
       Master in Artificial Intelligence (UPC-URV-UB)  

Master of Science Thesis

Application of Fuzzy Techniques to Biomedical 
Images

Gabriel Mattioli Aramburu

Advisors: Dr. Eduard Montseny, Dr. Jordi Recasens, Dr. Maite López

21/06/2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41806989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Introduction 5

1.1 Aim of the work and Motivation . . . . . . . . . . . . . . . . . 6
1.2 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . 7

2 State of the Art 9

2.1 Biomedical Image Segmentation . . . . . . . . . . . . . . . . . 9
2.1.1 History of Biomedical Engineering and Biomedical Im-

age Segmentation . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Biomedical Image Segmentation Techniques . . . . . . 11

2.2 Fuzzy Logic Preliminaries . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Fuzzy Logic general concepts . . . . . . . . . . . . . . 15
2.2.2 Powers of t-norms . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Indistinguishability Operators Theory Preliminaries . . 17
2.2.4 Aggregation Theory Preliminaries . . . . . . . . . . . . 22

2.3 Fuzzy c-Means Algorithm . . . . . . . . . . . . . . . . . . . . 23

3 Indistinguishabilty operators theory 25

3.1 Structural Analysis of E , H, U and L . . . . . . . . . . . . . . 25
3.1.1 The Lattice Structure of E , H, U and L . . . . . . . . 25
3.1.2 Isomorphisms between the Lattices E , H, U and L . . . 28

3.2 Natural Means over E , H, U and L . . . . . . . . . . . . . . . 32
3.2.1 The Finite Case . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 The Non-Finite Case . . . . . . . . . . . . . . . . . . . 39

3.3 Study of E , H, U and L under the Effect of an Isomorphism
of t-norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Powers of E , H, U and L . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Powers of Indistinguishability Operators . . . . . . . . 45
3.4.2 Powers over H, U and L . . . . . . . . . . . . . . . . . 47

4 Image Segmentation with Fuzzy c-Means 51

4.1 Bone Marrow and Mammography Segmentation Problem . . . 51
4.2 Fuzzy c-Means Approach . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Histogram preanalysis . . . . . . . . . . . . . . . . . . 60
4.2.2 FCM method . . . . . . . . . . . . . . . . . . . . . . . 63



4.2.3 Adjustment of parameters . . . . . . . . . . . . . . . . 64
4.2.4 Resulting segmentation of images using FCM . . . . . 66
4.2.5 Discussion of the results obtained . . . . . . . . . . . . 77

5 Future lines of research 80

5.1 Enhancing the FCM algorithm . . . . . . . . . . . . . . . . . . 81
5.2 Indistinguishability-based FCM . . . . . . . . . . . . . . . . . 81
5.3 Taking the output fuzzy sets of the FCM algorithm as gener-

ators of an Indistinguishability Operator . . . . . . . . . . . . 82
5.4 Constructing a plausible model by means of iterating the pre-

vious ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 A reverse approach toward diagnosing . . . . . . . . . . . . . . 84
5.6 Focusing and unfocusing images . . . . . . . . . . . . . . . . . 86

6 Concluding remarks 87

2





Acknowledgment

The Master Thesis work I provide in this pages is the result of two years
of effort. It must be said that the path that has taken me to present this
work and to have derived these results has gone along with the one of several
people that have helped me on my way. In these lines I would like to thank
them all for their molehill.

First of all, I would like to thank project number TIN2009-07235 for
funding me.

Secondly I would like to thank very specially my three Master Thesis
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1 Introduction

60 years after, we can state that sunrising of computers in the second half of
the 20th century has constituted an integral revolution for Humanity. The
fast emergence of this new technology has implied multiple changes in almost
everything, and these changes are here to stay.

Human interaction and communication, information and services exchange,
work, behavior, science, notion of time distance...

At a deeper level, even one of the most important assumptions human
beings do about ourselves has earthquaked. As a specie, its been thousands
of years since we stated that we are intelligent. In less that one century the
emergence of computers has somehow reeled this dogma.

