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Abstract

Numerical Simulation of Fast Transient Phenomena in Fluid-Structure Systems

Beñat Oliveira Bravo

In this master thesis the Fast Transient Fluid-Structure interaction is studied. The goal

is to understand the numerical methods behind the models that simulate this phenomena,

in order to be able to reproduce them in two examples.

First, the numerical analysis and the equations behind are described and understood

in terms of structural domain, the fluid and their interaction. Here, both the problem

statement and the numerical approach are deeply developed. Then, specific strategies are

explained in order to apply them in the proposed examples.

Two examples are presented to clarify the explanations and strengthen the knowledge

in the subject. The numerical examples are thoroughly studied in order to illustrate the

functioning of the EUROPLEXUS code and the limits of the method. Firstly, the struc-

tural damage under dynamic loads induced by explosions are analyzed, towards different

models and approaches. Mesh refinement is compared, and the influence of certain factors

highlighted concerning FEM. In the second simulation, an steel-made water tank has been

tested for a projectile shoot. For this, the SPH method has been used.
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Chapter 1

Introduction

1.1 Motivation

Explosions, crashes, hits, earthquakes, gas accidents... all of this dynamics actions have
something in common: the small time interval in which they happen. This fast Transient
Dynamic Phenomenons usually involve more than one agent so whole Fluid-Structure Sys-
tems are needed so as to represent the reality. Industries are very interested on those types
of hazard simulations, as a great amount of information could be obtained anywhere, any-
time, and what is more important, without any material or personal looses.

Nowadays, everybody cares about the security. The historical context in which we live
requires the authorities to invest in this issue. Recent terrorists attacks have been modeled
and numerically simulated, and huge advances have been done with them. New software
has been developed and the application spectrum widely spread. The Fast Transient Fluid
Structure Interaction is used in the analysis civil engineering common problems (earth-
quakes, soil-structure interaction, building vulnerability...), in the energy sector (nuclear
and fossil-fueled plants, electrical devices...), marine/offshore industry, transportation and
everywhere imaginable.

This document is part of the ongoing collaboration between the LaCaN and the In-
stitute for the Protection and Security of the Citizen (IPSC) part of the Joint Research
Center (JRC) of the European Commission. Three decades of code development (EUR-
DYN, Castem-PLEXUS/PLEXIS-3C) have lead to the creation of the EUROPLEXUS, a
is general Finite Element software for the non-linear dynamic analysis of Fluid-Structure
systems subjected to fast transient dynamic loading. LaCaN research fields are mainly up-
stream, working on the theorical basis of the code such as adaptivity.

So, lots of applications, lots of open gates. This document is my first approach towards
this sector, a first step that encourages me to follow studying once finished this master thesis
in Barcelona.

1



2 Introduction

(a) Reality (b) Model

Figure 1.1: 11-M numerical simulation.

1.2 Aims and goals

This document aims to follow the collaborative task described above, testing the poten-
tial capabilities of the EUROPLEXUS, and the constructing two synthetic examples. The
objectives behind are the following:

• Understand and become confident with the EUROPLEXUS code, as well as the nu-
merical component and the equation’s treatment.

• Test the potential capabilities of the EUROPLEXUS, applying and developing two
synthetic examples of interest in two different numerical approaches. In addition, the
obtained results are compared with the reality and their reliance and utility discussed.
The developed examples are the following:

– Structural failure under explosion with FEM.

– Firing a projectile against a metal tank filled with water, by SPH method.



Chapter 2

Structural Modeling

2.1 Problem Statement

In this section the main equations are going to be defined, in order to treat them with
numerical methods in the next one. This mathematical first approach describes the behavior
of the solid in equilibrium with some external forces.

x

t

σ

f

S2

S1

V

Figure 2.1: System description.

The structural domain is governed by the principle of virtual work. This equation rep-
resents the conservation of momentum, which means the common equilibrium but in a
dynamic sense.

∫
V
ρẍ∂xdV +

∫
V
σD(∂x)dV −

∫
V
ρf∂xdV −

∫
S1

t∂xdS = 0 (2.1)

3



4 Structural Modeling

Where each coefficient means:

ρ mass density σ Cauchy stress
V current domain D spatial derivative operator
x current configuration f volumetric forces per unit mass

ẍ accelerations t boundary surface traction

On the other hand the constitutive law has to be fixed for each material. This constitutive
law has to deal with large motions and rotations, so both geometrical non-linearities and
material non-linearities may occur. For a general approach it can be defined as a function
fr dependent of a displacement:

σ = fr(x− x0) (2.2)

The whole system must hold for all variations ∂x of configuration (virtual displace-
ments) compatible with essential boundary conditions on S2. A suitable numerical method
is required to solve those equations and describe the structural motion in every time step.

2.2 Numerical method

This integral form (2.1) lends itself to direct application of FE method. The following spa-
tial discretization is used (2.3).

x

f ext

S1

S2

Figure 2.2: System description for FE.

Mü = fext −
∑
e

∫
V e

BtσdV (2.3)



2.2 Numerical method 5

Where each coefficient means:

M mass matrix
∑

e standard FE assembly operator
u nodal displacement vector V e element e current volume
fext discrete external forces B matrix of shape functions derivatives

The external forces are computed in the nodes and
∑

e gathers the information about
the neighbors’ elements in a discrete node. This set of discrete differential equations in time
is decoupled by diagonalization (lumping) of the mass matrix M .

The computational framework has its own characteristics. Here you have a first collection
of them:

• Lagrangian description. The mesh remains associated with the same material point.
The nodes and Gauss Points always ”follow” the particles.

• Stress is ”true”. It is normally expressed in a fixed reference in the space.

• All RHS terms1 are known or computable. The stresses must be obtained via material
constitutive law (2.2).

• Diagonalization of M by lumping.

M e =

∫
V e

NρdV (2.4)

Where N are the element shape functions.

• The structural behavior is defined in the current configuration. There is no need to
define a reference configuration. In addition, the total deformation is not used.

2.2.1 FEM for structural domain

The most ”natural” description for the structural domain is the Lagrangian description (see
figure 2.3) used within FE. The referential domain is attached to material particles during
the whole computation. This means that the mesh follows the motion of the structure, and
its deformation is directly linked with the material expansion or contraction.

2.2.2 Explicit time integration scheme

There are different ways to deal with the time integration. The next step is to define an
effective time integration scheme. The accuracy and stability should be checked, as well as
its the conditional behavior concerning the elements’ length or even the material character-
ization. Every question related with the general integration pattern will be answered and

1fext, B



6 Structural Modeling

x

V e

V
′e

Figure 2.3: Bar element.

explained in this section.

Direct Time Integration

Time integration is achieved via the Central Difference scheme [4], usually written as2

(2.5):

u̇n+1 = u̇n +
∆t

2
(ün + ün+1) (2.5a)

un+1 = un + ∆t

(
u̇n +

∆t

2
ün
)

(2.5b)

Where,

n stays for time tn

n+ 1 stays for tn+1 = tn + ∆t

∆t is the time increment

2These formulas are a particularization of the Newmark integration formulas [5]:

u̇n+1 = u̇n + ∆t[(1 − γ)ün + γün+1]

un+1 = un + ∆tu̇n +
∆t2

2
[(1 − 2β)ün + 2βün+1]

written for γ = 1/2 and β = 0



2.2 Numerical method 7

These two equations, plus the equilibrium3, can be solved for u, u̇, ü upon step-by-step
marching in time. This particular choice for β renders the scheme explicit, while the chosen
γ ensures no numerical damping.

There is some trouble in using this scheme in practice, so a little implementation guide
is shown below.

1. Introduction of a mid-step velocity.

vn+1/2 = ün +
∆t

2
ün (2.7)

this transforms n into n+ 1 over the step.

2. The second equation (2.5) becomes:

un+1 = un + ∆tvn+1/2 (2.8)

3. Another mid-step velocity must be computed so as to restart the buckle. The first
equation (2.5) becomes:

vn+3/2 = vn+1/2 + ∆tün+1 (2.9)

vn+3/2 = u̇n+1 +
∆t

2
ün+1 = u̇n +

∆t

2
ün +

∆t

2
ün+1 +

∆t

2
ün+1 = vn+1/2 + ∆tv̈n+1

So the algorithm is based on a mid-step velocity rather than full-step one. As shown
a new configuration is obtained first. Then, on this known configuration, equilibrium is
enforced (2.3). The new mid-step velocity is obtained last4. Nevertheless, the acceleration
in the step n+ 1, ün+1, needs a further explanation, and this document comes back to this
topic later (section 2.2.3).

This scheme is completely explicit and needs no iteration to keep on working. Notice
that the time step ∆t has been treated as fixed, but this does not always happen, as it is not
mandatory. If ∆t varies in time, the only change is in the equation (2.9), which becomes:

vn+3/2 = vn+1/2 +
∆tn + ∆tn+1

2
ün+1 (2.10)

3Equilibrium equation:
Mü = fext − fext (2.6)

4Europlexus also computes the full-step velocities:

u̇n+1 = vn+1/2 +
∆t

2
ün+1

These are the velocities printed out in the listing and visualized in post-processing.
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ü1

0 1/2 1 3/2 2

σ1

u1

ü0

σ0

u0

ü2

σ2

u2u̇0
v1/2 v3/2

t0

∆t

step

t

N

tn

Figure 2.4: Scheme start-up and marching.

with,

∆tn ≡ tn+1 − tn

∆tn+1 ≡ tn+2 − tn+1

Time Integration Scheme Characteristics

Central difference scheme [4] has second-order accuracy and introduces no numerical
dumping. However, CD is conditionally stable and it depends on Courant’s number (figure
(2.5)). It compares the length of the element with the light’s speed as :

∆testab ≈
Le

ce
(2.11)

e
ce

Le

Figure 2.5: Stability depending on element’s length and light’s speed.

