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Abstract

X-ray angiography is the most common imaging modality employed in the

diagnosis of coronary diseases prior or during a catheter-based intervention.

The analysis of the patient X-Ray sequence can provide useful information

about the degree of arterial stenosis, the myocardial perfusion and other clin-

ical parameters. If the sequence has been acquired to evaluate the perfusion

grade, the opacity due to the diaphragm could potentially hinder any kind of

visual inspection and make more difficult a computer aided measurements.

In this thesis we propose an accurate and robust method to automatically

identify the diaphragm border in each frame. Quantitative evaluation on a

set of 11 sequences shows that the proposed algorithm outperforms previous

methods.
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Introduction

When a human suffers from a heart attack or has a severe arterial stenosis the first thing

medical doctors do is to restore the normal blood flow. To perform a diagnosis they

insert a catheter into the main coronary arteries. Right after a successful restoration

of normal artery blood flow a second important step is performed - estimating the

myocardium healthiness. This is needed because during the time in which there was

not enough blood supply to the heart, the heart tissue (myocardium) suffers and could

slowly die. In order to examine this doctors inject an opaque liquid (called contrast

liquid) through the catheter. The process is recorded as a video by means of a X-Ray

machine. The video is then examined by a specialist to see if the dark liquid is well

absorbed by the myocardium, which corresponds to healthy heart.

The Cardiac X-Ray angiography (Fluoroscopy) is the imaging modality widely used

in the analysis of cardiac diseases prior or during catheterization interventions. Besides

the estimation of stenosis degree, other qualitative and quantitative analysis can be per-

formed: in the last five years, some semi-automatic tools for the quantitative computer

assisted measurement of the myocardial perfusion level (known as MBG or TIMI-MPG)

have been proposed [2; 3; 4; 5]. All of these methods are negatively affected by the di-

aphragm motion. In [2], authors make explicit use of a method for diaphragm border

detection [1] to improve the quality of the region-of-interest tracking that is used to

measure the myocardial perfusion. In [3], authors claim that the breathing movements

can hide staining patterns, showing that the diaphragm movement, and the consequent

gray-level variation in an area, can reduce the method ability to measure the myocardial

staining. In [4], authors impose the angiography sequence acquisition to be done while
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1. INTRODUCTION

the patient holds breath and show that the diaphragm movement introduces artifacts

in the resulting analysis. It has to be noted that not all the patients can hold breath

for the time required to a complete myocardial perfusion analysis sequence. In the

preliminary work in [5], authors claim that one limitation of their method is that the

manually delineated perfusion area must be isolated from the diaphragm, so that the

method applicability is reduced for certain angiographic projections. All these methods

can benefit of a pre-processing step able to accurately detect and digitally remove the

diaphragm border. Moreover, in the future, the digital removal of the diaphragm can

be used as a tool to enhance visualization during catheter-based interventions.

The main contributions of our thesis are:

(1) A method which outperforms the state of the art, exploiting the diaphragm ap-

pearance, motion and morphological properties in a better way.

(2) The proposal of a publicly available dataset for a quantitative performance eval-

uation.
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Related Works

To the best of our knowledge, only one method for automatic detection of the diaphragm

border has been proposed so far [1]. Authors model the diaphragm border as an arc of

a circle. Their method is based on the following pipeline:

1. Pre-processing the frames

In their method, the authors first preprocess each frame from the X-Ray sequence,

using a morphological closing operator to remove arteries. However, they do not

define the shape and the size of the operator’s structuring element, they only say

that the size is slightly larger than the largest expected vessel. We follow the same

approach for eliminating the arteries putting additional theoretical background

when defining the operator’s parameters.

2. Apply Canny edge detector

An edge detector is applied on each preprocessed frame and the assumption is

that the diaphragm edge will somehow dominate. However the morphological

closing operator always produces noise (introduces new edges) when removing the

arteries and it is not elaborated further on how they handle that noise.

3. Use the Hough transform to detect circles

The next step in the method is to use Hough Transform [6] and perform extensive

search in the circle parameters domain. The circle that best fits the highlighted

edges is supposed to be the one that fits the diaphragm border best.