Science Fiction hit the nail on the head in many of their predictions,
but it definitely missed when it ran into intelligence. Surprisingly, it has
been easier to get to the Moon than to understand our thousands-years old
statement: What is intelligence?

Despite this question has been approached by many people in this last
century, it can definitely be said that there is no consensuated answer at all.
Philosophical attempts usually crash into the Wall of ontological questions
while engineer-like ones are totally insufficient as they use to stay in the
problem-solving field without really walking at the Knowledge level.

However, the situation is not so dramatic. Some check points have been
defined, for instance that a system able to ”‘behave”’ like a human being can
be considered ”‘intelligent”’, according to the fundamental statement that
we are actually intelligent. This idea can be already distilled from the first
assays of Alan Turing [43] on the connection between naive Intelligence and
Artificial Intelligence. However, to the opinion of the author of this work,
this proposition has a deep lack as it only identifies intelligent agents when
they are indistinguishable from other agents from whom we priorly assume
intelligence . Hence, it does not focus at all on the previous question of
what is intelligence, neither on what conditions should an agent verify to be
considered intelligent in a non-comparative context.

Closing this initial discussion, it is definitely out of the scope of this
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Master’s Thesis trying to attack this problem and to provide a new answer
or proposal of it. However, it is the opinion of the author that this nuclear
question should be in every discussion around the topic of all fields related
to intelligence, such as AI.

After all, it is the question that drives us [45]. And without being able to
explain its own title, how can a scientifical discipline bear to assert its own
existence?

1.1 Aim of the work and Motivation

The main goal of this work is to bring together Fuzzy Logic techniques and
Biomedical images analysis, linking this two fields through an image segmen-
tation problem approached by a Fuzzy c-Means algorithm.

This work has two main cores. The first one is a formal structural anal-
ysis of some Fuzzy Logic concepts within the theory of Indistinguishabilitty
Operators. The main actors of this part will be indistinguishability opera-
tors, sets of extensional fuzzy subsets, upper approximation operators and
lower approximation operators. All these concepts will be explained in depth
further in this work. The second core is a practical application of the Fuzzy
c-Means algorithm to segmentate biomedical images of mammographies and
bone marrow microscopical captures. This two approaches will be brought
together in the chapter regarding future lines of research.

Fuzzy Logic has proved to have things to say on how images should be
segmentated [6], but a quick look at the main methods used shows that in
many cases very low-level Fuzzy Logic has been used in practical contexts.
This statement is not to underestimate the existing methods, but to recall
that only the ideas of fuzzy sets and fuzzy rules have been used to construct
algorithms for fuzzy clustering and classification and image analysis; whereas
theoretical Fuzzy Logic has gone far beyond.

This is an interesting point because it is the main Wall several researchers
who have given up up FL point about this theory: ”‘Fuzzy Logic is a nice and
interesting theory, but of questionable usefulness when applied to practical
contexts”’ [23].

In this sense this project can be seen as an attempt to show how high-
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level Fuzzy Logic can prove to be not just useful but efficient in order to
attack biomedical image segmentation problems, and encourage its use in
other fields as well.

Finally, it is a must to recall that this is not a complete project but
an intermediate stage of a whole PhD work. For that reason the strong
connection aimed to be done between theoretical Fuzzy Logic and Biomedical
Engineering image segmentation will not be completely found on this work.
This work will build two strong columns around these two topics, finding
further new results and finally pointing the future lines of research with
which it is expected to build one complete house.

1.2 Structure of the Work

This work is structured as follows:

Chapter 2 will be devoted to a quick review of the State of the Art of the
fields this work lays upon. Firstly a quick review of the Biomedical Image
Segmentation topic will be done, as well as the main existing methods to
solve this problem.

Secondly the work will recall the definition and main results of the con-
cepts within the Indistinguishability Operators theory that will be used in
further chapters. A special strength will be put on Indistinguishability Op-
erators, Sets of Extensional Fuzzy Subsets and Upper and Lower Approxi-
mation Operators by Extensional Fuzzy Subsets. Natural means and powers
of t-norms will be explained as well in this Section.

