5 Putting it together 59

5.1 Introduction . 60

5.2 Overview . 61

5.2.1 Main loop . 61

CONTENTS iii

5.2.2 Group management . 63

5.2.3 Information flow and messaging 65

5.2.4 Agent node selection 67

5.2.5 Metrics collection and processing 69

6 Evaluation 70

6.1 Introduction . 71

6.2 Configuration 1: 3 nodes per group 73

6.2.1 Structure construction 73

6.2.2 Fault tolerance, crashes and recovery 76

6.3 Configuration 2: 2 nodes per group 78

6.3.1 Structure construction 79

7 Project management 85

7.1 Introduction . 86

7.2 Methodology . 86

7.3 Work plan and scheduling . 87

7.4 Budget . 92

7.4.1 Salaries . 92

7.4.2 Software expenses . 93

7.4.3 Hardware expenses . 94

8 Conclusion 96

8.1 Summary . 97

8.2 Final thoughts . 98

8.2.1 Peer-to-peer networks in distributed systems 98

CONTENTS iv

8.2.2 JXTA alternatives . 98

8.2.3 Exploiting Apache ZooKeeper’s capabilities 100

8.3 Future work . 101

8.4 Personal note and acknowledgements 103

Bibliography 104

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

1.1 Document structure

This document is structured by chapters. The first one is a description of

the project, with its motivations, goals, and expectations.

Since distributed computing is a rather specialized field, the second chap-

ter is an introduction to these kind of systems and their major concerns,

which should help cover the essential doubts or unknown terms in case of

unfamiliarity.

The third chapter is the core of the application, and focuses on explaining

the chosen architecture, the alternatives, and why it was decided to go on

with it.

Chapter four focuses on third party software used as support, any specific

implementation or in-depth explanation of those frameworks can be found

here. Although most of this chapter aims to give information on just the

platforms, some overall references may be given towards the specific project,

such as general configuration choices, caching policies, . . . all in all, nothing

that affects the architecture model.

Having read chapter three and four, the fifth is the one that puts it

all together, explaining the architecture implementation by using specific

concepts that were covered in the previous chapter.

At the end of the implementation comes chapter six, with a bit of testing

and evaluation, demonstrations of the application running, and some analysis

from the tested configurations.

Finally come chapter seven and eight, with the project management in-

formation, conclusions of the project and future work.

CHAPTER 1. INTRODUCTION 3

1.2 Motivation

Distributed computing, cloud computing. . . any computing architecture that

moves away from the single node configurations or typical client-server para-

digms, is a trend that grows and progresses inevitably. There is an obvious

need to start forgetting the techniques that have been used until now for the

future environments that are not as future anymore.

The need of this growth requirement was so sudden, that systems have

been appearing in a way where they may be enough to provide the services

but most likely not under the best performance environments.

Most attention so far has been directed to the constraints of the ap-

plications regarding their clients’ requirements, in a way where those were

carefully monitored to achieve the target times of execution, uptime, quality

of service. . . but recently other worries are starting to emerge.

Power consumption has mostly been a secondary concern until now, when

it is starting to shift to a priority. Turning on hardware to meet quality of

service requirements can be achieved with close to zero complexity, but this

new concern for reducing the number of resources used to the minimum

makes of this a problem that resembles the traveling salesman one.

This presents in a number of other problems, one of them being the need

for a monitoring system to see the status of every node and their applications.

Curiously enough, monitoring such a large amount of nodes and information

is not as easy as logging each one and merging it in a common place, and

this is where this project takes part.

There is no known “best way” to exchange and process the monitored

CHAPTER 1. INTRODUCTION 4

data of such an enormous systems, and having an application that allowed

to test and compare different configurations would certainly help on deciding

which schemas could be worth using.

Having an application that allowed to test for different configurations

that could be changed relatively easy, without needing to reimplement the

whole system, and then evaluating their performance, would help all those

trying to organize and coordinate their distributed systems.

Another thing that motivates this project, is the peer-to-peer approach

proposed for this work. Peer-to-peer networks have been somewhat popular

within distributed systems, and there was a certain interest on knowing how

they performed and if positive results could be achieved.

CHAPTER 1. INTRODUCTION 5

1.3 Statement

Given the motivation of this document, a thorough study into the workings

and possibilities of peer-to-peer networks will be required. Once a peer-to-

peer approach has been chosen and consolidated, development of the project

per se will be ready to have the focus of development.

Once a peer-to-peer basis is established, by having the tools the paradigm

offers and taking the requirements into consideration, it will be possible to

start building the system that fits the motivation’s most relevant aspects:

having a platform that allows to evaluate multiple configurations of a moni-

toring application in a distributed environment.

Those configurations should be as manageable as possible, so that no

major further developing is required in a future. The most interesting metrics

to be monitored for this setup come from the network end, however multiple

options should be given when deploying the platform, so that other metrics

can be easily studied, again without the need of deep modifications.

Evaluating, testing and abstracting conclusions from this project will pro-

vide a platform that fulfills all the main wishes of the motivation that could

be read previously.

CHAPTER 1. INTRODUCTION 6

1.4 Goals

The main goal of the project is to provide a peer-to-peer based platform that

can be configurable in a way where a structure and a metric to monitor can

be configured.

The platform must allow to change the configuration of the structure with

easiness, and a valid flux of information. With this, but not in the scope of

the project, analysis on different configurations could be done to see which

of them performs best in a given environment.

The core project goals are mostly the ones listed in the architecture sec-

tion below, the rest of the list presents either personal or collateral goals, or

requirements with special interests, which inevitably form part of the project

roadmap to reach the final objective.

• Overall consideration of the project

– Understand the problem

– Consider if there is related work or work in progress

– Evaluate possible approaches

– Evaluate the use of peer-to-peer

• Peer-to-Peer

– Deep understanding of the paradigm

– Choose a platform/framework

– Feel comfortable and with control over the chosen solution

CHAPTER 1. INTRODUCTION 7

– Obtain an implementation of the sought architecture with the

peer-to-peer tools

• Architecture

– Define an architecture given the approach of the project

– Implement the architecture

– Satisfy the restrictions of configuration (structure and metrics)

• Documentation of the project

– Brief description and basics of third party libraries/frameworks

– Full explanation of the implementation without going into minor

details

– Make note of every relevant consideration taken whether it stayed

in the final result or not

– Present a few examples with their corresponding analysis

Chapter 2

A glympse on distributed

systems

8

CHAPTER 2. A GLYMPSE ON DISTRIBUTED SYSTEMS 9

2.1 Description

Distributed systems have always been challenging to deal with not only be-

cause of the complexity of the application that has to be developed, but be-

cause of the underlying protocols and supporting implementations that get

everything running together. Most of those form a common set of problems

that are regularly found in any application with distributed characteristics.

This may not seem critical at first, since if the problems are common it’s

usual to think there are common solutions, unfortunately this is not always

the case. Most cases in distributed systems are different given the implemen-

tation, and will require a previous evaluation and specific implementation.

There are however, some guidelines, tips and generic algorithms to get

past those issues, and as it will be seen later on, there is even some interfaces

such as ZooKeeper that provide a few basic tools to ease the implementation

process (it’s not called Zoo by sheer coincidence).

In this chapter those properties are explained to give the reader an idea of

what is being dealt with, and why some decisions bring to such characteristic

implementations.

The listed properties are the ones that will be most relevant for this

project and here they will be just presented, later on this document detailed

information is available to see how each of them was dealt with.

CHAPTER 2. A GLYMPSE ON DISTRIBUTED SYSTEMS 10

2.2 Common properties and pitfalls in dis-

tributed systems

2.2.1 Messaging

The final goal of the application is to build a flux of information, so a mes-

saging solution will be needed for this. Data will also need to be transferred

among the nodes of this application for their own internal functioning.

The chosen method will require point to point data transferring, and

closed group propagation.

The system must be eventually reliable (messages must be delivered), and

considerably efficient (can’t just broadcast a message to every node in the

system and let the receivers decide if it is for them). For this reason, a full

fledged reliable multicast protocol is not required, because missed messages

are acceptable as long as it is a rare case that can be covered in future

messages.

2.2.2 Scalability

This is the main motivation of the project and one of the biggest sought

characteristics in distributed environments of considerable size and growth.

The architecture should allow a considerable growth in nodes and/or in-

formation transfers without punishing the performance of the system, neither

globally nor partially. A configuration that escalates ideally would perform

exactly the same be it with one single node or any higher number.

CHAPTER 2. A GLYMPSE ON DISTRIBUTED SYSTEMS 11

2.2.3 Single point of failure

A single point of failure, as the name suggests, is a certain part of a dis-

tributed environment that will disable the whole system in case of failure.

This is obviously a situation to avoid, no one wants to have hundreds

of nodes hanging from a single machine, especially in environments where

faults are most common. The system that is being developed seeks to have

no single point of failure, in fact the ideal setting would be one where every

node is independent from the others.

2.2.4 Fault tolerance and recovery

Distributed systems are usually formed by many physical nodes, this is some-

thing that makes it hard for administrators to manage the clusters in case of

failure, so avoiding those situations or adding automatic methods of recovery

towards a more autonomic configuration is a trend that is worth exploiting.

It is very difficult to have every possible situation of failure into consid-

eration when implementing a distributed system, mostly because of synchro-

nization issues and all the different threads trying to work together. But

many faults can be anticipated, and those should be dealt with, giving the

application secondary instructions in case something doesn’t go as expected.

It is not enough to provide a node with fixes just for himself, those should

also be able to notice if other relevant nodes in the system failed and they

have to take action to make up for it, as one whole system.

CHAPTER 2. A GLYMPSE ON DISTRIBUTED SYSTEMS 12

2.2.5 Discovery

Discovering resources or other nodes has been a requirement at least since

the beginning of the networks. A distributed system, which inevitably runs

on a network environment, will require of discovery methods.

On top of that, it is not enough that they are just on the physical layer,

but also on the application one. This is because the platform that is being

developed will be using logical nodes that organize in different structures,

and knowing the structure and being able to contact other nodes is a must.

Some services will be required for the nodes to offer or use, and those

must be available to the other nodes, or a subset of those. Dynamically

discovering services or finding them, has to be taken into account.

Related to discovery issues, a point of entry is necessary for the nodes

to decide where to start looking for information, or how to connect to the

other nodes. In a configuration where there is no assigned roles from the

beginning, choosing a point of entry that is not prone to fail, or that can be

dynamic is something that also has to be thought deeply.

2.2.6 Group Membership

One of the most common methods of organizing a bunch of nodes is dividing

them in groups. This simple thinking presents many problems, because the

node has to be conscious of the group it is in, and every member of the group

must be conscious of the other members in it. A group by itself is an abstract

thing, it is common in such environments that a group doesn’t really exist

unless there is at least one node in it with conscience of the group.

CHAPTER 2. A GLYMPSE ON DISTRIBUTED SYSTEMS 13

Relevant facts

• A node that attempts to join a group that doesn’t exist, will have to

create it

• Creating a group is not straightforward, a node must be absolutely sure

the group does not exist

• A node in a group must see every other node in the group, and only

every node in the group

• When a node joins a group, every member of this group has to be

conscious of the new member. In similarity, when a node leaves the

group, or crashes, consciousness from the others is also required

• One of the most common reasons for having groups is sharing group

specific information or services within this set, it is fundamental that

spreading information is possible and reliable

• In case the group becomes empty, future nodes interested on joining it

might be required to retrieve old information (in case the group doesn’t

delete all its traces)

2.2.7 Leader Election

This is the process that takes place in a system where from a set of equal

nodes one or a subgroup of nodes, will be acting as leader of the group,

offering a service or executing a task with guarantee that no others are doing

so.

CHAPTER 2. A GLYMPSE ON DISTRIBUTED SYSTEMS 14

Relevant facts

• There has to be a chosen node eventually

• Only a defined number of nodes (usually one) can be leader at any time.

This means, two nodes can’t decide to become leader at the same time

• Decisions are not taken individually

• Once a node dies, it can’t report his state to the others

• When selecting a new leader, it has to be guaranteed that the old leader

is no longer active

• Once a leader is chosen, all the nodes must be aware of the decision

2.2.8 Flexibility

Even though this is not a specific characteristic of distributed systems it is

important to have in mind. Building an application this complex would be

meaningless if it was aimed to one unique possible configuration, or if it was

only able to monitor a single resource.

The application should be built in a way where one can alter the configu-

ration of the architecture without need of understanding the whole structure,

ideally changes should be made only to the code sections where architecture

is defined.

A similar policy should be used to change the data that is being moni-

tored, making it easy to switch, for example, between network utility, disk,

memory. . .

CHAPTER 2. A GLYMPSE ON DISTRIBUTED SYSTEMS 15

There is always a limit to how much those configurable parts can be

abstracted from the core code, however it should be as much independent as

possible, or at least as controlled as possible, so that if changes are required,

another developer can figure out what part of the code needs to be modified.