3



2. RELATED WORKS

4. Apply an active contour model (snake) to refine the result

Since the diaphragm border may not have the shape of a circle arc, the final step

of their method is to refine the border contour if a fitting criteria measure is not

satisfactory enough. The refining is performed by a snake algorithm, optimizing

a function that the authors do not define in their paper.
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Method

The proposed method has been developed exploiting the characteristics of the di-

aphragm in both spatial and temporal dimensions. We define a set of assumptions

that will be used to obtain a robust and accurate diaphragm detection:

(1) The diaphragm border appears as a vertical transition (edge) from brighter (above)

to darker (below) gray-scale levels;

(2) The diaphragm movement is continuous;

(3) The diaphragm has a moving pattern which differs from the cardiac motion pattern

and that pattern could significantly change from patient to patient;

(4) The diaphragm border is a continuous smooth curve in the image domain;

These assumptions have been exploited in an algorithm whose steps can be summarized

as follows:

(1) Roughly remove the arteries by means of a morphological closing operator;

(2) Compute an Edgeness measure based on vertical multi-scale gradients;

(3) Extract a set of paths traversing high (and at the same time similar) Edgeness

values through the temporal axis;

(4) Perform an unsupervised clustering to determine the set of paths that composes

the diaphragm;

5



3. METHOD

(5) For each frame, interpolate the optimal diaphragm shape while removing outlier

paths.

3.1 Artery removal

As claimed in [1], the arterial staining can disturb the identification of the diaphragm

border leading to vertical edges that locally resemble the diaphragm border appearance.

Moreover, edges caused by arteries are normally stronger than the ones due to the di-

aphragm border. To deal with this problem, we apply a morphological closing operator

as in [1], using as structuring element a disk of radius R pixels on each sequence frame

separately. Having an average resolution of 0.34 mm/pixel, to roughly remove arter-

ies up to a diameter of 6 mm, the optimal radius is R = 6 [mm]/0.34 [mm/pixel] =

20[pixel]; this is sufficient to remove even thick left main arteries [7]. Fig. 3.1 (b)

shows an example of the closing filtering. It can be noticed that the removal is not

very accurate; however this is not critical since the diaphragm border is maintained and

successive steps of our algorithm allow to delineate it robustly.

3.2 Edgeness

Let us define a gray-level sequence as a volume where two coordinates correspond to

the image plane and the third coordinate is time, so that we can write it as a func-

tion I(x, y, t) ∈ R. With the aim of exploiting the first assumption, we compute the

normalized vertical derivative of all sequence frames at different scales as follows:

Vσ(x, y, t) = σI(x, y, t) ∗ ∂G(0; σ)

∂y
,

where the symbol ∗ denotes the convolution operator and G is a Gaussian kernel with

zero mean and standard deviation σ. We use the Lindeberg normalization [8] so that

derivatives at different scales are comparable. Since we are searching for edges where

the upper part is brighter than the lower part, we can modify Vσ(x, y, t) to cancel its

values for edges with the opposite pattern as follows:

Ṽσ(x, y, t) =

{
Vσ(x, y, t) if Vσ(x, y, t) > 0

0 if Vσ(x, y, t) ≤ 0.

6



3.2 Edgeness

(a) (b)

(c) (d)

Figure 3.1: Effect of the closing operator on the Edgeness result:
(a) input frame;
(b) after applying the morphological closing;
(c) the Edgeness measure applied on frame in (a);
(d) the Edgeness measure applied on filtered frame in (b).
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3. METHOD

To discriminate between noisy edges and consistent edges over scales, we compute the

average vertical modified Edgeness as follows:

Ẽ(x, y, t) =
1

|Φ|
∑

σ∈Φ

Ṽσ(x, y, t)

where the set of scales is Φ = {1, 2, 4, 8, 16} pixels. The scales have been defined in

octaves to cover all possible sizes of edges caused by the diaphragm border; values

larger than 16 do not provide relevant information and would merely increase the com-

putational cost of the algorithm. Moreover, thanks to the averaging process, only clear

edges will have large positive values of E. We apply the non-linear transformation to

the Edgeness map:

E(x, y, t) = 1 − exp(−Ẽ(x, y, t))

E(x, y, t) ∈ [0 1] and has higher values at edges resembling a diaphragm border. Fig.