It is convenient to choose a slightly inferior time step so as to prevent from an unstable
condition. That is why the selected time step is the one which ensures stability multiplicated
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by a safety coefficient (ϕ < 1):

∆te = ϕ∆testab (2.12)

Spectral analysis shows that the CD scheme tends to produce frequencies slightly higher
than physical ones. Same effect is obtained using a consistent mass matrix. On the other
hand, the use of a lumped mass matrix tends to reduce frequency values. Therefore, com-
bination of CD time integrator with a lumped mass matrix gives optimal numerical precision.

(a) Scheme (b) Mass Matrix

Figure 2.6: Scheme and Mass Matrix effect on frequency [1].

The previous result is highly remarkable, since the final equations are completely decou-
pled: just the opposite to classical FE method, there are no matrices to assemble and no need
for system solvers with the exception of the treatment of some essential boundary conditions.
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2.2.3 Integration of the Constitutive law

The stress information must be updated in every single step as shown in the equilibrium
equation (2.3). The new stress σe(n+1) is needed to compute the new acceleration ün+1 and
it is commonly got from the constitutive law. The constitutive law vary with the material,
but without los of generality, the following can be written.

σn+1 = σn + ∆σn (2.13)

∆σ = H(σn,∆ε, p, ε̇, ...) (2.14)

H constitutive law
∆σ stress increment over the step p hardening parameters (e.g. plasticity)

∆ε strain increment over the step ε̇ strain rate (e.g. viscous behavior)

Note that the total deformation ε does not appear anywhere and that it is not used in
the process.

As an example of non-linear material behavior consider the important case of metal
plasticity. Rate-independent deviatoric plasticity model with Von Mises yield is generally
the model choused:

σtrialn+1 = σn + C∆ε̇ (2.15)

σ3

σ2

σ1

σtrial
n+1

σn
σn+1

Figure 2.7: Radial return method in Von Mises.
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To compute the new stress the radial return method is held. The first step requires a
new trial stress, σtrialn+1 . If this new point is inside the Von Mises yield volume the scheme
keeps on working with σn+1 = σtrialn+1 and there is no extra complication. But if the trial
point lies in the outside, the Wilkin’s method [6] (figure (2.7)) projects the σtrialn+1 into the
yield surface in a direct way with no iterations.

There is another fact that one should take into account: the geometrical non-linearities.
This turns the computation of ∆ε required in the equation (2.15) a little bit tricky as large
strains and large motions appear, specially large rotations. Literature explains different
ways to solve this problem, but a large-displacement/large-strain formulation is adopted for
full generality and the constitutive law (2.2) turn non-linear.

The work scheme can be reduced in 3 fases for continuum-like FE:

1. First of all, the spatial velocity gradient must be computed.

L = ∂ẋ/x

2. Then an additive decomposition is used to separate instantaneous deformation (sym-
metric) from rotation (antisymmetric part).

L = D +W

D =
1

2

(
L+ LT

)
stretching

W =
1

2

(
L− LT

)
spin

3. Finally, ∆ε is obtained as:

ε̇ = D ; ∆ε = D ·∆t

For a continuum the state of the stress of interest to us, Cauchy stress σ, is referred to
a fixed frame in the space. Consequently, its time derivative is not invariant with respect
to rotation, so σ̇ is not objective.

An objective rate of the stress σ̂ can be obtained under the form σ̂ = σ̇−Aσ+σA where
A is an appropiate vorticity matrix5. However, the those considerations are valid only in
an infinitesimal sense, while finite increments are needed in those fast-transient phenom-
ena. An incrementally objective scheme must been set up to update the Cauchy stress. For
a 2D case, the scheme is divided in three phases, where α is the rotation over ∆t and θ = α/2.

5In the Zaremba-Jaumann-Noll formulation [7] A = W . Other choices are possible, such as Green-Naghdi
[8].
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1. Firstly, the first half of the rotation increment is applied (2.16).

σn̂ = RσnRT (2.16)

with R =

[
cos θ sin θ
− sin θ cos θ

]
2. Then, the constitutive equation is applied:

σ
ˆn+1 = σn̂ + C ·∆t ·Dn+1/2 (2.17)

3. Finally, the second half of the rotation increment is computed:

σn+1 = Rσ
ˆn+1RT (2.18)

For structural elements (bars, beams, shells) the co-rotational formulation is used. Here
the stress is measured in a reference frame that rotates with the element. This greatly sim-
plifies the stress increment procedure, as the stress can be incremented directly by applying
the constitutive law. For a bar element for instance, the strain can be treated in a natural
or logarithmic strain, or even with a small-strain formulation.

L

∆L

σ, ε

y

x

Figure 2.8: Bar element.

Natural or logarithmic strain

∆ε =
∆L

L
→ ∆σ (2.19)

∑
∆ε =

∑ ∆L

L
'
∫ L

L0

dL

L
= ln

L

L0
(2.20)

Engineering strain
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∆ε =
∆L

L0
→

∑
∆ε =

L− L0

L0
(2.21)

Advantages of the method
To sum up, the transient dynamic problem finds out σ on new configuration x (known)

from σold and the deformation process between xold and x. This technique is especially
powerful in comparison with the implicit methods. The implicit methods find σ and x si-
multaneously, typically by iterative procedures and convergence criteria. On the contrary,
an explicit scheme avoids the calculation of every mid-steps. In addition, the proposed
method is particularly simple for complex non-linear problems, hence very robust.

Furthermore, direct application of virtual work principle (2.1) plus second order accurate
time integration scheme (2.5), guarantee high accuracy of numerical results.

2.2.4 Solution’s verification

The quality of the obtained numerical results must be checked somehow, and this can be
done by computing at each time step the energy balance. The general process carried out is
described below.

• Initially, the external work, W ext
0 , is set:

W ext
0 = Eint0 + Ekin0 (2.22)

• At any time, the balance error can be computed as:

ε =
W ext −

(
Eint + Ekin

)
W ext

0

(2.23)

or perhaps better,

ε =
W ext −

(
Eint + Ekin

)
max (|W ext|, |W ext

0 |)
(2.24)

This error indicator is used a posteriori in order to check the previous time-step solution,
and must not be confused with convergence parameters, typical from iterative approaches.

2.2.5 Implementation of Boundary conditions

In this section the imposition of the essential boundary conditions is going to be analyzed.
The code treats them via Lagrange multipliers although first some assumptions must be
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done concerning the constraints. The code needs to assume the imposed restrictions and in
a second step express the unknown reactions via Lagrange multipliers.

• First, it is assumed a linear set of constrains on the velocities:

Cv = b (2.25)

Both C and b are known, and can be function of time.

• The equilibrium equation (2.6) presented before is modified so as to take into account
the reactions:

ma = fe − f i + r (2.26)

• Without loss of generality, the unknown reactions can be expressed via a vector λ of
Lagrange multipliers:

r = CTλ (2.27)

The Lagrange multipliers method
The reactions can be expressed by the Lagrange Multipliers (2.27) and this structure be

replaced in the equilibrium equation (2.26) as shown in (2.28).

ma = fe − f i + CTλ (2.28)

Multiplying both members by Cm−1 gives:

Ca = Cm−1
(
fe − f i

)
+ Cm−1CTλ (2.29)

Where B∗ = Cm−1CT is the matrix of connections. The Lagrange multipliers are
obtained symbolically from (2.29), B∗λ = Ca − Cm−1

(
fe − f i

)
. To get λ, the term Ca

must be expressed as a function of known quantities, by using the constraints and time
integration scheme. From the CD scheme for the velocity (2.9), imposing a constant ∆t and
substituting this into the constraints Cv = b (2.25) gives6:

Cvn+3/2 = Cvn+1/2 + ∆t · Can+1 = b (2.30)

Reordering the terms Ca can be easily obtain as:

Ca =
1

∆t

(
b− Cvn+1/2

)
=

1

γ

(
b− Cvn+1/2

)
(2.31)

6Notice the different notation but same meaning of the acceleration:

ü = a
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This analysis has been done for γ = ∆t constant in time, but it can be expanded for a
variable ∆t in time, by doing this simple trick:

γ =
∆tn + ∆tn+1

2
(2.32)

Summarizing, the Lagrange Multipliers λ are obtained by solving the linear algebraic sys-
temB∗λ = w where the known terms are given byB∗ = Cm−1CT and w ≡ 1

γ

(
b− Cvn+1/2

)
−

Cm−1
(
fe − f i

)
. Finally the reactions are computed by r = CTλ and added them to the

other known external forces. A unique multiplier is obtained for each imposed constraint,
and one reaction also for each constrain. Obviously a solver must be run to get those mul-
tipliers so this is the only implicit part of the whole method.





Chapter 3

Fluid Formulation

3.1 Introduction

The fluid’s treatment is relatively new in comparison with its colleague, the structural mate-
rial. But recent researchers are focusing on the behavior of the fluid and great improvements
have been made concerning the numerical modelization and discretization of the fluid do-
main. This section discusses different ways of dealing with the fluids, and the one used by
the code is going to be described deeply. The interaction between the fluid and structures
comes later, so this formulation does not take into account a hypothetical “rigid” boundary.

3.2 Problem Statement

3.2.1 First Assumptions

First of all, some primal assumptions. Those points are basics in order to understand the
coming hypothesis regarding the fluid (figure 3.1), and to know what type of problems can
be solved with the code.

• The fluid is assumed to be compressible and inviscid. Viscous forces are negligible
comparing them with high pressures, high pressure gradients and the computed in-
ertial forces. Remember that the code has been thought to simulate fast dynamics
phenomena, meanly those generated by high changes in pressure, such as explosions
or air-blasts.

• The governing equations are the Euler equations, which express the conservation of
mass, momentum and energy.

• The fluid’s state equation must be taken into account during the calculation.

17
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V (t)n

S

v

w

Φ

Figure 3.1: Fluid representation.