Chapter 3

System architecture

16

CHAPTER 3. SYSTEM ARCHITECTURE 17

3.1 Introduction

This chapter explains the process of deciding how the final architecture of

the system was reached. Details on how it was implemented or how specific

functionalities were achieved can be found in further chapters.

It should be mentioned that many architectural decisions that appear in

this section were not a straight consequence of a previous analysis, but many

situations had to be designed in a way that could adapt to the tools that

were being used, as can be seen in the latter chapter of technical background

4.

This field was open for any solution, however the special interest in Peer-

to-Peer networks inevitably gave shape in the way of tackling the problem.

Peer-to-Peer architectures are centered in systems based in groups and ser-

vices, therefore the architecture design will be focused around those two

concepts.

The use of a P2P system provides the following:

• Group membership

• Direct and reliable communication (peer-to-peer)

• General unreliable message propagation

• Services

• Persistent network consistency in case of failure

• Inter-network communication

CHAPTER 3. SYSTEM ARCHITECTURE 18

The physical configuration of the hardware systems is also a very influ-

ential factor in the shaping of the system. Datacenters usually consist of

multiple clusters or containers, which host the physical nodes. This setup

gives an air of hierarchical group architectures already, being the groups the

containers and datacenters. However that doesn’t resolve the problem, those

groups are not controlled at all, and there is no standard whatsoever in the

distribution of the number of nodes per container, or the connections among

them.

3.2 First approach: Chain model

The first approach to the problem was a chain of connected nodes, much

like a discontinued ring. Even though this served as an extra training with

the third party tools such as JXTA, it was obvious that the setup was not

a good choice. The whole point of this decision was to have a very simple

configuration that resembled a known protocol and that would suppose a

working base with evolution capabilities as obstacles appeared.

Every node has to be connected to another one, the next node, as opposed

to the previous which connects to this one. The first node of the chain is

an especially chosen one that offers a service to the network, allowing single

nodes to seek a point of connection to join the chain.

The flux of information is pretty straightforward, every node just reports

his information (and if required, the gathered one from the nodes it has

behind in the chain), and passes it to his next partner.

The most obvious disadvantage of this build is the poor scalability it

CHAPTER 3. SYSTEM ARCHITECTURE 19

Figure 3.1: Chain mode example with four nodes

presents, with a single chain the time it would take for messages to propagate

through the whole queue would be too long. There is also the detail of

deciding who becomes the head of the chain, which is a strong requirement

since one and only one node must offer this service.

Node faults can easily be detected by noticing a disconnection in the

chain links (JXTA pipe disconnection). In case of failure though, one of the

drawbacks of this configuration presents: the broken side of the chain can’t

possibly know which node is the last in the healthy chain.

At this point it was decided to allow multiple chains, that is multiple

nodes offering the service that allowed others to discover them and join their

queue. With this two major inconveniences were overcome: the system was

more scalable since it allowed to limit the chain lengths, and nodes didn’t

need to find their previous chain anymore in case of failure, since the new

chain’s beginning could just start offering the service as a new independent

piece of the system. The head node then, would have a new task to manage,

ensuring the chain length wasn’t surpassed, which could be easily achieved

by issuing a message that walked the chain with an increasing counter on

every step until a limit was reached, ordering an immediate cut.

However, those solutions proved to spawn more issues. The fact that

chains could cut as they pleased (or failed) was a quite simple fix that killed

CHAPTER 3. SYSTEM ARCHITECTURE 20

Figure 3.2: Chain node failure and recovery accepting more than one chain

two birds with one stone, but having too many cuts could lead to an excessive

granularity, being the worst case scenario the situation where every piece in

the system was a head node with no other followers in the chain, a chain

merging system was required.

On top of that, with the existence of multiple chains the monitoring

report was split into as many pieces as chains, so again a merging method

was required for this purpose.

The original problem of selecting a starting head node could be easily

dodged by manually setting a stable system (doing the choice on bootstrap-

ping), however with having multiple chains this translates to the need of

having some sort of consensus system to decide when new chains are start-

ing. This isn’t a strong requirement, since nodes could join an existing chain

whatever its size it had, then get split immediately and start their own chain.

However this could result in the need of merging the newly created heads,

resulting in a repeating break and build situation. This situation would

eventually even itself out in a relatively stable system, but this much recon-

figuration is very prone to failure in distributed systems, so having some kind

CHAPTER 3. SYSTEM ARCHITECTURE 21

of coordination mechanism is a great recommendation.

With those new difficulties and foreseeing that, besides introducing more

parallel issues, new patches would require centralized solutions and hierar-

chical structures, it was decided to take a turn on the basic idea.

3.3 Selected architecture: Group model

Besides the latest setbacks of the chain model, having multiple queues started

to lose the purpose of having every node in control of a single structure. At

this point, even though it was attempted to keep the idea of having chains, it

started to became evident this was starting to shape into an architecture with

multiple groups where nodes weren’t hanging from so few points of support.

Instead of having a customized structure, this time the peer-to-peer ca-

pabilities will be exploited, having a group manage sets of nodes that report

to a single one. The leader of the group, which isn’t in charge of managing

the structure anymore, will act as information link among the other groups

by collecting the data the members of its group offer.

Figure 3.3: Basic configuration with two groups and data flow between them

CHAPTER 3. SYSTEM ARCHITECTURE 22

The issue of having multiple points of data collecting still stands, however

this will be fixed by creating a hierarchical tree structure for the data flow,

with information going from bottom to top, ensuring a convergence towards

a single point, the node that will issue the final report of the whole system.

With this, the leader election required for choosing chain heads disap-

pears, but a similar situation emerges where, since all the nodes in a group

are equal an in no order at all, there has to be a choice of who becomes the

group manager or leader.

Clearing it up, when nodes are started they will attempt to join the group

they have been given (most like a reference to their physical group status such

as a container). If the group is full the node will instance a new group at the

same level of the full one to extend its capacity under the size configuration

restraints. A leader for the group is decided, and every other node reports

information to the group, which will be collected by this chosen one.

The connection link between the gathering group and the receiver group

(from a lower level to its higher one) doesn’t involve communication between

two nodes, instead the link is in a group-leader fashion. To avoid redundancy

and massive changes in the tree in case of failure, each node will have presence

in a maximum (ignoring the bottom, or leaf, nodes) of two groups, those being

the lower group in which the node acts as an agent that gathers information,

and the upper group where the node acts as a regular slave that reports

information, which would be the one it collected in the lower group.

The collected information has to be converged to a single point of collec-

tion, to achieve this the leaders of the group will keep pushing the reports

up in the structure. Each group belongs to a level of the tree, and each level

CHAPTER 3. SYSTEM ARCHITECTURE 23

can have as many groups as required by the chosen group size constraint.

Therefore the tree will be built bottom-up, adding new levels to the tree

from the top as they are needed. The growth will happen with a promotion

system, where leaders (with the unique exception of the tree root node) and

new nodes (starting at the bottom) always attempt to join their higher level.

This will make the structure behave just as if nodes were bubbles in a pot

of water, where as soon as they have space in a higher position, they will be

promoted.

Figure 3.4: A configuration with multiple groups and levels seeing the links
between them

In case of critical failure (that would be one of the leader nodes), the

structure doesn’t break at all and a mere replacement for the reporting node

has to be found. This replacement will be chosen from the group of nodes

lacking the leader with a consensus algorithm.

The newly promoted node will join a group of the higher level of the tree,

which doesn’t necessarily have to be the same as the pervious one. This

doesn’t affect the architecture at all, since what is of most importance is

to satisfy the rules such as size and levels, which following this system will

always be in check.

CHAPTER 3. SYSTEM ARCHITECTURE 24

Figure 3.5: A new node joining the system and promoting upwards until
groups with leaders are found to establish a completely linked structure (the
promotion method is the same as when nodes fail)

Depending on the configurable number of nodes per group, the tree can

host a ridiculous amount of nodes with very few levels, or grow high with

a very small number of nodes per group. Any configuration will be valid

and this flexibility was exactly what the project was aiming for, to provide

a changeable architecture with options to monitor which is the best scenario

depending on the datacenter it is being deployed on; in some cases a higher

setup might be better, while in others a more wide configuration with less

leaders could work just fine.

A late addition to the architecture was a tracking system to analyze how

broken the tree was (in terms of balance and splitness). The nodes propagate

the structure information altogether with the monitoring data up to the tree,

and the root node is in charge of deciding if some changes should be done in

any part of the tree (this has to be done from the top level because a global

vision is required). If something has to be modified the root node issues a

message with orders that is propagated from top to bottom for the nodes

to read and take action. This restructuring protocol hasn’t been thoroughly

CHAPTER 3. SYSTEM ARCHITECTURE 25

tested and it is not a requirement of the project, in fact even if the tree is

unbalanced, or even if it could be more compact, these facts don’t affect the

performance or architecture model at all.

Chapter 4

Technical background

26

CHAPTER 4. TECHNICAL BACKGROUND 27

4.1 Introduction

This chapter focuses on the main third party tools that have not been built

in this project’s scenario but that have been used in it. The decision of using

external solutions comes from the motivation to go straight for the main

problem without needing secondary issues.

The explanation of the platforms goes deep enough so that it can serve

as a side documentation for future work on this project, or on similar ones.

Everything explained in this chapter is exclusive to these technologies, and

not heavily linked to what was developed in the project core, however all of

the information given here is related in some way to the parts that were used

on the main piece of work.

Those have been considered and added into the project as they were

required and analyzed, and by the end two of such services have been used

in the development: JXTA and Apache ZooKeeper.

JXTA was chosen due to the lack of alternatives to work in peer-to-peer

environments, conditioned with the fact that this framework had already

been used in a previous and similar smaller project without much success,

however it was thought that with a bit more research it would prove a great

tool to build a custom P2P network, the system offered all that was required

for the project goals and much more.

In the other hand, ZooKeeper was more of an spontaneous decision to

tackle a very specific problem. In this case alternatives were not considered,

putting trust on Apache’s reputation, and knowing this service was fully

capable of helping on this issue, previous recommendations and references

CHAPTER 4. TECHNICAL BACKGROUND 28

were known for this system as well.

4.2 JXTA

4.2.1 Overview

JXTA is an open source peer-to-peer (P2P) protocol specification begun by

Sun Microsystems based on Java technology.

Efficient communication between the nodes is a sure requirement in the

middleware of this project, and JXTA provides a specification that allows to

discover and establish connections, make service implementations and dis-

tribute information in a reasonable easy way.

On top of that, there will be a gain on benefits from the epidemic charac-

teristics of the P2P protocols regarding data management and decentraliza-

tion, which is a fact that directly reduces the impact of possible node failures

in the system.

In this chapter a general idea of how JXTA works will be given. JXTA is

vaster than the information that can be found in this document, and only the

concepts and elements that are most essential to this project will be detailed,

and if relevant enough, with further examples and comprehension.

4.2.2 Cache files and configuration

Since peer to peer networks don’t tend to change much, in order not to

rediscover everything a peer has found, each JXTA instance has its own cache

in form of a file directory in the system, allowing to recover every discovered

CHAPTER 4. TECHNICAL BACKGROUND 29

advertisement in event of shutdown or reallocation. It is important not to

mistake the cache nomenclature JXTA is using here, for this is not a cache

to improve the system’s performance or responsiveness, but the whole data

JXTA uses to work (every structure, advertisement, etc.).

Two things have to be taken into consideration when implementing ap-

plications in JXTA:

• It is a good idea to manually set the location of the cache directory, not

only this will offer greater control over the application, but also avoid

conflict in a situation where multiple JXTA instances are started from

the same machine (locations should obviously differ).

• Disk space has to be considered depending on the network structure,

size, and node’s role in it (rendezvous nodes tend to use a much larger

cache size).

1 String localPath = "." + System.getProperty("file.separator

") + "cacheFolder");

2 File configFile = new File(localPath);

3 NetworkManager netManager = new NetworkManager(

NetworkManager.ConfigMode.EDGE ,

4 "PeerName", configFile.toURI ());

Due to network discovery building up slowly (the peer sees the extension

of the mesh progressively), it can take a long time for a peer to see enough

of the network to have a complete enough vision, that is another advantage

of the JXTA cache. Restarting the node after it was taken down, will allow

the peer to be in the same status as when it crashed in terms of network

CHAPTER 4. TECHNICAL BACKGROUND 30

visibility. This of course comes with obsolescence issues, but that is usually

not troublesome considering the nature of peer to peer networks, where obso-

lete information is a regular that has to be checked and purged when further

testing or direct connections are attempted.

For convenience and to make sure no traces of other networks are interfer-

ing with the system, in the scope of this project the JXTA cache will always

be wiped when starting the node, this way a clean start will be guaranteed.

