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Abstract

Alzheimer’s Disease (AD) is the most common form of dementia and a growing health and

socioeconomic problem. Moreover, the impact of the disease is expected to increase even

more as the life expectancy is going to grow over the years. Consequently, a lot of research is

focused on computer-aided diagnosis techniques that aim at quantitatively study Magnetic

Resonance brain images of early stage patients. Early diagnosis could help in better future cure

or disease- modifying treatments. An example of AD early stage is Mild Cognitive Impariment

(MCI), as the 50% of the individuals who suffer from this pathology develop AD in three of

four years.

In this work, we use Support Vector Machines to classify subjects from AD, MCI and healthy

control (CTL) groups. Our main objective is to study whether combining different anatomical

scale brain regions and different image modalities could improve the classification accuracy.

Thus, regional and global Grey Matter (GM) volumes (multiscale approach), Withe Matter

(WM) regional volumes, Regional Asymmetry coefficients and T1- quantitative MRI data

(multivariate) are combined. Our accuracies when comparing CTL vs AD and CTL vs MCI

with large public databases (ADNI) are comparable to the results in the literature: 88.3% and

81.8% respectively. In this master thesis we study also smaller databases of MCI patients

from Lausanne University Hospital. We pay special attention to the study of pre-processing

steps: Intra Craneal Volume normalization and age correction. Our results show that for our

small group of patients, better accuracies can be obtained when combining different types

of features (multiscale and multivariate) than when only using classical GM region volumes.

Moreover, the new region-based age-correction method proposed here presents encouraging

results when applied prior to both CTL vs MCI and CTL vs AD classification.

VII





Resumen

La Enfermedad de Alzheimer (EA) es la forma más común de demencia y se ha convertido en

un problema socioeconómico creciente. Además, se prevé que el impacto de la enfermedad

será aún mayor dentro de unos años debido al progresivo envejecimiento de la población

mundial y al crecimiento de la esperanza de vida. Es por estas razones que en los últimos años

se ha centrado la atención en técnicas computarizadas para la diagnosis que están dirigidas

al estudio cuantitativo de imágenes de resonancia magnética (MRI) de cerebro de pacientes

que se encuentran en una etapa temprana de la enfermedad. Un diagnostico precoz podría

mejorar la efectividad de los futuros tratamientos de curación o modificación del curso natural

de la enfermedad. Un ejemplo de etapa temprana de EA es el Deterioro Cognitivo Ligero (Mild

Cognitive Impariment o MCI), puesto que el 50% de los pacientes que padecen esta patología

desarrollan EA en tres o cuatro años.

En este estudio, usamos Support Vector Machines para clasificar sujetos de tres grupos dife-

rentes: EA, MCI i sujetos sanos de control (CTL). Nuestro objetivo es estudiar si combinando

información a diversas escalas anatómicas del cerebro y diferentes modalidades de imágen se

puede mejorar la precisión de la clasificación. De este modo, se han utilizado volúmenes regio-

nales y globales (multiscale) de Materia Gris (GM), volúmenes regionales de Materia Blanca

(WM), Coeficientes de asimetría e información de MRI T1 cuantitativa (multivariate). Nuestras

precisiones cuando comparamos CTL vs EA y CTL vs MCI usando bases de datos públicas

(ADNI) son comparables a los resultados de la literatura: 88.3% i 81.8% respectivamente. En

este proyecto también estudiamos una base de datos más pequeña de pacientes con MCI

del Lausanne University Hospital. Prestamos especial atención al estudio de los pasos de

pre-procesado: normalización por Volumen InterCraneal y corrección de edad. Los resultados

obtenidos muestran que, para nuestro grupo reducido de pacientes, se obtienen precisiones

mejores cuando se combinan diferentes tipos de datos (multiscale y multivariate) que cuando

solamente se usan los clásicos volúmenes regionales de GM. Además, el nuevo método pro-

puesto de corrección de edad basado en regiones presenta resultados esperanzadores cuando

se aplica previo a ambas clasificaciones CTL vs MCI y CTL vs EA.
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Resum

La Malaltia d’Alzheimer (MA) és la forma més comú de demència i ha esdevingut un problema

socioeconòmic creixent. A més, es preveu que l’impacte de la malaltia serà encara més gran

d’aquí a uns anys a causa del progressiu envelliment de la població mundial i al creixement

de l’esperança de vida. És per aquestes raons que en els últims anys s’ha centrat l’atenció en

tècniques computarizadas per la diagnosi que estan dirigides a l’estudi quantitatiu d’imatges

de ressonància magnètica (MRI) de cervell de pacients que es troben en una etapa primerenca

de la malaltia. Un diagnòstic precoç podria millorar l’efectivitat dels futurs tractaments de

curació o modificació del curs natural de la malaltia. Un exemple d’etapa primerenca de MA

és el Deteriorament Cognitiu Lleuger (Mild Cognitive Impariment o MCI), ja que el 50 % dels

pacients que pateixen aquesta patologia desenvolupen MA en tres o quatre anys.

En aquest estudi, fem servir Support Vector Machines per classificar subjectes de tres grups di-

ferents: MA, MCI i subjectes sans de control (CTL). El nostre objectiu és estudiar si combinant

informació a diverses escales anatòmiques del cervell i diferents modalitats d’imatge es pot

millorar la precisió de la classificació. D’aquesta manera, s’han utilitzat volums regionals i

globals (multiscale) de Matèria Gris (GM), volums regionals de Matèria Blanca (WM), Coefici-

ents d’asimetria i informació de MRI T textsubscript 1 quantitativa (Multivariate). Les nostres

precisions quan comparem CTL vs MA i CTL vs MCI amb bases de dades públiques (ADNI) són

comparables als resultats de la literatura: 88.3 % i 81.8 % respectivament. En aquest projecte

també estudiem una base de dades més petita de pacients amb MCI l’Lausanne University

Hospital. Prestem especial atenció a l’estudi dels passos de pre-processat: normalització per

Volum intercranial i correcció d’edat. Els resultats obtinguts mostren que, pel nostre grup

reduït de pacients, s’obtenen millors precisions quan es combinen diferents tipus de dades

(multiscale i Multivariate) que quan només s’usen els clàssics volums regionals de GM. A més,

el nou mètode proposat de correcció d’edat basat en regions presenta resultats esperançadors

quan s’aplica previ a la classificació CTL vs MCI i CTL vs MA.
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1 Introduction

1.1. Clinical Motivation

Alzheimer’s disease (AD) is the most common form of dementia, an overall term for a decline

in mental state. Dementia does not refer to an specific disease, it’s a general term that describes

a wide range of symptoms related to memory loss or other type of decline severe enough to

reduce the patient’s ability to carry out with daily normal tasks. AD is related to pathological

amyloid depositions and hyperphosphorylation of structural proteins in the brain which

progressively lead to brain disorders, such as loss of function, metabolic alterations and

structural changes in the brain.

AD is nowadays, besides the major cause of dementia, a growing health and socioeconomic

problem, due to the progressive ageing of the world population. In 2012, the direct costs of

caring for AD patients to American society is estimated in $200 billion (comparable to the

$500 billion per year in education in elementary and secondary school[63]), and 1,1$ trillion

in 2050[41]. So the impact of the disease will increase as the life expectancy is going to grow

even more over the years, according to the UN (Figure 1.1 )

Figura 1.1: Male and female life expectancy at birth and gender gap, 1950-2050, got from http:
//www.un.org/esa/population/publications/worldageing19502050/pdf/8chapteri.pdf).
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Figura 1.2: Aggregate Costs of Care by Payer for Americans Age 65 and Older with Alzheimer‘s
Disease and Other Dementias, got from [41]

AD is not just the disease but it is also an important cause of death, specifically the 6th leading

cause of death in the United States, and the only one in the top 10 in America without a way to

prevent, cure or slow its progression[41].

The progression depends on each individual but three stages are usually considered[41]: Pre-

clinical Alzheimer’s Disease, Mild Cognitive Impairment (MCI) due to AD and Dementia due

to AD. Many studies had concluded that the future treatments to slow or stop the progression

of Alzheimer’s disease and preserve brain functionality will be more effetive when applied

during the initial stages of the disease, such as preclinical AD or Mild Cognitive Impairment.

Therefore, it is very important to have useful tools that can identify at an early stage which

individuals will progress with the disease. But this issue takes even greater importance for

those individuals with MCI: 15% of them will develope AD every year and the half of them will

develop AD in three or four years [44]. It is estimated that between 10% and 20% of people

older than 65 have MCI [42, 43], so the problem is already a reality.

Due to this socioeconomic costs, a lot of effort is focused on finding out which brain regions

are affected at an early stage of the disease and could be used as biomarkers to diagnose and

monitorize the disease. Nowadays, many techniques and tests contribute to AD and MCI

diagnosis, but there is still interest in developing new techniques. One of the most popular

tests is, for instance, the Mini-Mental State Examination (MMSE), which is a brief 30-point

questionnaire used to screen for cognitive impariment. But there is more, the usal diagnosis

process also includes physical and neurological exams, laboratory tests, neuropsycological

testing and brain imaging. In the last 20 years there have been special interest in the last one,

as it appears to be one of the most promising tools for diagnosis and monitoring the disease.

The Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology

to visualize internal structures of the human body. When applied to the brain the resultant
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Figura 1.3: Projected numbers of people age 65 and over in the U.S. population with AD using
the U.S. Census Bureau Estimates of Population Growth, got from [41]

images provide distinction between the different brain tissues, such as Gray Matter( GM),

White Matter (WM) and CerebroSpinal Fluid (CSF). Moreover, MRI is a non-invasive method

that let physicians explore the brain before the dead of the patient (More details about MRI

are given in the Section 1.2).

On account of the growing interest in this techniques, a lot of organizations have begun

to find their way in neuroimaging recruiting. One of the most popular is the Alzheimer’s

Disease Neuroimaging Initiative (ADNI)1, which is a multisite longitudinal clinical/imagin-

g/genetic/biospecimen/biomarker study. Its objective is to determine the characteristics of

AD progression, starting from normal aging, evolving to mild symptoms or MCI and finally

ending in dementia. ADNI provides a huge amount of useful data from several different tests,

including genetics, clinical and, of course, imaging.

Many studies have been performed in the last decade about AD diagnosis based on neuro-

imaging, as it has proven to be an adequate tool to play a major role in this scenario. The

discrovery of robust image biomarkers will not only let future the treatments focus on the

early affected regions but make a diagnosis before the disease symptomatology appears.

1.2. Medical Imaging and Pattern Recognition for Diagnosis

MRI is a noninvasive medical test that helps physicians diagnose and treat medical conditions.

One of the advantages of the MRI is that it is harmless to the patients. It uses strong magnetic

fields and non-ionizing radiaton, unlike X-ray Computed Tomography and traditional X-rays.

1Part of the data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or
writing of this report. ADNI investigators include (complete listing available at http://www.loni.ucla.edu/ADNI/
Collaboration/ADNIAuthorshiplist.pdf)
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(a) Absence of magnetic field (b) Applying magnetic field (c) Protons release the absorbed
energy

Figura 1.4: Proton behaviour when (a) absence of magnetic field, (b) applying magnetic
field, (c) releasing the absorbed energy. Got from http://www-ee.uta.edu/Online/alavi/
ee4328-5339Spring12/MRI_Physics.pdf

Moreover, MRI provides comparable spatial resolution and better contrast resolution.

MRI involves imaging of the proton, the positively charged spinning nucleus of hydrogen

atoms that are common to be found in tissues containing water, proteins, lipids and other ma-

cromolecules. Due to the spin and charge, the protons act like a compass needle when placed

in a magnetic field, assuming an alignment with respect to the field. But unlike a compass

needle, a proton can align in two directions, either with or against the field (Figure 1.4(b)).

When radiofrequency energy at the appropriate frequency is applied, protons aligned with

the magnetic field absorb the energy and changes the orientation. The protons subsequently

release the absorbed energy (Figure 1.4(c)) and go back to the original position at a rate de-

termined by the T1 and T2 relaxation times. Those times depend in a complex way on the

physical and chemical characteristics of the tissue. In this process of relaxation, the protons

produce a voltage known as magnetic resonance signal which is captured by an antenna that

surrounds the patient. A magnetic resonance image represents a display of spatially localized

signal intensities, drawn on the final image as points of relative brightness or darkness[55].

Although there are several basic types of MRI, such as Diffusion MRI, Magnetization transfer

MRI, Functional MRI and others, here we focus only on the ones useful for our work:

1. T1-weighted. Refers to a set of standard scans that represents differences in the T1 relaxa-

tion time of various tissues in the body. In a determinate instant, the voltage produced by

the protons is capted by the antenna. Then, it is proportionally plotted in the final image.

In this type of scan, water appears darker than fat, whereas in the brain, T1-weighted

scans provide appreciable contrast between gray and white matter. See Figure 1.5 (a)

2. T1-quantitative. This scan is a measure of the promptness of a tissue to return to its
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(a) T1-weighted MRI (b) T1-quantitative MRI

Figura 1.5: (a) T1-weighted MRI, (b) T1-quantitative MRI, got from Lausanne Database

longitudinal state of magnetic equilibrium, after removal from this state with an RF

pulse[65]. The equilibration of the longitudinal magnetization is a exponential recovery

process, that can be expressed as a function of time:

f (t ) = 1−e
−t
T 1 (1.1)

In this scan, the relaxation time T1 of each voxel is estimated by capturing the emitted

signal by the protons at, at least, two different time instants and isolating T1 from the

equation (1.1). Finally, this T1 value is plotted in the resultant image. See Figure 1.5 (b)

MRI it is a very common used technique as it has demonstrated to be a good solution for the

study, diagnosis and monitoring of the disease, and had let the physicians explore the brain in

a way that we had not ever imagined 20 years ago. Today it is widely accepted that changes

measured in MRI are appropiate biomarkers for AD and MCI[3]. Actually, it had been proved

through MRI studies that many structures are affected in AD, like Hippocampus, Amygdala

and Entorhinal Cortex [1, 2, 3, 5, 13, 16]. However, less studies about MCI have been done and

is not yet clear which structures are affected in this early stage.

Thus, to study the large databases, many tools dedicated to neuroimage processing have

begun to find their way in the last ten years, providing a lot of information of the brain regions.

For example, the Statistical Parametric Mapping (SPM: http://www.fil.ion.ucl.ac.uk/spm/),
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Figura 1.6: 3D representation of all 34 Regions of Interest (ROI) provided by the cortical
parcellation from FreeSurfer, (A) lateral view, (B) medial view, (C) the two non-neocortical
regions visible in the coronal view of a T1-weighted MRI, got from [13]

that is a software designed for the analysis of brain imaging data sequences. The sequences

can be a series of images from different cohorts, or time-series from the same subject. The

SPM voxel based approach permits realign images, spatially normalize into a standard space

and smooth them. Another tool that has generated interest in this research field is FreeSurfer

(Massachusetts General Hospital, Boston, MA: http://surfer.nmr.mgh.harvard.edu/), that is a

set of automated tools for reconstruction of the brain’s cortical surface from structural MRI

data, and overlay of functional MRI data onto the reconstructed surface. This software package

performs a complete analysis of a brain MRI and provide many statistics, including cortical

thickness, surface area or volume from several regions. For instance, the cortical parcellation

provides volumetric information from 68 regions, 34 from each hemisphere (Figure 1.6).

Until the last decade, the image study has been normally done manually, but nowadays it can

no longer be done in this way if one want to take advantage of the huge amount of available

data. Is for that reason that there is growing interest in automatized methods, specially in

machine learning techniques [4, 5, 6, 9], as they are less time consuming, and not observer

dependant. Such techniques are able to use information from the whole brain at the same

time, considering the relationship between regions and structures, which make them able to

better distinguish among groups. Moreover, the results obtained by those techniques are at

least comparable to a radiologist diagnosis accuracy[8]. There exist a wide number of types of

6

http://surfer.nmr.mgh.harvard.edu/


1.3. Goals of this work

classifiers, such as Generative Models, Discriminative Models, Nearest Neighbour Models. The

one chosen for this work is Support Vector Machines (SVM). It is not difficult to understand

the overall working of this kind of techniques. Consider a data set, consisting of examples

from two different classes. Some examples from the whole data set are given to the machine

learning algorithm to identify the differences between groups in order to generalize and be

able to predict the class of any input from the original dataset. More detailed information

about machine learning classifiers will be given in Section 3.1.

1.3. Goals of this work

In the previous sections it has been explained the importance of an early diagnosis of subjects

suffering from AD, but especially of those individuals suffering from MCI. To make the future

treatments more effective it is very important to identify which individuals are at most risk of

developing the disease and also which regions are early affected.

Many studies[1, 4, 5, 6, 9] can be found in the literature, which have attempted to provide

robust approaches to solve this diagnosis problem, either using MRI voxels (Voxel-Based or

VB2) or brain region volumes (Regions Of Interest or ROI3) for the classification, as explained

in Chapter 2. The first ones used manual segmentations and pattern analysis, but the recent

advances in signal processing and pattern recognition have changed the scenario. First of

all, automated methods are able to extract very large amount of data from the brain regions

such as volume, thickness or surface. Then machine learning techniques perform a complete

analysis taking into account all the variables at the same time, considering the relationships

between regions and capting in a better way the full patern of atrophy. More details about the

methods used in the literature will be given in Chapter 2. In this work an SVM classifier has

been used, as it has been proved to be a powerful tool for this kind of study[4, 5, 6, 9, 14, 17, 19].

Altough many studies about which brain regions are involved in AD degeneration have been

performed, there is still a lot to discover about MCI. The main goal of the work is to find out

which brain regions are early affected in MCI and provide best class separation. The approach

of this study is region-based as we believe that anatomically grouped voxels in brain regions

are more likely to show differences between classes than only isolated voxels. Region volumes

have been widely used in the literature to feed classifiers, but in this work we hypothesized

that combining more input variables can provide best classification accuracies and overall

performance. Apart from the classical region volumes (Figure 1.6), different brain scales have

been combined: the SVM will be fed with brain lobe volumes (Figure 1.7). This is known as

multiscale approach. But there is still more, also other different variables have been combined:

an asymmetry coefficient and data from T1 quantitative MRI have been added to our analyisis,

what is known as multivariate approach.

2VB: the input features of the classifier are based directly on the voxels of the MRI, without grouping them into
anatomical regions

3ROI-based: the input features of the classifier are region characteristics, such as volume, thickness or surface. A
more accurate description about ROI, especially those used in our study, will be given in Section 4.2.

7



Capítulo 1. Introduction

Figura 1.7: Brain divided in the four main lobes: Temporal, Occipital, Parietal and Frontal, got
from [66]

It is not the first time that different variables have been used to perform classifications. For

example, in 2011 different studies have reported better results when combining different

types of information, either multiscale[1] or multivariate[19], but none of them had combined

both techniques. In this work, both different anatomical brain scales and variables have been

combined to test whether adding them provide more robustness to the classifier4.

Moreover, a recent publication by Dukart et al.,[17] presented a new technique to control the

brain normal age-related effect and suggested it should be treated. In this study the effectivity

of this method have been checked, as well as if it should be usually applied.

In this study we are aware that many considerations must be taken into account when working

with classifiers. As explained in Chapter 2, one must be very prudent with some results given

in the literature; we suspect that some studies are probably giving better classification results

than the average performance you would outcome from a real clinical environment. Is for that

reason that we have been very clear, rigorous and methodic through all the work, in order not

to give overestimated results that would not be useful in practice in real applications.

1.4. Structure

The structure of this study will be as follows. In Chapter 2 state of the art on neuroimage

processing and pattern recognition for CTL, MCI and AD diagnosis will be presented. Then,

mathematical formulation lying behind pattern recognition and classification problem will

be summarized in Chapter 3. In Chapter 4.1 and 4.2 databases and MR imaging features that

have been used for the study will be presented. In Chapter 4.3 the methodology used in this

work will be explained. Then, the results will be analized in Chapter 6. Finally the conclusion

and the future research lines will be presented in Chapter 7.

4A detailed description of the features used in this work is given in the Section 4.2
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2 State of the art

MRI has been widely used for detection and diagnosis of AD as it appears to be one of the

most immediate promises in terms of providing information on which patients are at risk

of progress with dementia[49]. Although an autopsy is required for a definite diagnosis, the

growing interest over the last 30 years in early detection had made imaging techniques progress

and enhance the accuracy of ante-mortem diagnosis[48].

In 1991 Braak et al., [47] described the stages of AD. The course of the disease was divided into

a determinate number of stages, although the speed of mental deterioration was subjected to

interindividual variation. The study concluded that the accumulation of amyloid started before

the appearence of clinical symptoms, what is known as the preclinical phase. Early changes

have been demonstrated on the entorhinal cortex and the hippocampus[49] (see Figure 2.1)

with the help of MRI and these changes are consistent with the underlying pathology of AD, but

it is not yet clear which structures are most useful for early diagnosis of the disease, especially

for MCI[49]. Nowadays, volumetric MRI is still too variable to be used as a reliable and valid

clinical measure for MCI, and further investigation is required to more accurately determine

which are the areas involved in an early stage.

The first studies in this area used manual segmentation of the hippocampus[51, 52](see

Figure 4.2), reporting very accurate results, up to 92% of correct classifications. However,

some results suggest that this kind of study has limitations and inaccuracies. For example,

[52] conlcuded that the age had no effect on the hippocampal volumes of the CTL subjects at

the age span of this study (21-79). Although the author had cited many references to support

the assertion, more recent studies, for instance [17], contradict this statement. Moreover,

the missclassified CTL subjects in [52] tended to be the older ones, what suggests that the

age-related effect should be treated (this matter will be discussed later in Section 3.2). Even

so, the study concluded with a interesting statement: this kind of missclassification would be

due to the fact that hippocampal atrophy may precede the symptoms of dementia, so these

subjects may possibly represent preclinical dementia. Entorhinal cortex measures had also

been used to compare AD to CTL subjects [53, 54].
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(a) Normal Control subject (b) Subject with AD

Figura 2.1: Coronal T1 weighted MR scans showing (a) CTL subject and (b) AD subject. Note
the visible marked atrophy of the hippocampus and the temporal cortex in the AD subject
compared with control. Got from [48]

Despite the good results in AD versus CTL subjects differentiation, manual measurements

of these structures on MR images are extremely time consuming, observer dependant and

probably will not capture the full pattern of the atrophy. Actually, the main reason for using

this manual delineation was that image processing techiques were not as advanced as they

are nowadays. The recent advances have allowed the researchers to have more accurate and

more amount of information of the brain regions, which would be useful for early detection

of AD and MCI. Thus, multivariate tools are needed to analyze the huge amount of data that

is nowadays available. Is for that reason that there has been growing interest in machine-

learning techniques, such as Support Vector Machines, as they are able to perform analysis

taking account multiple variables at the same time and extract the complex pattern of atrophy

obtained from different brain regions.

Hitherto, many studies about automatic AD and MCI image classification have been done,

either region (ROI) ([5]) or voxel-based (VB) ([4, 5, 8, 9, 10, 12, 16]). The methods and results

got by each one are summarized in the Table 2.1, and are more explained in the paragraphs

below. The most discriminant features in the literature can be found in the Table 2.2.