Φ = Fluid domain n =unit normal
V (t) = control volume v(x, t) = fluid velocity (particles)
S(t) = control surface w(x, t) = arbitrary velocity (mesh)

3.2.2 Euler Equations

The governing Euler equations are the followings: mass (3.1), momentum (3.2) and energy
(3.3). Those equations plus the fluid’s equation of state rule the behavior of the fluid.

dM

dt
≡ d

dt

∫
V (t)

ρdV =

∮
S(t)

ρ (w − v) • ndS (3.1)

dQ

dt
≡ d

dt

∫
V (t)

ρvdV =

∮
S(t)

ρv (w − v) • ndS −
∫
V (t)
∇pdV +

∫
V (t)

ρgdV (3.2)

dE

dt
≡ d

dt

∫
V (t)

ρedV =

∮
S(t)

ρe (w − v) • ndS −
∮
S(t)

pv • ndS +

∫
V (t)

ρg • vdV (3.3)

M = mass of control volume ρ = fluid density e = total specific energy
Q = momentum of control vol. p = pressure ∇ = gradient operator

E = energy of control vol. g = gravity • = scalar product

As mentioned, there is also a suitable equation of state depending on the fluid. This
equation is necessary so as to solve the euler equations, as it describes the pressure as a
function of the fluid’s variables.

p = P (ρ, i) (3.4)
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For a compressible fluid, the total specific energy is (i = internal specific energy):

e = i+
1

2
v2 (3.5)

Finally, concerning the Euler formulas, another variation of the energy formula may be
used. This new approach consists on replacing the total specific energy (3.5) with the in-
ternal energy form, I, and the equation (3.3) becomes:

dI

dt
≡ d

dt

∫
V (t)

ρidV =

∮
S(t)

ρi (w − v) • ndS −
∫
V (t)

p∇ • vdV (3.6)

3.3 Numerical Method

In purely fluid problems, an Eulerian description is often more intuitive (figure 3.2). The
referential domain, the mesh, is fixed in the space, and the fluid flows from one element to
another. The fluid particles are not attached anymore to the mesh.

X

Figure 3.2: Eulerian

In problems involving both structures and fluids, a mixed description (ALE) can bring
substantial benefits (figure 3.3). The referential domain is arbitrarily moving depending on
the proximity of the structure.

The ALE description is a generalization of the Lagrangian and Eulerian descriptions.
The figure 3.6 illustrates the difference between the three descriptions on a node-by-node
basis.
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X

Figure 3.3: ALE

w

v

Lag.

ALE

Eul.

Figure 3.4: Comparison of Lagrangian, Eulerian and ALE descriptions.

• When w ≡ v the description is Lagrangian.

• When w ≡ 0 the description is Eulerian.

• Else, the description is ALE

Since w is arbitrary, it must be provided either by user or via suitable automatic rezoning
algorithms.

3.3.1 Finite Element Discretization

In the examples tested in this minor thesis, the calculation has been carried out by Finite
Elements (FE). In this case, the discretization goes via linear elements with velocities at
nodes. ρ and i (hence p (3.4)) are uniform over each element, and integral forms off mass
(3.1) and energy conservation (3.3) can be used directly for a given V (t) (current element
volume). But, on the other hand, the conservation of momentum (3.2) is more complex and
requires a further treatment.
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ρ, i, p
v

w

Figure 3.5: Finite element example, with velocities at nodes.

Treatment of Momentum Equation The previous integral statement (3.2) is unable
to furnish enough equations, since the velocity field in each element depends upon N · d
parameters (N being the number of nodes and d the space dimension). So, a variational
statement associated with the differential form of the momentum equation may be formu-
lated. As a final result, the principle of virtual power1 appears:

∫
V (t)

∆viρ
∂vi
∂t
dV =

∫
V (t)

δviρ (w − v)·∇vidV+

∫
V (t)

∆viρgidV+

∫
V (t)

p
∂ (∆vi)

∂xi
dV+

∮
S(t)

∆viTidS

(3.7)

vi are the components of fluid velocity v

δvi are arbitrary admissible variations of the fluid velocity

gi are the components of the acceleration of the gravity

Ti are the components of prescribed boundary loads per unit area

xi are the spatial coordinates (current position of particles in a fixed frame)

Time Integration

Each time increment is split into three phases:

1. Explicit Lagrangian phase By posing w = v all transport terms vanish.

2. Implicit Lagrangian phase The pressure is iteratively refined

3. Convective Flux phase The transport term contributions are added

1The principle of virtual power corresponds to the principle of virtual displacements in solid mechanics
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This scheme is not as limpid as the purely Lagrangian one and the second-order accuracy
is only guaranteed for phase 1. Let analyze the whole scheme for further knowledge of the
working procedure. The time integration can be described within the next 16 steps:

1. First compute vn+1/2 = vn−1/2 + ∆tan, where:

an =
F oldt + Fnp + Fnb + Fns

M
(3.8)

F oldt momentum transport forces at the end of previous step

Fnp pressure forces Fnb body forces Fns surface forces

2. Obtention of a new ”Lagrangian configuration”:

xL = xn + ∆t · vn+1/2

3. Evaluation of L-volume and L-density. This is possible because the mass M remains
constant:

V L = V L
(
xL
)

(3.9a)

ρL =
Mn

V L
(3.9b)

4. From the internal energy equation (3.6), the following is deduced without considering
the transport term, and using the divergence theorem.

d

dt
(ρiV )) = −(p+ q)

∮
S
v • ndS (3.10)

Some pseudo-viscosity, q, is needed to stabilize the solution at shock fronts depending
on the length of the element and dilatational wave speed

5. The former expression (3.10) can be approximated to the first order by:

(ρiV )L − (ρiV )n

∆t
= − (p+ q)n

V L − V n

Mn
(3.11)

6. Notice that (ρV )L = (ρV )n = Mn, so the internal energy can be consequently obtained
as:

iL = in − (p+ q)n
V L − V n

Mn
(3.12)

7. iL is just a first guess since the pressure changes over the step and it must satisfy as
well the state equation.
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8. Iteration of the following expression so as to obtain the L-value implicitly. Usually
one or two iterations are sufficient.

pl = f
(
ρL, iL

)
(3.13a)

iL = in −
(
pn + pL

2
+ qn

)
V L − V n

Mn
(3.13b)

9. Computation of the true end-of-step configuration:

xn+1 = xn + ∆t · wn+1/2 (3.14)

10. Computation of the new volume V n+1

11. The next step concerns the mass variation control. The mass transport across element
boundaries must be accounted (face by face) so as to compute the new element mass:

Mn+1 = Mn + ∆t ·
∮
Sn

ρL(w − v)n+1/2 • ndS (3.15)

12. For stabilization reasons, the density ρJ (depending on the face J) is computed as a
weighted average of neighbor elements’ densities:

ρJ =
1

2

[
(1− αJ)ρe + (1 + αJ)ρe

′]
(3.16)

with,

αJ = α0 · sign(F ) F = ∆t ·
∫
SJ

(w − v) • ndS

0 < α0 < 1

α0 = 0 : centered approximation. Problems with oscillations.
α0 = 1 : full donor. It is too diffusive.

13. The new elements’ density is obtained as:

ρn+1
e =

Mn+1
e

V n+1
e

(3.17)

14. Similar treatment then applied also to energy transport:

(Mi)n+1 − (Mi)n

∆t
=

[
ΣJ

(
ρLiL

)
J

∫
SJ

(w − v)n+1/2 · ndS
]

+
(Mi)L − (Mi)n

∆t
(3.18)
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in+1 =
Mn

Mn+1
iL +

∆t

Mn+1

[
ΣJ

(
ρLiL

)
J

∫
SJ

(w − v)n+1/2 · ndS
]

(3.19)

15. The final pressure is get as:

pn+1 = f
(
ρn+1, in+1

)
(3.20)

16. The nodal forces due to momentum transport (3.2) for the next step are:

F etiI =

∫
V e

NIρ
L (w − v)n+1/2 · ∇vn+1/2

i dV (3.21)

3.3.2 Finite Volume Discretization

There are different ways of formulation in Finite Volumes. This section describes the Node-
Centered Finite Volume formulation and the Cell-Centered Finite Volume formulation both
used in the modeling of fluids.

Node-Centered Finite Volume (NCFV)

FE FV

Figure 3.6: Node-centered FV fluid model.

The Euler Equations (3.1) (3.2) (3.3) are written in a conservative form with this for-
mulation:

∂U

∂t
+∇ · F = 0 (3.22)



3.3 Numerical Method 25

The weak form of the conservation equation is obtained by integrating them over a
generic control volume V (fixed or moving in space) and by applying Green’s (divergence)
theorem:

d

dt

∫
V
UdV = −

∮
S
F · ndS (3.23a)

d

dt

∫
V
UdV = −

∫
V (t)

[
∂U

∂t
+∇ · Uw

]
dV (3.23b)

Using the Green’s theorem in (3.23),

d

dt

∫
V
UdV = −

∫
V (t)

∂U

∂t
dV +

∮
S(t)

U (w · n) dS (3.24)

The discrete conserved variables are integral means over the generic control volume VI .
It can be writen:

UnI =
1

V n
I

∫
V n
I

Un (x, tn) dV (3.25)

The above equations are integrated in time over an interval ∆tn = tn+1 − tn and , after
some further manipulations, the following general scheme is obtained:

V n+1
I Un+1

I = V n
I U

n
I + ∆tnΦ∗I (3.26)

Where,

Φ∗I = ΣJ∈Ψ(I)NIJ

(
U∗IJwIJn − ϕ∗IJ

)
(assembled numerical fluxes)

(ϕ∗k)IJ = (F ∗k)IJ · n∗IJ (flux matrix projection)

The calculation of numerical fluxes is done by using Roe’s approximate Riemann solver
[9] for the Riemann problem defined by each couple of neighboring volumes’ physical states.

The solution is advanced in time by explicit ”first-order” scheme presented above (3.26),
irrespective of the desired accuracy. The obtained accuracy in space and time of the update
depends only on the procedure used to compute the numerical fluxes Φ∗I :

• Choosing t∗ = tn and node-centred values in space gives first-order accuracy in time
and in space.

• Choosing t∗ = tn+1/2 and spatially extrapolated intra-cell boundary values gives
second-order accuracy in time and in space2.