3.1(c-d) shows two examples of Edgeness map respectively for the frames (a-b) - it can

be seen that the closing operator performs a sufficient artery removal.

3.3 From Edgeness to paths

Let us denote a path p as a curve with a fixed x coordinate and a y coordinate varying

as a function of time: p = {xp, yp(t)}. From the first frame, we select all pixels having

a value E(x, y, 1) > µ(E), i.e. above the average Edgeness for the sequence and use

them as starting points. For each starting point from the first frame (t = 1), we draw a

path by vertically tracking that point from frame to frame (sequentially from t = 2 to

the end of the sequence t = T ). The tracking maximizes the path quality defined with

the following formula:

Qpath(p) =
1

T

T∑

t=1

E(xp, yp(t), t) · S(yp(t), yp(t − 1)) · M(yp(t), ỹp(t − 1)) (3.1)

This formula can be split in three parts, which account for different aspects. The

rational behind the first term E(·, ·, ·) is to encourage the path to transverse points

with high Edgeness values. However, this alone can lead to scattered paths jumping

from one maxima to another in the next frame. The second (similarity) term

S(yp(t), yp(t − 1)) = 1 − |E(xp, yp(t), t) − E(xp, yp(t − 1), t − 1)| ∈ [0 1]

8



3.3 From Edgeness to paths

imposes minimal Edgeness value variation between consecutive path points. The third

term

M(yp(t), ỹp(t)) = e
− (ỹp(t)−yp(t))2

2σ2
M

has been designed to add a smoothness criterion to the path construction. Here ỹp(t) is

the expected value for the time location t, based on the linear approximation of previous

values1:

ỹp(t) = 2yp(t − 1) − yp(t − 2)

Basically, the use of a Gaussian (with its σM parameter) centered around the expected

location ỹp(t) adds a constraint, so that paths are restricted from changing their trajec-

tories in a way that does not resemble a continuous movement. All of the three terms

are bounded in [0 1], so that their product ensures that only points fulfilling the three

criteria at once are selected. The smoothness parameter σM has been defined by cross-

validation. Fig. 3.2 shows the plotted error for different σM values using a training

set of 9 images. As it can be seen σM = 5 [pixels] is the optimal choice. Changing the

linear model for predicting ỹp(t) with a second order degree polynomial resulted in lower

performance. Since the proposed path building is based on local decisions maximizing
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Figure 3.2: Average distances over the training set when varying σM .

equation (3.1), we allow the construction of multiple paths given an x. However, to

avoid path proliferation, if two paths collide, only the one with higher path quality is

retained, so that at the end of the process we have a set of non-intersecting continuous

1We make the ’zeroth’ and the ’minus first’ frames the same as the first one.

9



3. METHOD

paths P. Fig. 3.3(c) depicts an example of resulting paths. Fig. 3.3(a) shows an exam-

ple of paths construction over-imposed on the values of E(x, y, t) for a specific x. As

it can be noticed, the paths are smooth while accurately following the local shape of

E(x, y, t). Moreover, the paths quickly collapse to a limited number of paths (see Fig.

3.3(b)).

t

y

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

y

 

 

(a) (b) (c)

Figure 3.3: Paths construction:
(a) an example of paths construction for a given x;
(b) Detail of the bottom left plot in (a);
(c) A 3D plot of all the paths, where darker paths correspond to higher quality paths.

3.4 Diaphragm border surface as a collection of paths

The previous step generates a set of paths P. Each path p has its own trajectory yp(t)

and a quality measure Qpath(p). We want to select a subset D ⊆ P which contains paths

that move in a similar way, so that we make use of the assumption that the diaphragm

has a specific motion pattern. Moreover, we want to retain high quality paths and

discard low quality paths, which normally correspond to false positive detections. To

accomplish these two steps in a unified way, we perform an unsupervised clustering of

both motion characteristics and quality measure: (1) Each path is modified so that we

remove its bias, ŷp(t) = yp(t)−µ(yp(t)), where µ is the mean operator. This step removes

the average vertical position of the paths so that the clustering will not be influenced

by (vertical) proximity of paths. (2) A feature vector v⃗p = [ŷp(1) . . . ŷp(T ) Qpath(p)]

made of T + 1 elements is built. This vector contains information on path motion

(first T elements) and information on the path quality (last element). (3) We build

