Índex d'Annexos

ANNE	X A. CÀLCULS I MACROS	3
A.1	Càlcul de la corba material	3
A.2	Macros per les simulacions de l'embotició	4

ANNEX B. RESULTATS SIMULACIONS DEL PLEGAT DE XAPA...9

B.1	Deformacions elementals a la làmina mitja. Malla 1mm (Ajust 6)	9
B.2	Resultats del Ajust 1 del plegat de xapa per ajustar la deformada	10
B.3	Resultats del Ajust 2 del plegat de xapa per ajustar la deformada	14
B.4	Resultats del Ajust 3 del plegat de xapa per ajustar la deformada	18
B.5	Resultats del Ajust 4 del plegat de xapa per ajustar la deformada	22
B.6	Resultats del Ajust 5 del plegat de xapa per ajustar la deformada	26

C.1 Resultats Simulació de Mig Arc sense tensions residuals al punt de càrrega màxima	31
---	----

- C.2 Resultats Simulació de Mig Arc amb tensions residuals al centre de l'Arc. Càrrega màxima35

ANNEX D.	PRESSUPOST57
----------	--------------

ANNEX E.	ESTUDI D'IMPACTE AMBIENTAL
· · · · · · · · · · · · · ·	

ANNEX A. CÀLCULS I MACROS

A.1 Càlcul de la corba material

Al límit elàstic de f_y =220 MPa, tenim un factor K=1,363.

Al límit elàstic de f_v =350 MPa, tenim un factor K=1,2.

 $f_u = K \cdot f_y$

Interpolació lineal:

y = a + bx

1,363 = a + b·220

1,2 = a + b·350

a=1,6388 i b=-0,0012538

Obtenim la següent recta d'interpolació:

y = 1,6388 - 0,0012538x

Per tant si f_y=401MPa=x, tenim un factor K=y=1,1372

Així doncs, la tensió de ruptura d'aquest acer és:

f_u=K·f_v=1,1372·401=**456,01 N/mm²**

Annexos

A.2 Macros per les simulacions de l'embotició

/prep7	Entrem en el Preprocessador					
ddele,all	Esborrem tots els desplaçaments que hi pugui haver					
et,12,14	Posem com a tipus d'element la molla					
r,7,0.1e-5	Definim les real constants de la molla					
n,nou_node,0,-49.61,54.006	Situem l'extrem a encastar de la molla					
type,12	Creem l'element molla					
real,7						
e,nou_node,node_xapa						
	Salaccionam los àroos de la vana					
	Seleccionennies alees de la xapa					
asel,a,area, 106,111						
Isel,s,line,,221 simetria	Seleccionem les línies de la xapa que imposarem					
lsel,a,line,,7						
Isel,a,line,,263						
Isel,a,line,,262						
Isel,a,line,,264						
Isel,a,line,,290						
lsel,a,line,,268						
lsel,a,line,,270						
Isel,a,line,,272						
lsel,a,line,,274						
lsel,a,line,,2						
lsel,a,line,,232						
lplot						
vclear,3,4,1	Esborrem els elements sòlids de les matrius					

vdele,3,4,1,1	Esborrem el volum de les matrius (per agilitzar el càlcul)				
vplot					
/solu7	Entrem al solucionador				
dl,all,,symm seleccionades	Imposem condicions de simetria a les línies				
d,nou_node,all	Encastem l'extrem de la molla				
nsel,s,node,,428015,428015	Seleccionem els nodes de la perifèria en la direcció X dels elements de contacte de la xapa				
nsel,a,node,,430458,430458					
nsel,a,node,,432849,432896					
nsel,a,node,,447945,447945					
nsel,a,node,,448017,448063					
nplot					
d,all,UY,0,0	Impedim els desplaçament en la direcció UY				
nsel,s,node,,432849,432849	Seleccionem els nodes de la perifèria en la direcció Y dels elements de contacte de la xapa				
nsel,a,node,,432897,432936					
nsel,a,node,,434337,434444					
nsel,a,node,,438225,438246					
nsel,a,node,,439017,439242					
nsel,a,node,,447153,447174					
nsel,a,node,,447945,448016					
nplot					
d,all,UX,0,0	Impedim el desplaçament en la direcció UX				
esel,s,type,,10	Seleccionem els elements de la matrius superior				
nsle,s	Seleccionem els nodes vinculats a aquests elements				
nplot					
	Impegent of deeplessment vertical de la satur				