JXTA multicasts by default, and this feature will be turned off. Even

though in production conditions it is better to enable it, a multicast friendly

environment can’t always be guaranteed, so for this project the worse case

scenario of a network will be assumed. With multicast off every message can

still reach its destination as long as there is a stable and correct network

configuration (seeds, rendezvous, relays. . .).

4.2.3 Basic concepts

JXTA is a complicated set of pieces that can be difficult to understand, but

all of those move around the basic concept of the Peer. In this section Peers

and PeerGroups are explained in detail so that when reading the following

ones an easier understandment should be apparent.

Peer

A peer in JXTA is usually the representation of any networked device (phone,

server, PDA, etc.) in a PeerGroup. Multiple peers can be started from the

same JXTA instance, however the most common is to have a single peer for

CHAPTER 4. TECHNICAL BACKGROUND 31

each client.

It is important to understand that a Peer is a representation of an in-

dividual in a PeerGroup, which means, one individual can have as many

representations as PeerGroups it wishes to join and each of those doesn’t

necessarily has the same characteristics, which means one individual can

have multiple roles in the different groups it is part of.

The following code shows how the base Peer of a JXTA instance is started,

this Peer is joining the general NetPeerGroup by default when starting it after

setting the desired configuration parameters.

1 netManager = new NetworkManager(NetworkManager.ConfigMode.

EDGE ,name);

2 netConfigurator = netManager.getConfigurator (); // With the

Configurator

3 instance the peer can be customized before starting it

4 netPeerGroup = netManager.startNetwork ();

PeerGroup

A PeerGroup is a network resource which peers can discover and join in order

to organize themselves, or share common interests such as services. The

main characteristic of PeerGroups is that they are a representation of a set

of services (in the next section the distinction between Peer and PeerGroup

services is explained), therefore if a Peer outside of the group is interested in

a service offered by certain group, this peer can access the service from any

peer in this group.

There are two fundamental PeerGroups in any network that have unique

CHAPTER 4. TECHNICAL BACKGROUND 32

IDs known by all applications implementing JXTA

• WorldPeerGroup: It’s the first group that initiates during the boot-

strapping process and it isn’t meant to perform P2P networking. In-

stead it serves as a configuration template of basic services, that allows

instances of NetPeerGroups to be initiated; this group serves as the

root of the system.

• NetPeerGroup: Child, and usually a copy, of the WorldPeerGroup. It

is the starting point of the network peers and the lowest layer where

custom networking should start. This is also the peergroup where any

specific network configuration can be set for the first time.

In this system, PeerGroups will be used just for organization purposes

since there’s no service that can benefit from a whole PeerGroup perspective.

PeerGroup management has two approaches; the first is a very formal

method with strict joining policies and credential requirements, implemented

by using the Membership Service. Peers interested in joining the group must

discover it, apply to the group, and finally join with the credentials provided

in the application process. Finally, if a member wishes to, it can resign the

group membership.

1 StructuredDocument creds = null;

2 // Generate the credentials for the Peer Group

3 AuthenticationCredential authCred =new

AuthenticationCredential(grp , null , creds);

4

5 // Get the MembershipService from the peer group

6 MembershipService membership = grp.getMembershipService ();

CHAPTER 4. TECHNICAL BACKGROUND 33

7

8 // Get the Authenticator from the Authentication creds

9 Authenticator auth = membership.apply(authCred);

10

11 // Check if everything is okay to join the group

12 if (auth.isReadyForJoin ()){

13 Credential myCred = membership.join(auth);

14 System.out.println("Successfully joined group " + grp.

getPeerGroupName ());

15 }

However, the membership protocol is bound to careful configuration and

adds an extra layer of complexity to the application, which doesn’t require

such member control functionalities. For those reasons, the basic peergroup

membership option has been chosen.

To achieve this simple membership protocol the PeerGroup’s newGroup()

method will be extensively used, for this method creates a new instance of the

desired peergroup given the peergroup advertisement, or either the details of

the group.

1 PeerGroup newGroup = netPeerGroup.newGroup(null , implAdv ,

groupName , groupDesc);

To join an already existing group the same method can be used, ignoring

the fact of the method name being misleading. To ensure the same group

is joined (giving details wouldn’t work, since multiple groups can have the

same name but different PeerGroupID’s), the peergroup advertisement will

be rebuilt by using the existing PeerGroupID, and using it altogether with

the newGroup() method to get the instance of the group.

CHAPTER 4. TECHNICAL BACKGROUND 34

1 PeerGroup joinedGroup =

2 netPeerGroup.newGroup(PeerGroupID.create(URI.create(groupId

)));

4.2.4 Protocols and services

Services are the basics of JXTA to get the protocols working. Altogether

with Advertisements which could be seen as the bricks of the JXTA network,

services act like the blueprints that use those bricks to make the network

stick together. In practice, services are the knowledge each Peer owns, uses

or offers to other peers to constitute the whole JXTA network.

The JXTA core is based on a set of services in charge of making the net-

work run. Every Peer owns or implements those services innately, and those

are: the Access Service, Discovery Service, Endpoint Service, Membership

Service, Peer Info Service, Pipe Service, Rendezvous Service and Resolver

Service.

Most of these service functions are self-explanatory by looking at their

name, and have available interfaces for the programmer to check network

parameters. For example, the Discovery Service is the one in charge of finding

and scanning advertisements through the network, which will be used to

publish and discover different advertisements as the application finds fit.

Multiple options are in hands of the developer, such as choosing expiry time

or propagation methods, filtering, etc.

Clients in a peer to peer network exploit their discovery capabilities to

find the information they seek, and once they locate an available endpoint,

CHAPTER 4. TECHNICAL BACKGROUND 35

they establish a direct connection to it. In JXTA this direct connection can

be made thanks to the Pipe Service, peers can create pipes and publish their

advertisements to allow other peers to connect to this pipe. In fact, most

services use pipes implicitly by having their pipe advertisements embedded

into the service ones.

Services can either be group-wise or at peer level; Group services are

available to any Peer that joins this group, and they will be able to retrieve

the service and use it at their will. Due to the peer to peer nature, group

services are very common given that P2P networks can grow very large in

size and it would be impossible for every peer to know everything in the

network, so those will only be acquired when needed

In a controlled network such as the one described in this project where,

as will be seen, every peer is equal, group services will not be required, so any

service implemented will be a Peer Service, and every peer will bootstrap with

all the services of the mesh. Even though Peer services will be being used,

the system will resemble one where every peer is sharing the same services,

so if all the peers were to be seen as if they were in the same peergroup, it

could be said that the services are peergroup-based.

To implement a service the class will have to inherit the JXTA Service

implementation. The developer will be in charge to make sure the following

structures are built for the service:

• Module Class Advertisement: Used for advertising the existence

of a JXTA module, it links an unique module ID to the service.

• Module Specification Advertisement: Serves as a reference to the

CHAPTER 4. TECHNICAL BACKGROUND 36

module specification. It also allows to create remote communications,

by transporting pipe advertisements, proxy modules or authentication

modules.

• Module Implementation Advertisement: This advertisement con-

tains the implementation of the service, its provider, location, etc. It

identifies and gives information about different implementations of the

same service. This is the document that allows peers to learn services

from peergroups that were unknown to them beforehand.

• Pipe Advertisement: In case the service wants to use direct commu-

nication, the most common way to do so is with pipes. This advertise-

ment can be embeeded into the Module Specification Advertisement of

the service for a more standard and accessible discovery. If the service

is expecting communications with a pipe, it will require to implement

the Java Runnable interface, forcing the implementation of methods

such as init, startApp, stopApp and run. This is to allow the service

to listen to incoming pipe connections in a separate thread, so every

pipe management code such as initialization and opening of the pipe

should be done in those methods. Doing so will unavoidably require

the implementation of a pipe listener class to process the incoming

messages.

4.2.5 Connection management

Each peer can be started with (or mutate to) a specific network role among

three possible ones

CHAPTER 4. TECHNICAL BACKGROUND 37

• Edge: Regular peers with no specific network infrastructure capabili-

ties.

• Rendezvous: Edge peers that implement and offer the rendezvous ser-

vice to their PeerGroup. Those peers are responsible of bridging JXTA

resources that aren’t directly connected (as would be the case, usually,

in a LAN network). They keep a map of all connected peers in a group

in order to help forwarding messages among it.

• Relay: Edge peers with the purpose of helping other peers, hidden by

some network features (such as firewalls or TCP/IP limitations), to

overcome those boundaries.

Both the rendezvours and relay roles are achievable by a single peer at

the same time. There are two more unmentioned roles here which won’t offer

any advantage do this project, those being AdHoc and Proxy peers.

Rendezvous discovery, be it either among rendezvous peers or edge peers

trying to locate rendezvous ones, becomes really slow if no hints are given,

and in some cases even impossible (LAN networks with restrictions, no broad-

casting, or Internet). Seeds, which are actually common IP addresses, will

have to be given to the peers so that they can find other remote peers easily.

Once a rendezvous has been reached, the peer will automatically (according

to the configured time of information propagation) see everything the ren-

dezvous is already gathering (as long as his group memberships allow him to

do so), acting as a common link between peers.

1 // Give the peer a set of rendezvous seeds

CHAPTER 4. TECHNICAL BACKGROUND 38

2 netConfigurator.addSeedRendezvous(new URI(

rendezvousSeedsList));

3

4 // This call blocks and returns true if a connection to a

rendezvous was

5 successfully established

6 netManager.waitForRendezvousConnection(timeout);

There is no specific ratio of edge-rendezvous peers given for a network,

so this configuration has to be carefully studied [1]. However, it is recom-

mended to have two layers of rendezvous in the JXTA structure, one with

the rendezvous that will communicate different edge peers, and another one

to communicate rendezvous with rendezvous. This way, potential overload

on the rendezvous will be less likely.

JXTA offers a method from the RendezVous Service that allows a Peer

to consider its role in a PeerGroup given the performance and discovery

behaviours of the network. Since a perfect peer to peer network topology

is not within the purposes of this project, it has been decided to leave the

RendezVous management up to JXTA by turning this feature for every Peer

in the system, this way a guarantee of communication will be achieved even

though it might not be the best choice in terms of efficiency. The line of code

below sets this automatic behaviour on.

1 peerGroup.getRendezVousService ().setAutoStart(true);

CHAPTER 4. TECHNICAL BACKGROUND 39

4.2.6 Communication and data structure

There are different means to communicate within the network, the most basic

one being the advertisement propagation system, and though this is very

convenient for discovery, scalability, mass publication, etc., it’s not the best

way to establish peer to peer communications. There are specific methods for

doing so, which involve using the JXTA implemented pipes (unidirectional

or bidirectional), or framework sockets. Establishing those communications

is achieved by network discovery, but once a peer has discovered any of those,

it can start a direct and private communication protocol.

Advertisements

JXTA protocols make use of XML formatted documents (messages) to pro-

vide information to the network. Those elements are called Advertisements,

and besides identifying different resources of the network structure, they

compose the core of the JXTA messaging system.

Most of those advertisements (especially the network control related ones)

are automatically propagated by the default services offered by the network.

Otherwise publish methods can be used to explicitly propagate them. Addi-

tionally, control over the advertisements expiry time is fully customizable by

the developer.

There are different kinds of advertisements, some of them being the fol-

lowing.

• Peer Advertisement: Identifies a peer in the network.

• PeerGroup Advertisement: Identifies a peer group in the network.

CHAPTER 4. TECHNICAL BACKGROUND 40

• PipeAdvertisement: Contains information regarding a communication

pipe.

• Service Advertisements: There are different kinds of service advertise-

ments (Module, Implementation, Specification. . .) and they are used

to implement the different services in the network, provide connection

information for those, etc.

• Custom Advertisements: JXTA offers the developer a means to create

his own advertisements with custom fields of information, data types,

etc.

Implementation of a custom advertisement Own advertisements with

custom fields can be created by using the Interfaces JXTA provides, and

those can be used as a custom method for exchanging information within the

network. Since the creation of a new custom advertisement is generic for any

case, it is detailed as follows:

1. Define the desired fields by declaring the field containing attribute and

the tag that identifies it.

2. Decide which fields are indexable, this will allow for the Discovery

Services to search by these specific tags.

3. Implement constructors, getters and setters, clone.

4. Fill the processing function (custom attributes are managed with tags,

this is the function that acts as a link between tag and content).

CHAPTER 4. TECHNICAL BACKGROUND 41

5. Complete the document generating method in charge of parsing the

object into an XML format.