10



3.4 Diaphragm border surface as a collection of paths

a matrix V⃗ where each row contains a feature vector v⃗p for each path in P. Since

vertical positions and quality measure are incommensurable we need to normalize V⃗

such that every column has zero mean and unitary standard deviation. (4) We apply

an unsupervised k-means∗ clustering; the cluster with the highest mean quality is the

one which most probably defines the diaphragm border as a collection of paths. The use

of unsupervised clustering is the most suited way to group paths into a consistent result

since the actual diaphragm motion is unpredictable: a sequence can be acquired while

the patient is holding the breath, or the patient can have irregular breathing pattern.

On the other way, k-means requires the definition of the number of clusters, which we

set to three. The rational behind this setting is to allow the clustering to find one

cluster for the diaphragm, one cluster for noisy low quality paths and a third cluster

which has a motion pattern that is a mixture of the diaphragm and cardiac patterns.

This latter case has been considered since the morphological operator is not able to

eliminate non-tubular structures that move according to the cardiac cycle. Fig. 3.4(a)

shows the result of clustering for the case in Fig. 3.3(c); different clusters are depicted

in different colors.

(a) (b)

Figure 3.4: (a) The paths of Fig. 3.3(c) colored in accordance to their clusters; the green
cluster is the selected one. (b) The resulting surface after fitting the polynomial function
to all the sequence frames.

∗ Since the k-means is based on random centroids initialization, and it is not computational costly,
we perform 100 trials keeping the solution with the lowest objective function.
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3. METHOD

3.5 Imposing diaphragm border smoothness on image plane

The previous step defines the diaphragm border evolving curve as a surface composed by

a collection of paths having similar motion and high quality. Nonetheless, the clustering

could be suboptimal and paths actually not belonging to the diaphragm border can fall

into the set D. Moreover, up to this point, no smoothness in the image plane has been

imposed. The algorithm’s last step is devoted to these two goals: imposing smoothness

in the image plane while removing outlier paths. The diaphragm border is modeled as

a polynomial function f(x) = ax2 + bx + c. To estimate the optimal triplet {â, b̂, ĉ} for

a given frame at time t, we employ the following iterative algorithm. We define a set

of points C , {(xi, yi)} taken from the paths of the diaphragm cluster at time t. At

each iteration the optimal parameters are estimated minimizing the fitting squared error

Err =
∑

(xi,yi)∈C(f(xi) − yi)
2; If the Thompson Tau outliers detector [9] on the signed

error distribution finds at least one outlier, the point (xj , yj) = arg maxi |f(xi) − yi| is

removed from the set C and the iterative algorithm continues. If no outliers are found,

the algorithm stops. Fig. 3.5 shows an example of this algorithm while Fig. 3.4(b)

shows the final surface result.

Initial points 1th iteration 50th iteration 155th iteration (last)

Figure 3.5: An example of iterative fitting of a polynomial function to the clustered
points.

12



4

Validation

4.1 Validation framework

Material: We defined a validation set of 16 frames taken from 11 sequences (11 pa-

tients). The diaphragm border in each frame has been marked blindly by two experts.

All sequences have been acquired using a Philips Allura Xper FD20, at 12.5 fps and

with an image resolution of 0.34×0.34 mm. The C-arm position varies from -41◦ to 97◦

for the primary angle and from -17◦ to 33◦ for the secondary angle.

Methods: We compare our proposed method with the diaphragm detection algorithm

described in [1]. We also compute the inter-observer variability between the two ground

truth annotations. Moreover, we also provide intermediate evaluations of algorithms.