In 2007 Fan et al., [12] had done two different approaches to solve the AD, MCI and CTL

classification problem, using the ADNI database. First of all, a ROI analysis was performed,

using volumetric information of the hippocampus and the entorhinal cortex, both normalized

by the total intracraneal volume. Then, the volumetric information was used to feed an SVM,

and the cross-validation accuracies were 82.0%, 76.0% and 58.3%, for AD versus CTL, MCI

versus CTL and AD versus MCI, respectively. For the second experiment Fan et al. proposed

a voxel based (VB) approach, the same method described in [6]. The basic idea is to perfom
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Figura 2.2: Manual delineation of the hippocampus of an AD subject. The most posterior slice
is on the lower right panel, got from [52]

a feature pre-selection of the image voxels and then apply an Recursive Feature Elimination

(RFE1) feature selection. Those final selected voxels were applied to the SVM, which finally

lead to cross-validated accuracies of 94.3%, 81.8%, and 74.3%, respectively, for AD versus CTL,

MCI versus CTL and AD versus MCI. As seen in the Figure 2.3, entorhinal and hippocampus

volumes are not discriminative enough to well separate early stages of AD, such as MCI. In the

voxel-based analysis, the regions that resulted to be more discriminative were the temporal

lobe, especially the hippocampus, the superior, inferior temporal gyrus and the uncus, as well

as medial Grey Matter atrophy, especially in the posterior cingulate and adjancent precuneus,

and the medial aspect of the uncus. Additional Grey Matter atrophy was also found between

AD and MCI patients: hippocampus, entorhinal cortex and middle and inferior temporal gyrus,

also including the White Matter surrounding the hippocampus and the ventricles. The better

results of the VB analysis suggest that more sophisticated methods for measuring structural

brain differences between groups should be used for diagnosis and prognosis. The authors

also made two last remarks. The first one is that the finding of reduced White Matter volumes

between MCI and CTL merited further research. The second one is that the right hemisphere

displayed higher magnitude and more widespread extent of atrophy of both GM and WM.

The interpretation of such asymmetries is known to be problematic and also requires further

studies.

In 2008 Klöppel et al., [4] did a VB approach using linear SVM to classify AD versus CTL. Three

databases were used all along the paper2; the first one consisted of only 20 subjects from each

1RFE: Recursive Feature Elimination, is a feature selection technique. More details about RFE will be given in
Section 3.2.

2In this study the best results have been got when using different databases for training and testing. Thus, in
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Figura 2.3: Scatter plot of the hippocampus and entorhinal cortex, both normalized by ICV,
got from [12]

class, the second one of 14 subjects from each class and, finally, the third one, which was

larger, consisted of 33 AD and 57 CTL subjects. The most discriminative voxels were clustered

around the parahippocampal gyrus and parietal cortex. From different experiments, the best

results were a sensitivity3 of 100% and a specificity4 of 92%. These are great results but some

considerations should be taken into account. First of all, the fact that really small databases

are used for test and training makes very difficult the interpretability and generalization of

the results. The best results had been obtained when using the first and the second databases,

getting accuracies up to 96.4%. When using the larger database, the results dramatically go

down to 81.1%, significantly lower than [12]. According to our remark, the author published

an article[59] one year after explaining that the accuracy becomes very variable when using

around 20 subjects per group. Second, the MMSE scores of the AD subjects from the first and

second databases are extremely low, what means that they are more severly diseased than

the subjects used in other studies. Moreover, we have not been able to interpretate some

procedure aspects. For example, a new interesting concept of combined kernel is presented,

but it is not widely explained, so it is not easy for the reader to figure out what exactly is really

being performed. Thus, one must be extremely prudent with this results.

Another voxel-based approach was made by [9]Vemuri et al., 2008, that used SVM and the

databases from Mayo Clinic Alzheimer’s Disease Research Center and Alzheimer’s disease

Patient Registry to perform a classification between AD and CTL. The data used for each

patient include a structural MR scan, ApolopoproteinE (APOE) genotype information, and

demographic details: age and gender. The APOE information was added because there is a

well established positive risk for AD associated with the presence ok the ε4 allelle while ε2

is protective. The method used in this study was the a-STAND score, wich is a voxel based

approach with demographic and APOE corrections of the original input features. In this case,

the method used was clear and well explained. First of all, the database was split in train

the Summary Table 2.1, age and MMSE are expressed as A-B, being A the value for the first database and B for the
second

3Sensitivity: Rate of correctly classified AD, or true positives. This issue will be explained in Chapter 5.1
4Specificity: Rate of correctly classified CTL, or true negatives. This issue will also be explained in Chapter 5.1
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group and test group. All the training steps (feature selection, model selection and model

optimization) were carried out only in the training set as the test set would be completely

new and unseen to the model. This way, a minimally biased estimate ot the true diagnostic

performance of the classifier is got. The best results were a sensitivity of 86% and a specificity

of 92% when using combined information from the MRI, demographic variables, and APOE,

although that results were not far from that the results for the combination of MRI information

and demographic variables. Finally, the brain structural changes reported were in the medial

temporal lobe, particularly the entorhinal cortex and the hippocampus, the posterior cingulate

gyrus, the precuneus and the insula. Also White Matter losses were reported in the entorhinal

parahippocampal gyrus and parietal lobe, what merits further research.

As seen, many different approaches have been proposed in the literature, but there is still

some controversy in which strategy performs better. Moreover, one must be very careful when

comparing results between studies, as many variables should be taken into account, like the

database demography or the way the images are acquired. In 2010, Cuingnet et al., [5] did a

comparision of ten methods using the ADNI database. The main idea was to simplify the task

of comparing results accross experiments. Five voxel-based methods, three methods based

on cortical thickness and two methods based on the hippocampus were tested. In order to

obtain the most unbiased estimate as possible, the set of participants was randomly split in

training set and testing set, both of the same size. The optimal parameters of the SVM classifier

were found by cross-validation on the training set, and then the perfomance of the trained

classified was evaluated on the testing set. Three group comparisions had been done: CTL

versus AD, CTL versus MCIc and MCIc versus MCInc. MCIc is a subgroup that had converted

to AD within 18 months, while MCInc had not converted at that time. For the last comparison

all methods were unable to got valid results. For the CTL versus AD experiment the best results

were a sensitivity of 81% and a specificity of 95% for the voxel based approach and linear

SVM. For the comparision between CTL versus MCIc the best results were a sensitivity of 68%

and a specificity of 95% with a linear SVM and the voxel atlas method, which is actually a

region based method. The accuracy obtained is really high, but a consideration should be

taken into account. The class separation is expected to be higher when classifiying MCIc

subjects than when classifying MCI subjects as MCIc are more AD like patients than MCI

subjects. Thus, the results are also expected to be more accurate. The authors reported that

the oldest controls and the youngest patients were more often misclassified, even though no

age effect was corrected. Finally, a combination of three approaches was tested. A convenient

approach to combine different SVM-based methods is to consider that the resulting classifier

is a SVM which kernel is a linear convex combination of the kernels of each method, known

as the multiple kernel learning (MKL) solution. None of them improved the accuracies of the

comparation AD versus CTL and only one slightly improved the MCIc versus CTL results, up

to 76% sensitivity and 85% specificity.

Recent studies had suggested that carefully combining MRI information with clinical assess-

ment and other variables and biomarkers would be useful for a better prognosis value for

those patients suffering from MCI. For example, Cerebrospinal fluid (CSF) biomarkers have

13
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also been studied in the diagnosis of AD and higher levels of τ and lower β-amyloid have

been described as good predictors of the progression to AD in those patients suffering from

MCI. As result of the growing interest in combining variables some studies had been carried

out. A recent example is, for instance, Westman et al., [1] that made a different approach

of the problem. First of all, the analysis was region-based instead of voxel-based. Moreover,

different scales were combined to feed the classifier, i.e., not only global measurements but

also small measurements; for instance, the hippocampus manual measurements. The author

used Orthogonal Partial Least Squares (OPLS5) for the classification, which also differs from

the others. The obtained results were as follows: for AD versus CTL a sensitivity of 90% and

a specificity of 94% for the cross-validation but 81% and 82% for an external test set. The

cross-validation results for CTL versus MCI were a sensitivity of 69% and a specificity of 73%,

whereas for MCI versus AD were a sensitivity of 75% and a specificity of 79%. In this article the

power of combining manual measures of the hippocampus and automated volume measures

together was tested and showed better results when comparing AD versus CTL and AD versus

MCI, but not when comparing MCI versus CTL. In this last case, the hippocampus measures

alone showed the best predictive values.

In 2011, Heckemann et al., [2] presented a study about statistical analyses of automatically

generated segmentations. The report showed many measure comparisions across groups,

including single brain region volumes, lobe volumes and an asymmetry coefficient. Signifi-

cant statistical differences have been found on the temporal lobe, as well as in the classical

studied single volumes; for instance, in the hippocampus, the amygdala, the fusiform and

the parahippocampal. Also left/right asymmetry have been found in posterior cortical re-

gions, suggesting that merits further research. The technique used for the asymmetry will be

discussed in Section 4.2.

Another example of combining different measures is the study carried out by Dukart et al.,

[19]. The proposed approach was to do a combined evaluation of FDG-PET and MRI to detect

and differentiate between types of dementia. FDG-PET and MRI data were processed to get a

precise overlap of all regions in both modalities. A new algorithm was designed to enable an

accurate anatomical registration of both modalities. All processing steps were performed as far

as possible simultaneously by applying the same deformations and preprocessing parameters

to both modalities of the same subject. This procedure resulted in an accurate anatomical

overlap of both imaging modalities and in an accurate between-subject registration, with

both images having the same voxel size and approximately the same effective smoothness.

Then, once the ROIs were extracted, SVM classification was applied with varying parameters

separately for both modalities and to combined information obtained from MR and FDG-

PET images. The best results were got when combining information from MRI and FDG-PET,

yielding to an accuracy of 100% for the CTL versus AD comparision. Those results suggest that

the integration and combination of results from different imaging modalities may provide a

5OPLS is a statistical method related to principal components regression; instead of finding hyperplanes of
minimum variance between the response and independent variables like SVM does, OPLS finds a linear regression
model by projecting the predicted variables and the observable variables to a new space.
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new way to improve the diagnostic accuracy. However, one must be cautious with the results

as the used database consisted of only 13 CTL and 21 AD.

As seen above, many studies and several approaches have been done in medical image classi-

fication for diagnosis of AD, but there is still controversy when studying MCI. Recently, some

studies had concluded that multiscale[1] or multivariate[19] approaches would yield to better

results than single approaches, but none of them had combined both techniques. The main

purpose of this work is to find out which brain regions are early affected in MCI and can be

used as reliable biomarkers. Our hypothesis is that combining more measures than only the

classical volumetric or voxel data, higher perfomances can be achieved. It will be tested wether

combining different variables and scales, i.e., small brain regions, lobes, etc, adds robustness

and accuracy to the prediction, making it more useful for future clinical applications. As seen

in the literature, machine learning techniques had proven to be a good solution to address this

issue and have become an standard for image classification for diagnosis. The classification

technique chosen for this work is Support Vector Machines, that is also a very popular method

in the literature and appears to yield to the best results. Moreover, continuing with the study

presented in 2011 by Dukart et al., [17], the age-related effect have been studied to determinate

whether the correction techniques are really useful.
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3 Technical Background

In this Chapter, the most important technical aspects are explained. In the first section, the

fundamentals of SVM are introduced. Then, in the second section all the pre-processing steps

are presented.

3.1. Support Vector Machines

3.1.1. Introduction

Machine learning techniques have become very popular in the last 20 years in this research

field as have been proven to be a robust approach for the problem of MR image classification

[4, 5, 6, 9, 17]. The recent advances in quantitative medical image analysis have provided

scientists a lot of novel measures. Specialized softwares like FreeSurfer are able to perform

a complete analyisis of an MR image and extract a huge amount of data, such as surface,

thickness or volumes from many regions. Thus, techniques able to handle this huge amount

of information are extremely required. Machine learning techniques have demonstrated to be

a suitable tool, as they can learn differences between groups using all the data togheter at the

same time, considering complex relationships between features. In addition, recent studies[8]

have reported equal or better accuracies when comparing to an expert radiologist. The use of

computer-asisted methods for diagnosis would not only provide another diagnosis tool, but

also improve the speed of diagnosis without compromising accuracy.

Support Vector Machine has been used in this study as it is the most widely chosen option

when dealing with machine learning techniques in neuroimage classification. Although the

readers do not need to understand the underlying theory behind SVM, we briely introduce the

basics necessary for explaining our method in the next subsection.
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Figura 3.1: General overview of an SVM, got from [14]

3.1.2. Fundamentals

An SVM can be considered like a "black box"that determines the belonging of group of a new

instance, based on a training procedure . A classification often involves separating data in

training and testing set. Each example on the training set contains a label, depending on which

group does it belong, and several attributes, called features. In our study the possible class

labels are CTL, MCI or AD. The main objective of the SVM is to produce a model able to predict

the labels of the test data given only the test data features (Figure 3.1). Then, the accuracy is

reported comparing the predicted labels with the true labels.

Given a training set of instance-label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn and y ∈ {1,−1}l , the

SVM has to find the hyperplane that maximize the margin between classes:

〈w,Φ(x)〉+b = 0 (3.1)

Corresponding to the decision function

f(x) =sign(〈w,Φ(x)〉+b) (3.2)

In order to find this maximum margin hyperplane, SVM require the solution of the following

optimization problem:

mı́n
w,b,ξ

1

2
wT w +C

l∑
i=1

ξi

subject to yi (wTΦ(xi )+b) ≥ 1−ξi , (3.3)

ξi ≥ 0

whereΦ(xi) maps xi into a higher-dimensional space and C>0 is the regularization parameter.
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SVM finds a linear separating hyperplane with the maximal margin in this higher dimensional

space. But due to the possible high dimensionality of the vector variable w , usually the dual

problem is solved:

mı́n
α

1

2
αT Qα−eTα

subject to yT = 0, (3.4)

0 ≤αi ≤C , i = 1, ..., l

where e = [1, ...,1]T is the vector of all ones, Q is an l by l positive semidefinite matrix, Qi j ≡
yi y j K

(
xi , x j

)
and K

(
xi , x j

) ≡ Φ (xi )T Φ
(
x j

)
is the kernel function. After the equation (3.4),

using the primal-dual relationship, the optimal w satisfies:

w =
l∑

i=1
yiαiΦ(xi ) (3.5)

and the final decision function is

sign (wTΦ(x)+b) = sign (
l∑

i=1
yiαi K (xi , x)+b) (3.6)

The SVM technique uses information from all the features at the same time. Looking at the

Figure 3.2 it is easy to see that neither the feature y1 nor y2 are able to separe groups, and it’s

only when combining information from both that a correct separation is achieved. Ideally, an

SVM analysis would yield to an hyperplane that completely separates the feature vectors in

two non-overlapping groups. However, in real world problem it is not likely to get an exactly

separate line dividing the data within the space. It also may produce a model with high-

dimensional feature vector that is overadapted to the training data and does not generalize

well; this is known as overfitting. To allow some flexibility in separating the classes, SVM

uses the hyperparameter C (see second term in the Equation (3.3)), that controls the trade

off between allowing training errors and forcing rigid margins. This way, it allows a point

to be on a determinate distance on the wrong side of the hyperplane without violating the

constraint[62] (See Figure 3.2). A high cost value C will force the SVM to create a more complex

model to missclassify as few training examples as possible, while a lower cost parameter will

lead to a simpler prediction function, which will probably generalize better.

The C value should be optimized, as the accuracy of an SVM highly depends on the selection

of the model parameters. The common way to do the optimization is to separe the testing set

at the begining, and split the training data set in different parts, for example in two. Then, the
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Figura 3.2: Linear separation used, but admiting training errors. Penalty of the error: distance
to the hyperplane multiplied by C, got from [61]

Figura 3.3: Typical v-fold Cross-Validation procedure, got from [14]

model is trained changing the C value in one of this parts of the training set and tested in the

other. Finally, the C value that yield to the best accuracy is selected to train the final model and

predict the unseen data. An improved version of this procedure is known as cross-validation,

in which the method described above is done once for each partition of the training data set.

In v-fold cross-validation (See Figure 3.3), the training set is divided into v subsets of equal

size. Sequentially one subset is tested using the classifer trained on the remaining v-1 subsets.

This way, each instance of the whole training set is predicted once so the cross-validation

accuracy is the percentage of data which are correctly classified. If v=n, being n the total

number of instances in the training set, the procedure is known as Leave-One-Out Cross

Validation (LOOCV). This is a common option to deal with small databases, although it is

computationally expensive. Cross-validation prevents the overfitting problem since the C

value is optimized without using the testing data.

In the Equation (3.3), the features are mapped in a higher dimensional space. The reason to

do this is that sometimes the examples are not separable in the original space, but may be

classificable in the new high-dimensional space. For example, as seen in the Figure 3.4, the

original data was completely overlapped, but the mapping in the higher dimensionality space

make it possible to distinguish among groups. The function K (xi , x j ) ≡Φ(xi )TΦ(x j ) is called

the kernel function. There exist several kernels, but the following four are considered the basic

ones:
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Figura 3.4: The kernel function may map the data into a higher dimensional space, what would
make it possible to perform the separation, got from [61]

Kernel 1. Linear. K (xi , x j ) = xT
i x j

Kernel 2. Polynomial. K (xi , x j ) = γxT
i x j + r )d

Kernel 3. Radial Basis Function (RBF). K (xi , x j ) = exp(−γ∥∥xi −x j
∥∥2 ,γ> 0

Kernel 4. Sigmoid. K (xi , x j ) = tanh(γxT
i x j + r )

The chosen of a deterimate kernel depends on the application. This issue is discussed in

Section 4.3

3.2. Data pre-processing

As the SVM accuracy is very sensitive to the input data, some pre-processing steps must

be done before feeding the classifer. The theory underlying these steps is explained in the

following sub-sections.

3.2.1. IntraCranial Volume Normalization

The Intracranial Volume (ICV) normalization consists in dividing each volumetric feature by

the total Intracranial volume of the subject. This way the differences between subjects in the

same region due to the size of the head are reduced. This also helps to reduce the variability

between male and femal differences. Although the ICV normalization is a very commonly

used in the literature [1, 2, 7, 12], in this work both with and without ICV normalization results

are presented. As no correlation between head size and disease has been reported, it is normal

to think that the global volumetric mesures should be ICV normalized, otherwise SVM will

classify mostly by the head size. In our opinion, with smaller structures, where the variation

between subjets is even smaller, the ICV normalization is perhaps removing subtile changes.

Is for that reason that the results are reported with ICV and without ICV normalization.
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3.2.2. Age Correction

It is widely known that there are age-related changes within healthy population in many diffe-

rent brain structures measured by MRI. The growing interest in group classification have given

importance to the development of techniques to control the age-related effects, that normally

lead to hide the disease-related effects and, therefore, higher rates of missclassification.

As age-related and disease-related effects deteriorates the brain in similar way, the classi-

fication algorithms are not able to differentiate between both and tends to misclassify the

old control and the young demented subjects[5]. Is for that reason that it is very important

to control those effects, remove the age-related one and let the classifier focuse only on the

disease-related changes.

The most popular resort in the literature[1, 4, 5, 9, 10, 12] is to select, as much as possible, age

matched groups. But to avoid the kind of missclassifications described above, groups used for

training the classifier should ideally be matched at least once to every single subject in the test

set. At practice, it is almost impossible to find groups of subjects large enough which match

each subject in age and other confounding variables.

A recent study by Dukart et al., 2011[17] had presented a method to correct the age effect, a

linear detrending method in terms of the general linear model (GLM). The age-related effects

were estimated only with the CTL group beacuse, if the AD group was also considered, some

disease-effect would have taken into account. A linear model was chosen in this study as it

yielded to significantly higher perfomance respect the quadratic model. The procedure is

described below.

First of all, a GLM was calculated for each feature separately; in this study, as the input features

were directly the MRI voxels, the correction was done for each voxel. In our study, the regression

is done per region. The Xc matrix is composed by two columns, which are a constant and age,

and only the CTL subjects are used to compute the regression coefficients β, wich is composed

by a constant β0 and the first order term βc . The following regression model has to be solved

for β by the minimization of the sum of squared residuals,
∑
ε2

c → mi n:

yc = Xcβ+εc (3.7)

Solving (3.7) for least squares (LS) estimates of β satisfies the following normal equations:

X T
c Xcβ= X T

c yc (3.8)

Then, solving the linear equations system (3.8) for β results in:(
β0

βc

)
= (X T

c Xc )−1X T
c yc (3.9)
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Figura 3.5: Age characteristics of missclassified subjects using SVM before and after aplying
age correction, got from [17]

The Equation (3.9) returns a pair of values β0 and βc which are, respectively, the constant and

the slope of the regression line. To obtain the age-corrected feature value, the equation (3.10)

has to be applied:

ycor r ected = yuncor r ected −βc Xag e (3.10)

Finally, the equation (3.10) should be applied to each voxel and each subject, including both

CTL and diseased subjects.

The accuracy reported in [17] was slightly higher if applying age correction, 85% compared to

83%, when classifying CTL versus AD. But more imporant, the groups of missclassified CTL

and missclassified diseased subjects did not further show a difference in mean age[17], as

seen in the Figure 3.5. This means that the classifier is working more independtly of the age,

focusing more on the disease-related differences between groups and no longer sistematically

misclassifying younger AD and older CTL subjects.

In this work another method has also been been studied. The used database is expected to

have variability, as it is real data, there are not infinite examples, and probably there will be

some outliers. The classical way to deal with regression outliers is to use LS and try to find

the influent observations. The influence of one observation zi = (xi , yi ) depends on being yi

too large or too small compared to other y ’s from similar x’s. After the outliers are identified,

some decision must be taken such as modifying or deleting them and applying LS again to the

modified data[46]. This procedure is call Robust Regression, and there is a large and complex

theory behind this concept that overcome the purpose of this work. For further details, see

Maronna et al., 2006 [46] and Davies et al., 1993 [45]. A comparision of both can be seen in the

Figure 3.6. The robust regression gives weights to the possible outliers and the slope changes

respect the LS regression. Due to this modifications, the final Root Mean Square (RMS) error is

likely to be lower than when using the classical LS Regression.
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Figura 3.6: Comparision of Robust and Least squares Regressions. The robust regression gives
weights to the possible outliers (in red)

Both ordinary linear and robust linear regression will be tested in this work.

3.2.3. Feature Scaling

It is very important to scale the input data before applying SVM [37, 21]. The purpose of scaling

is to avoid higher range features having more importance than others with lower ranges.

Another aspect that should be taken into account is the fact that SVM kernel values normally

depend on the inner products of feature vectors, and large numbers might cause numerical

problems [37]. At last but not least, high range attributes also make all the calculations more

time consuming. So it is very important to scale the input data and, of course, scale both

training and testing set with the same scale factor.