The new advertisement class has to be known to the network, therefore

it has to be registered at some point before the JXTA bootstrapping, this is

achieved with the following line of code:

1 AdvertisementFactory.registerAdvertisementInstance(

MyCustomAdvertisement.getAdvertisementType (),

2 new MyCustomAdvertisement.Instantiator ());

Advertisement publishing and discovery As stated before most ad-

vertisements required for the network basics to work are automatically prop-

agated, but application specific advertisements (such as custom ones) are

ignored by the network services, those must be published manually.

Each peer’s cache of advertisements can be seen as the local area of in-

formation, while data from other peers compounds the remote information

source. At least one remote operation is required for custom created adver-

tisements to become widely accessible in the network.

When publishing an advertisement this is done in the bounds of a certain

PeerGroup, as can be seen below, since to publish an advertisement a Discov-

ery Service is required, and each PeerGroup has its own Discovery Service.

Having this in mind, one has to be mindful when publishing and fetching

advertisements, because looking at the wrong group will return no results,

or the wrong ones.

1 // Local publish , requires remote discovery by other peers

2 peerGroup.getDiscoveryService ().publish(advertisement);

CHAPTER 4. TECHNICAL BACKGROUND 42

3

4 // Remote publishing , attempts to publish on all configured

transports

5 peerGroup.getDiscoveryService ().remotePublish(advertisement

);

Locally publishing an advertisement will result in the advertisement be-

ing stored in the local cache, and it will require peers interested in it to

forcefully discover remote advertisements by using the getRemoteAdvertise-

ments() method.

1 // Local publish , requires remote discovery by other peers

2 peerGroup.getDiscoveryService ().publish(advertisement);

Publishing an advertisement remotely propagates it to the peers that

somehow are in contact with the publishing one for the given expiration

time. Remotely published advertisements are not stored in the local cache,

and may create many undesired connections depending on how it is used.

1 // Remote publish

2 peerGroup.getDiscoveryService ().remotePublish(modSpecAdv);

To see or retrieve advertisements published by other peers, those must be

read from the local cache. If looking for specific or recently updated adver-

tisements, a call to getRemoteAdvertisements() can be made to attempt to

fetch advertisements in other peers’ caches to the cache of the requesting peer,

by doing so the network will start being remotely scanned. Considering the

topology of the network and the characteristics of a peer to peer paradigm,

this is a best efforts search that attempts to reach for the matching adver-

tisements without any guarantee or prediction over the result, that’s why,

CHAPTER 4. TECHNICAL BACKGROUND 43

if consistent information is expected, the topology must be completely con-

trolled by the implementation, for example by assuring that all the wanted

destinations are reachable by common RendezVous nodes.

Different filters can be applied to ease the search and performance by us-

ing regular expressions, advertisement types or the number of advertisements

to scan for.

Making a request of 0 advertisements of PEER type advertisements is a

special combination which will make every peer that receives the request to

only send back their own Peer Advertisement.

1 // The parameters define filters as can be read from the

reference.

2 peerGroup.getDiscoveryService ().getRemoteAdvertisements(

null , advType , null ,

3 null , 100);

Obviously this call can’t deliver an instant result, so certain time must

be allowed from the time it is issued until the local retrieval of advertise-

ments. To look for advertisements up in the local cache the getLocalAdver-

tisements() method can be used, with parameters similar to the ones used in

the remote fetch, it will return a list with the matching query results.

1 // Getting advertisements locally

2 Enumeration <Advertisement > enu =

3 peerGroup.getDiscoveryService ().getLocalAdvertisements(

advType , null , null);

When publishing an advertisement there are two configurable parameters

that can both determine how up to date one can expect a snapshot of the

CHAPTER 4. TECHNICAL BACKGROUND 44

network is, and have a heavy impact on the system’s performance.

Those are lifetime which determines how long an advertisement will ex-

ist, and expiration which indicates the time an advertisement is allowed

to be cached locally by other peers. Up until now the methods without

those parameters were shown, where the default JXTA lifetime and expira-

tion values are used, however those can be set manually when publishing an

advertisement as seen below.

1 netPeerGroup.getDiscoveryService ().publish(advertisement ,

lifetime , expiration);

Pipes

Pipes in JXTA are used to exchange messages between peers. Those can be

exchanged between two peers in a point-to-point fashion, or from one to a

set of peers, which would be a propagate pipe. Options to use secure unicast

pipes are also available.

JXTA’s PipeService will be the tool to use pipes. A pipe is represented

with a PipeAdvertisement, which contains the required information to estab-

lish a connection, any peer interested in communicating with another peer

by a pipe, will require the discovery of this advertisement beforehand.

To create a pipe, the first step is to create an advertisement as shown

below.

1 PipeAdvertisement pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(PipeAdvertisement.

getAdvertisementType ());

CHAPTER 4. TECHNICAL BACKGROUND 45

2 PipeID pipeID = IDFactory.newPipeID(PeerGroupID.

defaultNetPeerGroupID , name);

3 pipeAdv.setPipeID(pipeID);

4 pipeAdv.setType(PipeService.UnicastType);

5 pipeAdv.setName(name);

6 pipeAdv.setDescription("Created by " + name);

Once the advertisement is done, the pipe may be created or instanti-

ated (when using unidirectional pipes, when creating a pipe one must choose

between an input or an output pipe.

1 PipeService pipeSvc = defaultGroup.getPipeService ();

2 MyPipeListener aPipeListener = new MyPipeListener ();

3 InputPipe inPipe = pipeSvc.createInputPipe(pipeAdv ,

aPipeListener);

4

5 // Publish the newly created pipe

6 defaultGroup.getDiscoveryService ().publish(inPipe.

getAdvertisement ());

When calling the creator method a listener object has to be set besides

giving a PipeAdvertisement, this will allow the gathering of messages. In the

previous example the custom class MyPipeListener was used to receive mes-

sages in the listening method PipeMsgEvent, which should look something

like the following code.

1 public class MyPipeListener implements PipeMsgListener {

2 public void pipeMsgEvent(PipeMsgEvent pme) {

3 // Received a message , process it

4 }

5 }

CHAPTER 4. TECHNICAL BACKGROUND 46

Pipe messages are XML documents as expected, though JXTA provides

a friendlier interface to manage them, based on messages, message elements,

and workspaces.

To send a message a similar procedure is followed:

1 Message msg = new Message ();

2 OutputPipe outPipe =

3 peerGroup.getPipeService ().createOutputPipe(pipeAdv ,timeout

);

4 outPipe.send(msg);

5

6 // Pipe must be closed AFTER the message is retrieved at

the other end

7 outPipe.close();

If bidirectional pipes are to be used, the connection implementation varies

a little, however message retrieval and processing stay the same.

1 PipeMsgListener myListener = new BPOutput ();

2 JxtaBiDiPipe MyBiDiPipe = new JxtaBiDiPipe(NetPeerGroup ,

3 BPListener.GetPipeAdvertisement (), timeout , myListener);

4

5 // Check if the connection is successful

6 if (MyBiDiPipe.isBound ()) {

7 // Sending a message

8 Message MyMessage = new Message ();

9 MyBiDiPipe.sendMessage(MyMessage);

10

11 // Closing the bidipipe

12 MyBiDiPipe.close ();

CHAPTER 4. TECHNICAL BACKGROUND 47

13 }

4.3 Apache ZooKeeper

4.3.1 Overview

Apache ZooKeeper is an simple and open source solution to the top of the

most common requirements in distributed systems, such as configuration

management, synchronization, group management, naming, presence, con-

sensus. . .

Isolating those issues from the programmer, ZooKeeper provides a very

simple and reduced interface which allows the developer to focus on his own

implementations ignoring the development of these support protocols which

are usually required on most applications running on a distributed system.

A general overview of how Apache ZooKeeper works is covered in this

chapter, followed by a justification of why was ZooKeeper chosen and the

implementation that was used in this project.

4.3.2 Infrastructure and configuration

Even though Apache ZooKeeper is aimed towards the development of dis-

tributed systems, ZooKeeper itself is intended to run on a distributed en-

vironment where every server machine is connected to each other. This is

to allow the system to be replicated, not only giving the service more re-

silience, thus as long as the majority of the servers are available it will work

consistently, but also boosting its read capabilities.

CHAPTER 4. TECHNICAL BACKGROUND 48

Every time a write is issued the operation doesn’t finish until at least

half plus one of the nodes have successfully updated it, this ensures the

recovery constraint regarding reliability. This makes the write operations

about ten times more time consuming than read operations, which not only

can’t produce inconsistencies in the data, but also benefit from the data being

available in more than one node allowing for load balancing improvements.

ZooKeeper works in a complex synchronization environment, therefore

optimal network performance is required. It is highly recommended to have

all the nodes in the same fast network bounds or cluster, but at the same

time with the sufficient independence in case of hardware faults, to avoid

scenarios such as switch failure taking the whole ensemble down. For similar

reasons it is obvious that the service should run in dedicated machines to

maximize performance.

For the project executions a standalone ZooKeeper server has been used

since there is no difference between using one or more servers other than

performance. Even so an ensemble with more than one node (up to 4) has

been tested successfully, the configuration for a system with multiple nodes

is done as follows:

• The file /conf/zoo.cfg in the ZooKeeper root directory has to be

completed as shown below, and shared (copied) for every node in the

ensemble, therefore any change in the quorum will require an update

of this file for every node in the system (remember every node has to

connect to each other).

1 tickTime =2000

2 dataDir =/var/lib/zookeeper

CHAPTER 4. TECHNICAL BACKGROUND 49

3 clientPort =2181

4 initLimit =5

5 syncLimit =2

6 server .1= zoo1 :2888:3888

7 server .2= zoo2 :2888:3888

8 server .3= zoo3 :2888:3888

– initLimit: Timeout value for the nodes to connect to the ZooKeeper

leader at bootstrapping

– syncLimit: The allowed time gap between ZooKeeper nodes,

failing to satisfy this restriction will reset the node

– ticktime: This is the unit of time that will be used by the other

settings of this file (in this case one tick equals 2000 milliseconds)

– List of hosts: The end of the document is a list of addresses

and ports of all the nodes that compose the ZooKeeper ensemble

(including the address of the executing node, since this list is

common for all of them). The first port is used for connection

management between the leader and the slaves, the second port

is used during a phase of Leader Election as a free and parallel

connection.

• In past versions of ZooKeeper, each server in the ensemble had a unique

identifier that fell between 1 and 255 and had to be manually set in a

special file of the chosen dataDir. This is being mentioned because with

the latest versions of ZooKeeper since this project was started, this is

CHAPTER 4. TECHNICAL BACKGROUND 50

automatically managed, leaving the first step as the only configuration

requirement for the ensemble.

4.3.3 Data model

ZooKeeper manages the data in a hierarchical tree composed by znodes.

Since this service is supposed to be a coordination solution rather than stor-

age means, the data nodes have is of reduced characteristics, and limited to

1 MB.

This is a common list of the information a znode stores: the first row is

data (which is untagged), control information, version of the data. . .

1 urn:jxta:uuid -333 FAB17B6CF48288A34ABC3F75D7BEC02

2 cZxid = 0x7da

3 ctime = Wed Jul 18 16:59:17 CEST 2012

4 mZxid = 0x7da

5 mtime = Wed Jul 18 16:59:17 CEST 2012

6 pZxid = 0x7e1

7 cversion = 2

8 dataVersion = 0

9 aclVersion = 0

10 ephemeralOwner = 0x0

11 dataLength = 48

12 numChildren = 0

Every access to the data, be either read or write, will be processed atom-

ically. Reads will return either everything or nothing, and writes will either

succeed or fail. On top of that, this applies to the whole ensemble as an

individual system.

CHAPTER 4. TECHNICAL BACKGROUND 51

Znodes are referenced by paths which have an Unix-like structure (sepa-

rated by slashes), they are unique, and also canonical (two different routes

can’t bring to the same znode), so resolution algorithms are not required.

Every path begins at /, which is the root znode.

ZooKeeper provides a very basic, strict and sturdy structure, so gimmicks

such as automatic reconfigurations are not provided (for example, rearranging

a node’s children after the parent’s deletion). Any operation that requires

secondary actions must be either checked or arranged in advance.

Znode types

Znodes can be either persistent or ephemeral, and once set this characteristic

is absolute. Ephemeral znodes are continuously linked to the physical client

with a heartbeat that will destroy the node in case the keep-alive is cut,

whilst persistent znodes will remain on the system unless an explicit delete

is issued. There is one restriction for ephemeral nodes, they can’t have any

children.

Ephemeral nodes are particularly useful when dealing with applications

that require a certain level of availability awareness, we will see later on how

this helped to deal with the Leader Election requirements of the project.

Znodes can be created with a sequence flag, which will create the nodes

with an appended numerical identifier, for which ZooKeeper guarantees unique-

ness and sequentiality. Altogether with the ephemeral znodes functionality,

This is another fundamental piece that will allow the implementation of

Leader Election solutions.