Validation protocol: Let GT be the set of points forming the ground truth curve

and P be the set of points predicted by a given method. We use two different measures

to validate each prediction against the ground truths: (1) The Hausdorff distance [10]

is the distance between the two most faraway points from the two sets of points. This

measure is very sensitive to predicted points laying far from the ground truth points

but gives little information about the overall precision of the prediction, thus making it

useful in measuring robustness. (2) The Mean Minimal Distance

MMD(P, GT ) =
1

|P |
∑

i∈P

min
j∈GT

||(xP
i , yP

i ) − (xGT
j , yGT

j )||

13



4. VALIDATION

on the other hand, provides information about the overall precision of the predicted

result. It has to be noted that the MMD is not symmetric.

4.2 Results

Table 4.1 shows the error results using the Hausdorff and the MMD distances for the

following cases (one for each row): inter-observer variability; the method in [1] before

and after the application of the snake; our method prior to the clustering (Our-PC),

prior to the curve fitting (Our-PF) and the final result (Our). For each distance, tables

report its mean, standard deviation, minimum and maximum values.

An interesting fact is that the use of snakes, as expected, can help the method in

[1] to improve the results but in a very limited extent. Regarding our method, it can

be noticed that each step improves the results. Once the paths are built, before the

clustering, the method is limited in the fact that the sequence is analyzed mainly in its

temporal dimension, so that a large number of incorrect paths can be generated. The

clustering step selects a set of paths that potentially represent the diaphragm border;

this decreases consistently the MMD error (three times), but is not able to reduce the

Hausdorff distance since erroneous paths far from the solution could be maintained.

The polynomial fitting ensures a consistent solution imposing smoothness in the image

domain and, at the same time, rejects erroneous paths thanks to the outlier detection;

this results in a huge improvement in both the Hausdorff and MMD distances (more

than one order of magnitude).

Results confirm that taking advantage of temporal and spatial properties of the di-

aphragm in a unified way produces far better results than relying only on frame based

appearance. Fig. 4.1 shows four results:

Case (a) Both methods detect the diaphragm robustly, while our method (in green)

shows a higher accuracy.

Case (b) A more difficult case - the method in [1] fails to detect a segment of the

diaphragm border.

Cases (c) and (d) show that sometimes the diaphragm parabolic model might be

too simple.

14



4.2 Results

(a) (b)

(c) (d)

Figure 4.1: Four results. Ground truth is marked with blue, the prediction of the method
from [1] is red and our prediction is green.
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4. VALIDATION

Hausdorff distance MMD
Avg±Std min max Avg±Std min max

O1 vs O2 25.82±22.75 4 86.33 2.03±2.07 0.78 7.84
O2 vs O1 25.82±22.75 4 86.33 1.41±0.66 0.75 3.35

[1] (no snakes) 83.36±124.37 22.14 429.17 32.09±50.65 14.24 233.49
[1] 84.71±120.73 17.03 407.12 28.04±54.42 10.71 234.17

Our-PC 364±48.5 287 440 132±19.7 108 185
Our-PF 302±58.1 188 385 43.7±25.5 16.7 85.0

Our 29.1±23.5 5.4 97.2 3.00±1.81 1.34 9.55

Table 4.1: Quantitative results. All measures are in pixels
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Discussion

The proposed method shows some very good results, both in robustness and precision.

While demonstrating potential it also reveals some of the challenging key points that

still need to be solved before the ideas here reach trustful clinical practice.

Parabola fitting: It is not always the case that the diaphragm border has the shape

of a parabola (fixed in rotation) - Fig. 4.1 (c) and (d). It could be that the polynomial

model for the diaphragm border is too simple and that raises questions about balance

between robustness and precision.

More than one diaphragm borders: It may be the case when the diaphragm bor-

ders are more than one. Biologically the diaphragms are two and in some projections

both of them are present.
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6

Conclusions

In this thesis we proposed an algorithm for the robust and accurate detection of the

diaphragm border in X-ray angiographies plus a validation methodology for quantitative

performance evaluation. Results show that the proposed method is both robust and

accurate. However, further investigation on how to deal with highly challenging cases

is required. As future works, we want to:

(1) Increase the validation dataset

(2) Propose a digital diaphragm removal algorithm based on the detection proposed

herein.

(3) Apply the method in an automatic tool for estimating the myocardial perfusion

level.

The method described in this thesis has been submitted as a paper to the International

Workshop on Statistical Atlases and Computational Models of the Heart, which is part

of MICCAI 2012 conference.
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