d,all,UZ,-8.8665,, superior Imposem el desplaçament vertical de la matriu

d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ Restringim tots els altres graus de llibertat de la matriu

esel,s,type,,8	Seleccionem els nodes vinculats a aquests elements
nsle,s	Seleccionem els nodes vinculats a aquests elements
nplot	
d,all,UZ,6.425,, inferior	Imposem el desplaçament vertical de la matrius
d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ matriu	Restringim tots els altres graus de llibertat de la

//correcció 1 Imposem el moviment de les matrius segons l'Ajust 1
esel,s,type,,10
nsle,s
nplot
d,all,UZ,-8.3243,,
d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ
esel,s,type,,8

nsle,s

nplot

d,all,UZ,6.0321,,

d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ

//correcció 2 Imposem el moviment de les matrius segons l'Ajust 2
esel,s,type,,10
nsle,s
nplot
d,all,UZ,-8.59,,
d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ

esel,s,type,,8 nsle,s nplot d,all,UZ,6.23,, d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ

//correcció 3 Imposem el moviment de les matrius segons l'Ajust 3 esel,s,type,,10 nsle,s nplot d,all,UZ,-8.4465,, d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ esel,s,type,,8

nsle,s

nplot

d,all,UZ,6.425,,

d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ

//correcció 4 Imposem el moviment de les matrius segons l'Ajust 4 esel,s,type,,10 nsle,s nplot d,all,UZ,-8.8665,, d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ

esel,s,type,,8 nsle,s nplot d,all,UZ,6.20,,

d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ	
//correcció 5	Imposem el moviment de les matrius segons l'Ajust 5
esel,s,type,,10	
nsle,s	
nplot	
d,all,UZ,-9.5,,	
d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ	,
esel,s,type,,8	
nsle,s	
nplot	
d,all,UZ,6,,	
d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ	
//correcció 6	Imposem el moviment de les matrius segons l'Ajust 6
esel,s,type,,10	
nsle,s	
nplot	
d,all,UZ,-8.45,,	
d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ	
esel,s,type,,8	
nsle,s	
nplot	
d,all,UZ,6.13,,	

d,all,UX,0,,,,UY,ROTX,ROTY,ROTZ

ANNEX B. RESULTATS SIMULACIONS DEL PLEGAT DE XAPA

B.1 Deformacions elementals a la làmina mitja. Malla 1mm (Ajust 6).

B.2 Resultats del Ajust 1 del plegat de xapa per ajustar la deformada

Ajust 1 - Tensions nodals exteriors:

Ajust 1 - Tensions elementals exteriors:

Ajust 1 - Tensions elementals a la superficie mitja:

Ajust 1 - Deformacions nodals exteriors:

Ajust 1 - Deformacions elementals exteriors:

Ajust 1 - Deformacions nodals a la superficie mitja:

Ajust 1 - Deformacions elementals a la superficie mitja:

B.3 Resultats del Ajust 2 del plegat de xapa per ajustar la deformada

Ajust 2 – Tensions elementals exteriors:

1

Ajust 2 - Tensions nodals a la superfície mitja:

Ajust 2 - Tensions elementals a la superfície mitja:

Ajust 2 - Deformacions nodals exteriors:

Ajust 2 – Deformacions elementals exteriors:

Ajust 2 - Deformacions nodals a la superfície mitja:

Ajust 2 – Deformacions elementals a la superfície mitja:

B.4 Resultats del Ajust 3 del plegat de xapa per ajustar la deformada

Ajust 3 – Tensions elementals exteriors:

1

Ajust 3 - Tensions nodals a la superfície mitja:

Ajust 3 - Tensions elementals a la superfície mitja:

Ajust 3 - Deformacions nodals exteriors:

Ajust 3 – Deformacions elementals exteriors:

Ajust 3 - Deformacions nodals a la superfície mitja:

Ajust 3 – Deformacions elementals a la superfície mitja:

B.5 Resultats del Ajust 4 del plegat de xapa per ajustar la deformada

Ajust 4 – Tensions elementals exteriors:

Ajust 4 - Tensions nodals a la superfície mitja:

Ajust 4 - Tensions elementals a la superfície mitja:

Ajust 4 - Deformacions nodals exteriors:

Ajust 4 – Deformacions elementals exteriors:

Ajust 4 - Deformacions nodals a la superfície mitja:

Ajust 4 – Deformacions elementals a la superfície mitja:

B.6 Resultats del Ajust 5 del plegat de xapa per ajustar la deformada

Ajust 5 – Tensions elementals exteriors:

Ajust 5 - Tensions nodals a la superfície mitja:

Ajust 5 - Tensions elementals a la superfície mitja:

Ajust 5 - Deformacions nodals exteriors:

Ajust 5 – Deformacions elementals exteriors:

Ajust 5 - Deformacions nodals a la superfície mitja:

Ajust 5 – Deformacions elementals a la superfície mitja:

ANNEX C. RESULTATS SIMULACIONS DE L'ARC

C.1 Resultats Simulació de Mig Arc sense tensions residuals al punt de càrrega màxima

Tensions nodals:

1 NODAL SOLUTION

Tensions elementals:

Desplaçament en la direcció UX:

Desplaçament en la direcció UY:

Desplaçament vertical UZ:

Deformacions plàstiques i mecanisme de plastificació:

S'observa el mecanisme de plastificació al centre de l'arc quan la xapa s'abonyega cap a munt, i com les deformacions es disparen en aquesta zona.

Vista1:

Vista 2:

C.2 Resultats Simulació de Mig Arc amb tensions residuals al centre de l'Arc. Càrrega màxima

NODAL SOLUTION

Tensions elementals:

Tensions nodals:

Deformada:

Desplaçament UX:

Desplaçament UY:

NODAL SOLUTION

Desplaçament UZ:

- C.3 Resultats de la sensibilitat de la profunditat d'embotició $p_{emb.}$ (amb tensions)
- 75%. Tensions nodals de von Mises (punt de càrrega màxima):

75%. Tensions elementals de von Mises (punt de càrrega màxima):

75%. Deformada (punt de càrrega màxima):

75%. Desplaçament UZ:

75%. Flux de tensions (punt de càrrega màxima):

75%. Flux de tensions (1r substep):

80%. Tensions nodals de von Mises (punt de càrrega màxima):

80%. Tensions elementals de von Mises (punt de càrrega màxima):

80%. Deformada (punt de càrrega màxima):

80%. Desplaçament UZ:

1 NODAL SOLUTION

80%. Flux de tensions (1r substep):

85%. Tensions nodals de von Mises (punt de càrrega màxima):

85%. Tensions elementals de von Mises (punt de càrrega màxima):

85%. Deformada (punt de càrrega màxima):

85%. Desplaçament UZ:

85%. Flux de tensions (punt de càrrega màxima):

85%. Flux de tensions (1r substep):

C.4 Resultats de la sensibilitat de la distància entre emboticions d_{emb.} (amb tensions)

d-24. d_{emb}=70mm.Tensions nodals de von Mises (càrrega màxima):

d-24. d_{emb}=70mm.Tensions elementals de von Mises (càrrega màxima):

d-24. d_{emb}=70mm. Deformada (càrrega màxima):

d-24. demb=70mm. Desplaçament UZ:

d-24. d_{emb}=70mm. Flux de tensions (punt de càrrega màxima):

d-24. d_{emb}=70mm. Flux de tensions (1r substep):

d+24. d_{emb}=166mm.Tensions nodals de von Mises (càrrega màxima):

d+24. d_{emb}=166mm.Tensions elementals de von Mises (càrrega màxima):

d+24. d_{emb}=166mm. Deformada (càrrega màxima):

d+24. demb=166mm. Desplaçament UZ:

1

NODAL SOLUTION

d+24. d_{emb}=166mm. Flux de tensions (punt de càrrega màxima):

d+24. d_{emb}=166mm. Flux de tensions (1r substep):

d+40. d_{emb}=198mm.Tensions nodals de von Mises (càrrega màxima):

d+40. d_{emb}=198mm.Tensions elementals de von Mises (càrrega màxima):

d+40. d_{emb}=198mm. Desplaçament UZ:

1 NODAL SOLUTION

d+40. d_{emb}=198mm. Flux de tensions (1r substep):

1	1 1	1 :	:	: ;	-	
VECTOR	· · · · · · · · · · · · · · · · · · ·					
STEP=1	···					
SUB =1	****					
TIME=.130E-01						
S						
MIDDLE	e ov arenvedigese		1 - Y - J			
PRIN1	naudianala antistatianala	oreauser.	1		() a sample of	
PRIN2	REALING HER	1000000				
PRIN3	Hereards	And a second sec				
	Conditional Party	100000	0000000 V			
						1
		. :		. :		 · ·

ANNEX D. PRESSUPOST

El projecte ha tingut una duració d'un any i tres mesos aproximadament. Per al càlcul del pressupost de realització del present projecte, cal tenir en compte bàsicament el còmput d'hores invertides, el material utilitzat i les llicències informàtiques del programari necessari per a portar-lo a terme.

Els costos generats per la inversió de temps són les hores corresponents a un enginyer, distingint entre les hores de dedicació del director del projecte i les hores invertides per l'estudiant autor del projecte.

A continuació es desglossen les diferents partides del pressupost del projecte.

I. Cost de les hores invertides

Es computa el temps invertit a raó d'una dedicació mitjana de 3 hores diàries per part de l'estudiant autor del projecte i 0,5 hores diàries per part del director del projecte. Així:

	Dies	Hores /	Total	€/hora	Total (€)
	dedicats	dia	hores		
Director del projecte	275	0,5	137,5	60,00	8.250,00
Estudiant enginyer	275	3	825	30,00	24.750,00
Subtotal					33.000,00

Taula.D.1: Detall dels costos de les hores invertides

II. Cost del material utilitzat

Aquesta partida inclou els costos de hardware, software, material fungible i mobiliari. Així:

Material		Vida útil (anys)	Preu (€)	Cost amortitzat (€)	Total (€)
Hardware		5	1.700,00	425,00	425,00
	ANSYS 12.0	2	6.000,00	3.750,00	3.750,00
Software	SolidWorks 2010	2	3000,00	1875,25	1.875,25
	Microsoft Office 2007	5	600,00	130,00	130,00
Material	Material d'oficina	1	150,00	150,00	150,00
fungible	Energia	1	100,00	100,00	100,00
Mobiliari		8	300,00	46,875	46,875
Subtotal					6.477,13

Taula D.2: Detall dels costos del material utilitzat

III. Cost total

Tipus de cost	Cost (€)
Hores invertides	33.000,00
Material	6.477,13
Subtotal	39.477,13
Total (18% IVA)	46.583,01 €

Taula D.3: Cost total del projecte

ANNEX E. ESTUDI D'IMPACTE AMBIENTAL

El present apartat es redacta amb l'objectiu de definir les actuacions que s'han portat a terme durant la realització del projecte des del punt de vista ambiental.

La tasca principal del present projecte ha estat la investigació del perfil objecte d'estudi i la simulació de diferents casos amb un programa d'elements finits.

L'assoliment dels objectius marcats a l'inici del projecte ha portat a la millor comprensió del comportament de les xapes nervades, així com una comprensió més profunda i precisa del procediment més correcte per dur a terme les diferents simulacions.

D'aquesta manera, tot i que la simulació no pot en cap cas substituir els assaigs experimentals, el fet de disposar d'uns models numèrics vàlids i fiables, pot suposar en molts casos la reducció de la quantitat d'assaigs necessaris, així com una optimització del disseny de la secció dels perfils. Tot això es tradueix finalment en una reducció del consum de material, és a dir, una reducció de l'impacte ambiental.