Finally the Fuzzy C-Means algorithm will be deeply explained as it will
play a central role in the practical application in Chapter 4 of this work.

Chapter 3 will focus on Indistinguishablity Operators theory and several
new results will be found. First of all it will be shown how the concepts
remarked above are mathematical lattices and that these lattices are iso-
morphic with respect to the natural operations of a lattice. Further it will
be shown that, counterintuitively, this isomorphism cannot be completely
extended to more complex Aggregation Operators such as natural weighted
means. Finally, a study of how powers can be defined among indistinguish-
ability operators and related concepts will be performed and several technical
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results will emerge. This results will open some very interesting and promis-
ing lines of research that will be explained in Chapter 5.

In Chapter 4 a practical image segmentation problem will be faced. After
an histogram-based preprocessing of the image a Fuzzy c-Means algorithm
will be used to segment mammographies and bone marrow images. A brief
study of the performance of this algorithm will be done and a discussion of
the results obtained will be provided.

At this point we can say that the two columns or backbones of the whole
project will have been strongly stated. On one side we will have FL theory
and on the other Biomedical Image Segmentation, as well as the Fuzzy C-
Means algorithm which will give us a weak provisional beam to join them.

As said, this Master Thesis will not construct the whole building, but
Chapter 5 can be seen as a map on how to build walls and roofs, as it will
be devoted to the future lines of research this work suggests to the author.
Several possible continuations will be pointed which will enhance the existing
FCM beam or suggest other possible approaches or attempts.

Finally, Chapter 6 will close the work with the Concluding Remarks where
the main results obtained will be summarized as well as the future lines of
the project will be outlined.
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2 State of the Art

2.1 Biomedical Image Segmentation

This section will focus on realising a quick review of the state of the art of
Biomedical Engineering and specially of Biomedical Image Segmentation.

The first section will provide a quick historical review of Biomedical En-
gineering and will try to point out how engineering approaches and medicine
have walked aside for centuries providing mutual profit in a simbiotical way.
Finally, though biomedical engineering is an ancient field we will focus on
biomedical image segmentation which is much more recent and the basis of
one of the columns this work lays upon.

In the second section the main methods of image segmentation will be
briefly recalled and explained. It is a must to say here that the amount of
techniques and algorithms that have been used in this field is so vast that it is
almost impossible to actually be exhaustive in this list. After all, almost all
techniques of clustering and machine learning can be adapted to segmentate
an image. Nevertheless, the list provided will explain the most representative
and used methodologies in image segmentation.

2.1.1 History of Biomedical Engineering and Biomedical Image

Segmentation

According to some researchers [18], the first proof of engineering applications
in a medical context was found in an Egyptian tomb of 3000 years ago,
where a protesis of a foot thumb was found. It has been proved as well
that Egyptians also used canes and empty pipes to watch and listen what
happened inside the human body.

Other researchers [47] claims that we can find the first biomedical engi-
neering assays in the work of Leonardo Da Vinci on the perfect anthropo-
metric measures and his works on levers and its interpretation in the human
body.

Further in time, the physicist Renne Laennec used a newspaper to canalize
the sound of the heart and his idea would finally derive in the sthetoscope.
By that time we can recall as well the first assays on electrical conductivity
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in life beings by Galvani and Lord Kelvin.

The previously stated situations are just a short list to illustrate how it
has been since the birth of medicine (which can be maybe identified with
the birth of humanity) that engineering approaches have been used to better
understand, comprehend, diagnose and heal human diseases and injuries.
After all, if we listen to those that, modestly, assert that the human body is
the perfect machine, then it is an immediate must to consider medicine as
an engineering specification.

However, despite several works can be invoked before, it is between 1890
and 1930 that Biomedical Engineering took off and has not stopped. Röntgen
[35] discovered X-rays in 1895 and its first clinical application was just a
week after. Siemens and General Electric were already selling industrial
X-rays systems just one year after in 1896. In 1887, Waller [46] started
recording human heart beats and in 1924 Berger [3] was already processing
electroencefalographies.