CHAPTER 4. TECHNICAL BACKGROUND 52

4.3.4 Interface and primitives

Operations

ZooKeeper provides nine basic, well-aimed and extremely simple operations

with which the developer can create a wide number of applications towards

distributed environments. Those come in different methods allowing for syn-

chronous or asynchronous calls feedback, watch setting, optional data setting,

version checking, etc.

• create: Creates a znode (if parent exists)

• delete: Deletes a znode (if no children)

• exists: Tests the existence of a znode, metadata is returned

• getACL and setACL: Gets/Sets the ACL of a znode

• getChildren: Returns the list of children the znode owns

• getData and setData: Gets/Sets the data associated with a znode

(max. 1 MB)

• sync: Synchronizes a client’s view of a znode with ZooKeeper

Watches

Watches are a notification method by means of subscription that allows zn-

odes to be alerted when certain operations take place on the watched node.

Those can be set at any time and will trigger just once, so reregistering

the watch is required if continuous feedback is required. Full configuration

CHAPTER 4. TECHNICAL BACKGROUND 53

is available, allowing the client to register for specific nodes and operations,

they can even be set when performing another unrelated operation by pig-

gybacking the watch order on the primitive.

Versioning

Every time a node is updated its version is increased by one. ZooKeeper’s

set of operations always comes with a version parameter, which is checked

against the znode the primitive is executed on, if the numbers differ the op-

eration will fail (requiring to get a new version and retrying). This behaviour

can be overridden by putting a version number of -1.

ACLs

Every znode has an Access Control List (ACL) which determines who can

perform operations on it. Those can be extensively configured allowing major

access control settings.

Access can be denied or allowed by user/password authentication, by host

or by IP address.

4.3.5 Command line client

ZooKeeper comes with a handy console based client which provide the nine

operations in a manner that resembles a Unix environment file system.

To run the client the following command must be executed from the

ZooKeeper root directory:

1 bin/zkCli.sh -server server_ip_address:server_port

CHAPTER 4. TECHNICAL BACKGROUND 54

This tool has been extensively used during the development on the project

for testing, live modifications and validation of the system; just with the ls

(list) command one can have a wide vision of the status of the system.

4.3.6 Implementation

Even though ZooKeeper was added into the project as a medium to solve

just Leader Election cases, as the development progressed it was seen that it

could be used for a few more issues that would have been too troublesome,

if possible at all, with JXTA alone.

Not only that, but as the project advanced and it became more clear that

even though ZooKeeper is simple and small, it offers a very powerful basis for

growing as much as the developer wishes. So after evaluating the system and

reviewing the implementation and concept, a conclusion was reached where a

system without JXTA and a more extensive of ZooKeeper could possibly be

a way more elegant and robust solution (as seen in the final thoughts 8.2.3).

To completely abstract ZooKeeper from the project functions, a class was

created which acted as bridge between the ZooKeeper interface and the logic

of the developed system, this being ZkConnection.java.

Having in mind that the implementation would use ZooKeeper mostly

for group management, the ZooKeeper primitives were wrapped in methods

that in the end would do the same action but in a more understandable and

customizable way. A very simple example of this is the function that makes

a node leave a group, which would translate to ZooKeeper as deleting the

path that represents this node.

CHAPTER 4. TECHNICAL BACKGROUND 55

1 public void leave(String nodePath) throws

InterruptedException , KeeperException {

2 zk.delete(nodePath , -1);

3 }

Below is a list of the methods this class implements divided in groups

according to their biggest role.

Connection

Connecting to ZooKeeper is usually straightforward, but an improvement

has been made for better consistency. When creating the instance in con-

nect() via the ZooKeeper constructor, the object is returned immediately,

but connection and bootstrapping processes have already been started in

another thread. Starting to launch operations with this newly created in-

stance will fail until the connection has been completely finished, which is

not guaranteed after the object creation.

To do so, a watch is set on the object instancing instant, and it won’t

be until the watch feedback is received by the process() callback function

that the connection won’t be considered as established. Once the event

SyncConnected is received other operations will be allowed on the new object.

• void connect(String hosts)

• void process(WatchedEvent event)

• void close()

CHAPTER 4. TECHNICAL BACKGROUND 56

Group operations

Most the operations here are self-explanatory by their given name, however

some further details are worth mentioning.

Since this project doesn’t require access control this feature won’t be

used, so all znodes will be created with the default setting, that allows full

and public access (chosen by the ZooKeeper flag OPEN ACL UNSAFE).

Every znode that represents a client node will be ephemeral and sequential

for the Leader Election algorithm to work, that makes the ZooKeeper create()

operation in the join() method to have the flag EPHEMERAL SEQUENTIAL.

On the other hand, since groups of nodes are perpetual and not directly

related to any node liveness status, those will be created with the PERSIS-

TENT flag in the createGroup() function.

Znode versioning is not crucial in this project because there is few up-

dates, and they’re always guaranteed to be made by an unique client. Ephemeral

nodes don’t even take part into a versioning environment. Given those two

facts, every update will be forced with a version of -1.

Most exceptions are propagated with throws rather than dealt with, since

functions can be used in different situations and different actions might be

required to take in case of failure.

Watches via piggyback won’t be used at all because it is not convenient

for this implementation. There is a specific function, watchExistence() to

put a watch on a specific node.

• String join(String groupName, String memberName)

• void leave(String nodePath)

CHAPTER 4. TECHNICAL BACKGROUND 57

• boolean groupExists(String groupName)

• void createGroup(String groupName, byte[] data)

• void deleteGroup(String groupName)

• byte[] getData(String groupName)

• void setData(String groupName, byte[] data)

• List¡String¿ getChildren(String groupName)

• void watchExistence(String nodePath, Watcher watcher)

• int getNumberOfNodesInGroup(String groupName)

Group management

When it was decided to split groups into multiple instances of the same group,

a counter became necessary. There is other ways for this to be done, such as

iterating the whole group instances to see which one has the largest index,

however for convenience it was decided the index would be stored in a counter

for each group, in a separate ZooKeeper directory which is /indexGenerators.

Those can be read or requested (and internally increased) by the methods

listed below.

The only occurrence of a version sensible operation is found in getNewIndex-

ForGroupTag(). It could be that two nodes read the same data version at the

same time thus producing inconsistences, this is why this function has two

steps. The first phase is to get the requested index value, keeping the version

of this one, the second is to increase the value by one using the version that

CHAPTER 4. TECHNICAL BACKGROUND 58

was just retrieved. If the update fails, the retrieved index is discarded and

both steps are repeated.

• int readBiggestIndexForGroupTag(String groupTag)

• int getNewIndexForGroupTag(String groupTag)

Chapter 5

Putting it together

59

CHAPTER 5. PUTTING IT TOGETHER 60

5.1 Introduction

This chapter explains how the technical tools and available capabilities were

used to achieve the defined and final architecture, it basically links the system

architecture 3 and the technical background 4 chapters.

Two big support systems were used to complement this project, JXTA

and Apache ZooKeeper. JXTA was planned in the project from the very

start, however ZooKeeper, the Apache’s solution to coordinating distributed

systems, was started to be considered as an asset of the work by the time

leader election situations started to appear, in the stages of the chain struc-

tures.

As will be seen in this chapter, ZooKeeper was meant to be used for the

sole purpose of reaching consensus for leader election issues, but ended up

taking place in other aspects of the implementation that couldn’t be covered

with alternatives, unwittingly ZooKeeper proved to be the most useful addi-

tion to the project as it advanced. In fact, as can be seen in the conclusions

8 of the project, a whole similar system could probably be developed with

a much stronger focus on ZooKeeper, without a P2P environment covered

with simpler alternatives.

As a reminder, the structure to build is one consisting of a tree hierarchy

where groups of nodes are placed in the different levels of the tree. Each

group will have a dedicated node that will also have presence in the superior

level, allowing the flux of information upwards. Nodes always enter the

system from the bottom levels, and get promoted up as required (be it due

to crashes or space limitations).

CHAPTER 5. PUTTING IT TOGETHER 61

Considering that the main project goal is to have a platform that allows

to have different configurations for the structure, it has been made so that

it is very easy to change the nodes each group allows to host. Besides that,

changing any other parameters that are common for any configuration but

that can affect performance in other ways can also be easily changed with

isolated code definitions.

Over this chapter there will be some graphics showing the sequence the

system follows in specific situations. Those will follow the legend shown

below, where each color shows an interaction with the different two major

systems, or both at once. Grey indicates generic code that doesn’t interact

with those, and an soft item marked by a slashed line indicates the code is

there but is not currently being used.

Figure 5.1: Legend

5.2 Overview

5.2.1 Main loop

Every node joins the system in a homogeneous manner, it is later that the

structure itself decides if the node should be granted special tasks or stay as

a simple client.

Other than joining the base group as can be seen in the next section,

every node will be in a never-ending loop of four tasks. Those are detailed

CHAPTER 5. PUTTING IT TOGETHER 62

in their own sections, but complete the following execution sequence:

• Publishing: The node’s contribution to the system, be it either self

data or an aggregate report

• Gathering: The network request to update the remote information

from other nodes

• Structure check: A chance to review if the structure of the system

is good enough in terms of balancing

• Promotion check: A safe check to see if the node should change its

role

Figure 5.2: Main loop

With this general execution environment explained, the following sections

will detail the more specific and internal implementation of the pieces to make

the main loop possible.

CHAPTER 5. PUTTING IT TOGETHER 63

5.2.2 Group management

To implement the groups and everything related to them, JXTA simple Peer-

Grouping will be used backed up by ZooKeeper.

When nodes join the system, they are manually given a group to join

(for ease of management it could be a container or cluster identifier, but

anything is fine). Those groups will be at the bottom of the tree, and every

node entering the structure will always pass through them. If the group

to join is full, an empty copy of the group will be created to host more

nodes, so if the group to be joined was CLUSTER1, the first nodes would

join CLUSTER1 0, and once it was full, an overflowing node would create

and join CLUSTER1 1, at the same level. The two leaders of those groups,

would then be promoted to LEVEL1, and following the same ruleset the

exact groups they would join would be LEVEL1 0, LEVEL1 1, or whichever

was the first group to have slots.

Peers know which level or leaf-group they need to join, however they

don’t know the exact instance of it (the last number in their tag). To allow

those to know their destination, there is two possible ways of doing this:

with JXTA peer services, or with the ZooKeeper interface. Both methods

have been implemented and tested, however ZooKeeper proved to be more

resilient, faster and trustworthy, so even if the code shows starting services

(such as AgentService), they are not being used.

To check group availability, the node will connect to ZooKeeper and check

the groups database (more details on this database will be given in the Agent

node selection section, since it is what it was originally built for). ZooKeeper

CHAPTER 5. PUTTING IT TOGETHER 64

actively tracks the nodes’ status with heartbeats, so any count returned by

this service is reliable enough, while with JXTA it would be more of a vague

approximation.

When a group with space is found, the interested peer retrieves the JXTA

PeerGroupID from the group representation in ZooKeeper. This piece of

information doesn’t necessarily need to be stored there, but it speeds the

process much more than if the peer had to look for a valid advertisement

among the whole network. With the PeerGroupID, the node can reinstantiate

the group advertisement, and with it join the JXTA group, altogether with

signing up at ZooKeeper’s database.

Figure 5.3: Joining group

As a late experiment it was decided to use index generators for the level

instances. To reduce load on the ZooKeeper service servers, a special znode

directory was created to store specific data for each level or base group, which

CHAPTER 5. PUTTING IT TOGETHER 65

contained a counter to track how many instances were created so far. This

can be used to check the largest instance of a level, in order to iterate them

without overflowing; and to check which should be the next subgroup index

in case of group creation. The get-and-increment function has been coded

specifically to perform in atomically having in mind the versioning in the

ZooKeeper operations.

5.2.3 Information flow and messaging

Every messaging component in the system will be implemented with JXTA

advertisements. Other methods such as services and pipes have been im-

plemented and tested, and not only they proved to be more difficult and

troublesome, but they were bound to performance issues.

Custom advertisement types such as ReportAdvertisement and Restruc-

turingAdvertisement had to be created in order to achieve some of the mes-

sage requirements. This also made the lookup and filtering of advertisements

much easier, since applying filters by type could focus directly on those.

When a group agent, has to aggregate information from its group mem-

bers, there are two basic options to achieve so: either the members of the

group push the information to it, or either it pulls the data from each node.

Any of those actions can result in bad performance, specially if using pipes

or services, but with JXTA’s exploiting on advertisement propagation they

can be greatly mitigated.

In regular intervals, nodes will collect information and put it in a JXTA

advertisement publishing it locally (remote publishing is also being used but

CHAPTER 5. PUTTING IT TOGETHER 66

its reliability is inexistent). At some point, when the agent of the group is

interested in reading it, it will issue a remote gathering order so that it can

fetch the advertisements. This process exploits the peer-to-peer character-

istics much more than using direct connections, making use of every node’s

resources.