As seen in [11], there are many methods for scaling the input data but three different methods

had been considered:

Method 1. Norm-1. Each subject’si feature value is divided by the sum of the values of each

subject’s value for this featuref . The 1-normalized value for the subjecti and the

featuref is:

xnor m1

i , f = xi , f∑
i xi , f

(3.11)

Method 2. Norm-2. Each subject’si feature value is divided by the root of the sum of the
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square values of each subject’s value for this featuref. The 2-normalized value for

the subjecti and the featuref is:

xnor m2

i , f = xi , f√∑
i x2

i , f

(3.12)

Method 3. Norm-z. The standard deviation σf and the mean µf value of the featuref vector

are computed. The mean µf is substracted and then, this value is divided by the

standard deviation σf. With this method, the new values have zero mean and

standard deviation 1.The z-normalized value for the subjecti and the featuref is:

xnor mz

i , f = xi , f −µ f

σ f
(3.13)

The method selected for the whole study from now on is the z normalization for two reasons.

The first one is because it yield to better results than the other two options. The second is that

it is the normalization typically used in the literature, as seen in [1], [9] or [21].

3.2.4. Feature Selection

A popular problem in machine learning and classification is to find ways to reduce the di-

mensionality of the feature space to overcome the risk of overly adapt the trained model to

the training data, creating a model that do not generalize well. Data overfitting arises when

the relationship between the number of features is higher than the number of instances.

Normally, it is allowed to work with a difference of one magnitude order: F ≤ 10N , being F the

dimensionality of the feature space and N the dimensionality of the examples space. However,

during the simulations we have noticed that, normally, the classifier works better when the

relation is F ≈ N . Given that there are usually more features than examples, it is normally

worthy to reduce the number of the input features in order to let the classifier focuse in the

important ones. There are many potential advantages on the feature selection: facilitating data

undestanding, reducing the measurement and storage requirements, reducing the training

and testing times and finally improving the accuracy of the final classifier[30].

As seen in [28, 29, 30, 31, 32, 33] there exist many techniques of feature selection, for instance

Correlation-based Feature Selection, F-score or RFE. Another strategy which is not a feature

selection method but could be useful to reduce the feature space in a fast and easy way is a

t-test. N t-tests are performed in the feature space to find statistically significant differences

across groups in each featuren of the feature space. The theoretically irrelevant features for

classification, those that the null hypotesis is not rejected, are removed. Although it is a very

easy and fast method, it has disadvantages. For example, that it does not take into account the

relationship between features. This is a very critical issue, because as seen in [30], a variable

that is completely useless by itself can provide a significant performance improvement when

taken with others (see Figure 3.7). Also two variables that are useless when taken separately
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(a) Useless variable by itself (b) Useful variable in combination
with others

Figura 3.7: A variable usless by itself (a) can provide improvement in class separation when
combining with another variable (b). Got from [30]

can be useful together. Moreover, this method presented lower results in the analysis, so it was

no longer used.

In 2002, a new technique named Recursive Feature Elimination (RFE) had been presented by

Guyon et al., [21]. RFE is a method which performs backward feature elimination, i.e, it starts

with all features F and sequentially removes the more irrelevant features until a subset S of a

determinate size is left, according to the stop criteria. This is done by iterativilly perfoming

this procedure:

Step 1. Train an SVM with the actual feature space. In the first iteration it will be F , in the

next iterations it will be S′.

Step 2. Sort the features by the values of w2, being w the weight vector.

Step 3. Remove the feature with the smallest value of w2. The new feature space S′ has one

less feature. Also M features can be removed in each iteration. In our case, it is done

one by one.

Step 4. If the stop criteria is satisfied, go to Step 5. If not, return to Step 1.

Step 5. The resultant feature space S = S′ will be used to feed the classifier.
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(a) Using two perfectly correlated
variables

(b) Using only one variable

Figura 3.8: There is no significant gain when using two perfectly correlated variables (a) instead
of one (b). Got from [30]

Another aspect to take into account is the feature correlation. The procedure described above

removes attributes with little weights, but probably some redundant features would be kept.

If the correlation between two variables tends to be perfect, it means that no information

is gained by combining them[30]. This can be seen in the Figure 4.1: combining perfect

correlated variables does not provide an increase of the class separation power comparing

when taking only one of them, what means that are truly redundant. Is for that reason that

feature correlation must be controled before feeding the SVM. Nevertheless, according to

Guyon et al.,[30] high variable correlation (or anti-correlation) dones not mean absence of

complementarity. Thus, in order not to delete important information, the minumum threshold

to be able to remove a variable has to be very high, at least 0.9, according to [64]. In our

method, a classifier is trained before the decorrelation step in order to know which are the

most discriminative features. Then, the feature correlation is checked, starting from the most

discriminative, i.e. F1 −F2, F1 −F3, ..., F1 −FF , and removing the second term if necessary, in

order to preserve the most discriminative features when correlated with some others. This

way, if the most discriminative feature was correlated with the F5, this one will be removed

instead of F1.

The feature selection method used in this work is the RFE algorithm, as it is one of the most

popular methods in the literature [6, 12] and has proven good performances. Moreover, a

decorrelation step has been introduced before the RFE procedure in order to remove the truly
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redundant information and make things easier to the feature selection algorithm. More details

about the complete procedure are given in the Section 4.3.

3.3. Potential Common Mistakes

Dealing with classifiers is not a simple task and many potential pitfalls must be avoided.

Basically, the most important thing is that the testing set on which the results are reported

must be completely independent of the training procedure; once a pure set is initially separed

it must not be touched again but to report a final pure accuracy. A study performed in 2009

by Pereira et al., [14] presents the machine learning classifiers giving a tutorial overview and

reviewing the crucial issues that must be beared in mind. The most important aspects that

must be taken into account are summarized below:

Classifier Parameter Tuning

• Feature selection must be independent of the testing set. It is not allowed to select

features that appear to distinguish one class from another in the whole dataset.

The reason for this is that, actually, it permits information from the test set to affect

the learning of the classifier in the training set, leading to overoptimistic accuracy

estimates. Looking at the labels for the entire dataset is sometimes called peeking.

However, this does not mean that the class labels cannot be used at all in feature

selection. They can be used only once the data have been split into training and

test sets, considering solely the training set[14].

• The parameter tuning must be independent of the testing set. Exactly for the same

reason of the first point, the C hyperparameter must be optimized only in the

training set. Otherwise, the classifier would be overadapted to the whole dataset,

and provide a completely bieased estimation of the true classification performance.

Group Balance

• The groups must be balanced in terms of examples per group. If this is not the case,

the machine learning algorithm may tend to focus on the larger group, classifying

the most numerous class per by default.

• If there is a variable that is likely to present differences between classes, the groups

must be balanced in terms of this variable. For example, it happens with the subject

gender or when adding MRI acquired in multiple sites. In this last case, as explained

in Chapter 4, balanced number of examples from each site must be taken to present

reliable results. Otherwise, the classifier will focuse more in those variations than

in the diseases-related differences.

Data used

• Only one MRI scan should be selected from each subject. When working whith MRI,

two different scans from the same subject, even when acquired at different time
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points, have a strong correlation degree. Is for that reason that the algorithm would

classify in an easier way scans from one person if another scan of the same subject

have been included in the train set. This also will outcome overestimated results.
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4 Materials and Methods

In this Chapter, the Databases, features and methodology of our work are explained in the

first, second and third sections respectively.

4.1. Database

All the experiments in this study were performed on three databases containing CTL, MCI and

AD subjects. In this section the databases and features used in this study are presented below

and summarized in the Table 4.1.

4.1.1. ADNI 1 Database

The first database contains indidividuals from the Alzheimer’s disease Neuroimaging Initiative

1 (ADNI 1) database (http://www.loni.ucla.edu/ADNI), and is used to compare our method

and results to the approaches in the literature (see Chapter 2). Only T1-weighted MPRAGE

1.5T images have been used. The MRI scan from the baseline visit has been used for each

subject when available and from the screening visit otherwise. Only the amnestic MCI patients

whose impariment was due to AD were selected. Finally, the database is composed by 185

individuals from each class, randomly selected to match age and gender as much as possible.

The ages are for the CTL subjects (mean age ± SD) 76,59±5,07 , 75,39±7,37 for the MCI and

75,87±7,52 for the AD subjects. The Mini Mental State Examination (MMSE) scores (mean ±
SD) of the CTL, MCI and AD are respectively 29,08±1,00, 27,06±1,76 and 23,32±2,00. Finally,

the gender distribution is, M/F, 93/92, 92/93 and 96/89 for CTL, MCI and AD.

4.1.2. Lausanne Database

The Lausanne Database comes from: FNS project Number 122263, 2009-2013, ”The impact

of personality characterisitcs on the clinical expression of MCI”, PI: Prof. Von Gunten, and

it is composed by T1-weighted MPRAGE 3T MR images. Despite there were Amnestic, Non-
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Cuadro 4.1: Summary of Databases Demography

ADNI 1 Lausanne Expanded

Group(n) CTL(185) MCI(185) AD(185) CTL(29) MCI(29) CTL(58) MCI(58)

Sex (M/F) 93/92 92/93 96/89 9/20 9/20 24/34 18/40

Age at MRI scan 76.6 75.4 75.9 70.5 70.4 71.7 71.5

MMSE score 29.1 27.1 23.3 28.9 27.9 29.3 27.5

Amnestic and Mixte MCI, only the Amnestic and Mixte were selected. From the Lausanne

Database, T1-quantitative MRI were also added to our analysis. It contains 29 CTL and 29 MCI

subjects. The age for the CTL is 70,47±7,39 and 70,36±9,67 for the MCI subjects. The MMSE

scores are 28,90±1,23 and 27,86±1,22 for CTL and MCI respectively. The gender distribution

is 9/20 for both groups.

4.1.3. Expanded Database

Finally, in order to increase the number of subjects per class, the Lausanne Database is

exapanded adding ADNI 1 subjects. In order to create a well balanced model, only 29 subjects

from each class can be added. Otherwise there will be more subjects from one database and

there would be the potential risk to classify by site instead of by disease; the model would

overadapt to site specific differences. Is for that reason that is very important to keep the

same number of subjects per site per class. Thus, 29 subjects from each class were randomly

added to Lausanne Database, matching age and gender as much as possible, to configure the

Expanded Database. The age for the CTL is 71,66±7,86 and 71,51±8,28 for the MCI subjects.

The MMSE scores are 29,28±1,12 and 27,51±1,50 for CTL and MCI respectively. The gender

distribution is 24/34 for the CTL group and 18/40.

4.2. SVM Input Data

In this study five types of data have been used to feed the classifier, including Grey Matter

Region Volumes, Lobe Volumes, Asymmetry coefficients, WM parcellation and T1-quantitative

data. All of them are presented in the subsections that follow. The complete list of brain regions

provided by FreeSurfer is given in the Appendix A.

4.2.1. Grey Matter Volumes

Specialized softwares like FreeSurfer perform a complete anaylisis of brain MRI and extract

a lot of data about brain regions, such as thickness or volume. For instance, two commonly

used output files are:

aseg: is the statistical output from the subcortical segmentation. This file provide volume-
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(a) Subcortical Segmentation, aseg from FreeSurfer (b) Cortical Parcelation, aparc from FreeSurfer

Figura 4.1: Two different output files from FreeSurfer (a)aseg file (b)aparc file. Got from [67].

tric information of 55 regions, including, for example, the left and the right hippocampus.

See Figure 4.1a.

aparc: is the statistical output from the cortical parcellation. This file can provide, for

instance, volumetric or thickness information of 68 regions, 34 from each hemisphere.

See Figure 4.1b. In this study, only volumetric information have been considered.

Region Grey Matter Volumes

In this study, classical brain region volumes extracted with FreeSurfer have been used. However,

the classifier has not been fed with all volumetric features, but only with a pre-clinical selection.

The regions involved in AD have been widely studied, as seen in Chapter 2, and considering

all the volumetric data provided by FreeSurfer would probably add unnecessary noise instead

of valuable information. Thus, those features that commonly appears in the AD and MCI

classification literature have been selected. Also features that are normally considered as usual

supects in AD and MCI classification problems have been added. Finally, 47 brain regions have

been used for this work:

From the aseg file:

• Right and Left Hippocampus

• Right and Left Amygdala

• Right and Left Inferior Lateral Ventricles

• Right and Left Lateral Ventricles
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• Right and Left Accumbens

• Right and Left vessel

• White Matter Hypointensities

• Right and Left Cortical White Matter.

From the aparc file:

• Right and Left Entorhinal

• Right and Left Temporal pole

• Right and Left Superior and Inferior Parietal

• Right and Left Parahippocampal

• Right and Left Lateral and Medial Orbitofrontal

• Right and Left Middletemporal

• Right and Left Insula

• Right and Left Rostral and Caudal Anterior Cingulate

• Right and Left Fusiform

• Right and Left Precuneus

• Right and Left Caudal Middlefrontal

• Right and Left Isthmus Cingulate

• Right and Left Lateral Occipital

The MRI files have been processed with FreeSurfer 4.4 for the ADNI 1 Database1, while with

Freesurfer 5.1 for the Lausanne and the Expanded Database. The complete list of the regions

provided by the aseg and the aparc file can be found in the Appendix A.1 and Appendix A.2

respectively. For further details about the FreeSurfer outputfiles see https://surfer.nmr.mgh.

harvard.edu/fswiki.

Lobe Volumes

As explained in Section 1.3, one of the most important goals of this work is to find out whether

adding information on multiple anatomical brain scales (multiscale approach) improve the

overall perfomance of the classifier. Our hypothesis is that, although multiple single isolated

regions may not show differences, they probably do when grouped in higher scale structures.

To carry out this task, the different brain lobe volumes have been calculated and added to

1The FreeSurfer 4.4 processed data used from ADNI do not provide exactly the same regions that can be found
in FreeSurfer 5.1. In this case, the features have been selected to fit as much as possible the Lausanne Database
clinical feature selection. The complete list of features selected from the ADNI 1 Database can be found in the
Appendix A.5.
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the classifier, using FreeSurfer volumes extracted from the aseg and the aparc files. The brain

have been divided in 12 lobes, 6 per hemisphere, which are Frontal, Limbic, Parietal, Occipital,

Temporal and Noyaux. The brain regions composing each lobe are those that follows:

Frontal Lobe:

• Lateral Orbitofrontal

• Pars Orbitalis

• Frontal Pole

• Medial Orbitofrontal

• Pars Triangularis

• Pars Opercularis

• Rostral Middlefronta

• Superiorfrontal

• Caudal Middlefrontal

• Precentral

• Paracentral

Limbic Lobe:

• Rostral Anterior Cingulate

• Caudal Anterior Cingulate

• Posterior Cingulate

• Isthmus Cingulate

• Parahippocampal

• Entorhinal

• Temporal Pole

• Thalamus

• Hippocampus

• Amygdala

Parietal Lobe:

• Postcentral

• Supramarginal

• Superiorparietal

• Inferiorparietal

• Precuneus

Occipital Lobe:

• Cuneus

• Pericalcarine

• Lateraloccipital

• Lingual

Temporal Lobe:

• Inferiortemporal

• Middletemporal

• Bankssts

• Superiortemporal

• Transversetemporal

Noyaux Lobe:
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• Caudate

• Putamen

• Pallidum

• Accumbens Area

As well as did for the classical volumetric data, the lobe volumes have been also calculated for

both right and left hemisphere.

4.2.2. Asymmetry

As far as we know, very few studies refering about brain regions asymmetry in AD or MCI

subjects can be found in the literature. For example, in 2006 Fan et al.,[12] reported right

asymmetry pattern of atrophy in MCI. However, the interpretation of the brain asymmetry

studies is known to be problematic. The author suggested that further research was required.

Heckemann et al., [2] also studied the asymmetry in AD and MCI for some brain areas. The

author reported statistically significant results in the Hippocampus for both AD and MCI versus

CTL comparision, and in large regions when comparing AD versus CTL. Finally, according

to Fan et al.,[12], the study conlcuded that this was an area for future exploration[2]. The

asymmetry coefficient for each region Ar used in Heckemann et al., [2] was calculated as

follows:

Ar = 2 |VR −VL |
VR +VL

(4.1)

However, we suspect that computing the absolute value some useful information is being

killed. Imagine the case that a region tends to be left predominant asymmetric in CTL but

right predominant asymmetric in MCI. If the absolute value is computed, both CTL and MCI

values will be classified in the same way, so the discriminative value is lost. Is for that reason

that in our study the asymmetry coefficient used have been computed as follows:

Ar−Lausanne = VR −VL

VR +VL
(4.2)

As seen above, few studies have been performed about asymmetry in AD, and even less

about MCI. Moreover, those that have studied asymmetry, normally have not looked beyond

the hippocampus the amygdala[2]. In this study, 19 regions have been considered for the

Asymmetry Study, including:

Hippocampus

Accumbens

Inferior Lateral Ventricle

Lateral Ventricle

Vessel

Amygdala

Caudal Anterior Cingulate

Rostral Anterior Cingulate

Entorhinal

Fusiform
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Figura 4.2: wmparc file from FreeSurfer, got from [67]

Lateral Orbitofrontal

Medial Orbitofrontal

Middletemporal

Parahippocampal

Precuneus

Insula

Caudal Middlefrontal

Temporal Pole

Inferior Parietal

4.2.3. White Matter

Another FreeSurfer file has been studied in this work, the wmparc stats file, which is a table

of the white matter brain region parcellation volumes. This file is based on the cortical par-

cellation technique and extends this labeling to the subcortical WM directly underlying the

cortical parcellation[68]2. As far as we know, really few studies have used this file to perfom

their analysis, so no feature pre-selection based on the literature can be done. The input

features will be the whole set of regions provided by this file. The complete list of the regions

considered in the wmparc is given in the Appendix A.3.

4.2.4. T1-quantitative MRI data

As explained in Section 1.3, our hypothesis is that combining measures from different image

modalities the overall perfomance is likely to increase; this is known as multivariate approach.

2The WMparcellation method is an extension of the cortical parcellation procedure that utilized spherical
spatial normalization to label gyral and sulcal areas throughout the brain. Cortical parcellations were subsequently
used to assign a label to the underlying white matter by the construction of a Voronoi diagram in the WM voxels of
the MR volume based on distance to the nearest cortical parcellation label. Each Voronoi polygon then inherited
the label of the parcellation unit, yielding a complete labeling of the cerebral WM. For further details, see [68].
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Thus, apart from the multiscale information, T1-quantitative MRI data have been used to

feed the classifier. Both single regions and lobe T1-quantitative measures have been used. In

both cases, the T1 value is obtained computing the mean value of the voxels of a region. The

complete list of the single regions cosidered in the T1-quantitative analysis can be found in

the Appendix A.4. Refering to the lobe measurements, the list is presented below:

Frontal White Matter

Frontal Grey Matter

Parietal White Matter

Parietal Grey Matter

Occipital White Matter

Occipital Grey Matter

Temporal White Matter

Temporal Grey Matter

4.3. Methodology

In this Section, the most important aspects of our methodology are explained. The summary

of the complete procedure can be seen in the Figure 4.5 and is explained in the sections that

follow.

The MRI measures described in Section 4.1 have been analysed with Support Vector Machines.

The SVM implementation have relied on the LIBLINEAR Library[69], which is freely available

at http://www.csie.ntu.edu.tw/~cjlin/liblinear. All the processes have been implemented in

MATLAB R2011b3(MathWorks Inc., Sherborn, MA). The classifier chosen for our simulations

have been a linear C-SVM for many reasons. The first one is because, since the feature space

dimensionality F (which is the number of features per subject) is normally higher than the

examples space N (total number of subjects) in all the analysis, mapping the features in a

space of higher dimensionality would not provide advantages. Moreover, during the analysis

we have realized that the accuracy using linear SVM tended to be higher than when using

more sophisticated kernels. Finally, the computational cost was also reduced comparing with

the others.

4.3.1. Pre-processing steps

ICV normalization. An ICV normalization pre-processing step is introduced as explai-

ned in Section 3.2. This step is skipped in case that no normalized volumes are required

for the analysis.

Age Correction. As explained in Chapter 2, several problems associated with the age-

related effect arise when trying to perform AD, MCI and CTL classifications. A recent

study performed by Dukart et al., [17] presented a method to control this age-related

3© 2012 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
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4.3. Methodology

effect, showing promising results in CTL versus AD classification. Thus, in our method

an Age Correction procedure is perfomed, as explained in Section 3.2, but with one

important difference: instead of applying the regression voxel by voxel, we compute the

correction per brain regions. To estimate the regression coefficients the whole database,

on which the analysis is being performed, is used4 in order to introduce as less bias as

possible5. Therefore, this step is placed before splitting into Training and Testing Set6.

Train Set and Testing Set. The classifier has a number of parameters that have to be

learned from the training data, which is a part from the whole dataset reserved for that

purpose. The learned classifier will be a model of the relationship between the features

and the class label in the training set. Finally, the perfomance of the created model is

tested trying to predict another part of the data set, called test set, which should be,

ideally, unseen data for the classifier.

Thus, the next thing to do is to split the whole data set in:

• Training Set: is used to tune absolutely all the parameters of the classifier, as

explained in the next subsections.

• Pure Test Set: is used to test the accuracy of the classifier. Never, and absolutely

never, touched once separed from the original dataset. Otherwise, the final trained

classifier will depend on this Test Set, what would lead to bias in the real overall

perfomance. Thus, the reported results are directly what it is expected to obtain

when used in a real clinical enviroment.

Data scaling. For this work, a z-normalization have been applied to the examples in

the training set. This way, it is assumed that all region attributes have zero mean and

standard deviation one throughout this work. Of course it is very important to use the

same criteria to scale both training and test set[37]. Is for that reason that the mean and

standard deviation estimates used for the training set normalization are considered to

be part of the machine, saved and applied to the pure test set to ensure that they are

scaled consistently[9].

4.3.2. Parameter Setting

The procedure described below is shown in the Figure 4.3. This part is one of the most impor-

tant steps in our work, as both features and the C parameter will be selected for the final pure

testing. This procedure is based in what is known as nested cross-validation. First of all, one

4The age correction coefficients are computed directly with the database on which the experiments are being
performed. For example, when working with ADNI 1 Database, this age-correction coefficients will be computed
with this database.

5It has to be considered that the performance of a regression directly depends on the number of examples, and
it do its task better when dealing with databases that tend to be Gaussian. Thus, the more subjects are included in
the regression, the better performance is expected

6Ideally, the regression coefficients should be universal and well-standarized, but there are no studies about
this matter in the recent literature. This issue will be discussed in Section 7.2.
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subjecti from the training set is selected (this step is repeated for all the subjects in the trai-

ning set, what is known as cross-validation). Then, a decorrelation and RFE feature selection

steps are performed to select the set of most discriminative features in this reduced train set

(which is the whole train set without the previous selected individual). The threshold of the

decorrelation step is fixed to 0.95 in order not to remove important information. The next step

is to find the C that best predicts new data. To do so, a subject is selected from the reduced

train set, that will be used to test, and the others are used to train a model with a determinate

C. This process is repeated till all subjects in the reduced train set have been used to test, what

is known as a nested7 cross-validation. Then, the same procedure is repeated giving many

values to C hyperparameter, what is known as Grid-Search8. Each nested cross-validation has

a final accuracy, and the C that yield to the best accuracy is selected to train the model with

the reduced train set. This reduced model will be used to predict the subjecti. This process is

also repeated once per subject in the training set, and outcoming a cross-validation accuracy.