2To obtain second-order accuracy in time and in space, van Leer’s MUSCL-like technique is adopted.
It combines a predictor-corrector scheme in time with a spatial extrapolation of the conserved variables to
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Nevertheless, to make FE and NCFV formulations compatible, in view of performing
FSI simulations by Lagrange multipliers, the two schemes must be properly synchronized.

The NCFV peculiarities have been gathered and summarized in the next list:

• All quantities of velocities and pressures are discretized at nodes.

• Physical status of FV depends only upon its volume, not on its shape. As it is known
fluids adopt the shape of their enclosure, so this is OK for them. However, geometry
is still used to compute volume and fluxes.

• The transport is computed internally to each FE (figure 3.7), there is no need to know
neighbor FEs.

Figure 3.7: Transport among FV.

• Equivalence between FE and NCFV concerning the initial conditions is not straight-
forward as seen in the figure 3.8.

As the limits are not the same, the boundary conditions can not have the same mean-
ing in both problems because of the discretization. Some possible remedies are the
ones shown in the figure 3.9. The idea is to play with the geometry in order to balance
the information in both regions and construct a kind of ”average” BC border.

Cell-Centered Finite Volume (CCFV)

Cell-Centered Finite Volume formulation is developing right now. Recent researches
suggest that CCFV will be the formulation of the future (the references [10] and [11] are
some examples of the undergoing research).

As shown in the figure 3.10, here you have CCFV’s particularities:

• FV mesh coincides with the classical FE mesh.

intra-cell boundaries.
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FE FV (1)

Figure 3.8: Application of boundary condition.

FE

FV (3)

FV (2)

Figure 3.9: Possible remedies and strategies for BC’s treatment.

• All quantities are discretized at ”cell” centers in the FV discretization.

• Initial conditions are set like in FE.
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FE CCFV

Figure 3.10: Mesh generated from the FE.

p

p

p

v
v

v

F luid node

F luid Gauss Point

F luid node (primal mesh)

Finite V olume (dual mesh)

Mesh node

F inite V olume centroid

FE NCFV CCFV

Figure 3.11: Graphical comparison between FE, NCFV and CCFV.

3.3.3 Mesh Rezoning Algorithms

Rezoning is necessary in ALE formulation because Lagrangian solutions suffer from excessive
distortions and entanglement. Lagrangian formulation attach the particles to a certain space
in their mesh, so huge changes of volume can not be properly represented by this formulation.

The figure 3.12 represents the behavior of an explosion inside a reactor vessel. Once the
explosive bubble is detonated, the lagrangian mesh follows the material. This distortions
the reality as bigger elements have to be computed due to the sudden expansion of the
pressure. On the contrary, this does not the case of the rezoning system in the figure 3.13,
and the reality is much better simulated in this second approach.

Rezoning means a motion of nodes belonging to an ALE mesh at constant mesh topology.
Do not confuse rezoning with remeshing or adaptivity. There are different types of rezoning:
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Figure 3.12: Lagrangian triangles discretization, see [2].

Figure 3.13: ALE manual rezoning with quadrangles, see [2].

Kinematic ”Slave” nodes follow the ”master” nodes. The slave nodes are defined along a
line by master end-points. In case of nodes inside a triangle, quadrangle, etc. slave
nodes move homeomorphically

Geometric There are various ways included in the geometric rezoning. This document
analyzes mean value algorithms and the Giuliani’s method [12], which minimizes tri-
angles/tetrahedra distortion.

Mechanic The elasticity equations are solved for a dual mesh (ALE grid) considered as a
solid (continuum, bar assembly, etc.). Explicit formulation is used to save CPU.

Mean-based Algorithms
The idea behind the mean-based algorithm is very simple: the optimal position of a

node is the mean of its neighbors. Alternatively the use of displacement instead of position
is sometimes used.

xrI =
1

n
Σn
P=1xP (3.27)
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I

J

K

L

M

Figure 3.14: Graphic illustration of mean-based node positioning.

Experience has demonstrated that there are some drawbacks. Mean-based rezoning al-
gorithms rapidly tend to produce uniform meshes, which can be unwanted in some cases. In
addition, some special configurations seem to be impossible to rezone with this procedure
(local mesh curvature).

Giuliani’s algorithm

I

I ′

x

y

J

K

Figure 3.15: Giuliani’s automatic rezoning influence domain.

Giuliani’s algorithm identifies for each ALE node an influence domain made of neighbor
triangles (figure 3.15) or tetrahedra in 3D. Once the domain has been built, the ”shear” and
”stretch” is measure in each measure in the domain (figure 3.16).

shear = f(d)

stretch = g(h)
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Figure 3.16: ”Shear” and ”stretch” measurement.

h is the mean height of triangles in the influence domain

The objective turns to minimize a function of total shear and stretch over the node’s
influence domain, with special care for nodes subjected to boundary conditions:

E =

N∑
i=1

(
hi − h
h

)2

+

N∑
i=1

(
2di

b

)2

objective = min{E} (3.28)





Chapter 4

Fluid-Structure Interaction

4.1 Motivation and Classification

For years problems concerning a system formed by fluid and structure have been modelized
separately. This uncoupled approach computes the fluid first and in a second calculation it
takes the pressures from the fluid so as to deal with the structural problem.

The other approach is to treat the system as fully coupled, taking into account the in-
teraction of both, the fluid and the structure.

Structure

Explosive

F luid

Geometry

p(t)

p(t)

Coupled Solution

Uncoupled Solution

I) Fluid Only II) Structure Only

Figure 4.1: Two possible approaches.

But, fully coupled analysis is sometimes mandatory, specially in two classes of problems:
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• With nearly incompressible fluids

• With very deformable structures

There are plenty of FSI algorithms available in the literature, but all of them must solve
two main problems: the geometrical mesh matching and the mechanical coupling. The first
one deal with the relation between the nodes of the structure and the fluid domain, whereas
the second threats the coupling and the motion transmission of both components. The
figure (4.1) gathers all the options that the code offers to deal with FSI problems. This is
the general vision one should have in mind concerning FSI problems.

Geometrical Mesh-Matching Mechanical Coupling

Failure Strong
Weak

Non-Failure Strong
Weak

Table 4.1: General overview of the FSI approaches

This chapter 4 describes and explains the main approaches to simulate fluid structure
interaction.

4.2 Geometrical mesh-matching

Once having the determination to solve a fluid-structure problem in an coupled approach
there are some points to take into account from the very beginning. The correct discretiza-
tion of the domain is vital. Not only to run certain code, but also to get results as accurate
as possible. The final output will be consequence of how attentive the user is concerning the
mesh generation. So, the first step is to understand the whole system and the final objec-
tive in order to build the correct work-strategy; if not, the results will be completely random.

The mesh generation is closely related with the structure’s response to the external loads.
The approach will be different in terms of geometry, if the assumption of structural failure
is done or not. For non structural failure, an intuitive and basic mesh construction is hold.
To compute failure in the structure, an embedded mesh is the correct election.

Notice the different meaning of failure depending on the context. Here, failure describes
a “broken”solid structure, divided into debris which no longer suffers from external loads.
Remember that the interaction of the fluid and structure is happening in a very short time,
for very huge loads, so the structures may easily suffer from fragmentation. Structural fail-
ure refers to the moment once this fragmentation have taken place, allowing flow though
the damaged structure.
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4.2.1 Isolated fluid cells

Non Structural Failure hypothesis means that the structure and the fluid will be perma-
nently in touch, and the fluid cells isolated. The fluid will never come through the structure,
and two fluids separated by a solid structure will never be in contact. This intuitive idea
marks the way the mesh should be drawn.

As the fluid and the structure are immiscible, they can not share the same nodes in
the general mesh. That is why generally both the structure and the fluid are discretizated
separately. The user have to ensure that the interface between fluid and structure is double
and formed by fluid nodes and structure nodes.

Nodal conformity

This spatial discretization could be different depending on the element’s size of the
components. If the nodes in the interface are located in the same spatial point the mesh
is called conforming. On the contrary, if the same refinement for both is not needed and
the nodes are not longer doubled in the interface, the mesh is called non-conforming (figure
4.2).

(a) Conforming mesh

F F F

S S S

(b) Non-conforming mesh

Figure 4.2: Conformity and Non-Conformity in meshes.

The conformity is widely used and its application is justified in almost the majority of
practical applications, because of the following reasons:

• Linear-velocity, uniform-pressure elements are used for the fluid.

• Zero-thickness shells are linearly interpolated along membrane.

• External pressure on shells element-wise uniform

• An the most important one, because this conforming technique ensures the maximum
simplicity and optimal accuracy.
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However, the conformity requirement can be removed to obtain an even more general
treatment of permanent FSI, which can be very useful in specific advanced applications. In
fluid analysis for instance, small elements are needed and it is not necessary to discretize
the structural domain with the same length of element. So, non-conformity allows the user
to save computer memory and calculation time.

The figure 4.2 b) shows a tentative classification of non-conforming meshes. But is the
first which seems to be the most attractive in practical applications; normally, the fluid
domain is refined more than the structure. The so-called hierarchic configuration works
properly, since for a given mesh size, the stability step is usually larger in fluid elements
than in structure, and it produces no gaps/overlaps.

4.2.2 Flow transference through damaged structure

The structural failure will lead to its erosion and this must be somehow treated (figure
(4.3)). The basic mesh construction described above are no longer applicable in this case as
the failure would mean that two separated fluids might share nodes, and this continuity is
simple impossible by definition. In addition, there are other reasons that make incompatible
structural failure with the model described above in 4.2.1:

• Difficult to sew the fluid meshes on either side of the failing structure

• Automatic fluid mesh rezoning algorithms fail because the master domain (structure)
”disappears”

• Possible rotating macro fragments create rezoning problems.

• Etc.

V irgin structure

Failed structure

F luid nodes to be connected

Figure 4.3: FSI mesh treatment after failure.

This is an alternative in order to deal with failure and fragmentation problems. It
decouples structure from fluid from the initial discretization as shown in the figure 7.1. The
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structure is inside an external fluid mesh, which simplifies the mesh generation, as the user
could be unaware of any matching or non-matching structure and fluid nodes.