Figure 5.4: Gathering data

Figure 5.5: Publishing reports

One drawback of this procedure is the amount of advertisements being

published. The document’s expiration settings have to be set carefully de-

pending on the frequency of publishing. And not only that, but to overcome

possible network fluctuations and delays they will be versioned, so the re-

ceiver agent will keep a list of the peers issuing advertisements and the latest

version they have discovered.

A side effect of the versioning system is that versioning is completely in

charge of the issuing node. This means that any crash, that would leave the

CHAPTER 5. PUTTING IT TOGETHER 67

node at version number 0 would generate an inconsistence that would render

this node’s reports useless as long as it didn’t reach the latest global version,

or old ones with higher versions didn’t expire (which wouldn’t work either way

since agents have a versioned database of the found advertisements). To fix

this issue, nodes will check the network status by discovering advertisements

and keeping the largest version found when any major change such as a

promotion is produced.

The information following this method won’t be as up to date as if direct

communication was used, however this doesn’t prove an inconvenience for

the system since critical reports were not a requirement, it is a few seconds

after all.

5.2.4 Agent node selection

Each group in the system will have only and only one agent at a time,

reporting information from this group up in the tree. To achieve this, a

leader election protocol was required.

A very simple but solid algorithm was used to tackle this consensus issue.

This had to be executed independently for every group in the structure,

so for each group in the system a znode (ZooKeeper node) was created, it

would act as a directory host for the agent-candidate nodes, and the agent

itself. This directory would be persistent, and it would also keep the JXTA

PeerGroupID in its data slot.

By using the SEQUENCE—EPHEMERAL flags when creating the zn-

odes they would automatically be ordered by ZooKeeper, and those znodes

CHAPTER 5. PUTTING IT TOGETHER 68

would be deleted as soon as ZooKeeper’s configurable heartbeat detected a

connection cut. The smallest ranked znode is to be leader of the group, so

every other node should watch it and in case of receiving a crash trigger,

check if it’s the smallest node in the group and become the new leader.

To avoid a huge spike on ZooKeeper in case of failure on the smallest

znode, instead of having every node watch the same one, every node will just

watch the node immediately lower in identifier than itself, making it only one

watch trigger in case of crash. If a watch is triggered, the node gets flagged

as leader, and as soon as it reads the change in the main loop it is bound to

promote itself. This also implies that if a node that isn’t the leader crashes,

the node that was watching it will have to update its watch to a new znode.

Unlike the need of checking which instance of a group or level a node has

to join, they don’t require to check up which level they are being promoted

to, because promotion is always upwards and by unitary steps, so if a node is

at LEVEL4, the level to join would be LEVEL5. The only node that doesn’t

promote itself is the unique root node in the tree, which instead, publishes a

final report or issues commanding information downwards.

This ZooKeeper configuration allowed to ease some other tasks such as

checking the number of nodes in a group, or to list level instances as could

be seen in the first section of this chapter.

It also served as a great way of debugging to have a visual and clear

view of the system’s structure since ZooKeeper is reliable in terms of node’s

presence. Having a list of groups and alive nodes in each group, it is very

easy to abstract the system status and structure without recurring to JXTA

(which would be troublesome and unreliable).

CHAPTER 5. PUTTING IT TOGETHER 69

Figure 5.6: Getting promoted

5.2.5 Metrics collection and processing

In this project and for the executions that have been made, the information

that has to be propagated or analyzed by the system will be left as XML

files in a specific disk location, to be read by the application and processed

into the JXTA advertisements.

The system is ready to gather information from the system, and to process

it. It is up to the developer using it though, to decide how to deal with this

information. Depending on his interest on performance, or the desired level

of detail, it might either be convenient to merge the data into aggregated

reports as they move up, or to stack the reports so that in the end the final

report is a compilation of every single report in the system.

Chapter 6

Evaluation

70

CHAPTER 6. EVALUATION 71

6.1 Introduction

To test the system works as expected, two major configurations have been

designed. The main idea is to see how those build up, and once they are

stable make some changes in the system to see its behaviour.

In the beginning a more realistic environment where true application

placement took place was considered, and in fact some configurations with

Apache HTTP Server connected to multiple Apache Tomcat instances were

configured, with a far goal to have a multi-node Cassandra system. However

this support work was taking too much time that in the end didn’t provide

any difference when compared to exchanging dummy information, so major

complementary configurations of other systems were dropped, to use instead

void data.

The build will work in any Java enabled environment and it has been

tested in different ones, however the experiments listed here have been in

machines running Linux. The worker nodes, where the applications would

be running in a real scenario, were all part of a small and private LAN cluster

with one gate to the Internet.

Additionally, a single remote server was used to test if network boundaries

were being successfully overcome. This server hosted a very basic JXTA

implementation that would act as a generic rendez-vous node, this would be

the configured seed for the other nodes that would serve as the point of entry

to the system.

This remote server is also the place where the whole ZooKeeper system

was running as stand-alone service. As explained before in this document

CHAPTER 6. EVALUATION 72

ZooKeeper was tested in a multi-node configuration, specifically in the small

cluster, however to have the cluster devoted to the JXTA nodes it was con-

sidered best to leave the JXTA rendezvous and ZooKeeper running together

in a single, remote node.

Figure 6.1: Network configuration

The aim of the experiments is to prove and confirm the system is working

as expected, the most relevant behaviours to be seen are the following:

• When a configuration is defined for a configuration, it has to be under

those constraints at any given moment of the execution.

• The flow of information must be correct, nodes must publish and gather

information in the groups they are in, and have a valid propagation

upwards.

• In case of node failure, the system has to recover, to have a correct

structure that still collects information from every node converging to

the root.

In the following sections two representative experiments from the many

CHAPTER 6. EVALUATION 73

that were executed are shown in detail, proving the objectives were met and

that all the given situations are working as expected.

The testing scenarios come with support figures, and the legend of those

is as usual, groups are represented with circles, nodes in groups as dots (two

dots joined by a line if the node has presence in two groups, one where it

gathers information and the other where it reports it), and an R representing

the root node who is in charge of giving the whole aggregated report. Nodes

painted in red are under a failure scenario and will be disappearing in the

next step. The nodes have no tags next to them to have cleaner pictures,

so for easy identification the order in which they appear doesn’t vary among

the steps.

6.2 Configuration 1: 3 nodes per group

The goal of this test is to see the gradual growth of the system as nodes

connect to it, under the constraint of 3 nodes per group, and altogether with

a correct flux of information. Once a stable configuration with four nodes has

been achieved, they will start getting killed one by one to simulate failures

so that the recovery of the structure can be tracked in detail.

6.2.1 Structure construction

The figure 6.2 below shows the process that is described step by step right

after it.

CHAPTER 6. EVALUATION 74

Figure 6.2: Build-up progress of the first configuration

First node entry

The first node that enters the system starts by looking for available rendez-

vous from its seeds, and successfully connects to the one in the remote server

(every node will follow this procedure).

Once connected to the basics of the network, it will join the group it has

been assigned which is CZ1, since the structure is empty, the system assigns

it the specific instance CZ1 0 and seeing it doesn’t exist, the new peer creates

and joins it, immediately detecting it has to be the leader of this one-member

group.

As soon as it joins it starts publishing information in this group as slave,

and as a leader it has to promote itself to the upper layer, which is the group

G1 0. Just like before, the group doesn’t exist so the same procedure is

followed and again the node is leader of this group, though this time its role

on the upper level will be as root reporter of the system.

At this point the node will be checking the lower group for reports (and

it doesn’t find anything since there is no nodes other than itself), publishing

its own information in the upper group and, as root, gathering information

on the upper group and reporting it (there is a single node in the root report,

CHAPTER 6. EVALUATION 75

its own).

Second and third node entries

The second to join will follow the same steps, joining the already existing

group, and will immediately start publishing his own data on the upper group

(remember that for leaf nodes the upper group is their only group, in this

case CZ1 0).

In the previous section the node was not gathering any reports from the

bottom group since it was empty, besides his own presence that was being

reported to G1 0. With this new addition to the system, the first node detects

reports in the bottom group of CZ1 0 and starts propagating information

up to G1 0.

Looking at ZooKeeper two directories can be seen for the two groups that

have been created so far. Listing their contents it can be seen that G1 0 has

one znode (the current root leader), and that CZ1 0 has two znodes (the first

node that is leader on the lower group, and the new node which is watching

it).

The third node will behave exactly like the second, effects can be seen in

ZooKeeper’s new appearances, the report counters increased from the first

node, and this new node watching the second one at ZooKeeper.

Fourth node entry

This is the last node to enter the system in this configuration. With this a

new horizontal group is required, since it is told to join CZ1 but CZ1 0 is

full on 3 nodes, so when it attempts to join CZ1, it is directed to CZ1 1,

CHAPTER 6. EVALUATION 76

which has to be created and joined.

By doing so, the node becomes leader of the new group and just like the

first node, is promoted straight to G1 0 which now is existent, so the new

peer will sit watching the root.

Meanwhile, it will be gathering information from CZ1 1 without success

due its loneliness in this lower group, and reporting information to G1 0,

which will be successfully collected by the first node as can be seen from the

root reports’ counter.

6.2.2 Fault tolerance, crashes and recovery

With the system of four nodes that has just been built, nodes will be killed

one by one in the other they joined the system, that being second, first, fourth

and third. The process is detailed in the following figure 6.3 and described

afterwards.

Figure 6.3: Failure and recovery of the first configuration

Second node failure

When cutting the execution of the second node that joined the system, its

presence instantly disappears from the ZooKeeper services triggering the

watch on the node that was watching it, which was the third that will change

CHAPTER 6. EVALUATION 77

its watch to the leader, that was being watched by the node that just went

down. Since it wasn’t a leader of any group, no major structure changes are

required.

At the JXTA rendez-vous console a TCP connection close can be seen,

however this is only informative in a very low level, since the JXTA network

still has information relating to the node that just went down (in fact if in

the same console peer advertisements are checked, it stays there indefinitely).

However it can be seen that even though JXTA isn’t being very consis-

tent, as any other conventional peer-to-peer system would neither be, the

implementation of the JXTA part of the application is behaving satisfacto-

rily as can be seen after a few updates, where leader reports are decreasing

their advertisement count by one, specifically the recapped report of CZ1 1

where the faulty node was.

First node failure

Killing the first node, not only one leader but the root leader is breaking

away from the system. As with the pervious crash, ZooKeeper’s awareness is

almost instant, and very soon, both the third node in CZ1 0 and the fourth

node in G1 0 detect it went down (note that unlike the second node, this one

had presence in two groups, and being root it was leader in both of them).

The first will find that it has to become leader of CZ1 0 since the leader

just disappeared and he is the last member of this group, therefore it will

proceed with a promotion to G1 0 to watch the other survivor in the system.

The fourth node also detects the leader is gone, and finds out that no

promotion is required because it has to assume the role of root, and as soon

CHAPTER 6. EVALUATION 78

as it realises this, it starts gathering reports and announcing root information.

Since the first node just joined G1 0, and the fourth is the root leader

of this same group, the root reports from the fourth will reveal information

from both itself and the first node.

Fourth node failure

As the fourth node leaves the system, the first, which is the last one remain-

ing, takes leadership of G1 0 and assumes root status, reporting only the

information that comes from its own publishing.

6.3 Configuration 2: 2 nodes per group

With this test configuration the general goals of the previous one will be

confirmed (structure build-up, correct information flux, promotions. . .). Ad-

ditionally, the group size will be limited at two per group, this will allow the

structure to have a faster vertical growth, which puts the system under a

different pressure than the previous one. In a regular, large configuration,

the common would be to have many nodes that belonged to two groups, but

given the reduced set most of them assume special roles such as bottom leaf

nodes (which only have one group unless promoted), or root (which virtually

has three groups, although there is no promotion or real existence for the

third). By having a faster growing architecture there will be more space for

some of the peers to act as regular links between two groups without having

special tasks, allowing the system to have to up three group levels instead of

just two like in the previous experiment.

CHAPTER 6. EVALUATION 79

It is worth mentioning that the structure being analyzed here is fully

experimental and for testing purposes. Having two nodes per group is a

valid and working configuration which offers many interesting changes to

evaluate, however it proves to be the minimum possible structure.

A structure that allows one node per group is not possible, since groups

are linked from a higher and a lower level, making they require at least two

slots for those connections. Having those two available like in this experiment

makes it possible for something valid to be built, but the structure efficiency

is terrible, so it is not an expected configuration to be seen in production

servers.

6.3.1 Structure construction

Since the growth of this configuration is more complex than the previous one

and fault tolerance was already checked, this experiment will focus on the

building of the system. Two figures (6.4 and 6.5) following the progress can

be seen in between the explained step by step analysis.