Since 1930 it is already impossible to try to track all the applications
engineering has developed for human medicine (and vice versa).

However, the discipline of biomedical image segmentation does not ap-
pear until the decade of 1970. In this years the first papers on automatic
image segmentation are published by Brice & Fennema [8], Pavlidis [32] and
Rosenfeld & Kak (1976) [36].

It can be stated that the birth of biomedical image segmentation was at
simultaneous to the one of its mother discipline image segmentation. Why
it is important to use this techniques of automatic processing of images in
a biomedical context seems immediate, however a good compilation of these
reasons can be found in [37]

From then on, the number of papers published on this topic has grown
exponentially up to the point that now it is impossible to follow the waterfall
of publications that include the keyword ”‘image segmentation”’ that appear
every day.
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2.1.2 Biomedical Image Segmentation Techniques

According to Gonzalez and Woods [19] the segmentation on an image is the
subdivision of the mother image into its constituent regions or objects. In
plain words given an input image, the goal of an image segmentation process
is to identify and discriminate the different regions, classes or objects in the
image.

As said in the previous lines, there is an extremely vast variety of tech-
niques that are used nowadays in the field of biomedical image segmentation.
Without any aim of being exhaustive, below it is provided a list of the main
families of techniques and most used algorithms for this purpose:

• Clustering Methods: Almost all clustering methods can be adapted in
order to segmentate an image [6] [19]. An image can be seen as a sam-
ple of pixels and a segmentation process is in this approach nothing
but a clustering of the sample according to a certain distance. Hence,
with a suitable data representation almost any clustering algorithm
(hierarchical clustering, k-means, spectral clustering...)can be used to
segmentate an image. The Fuzzy c-Means algorithm that will be ex-
plained in Section 2.3 and used in Chapter 4 can be included in this
family.

• Histogram-based Methods: The idea underlying these methods is not
to work over the raw image, but on the histogram defined by the gray-
level of the pixels in the image. This methods are used mainly in B/W
images, because the histogram is unidimensional, while colored images
have 3-dimensional histograms. The assumption behind histogram pro-
cessing algorithms is that the main information to discriminate objects
in an image is encoded in the color or gray-level of the pixels. This
methods aim at identifying the main peaks and valleys in the histogram
of the image and in general are very efficient. However a further prob-
lem is that it may be very difficult to identify these peaks in the image,
and hence they are usually combined with other techniques of this list.
In this work a histogram-based combined with a watershed method will
be explained in depth and used in Section 4.2.
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• Edge Detection: Edge detection is focused on finding the confines of
each region. After all, every compact region is defined by the closed
curve related to its border [16]. The output of these methods are not
in general compact curves, but families of disconnected segments of
them. The problem to be solved next in order to have a proper image
segmentation is how to connect these segments. Lindeberg & Li propose
a general method in order to perform this task [22].

• Region Growing Methods: In this family we can find many different
algorithms [19] based on the same basic idea, which is to choose an
initial family of seeds or regions and let them grow by comparing the
regions with the neighbor pixels until we get a full partition of the whole
image. The main methods of this family are seeded region growing
methods [19] and λ-connected segmentation [9].

• Split-and-Merge Methods: As its name says, these methods are based
on an iterative application of splitting and merging the image. The al-
gorithms begin with the whole image and if its found non-homogeneous
its splitted into n components. Inversely, if at any time of the process
two connected components are found homogeneous they can be merged
into one [19]. When n = 4 and the components are squared then its
called quadtree segmentation.

• Partial Differential Equations (PDE) Methods: These methods are
based on the idea of numerically solving PDEs in order to evolve an ini-
tial curve into the lowest potential of a cost function [39]. Constraints
dealing with smoothness have to be considered in order to get plausible
solutions.

• Watershed Methods: A Watershed transformation considers the gra-
dient magnitude of an image as a topographic surface. Symbolically,
the idea is to overflow a representation of the image with water and
study the behavior of the flow as the water is drained [19]. In Section
4.2 a Watershed method will be explained in depth as it will be used
together with a histogram-based method.