Continuous F − S Interface Discretized F − S Interface

(a) Fluid-Structure Interaction

Aternative Discretized F − S Interface

(b) Alternative embedded mesh

Figure 4.4: Alternative methodology

The fluid mesh can be structured, eulerian and with no entanglements for large rotations
by construction. The structure is discretized independently from the fluid and its mesh is
embedded or immersed in the fluid mesh. On the other hand, there are a few drawbacks. A
higher numerical diffusion is expected in comparison with the the basic mesh construction
for non-failed analysis, so in general less accuracy is obtained. That’s why locally a finer
mesh is required.

4.3 Mechanical coupling

Once the mesh is geometrically well constructed, the following step is to define the mechani-
cal coupling strategy. This means the definition of the interaction of the fluid and structure,
which is directly linked with the type of enforcement desired and the finite element or finite
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volume elected in the discretization.

In most of the cases the structure is the external boundary of the fluid, and the fluid’s
behavior defines the boundary conditions for the structure. The way this interaction oc-
curs is the mechanical coupling. This FSI enforcement might be classified in two groups,
depending on the type of the constraint imposed in the interface. The followings:

Strong mechanical coupling Via constraints on velocities. Constraints on Fluid and
Structure velocities are imposed by lagrange multipliers (implicit).

Weak mechanical coupling Via pressure forces and fluxes. Pressure forces are transmit-
ted from the fluid to the structure and structure motion provides weak feedback on
fluid.

4.3.1 Strong coupling

Strong coupling is related with the treatment of the nodal velocity in the interface. As
shown previously, the surface contact must be modelized, and it seems that an ALE formu-
lation fits normally. The problem can be easily turned decoupled by introducing a constant
pressure along the surface (figure 4.5). For an inviscid fluid the pressure acts along the
normal n to the interface.

Fluid Structure

p

−p

Figure 4.5: Decoupled problem.

Then, the material velocity compatibility condition should be imposed, in other words,
the strong coupling conditions or the velocity constraints:

vF • n = vS • n (4.1)

• Tangential velocity components are unconstrained

• Mesh velocities at interfaces obey wF = wS
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Upon discretization, contact pressure is replaced by interaction force r. This interaction
force r is the resultant of the contact pressure at each node of the interface (figure 4.6),
using nodal conformity at the F-S interface. Velocity capability condition (4.1) is of the
form Cv = b (2.25), therefore Lagrange multipliers (2.27) can be used to find r.

n

r

F

S

−r

F luid

Structure

Figure 4.6: Interaction force in each node.

However, simple questions arise from this explanations: how is defined the normal to a
discrete F-S interface? Not only F-S interfaces, but also geometrically more complex cases,
such as bilateral fluid contact, structural joints, submerged structural edges or structural
elements without topological thickness. What is more, for the explanations above conformity
has been supposed, but that is not mandatory as it has been explained previously.

The generalization of coupling (velocity compatibility) conditions for non-matching,
where nF is the normal to the fluid domain is described in the equation (4.2) and shown in
the figure 4.7 .

vF • nF = vS∗ • nF =
(
c1vS1

+ c2vS2

)
• nF (4.2a)

wF = wS∗ = c1wS1
+ c2wS2

(4.2b)

And last but not least, the hypothesis of failure or non-failure might have different me-
chanical coupling treatment. The interface non-conforming geometrical mesh matching or
a failure-type material election will determine further mechanical coupling conditions, so
those are a factors to take into account.

There are plenty of options that this document will not analyze as it is not the objec-
tive. Nevertheless, some of the methods used in the examples have further explanations and
descriptions in this section.

Geometrical FSA/FSR method

The FSA algorithm [13] is a mechanical strong coupling method, based upon local shape
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S1

S2

S∗

F

nF

Figure 4.7: Non-matching node.

of fluid domain only and valid for non-failure treatment. This method computes the normal
vector of a surface, in a purely geometrical way.

The normal direction (∆ = influence domain of the node) is obtained from zero net
velocity flux condition across discrete interface where no fluid is gained or lost (figure 4.8):

∆

S1

S2
Sk

Sk−1

Sk+1

Sn

Fluid

Interaction Surface

(a) 3D

S1 = L1n1

S2 = L2n2

n

S1

S2

n

Fluid

(b) 2D

Figure 4.8: FSA normal computation.

With no lost of generality the normal is calculated using the following formula, for 2D
and 3D:

n = ∆/‖∆|| with ∆ =

n∑
k=1

Sk
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(∆ = influence domain of the node)

The face vectors, Sk, are subdivided into one or more groups, and each group is used to
generate one normal. Vectors pertain to a specific group if they form a smaller angle than
a given γ. If the number of independent normals equals the space dimension, the node is
set Lagrangian and ”tied” to the structural node which means that vF = vS .

n n n

n1

n2

γ

γ > γ

2 normals

Figure 4.9: Effect of progressive ”sharpening” of interface corner. Different normals de-
pending on the angle between faces.

Expanding what it has been explained, in 3D cases, there might be 1 or 2 normals in
an ALE node. In the figure 4.10, 3 points are highlighted: A, B and C. A has 1 blocked
normal and 2 free directions; B has 2 blocked movements and only 1 free direction; whereas
the point C has every movement direction blocked. This last point is fixed so v = 0, and by
definition it behaves as a Lagrangian point in the space.

FSA method is purely geometrical and uses no information about internal fluid element
formulation, so slight but non-negligible accuracy mismatch in calculation of internal pres-
sure forces and of the reactions, may create onset of spurious velocities in 3-D models with
warped element faces (the patch test is a common example in the literature, where a rigid
box filled with uniform pressure is modelized). This leads to a further investigation in al-
ternative methods based on equilibrium.

In the case of rigid structures the Fluid Structure Rigid (FSR) method is used. An
structure is treated as rigid when its displacements are known to be negligible. In those
cases only the fluid needs to be modelized.

The computation turns much more easy as the normal, n, remains constant in time and
the compatibility condition simplifies to vF •n = 0. The geometric and equilibrium methods
can be used unchanged, apart from suitable simplifications that the structure’s rigid condi-
tion offers. In practice, the automatic FS directives dramatically simplifies the prescription
of boundary conditions in geometrically complex cases.
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x y

z

v = 0 (Lagr.)

A

B

C

Figure 4.10: ALE node behavior in 3D formulation.

Equilibrium-Based methods. Uniform Pressure method

The method simply relies upon the observation that the direction of the discrete normal
coincides with the resultant of internal forces due to an arbitrary but uniform pressure (say,
p = 1) in the whole fluid domain. This is, as well as the FSA and FSR, a mechanical strong
coupling method to compute the normal vector, but a non-geometrical one. The Uniform
Pressure method is based upon equilibrium considerations. The meaning of this idea is well
described in the figure (4.11):

n

n

n
n

n

n

p = 1
p = 1

p = 1
p = 1p = 1

Element’s pressure forces ϕelem
p

Figure 4.11: Arbitrary and uniform pressure in the domain.

The normal is computed as:
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ϕelem
p

=
1

p
felem
p

Assembly n = ϕ
p
/‖ϕ

p
‖

Its main advantages are that it is computationally inexpensive because felem
p

are com-

puted anyway. UP ensures perfect equilibrium, and therefore avoids shortcomings of purely
geometrical methods, such as FSA with warped 3-D faces.

On the other hand, there are also some shortcomings in the UP algorithm. It fails at
submerged structural edges, with no topological thickness, because the assembled force van-
ishes each other and thus the normal is undetermined. In addition, it can yield at most one
normal per node, and as it has been shown before there are some cases where blocking more
than one movement is necessary.

Combined method. FSCR method
The FSCR method is a combination of FSA and UP, exploiting their respective strengths.

The algorithm searches for the best normal computation, whether by FSA n1 and n2 or by
UP np. That is why it is so-called an Hybrid method.

There are mainly two options:

1. If FSA yields influence domain composed only by mutually opposite faces, np is un-
determined. In this case n1 and n2) must be kept.

2. In all other cases np is more accurate than n1 and n2. If there is only one FSA normal
n1, we take np instead. Else, if there are two FSA normals, n1 and n2, the normal is

corrected so that np is contained in the plane defined by n
′
1 and n

′
2 (figure (4.12).

FLSR method
The FLSR method is a way of computing embedded models. This section describes how

it works and gives some characteristics.

For embedded meshes first an ”influence domain” must be built up around the structure
so as to identify the fluid nodes currently located within the influence domain of the struc-
ture as seen in chapter 4.2.2 . Then, one must impose suitable constraints on velocity (4.1)
matching the fluid node with the closest structural node. Each coupling condition involves
one fluid node. Notice that the velocities constraints for the structure are not computed in
nodes in general, but in points S∗ (4.3)

vF · n− vS∗ · n = 0 (4.3)

The fluid mesh can be structured, eulerian and with no entanglements for large rotations
by construction. The structure is discretized independently from the fluid and its mesh is
embedded or immersed in the fluid mesh. On the other hand, there are a few drawbacks. A
higher numerical diffusion is expected in comparison with the FSA method, so in general less
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Figure 4.12: Correction for np when FSA computes both n1 and n2, see [2]

accuracy is obtained. That’s why locally a finer mesh is required. Besides, as the influence
domain is the union of various entities, suitable precedence rules are needed to when a fluid
node belongs to more than one entity.

Influence of the element in weak coupling

The methods described above in a FE context have been applied successfully to Node-
Centered Finite Volumes.

Nevertheless some adjustments are needed, since FV time integration scheme is Forward
Euler and not CD (as for FE). The two schemes can be reconciled by adding a suitable force
term to the equilibrium equation (2.6).

Velocity constraint on vI can appear ”too strong” since the boundary node I represents
the average of the whole volume as shows the figure 4.13. In fact, the Fluid and the Struc-
ture are ”strongly linked” together by the imposed constraints on velocities at F-S interface.