Figure 6.4: Build-up progress of the second configuration

CHAPTER 6. EVALUATION 80

First node entry

The first addition to the system is trivial as usual, the node joins its given

group CZ1 0 and promotes to G1 0, becoming leader of the system.

Second node entry

There is no secret to the second node joining the system either, it joins CZ1 0

and stays there watching for the possible failure of the first node. The new

node will report information in CZ1 0, that will be gathered by the first one

and reported up in G1 0 altogether with its own information.

Third node entry

Given the small size of the groups, when the third node attempts to join

the system it already is issued a new group instance since the previous one

is full. The node joins CZ1 1 as told, promoting itself to G1 0. The root

reports will now show that two nodes are reporting to G1 0, those being the

first and the third, with this late one watching over the first’s leadership.

Fourth node entry

When the fourth node joins the system, nothing much relevant happens.

It will be told to join the instance CZ1 1, which is a bottom group and

already has a leader, so it will silently join this group and publish self reports,

gathered by the leader of the group.

At this point there is four nodes in the system, filling all three groups in it.

Two are in a single-group status at the leaf level (the second and the fourth),

CHAPTER 6. EVALUATION 81

and two are acting as a link from the leaves to the root group (the first being

root himself, and the third). The leaf nodes are reporting information at the

lowest groups of CZ1 0 and CZ1 1, while the other two are gather collecting

it and reporting to G1 0.

Figure 6.5: Build-up continuation of the second configuration

Fifth node entry

Up until now the other nodes have been joining the system with easiness,

however with the fifth node major changes occur. The structure was full, so

it is inevitable that a new group appears, and as will be seen the other nodes

might need to emerge and reposition themselves to allow a bigger hosting for

new entries.

During all the structural changes publishing and gathering of advertise-

ments has been consistently working, however to focus on the interesting

facts and not to lose the thread of the changes, they won’t be fully explained

until the situation is stable, in fact most of those actions are only done once

since most states and roles are transitional.

The node, which has to join CZ1, creates and joins the instance of CZ1 2

after seeing that CZ1 0 and CZ1 1 are full. Being alone it becomes leader

CHAPTER 6. EVALUATION 82

of this group by promoting to G1.

However the only instance of G1, G1 0, is also full, so it will be required

to create and join G1 1.

At the appearance of G1 1 more changes are required. In one hand, the

leader of G1 0 will detect its group is not a root group anymore, so it will

have to step down from his root role, not only that but it will also detect the

need of a whole new level, G2.

Meanwhile, similar to the previous case of its first promotions in the

lower level of CZ1 2, the new node will find itself alone in the group and also

promote up to G2.

At this point two nodes (the first and the fifth) will be promoting to G2 0

in parallel, and the one that joins this group in ZooKeeper first, will be the

leader of G2 0 and the new root node.

In this execution the first node became leader of G2 0 and therefore of

the whole system, however it is important to have in mind this sensation of

order is purely coincidence.

With the rapid promotion of the new node to the top it can be observed

that nodes are always inclined to float up in the structure, leaving its first

group CZ1 2 empty, but available for possible newcomers.

Similar situations happen in the oldest branch of the structure where

the first node who was acting as a link between CZ1 0 and G1 0 had to

leave CZ1 0 to get promoted as a link between G1 0 and G2 0. In this case

though, CZ1 0 wasn’t left empty, and the single node left there (the second

that joined the system) detects the leader left the group, making it the first

candidate. With this, it gets promoted to act as a link between CZ1 0 and

CHAPTER 6. EVALUATION 83

G1, and it is worth seeing that the group it gets promoted to is not the same

one where the old leader was (G1 0), but the next one which already exists

thanks to the last node to join the system, G1 1.

This happened because, even though the leader left the bottom group,

it stayed in the upper one, holding the spot that the last promotion should

have taken intuitively. In the new group there is a leader already, so the last

arrival will just be watching the fifth for possible crashes.

A stable configuration has finally been reached, and inspecting ZooKeeper

it can be seen that every group has two nodes, besides CZ1 0 which only has

one, and CZ1 2 which is empty.

The publishing actions don’t give much information, however it stays

consistent. Every node is publishing recaps of some way besides the fourth

which is the only node with a single-group role. Every recap is made out of

one node, since groups can host a maximum of two nodes, and the reporting

one always publishes his own information on the upper group, so the recaps

from the lower levels will never be greater than one. The root node is re-

porting recaps from two nodes, which consist of his own report of G1 0, and

the fifth’s report from G1 1.

Finally, without going into much detail since it is the same procedure over

and over, killing the root node (the first one) makes the other node in the top

level to become root as can be seen in the figure 6.6. The fall of this node has

another effect on the branch it was fetching information from, where lacking

a link from G1 0 to G2 0, the third node who was watching the first has to

promote itself. This will leave the fourth node alone at the bottom group of

CZ1 0, which will promote itself to G1 0 without much trouble since there

CHAPTER 6. EVALUATION 84

was a free slot.

Figure 6.6: Failure of the root node in the second configuration

Chapter 7

Project management

85

CHAPTER 7. PROJECT MANAGEMENT 86

7.1 Introduction

Given the nature of the project, where a strong focus on research takes place,

project management might differ a bit from other works under circumstances

with a lower risk factor.

This risk comes from the fact of trying to find a solution to a problem

that hasn’t been tackled previously. This involves a previous study of the

possible ways to take, and a choice of support tools and frameworks. One

could argue the use of third party software to reach an objective instead of

fully developing a fully integrated system, but this is required to speed up

the process and be able to focus on the most important part of the project,

specially so in this one, where backtracking in case of reaching a dead end

would suppose a major drawback.

Having all this in mind, a project plan will be given, but it is expected

to be heavily modified as work advances to overcome possible setbacks.

7.2 Methodology

No specific methodology will be followed for the development of this project,

however the essence of this custom methodology will resemble the well known

the Agile development methods.

Overall, the Agile development methodology promotes teamwork and no

long-term planning. Advancing with small work increments that allow the

developers to consolidate or reconsider the work done up until then and will

minimize the impact of a forced recoil.

CHAPTER 7. PROJECT MANAGEMENT 87

When facing a problem, or previous to major implementation or decision

making times, the following steps will usually be taken as a general rule:

1. Analyze the problem

2. Think of possible solutions and future impacts of those (affecting other

components or generating more problems)

3. Put those solutions on the table with the rest of the team for a group

analysis

4. In case of deciding to make use of third party software, invest extra

time on estimating the learning costs and possible negative aspects of

this choice

5. In case of approval the implementation will be done and tested (with

previous isolated testing if required), and if satisfactory results are

achieved, the procedure will be repeated for new problems

In the end this has proven to be a very successful way of working, specially

considering the timetables that were to be taken into consideration and that

are explained in the next section.

7.3 Work plan and scheduling

This project doesn’t count with a full dedication schedule since the person in

charge is undertaking college classes and working at the same time. This also

means that during intensive times (such as college examinations or deliveries,

CHAPTER 7. PROJECT MANAGEMENT 88

and work deadlines) dedication to this work might be pushed back, or even

stopped until time allows to pick it up again.

In order to fit the described methodology, weekly meetings with the team

will be established to discuss the decisions taken and as a general develop-

ment checkpoint, this way any disagreement among the team can always be

discussed in time, and next objectives can be set; it is also a great way to

keep members that are not actively developing the system up to date.

Weekly meetings were constant, even in absence of any new development

or advances in the project, to avoid losing the thread of the status, and even

while doing that at times some days had to be dedicated to figure out at

what point the project was left at, specially in long periods of stillness. All

those up and downs sometimes proved frustrating for the developer, having

to remember previous work or repeating already done parts of the project.

Even though sometimes it is inevitable, it is of utter importance to be able

to divide the work in independent parts and never leave one of those in a

critical development point, in risk of having to backtrack to the very start of

the task, documentation is not always enough.

The project started in October 2011 with a long-term aim to have some

results by the end of 2012 considering the dedication wouldn’t be full. A

first basic schedule 7.1 was presented as a general guide, however as can

be seen in the second schedule 7.2 it varied a lot in the real scenario, with

a lot of task repetitions and overlapping (time units are split in periods of

about 15 days). The major difference that can be seen is the expectations of

time dedication to JXTA versus the final count. As it has been explained,

obviously ZooKeeper and the other architecture were not in the plan since

CHAPTER 7. PROJECT MANAGEMENT 89

they happened on the go.

The work took more turns than expected and given the insufficient ded-

ication estimated during work periods, it was required to step out of the

typical schedule and cover it up with extra and unplanned days.

Figure 7.1: Approximation of the planned schedule

CHAPTER 7. PROJECT MANAGEMENT 90

A list of the followed roadmap is shown below, note that those steps are

in a general scale and each of them have its correspondent substeps, which

aren’t necessarily less important or heavy (in work terms), than their parent

items.

Following the list comes a figure 7.2 with the schedule, where intervals are

presented in two per month (15 days), and considering alterations between

the hours per day, where most of the time the development was done in

part-time.

• Meeting sessions to introduce the project, state the problem and de-

fine indicative objectives. Some explorative work was previously done

on this field and this was analyzed and taken into account, a strong

motivation to use a peer-to-peer system was put on the table from the

beginning.

• Different P2P solutions were considered and in the end it was decided

to go on with the candidate so far, JXTA. At this point, a specific

JXTA roadmap was set with small testing objectives to get the devel-

oper familiarized with the new platform. Those objectives consisted of

general testing but always aimed at what was thought to be useful for

the project, such as group management and service implementations.

• Some dedication had to be put to the environment setup, cluster con-

figuration and system administration. This was notable at the start of

the project but it has been active for the whole progress of the work as

systems changed, new requirements appeared, etc.

CHAPTER 7. PROJECT MANAGEMENT 91

• Once enough understanding of JXTA was acquired, a period to come up

with possible architecture was established, and multiple meetings were

issued to debate and polish the options. Even though a final solution

wasn’t found (the point of the project is to try various architectures

anyway), a core configuration was agreed.

• With the newly acquired JXTA experience and the architecture target,

a more aimed JXTA development towards a real solution was started.

This came up with multiple issues and setbacks by the peer-to-peer

framework, which as a discontinued project lacked massive documen-

tation and had many undocumented bugs.

• Besides the technical issues with JXTA, other requirements that couldn’t

be achieved with the P2P framework appeared, and a new time for an-

alyzing how to overcome those surged. After some discussion it was

decided to use Apache ZooKeeper, a service aimed to develop applica-

tions with strong distributed coordination characteristics.

• Following the same steps as with JXTA, a period of familiarization

with ZooKeeper was programmed, and in this case the learning curve

was much easier and faster than with the previous, the documentation

and reliability of Apache’s system excelled that of JXTA’s.

• More meetings followed to review the new architecture models com-

posed with ZooKeeper, and then solid development for the system was

started.

• At this point the issues with JXTA were overflowing so much, that

CHAPTER 7. PROJECT MANAGEMENT 92

alternatives were starting to be seriously considered, however given the

time shortage and having a solid enough configuration it was decided

to stick with JXTA, leaving it prepared enough so that if in a future a

framework change was required it wouldn’t suppose a major overhaul.

• At this point the tools for completing the project objectives seemed

to be enough, and the development was progressing mostly only with

worries concerning architectural aspects, which were covered in the

regular meetings until the system was finished.

• With only code polishing left, a new set of meetings was agreed to plan

the experiments set and final testing, parallel to the intensive report

write-up which was partially started in the previous months.

7.4 Budget

7.4.1 Salaries

For a better understanding of the salary it has broken down into tasks and

roles. Different worker profiles are required, and all of them should be profi-

cient in working with abstract problems and with tools that aren’t necessarily

comfortable or well backed up with documentation.

The first table 7.1 contains the relation between tasks and assignments

with the spent hours, while the second 7.2 lists the salaries for each of the

roles with an aggregated value.

CHAPTER 7. PROJECT MANAGEMENT 93

Task Role (hours)

Project management Project manager(80)
Peer-to-Peer evaluation Analyst(20)
Understand JXTA Analyst(150)

Programmer(180)
Architecture definition Analyst(100)
Work on architecture 1 Analyst(30)

Programmer(70)
ZooKeeper understanding Analyst(30)

Programmer(10)
ZooKeeper implementation Analyst(20)

Programmer(40)
Work on architecture 2 Analyst(40)

Programmer(100)
Refactor Analyst(30)

Programmer(40)
Test plan Analyst(60)
Testing and setup Administrator(120)

Total 1120

Table 7.1: Dedication per role/task

Role Hours Cost (e/h) Total cost (e)
Analyst 480 20 5400
Programmer 440 15 7560
Administrator 120 12 2040
Project manager 80 30 1600
Total 20040

Table 7.2: Worker salaries

7.4.2 Software expenses

Every software solution used in the application is under a free open-source

license, so the expenses on this field are nonexistent. The system it was

tested on, and the whole platform where it was developed was also based on

the same characteristics.