Moreover, the number of features selected is chosen in the same way. Many iterations of the

described loop are done, changing the number of selected features in the RFE. Finally, the

number of selected features that yield to best cross-validation accuracies is selected to be used

in the final model. Summarizing, the model is optimized in the way that follows:

Feature Selection: try different number of selected features in the RFE. The one that yield

to best cross-validation accuracies is selected. This behaviour is showed in the Figure 4.4

.

Parameter Tuning: using this selected number of features, the most frequent selected C

in the nested cross-validation will be used to train the final model.

4.3.3. Final Model Training and Pure Testing

The final global scheme can be seen in the Figure 4.5. Finally, the Train Set is used to train the

final model, using the C hyperparameter and the F number of features, both optimized in the

Model Tuning step. The F selected features are those top ranked in the cross-validation. Then,

the labels of the pure test set are predicted and the final accuracy of the classifier is the result

of the comparision of the predicted labels versus the true labels.

7It is considered a nested one beacuse it is included in a main cross-validation loop.
8Grid-Search refers to exhaustive searching process, giving values to the hyperparameter that is going to be

optimized. Usually, it is done in a logarithmic way, i.e. C = 1−7,1−6,...,1−1.
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Figura 4.3: Tuning SVM Model Process: the output of this block is the optimum hyperparameter
C and features to use to train the final model.
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Figura 4.4: CV accuracy when changing the number of features. Expanded Database, GM
Region Volumes+ GM Lobe volumes+ Asymmetry Coefficients.
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Figura 4.5: Summary of the complete implemented classification process
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5 Pre-processing Analysis

In this Chapter, the pre-processing studies are presented. In the first Section, our evaluation

method is explained. In the next Section, previous study pre-processing steps have been

performed in order to compare our method to the literature and to assess whether some

pre-processing steps are worthy or not.

5.1. Quantitative Evaluation

5.1.1. Accuracy, Sensitivity, Specificity

In this work 6 values describing the performance of the classifier are given for each analysis:

Sensitivity: Is the rate of true positives (TP)1. For example, when performing a CTL

versus MCI analyisis, the sensitivity is the rate of correctly classified MCI subjects2:

Sensti vi t y = number o f T P

number o f T P +number o f F N
(5.1)

Specificity: Is the rate of true negatives (TN). For example, when performing a CTL versus

MCI analyisis, the sensitivity is the rate of correctly classified CTL subjects3.

Speci f i ci t y = number o f T N

number o f T N +number o f F P
(5.2)

Accuracy: Is the total rate of correctly classified subjects, computed in the way that

follows:

Accur ac y = Sensi t i vi t y +Speci f i ci t y

2
(5.3)

1TP: True Positives, FP: False positives, TN: True Negatives, FN: False Negatives.
2In a generic analyisis A versus B, the sensitivity is the rate of correctly classified B subjects.
3In a generic analyisis A versus B, the specificity is the rate of correctly classified A subjects.
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In the present study, the accuracy, sensitivity and specificity are given both for the cross-

validation and pure tests.

5.1.2. Results Confidence Intervals

As seen in the previous subsection, the accuracy of the classifier can be considered as the

average accuracy of N tests, computed as follows:

Accur ac y = 1

N

∑
n

Cn (5.4)

where C = {1,0} is a Bernoulli variable, being C = 1 the correct and C = 0 the wrong deci-

sions. Thus, the accuracy is like a binomial variable, which can be approximed by a normal

distribution.

Estimating the error and the confidence intervals (CI) in an observation is a crucial issue in

statistics if one wants to make predictions about what is likely to happen when repeating the

experiment any number of times[70]. The CI provides information about what is expected to

result from a test, with a certain confidence level (1−α), 0 ≤α≤ 1. In other words, this interval

is the range of values in between the variable is expected to be located, with a probability 1−α.

In this work, the upper and lower confidence interval bounds for this binomial distribution

have been computed using Wilson’s score interval. The theory underlying this concept totally

overcomes the purpose of this work. For further details see [70, 71].

5.2. Study pre-processing steps

5.2.1. Age Correction

It is widely accepted that there are GM alterations in different brain structures due to the

normal ageing. We have studied this effect performing many analysis in different regions to

verify this effect, for example in the Amygdala, the Hippocampus, the Vessels or the Inferior

Lateral Ventricles, and all of them showed age-related effects. As example, the Hippocampus

GM losses due to ageing are plotted in the Figure 5.1a. As explained in Section 3.2, the age-

related effect has an undesired repercussion in the predictions as the classifier is not always

able to distinguish among this and the disease-related effect. Is for that reason that the age-

related effect is treated in our work in a similar way than [17], but for each region instead of

voxel based. In the Figure 5.1b the effect of the regression is plotted and it can be seen that the

slope due to ageing is almost cancelled when applying the correction.

Then, both classical LS and Robust Regressions have been studied in order to test out which

performs better. The comparision is seen in the Figure 5.2. Although at theory the robust

approach is expected to work better, at practice both Robust and LS regression have yielded to

similar results. Thus, as it is not clear that the roubst regression can provide better results, the
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Cuadro 5.1: Classification performance before and after the age correction with CTL versus
AD analysis, with the ADNI1 Database.

Without Age Correction With Age Correction

Cross-Validation Accuracy 87.2% 88.7 %
Sensitivity pure 86.2% 88.5 %
Specificity pure 87.9% 89.1 %
Accuracy pure 87.0% 88.8 %

Cuadro 5.2: Classification performance before and after the age correction with CTL versus
MCI analysis, with the ADNI1 Database.

Without Age Correction With Age Correction

Cross-Validation Accuracy 70.6% 71.4 %
Sensitivity pure 67.4% 68.4 %
Specificity pure 73.3% 75.1 %
Accuracy pure 70.3% 71.8 %

LS regression method explained in [17] has been used.

Once the type of regression have been chosen, two tests have been performed, both for AD

and MCI, to check whether this technique is useful or not. Two SVM classification using region

volumes have been launched, once with and once without correcting the age effect, using 155

subjects to train the classifier and 30 to test. This procedure have been repeated 100 times in

order to get a low biased estimation of the true accuracies. The reported results are the average

of the 100 iterations and are presented in the Table 5.1. Aplying the age correction resulted

in an improvement of the accuracy in all cases, similarly to [17], which also reported a 2%

enhancement of the overall CTL vs AD classification using the same database. But there is more

that only an improvement of the accuracy. When comparing the classification errors using

a t-test on the misclassified subjects, as expected, there is a significant difference in mean

age between missclassified CTL and AD subjects (P-value= 3.82 E-41), being the youngest AD

and oldest CTL often misclassified, but there is not when correcting the age-related effects

(P-value= 0.7505), with a significance threshold of p ≤ 0,05. The age characteristics of the

misclassified subjects is showed in the Figure 5.3.

Exactly the same procedure has been performed classifying CTL versus MCI. As far as we know,

there are not other studies in the literature so any comparision can be done. As well as in the

CTL versus AD case, there have been an improvement in the pure accuracy, but in this case

of 1.5%. The results are presented in the Table 5.2. Concerning to the missclassified subjects,

although the difference in age means are statistically significative in both correcting and not

correcting cases, the differences are lower in the corrected case (see Figure 5.4).

The same test have been performed with the Expanded Database and with Lausanne Database.

The results for the first and the second one are a pure accuracy improvement of 3.8% and 4.5%
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respectively. In both cases, the mean age differences across groups of misclassified subjects

have been reduced, but there are still differences, exactly in the same way as reported in the

ADNI1 comprovation presented above. In the Expanded Database, the t-test p-value is 0.0028

when correcting and 1.2354 E-73 when not correcting, while with the Lausanne Database the

t-test p-value is 5.0003 E-005 when correcting and 3.5046 E-023 when not.

This comprovations show that it is useful to perfom a pre-processing age correction step

before feeding the SVM. From now on, this step is applied for all the analysis.

5.2.2. Correlation

In the Section 3.2 it has been explained the importance of reducing the number of input

features to the classifier. Perfectly correlated features do not provide more information when

taken toghether instead of taking only one of them, as they are truly redundant. Is for that

reason that a decorrelation step has been introduced just before feeding the RFE algorithm.

In the Figure 5.5 it is shown the absolute value of the whole feature space correlation matrix;

appreciate that there exist feature correlation (see red areas). As far as we know, there exisit no

studies about this issue in the literature of brain MRI classification, so no previous assumptions

can be done. Is for that reason, that a conservative 0.95 threshold has been used to remove

correlated variables, in order to prevent deleting valuable information.
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(a) Left Hippocampus volumes plotted against age before the correc-
tion.

(b) Left Hippocampus volumes plotted against age after the correction.

Figura 5.1: Comparision of the Left Hippocampus volumes plotted against age before (a) and
after (b) the age correction in the CTL group.
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(a) Left Amygdala (b) Left Hippocampus

Figura 5.2: Comparision of LS and Robust regression in two brain regions: (a) left hippocampus
and (b) left amygdala, with the ADNI1 Database.

(a) Classification errors without age correction.
P-value= 3.82 E-41.

(b) Classification errors with age correction.
P-value= 0.7505.

Figura 5.3: Age characteristics of the misclassified CTL and AD subjects with and without age
correction, with the ADNI1 Database.
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(a) Classification errors without age correction.
P-value= 2.738 E-54.

(b) Classification errors with age correction.
P-value= 0.0004.

Figura 5.4: Age characteristics of the misclassified CTL and MCI subjects with and without age
correction, with the ADNI1 Database.
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Figura 5.6: Group comparision of the Left Hippocampus volume when normalizing (left) and
when not normalizing (right) by ICV, with the ADNI1 Database.

5.2.3. ICV

The ICV normalization is a commonly used step in the literature to reduce intersubject varia-

blity due to the gender and the head size. In our opinion, this pre-processing step is useful

when applied to large brain structures, but probably some useful information is lost when

dealing with small structures. In order to asses this hypothesis, all the analysis have been

performed twice: once normalizing by ICV and once without doing the normalization.

A preliminar test have been done, which consists in analyzing by a t-test the mean differences

among groups of the whole feature set, comparing when normalizing by ICV and when not,

using the CTL and MCI subjects of the ADNI 1 Database. The results are presented below:

39 out of 48 brain regions presented more differences in mean when normalizing by ICV.

9 regions presented more differences in mean when not normaliying by ICV: Right

parahippocampal, 3rd Ventricle, Right Rostral Anterior Cingulate, White Matter Hypoin-

tensities, Left Hippocampus, Left Medial Orbitofrontal, Left Temporal Pole, Left WM No

Hypointensities and Right Caudal Anterior Cingulate. Nevertheless, only the differences

in the Left Hippocampus and the Left Temporal Pole are statistically significant, and so

they are when applying ICV normalization.

Although an SVM model has to be trained to find out the real feature weights for the classifi-

cation, this results suggest that more class separation could be achieved when normalizing

by ICV as there are more statistical differences among groups. However, the fact that usual
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suspects like the Left Hippocampus or the Left Temporal Pole present more differences when

not normalizing reaffirms our hypothesis that some information can be lost when applying

this pre-processing step. Thus, all the results are presented twice, once normalizing and once

not normalizing.

5.2.4. Comparision Global Performance with the ADNI1 Database and literature
results

Finally, three analyisis have been performed: CTL versus AD, CTL vs MCI and MCI vs AD SVM

classifications. The purpose is to compare our methodology to the literature when the same

database is used. In each classification, 155 subjects have been used to train the model and 30

to test its performance, applying the procedure explained in Section 4.3. Let us recall that only

region volumes have been used for this analysis (see Chapter 4.2). The results are presented in

the Table 5.3. The obtained pure results are, accuracy (CI=lower bound-upper bound):

CTL vs AD: 88.3% (77.8%- 94.2%)

CTL vs MCI: 81.7% (70.1%-89.4%)

MCI vs AD: 60.0% (47.4%-71.4%)

In all the cases the best results have been got when normalizing by ICV.

Those preliminary studies were required to check the overall perfomance and to compare

our method to the methods explained in the literature. The obtained results are consistent

with the accuracies and disriminative features reported by other studies. An accuracy of 90%

is what we expected from the CTL vs AD classification. An accuracy higher than 80.0% for

CTL vs MCI was not expected for the volumetric univariate analysis. However, we suspect that

classification results over 80% when dealing with MCI are near the upper confidence interval

bound. Thus, the typical expected result would be found in the range 70.0 to 80.0%, being

lower and upper bound respectively.

The CTL vs AD results are comparable to those obtained in the literature and presented in

Chapter 2. On the one hand, Fan et al., [12] have done a region based approach using the

ADNI database, and the CV results are worse (82.0%) than those obtained with our method.

On the other hand, many VB approaches have been done presenting similar results as in our

work: [5, 9, 17], which have obtained pure accuracies of 88.0% , 89.0% and CV accuracy 85.0%

respectively. Moreover, two VB studies presented better accuracies than those in our work:

[4] and [12], which have outcome accuracies of 96.0% and 94.3% respectively. The results

presented by the first one are extremely good but, in our opinion, some considerations should

be taken into account. First of all, the fact that tiny databases have been used for the analyisis

do not let to figure out what is really expected to happen when using other bigger databases.

Another important point is that the MMSE scores of the AD subjects are significatively lower
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than those from other CTL vs AD studies, what means that those subjects are more severely

diseased and, therefore, easier to classify. Refering to [12], there is only one possible remark

to do: the CTL group is more than two years younger than the AD group. As the AD atrophy

pattern advances in the same way as age does, it probably introduces more differences across

groups and would make easier the classification task to the SVM. In our opinion, this results

are probably the upper bound of the accuracy that is expected to result from CTL vs AD

classifications. Refering to the most discriminative features for the CTL vs AD classification,

the top ranked ones are: Left Hippocapus, Left Entorhinal, Right Middle Temporal, Left Inferior

Lateral Ventricle, Right Caudal Anterior Cingulate, Left Amygdala, Left Isthmus Cingulate,

Right Hippocampus, Right Amygdala and Right Fusiform. These results are consistent with

the regions obtained in the literature, as many studies have reported significative differences

in the Hippocampus[1, 2, 5, 12], the Entorhinal Cortex[5, 12], the Amygdala[1, 2, 5, 12] and the

ventricles[2], as well as other structures.

The CTL vs MCI results are also comparable to [1, 12], but showing slightly lower results than

those in our work, 71.0% and 76.0% CV respectively. Also three VB based approaches have

been presented in the literature: [5, 12], that obtained accuracies of 81.5% (pure accuracy)

and 81.8% (CV accuracy) respectively are higher than those obtained in our work. One point

should be taken into consideration when analyzing the results from [5]: the MCI subjects used

for the classification had converted to AD within 18 months, and MCI AD-converter group

is expected to present more differences respect the CTL group than a non-converter MCI

group. Moreover, doing so, the MCI group becomes more homegenious. It has to be taken into

account that the MCI group is, by far, more variable than the CTL and the AD groups, and the

classification results strongly depend on the homogeneity of the classification groups.

Refering to the top ranked features for the CTL vs MCI classification, the most discrimina-

tives have been: Left Hippocampus, Left Amygdala, Right Hippocampus, Left Middle Tem-

poral, Right Amygdala, Right Entorhinal, Left Entorhinal, Right Temporal Pole, Left Caudal

Middle Frontal and Right Accumbens Area. These results are consistent with the regions

obtained in the literature, as different studies have reported differences, for instance, in the

Hippocampus[2, 5, 12] or in the Amygdala[2, 5].

In the Appendix B, the complete lists of features sorted by its discriminative power are presen-

ted.
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Cuadro 5.3: Classification results using the ADNI 1 Databse. The results are presented as
Accuracy pure [Condifence interval: lower bound- upper bound](Accuracy Cross-Validation).

Test Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

CTL vs AD
ICV 86.7% (91.0%) 90.0% (89.0%) 88.3 % [77.8- 94.2] (90.0%)

No ICV 80.0% (90.7%) 93.3% (90.3%) 86.7 % [79.9- 95.3](90.5%)

CTL vs MCI
ICV 80.0% (70.3%) 83.3% (76.1%) 81.7 % [70.1- 89.4] (73.2%)

No ICV 76.7% (72.9%) 66.7% (79.4%) 71.7 % [59.2- 81.5] (76.2%)

MCI vs AD
ICV 66.7% (74.8%) 53.3% (67.1%) 60.0 % [47.4- 71.4] (71.0%)

No ICV 66.7% (72.9%) 53.3% (65.8%) 60.0 %[47.4- 71.4] (69.4%)
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6 Results

Results for the Lausanne Database are presented in first section, while the Expanded database

is considered in the second section. Then, the Multivariate analyisis is presented using again

the Lausanne Database. Finally, a stacking strategy is presented.

6.1. Analysis Lausanne Database

First, 4 univariate analyisis have been performed, feeding the classifier with GM region volu-

mes, lobe volumes, asymmetry and WM volumes separately. Second, we tested whether adding

multiscale data enhances the performance of the classifier. Third, the classifier has been fed

combining multivariatre measures. The training have been performed using 21 subjects, while

8 subjects have been used for the pure testing. The results are presented in the Table 6.1 and

discussed below.

The best pure accuracy when doing a univariate approach has been got when using the

classical regional GM volume data, which yielded to accuracies [CI] of 62.5% [38.7-81.5%]

when normalizing and 68.8% [44.4-85.9%] when not normalizing by ICV. The lobe volu-

mes, the asymmetry and the WM volumes outcame accuracies of 62.5% [38.7-81.5%], 56.3%

[33.2-76.9%] and 62.5% [38.7-81.5%] (when not normalizing by ICV) respectively. Multiscale

information did not improve the accuracy when combined with GM region volumes but it

did when added to WM volumes, up to 68.8% [44.4-85.9%] and 75.0% [50.5-89.8%] when

normalizing and when not normalizing by ICV. Regarding to when adding the asymmetry

coefficients, the best results were a 75.0% [50.5-89.8%] of accuracy when combined with

GM regional volumes, both normalizing and not normalizing by ICV. Finally, when adding

different variables and scales, the best results have been gotten when combining regional

GM and Lobe volumes and the asymmetry coefficients, which yielded to a pure accuracy of

75.0% [50.5-89.8%] both normalizing and not normalizing by ICV. Only 5 cases have passed

the chance threshold (more than 50.0% in the lower interval confidance bound), which are

WM+ lobes (no ICV), Cortical GM Vol+ Asy (ICV & no ICV) and Cortical GM Vol+ ASY+ Lobe

(ICV & no ICV).
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The classification process outcomes the pure and CV accuracy, sensitivity, specificity and

complete list of features ranked by its discriminative power. An example of this list1 can be seen

in the Figure 6.1, which refers to the GM regional volumes classification with ICV normalization.

The x axis (numbered) refers to the importance of the feature in the classification (being 1 the

most important, 2 the second most important and so on), and the colours refer to how many

times this feature have been placed in this position. In this figure it is shown that the most

discriminative features are Right and Left Entorhinal, the Right and Left Hippocampus, the

Right Inferior Parietal, the Righ Inferior Lateral Ventricle, the Left Caudal Middle Frontal and

the WM Hypointensities. These results are consistent with previous studies in the literature.

Finally, considering all the performed analysis, those features that were shown as top-ranked

for the classification are:

GM regional volumes: Right and Left Entorhinal, Left and Right Hippocampus, Right

Inferior Parietal, Right Inferior Lateral Ventricle, Left Caudal Middle Frontal, WM Hy-

pointensities, Left Fusiform and Left Parahippocampal.

GM lobe volumes: Right Limbic and Right Frontal.

Asymmetry: Caudal Anterior Cingulate, Fusiform and Lateral Ventricle.

WM: Right entorhinal, Right Paracentral, Right Precentral, Left Caudal Middle Frontal,

Left Rostral Anterior Cingulate, Left Transverse Temporal, Left Rostral Anterior Cingulate

and Left Middle Temporal.

These features are consistent with those found in the ADNI1 Database and in the literature,

that also found the Hippocampus and the Entorhinal, for instance, as two of the most discri-

minative. In regard to the volumetric analysis, apart from those regions, the Inferior Parietal

was cited as important to the classification by [3, 12], the Inferior Lateral Ventricle by [2] and

the Caudal Middle Frontal by [3]. As to the Lobe Volumes, discrimination power of the Frontal

Lobe was also reported by [1]. It was unexpected not to find the Amygdala as one of the most

discriminant as our study on the ADNI1 Database and a lot of studies in the literature have

reported changes in this structure in MCI[2, 3, 5, 13, 16]. The interpretation of this results is

not easy and requires further studies. In our opinion, this result can be due to the differences

across the Lausanne and the ADNI 1 Database. Apart from the mean age, which is corrected,

there is another important difference: the MMSE mean score of the MCI Lausanne Database

participants was almost one point higher than the ADNI1 MCI MMSE mean score2. It means

that the Lausanne Database MCI individuals are less impaired than the ADNI 1 Database MCI

individuals, and therefore, in an earlier stage of the disease. The fact that the Amygdala is not

so affected in this database could mean that this structure is affected in a more advanced stage.

Nevertheless, this issue requires further investigation to determinate its real cause.

1These output figures are shown in the Appendix B.2.
2This difference in MMSE mean score is statistically significant at level p ≤ 0,01.
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Finally, regarding to the ICV normalization, it is not clear whether it can yield to better accura-

cies or not, as similar results are outcome from the ICV and no ICV classifications.

Cuadro 6.1: Classification results using the Lausanne Databse. The results are presented as
Accuracy pure (Accuracy Cross-Validation) [Condifence interval: lower bound- upper bound].
GM Region Volumes is refered as Vol, Lobe Volumes as Lobe and the Asymmetry coefficients
as ASY.