4.3.2 Weak coupling

There exists another technique called weak coupling. In this mechanic enforcement tech-
nique, suitable fluid pressure forces are introduced and transmitted to the structure. The
structure then determines the motion of the F-S interface, and this provides a ”weak” feed-
back on the physical status of the fluid, via interface velocity. This technique is nowadays
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NCFV

Fluid− Structure Interface

Underlying FE Grid

True influence domain of FV

J

K

I

Figure 4.13: NCFV representation and its influence domain.

available for Cell-Centered Finite Volumes and for failure and non-failure material type.

First of all, it must be remembered that in Cell-Centered Finite Volume fluid velocities,
pressure etc. are defined at the volume centers and not at nodes. This particularity led to
its successfulness computing certain FSI problems.

Fluxes are not computed towards the boundary, as volume faces delimited the interface
between fluid and structure. Therefore, zero normal velocity condition is ”automatically”
satisfied in an approximate way at a rigid wall. Also at cell centres, in a weak manner.
If a structure is attached (merged nodes) to the fluid boundary, the code automatically
computes pressure forces and applies them to the structure (”weak” FSI coupling). No flux
calculation takes place at the boundary since volumes on the interface have no neighbors:
a rigid-wall condition results automatically.

CCFV provides the possibility to merge fluid and structure nodes. This might be helpful
apart from the mesh construction, to represent deformable structural boundaries (no need
of FSA conditions) or in case of ”double” FS Interface.

A non conforming treatment can be also compute with CCFV. In those cases, cell-
centered fluid pressures are applied to the structure as shown below in figure 4.15, as long
as the structure is not failed. Fluxes are not computed across a neighboring (unfailed)
structure. Matching nodes can be irrelevantly merged or not, although the code used in the
examples needs the non-matched nodes to be declared in a list.

But if the structural failure has to take into account CCFV may also be used in embed-
ded FSI algorithms. The FLSW method is an example of it.
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CCFV FE or NCFV

(a) Deformable structures

FE or NCFV CCFV

(b) Double FS Interface

Figure 4.14: Merged structure and fluid nodes.
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Figure 4.15: Cell-Centered fluid pressures’ application.

FLSW method

The FLSW is a ”weak” variant of FLSR to use with CCFV. As for FLSR first the
”influence domain” must be defined around the structure. Then, fluid volume centers or
fluid faces currently located within the influence domain must be identified with a fast search.
There are 2 strategies to do it (see figures 4.16 and 4.17). Finally, pressure drop forces must
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(a) Influence domain and asso-
ciated FV faces

(b) Blocked fluxes (c) Forces to be applied to the
structure

Figure 4.16: Strategy A. Detect directly fluid faces

(a) Influence domain and asso-
ciated FV faces

(b) Blocked fluxes (c) Forces to be applied to the
structure

Figure 4.17: Strategy B. Detect fluid elements, then faces

be transmitted to the structure and the associated mass and energy fluxes blocked. As in
NCFV for FLSR method, it is necessary to block the numerical fluxes in FLSW calculation.





Chapter 5

Building Vulnerability

5.1 Motivation

The Fast Transient Dynamic Phenomena has been closely related with terrorist attacks,
and therefore, great commissions and research groups are developing simulation software
in order to prevent the feedback of those actions, and minimize as much as possible the
hazards. Further designs improvements are already done, and some of them are compulsory
in our nowadays’ architecture.

Figure 5.1: New York Times 11-S. Source: NYT

This is also the case of the EUROPLEXUS code, that has been developed jointly by
JRC an CEA and distributed by Samtech S.A.

49
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5.2 Approaches to simulate an explosion

Depending on the characteristics of the explosion, there are different approaches to model
it. On the one hand is up to the user to specify the analysis of the domain, taking into
account the structure’s motion, or even simplifying the problem without modeling the fluid
domain.

On the other hand, there are several approaches to define the explosion, and a decision
has to be made on that issue. This section describes the different ways to simulate an ex-
plosive charge.

5.2.1 Domain modeling

There are mainly three approaches to simulate an explosion: defining only the structure,
simulating the behavior of the fluid for a rigid structure, and attaching the fluid-structure
interaction.

Modeling only the structure is computationally cheap, but it has also its drawbacks. The
effects of the detonation have to be somehow transmitted to the structure’s boundary. This
is achieved through an empirical formulation in function of distance and time between the
location of the charge and the pressure’s application point (figure 5.2). Obviously the user
does not get the whole information, as reflections and completely shadow faces are not well
computed in this way. It is commonly used because of its advantages in terms of computer
economy and for a first approach.

On the other hand, the fluid can also be treated without taking into account the struc-
ture. This is only valid for very heavy and stiff structures, where they can be considered as
completely static. The worst drawback is that the output does not specify the structural
damage, so it is not a good approach to analyze building vulnerability. Nevertheless it is
useful to study the pressure’s evolution in the air, so as to know where the maximum and
minimum points are.

And last, both the structure and the fluid may be modeled and the interaction studied.
This allows the analysis of both at the same time, so the results are much more real. It is
the unique way to treat the system as coupled, to define reliable risks maps, and structural
damage figures. All effects are included in this type of computation and, therefore is the
most expensive one in terms computer economy (memory and time).

5.2.2 Charge modeling

The second approach is in terms of charge modeling. Depending on the needed accuracy, the
knowledge of the problem, and the time and computer available memory, there are several
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Figure 5.2: Pressure-time curve for a free air blast wave, see [3].

options (figure 5.3).

The first is the Air Blast Wave model (AIRB) [14] [15]. An idealized experimental results
for free-air explosions is used in order to simulate an equivalent TNT charge explosion in
the structures’ faces. A modified Friedlander equation (5.1) is used for this porpoise.

p = p(m, d, t) (5.1)

This method is computationally cheap and fast as the fluid is not taken into account.
But on the other hand, reflections, shadowing, street channeling can not be modeled. In
general, the AIRB works for simple geometrical situations.

The second way of modeling a explosive charge is by a compressed air bubble. The deto-
nation is treated as a high difference of air pressure between the bubble and the surrounding
air. This requires calibration and this procedure can be tedious as explained in the examples.

An last, a solid TNT equivalent may be used by Jones-Wilkins-Lee state equation. This
is the best approach to the reality, but also the most expensive one. It requires a fine mesh
for the fluid, so the needed memory is its major drawback.

AIRB BUBB JWLS

Realism / Difficulty / Cost

Figure 5.3: Comparison of the three ways to model the explosive charge.





Chapter 6

Contact-Impact between solids

x

B

A

Figure 6.1: Lagrangian Contact-Impact description.

The classification of contact-impact between solids can be done as:

Slow It refers to slow loading, smooth contact and friction problems. Its study is specially
useful for metal forming and shaping-manufacture industries.

Fast Impacts or crashes are the common problems concerning fast contact-impact. For fast
loading, where friction is not too important; or large deformations with no fragmen-
tation.

Very Fast complete failures and perforations are treated in this last contact-impact prob-
lems. Perforation is a special case that is going to be studied in a example.
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There are lots of manners to solve contact-impact problems in the literature. All of the
methods consist of two main components:

1. Contact detection module, in order to know whether the contact exists or not, and
when happens. It is usually carry out by heavy geometrical computations.

2. A contact enforcement technique. For example, penalty or Lagrange multipliers.

Some of the main methods are the followings:

Conventional contact-impact methods The contact is detected by node-through-surface
penetration. The method works with ”slave” nodes and ”master” surfaces. More in-
formation in referencia. Nevertheless, this techniques do not work well in certain
circumstances. Normally problems occurs when the technique deals with strange ge-
ometries where contact detection turns tricky or with some ambiguous contact cases.

Pinball method This method consists on embedding an sphere in each element [16]. The
contact between elements occurs when (see the figure (6.3)) the following inequation
(6.1) becomes true:

Figure 6.2: Pinball method description.

d12 < (R1 +R2) (6.1)

C1

C2

n1
n2

v2v1

R1

R2

Figure 6.3: Contact between elements.

This method has also its shortcomings concerning slender and distorted continuum
elements or with zero-thickness beam and shell elements.
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So as to solve this problems, The Hierarchic Pinball Method was developed [17]. In
this case a parent pinball is embedded in each element and recursively descendent
pinballs are generated as long as contact holds.

A

(a) Level 0

A3

A2

A4

(A1)

(b) Level 1

A22

A23

A32

A33A34A43A44

(c) Level 2

Figure 6.4: Descendent pinballs generation

When does hierarchy stop? It continues dividing each element until the minimum
size or max level is reached for continuum elements or until the size equals physical
element thickness in shell elements.

Smoothed Particles Hydrodynamics (SPH) The basic idea behind this methos is to
represent a continuum by a set of particles, whose motion is governed by the conser-
vation laws of continuum mechanics [18] [19].

It was developed in the 70s for astrophysical problems (Lucy, Gingold, Monaghan,
1977) involving the motion of compressible fluids in complex geometries. Its goal is to
verify the behavior of the structure, and not so much concerned in the impacting body.
Its applications are plenty, every phenomena described as an impact of a relatively soft
body onto a structure, with or without fragmentation (aeronautics applications, nu-
clear impacts, etc.).

Formulation

The method is based upon the following identity (6.2) for a function f :

f (r) =

∫
f
(
r
′
)
· δ
(
r − r′

)
dV (6.2)

r = position vector δ = Dirac’s distribution
f = scalar vector field (ρ, v...)

The equation (6.2) can be approximated by a regularization, using Kernel function
W (r, h) where h is the characteristic length and W satisfies certain properties. So:
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Figure 6.5: An application in aeronautics. Bird strike simulation. See [2].

f (r) ≈ 〈f (r)〉 =

∫
f
(
r
′
)
·W

(
r − r′ , h

)
dV (6.3)

To write the equations of continuum mechanics under the form of a particle approxi-
mation, it is necessary to estimate the various fields (density, energy, etc.) and their
spatial gradients (gradient, divergence, ...). Then for each term one have to follow this
steps:

1. Term of dynamic conservation equation at point r.

2. Multiply by W
(
r − r′ , h

)
.