CHAPTER 7. PROJECT MANAGEMENT 94

7.4.3 Hardware expenses

The physical resources required to develop and test this project were: a

laptop to be used as workstation, and a distributed system for the testing

and experiments.

The distributed system used in this project was a small cluster of less

than 10 physical nodes, and most of the times only three to five of them were

used. The table of expenses is an orientation to the minimum system that

should be acquired to have a representative enough environment, however

the college provided the team with a small cluster of those characteristics.

There are alternatives to having multiple servers, however moving away

from a real environment when working with distributed systems can be very

prone to trouble, and a huge investment in configuration. Virtualization is

one possible solution, and another one, which comes with extra expenses,

would be to use the services Amazon provides.

In fact, further testing using server instances in Amazon was considered

to easily increase the number of nodes, however due to logistics and config-

uration, time availability and having representative enough results, the plan

was disregarded.

Item Cost (e) Units Total Cost (e)
Laptop 800 1 800
Node 500 4 2000
Switch 100 1 100

Table 7.3: Hardware expenses

CHAPTER 7. PROJECT MANAGEMENT 95

Figure 7.2: Schedule the project followed

Chapter 8

Conclusion

96

CHAPTER 8. CONCLUSION 97

8.1 Summary

This document has presented the development roadmap of a system that can

be configured to the settings that best adapt to a distributed system, and that

can have its network parameters tweaked to determine the responsiveness and

how up to date it is within a given snapshot. The system is meant to be used

for monitoring purposes in a way that the ensemble doesn’t collapse, however

any information can be transferred with it.

Even though no specific network utilization metrics have been taken (and

this could cover part of another smaller project, taking metrics of a peer-to-

peer network among a distributed system is not a trivial task), it is safe to

assume due to the nature of the peer-to-peer network model that a decent

configuration with this project will not bottle-neck as easily as any other

configuration with centralized data gathering points.

Besides the network improvements due to a more distributed and static

nature of the data, it is worth mentioning that another important addition

to the system is the fault detection of the nodes, and the recovery it answers

with to keep a stable structure without needing to rebuild it all.

Since the application wasn’t meant to be a product, no interface has

been designed or created for it, however the transition of this software to a

final product shouldn’t require much effort, considering that it has proven

to work for every scenario that has been tested, both documented and not

documented in this file, and when choices of configuration presented, the

worst case scenarios have always been chosen.

CHAPTER 8. CONCLUSION 98

8.2 Final thoughts

8.2.1 Peer-to-peer networks in distributed systems

Peer-to-peer paradigms as a solution to the management of distributed sys-

tems has been a popular trend for the past decade, however this terrain is

still too unexplored to deposit absolute trust in this field.

P2P architectures provide robust environments of ridiculous sizes without

being centralized, and so far they have been found to be a great solution to

content distribution networks.

However, managing a distributed system has different requisites, and

peer-to-peer architectures are so dynamic it becomes virtually impossible to

have a picture of the status of the network. Having an estimation of the net-

work status can be enough for some cases, such as content distribution, but

in this project this was a strong requirement that had to be backed up with

ZooKeeper, altogether with unreliable communication, consensus scenarios

and many uncertainty issues.

It has yet to be seen as more solutions come out, but it is worth con-

sidering if it is significant to rely on the peer-to-peer paradigm given the

complexity and possibilities it comes with, and with all the drawbacks that

have to be covered up with help from other perspectives.

8.2.2 JXTA alternatives

JXTA has been the most controversial decision along the project without

doubt. Even though time was invested to decide which platform would be

CHAPTER 8. CONCLUSION 99

best, in the end JXTA was chosen. This was because there were no real

alternatives and some work with JXTA had been done before, however this

previous experience with the platform proved to be too shallow to give any

advantage in this project.

Having a difficult learning curve should not be enough to push back a

developer from using a certain software, however this was probably the least

important inconvenience. The impressions of JXTA were that it was a work-

ing project that kept getting new releases but later on, already deep into

development it was found out that the project had been abandoned. Bugs

kept appearing, there was inconsistence between the documentation and the

builds, and the documentation was not only poor, but almost inexistent.

Most information came from third parties, and most of it was experimental,

in fact many of the sources that were saved during the project, were found

to be gone when access was attempted later on. Every inconvenience that

was encountered during the development could be fixed, or dodged by taking

another perspective or alternative implementation, so the status of JXTA

didn’t have any effect on the project’s quality, however there was an impact

on the development where a lot of time and effort had to be invested to first

discover those malfunctions, and then to decide and put a fix to them.

It is up to how adventurous the developer is, but using JXTA in the

current status is not an easy recommendation. Depending on the will to

keep working with P2P, FreePastry [2] is an open-source platform thought

specifically to perform research and development in peer-to-peer networks

and applications, and after some reading and information gathering it seems

to be much more documented, active and successful than the discontinued

CHAPTER 8. CONCLUSION 100

JXTA.

8.2.3 Exploiting Apache ZooKeeper’s capabilities

Apache ZooKeeper was not included in the plans that were made in the be-

ginning, however once it was spontaneously used to deal with leader decision

scenarios, the platform appeared surprisingly good, light, and easy to use.

If opting for a solution that doesn’t include peer-to-peer, it is highly

possible that the structuring part can be achieved solely with ZooKeeper.

As it was mentioned in previous chapters, many difficulties were solved with

JXTA because the project wanted to avoid high load and responsibilities

falling on ZooKeeper, but for almost every issue that too troublesome, or

plainly impossible, to fix with JXTA, quick and clean solutions came to

mind in the field of ZooKeeper, for it is a platform thought to coordinate

distributed systems, and not just deal with leader election situations as it is

mostly used.

The major disadvantage of dropping JXTA and delegating everything to

ZooKeeper is that the project would lose its messaging capabilities, which

are a strong requirement. This could be covered in many ways, from using

plain network sockets, to using messaging libraries, which are more popular

and accessible than JXTA since they focus on just messaging.

Further study should be investment to adopt this as an option, but at

some points where JXTA was about to be dropped in the project, YAMI4 [3]

was considered. This is a messaging set of libraries to help develop distributed

system applications with the characteristics matching the ones in this project,

CHAPTER 8. CONCLUSION 101

which is maintained and fully documented, as well as used by some known

platforms.

8.3 Future work

Just as with any other research project, the possibilities are usually many,

and this is no special case. The field in which this project is found is relatively

new and poorly explored, and distributed systems are not that common in

everyday use so that multiple alternatives exist where one can choose from.

Many implementation details that weren’t crucial for a first version have

to be reviewed, such as purging of obsolete advertisements which now are

left around the system (this is not a functional problem since they’re being

ignored thanks to the versioning systems, but thinking long-term it is good

for P2P networks if obsolete data is purged little by little).

Evaluation and testing could be much more interesting if it was done in

realistic environments with many nodes, this would allow to confirm that

some aspects of the system such as scalability are good enough. Long term

execution of the system would also be a great test to see if there is degradation

of the system performance over time. The same infrastructures could be

used to evaluate what this project was really developed for, a comparison

between architectures to analyze which configuration works better in a given

distributed system.

Even though it is not a requirement to balance the structure since it

doesn’t have performance consequences, it is a common practice in such

systems and needed for many reasons. A implementation on this issue was

CHAPTER 8. CONCLUSION 102

done, and it wasn’t precisely easy, so it would be worth it to have it further

tested and modified or improved.

Even though the application is working without trouble with the default

or most common network parameters, the system that has been developed is

huge, and many of its parts should be analyzed to find possible optimizations.

Many JXTA settings can be changed (such as advertisement life time, expiry

times, update rates. . .) and the impact of those on the network performance

can be massive. Besides those, many other internal settings can also be

tweaked, for example the heartbeat rates of ZooKeeper. Special attention

can also be given to the performance and the optimal rates of rendez-vous

and relay peer nodes in JXTA per network, peergroup, etc. [1]

In small executions such as the ones that have been seen in this report,

tracking on the system can be kept with relative easiness, however as the

system grows it would become impossible for a developer to know what is

going on with simple message prints on a console. This may seem shallow or

purely aesthetic, but when dealing with distributed systems a good managing

and informative interface is usually mandatory, and it is not usually trivial

to implement.

Besides all that has been said until now, by reading the previous section

of final thoughts 8.2 all those possibilities and combinations of them can

be considered as deeper future projects so that they don’t stay just as a

mentioned possibility.

And after all those tasks, even if the perfect solution to this problem was

found, many doors would remain open, and by closing one, even more always

open. The amounts of data, data transfer rates and nodes, increase everyday

CHAPTER 8. CONCLUSION 103

leaving not so old practices obsolete many times faster than what it took to

reach them.

8.4 Personal note and acknowledgements

Personally, this project has served as a great introduction to a real distributed

systems problem. The extended length of available dedication, allowed me to

interiorize many issues and complications that under shorter circumstances

would have proved much more difficult, specially with the gradual learning

curve of JXTA.

I consider it a shame that there was so many periods of interruption

during the development as can be seen in the real schedule, because each of

these meant a step back on the development that required to invest quite a

bit of time to recover the last checkpoint.

Nevertheless, the experience acquired in this field given by the develop-

ment of this work is something that I consider of great value, seeing I couldn’t

learn to move around such environments in many other situations, and right

now facing other similar problems I get the feeling I wouldn’t look at them

with the same eyes I put when I was presented with the one in this document

one year ago.

I have to thank Yolanda Becerra, David Carrera and Jordi Torres for

the chances and trust they have deposited in me, and their support and

understanding during the interrupted course of this project, where the efforts

to recover the latest checkpoint were not only mine but also shared with them.

Bibliography

[1] Emir Halepovic, Ralph Deters, and Bernard Traversat. Perfor-

mance evaluation of jxta rendezvous. Technical report, University of

Saskatchewan and Sun Microsystems Inc., 2004.

[2] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems. Technical

report, Microsoft Research Ltd and Rice University, 2001.

[3] Maciej Sobczak. Programming Distributed Systems with YAMI4.

Lulu.com, 2012.

[4] Jérôme Verstrynge. Practical JXTA. Lulu.com, 2008.

[5] Navaneeth Krishnan Juan Carlos Soto Daniel Brookshier, Darren Gov-

oni. JXTA: Java P2P Programming. Sams Publishing, 2002.

[6] Brendon J. Wilson. JXTA. David Dwyer, 2002.

[7] Bernard Traversat Li Gong, Scot t Oaks. JXTA in a Nutshell. O’Reilly

Media, 2002.

[8] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

104

BIBLIOGRAPHY 105

[9] Jxta java standard edition v2.5: Programmers guide. Technical report,

Sun Microsystems, 2007.

[10] Dr. Ian Wang. P2ps (peer-to-peer simplified). Technical report, Cardiff

University, 2003.

[11] Gabriel Antoniu, Mathieu Jan, and David A. Noblet. Enabling jxta for

high performance grid computing. Technical report, INRIA (Institut

National de Recherche en Informatique et en Automatique), 2005.

[12] Emir Halepovic and Ralph Deters. The jxta performance model and

evaluation. Technical report, University of Saskatchewan, 2004.

[13] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron.

Topologyaware routing in structured peertopeer overlay networks. Tech-

nical report, Microsoft Research and Rice University and Purdue Uni-

versity, 2002.

	Introduction
	Document structure
	Motivation
	Statement
	Goals

	A glympse on distributed systems
	Description
	Common properties and pitfalls in distributed systems
	Messaging
	Scalability
	Single point of failure
	Fault tolerance and recovery
	Discovery
	Group Membership
	Leader Election
	Flexibility

	System architecture
	Introduction
	First approach: Chain model
	Selected architecture: Group model

	Technical background
	Introduction
	JXTA
	Overview
	Cache files and configuration
	Basic concepts
	Protocols and services
	Connection management
	Communication and data structure

	Apache ZooKeeper
	Overview
	Infrastructure and configuration
	Data model
	Interface and primitives
	Command line client
	Implementation

	Putting it together
	Introduction
	Overview
	Main loop
	Group management
	Information flow and messaging
	Agent node selection
	Metrics collection and processing

	Evaluation
	Introduction
	Configuration 1: 3 nodes per group
	Structure construction
	Fault tolerance, crashes and recovery

	Configuration 2: 2 nodes per group
	Structure construction

	Project management
	Introduction
	Methodology
	Work plan and scheduling
	Budget
	Salaries
	Software expenses
	Hardware expenses

	Conclusion
	Summary
	Final thoughts
	Peer-to-peer networks in distributed systems
	JXTA alternatives
	Exploiting Apache ZooKeeper's capabilities

	Future work
	Personal note and acknowledgements

	Bibliography