Input Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

Cort GM Region Vol
ICV 62.5% (61.9%) 62.5% (66.7%) 62.5 % [38.6- 81.5] (64.3%)

No ICV 62.5% (61.9%) 75.0% (76.2%) 68.8 % [44.4- 85.8] (69.0%)

Lobe Volumes ICV 62.5% (61.9%) 62.5% (71.4%) 62.5% [38.6- 81.5] (66.7%)

Asymmetry - 37.5% (57.1%) 75.0% (71.4%) 56.3%[33.2- 76.9] (64.3%)

WM volumes
ICV 62.5% (71.4%) 50.0% (71.4%) 56.3% [33.2- 76.9] (71.4%)

No ICV 75.0% (66.7%) 50.0% (61.9%) 62.5% [38.6- 81.5](64.3%)

Vol+Lobe
ICV 50.0% (52.4%) 62.5% (66.7%) 56.3%[33.2- 76.9] (59.6%)

No ICV 62.5% (47.6%) 75.0% (66.7%) 68.8% [44.4 - 85.8](57.2%)

WM+Lobe
ICV 75.0% (71.4%) 62.5% (76.2%) 68.8 % [44.4- 85.8] (73.8%)

No ICV 75.0% (71.4%) 75.0% (61.9%) 75.0 % [50.5- 89.8] (66.7%)

Vol+ASY
ICV 75.0% (61.9%) 75.0% (57.1%) 75.0 % [50.5- 89.8] (59.5%)

No ICV 75.0% (57.0%) 75.0% (66.7%) 75.0 %[50.5- 89.8] (61.9%)

Vol+WM
ICV 50.0% (61.9%) 62.5% (71.4%) 56.3%[33.2- 76.9] (66.7%)

No ICV 50.0% (52.4%) 62.5% (74.2%) 56.3% [33.2- 76.9] (63.3%)

WM+ASY
ICV 50.0% (76.2%) 50.0% (66.7%) 50.0% [28.0- 72.0] (71.5%)

No ICV 75.0% (71.4%) 62.5% (61.9%) 68.8%[44.4- 85.8] (66.7%)

Vol+WM+ASY
ICV 50% (61.9%) 62.5% (66.7%) 56.3%[33.2- 76.9] (64.3%)

No ICV 62.5% (57.1%) 75.0% (76.2%) 68.8% [44.4 - 85.8](66.7%)

WM+ASY+Lobe
ICV 50.0% (71.4%) 50.0% (71.4%) 50.0% [28.0- 72.0] (71.4%)

No ICV 50.0% (57.1%) 62.5% (66.7%) 56.3% [33.2- 76.9](61.9%)

Vol+ASY+Lobe
ICV 75% (47.6%) 75.0% (66.7%) 75.0 %[50.5- 89.8] (57.2%)

No ICV 75.0% (52.4%) 75.0% (66.6%) 75.0 % [50.5- 89.8] (59.5%)

All
ICV 75.0% (71.4%) 62.5% (76.2%) 68.8% [38.6- 81.5] (73.8%)

No ICV 25.0% (52.4%) 62.5% (71.4%) 43.8% [23.1- 66.8](61.9%)
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6.1. Analysis Lausanne Database

Figura 6.2: Accuracy behaviour in CTL vs AD classification when reducing the number of
subjects per class, got from [59].

These results suggest that when combining different input variables, higher accuracies can be

achieved. Even so, some considerations should be taken into account. First of all, it can be

seen that the results are slightly lower than those obtained in the literature. This may be due to

many reasons. First of all, the fact that the MMSE score of the MCI participants is higher than

in the ADNI 1 Database makes the classification task harder, as they are less imparied and

more difficult to distinguish from the CTL group. Moreover, we have realized that the accuracy

results were very sensitive to which individuals were selected for the training and the testing

set. This is probably due to the fact that the database is quite small. Klöppel et al., [4],[59] also

reported variable results when reducing the number of subjects, as well as a worsening of the

accuarcy. This accuracy behaviour can be seen in the Figure 6.2. Appreciate that the accuracy

dramatically goes down and becomes more variable when reducing the number of subjects.

We have also checked what happens if reducing the database. To do so, only 29 subjects per

class have been left in the ADNI 1 Database. The CTL vs MCI GM volumetric classification

process overcame a pure accuracy of a 75%, 6.7% points lower than the case when taking the

whole database (185 individuals per class). Also the CV accuracy has gone down to 66.7%,

6.5% lower. The results when using this reduced database are presented in the Table 6.2 and

are compared to the Table 5.3.
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Cuadro 6.2: Comparison of the classification results using the ADNI 1 Databse with 29 subjects
and GM volumetric features normalized by ICV. The results are presented as Accuracy pure
[Condifence interval: lower bound- upper bound](Accuracy Cross-Validation).

Test Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

CTL vs MCI 29 subjects 75.0% (71.4%) 75.0% (61.9%) 75.0 % [50.5- 89.8] (66.7 %)
CTL vs MCI 185 subjects 80.0% (70.3%) 83.3% (76.1%) 81.7 % [70.1- 89.4] (73.2 %)

Thus, although the results suggest that higher accuarcy is expected when adding more variables

to the analysis rather than doing univariate approaches, further analysis should be required to

confirm this tendency. To overcome the problems that arise when dealing with small databases,

we decided to expand the Lausanne Database, adding 29 subjects from each class as explained

in Section 4.1, and run the same process explained above. The results are shown in Section 6.2.

6.2. Analysis Expanded Database

In this Section, the Expanded Database has been used to perform the analysis in exactly the

same way as in Section 6.1. The results are presented in the Table 6.3 and summarized in the

paragraphs below.

As with the Lausanne Database, the best results when doing a univariate approach have been

gotten when using the Cortical GM Region Volumes, but in this case when not normalizing

by ICV, which yielded to a pure accuracy [CI] of 70.9% [50.8- 85.4]. The best CV accuracy has

been outcome when using no ICV normalized GM Region Volumes: 77.2%. Adding multiscale

information, i.e., lobe volumes, raised the pure accuracy of the ICV normalized GM Region

Volume classification to 75.0% [55.1- 88.0] but did not when not normalizing. The pure results

were not improved for both WM analysis, although the CV accuracy raised. When combining

different variables, the Asymmetry improved the accuracy to 75.0% [55.1-88.0] when added

to the ICV normalized GM Region Volumes. Also combining WM and GM Region Volumes

yielded to better accuracies than when taken them alone: 70.9% [50.8- 85.1] of pure accuracy

both when normalizing and not normalizing. Moreover, the CV accuracies are higher than

those obtained when taken the variables alone, suggesting that some robustness is added if

the two variables are combined. Finally, combining both different scales and variables yielded

to better accuracies than when taking only separate variables. The best results were obtained

when combining GM Region Volumes, Lobe Volumes and Asymmetry, that yielded to 75.0%

[55.1-88.0] and 70.9% [50.8- 85.1] of pure accuracy respectively when normalizing and when

not normalizing by ICV. Moreover, the CV accuracies of both cases were 75.0% and 77.2%,

what shows that robustness is added to the classifier. Finally, it is important to appreciate

that 11 cases in this study have overcome the chance threshold in the pure testing, which

represents an improvement respect the analysis with the Lausanne Database. The confidence

interval has also become thinner, due to the fact that more subjects are considered for this

pure testing.
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Regarding to the most discriminative features for the classification, considering all the perfor-

med analysis, those features that were shown as top-ranked are:

GM regional volumes: Left and Right Hippocampus, Left and Right Entorhinal, Right

Precuneus, Left Amygdala, Left and Right Inferior Lateral Ventricles, Right Middle Tem-

poral, Right Superior Parietal and Right Temporal Pole.

GM lobe volumes: Left Limbic, and Left and Right Temporal.

Asymmetry: Precuneus and Amygdala

WM: Left Cortical White Matter, Left and Right Entorhinal, Right Precuneus, Left and

Right Superior Temporal, Right Middle Temporal, Right Superior Frontal and Right

Insula.

Appreciate that these features are not the same that those obtained in the Lausanne Database.

As the individuals are not the same, we did not expected that the most discriminative features

exactly match either. However, the very most discriminative features are the same: Left and

Right Hippocampus and Entorhinal and Inferior Lateral Ventricles. Moreover, other features

that do not appear before have been added to the list, for instance the Left Amygdala, the

Precuneus or the Right Temporal Pole. The findings on the precuneus are consistent with [3, 12,

13, 16] that also reported MCI-related changes on this structure. So they are the findings with

the Amygdala[2, 3, 5, 13, 16]. For further region study, the complete set of output classification

figures can be found in the Appendix B.3.

With regard to the ICV normalization, it is quite difficult to determinate which is the best

option, although the accuracy is normally slightly higher when normalizing by ICV than when

not normalizing. There is still one thing to add refering to the ICV normalization. In the no

ICV normalization GM Region Volumes analysis, the best CV results have been obtained when

using only 2 features, so the classifier have used only this features to predict the pure test.

Those two features were the Left and the Right Hippocampus, which yield to a pure accuracy

[CI] of 70.9% [50.8- 85.1] and a CV accuracy of 77.2%. Those are great results with only two

structures, and it probably would mean that this regions have more discriminative power

when not normalizing than when normalizing by ICV. This findings are consistent with the

results presented in Subsection 5.2.3, in which more differences have been found in the Left

Hippocampus when not normalizing by ICV.

Again, the best accuracies have been obtained when combining different variables instead

of when taking them alone. We must be though very prudent with these results but, as the

tendency is the same as the results outcome with the Lausanne Database, it suggests that com-

bining variables from different scales (lobe volumes) and sources (asymmetry or WM) would

provide robustness and better overall performance. Despite the better results when combining

variables, some considerations should be taken into account, as they are certain factors that

can add variability to the database. The expanded database was composed by joining two
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different databases that come from two different sources (ADNI 1 and Lausanne Database).

Moreover, the images were taken with different scanners and with different magnetic field

strength (1.5T and 3T). Is for that reason that we have been very rigurous when composing the

database, and we have created well-balanced groups, as explained in Chapter 4.1, in order to

remove, as much as possible, all this possible adverse effects.

Cuadro 6.3: Classification results using the Expanded Database. The results are presented as
Accuracy pure (Accuracy Cross-Validation) [Condifence interval: lower bound- upper bound].
GM Region Volumes is refered as Vol, Lobe Volumes as Lobe and the Asymmetry coefficients
as ASY.

Input Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

Cort GM Region Vol
ICV 66.7% (63.0%) 66.7% (82.6%) 66.7% [46.7- 82.0] (72.8%)

No ICV 50.0% (71.7%) 91.7% (82.6%) 70.9 % [50.8- 85.1] (77.2%)

Lobe Volumes ICV 50.0% (60.9%) 83.3% (67.4%) 66.7% [46.7- 82.0] (64.2%)

Asymmetry - 50.0% (60.9%) 50.0% (67.4%) 50.0%[31.4- 68.6] (64.2%)

WM vol
ICV 65.2% (58.3%) 71.7% (58.3%) 68.5% [46.7- 82.0] (58.3%)

No ICV 50.0% (65.2%) 58.3% (60.9%) 54.2% [35.1- 72.1](63.1%)

Vol+Lobe
ICV 75.0% (60.9%) 75.0% (87.0%) 75.0 %[55.1- 88.0] (74.0%)

No ICV 50.0% (71.7%) 91.7% (82.6%) 70.9% [50.8 - 85.1](77.2%)

WM+Lobe
ICV 33.3% (71.7%) 91.7% (69.6%) 62.5% [42.7- 78.8] (70.7%)

No ICV 33.3% (69.6%) 75.0% (67.4%) 54.2%[35.1- 72.1] (68.5%)

Vol+ASY
ICV 66.7% (67.4%) 83.3% (76.1%) 75.0 % [55.1- 88.0] (71.8%)

No ICV 50.0% (71.7%) 91.7% (82.6%) 70.9% [50.8- 85.1] (77.2%)

Vol+WM
ICV 58.3% (71.7%) 83.3% (80.4%) 70.9 % [50.8- 85.1] (76.1%)

No ICV 50.0% (71.7%) 91.7% (82.6%) 70.9 % [50.8- 85.1] (77.2%)

WM+ASY
ICV 58.3% (65.2%) 58.3% (71.7%) 58.3% [38.8- 75.5] (68.5%)

No ICV 66.7% (73.9%) 50.0% (58.3%) 58.3% [38.8- 75.5] (66.1%)

Vol+WM+ASY
ICV 58.3% (71.7%) 75.0% (82.6%) 66.7%[46.7- 82.0] (77.2%)

No ICV 50.0% (71.1%) 91.7% (82.6%) 70.9% [50.8- 85.1] (66.7%)

WM+ASY+Lobe
ICV 33.3% (71.7%) 83.3% (73.9%) 58.3% [38.8- 75.5] (72.8%)

No ICV 50.0% (71.7%) 66.7% (69.6%) 58.3% [38.8- 75.5](70.7%)

Vol+ASY+Lobe
ICV 66.7% (69.6%) 83.3% (80.4%) 75.0 %[55.1- 88.0] (75.0%)

No ICV 50.0% (71.7%) 91.7% (82.6%) 70.9% [50.8- 85.1] (77.2%)

All
ICV 58.3% (73.9%) 75.0% (78.3%) 66.7% [46.7- 82.0] (76.1%)

No ICV 50.0% (71.7%) 91.7% (82.6%) 70.9% [50.8- 85.1] (77.2%)
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6.3. Analysis Lausanne Database: Multiscale and Multivariate Ap-

proach

We added T1-quantitative MRI data to the classifier as explained in Section 4.1 to test whether

combining information from different image modalities can improve the overall perfomance

of the classifier. We have used the Lausanne Database as ADNI 1 do not provide this kind

of data. The same simulations than in Section 6.1 and 6.2 have been run, adding the T1-

quantitative values per region and per lobe first separately and then together. The results are

presented in the Table 6.4, 6.5, 6.6 and explained below.

Taking T1 or T1-lobe separately yielded to pure accuracies of 56.3% [33.2- 76.9], which are

significantly lower than when only taking the GM region volume results. Moreover, any combi-

nation of them did not improve the maximum classification rate of 75% obtained in Section 6.1.

The detailed analysis is presented below:

Adding T1-lobe data improved the pure accuracy of 7 cases, worsened the accuracy

of 10 cases and mantained the accuracy in 5 cases, comparing with Section 6.1. Three

cases achieved the maximum classification rate, 75%, which are WM+Lobe+ T1-lobe,

Vol+WM+T1-lobe and Vol+WM+ASY+T1-lobe.

Adding Regional T1 data improved and worsened the pure accuracy of 9 cases, while 4

cases mantained the classification rates, comparing with Section 6.1. In this analysis,

any case reached the 75%.

Adding Regional T1 and T1-lobe data together improved the pure accuracy of 6 cases,

worsened the pure accuracy of 14 cases and mantained the pure classification rates of 4

cases, comparing with Section 6.1. Again, none of them reached the 75%.

Refering to the T1-quantitative most discriminative features, as far as we know, there are no

studies in the literature that have used this image modality, so any comparison can be done.

We have found that there are some that are normally top-ranked, which are listed below:

Lobe T1: Parietal GM and Parietal WM.

Regional T1: Right Bankssts, Left Entorhinal, Left Frontal Pole, Left Parsopercularis, Left

Medial Orbitofrontal and Left and Right Precuneus.

We have noticed that the obtained accuracy results were again very variable and sensitive

to the pure test set, which is, basically, due to the dimensionality problem. There are, by far,

more features than examples and the training procedure seems to create a model that does

not generalize well. It is the same problem that arised in Section 6.1 but more accentuated, as

we have added more features and the F
N relation have increased even more.
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Thus, the interpretation of this results is very difficult. Although it suggests that no benefit is

obtained by adding more information from different image modalities to the data set, more

studies with larger databases are required to draw robust conclusions.

Cuadro 6.4: Classification results using the Lausanne Database when adding T1-lobe. The
results are presented as Accuracy pure (Accuracy Cross-Validation) [Condifence interval: lower
bound- upper bound]. GM Region Volumes is refered as Vol, Lobe Volumes as Lobe, the
Asymmetry coefficients as ASY, the brain region T1-quantitative values as 1 and the lobe
T1-quantitative values as T1-L.

Input Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

T1 - 50.0% (61.9%) 62.5% (57.1%) 56.3%[33.2- 76.9] (59.5%)

T1- L - 62.5% (61.9%) 50.0% (57.1%) 56.3%[33.2- 76.9] (59.5%)

VOL+T1- L
ICV 50% (71.4%) 75.0% (76.2%) 62.5% [38.6-81.5] (73.8%)

No ICV 50.0% (61.9%) 62.5% (85.7%) 56.3% [33.2-76.9] (73.8%)

Lobe Volumes+T1- L ICV 25.0% (61.9%) 37.5% (71.4%) 31.3% [14.2-55.6] (66.7%)

Asymmetry+T1- L - 37.5% (52.4%) 62.5% (57.1%) 50.0% [28.0-72.0] (54.8%)

WM+T1- L
ICV 62.5% (71.4%) 62.5% (81%) 62.5% [38.6-81.5] (76.2%)

No ICV 75.0% (57.1%) 50.0% (61.9%) 62.5% [38.6-81.5] (59.5%)

Vol+Lobe+T1- L
ICV 50.0% (66.7%) 62.5% (76.2%) 56.3% [33.2-76.9] (71.4%)

No ICV 50.0% (66.7%) 62.5% (81%) 56.3% [33.2-76.9] (73.8%)

WM+Lobe+T1- L
ICV 75.0% (66.7%) 75.0% (71.4%) 75.0 % [50.5-89.8] (69.0%)

No ICV 62.5% (61.9%) 62.5% (57.1%) 62.5% [38.6-81.5] (59.5%)

Vol+ASY+T1- L
ICV 50.0% (61.9%) 75.0% (61.9%) 62.5% [38.6-81.5] (61.9%)

No ICV 50.0% (61.9%) 62.5% (85.7%) 56.3% [33.2-76.9] (73.8%)

Vol+WM+T1- L
ICV 75.0% (57.1%) 75% (71.4%) 75.0 % [50.5-89.8] (64.3%)

No ICV 50% (61.9%) 75.0% (76.2%) 62.5% [38.6-81.5] (69.0%)

WM+ASY+T1- L
ICV 50.0% (61.9%) 50.0% (76.2%) 50.0% [28.0-72.0] (69.0%)

No ICV 75.0% (76.2%) 50.0% (57.1%) 62.5% [38.6-81.5] (66.7%)

Vol+WM+ASY+T1- L
ICV 75.0% (61.9%) 75.0% (76.2%) 75.0 % [50.5-89.8] (69.0%)

No ICV 62.5% (61.9%) 75.0% (76.2%) 68.8% [44.4-85.8] (69.0%)

WM+ASY+Lobe+T1- L
ICV 50.0% (66.7%) 62.5% (71.4%) 56.3% [33.2-76.9] (69.0%)

No ICV 75.0% (57.1%) 62.5% (57.1%) 68.8% [44.4-85.8] (57.1%)

Vol+ASY+Lobe+T1- L
ICV 50.0% (61.9%) 62.5% (57.1%) 56.3% [33.2-76.9] (59.5%)

No ICV 62.5% (61.9%) 62.5% (66.7%) 62.5% [38.6-81.5] (64.3%)
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Cuadro 6.5: Classification results using the Lausanne Database when adding brain region T1

values. The results are presented as Accuracy pure (Accuracy Cross-Validation) [Condifence
interval: lower bound- upper bound]. GM Region Volumes is refered as Vol, Lobe Volumes as
Lobe, the Asymmetry coefficients as ASY and the brain region T1-quantitative values as T1.

Input Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

VOL+T1
ICV 75.0% (61.9%) 62.5% (66.7%) 68.8% [44.4-85.8] (64.3%)

No ICV 37.5% (57.1%) 62.5% (71.4%) 50.0% [28.0-72.0] (64.3%)

Lobe Volumes+T1 ICV 50.0% (57.1%) 50.0% (66.7%) 50.0% [28.0-72.0] (61.9%)

Asymmetry+T1 - 62.5% (66.7%) 75.0% (57.1%) 68.8% [44.4-85.8] (61.9%)

WM+T1
ICV 62.5% (71.4%) 62.5% (66.7%) 62.5% [38.6-81.5] (69.0%)

No ICV 37.5% (66.7%) 75.0% (71.4%) 56.3% [33.2-76.9] (69.0%)

Vol+Lobe+T1
ICV 62.5% (66.7%) 62.5% (61.9%) 62.5% [38.6-81.5] (64.3%)

No ICV 62.5% (52.4%) 75.0% (66.7%) 68.8% [44.4-85.8] (59.5%)

WM+Lobe+T1
ICV 50.0% (66.7%) 50.0% (66.7%) 50.0% [28.0-72.0] (66.7%)

No ICV 62.5% (57.1%) 50.0% (76.2%) 56.3% [33.2-76.9] (66.7%)

Vol+ASY+T1
ICV 50.0% (52.4%) 75.0% (66.7%) 62.5% [38.6-81.5] (59.5%)

No ICV 75.0% (52.4%) 62.5% (71.4%) 68.8% [44.4-85.8] (61.9%)

Vol+WM+T1
ICV 62.5% (52.4%) 62.5% (76.2%) 62.5% [38.6-81.5] (64.3%)

No ICV 50.0% (57.1%) 62.5% (76.2%) 56.3% [33.2-76.9] (66.7%)

WM+ASY+T1
ICV 75.0% (66.7%) 62.5% (76.2%) 68.8 % [44.4-85.8] (71.4%)

No ICV 62.5% (66.7%) 75.0% (76.2%) 68.8% [44.4-85.8] (71.4%)

Vol+WM+ASY+T1
ICV 50.0% (71.4%) 62.5% (61.9%) 56.3% [33.2-76.9] (66.7%)

No ICV 62.5% (57.1%) 75.0% (76.2%) 68.8% [44.4-85.8] (66.7%)

WM+ASY+Lobe+T1
ICV 62.5% (71.4%) 62.5% (71.4%) 62.5% [38.6-81.5] (71.4%)

No ICV 62.5% (66.7%) 75.0% (76.2%) 68.8% [44.4-85.8] (71.4%)

Vol+ASY+Lobe+T1
ICV 50.0% (52.4%) 87.5% (81%) 68.8% [44.4-85.8] (66.7%)

No ICV 62.5% (52.4%) 62.5% (61.9%) 62.5% [38.6-81.5] (57.1%)
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Cuadro 6.6: Classification results using the Lausanne Database when adding all T1 data. The
results are presented as Accuracy pure (Accuracy Cross-Validation) [Condifence interval: lower
bound- upper bound]. GM Region Volumes is refered as Vol, Lobe Volumes as Lobe, the
Asymmetry coefficients as ASY, the brain region T1-quantitative values as T1 and the lobe
T1-quantitative values as T1-L.