3. Integrate over the fluid domain with special attention to the boundaries.

4. Approximate the integrals by discrete summations.

5. Term of SPH equation at point r.

As the approach is Lagrangian, it has the advantage of not using a mesh in the tradi-
tional sense, so that all problems related to excessive mesh distortions are avoided. It
allows to overcome the limitations of classical FE-based methods and their drawbacks.
SPH can also be effectively coupled with standard FE to model impact phenomena
with fragmentation.

On the other hand there are some disadvantages, as the recalculation of connectivity at
each step is costly or the weak treatment of the materials’ laws. It is a quite ”young”
method so it is spected that improvements will complement SPH method.



Chapter 7

Examples

7.1 Parking

7.1.1 Objective

The objective of this example is the simulation of an explosion in a parking lot and the
analysis of the structural response for different materials. The evolution of the pressure in
the fluid will be also studied, as well as the influence of the meshing in the final results.

Different models of explosions’ simulation are used, so as to compare them and decide
which best represents the real problem. Approaches have been done in 2D and 3D.

First of all the model is described, where material characteristics, dimensions and con-
stitutive laws are detailed. Then, the results are explained for the 2D and 3D cases, with
the necessary figures and graphics in order to understand the conclusions properly. Finally,
this results are discussed and compared with the intuitive physical behavior, and the results
obtained by the

7.1.2 Model

The pre-process has been done with Cast3m and for the calculation EUROPLEXUS code
has been used. In terms of post-process, the graphics have been drawn with Cast3m and
Excel, and the movies with the EUROPLEXUS code.

As far as the fluid-structure interaction scheme is concerned, the non-structural failure
hypothesis has been elected. Therefore, the geometrical mesh matching is conforming or
non-conforming depending on the mesh refinement. On the other hand, strong mechanical
coupling has been used in FE.

As far as the geometry of the structure is concerned, it has been summarized in the table
7.1.
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Characteristic of the Structure Dimension

Number of Stories 3 in 2D 1 in 3D
Number of Parcels 5 in 2D 1 in 3D
Plant height 3.2 m
Forged’s thickness 0.4 m
Width between columns 14.4 m
Columns’ width 0.8 m

Table 7.1: Geometry of the structure

(a) 2D

(b) 3D

Figure 7.1: Mesh of the structure in 2D and 3D.

In addition, the material used in each domain has its own characteristics and particular-
ities (table 7.2). The structure has been represented by a linear elastic material, modified
or not with a Mazars damage model for concrete (non-linear model) [20] [21].

In terms of fluid modeling, the explosion has been simulated in two ways: as a TNT
charge equivalent (air blast wave) or by a difference of pressure, energy and air density in a
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Type of material ρ [kg/m3] E [Pa] ν fc [Pa] ft [Pa]

Linear Elastic 2500 3.4·1010 0.2
Mazars Non-linear 2500 3.4·1010 0.2 30·106 2.9·106

Table 7.2: Characteristics of the concrete

little fluid bubble. The characteristics for the fluid are specified in the table 7.3.

Type of material ρ [kg/m3] Eint γ

Air 1 2.5·105 1.4
Explosion bubble 1500 for 3D and 200 for 2D 5·106 1.4

Table 7.3: Characteristics of the fluid

The explosive has been located in the middle of the first floor, represented by a material
point for the AIRB calculation, and by a suspended box (0.3x0.3x0.3 m) in the air for the
FSA type. The ground has been treated as completely rigid and the movement of the base
of the pillar blocked.

In order to achieve the objectives, different meshes combined with different types of
elements and sizes (hs for the structure and hf for the fluid) and fluid-structure interaction
approaches have been modeled. The table summarizes every test that has been made, for
2D and 3D.

As specified in chapter 5 there is a big deal referring to the comparison between air blast
wave and the high pressure air bubble simulation. The relation is not straightforward and
there are currently studies about the issue. For this report, a suitable change of pressure has
been chosen for 2D and 3D cases in order to notice the structural response due to the charge.

7.1.3 Results

The experiments and the printed results have been carefully chosen so as to find the best
physical representation, but also to clarify some ideas exposed in the previous chapters. The
results appear divided in 2D and 3D, since there is a big computational difference for an
extra dimension.

As shown in the figure 7.4 for 2D and 3D cases two approaches have been studied: the
effect of the explosion in the structure using the AIRB TNT equivalent charge, and the total
coupled fluid-structure problem with FSA.

The descriptive characteristics obtained vary with the different examples, but generally,
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Dimension FSI Concrete hf [cm] hs [cm] Element CPU [s]

2D AIRB 50 kg Lineal - 40 TRI 37.78
AIRB 50 kg Lineal - 20 TRI 145.45
AIRB 50 kg Lineal - 40 QUA 15.75
AIRB 50 kg Lineal - 20 QUA 85.52
AIRB 100 kg Lineal - 40 TRI 34.22
AIRB 100 kg Lineal - 20 TRI 140.77
AIRB 100 kg Lineal - 40 QUA 14.14
AIRB 100 kg Lineal - 20 QUA 86.73

FSA Lineal 40 40 TRI 32.48
FSA Lineal 40 40 QUA 22.56
FSA Lineal 20 40 TRI 93.39
FSA Lineal 20 40 QUA 78.71

3D AIRB 100 kg Lineal - 40 CUBE 7.16
AIRB 100 kg Lineal - 20 CUBE 250.37
AIRB 100 kg Lineal - 10 CUBE 370.39
AIRB 100 kg Lineal - 5 CUBE 931.61
AIRB 100 kg Mazars - 40 CUBE 25.22
AIRB 100 kg Mazars - 20 CUBE 268.27
AIRB 100 kg Mazars - 10 CUBE 1279.98
AIRB 100 kg Mazars - 5 CUBE 2569.26
AIRB 50 kg Lineal - 40 CUBE 5.31
AIRB 50 kg Lineal - 20 CUBE 53.84
AIRB 50 kg Lineal - 10 CUBE 249.98
AIRB 50 kg Lineal - 5 CUBE 688.53
AIRB 50 kg Mazars - 40 CUBE 17.84
AIRB 50 kg Mazars - 20 CUBE 187.16
AIRB 50 kg Mazars - 10 CUBE 840.75
AIRB 50 kg Mazars - 5 CUBE 2398.31

FSA Lineal 40 40 CUBE 174.14
FSA Lineal 20 40 CUBE 3821.84
FSA Mazars 40 40 CUBE 214.69
FSA Mazars 20 40 CUBE 3716.83

Table 7.4: Summary of the models used

vertical displacement, Von Misses value, velocity field, fluid pressure and structural damage
level (for the Mazars material) are shown.

2D

For the 2D, a control point has been established right down the location of the explosion,
and its displacement measured, in order to compare different meshes and approaches.

The figure 7.2 and shows the displacements of the control point concerning the AIRB
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(a) 50 kg TNT

(b) 100 kg TNT

Figure 7.2: Vertical displacement of the control point, depending on the element for AIRB
simulation

model, with 50 or 100 kg. of TNT equivalent charge, and different element types and sizes.

Some others factors have been analyzed such as the Von Misses Criterium equivalent or
the instant nodal velocity. Since the structure is treated as Lagrangian, every element is
attached to a material so the nodal velocity refers to the structure’s motion velocity.
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The best way to represent the evolution of those variables is by a movie. Those movies
have been created and the figures 7.3 and 7.4 represents the behavior of the descriptive
factors in time.

In order to study the fluid’s behavior the whole fluid-structure interaction has been taken
into account. This allows to obtain the air’s pressure in every time step, which may be in-
teresting to know in certain cases. As explained before the charge has been simulated by a
difference of pressure between the bubble and the air. The value of the pressure difference
has been chosen in such a way that the structural response is similar to that achieved with
the previous AIRB model (figure 7.5). Then, the pressure in the air is represented in the
figure 7.6

3D

As the 2D model is not enough to represents the reality, the 3D approach has to be
performed. For the 3D, in addition to the linear material, an available Mazars model with
damage is used. In consequence structural damage maps are obtained, which is much more
interesting than any other descriptive variable. A control point is also fixed, the same point
as before, the structural point just below the charge or the high-pressure bubble. The 2D
approach helps in the election of the best element type, cubes in this case.

As in the 2D problem, the AIRB model has been computed with 50 and 100 kg of
equivalent TNT charge, but for both materials. The figure shows all the results concerning
the vertical displacement of the control point for every tested mesh.

This results may be better understand with a Von Misses Criterium and structural dam-
age map for the Mazars material model (figures 7.9 and 7.10).

For a further analysis, the fluid has also been modeled. This turns the computation
much more heavy, and the mesh refinement has been limited due to the lack of computer’s
available memory. In this case the fluid’s pressure has been pointed out, as well as the Von
Misses Criterium and damage map for the structure. Notice that for this calculation the
charge has been approximated as a difference of pressures (figure 7.3).

A comparison of vertical displacement has also been made for every refinement level and
material tested (figure 7.14)

7.1.4 Analysis of the results

2D

The problem in 2D has its own limitations. As far as the structural domain is studied
alone, the general approach with the AIRB model gives coherent results. The internal way
of computing the pressure in the structure’s faces allows the code to impose pressure in
every desired place. That is why the effect of the explosion arrives not only to the closest
boundaries but also to the farest ones.

This can be easily sawn in the evolution of the nodal velocity, as the motion of the floor
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.3: Von Misses Criterium for 100 kg TNT equivalent.
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.4: Nodal Velocity for 100 kg TNT equivalent.
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Figure 7.5: Comparison between the chosen pressure and previous AIRB simulations. Ver-
tical displacement of the point of control.

slab of the neighbors compartments (not the square where the explosive is situated but the
closest ones) is firstly generated because of the stiffness of the structure (goes up) and then
once the explosive-wave arrives it goes down. In addition, if the vertical displacement of
the control point is compared with the one obtained in the 3D, similar structural behavior
is perceived.

But this does not happen in the second tried approach. Modeling the fluid in 2D means
in this case that it is going to be confined inside the four ”walls”. Obviously, the reality is
not well represented as the fluid remains inside the structure, as if in a infinitely long tunnel.