Input Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

VOL+T1- all
ICV 50.0% (61.9%) 62.5% (61.9%) 56.3% [33.2-76.9] (61.9%)

No ICV 37.5% (52.4%) 62.5% (66.7%) 50.0% [28.0-72.0] (59.5%)

Lobe Volumes+T1- all ICV 50.0% (52.4%) 62.5% (57.1%) 56.3% [33.2-76.9] (54.8%)

Asymmetry+T1- all - 75.0% (61.9%) 50.0% (52.4%) 62.5% [38.6-81.5] (57.1%)

WM+T1- all
ICV 75.0% (66.7%) 37.5% (71.4%) 56.3% [33.2-76.9] (69.0%)

No ICV 62.5% (61.9%) 37.5% (66.7%) 50.0% [28.0-72.0] (64.3%)

Vol+Lobe+T1- all
ICV 37.5% (57.1%) 62.5% (57.1%) 50.0% [28.0-72.0] (57.1%)

No ICV 37.5% (52.4%) 75.0% (61.9%) 56.3% [33.2-76.9] (57.1%)

WM+Lobe+T1- all
ICV 75.0% (66.7%) 37.5% (66.7%) 56.3% [33.2-76.9] (66.7%)

No ICV 37.5% (61.9%) 50.0% (66.7%) 43.8% [23.1-66.8] (64.3%)

Vol+ASY+T1- all
ICV 62.5% (57.1%) 75.0% (57.1%) 68.8% [44.4-85.8] (57.1%)

No ICV 37.5% (57.1%) 62.5% (61.9%) 50.0% [28.0-72.0] (59.5%)

Vol+WM+T1- all
ICV 50.0% (52.4%) 50.0% (76.2%) 50.0% [28.0-72.0] (64.3%)

No ICV 37.5% (57.1%) 75.0% (76.2%) 56.3% [33.2-76.9] (66.7%)

WM+ASY+T1- all
ICV 62.5% (66.7%) 62.5% (71.4%) 62.5% [38.6-81.5] (69.0%)

No ICV 75.0% (76.2%) 62.5% (61.9%) 68.8% [44.4-85.8] (69.0%)

Vol+WM+ASY+T1- all
ICV 62.5% (61.9%) 75.0% (76.2%) 68.8% [44.4-85.8] (69.0%)

No ICV 62.5% (66.7%) 62.5% (71.4%) 62.5% [38.6-81.5] (69.0%)

WM+ASY+Lobe+T1- all
ICV 75.0% (66.7%) 62.5% (66.7%) 68.8% [44.4-85.8] (66.7%)

No ICV 75.0% (71.4%) 62.5% (66.7%) 68.8% [44.4-85.8] (69.0%)

Vol+ASY+Lobe+T1- all
ICV 50.0% (47.6%) 75.0% (61.9%) 62.5% [38.6-81.5] (54.8%)

No ICV 50.0% (57.1%) 75.0% (61.9%) 62.5% [38.6-81.5] (59.5%)

All
ICV 62.5% (61.9%) 75.0% (71.4%) 68.8% [44.4-85.8] (66.7%)

No ICV 50.0% (61.9%) 87.5% (71.4%) 68.8% [44.4-85.8] (66.7%)
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6.4. Stacking

6.4. Stacking

Finally, we tried to create a new different classifier by stacking single classifiers (see Figure 6.3).

The basic idea is that, instead of feeding the classifier with all the features, M classifiers are

created, each of them fed with a feature type. Thus, a classification process is performed

separately using only GM region volumes, Lobe Volumes, WM region volumes, Asymmetry

Coefficients and T1-quantitative measurements, generating M predicted labels Lm = {−1,1}

per subject, one for each classification process. The final decision label will be the sum of

the Lm labels. If the sum is equal or lower than zero, the subject is labeled as MCI. Otherwise

the subject is labeled as CTL. This kind of approach is suitable for the type of scenario where

different kind of features are available and it is likely that combining classifiers the accuracy

raises. This process have been performed for the Lausanne and for the Expanded Database

and is presented in the subsections that follow.

Figura 6.3: Classifier stacking flow diagram
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6.4.1. Lausanne Database

A pre-processing step is required before stacking the classifiers, which is checking the corre-

lation of the decision labels from each single classifier in order to know which combination

is likely to work better. If the label correlation of two different classifiers is high, it means

that there is not a lot of extra information added when taking both insted of taking them

alone. But if the label correlation is very low, it means that they are strongly independent and

combining them will produce a noisy output. The desired correlation values will be in the

[0.2-0.5] range. The correlation of the Lausanne Database CV decision labels is showed in the

Figure 6.4. Appreciate that there is 0.3-0.4 of correlation coefficient in Vol- ASY- WM, ASY-

Vol- Lobe, WM- Vol- T1 and T1- WM- T1-lobe. So this four combinations have been tested, as

well as combining all of them. The results are presented in the Table 6.7 and explained below.

No combination increased the pure accuracy 75.0% obtained in Section 6.1. Even so, the CV

results show a tendancy to increase respect the single analysis, up to 83.4% when combining

all the classifiers. However, the fact that the database is so small do not let extract conclusions

and further studies with larger databases are required to determinate if the stacking strategy

could add robustness or not.

(a) Correlation Decision Labels Lausanne Database with
ICV.

(b) Correlation Decision Labels Lausanne Database wit-
hout ICV.

Figura 6.4: Correlation Decision Labels Lausanne Database with (a) and without (b) ICV
normalization.
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6.4. Stacking

Cuadro 6.7: Lausanne Database multivariate classification results when stacking classifiers.
The results are presented as Accuracy pure (Accuracy Cross-Validation) [Condifence interval:
lower bound- upper bound]. GM Region Volumes is refered as Vol, Lobe Volumes as Lobe, the
Asymmetry coefficients as ASY, the brain region T1-quantitative values as T1 and the lobe
T1-quantitative values as T1-L.

Combination Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

Vol- ASY- WM
ICV 50.0% (71.4%) 62.5% (81%) 56.3% [33.2- 76.9] (76.2%)

No ICV 62.5% (66.7%) 62.5% (85.7%) 62.5% [38.6- 81.5] (76.2%)

ASY- Vol- Lobe
ICV 75.0% (71.4%) 62.5% (71.4%) 68.8% [44.4- 85.8] (71.4%)

No ICV 75.0% (71.4%) 62.5% (76.2%) 68.8% [44.4- 85.8] (73.8%)

WM- Vol- T1
ICV 62.5% (76.2%) 75.0% (71.4%) 68.8% [44.4- 85.8] (73.8%)

No ICV 62.5% (66.6%) 75.0% (71.4%) 68.8% [44.4- 85.8] (69.0%)

T1- WM- T1-lobe
ICV 75.0% (66.6%) 50.0% (61.9%) 62.5% [38.6- 81.5] (64.3%)

No ICV 75.0% (66.6%) 50.0% (66.6%) 62.5% [38.6- 81.5] (66.6%)

All
ICV 75.0% (85.7%) 37.5% (78.6%) 56.3% [33.2- 76.9] (82.2 %)

No ICV 75.0% (90.5%) 37.5% (76.2%) 56.3% [33.2- 76.9] (83.4 %)
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6.4.2. Expanded Database

Exactly the same procedure have been done for the Expanded Database. First of all, the

decision label correlation have been computed and is shown in the Figure 6.5. In this case

the combinations Vol+Lobe+WM and Vol+Lobe+ASY+WM have been tried. The results are

presented in the Table 6.8 and explained below. Again, any combination achieved better pure

nor CV accuracy than in the previous sections. This database is twice as large as the Lausanne

database, so the results are less variable, what means that probably, the stacking strategy would

not be a suitable approach for this problem. Nevertheless, more experiments are required

with larger databases to validate whether this concept can be useful or not.

(a) Correlation Decision Labels Expanded Database with
ICV.

(b) Correlation Decision Labels Expanded Database wit-
hout ICV.

Figura 6.5: Correlation Decision Labels Expanded Database with (a) and without (b) ICV
normalization.

Cuadro 6.8: Expanded Database classification results when stacking classifiers. The results
are presented as Accuracy pure (Accuracy Cross-Validation) [Condifence interval: lower bound-
upper bound]. GM Region Volumes is refered as Vol, Lobe Volumes as Lobe, the Asymmetry
coefficients as ASY, the brain region T1-quantitative values as T1 and the lobe T1-quantitative
values as T1-L.

Combination Sensitivity pure (CV) Specificity pure(CV) Accuracy pure [CI] (CV)

Vol- Lobe- WM
ICV 66.7% (63.0%) 75.0% (80.4%) 70.9% [50.8- 85.1] (71.8%)

No ICV 50.0% (54.3%) 75.0% (65.2%) 62.5% [42.7- 78.8] (59.8%)

All
ICV 83.3% (52.2%) 58.3% (69.6%) 70.9% [50.8- 85.1] (60.9%)

No ICV 66.7% (47.8%) 58.3% (50.0%) 62.5% [42.7- 78.8] (48.9%)
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7 Conclusion

7.1. Discussion

This study was designed to face the problem of the early diagnosis of the AD and to find

out which regions are affected in MCI. Our hypothesis was that adding more information to

the classifiers than only the widely used GM brain region volumes could improve classifica-

tion accuracies. Thus, apart from T1-weighted MRI WM and GM brain region data, we have

combined multiscale data (lobe volumes) and information from other MR image modalities

(T1-quantitative MRI), as well as Asymmetry coefficients. The set of participants used in this

work was from the ADNI 1 and the Lausanne Database. To carry out this work we have used

SVM classifier, which has been trained with a part of the whole database and tested in the

other. All the training steps have been performed only in the training set, in order to get a pure

accuracy that is directly what is expected be obtained in a real clinical environment. After per-

forming all the analysis presented in the previous sections, our conclusions are summarized

below.

Age correction

Although many studies in the literature have reported sistematically youngest AD and oldest

CTL misclassifications, any of them attempted to correct this undesirable effect. Inspired by a

recent study presented by Dukart et al.,[17], we have applied a region-based age-correction

pre-processing step before feeding the classifier, which, as far as we know, is a completely new

concept. Similarly to the results reported by [17], the classification accuracy improved a 2% in

the CTL versus AD classification. Also the results were better when classifying CTL versus MCI,

1.5%, 3.8% and 4.5% of accuracy improvement with the ADNI 1, Lausanne and Expanded

Databases respectively. There is even more beyond this accuracy improvements: the mean age

differences between groups of misclassified subjects have become statistically not significant

for CTL versus AD and have been reduced for CTL versus MCI classifications. These results

demonstrate that the youngest AD and oldest CTL are no longer sistematically misclassified.

As regards to MCI, although there were still differences in mean age among misclassified
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groups, the gap in mean age among groups have also been reduced, what means that have a

positive effect for the classification. Despite these slightly lower improvements for MCI, which

were expected as it is a more heterogenious group, we strongly believe that this pre-processing

step is fully advantageous and totally required for AD, MCI and CTL classifications problems.

ICV normalization

In this study we have performed all the analysis twice: once normalizing by ICV and once not,

and the results were very similar in both cases. Moreover, the fact that usual suspect structures

like the Left Hippocampus or the Left Temporal Pole presented more differences in mean

when not normalized by ICV suggests that some useful information would be smoothed when

applying this pre-processing step. We believe that global structures, as brain lobes, should be

normalized in order not to classify by head size. Nevertheless, more studies are required to

determinate whether it is useful to normalyze all the structures by ICV or, on the other side,

only some or none small structures should be normalized.

Univariate Accuracy results

Our presented accuracy results are comparable to those obtained in the literature when using

the same database: 88.3%, 81.7% and 60.0% for the CTL vs AD, CTL vs MCI and MCI vs

AD classifications respectively. On the other hand, the results with the Lausanne and the

Expanded database were lower, a 68.8% and a 70.9% when using only GM regional volumes.

Our interpretation of this results is that the Lausanne MCI participants are probably less

imparied and, therefore, more difficult to classify than the ADNI 1 ones, as the MMSE score of

the first group is almost one point higher than the second. Moreover, the fact that the database

is smaller makes harder the generalization task to the SVM, according to reported results for

small databases.

One final consideration should be taken into account when comparing our results to those

obtained in previous studies. Since the normal ageing effects are not treated in the literature,

their results could be slightly biased and probably less robust than ours. Proof of this fact

would be the systematic oldest CTL and younger AD subjects misclassification.

Is it worthy to add more variables to the analysis?

The best accuracy results with both the Lausanne and the Expanded Database have been

gotten when combining different variables instead of when taking them alone. This tendency

suggests that better overall performances can be achieved when taking into account multiple

variables. Although the best results have been obtained when combining GM region volumes,

GM lobe volumes and the asymmetry coefficients (multiscale and multivariate approach), it is

still not clear which scheme would normally perform better. Thus, further studies are required

with larger databases to confirm this tendancy and to find out the best variable combination.

76



7.1. Discussion

Respect adding WM volumetric information, the results suggest that more discriminant power

is achieved when using the GM region volumes.

In regard to the combination of different image modalities, the results were found to be very

unstable, mainly due to the database size. Although no clear benefit was obtained adding T1-

quantitative data, studies with larger databases are required to determinate its real usefulness

for the classification.

Most discriminative features

We have found that the most discriminative features for the CTL vs AD classification were

the Left and Right Hippocampus, the Left and Right Amygdala, the Left Entorhinal, the Left

Inferior Lateral Ventricle, the Right Middle Temporal, Right Caudal Anterior Cingulate, Left

Isthmus Cingulate and Right Fusiform.

Refering to the MCI classification, the most discriminative GM region volumes in all databases

were the Left and the Right Hippocampus, the Left and the Right Entorhinal, the Inferior

Lateral Ventricles and the Left Caudal Middle Frontal. For the ADNI 1 database, we also

found the Left Middle Temporal, the Left and Right Amygdala and the Right Accumbens

Area. For the Lausanne Database, the Amygdala did not appear to be significative, what was

a very unexpected finding, as almost all the literature AD and MCI classification studies

reported changes in the Amygdala. As the Lausanne Database MCI individuals seemed to

be less imparied that the ADNI 1 ones, more studies are required to determinate whether

this fact is due to chance or otherwise this structure is not early affected by the disease. In

the Lausanne Database we also found the Left Fusiform, the Left Parahippocampal and the

WM Hypointensities in the top-ranked set of features. Finally, in the Expanded Database the

Right Precuneus, Right Superior Parietal and Right Temporal pole have been found to be

discriminative.

As regard to the GM lobe volumes, the most discriminative were the Right Limbic and Right

Frontal for the Lausanne Database, while the Left Limbic and Left and Right Temporal for the

Expanded Database. For the Asymmetry Coefficients, the most discriminative have been the

Caudal Anterior Cingulate, the Fusiform and the Lateral Ventricle for the Lausanne Database,

and the Precuneus and Amygdala for the Expanded Database. Refering to WM, the most

discriminative regions were the Right entorhinal, Right Paracentral, Right Precentral, Left

CaudalMiddle Frontal, Left Rostral Anterior Cingulate, Left Transverse Temporal, Left Rostral

Anterior Cingulate and Left Middle Temporal for the Lausanne Database, while the Left Cortical

WhiteMatter, Left and Right Entorhinal, Right Precuneus, Left and Right Superior Temporal,

Right Middle Temporal, Right Superior Frontal and Right Insula for the Expanded Database.

Finally, for the T1- quantitative data, the most discriminative lobes were the Parietal, both for

GM and WM, while the most discriminative regions were the Right Bankssts, Left Entorhinal,

Left Frontal Pole, Left Parsopercularis, Left Medial Orbitofrontal and Left and Right Precuneus.
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7.2. Future Work

In this Section the possible improvements and future research lines are summarized.

Classifier. The LIBLINEAR Library provides many options to configure the classifier, for

instance the type of solver. There exist many configurations, for example L2-regularized

L2-loss support vector classification (dual)) or L1-regularized L2-loss support vector

classification. In this work we have used the first one which is the default option as

it yielded to better accuracies. The library authors also pointed that in most cases, L1

regularization does not give higher accuarcy. Nevertheless, more tests could be done to

determine if it could be useful in any situation. For further information, the reader can

refer to [39].

Feature selection. The RFE method is simple and easy to implement a feature selection.

However, the feature selection step is, in our opinion, a very critical issue as normally

there are no large database available to perform the analysis. There exist a lot of feature

selection techniques, as F- score or methods using the gradient of the weight vector.

Thus, other more sophisticated techniques could be tested. For more information, the

reader can refer to [30, 31, 32, 33].

Pre-processing. In this work it has been evidenced that our age-effect correction pre-

processing step provides many advantages when used prior to the classification, while

being extremely simple. We believe that this findings merits further resarch. On the one

hand, we think that individual region studies should be done to precisely characterize

the evolution of every single brain area. On the other hand, to be applicable in a real cli-

nical enviornment, the regression coefficients should be universal and well- standarized

so, more studies with multiple databases are required.

Input features: The presented results show a tendancy to increase when combining

types of feataures. The fact that the best accuracy has been got when combining GM

region volumes, GM lobe volumes (multiscale) and asymmetry coefficients (multiva-

riate) is very exciting and reaffirms our previous hypothesis. However, this fact should

be checked with larger databases to whether the same improvement is obtained for

larger datasets. Moreover, other features can be used for future analysis, as the WM-

Asymmetry or the Lobe Asymmetry.
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A Complete list of regions

In this Appendix, the complete list of regions provided by different types of FreeSurfer files are

shown.

A.1. FreeSurfer aseg file

Left Lateral

Ventricle

Left Inf Lat Vent

Left Cerebellum White Matter

Left Cerebellum Cortex

Left Thalamus Proper

Left Caudate

Left Putamen

Left Pallidum

3rdVentricle

4th Ventricle

Brain Stem

Left Hippocampus

Left Amygdala

CSF

Left Accumbens area

Left VentralDC

Left vessel

Left choroid plexus

Right Lateral Ventricle

Right Inf Lat Vent

Right Cerebellum White Matter

Right Cerebellum Cortex

Right Thalamus Proper

Right Caudate

Right Putamen

Right Pallidum

Right Hippocampus

Right Amygdala

Right Accumbens area

Right VentralDC
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Right vessel

Right choroid plexus

5th Ventricle

WM hypointensities

Left WM hypointensities

Right WM hypointensities

non-WM hypointensities

Left non-WM hypointensities

Right non-WM hypointensities

Optic Chiasm

CC-Posterior

CC-Mid-Posterior

CC-Central

CC-Mid-Anterior

CC-Anterior

lhCortexVol

rhCortexVol

CortexVol

lhCorticalWhiteMatterVol

rhCorticalWhiteMatterVol

CorticalWhiteMatterVol

SubCortGrayVol

TotalGrayVol

SupraTentorialVol

IntraCranialVol

A.2. FreeSurfer aparc file

lh bankssts volume

lh caudalanteriorcingulate volume

lh caudalmiddlefrontal volume

lh cuneus volume

lh entorhinal volume

lh fusiform volume

lh inferiorparietal volume

lh inferiortemporal volume

lh isthmuscingulate volume

lh lateraloccipital volume

lh lateralorbitofrontal volume

lh lingual volume

lh medialorbitofrontal volume

lh middletemporal volume

lh parahippocampal volume

lh paracentral volume

lh parsopercularis volume

lh parsorbitalis volume

lh parstriangularis volume

lh pericalcarine volume

lh postcentral volume

lh posteriorcingulate volume

lh precentral volume

lh precuneus volume

lh rostralanteriorcingulate volume
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A.3. FreeSurfer wmparc file

lh rostralmiddlefrontal volume

lh superiorfrontal volume

lh superiorparietal volume

lh superiortemporal volume

lh supramarginal volume

lh frontalpole volume

lh temporalpole volume

lh transversetemporal volume

lh insula volume

rh bankssts volume

rh caudalanteriorcingulate volume

rh caudalmiddlefrontal volume

rh cuneus volume

rh entorhinal volume

rh fusiform volume

rh inferiorparietal volume

rh inferiortemporal volume

rh isthmuscingulate volume

rh lateraloccipital volume

rh lateralorbitofrontal volume

rh lingual volume

rh medialorbitofrontal volume

rh middletemporal volume

rh parahippocampal volume

rh paracentral volume

rh parsopercularis volume

rh parsorbitalis volume

rh parstriangularis volume

rh pericalcarine volume

rh postcentral volume

rh posteriorcingulate volume

rh precentral volume

rh precuneus volume

rh rostralanteriorcingulate volume

rh rostralmiddlefrontal volume

rh superiorfrontal volume

rh superiorparietal volume

rh superiortemporal volume

rh supramarginal volume

rh frontalpole volume

rh temporalpole volume

rh transversetemporal volume

rh insula volume

A.3. FreeSurfer wmparc file

wm-lh-bankssts

wm-lh-caudalanteriorcingulate

wm-lh-caudalmiddlefrontal

wm-lh-cuneus

wm-lh-entorhinal

wm-lh-fusiform
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wm-lh-inferiorparietal

wm-lh-inferiortemporal

wm-lh-isthmuscingulate

wm-lh-lateraloccipital

wm-lh-lateralorbitofrontal

wm-lh-lingual

wm-lh-medialorbitofrontal

wm-lh-middletemporal

wm-lh-parahippocampal

wm-lh-paracentral

wm-lh-parsopercularis

wm-lh-parsorbitalis

wm-lh-parstriangularis

wm-lh-pericalcarine

wm-lh-postcentral

wm-lh-posteriorcingulate

wm-lh-precentral

wm-lh-precuneus

wm-lh-rostralanteriorcingulate

wm-lh-rostralmiddlefrontal

wm-lh-superiorfrontal

wm-lh-superiorparietal

wm-lh-superiortemporal

wm-lh-supramarginal

wm-lh-frontalpole

wm-lh-temporalpole

wm-lh-transversetemporal

wm-lh-insula

wm-rh-bankssts

wm-rh-caudalanteriorcingulate

wm-rh-caudalmiddlefrontal

wm-rh-cuneus

wm-rh-entorhinal

wm-rh-fusiform

wm-rh-inferiorparietal

wm-rh-inferiortemporal

wm-rh-isthmuscingulate

wm-rh-lateraloccipital

wm-rh-lateralorbitofrontal

wm-rh-lingual

wm-rh-medialorbitofrontal

wm-rh-middletemporal

wm-rh-parahippocampal

wm-rh-paracentral

wm-rh-parsopercularis

wm-rh-parsorbitalis

wm-rh-parstriangularis

wm-rh-pericalcarine

wm-rh-postcentral

wm-rh-posteriorcingulate

wm-rh-precentral

wm-rh-precuneus

wm-rh-rostralanteriorcingulate

wm-rh-rostralmiddlefrontal

wm-rh-superiorfrontal
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A.4. T1-quantitative

wm-rh-superiorparietal

wm-rh-superiortemporal

wm-rh-supramarginal

wm-rh-frontalpole

wm-rh-temporalpole

wm-rh-transversetemporal

wm-rh-insula

Left-UnsegmentedWhiteMatter

Right-UnsegmentedWhiteMatter

BrainSegVol

lhCorticalWhiteMatterVol

rhCorticalWhiteMatterVol

CorticalWhiteMatterVol

A.4. T1-quantitative

T1-1000 ctx-lh-unknown

T1-1001 ctx-lh-bankssts

T1-1002 ctx-lh-caudalanteriorcingulate

T1-1003 ctx-lh-caudalmiddlefrontal

T1-1005 ctx-lh-cuneus

T1-1006 ctx-lh-entorhinal

T1-1007 ctx-lh-fusiform

T1-1008 ctx-lh-inferiorparietal

T1-1009 ctx-lh-inferiortemporal

T1-1010 ctx-lh-isthmuscingulate

T1-1011 ctx-lh-lateraloccipita

T1-1012 ctx-lh-lateralorbitofrontal

T1-1013 ctx-lh-lingual

T1-1014 ctx-lh-medialorbitofrontal

T1-1015 ctx-lh-middletemporal

T1-1016 ctx-lh-parahippocampal

T1-1017 ctx-lh-paracentral

T1-1018 ctx-lh-parsopercularis

T1-1019 ctx-lh-parsorbitalis

T1-1020 ctx-lh-parstriangularis

T1-1021 ctx-lh-pericalcarine

T1-1022 ctx-lh-postcentral

T1-1023 ctx-lh-posteriorcingulate

T1-1024 ctx-lh-precentral

T1-1025 ctx-lh-precuneus

T1-1026 ctx-lh-rostralanteriorcingulate

T1-1027 ctx-lh-rostralmiddlefrontal

T1-1028 ctx-lh-superiorfrontal

T1-1029 ctx-lh-superiorparietal

T1-1030 ctx-lh-superiortemporal

T1-1031 ctx-lh-supramarginal

T1-1032 ctx-lh-frontalpole

T1-1033 ctx-lh-temporalpole

T1-1034 ctx-lh-transversetemporal

T1-2000 ctx-rh-unknown

T1-2001 ctx-rh-bankssts
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Apéndice A. Complete list of regions

T1-2002 ctx-rh-caudalanteriorcingulate

T1-2003 ctx-rh-caudalmiddlefrontal

T1-2005 ctx-rh-cuneus

T1-2006 ctx-rh-entorhinal

T1-2007 ctx-rh-fusiform

T1-2008 ctx-rh-inferiorparietal

T1-2009 ctx-rh-inferiortemporal

T1-2010 ctx-rh-isthmuscingulate

T1-2011 ctx-rh-lateraloccipital

T1-2012 ctx-rh-lateralorbitofrontal

T1-2013 ctx-rh-lingual

T1-2014 ctx-rh-medialorbitofrontal

T1-2015 ctx-rh-middletemporal

T1-2016 ctx-rh-parahippocampal

T1-2017 ctx-rh-paracentral

T1-2018 ctx-rh-parsopercularis

T1-2019 ctx-rh-parsorbitalis

T1-2020 ctx-rh-parstriangularis

T1-2021 ctx-rh-pericalcarine

T1-2022 ctx-rh-postcentral

T1-2023 ctx-rh-posteriorcingulate

T1-2024 ctx-rh-precentral

T1-2025 ctx-rh-precuneus

T1-2026 ctx-rh-rostralanteriorcingulate

T1-2027 ctx-rh-rostralmiddlefrontal

T1-2028 ctx-rh-superiorfrontal

T1-2029 ctx-rh-superiorparietal

T1-2030 ctx-rh-superiortemporal

T1-2031 ctx-rh-supramarginal

T1-2032 ctx-rh-frontalpole

T1-2033 ctx-rh-temporalpole

T1-2034 ctx-rh-transversetemporal

A.5. ADNI 1 Database selected features

Volume (Cortical Parcellation) of Right

Parahippocampal

Volume (Cortical Parcellation) of Right

Precuneus

Volume (WM Parcellation) of Third Ven-

tricle

Volume (Cortical Parcellation) of Right

RostralAnteriorCingulate

Volume (Cortical Parcellation) of Right

SuperiorParietal

Volume (Cortical Parcellation) of Right

TemporalPole

Volume (WM Parcellation) of Left Ac-

cumbensArea

Volume (WM Parcellation) of Right Ves-

sel

Volume (WM Parcellation) of WMHy-

poIntensities

Volume (Cortical Parcellation) of Left In-

sula
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A.5. ADNI 1 Database selected features

Volume (WM Parcellation) of Left Amyg-

dala

Volume (Cortical Parcellation) of Right

Insula

Volume (Cortical Parcellation) of Left

CaudalAnteriorCingulate

Volume (Cortical Parcellation) of Left

CaudalMiddleFrontal

Volume (Cortical Parcellation) of Left

Entorhinal

Volume (Cortical Parcellation) of Left

Fusiform

Volume (WM Parcellation) of Left Hip-

pocampus

Volume (WM Parcellation) of Left Infe-

riorLateralVentricle

Volume (Cortical Parcellation) of Left In-

feriorParietal

Volume (Cortical Parcellation) of Left

IsthmusCingulate

Volume (Cortical Parcellation) of Left

LateralOccipital

Volume (Cortical Parcellation) of Left

LateralOrbitofrontal

Volume (WM Parcellation) of Left Late-

ralVentricle

Volume (Cortical Parcellation) of Left

MedialOrbitofrontal

Volume (Cortical Parcellation) of Left

MiddleTemporal

Volume (Cortical Parcellation) of Left

Parahippocampal

Volume (Cortical Parcellation) of Left

Precuneus

Volume (Cortical Parcellation) of Left

RostralAnteriorCingulate

Volume (Cortical Parcellation) of Left

SuperiorParietal

Volume (Cortical Parcellation) of Left

TemporalPole

Volume (WM Parcellation) of Left Vessel

Volume (WM Parcellation) of Non

WMHypoIntensities

Volume (WM Parcellation) of Right Ac-

cumbensArea

Volume (WM Parcellation) of Right

Amygdala

Volume (Cortical Parcellation) of Right

CaudalAnteriorCingulate

Volume (Cortical Parcellation) of Right

CaudalMiddleFrontal

Volume (Cortical Parcellation) of Right

Entorhinal

Volume (Cortical Parcellation) of Right

Fusiform

Volume (WM Parcellation) of Right Hip-

pocampus

Volume (WM Parcellation) of Right Infe-

riorLateralVentricle

Volume (Cortical Parcellation) of Righ-

tInferiorParietal

Volume (Cortical Parcellation) of Right

IsthmusCingulate

Volume (Cortical Parcellation) of Right

LateralOccipital
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Apéndice A. Complete list of regions

Volume (Cortical Parcellation) of Right

LateralOrbitofrontal

Volume (WM Parcellation) of Right La-

teralVentricle

Volume (Cortical Parcellation) of Right

MedialOrbitofrontal

Volume (Cortical Parcellation) of Right

MiddleTemporal

Volume (WM Parcellation) of Fourth

Ventricle
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B Complete Results

In this Appendix, the complete list of ranked features for the univariate and the multiscale

and multivariate analysis with best accuracy are presented. There are two figures for every

classification procedure. The first one is a table where the most discriminative features of

the internal cross-validation are showed, sorted by its discriminative power. Thus, the most

discriminative feature is placed in the first position and so on. The second table shows the most

discriminative features when the final classifier is retrained for the pure testing procedure.

B.1. Complete Results for the ADNI 1 Database
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Apéndice B. Complete Results
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B.1. Complete Results for the ADNI 1 Database
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B.1. Complete Results for the ADNI 1 Database
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B.1. Complete Results for the ADNI 1 Database
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Apéndice B. Complete Results

B.2. Complete Results for the Lausanne Database
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B.2. Complete Results for the Lausanne Database
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Apéndice B. Complete Results
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B.2. Complete Results for the Lausanne Database
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B.2. Complete Results for the Lausanne Database
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B.2. Complete Results for the Lausanne Database
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Apéndice B. Complete Results
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B.2. Complete Results for the Lausanne Database
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B.2. Complete Results for the Lausanne Database

F
ig

u
ra

B
.1

7:
La

u
sa

n
n

e
D

at
ab

as
e

C
T

L
vs

M
C

I
C

V
m

o
st

d
is

cr
im

in
at

iv
e

Fe
at

u
re

s:
W

M
,n

o
IC

V
n

o
rm

al
iz

at
io

n
.

105



Apéndice B. Complete Results
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B.2. Complete Results for the Lausanne Database
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B.2. Complete Results for the Lausanne Database
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B.2. Complete Results for the Lausanne Database
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B.2. Complete Results for the Lausanne Database
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Apéndice B. Complete Results
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B.2. Complete Results for the Lausanne Database
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Apéndice B. Complete Results
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B.3. Complete Results for the Expanded Database

B.3. Complete Results for the Expanded Database
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Apéndice B. Complete Results

F
ig

u
ra

B
.2

9:
E

xp
an

d
ed

D
at

ab
as

e
C

T
L

vs
M

C
I

C
V

m
o

st
d

is
cr

im
in

at
iv

e
Fe

at
u

re
s:

G
M

re
gi

o
n

al
vo

lu
m

es
,I

C
V

n
o

rm
al

iz
at

io
n

.

118



B.3. Complete Results for the Expanded Database
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Apéndice B. Complete Results
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B.3. Complete Results for the Expanded Database
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Apéndice B. Complete Results
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B.3. Complete Results for the Expanded Database
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B.3. Complete Results for the Expanded Database
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B.4. Complete Results for the Lausanne Database Multivariate & Mul-

tiscale Analysis
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C CV Accuracy- Confidence Interval
Correspondance

In this Appendix, the CV Accuracy- Confidence Interval correspondance is given for the three

performed analysis.

C.1. ADNI 1 Database

Cuadro C.1: ADNI 1 CV Accuracy- Confidance Intervals Correspondance.

CV Accuracy Confidance Interval [Lower Bound- Upper Bound]

0% [0- 1.2240]

0.32258% [0.056966-1.8043]

0.64516% [0.17711-2.3214]

0.96774% [0.32965-2.8062]

1.2903% [0.50289-3.2702]

1.6129% [0.69085-3.7195]

1.9355% [0.88999-4.1576]

2.2581% [1.098-4.5868]

2.5806% [1.3133-5.0088]

2.9032% [1.5348-5.4246]

3.2258% [1.7615-5.8352]

3.5484% [1.9927-6.2412]

3.871% [2.228-6.6432]

4.1935% [2.4669-7.0416]

4.5161% [2.7089-7.4368]

4.8387% [2.9539-7.829]

5.1613% [3.2016-8.2186]

5.4839% [3.4517-8.6058]

5.8065% [3.7041-8.9907]

6.129% [3.9585-9.3735]

6.4516% [4.2149-9.7544]
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6.7742% [4.4731-10.1335]

7.0968% [4.733-10.5108]

7.4194% [4.9945-10.8866]

7.7419% [5.2575-11.2609]

8.0645% [5.5219-11.6337]

8.3871% [5.7877-12.0052]

8.7097% [6.0547-12.3754]

9.0323% [6.323-12.7444]

9.3548% [6.5925-13.1122]

9.6774% [6.863-13.4789]

10% [7.1346-13.8446]

10.3226% [7.4073-14.2092]

10.6452% [7.6809-14.5729]

10.9677% [7.9554-14.9356]

11.2903% [8.2309-15.2974]

11.6129% [8.5072-15.6583]

11.9355% [8.7844-16.0184]

12.2581% [9.0624-16.3777]

12.5806% [9.3412-16.7361]

12.9032% [9.6207-17.0939]

13.2258% [9.901-17.4509]

13.5484% [10.182-17.8071]

13.871% [10.4637-18.1627]

14.1935% [10.746-18.5176]

14.5161% [11.0291-18.8719]

14.8387% [11.3127-19.2255]

15.1613% [11.597-19.5784]

15.4839% [11.8819-19.9308]

15.8065% [12.1674-20.2826]

16.129% [12.4534-20.6338]

16.4516% [12.74-20.9845]

16.7742% [13.0272-21.3346]

17.0968% [13.3149-21.6841]

17.4194% [13.6031-22.0332]

17.7419% [13.8919-22.3817]

18.0645% [14.1811-22.7297]

18.3871% [14.4708-23.0772]

18.7097% [14.7611-23.4243]

19.0323% [15.0518-23.7709]

19.3548% [15.3429-24.117]

19.6774% [15.6345-24.4626]

20% [15.9266-24.8078]
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C.1. ADNI 1 Database

20.3226% [16.2191-25.1526]

20.6452% [16.512-25.4969]

20.9677% [16.8054-25.8408]

21.2903% [17.0992-26.1843]

21.6129% [17.3934-26.5274]

21.9355% [17.6879-26.8701]

22.2581% [17.9829-27.2123]

22.5806% [18.2783-27.5542]

22.9032% [18.5741-27.8957]

23.2258% [18.8702-28.2368]

23.5484% [19.1667-28.5776]

23.871% [19.4636-28.9179]

24.1935% [19.7609-29.2579]

24.5161% [20.0585-29.5976]

24.8387% [20.3565-29.9369]

25.1613% [20.6548-30.2758]

25.4839% [20.9535-30.6144]

25.8065% [21.2525-30.9527]

26.129% [21.5518-31.2906]

26.4516% [21.8515-31.6282]

26.7742% [22.1515-31.9654]

27.0968% [22.4518-32.3024]

27.4194% [22.7525-32.639]

27.7419% [23.0535-32.9753]

28.0645% [23.3548-33.3112]

28.3871% [23.6564-33.6469]

28.7097% [23.9583-33.9823]

29.0323% [24.2605-34.3173]

29.3548% [24.563-34.6521]

29.6774% [24.8658-34.9865]

30% [25.169-35.3206]

30.3226% [25.4724-35.6545]

30.6452% [25.7761-35.9881]

30.9677% [26.0801-36.3213]

31.2903% [26.3843-36.6543]

31.6129% [26.6889-36.987]

31.9355% [26.9938-37.3194]

32.2581% [27.2989-37.6516]

32.5806% [27.6043-37.9834]

32.9032% [27.91-38.315]

33.2258% [28.2159-38.6463]

33.5484% [28.5221-38.9774]
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33.871% [28.8286-39.3081]

34.1935% [29.1354-39.6387]

34.5161% [29.4424-39.9689]

34.8387% [29.7497-40.2989]

35.1613% [30.0573-40.6286]

35.4839% [30.3651-40.958]

35.8065% [30.6731-41.2872]

36.129% [30.9815-41.6162]

36.4516% [31.2901-41.9448]

36.7742% [31.5989-42.2733]

37.0968% [31.908-42.6014]

37.4194% [32.2173-42.9293]

37.7419% [32.5269-43.257]

38.0645% [32.8368-43.5844]

38.3871% [33.1469-43.9116]

38.7097% [33.4572-44.2385]

39.0323% [33.7678-44.5652]

39.3548% [34.0786-44.8916]

39.6774% [34.3897-45.2178]

40% [34.701-45.5438]

40.3226% [35.0126-45.8695]

40.6452% [35.3244-46.1949]

40.9677% [35.6364-46.5202]

41.2903% [35.9487-46.8452]

41.6129% [36.2612-47.1699]

41.9355% [36.574-47.4944]

42.2581% [36.887-47.8187]

42.5806% [37.2002-48.1427]

42.9032% [37.5137-48.4665]

43.2258% [37.8273-48.7901]

43.5484% [38.1413-49.1134]

43.871% [38.4554-49.4365]

44.1935% [38.7698-49.7594]

44.5161% [39.0845-50.082]

44.8387% [39.3993-50.4045]

45.1613% [39.7144-50.7266]

45.4839% [40.0297-51.0486]

45.8065% [40.3453-51.3703]

46.129% [40.6611-51.6918]

46.4516% [40.9771-52.013]

46.7742% [41.2933-52.334]

47.0968% [41.6098-52.6548]
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47.4194% [41.9265-52.9754]

47.7419% [42.2434-53.2958]

48.0645% [42.5605-53.6159]

48.3871% [42.8779-53.9358]

48.7097% [43.1955-54.2554]

49.0323% [43.5134-54.5748]

49.3548% [43.8314-54.894]

49.6774% [44.1497-55.213]

50% [44.4682-55.5318]

50.3226% [44.787-55.8503]

50.6452% [45.106-56.1686]

50.9677% [45.4252-56.4866]

51.2903% [45.7446-56.8045]

51.6129% [46.0642-57.1221]

51.9355% [46.3841-57.4395]

52.2581% [46.7042-57.7566]

52.5806% [47.0246-58.0735]

52.9032% [47.3452-58.3902]

53.2258% [47.666-58.7067]

53.5484% [47.987-59.0229]

53.871% [48.3082-59.3389]

54.1935% [48.6297-59.6547]

54.5161% [48.9514-59.9703]

54.8387% [49.2734-60.2856]

55.1613% [49.5955-60.6007]

55.4839% [49.918-60.9155]

55.8065% [50.2406-61.2302]

56.129% [50.5635-61.5446]

56.4516% [50.8866-61.8587]

56.7742% [51.2099-62.1727]

57.0968% [51.5335-62.4863]

57.4194% [51.8573-62.7998]

57.7419% [52.1813-63.113]

58.0645% [52.5056-63.426]

58.3871% [52.8301-63.7388]

58.7097% [53.1548-64.0513]

59.0323% [53.4798-64.3636]

59.3548% [53.8051-64.6756]

59.6774% [54.1305-64.9874]

60% [54.4562-65.299]

60.3226% [54.7822-65.6103]

60.6452% [55.1084-65.9214]
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60.9677% [55.4348-66.2322]

61.2903% [55.7615-66.5428]

61.6129% [56.0884-66.8531]

61.9355% [56.4156-67.1632]

62.2581% [56.743-67.4731]

62.5806% [57.0707-67.7827]

62.9032% [57.3986-68.092]

63.2258% [57.7267-68.4011]

63.5484% [58.0552-68.7099]

63.871% [58.3838-69.0185]

64.1935% [58.7128-69.3269]

64.5161% [59.042-69.6349]

64.8387% [59.3714-69.9427]

65.1613% [59.7011-70.2503]

65.4839% [60.0311-70.5576]

65.8065% [60.3613-70.8646]

66.129% [60.6919-71.1714]

66.4516% [61.0226-71.4779]

66.7742% [61.3537-71.7841]

67.0968% [61.685-72.09]

67.4194% [62.0166-72.3957]

67.7419% [62.3484-72.7011]

68.0645% [62.6806-73.0062]

68.3871% [63.013-73.3111]

68.7097% [63.3457-73.6157]

69.0323% [63.6787-73.9199]

69.3548% [64.0119-74.2239]

69.6774% [64.3455-74.5276]

70% [64.6794-74.831]

70.3226% [65.0135-75.1342]

70.6452% [65.3479-75.437]

70.9677% [65.6827-75.7395]

71.2903% [66.0177-76.0417]

71.6129% [66.3531-76.3436]

71.9355% [66.6888-76.6452]

72.2581% [67.0247-76.9465]

72.5806% [67.361-77.2475]

72.9032% [67.6976-77.5482]

73.2258% [68.0346-77.8485]

73.5484% [68.3718-78.1485]

73.871% [68.7094-78.4482]

74.1935% [69.0473-78.7475]
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74.5161% [69.3856-79.0465]

74.8387% [69.7242-79.3452]

75.1613% [70.0631-79.6435]

75.4839% [70.4024-79.9415]

75.8065% [70.7421-80.2391]

76.129% [71.0821-80.5364]

76.4516% [71.4224-80.8333]

76.7742% [71.7632-81.1298]

77.0968% [72.1043-81.4259]

77.4194% [72.4458-81.7217]

77.7419% [72.7877-82.0171]

78.0645% [73.1299-82.3121]

78.3871% [73.4726-82.6066]

78.7097% [73.8157-82.9008]

79.0323% [74.1592-83.1946]

79.3548% [74.5031-83.488]

79.6774% [74.8474-83.7809]

80% [75.1922-84.0734]

80.3226% [75.5374-84.3655]

80.6452% [75.883-84.6571]

80.9677% [76.2291-84.9482]

81.2903% [76.5757-85.2389]

81.6129% [76.9228-85.5292]

81.9355% [77.2703-85.8189]

82.2581% [77.6183-86.1081]

82.5806% [77.9668-86.3969]

82.9032% [78.3159-86.6851]

83.2258% [78.6654-86.9728]

83.5484% [79.0155-87.26]

83.871% [79.3662-87.5466]

84.1935% [79.7174-87.8326]

84.5161% [80.0692-88.1181]

84.8387% [80.4216-88.403]

85.1613% [80.7745-88.6873]

85.4839% [81.1281-88.9709]

85.8065% [81.4824-89.254]

86.129% [81.8373-89.5363]

86.4516% [82.1929-89.818]

86.7742% [82.5491-90.099]

87.0968% [82.9061-90.3793]

87.4194% [83.2639-90.6588]

87.7419% [83.6223-90.9376]
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88.0645% [83.9816-91.2156]

88.3871% [84.3417-91.4928]

88.7097% [84.7026-91.7691]

89.0323% [85.0644-92.0446]

89.3548% [85.4271-92.3191]

89.6774% [85.7908-92.5927]

90% [86.1554-92.8654]

90.3226% [86.5211-93.137]

90.6452% [86.8878-93.4075]

90.9677% [87.2556-93.677]

91.2903% [87.6246-93.9453]

91.6129% [87.9948-94.2123]

91.9355% [88.3663-94.4781]

92.2581% [88.7391-94.7425]

92.5806% [89.1134-95.0055]

92.9032% [89.4892-95.267]

93.2258% [89.8665-95.5269]

93.5484% [90.2456-95.7851]

93.871% [90.6265-96.0415]

94.1935% [91.0093-96.2959]

94.5161% [91.3942-96.5483]

94.8387% [91.7814-96.7984]

95.1613% [92.171-97.0461]

95.4839% [92.5632-97.2911]

95.8065% [92.9584-97.5331]

96.129% [93.3568-97.772]

96.4516% [93.7588-98.0073]

96.7742% [94.1648-98.2385]

97.0968% [94.5754-98.4652]

97.4194% [94.9912-98.6867]

97.7419% [95.4132-98.902]

98.0645% [95.8424-99.11]

98.3871% [96.2805-99.3091]

98.7097% [96.7298-99.4971]

99.0323% [97.1938-99.6703]

99.3548% [97.6786-99.8229]

99.6774% [98.1957-99.943]

100% [98.776-100]

C.2. Lausanne Database
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Cuadro C.2: Lausanne Database CV Accuracy- Confidance Interval Correspondance.

CV Accuracy Confidance Interval [Lower Bound- Upper Bound]

0% [0-8.3800]

2.381% [0.42154-12.3212]

4.7619% [1.3158-15.7899]

7.1429% [2.459-19.0094]

9.5238% [3.7662-22.0651]

11.9048% [5.1938-25.0004]

14.2857% [6.716-27.8411]

16.6667% [8.3159-30.604]

19.0476% [9.982-33.3008]

21.4286% [11.7058-35.9398]

23.8095% [13.481-38.5275]

26.1905% [15.3026-41.0687]

28.5714% [17.167-43.5672]

30.9524% [19.0711-46.026]

33.3333% [21.0125-48.4475]

35.7143% [22.9892-50.8336]

38.0952% [24.9997-53.186]

40.4762% [27.0429-55.5057]

42.8571% [29.1177-57.7938]

45.2381% [31.2234-60.0509]

47.619% [33.3596-62.2775]

50% [35.526-64.474]

52.381% [37.7225-66.6404]

54.7619% [39.9491-68.7766]

57.1429% [42.2062-70.8823]

59.5238% [44.4943-72.9571]

61.9048% [46.814-75.0003]

64.2857% [49.1664-77.0108]

66.6667% [51.5525-78.9875]

69.0476% [53.974-80.9289]

71.4286% [56.4328-82.833]

73.8095% [58.9313-84.6974]

76.1905% [61.4725-86.519]

78.5714% [64.0602-88.2942]

80.9524% [66.6992-90.018]

83.3333% [69.396-91.6841]

85.7143% [72.1589-93.284]

88.0952% [74.9996-94.8062]

90.4762% [77.9349-96.2338]
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92.8571% [80.9906-97.541]

95.2381% [84.2101-98.6842]

97.619% [87.6788-99.5785]

100% [91.6201-100]

C.3. Expanded Database

Cuadro C.3: Expanded Database CV Accuracy- Confidance Interval Correspondance.