The importance of the meshing has been clearly proved. Not only a good refinement is
needed but also the election of an adequate element is preferable. The figure 7.2 illustrates
the variation that occurs depending on the refinement and the element type. Even though
the FSA approach is useless in order to represent the reality, its representation has been
helpful so as to see the behavior of a high-pressure-air-wave for different element types. In
the figure 7.6 the lector can easily distinguish the non-symmetrical pressure expansion. This
is due to the shape of the element. That is why in the next 3D approaches, only cubes have
been used, and consequently, the high-pressure-air-wave has a symmetrical behavior (see
figure 7.13).

It can be concluded that for a coarse mesh and without change of the material param-
eters the structure becomes stiffer, and that convergence is reached with smaller elements.
This value can be obtained faster using suitable element types, and for this regular geometry
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.6: Pressure of the fluid in Pa.
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(a) 50 kg TNT for linear

(b) 50 kg TNT for Mazars

Figure 7.7: Vertical displacement of the control point, depending on the element for AIRB
simulation
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(a) 100 kg TNT for linear

(b) 100 kg TNT for Mazars

Figure 7.8: Vertical displacement of the control point, depending on the element for AIRB
simulation
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.9: Von Misses Criterium for 100 kg TNT equivalent
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.10: Structural damage for 100 kg TNT equivalent
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.11: Von Misses Criterium for a high-pressure-air-bubble
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.12: Structural damage for a high-pressure-air-bubble
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(a) 0 ms (b) 0.5 ms

(c) 1 ms (d) 1.5 ms

(e) 2 ms (f) 4 ms

Figure 7.13: Air pressure for a high-pressure-air-bubble
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Figure 7.14: Comparison between mesh refinements and structural material. Vertical dis-
placement of the control point.

square-shape ones seems the correct election.

3D

A 3D approach is completely necessary for this particular example. The 2D has been
useful in terms of understanding generalities and different models’ particularities, but un-
satisfactory for a correct simulation. But it has also drawbacks, as the an extra dimension
computation requires a huge amount of memory which has been a handicap in this minor
thesis. Nevertheless, an accurate analysis of the results can be made.

The figures 7.7 and 7.8 show completely different structural behavior for both the linear
concrete and the Mazars concrete model. This last model oscillates without control once
reached a certain time, but the linear one does not. Without any additional information is
difficult to understand why this may happen but the figure 7.10 gives a clue. The structure
reaches the maximum damage level so the elements concerned are not longer useful for such
a description. Furthermore, the same phenomena happens either for 50 kg TNT equivalent
or for 100 kg TNT equivalent. As expected, both charges creates a full collapse in the
structure, and the damage level reaches to the maximum level.

The mesh significance is not so important in those particular cases (specially for the
linear material, see figures 7.7 and 7.8), due to the high charge. Nevertheless, refining the
structural mesh may be acceptable, as it does not require such a big cost, and the movies
can be played with higher detail.
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Finally, the whole system has been analyzed. Figures 7.11, 7.12 and 7.13, represent the
structure’s response, as well as the fluid’s pressure.

The first feedback to the figures is that the modeled pressure difference is not as pow-
erful as the 100 or even the 50 kg of TNT equivalent. This allows a further study in the
structural response in front of this charge, as it has not been completely collapsed. The
explosion creates a little deflexion in the concrete because of the pressure generated by the
blast wave. This creates compression in the structural faces exposed to the explosion, and
traction in the external ones. What’s more, this deflexion is higher where the stiffness is
lower, so the regions distant from the pillars are those who would suffer the most. And this
is exactly what shows the representation (figure 7.12). The damage is expanded symmetri-
cally towards the parallels of the edges, as those are the weakest structural points.

The asymmetry described for the 2D disappears in the 3D case, as cubes have been
used in the mesh generation (figure 7.13). Nevertheless, there is a big influence of the mesh
refinement related with the high-pressure-air evolution. The pressure that reaches to the
structure is lower with the mesh refinement (figure 7.14), so the structural response is closely
linked with the fluid’s element size.
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7.2 Tank

7.2.1 Objective

The objective in this example is to model the impact of a bullet in a water filled metal tank.
The consequences of this impact are going to be analyzed in both domains, the fluid and
the solid, and their behavior shown for different initial speed and incidence angle.

7.2.2 Model

The used code is EUROPLEXUS, and the contact-impact system is treated with the pinball
method Smoothed articles Hydrodynamics (SPH). That means that the system’s represen-
tation is done by a set of particles and not by FE o FV. The material and geometrical
characteristics are summarized in the tables 7.5, 7.6 and 7.7.

Object Number of particles Type of object Model

Fluid 13902 particles Isothermal, perfect Euler
Tank 6062 particles Elasto-plastic Johnson-Cook, Lemaitre Damage [22]

Table 7.5: Characteristics of the objects

ρ [kg/m3] C P0 [Pa] Pref
Water 1000 1450 105 105

Table 7.6: Characteristics of the fluid

ρ [kg/m3] E [Pa] ν A [Pa] B [Pa] C [Pa] n ε̇0 m

Tank 17600 199·109 0.3 175·106 380·106 0 0.32 1 1

Table 7.7: Characteristics of the tank

The dimensions of the tank are the followings (table 7.8) and the figure 7.15 represents
the steel-point-made-by mesh.

Characteristic [cm]

Radio 15
Height 60
Thickness 1.5

Table 7.8: Projectile’s initial conditions.
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Figure 7.15: Mesh of the tank. Steel particles

The bullet is also discretized by particles but its characteristics are not important for
this study. What happens with the projectile is not the case of study. The table 7.9 shows
every tested approaches.

Proj. init. speed [m/s] Angle X axis [o] Angle Y axis [o] Angle Z axis [o]

1 1466 90 0 90
2 2932 90 0 90
3 2932 45 45 90

Table 7.9: Projectile’s initial conditions.

7.2.3 Results

The structural damage equivalent (for Lamaitre model)(figure 7.16) and the water pressure
(figures 7.17) are the main outputs given in this example. The case 2 has been fully devel-
oped, whereas for the third case only de deformation is printed (figure 7.18). The first case
has been omitted as non-extra information may be given with it.
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(a) 0 ms (b) 0.2 ms

(c) 0.4 ms (d) 0.8 ms

(e) 1.4 ms (f) 2 ms

Figure 7.16: Steel’s damage and perforation. Case 2.
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(a) 0 ms (b) 0 ms

(c) 0.08 ms (d) 0.08 ms

(e) 0.16 ms (f) 0.16 ms

Figure 7.17: Fluid’s pressure. Case 2.
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(a) 0 ms (b) 0.2 ms

(c) 0.4 ms (d) 0.8 ms

(e) 1.4 ms (f) 2 ms

Figure 7.18: Steel’s damage and perforation. Case 3.
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7.2.4 Analysis of the results

The model represents the reality. The structural fragmentation, perforation and expansion
occur as expected. In addition, the tank is opened outwards, due to the pressure exerted by
the fluid in the metallic wall. Literature states that the generated petaling depends upon
the projectile’s impact velocity and the lubrication. All the examples are equally lubricated
but the difference of the initial conditions of the bullet (table 7.9) generate those shapes.

As for the fluid’s pressure, the figure 7.17 shows the perfect symmetry of the expanded
pressure, and how it is dissipated because of the deformation of the container, and because
the water starts to exit by the drilling.





Chapter 8

Conclusions

Once the analysis of the examples has concluded, it is interesting to summarize the ad-
vantages and drawbacks that have been observed so far, so as to take them into account
in future applications. Two different applications have been designed. Both examples are
completely different in terms of the technique used to solve them, but they are good enough
tests to draw conclusions of FSI functioning. The examples are:

• An explosion in a parking lot.

• Impact of a bullet in a water filled metal tank.

Firstly, when working with a real simulation is important to keep in mind what the
limits of the employed model are. In the parking 2D example for instance. the easiest test
to compute, has showed that the fluid’s behavior is not the expected, and that the reality
was not represented properly, not because of a numerical fault, but due to the own limita-
tions of the model. Moreover, the AIRB was expected to behave worse than the model with
the FSI, but it has shown its strength in this particular 2D example. Understanding the
way the pressures are expanded and run in a particular model becomes the key to the success.

Then, once clarified and chosen a certain work pattern, is equally vital to know which
are the variables that are going to be studied, or the required information. For instance, if a
damage map is desired as an output, the structure should be modeled by a specific material.
This type of material usually fixes the element to use in the meshing, so a simple decision of
the material election determines some decisions from the beginning. Having those things in
mind enables to ease the calculus, making suitable hypothesis if necessary and constructing
the example correctly from the beginning.

In addition, taking into account all the decisions, the reality must be properly charac-
terized. The first example shows the influence of the taken initial hypothesis in order to
compare different models (in the 3D approach), or even same models with different refine-
ment levels. The accuracy obtained will be closely linked with the correct parametrization
of the problem. Nevertheless, in spite of a nice characterization of the system, there is also
another limitation: computational requirement. There is a huge jump between 2D a 3D

83
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problems in terms of needed computational memory. Whereas for 2D problems the ele-
ments’ size has been reduced up to 5cm, this has been impossible for the 3D problems as
observed in the table 7.4. The lack of computational memory is double in those problems
because firstly the mesh have to be generated, and then, the code has to be run. The dif-
ference of the obtained results is best observed in figure 7.14.

Finally, the effectiveness of the SPH method has been proved in the second example.
It allows to overcome the limitations of the classic FE-based methods in problems where a
constant mesh topology becomes a serious drawback. Comparing it with the formulations
explained in this thesis (Lagrangian, Eulerian and ALE), the SPH method gathers all the
advantages of them, but goes further as there are not problems with mesh rezoning, bound-
ary conditions are easily treated, and only the real domain is modeled. This relatively young
method seems that is going to be a powerful and useful way of computing fast transient FSI
problems in the near future. Nonetheless, for coarse particles it is difficult to distinguish
the real behavior of the material yet, mainly due to the particle size, and the difficulty
concerning the representation of material laws.
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