CV Accuracy Confidance Interval [Lower Bound- Upper Bound]

0% [0-4.0100]

1.087% [0.19213-5.9028]

2.1739% [0.5982-7.5835]

3.2609% [1.1151-9.1534]

4.3478% [1.7036-10.6517]

5.4348% [2.3435-12.0985]

6.5217% [3.023-13.5058]

7.6087% [3.7344-14.8812]

8.6957% [4.4721-16.2303]

9.7826% [5.2324-17.5568]

10.8696% [6.0122-18.8638]

11.9565% [6.8091-20.1536]

13.0435% [7.6215-21.428]

14.1304% [8.4477-22.6886]

15.2174% [9.2865-23.9365]

16.3043% [10.137-25.1728]

17.3913% [10.9982-26.3984]

18.4783% [11.8693-27.6141]

19.5652% [12.7498-28.8203]

20.6522% [13.6391-30.0178]

21.7391% [14.5367-31.207]

22.8261% [15.4422-32.3883]

23.913% [16.3551-33.5621]

25% [17.2753-34.7288]

26.087% [18.2022-35.8886]

27.1739% [19.1358-37.0419]

28.2609% [20.0757-38.1887]

29.3478% [21.0217-39.3295]

30.4348% [21.9737-40.4643]

31.5217% [22.9314-41.5933]

32.6087% [23.8948-42.7167]

33.6957% [24.8636-43.8347]
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34.7826% [25.8378-44.9473]

35.8696% [26.8171-46.0547]

36.9565% [27.8016-47.157]

38.0435% [28.7912-48.2543]

39.1304% [29.7856-49.3466]

40.2174% [30.785-50.434]

41.3043% [31.7891-51.5167]

42.3913% [32.798-52.5946]

43.4783% [33.8116-53.6678]

44.5652% [34.8298-54.7363]

45.6522% [35.8527-55.8002]

46.7391% [36.8801-56.8595]

47.8261% [37.9121-57.9143]

48.913% [38.9487-58.9645]

50% [39.9898-60.0102]

51.087% [41.0355-61.0513]

52.1739% [42.0857-62.0879]

53.2609% [43.1405-63.1199]

54.3478% [44.1998-64.1473]

55.4348% [45.2637-65.1702]

56.5217% [46.3322-66.1884]

57.6087% [47.4054-67.202]

58.6957% [48.4833-68.2109]

59.7826% [49.566-69.215]

60.8696% [50.6534-70.2144]

61.9565% [51.7457-71.2088]

63.0435% [52.843-72.1984]

64.1304% [53.9453-73.1829]

65.2174% [55.0527-74.1622]

66.3043% [56.1653-75.1364]

67.3913% [57.2833-76.1052]

68.4783% [58.4067-77.0686]

69.5652% [59.5357-78.0263]

70.6522% [60.6705-78.9783]

71.7391% [61.8113-79.9243]

72.8261% [62.9581-80.8642]

73.913% [64.1114-81.7978]

75% [65.2712-82.7247]

76.087% [66.4379-83.6449]

77.1739% [67.6117-84.5578]

78.2609% [68.793-85.4633]

79.3478% [69.9822-86.3609]
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80.4348% [71.1797-87.2502]

81.5217% [72.3859-88.1307]

82.6087% [73.6016-89.0018]

83.6957% [74.8272-89.863]

84.7826% [76.0635-90.7135]

85.8696% [77.3114-91.5523]

86.9565% [78.572-92.3785]

88.0435% [79.8464-93.1909]

89.1304% [81.1362-93.9878]

90.2174% [82.4432-94.7676]

91.3043% [83.7697-95.5279]

92.3913% [85.1188-96.2656]

93.4783% [86.4942-96.977]

94.5652% [87.9015-97.6565]

95.6522% [89.3483-98.2964]

96.7391% [90.8466-98.8849]

97.8261% [92.4165-99.4018]

98.913% [94.0972-99.8079]

100% [95.9919-100]

160



Bibliografía

[1] Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J., Tunnard, C., Liu, Y., Collins, L., Evans,

A., Mecocci, P., Vellas, B., Tsolaki, M., Kłoszewska, I., Soininen, H., Lovestone, S., Spenger,

C., Wahlund, L., 2010. Multivariate analysis of MRI data for Alzheimer’s disease, mild

cognitive impairment and healthy controls. NeuroImage 54 (2011), 1178-1187.

[2] Heckemann, R.A., Keihaninejad, S., Aljabar, P., Gray, K.R., Nielsen, C., Rueckert, D., Hajnal,

J.V., Hammers, A., and The Alzheimer’s Disease Neuroimaging Initiative, 2011. Automatic

morphometry in Alzheimer’s disease and mild cognitive impariment. NeuroImage 56

(2011), 2024-2037.

[3] Fennema-Notestine, C., Hagler Jr., D.J., McEvoy, L.K., Fleisher, A.S., Wu, E.H., Karow, D.S.,

Dale, A.M., and the Alzheimer’s Disease Neuroimaging Initiative, 2009. Structural MRI

Biomarkers for Preclinical and Mild Alzheimer’s Disease. Human Brain Mapping (2009)

[4] Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C,

Jack Jr, C.R., Ashburner, J., Frackowiak, S.J., 2008. Automatic classification of MR scans in

Alzheimer’s disease. Brain (2008), 131, 681-689.

[5] Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M-O. Chupin, M.,

Benali, H., Colliot, O., and The Alzheimer’s Disease Neuroimaging Initiative, 2010. Automa-

tic classification of patients with Alzheimer’s disease from structural MRI: A comparision

of ten methods using the ADNI database. NeuroImage (2010).

[6] Fan, Y., Shen, D., Davatzikos, C., 2005. Classification of Structural Images via High-

Dimensional Image Warping, Robust Feature Extraction, and SVM. J. Duncan and G.

Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 1 – 8, 2005.

[7] Davatzikos, C., Xu, F., An, Y., Fan, Y., Resnick, S.M., 2009. Longitudinal progression of

Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain

2009: 132 2026–2035.

[8] Klöppel, S., Stonnington, C.M., Barnes, J., Chen, F., Chu, C., Good, C.D., Mader, I., Mitchell,

L.A., Patel, A.C., Roberts, C.C., Fox, N.C., Jack Jr, C.R., Ashburner, J., Fracowiak, R.S.J,

2008. Accuracy of dementia diagnosis—a direct comparison between radiologists and a

computerized method. Brain 2008, 131, 2969–2974.

161



Bibliografía

[9] Vemuri, P., Gunter, J.L., Sanjem,M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Boeve,

B.F., Petersen, R.C., Jack Jr., C.R, 2008. Alzheimer’s disease diagnosis in individual subjects

using structural MR images: Validation studies. 39 (2008) 1186-1197.

[10] Vemuri, P., Whitwell, J.L., Kantarci, K., Josephs, K.A., Parisi, J.E., Shiung, M.S., Knop-

man, D.S., Boeve, B.F., Petersen, R.C., Dickson, D.W., Jack Jr, C.R., 2008. Antemortem MRI

based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak

neurofibrillary tangle stage. NeuroImage (2008).

[11] Juszczak, P., Tax, D.M.J., Duin, R.P.W., 2002. Feature Scaling in support vector data des-

cription. E.F. Deprettere, A. Belloum, J.W.J. Heijnsdijk, F. van der Stappen (eds.), Proc. ASCI

2002, 8th Annual Conf. of the Advanced School for Computing and Imaging, ASCI, Delft,

2002, 95-102.

[12] Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C., the Alzheimer’s Disease Neuro-

imaging Initiative, 2008. Spatial patterns of brain atrophy in MCI patients, identified via

high-dimensional pattern classification, predict subsequent cognitive decline. NeuroIma-

ge 39 (2008) 1731-1743.

[13] Desikan,R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., Scha-

mansky, N.J., Greve, D.N., Salat, D.H., Buckner, R.L., Fischl, B.; Alzheimer’s Disease Neuro-

imaging Initiative, 2009. Automated MRI measures identify individuals with mild cognitive

impairment and Alzheimer’s disease. Brain 2009: 132; 2048–2057.

[14] Pereira,F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: A

tutorial overview. NeuroImage 45 (2009) S199–S209.

[15] Pereira,F., Botvinick,M., 2011. Information mapping with pattern classifiers: A comparati-

ve study. NeuroImage 56 (2011) 476–496.

[16] Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q., 2011. Pre-

diction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification.

Neurobiology of Aging 32 (2011) 2322.e19 –2322.e27.

[17] Dukart, J., Schroeter, M.L., Mueller, K., The Alzheimer’s Disease Neuroimaging Initiative,

2011. Age Correction in Dementia – Matching to a Healthy Brain. PLoS ONE 6(7): e22193.

doi:10.1371/journal.pone.0022193.

[18] Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N.A., Friston, J.K., Frackowiak, R.S.J.,

2001. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains.

NeuroImage 14, 21–36 (2001) doi:10.1006/nimg.2001.0786

[19] Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Möeller, H.E., Villringer, A., Sabri, O.,

Schroeter, M.L., 2011. Combined Evaluation of FDG-PET and MRI Improves Detection and

Differentiation of Dementia. PLoS ONE 6(3): e18111. doi:10.1371/journal.pone.0018111

162



Bibliografía

[20] Franke, K., Ziegler, G., Klöppel, S., Gaser, C., and the Alzheimer’s Disease Neuroimaging

Initiative, 2010. Estimating the age of healthy subjects from T1 -weighted MRI scans using

kernel methods: Exploring the influence of various parameters. NeuroImage 50 (2010)

883–892.

[21] Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene Selection for Cancer Classification

using Support Vector Machines. Machine Learning, 46, 389–422, 2002.

[22] Pereira, F., 2007. Beyond Brain Blobs: Machine Learning Classifiers as Instruments

for Analyzing Functional Magnetic Resonance Imaging Data. Carnegie Mellon Univer-

sity,School of Computer Science,Pittsburgh,PA,15213.

[23] Fung, G., Stoeckel, J., 2007. SVM feature selection for classification of SPECT images of

Alzheimer’s disease using spatial information. Knowl Inf Syst (2007) 11(2): 243–258. DOI

10.1007/s10115-006-0043-5.

[24] Chaves,R., Ramírez, J., Górriz, J.M., López, M., Salas-Gonzalez, D., Álvarez, I., Segovia,

F., 2009. SVM-based computer-aided diagnosis of the Alzheimer’s disease using t-test

NMSE feature selection with feature correlation weighting. Neuroscience Letters 461

(2009) 293–297.

[25] Liang, P., Wang, Z., Yang, Y., Li, K., 2012. Three Subsystems of the Inferior Parietal Cortex

are Differently Affected in Mild Cognitive Impariment. Journal of Alzheimer’s Disease 29

(2012) 1–13. DOI 10.3233/JAD-2012-111721

[26] Davatzikos, C., Fan, Y., Wu, X., Shen, D., Resnick, S.M., 2008. Detection of Prodromal

Alzheimer’s Disease via Pattern Classification of MRI. Neurobiol Aging. 2008 April ; 29(4):

514–523. doi:10.1016/j.neurobiolaging.2006.11.010.

[27] Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S.M., Davatzikos, C., 2004. Morphological

classification of brains via high-dimensional shape transformations and machine learning

methods. NeuroImage 21 (2004) 46– 57.

[28] Hall, M.A., 2009. Correlation-based Feature Selection for Machine Learning. Deparment

of Computer Science, The Universitiy of Waikato, Hamilton, New Zeland.

[29] Yu, L., Liu, H., 2003. Feature Selection for High-Dimensional Data: A Fast Correlation-

Based Filter Solution. Proceedings of the Twentieth International Conference on Machine

Learning (ICML-2003), Washington DC, 2003.

[30] Guyon, I., Elisseeff, A., 2003. An Introduction to Variable and Feature Selection. Journal

of Machine Learning Research 3 (2003) 1157-1182.

[31] Chen, Y.W., Lin, C.J., 2003. Combining SVMs with Various Feature Selection Strategies.

NIPS 2003 Feature Selection Challenge.

163



Bibliografía

[32] Wu, Y., Zhang, A., 2004. Feature Selection for Classifying High-Dimensional Numerical

Data. CVPR’04 Proceedings of the 2004 IEEE computer society conference on Computer

vision and pattern recognition.

[33] Rakotomamonjy, A., 2003. Variable Selection Using SVM-based Criteria. Journal of Ma-

chine Learning Research 3 (2003) 1357-1370.

[34] Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner,

R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated

labeling system for subdividing the human cerebral cortex on MRI scans into gyral based

regions of interest. NeuroImage 31 (2006) 968 – 980.

[35] Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E.,

Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M.,

2004. Cerebral Cortex January 2004;14:11–22; DOI: 10.1093/cercor/bhg087.

[36] Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe,

A., Killiany, R., Kennedy, ,D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M,

2002. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in

the Human Brain. Neuron, Vol. 33, 341–355.

[37] Hsu, C-W., Chang, C-C., Lin, C-J., 2010. A Practical Guide to Support Vector Classification.

URL: http://www.csie.ntu.edu.tw/~cjlin

[38] Chang, C-C., Lin, C-J., 2011. LIBSVM: A Library for Support Vector Machines. URL: http:

//140.112.30.28/~cjlin/papers/libsvm.pdf

[39] Fan, R-E., Chang, K-W., Hsieh, C-J., Wang, X-R., Lin, C-J., 2012. LIBLINEAR: A Library for

Large Linear Classification. URL: http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

[40] Yu, Y., 2007. SVM-RFE Algorithm for Gene Feature Selection. University of Delaware.

Electrical& Computer Engineering. Computer &Information Science. URL: http://www.

eecis.udel.edu/~yuy/report0531.pdf

[41] Alzheimer’s Association, 2012 Alzheimer’s Disease Facts and Figures, Alzheimer’s & De-

mentia, Volume 8, Issue 2.

[42] Hänninen, T., Hallikainen, M., Tuomainen, S., Vanhanen, M., Soininen, H., 2002. Preva-

lence of mild cognitive impairment: a population-based study in elderly subjects. Acta

Neurologica Scandinavica, 106: 148–154. doi: 10.1034/j.1600-0404.2002.01225.x

[43] Lopez, L.O., Jagust, W.J., DeKosky, S.T., Becker, J.T., Fitzpatrick, A., Dulberg, C., Breitner, J.,

Lyketsos, C., Jones, B., Kawas, C., Carlson, M., Kuller, L., 2003. Prevalence and Classification

of Mild Cognitive Impairment in the Cardiovascular Health Study Cognition Study. Archives

of Neurology 2003; 60:1385-1389.

164

http://www.csie.ntu.edu.tw/~cjlin
http://140.112.30.28/~cjlin/papers/libsvm.pdf
http://140.112.30.28/~cjlin/papers/libsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.eecis.udel.edu/~yuy/report0531.pdf
http://www.eecis.udel.edu/~yuy/report0531.pdf


Bibliografía

[44] Petersen, R.C., Smith, G.E., Warning, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E., 1999.

Mild Cognitive Impariment. Clinical Characterization and Outcome. Archives of Neurology,

1999; 56:303-308.

[45] Davies, P.L., 1993. Aspects of robust linear regression. The annals of statistics, 1993; Vol.

21, No. 4, 1843-1899.

[46] Maronna, R., Martin, D., Yohai, V., 2006. Robust Statistics: Theory and Methods. Wiley

series in probability and statistics. John Wiley & Sons Ltd, The Atrium, Southern Gate,

Chichester, 2006.

[47] Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer- releated changes.

Acta Neuropathol, 1991. 82:239 - 259

[48] O’brien, J.T., 2007. Role of imaging techniques in the diagnosis of dementia. The British

Journal of Radiology, 80,2007, S71–S77.

[49] Ries, M.L., Carlsson, C.M., Rowley, H.A., Sager, M.A., Gleason, C.E., Asthana, S., Johnson,

S.C., 2008. Magnetic resonance imaging characterization of brain structure and function

in mild cognitive impairment: a review. J. Am. Geriatr. Soc. 56, 920–934.

[50] Du, A.T., Schuff, N., Amend, D., Laakso, M.P., Hsu, Y.Y., Jagust, W.J., yaffe, K., Kramer,

J.H., Reed, B., Norman, D., Chui, H.C., Weiner, M.W.,Magnetic resonance imaging of the

entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease,

2001. J Neurol Neurosurg Psychiatry 2001;71:441–447.

[51] Jack Jr., C.R., Petersen, R.C., O’Brien, P.C., Tangalos, E.G., 1992. MR-based hippocampal

volumetry in the diagnosis of Alzheimer’s disease. Neurology 42, 183–188.

[52] Laakso, M.P., Soininen, H., Partanen, K., Lehtovirta, M., Hallikainen, M., Hanninen, T.,

Helkala, E.L., Vainio, P., Riekkinen Sr., P.J., 1998. MRI of the hippocampus in Alzheimer’s

disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol.

Aging 19, 23–31.

[53] Juottonen, K., Laakso, M.P., Partanen, K., Soininen, H., 1999. Comparative MR analysis

of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR Am. J.

Neuroradiol. 20, 139–144.

[54] Xu, Y., Jack Jr., C.R., O’Brien, P.C., Kokmen, E., Smith, G.E., Ivnik, R.J., Boeve, B.F., Tan-

galos, R.G., Petersen, R.C., 2000. Usefulness of MRI measures of entorhinal cortex versus

hippocampus in AD. Neurology 54, 1760–1767.

[55] Edelman, R.R., Warach, S., 1993. Magnetic Resonance Image. The New England Journal

of Medicine. Medical Progress, 708- 716.

[56] New Zeland Brain Research Institute, 2012. Magnetic Resonance Imaging at 3 Tesla.

http://www.nzbri.org/research/labs/mri.php

165

http://www.nzbri.org/research/labs/mri.php


Bibliografía

[57] Magnetic Resonance - Technology Information Portal, 2012. MRI Imageshttp://www.

mr-tip.com/serv1.php?type=img&img=Brain%20MRI%20Images%20Axial%20T2

[58] Laboratory of Functional and Molecular Imaging, National Institute of Neurological

disorders and Stroke. http://www.lfmi.ninds.nih.gov/gallery.php

[59] Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D. et al., 2008.

A plea for confidence intervals and consideration of generalizability in diagnostic studies.

Brain 2008a (in press).

[60] Guyon, I., Makhoul, J., and Vapnik, V., 1998. What size test set gives good error rate

estimates? IEEE Pattern Analysis and Machine Intelligence, Vol. 20, January 1998, 52-64.

[61] Sherrod, P.H., 2012. DTREG, Software For Predicting Modeling and Forecasting, 2012.

http://www.dtreg.com/svm.htm

[62] Jakkula, V., 2012. Tutorial on Support Vector Machine (SVM). School of EECS, Washington

State University, 2012.

[63] United States Census Bureau, 2012. School Districts.http://www.census.gov/did/www/

schooldistricts/index.html

[64] Xie, Z.X., Hu ,Q.H., Yu, D.R, 2006. Improved Feature Selection Algorithm Based on SVM

and Correlation. J. Wang et al. (Eds.): ISNN 2006, LNCS 3971, pp. 1373–1380, 2006.

[65] Chang, K.J, Jara, H., 2005. Applications of quantitative T1, T2, and proton den-

sity to diagnosis. Journals, Volume 34, Number 1, January 2005, http://www.

appliedradiology.com/Issues/2005/01/Supplements/Applications-of-quantitative-T1,

-T2,-and-proton-density-to-diagnosis.aspx

[66] Dugdale, D.C., Hoch, D.B., Zieve, D., 2008. Medical Encyclopedia, Lobes of the brain.

Universitiy of Maryland. Medical center, 2008, http://www.umm.edu/imagepages/9549.

htm

[67] Greve, D., 2012. Working with FreeSurfer ROIs. FreeSurfer Course, April 2-4, 2012, https:

//surfer.nmr.mgh.harvard.edu/

[68] Salat, D.H., Greve, D.N., Pacheco, J.L., Quinn., B.T., Helmer, K.G., Buckner, R.L., Fischl, B.,

2009. Regional white matter volume differences in nondemented aging and Alzheimer’s

disease. NeuroImage 44, 1247–1258, 2009.

[69] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, C.J. Lin, 2009. LIBLINEAR: A Library for Large

Linear Classification. Journal of Machine Learning Research 9, 2008, 1871-1874. Software

available at http://www.csie.ntu.edu.tw/~cjlin/liblinear

[70] Wallis, S., 2009. Binomial distributions, probability and Wilson’s confidence interval.

London: Survey of English Usage, University College of London, 20 December 2009.

166

http://www.mr-tip.com/serv1.php?type=img&img=Brain%20MRI%20Images%20Axial%20T2
http://www.mr-tip.com/serv1.php?type=img&img=Brain%20MRI%20Images%20Axial%20T2
http://www.lfmi.ninds.nih.gov/gallery.php
http://www.dtreg.com/svm.htm
http://www.census.gov/did/www/schooldistricts/index.html
http://www.census.gov/did/www/schooldistricts/index.html
http://www.appliedradiology.com/Issues/2005/01/Supplements/Applications-of-quantitative-T1,-T2,-and-proton-density-to-diagnosis.aspx
http://www.appliedradiology.com/Issues/2005/01/Supplements/Applications-of-quantitative-T1,-T2,-and-proton-density-to-diagnosis.aspx
http://www.appliedradiology.com/Issues/2005/01/Supplements/Applications-of-quantitative-T1,-T2,-and-proton-density-to-diagnosis.aspx
http://www.umm.edu/imagepages/9549.htm
http://www.umm.edu/imagepages/9549.htm
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
http://www.csie.ntu.edu.tw/~cjlin/liblinear


Bibliografía

[71] Brown, L.D., Cai, T.T., DasGupta A., 2001. Interval Estimation for a Binomial Proportion.

Statistical Science 2001, Vol. 16, No. 2, 101–133.

167


	Acknowledgements
	Abstract
	List of figures
	List of tables
	Introduction
	Clinical Motivation
	Medical Imaging and Pattern Recognition for Diagnosis
	Goals of this work
	Structure

	State of the art
	Technical Background
	Support Vector Machines
	Introduction
	Fundamentals

	Data pre-processing
	IntraCranial Volume Normalization
	Age Correction
	Feature Scaling
	Feature Selection

	Potential Common Mistakes

	Materials and Methods
	Database
	ADNI 1 Database
	Lausanne Database
	Expanded Database

	SVM Input Data
	Grey Matter Volumes
	Asymmetry
	White Matter
	T1-quantitative MRI data

	Methodology
	Pre-processing steps
	Parameter Setting
	Final Model Training and Pure Testing


	Pre-processing Analysis
	Quantitative Evaluation
	Accuracy, Sensitivity, Specificity
	Results Confidence Intervals

	Study pre-processing steps
	Age Correction
	Correlation
	ICV
	Comparision Global Performance with the ADNI1 Database and literature results


	Results
	Analysis Lausanne Database
	Analysis Expanded Database
	Analysis Lausanne Database: Multiscale and Multivariate Approach
	Stacking
	Lausanne Database
	Expanded Database


	Conclusion
	Discussion
	Future Work

	Complete list of regions
	FreeSurfer aseg file
	FreeSurfer aparc file
	FreeSurfer wmparc file
	T1-quantitative
	ADNI 1 Database selected features

	Complete Results
	Complete Results for the ADNI 1 Database
	Complete Results for the Lausanne Database
	Complete Results for the Expanded Database
	Complete Results for the Lausanne Database Multivariate & Multiscale Analysis

	CV Accuracy- Confidence Interval Correspondance
	ADNI 1 Database
	Lausanne Database
	Expanded Database

	Bibliography