12



• Fourier-Transform-based Methods: The idea of this methods is to use
the Fourier (or other kind of transformations) Transformation of the
image and work over the image within the space of coefficients of the
Fourier Transformed [16].

• Graph Partitioning Methods: The image is seen as a weighted undi-
rected graph where each node is a pixel, each edge a neighboring re-
lation and the weight of each edge as the degree of (dis-)similarity
between nodes. A segmentation of the image corresponds in this rep-
resentation with a clustering over the graph [16]. All the techniques
of clustering among graphs can be used then with very good results in
the final segmentation.

As said, the previous list is not exhaustive and many other methods
can be used like Neural Networks, Multi-Scale Segmentation, Model-based
Segmentation, Rule-based Systems...

Finally, it is important to recall that the usage of one technique or another
one depends on the kind of image, the choice of the researcher and very
specially on the task to be performed. Mainly we can find two different
approaches to image segmentation: Those that want to determine the number
of regions within an image (Watershed methods for instance), or to determine
these regions known the amount of them (the Fuzzy c-Means algorithm used
in this work for instance); and those that aim at thresholding the image in
order to determine Regions of Interest (ROIs) to clean the image (erasing
the background, the image pollution and noise in general) in order to work
it better.

2.2 Fuzzy Logic Preliminaries

In this section we will recall the main definitions and results that background
the work that will be developed further in Chapter 3.

Historically, the story of the development and evolution of the main con-
cepts involved in this work can be summarized as follows.

It is well known that Fuzzy Logic was firstly introduced by Lofti Zadeh in
1965 [49]. However, back in 1951 Menger already worked on what he called
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probabilistic relations [30], which were nothing but fuzzy equivalence rela-
tions (or indistinguishabilities, as they will be recalled in this work) with re-
spect to the Product t-norm. Menger’s results were taken further by Ovchin-
nikov, who studied in depth probabilistic relations in the 80s [31].

Indistinguishabilities with respect to the ÃLukasiewicz t-norm were studied
by Ruspini in the late 60s who called them likeness relations and used them
in the field of Reasoning by Analogy [38]; which was an approach to define
a similarity relation between possible worlds, in a very close aim to modal
logic’s one.

Indistinguishabilities with respect to the Minimum t-norm were studied
by Zadeh [48] in 1971 who called them similarities. It was in this paper either
where it was first stated that this results could be extended by choosing a
t-norm in general. However, it was not until 1981 that Trillas reformulated
the theory taking an arbitrary t-norm [40], coining then the term ”‘indis-
tinguishability operators”’ with which fuzzy equivalence relations have been
recalled since then.

This general definition was found to be of extreme importance following
the research carried by Trillas & Valverde in the following years [41] [42] [44]
and since then several research groups all aroung the globe have focused on
trying to comprehend and enhance this formal approach to intuitive ”equal-
ity”.

This section will be structured as follows.

First of all the concept of t-norm will be recalled together with the main
results around it that are important for this work.

After that powers of t-norms will be constructed. This idea will prove to
be semantically interesting in Chapter 3.

Then, the main definitions and results of Indistinguishability Operators
theory will be provided. Extensional sets, upper approximations and lower
approximations will be defined as well as they will play a central role in this
work.

Finally, the concept of quasi-arithmetic mean will be recalled.
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2.2.1 Fuzzy Logic general concepts

It is well known that the classic conjunction ∧ of classical bivaluated logic
is generalized into the multivalued logic field by the concept of t-norm. The
formal definition of t-norms is provided below.

Definition 2.1. Let T be a map T : [0, 1]2 → [0, 1]. We will say that T is a
t-norm if and only if T verifies the following properties ∀a, b, c, d ∈ [0, 1]:

a) T (a, b) = T (b, a) (Commutativity)

b) a ≤ c, b ≤ d ⇒ T (a, b) ≤ T (c, d) (Monotonicity)

c) T (a, T (b, c)) = T (T (a, b), c) (Associativity)

d) T (a, 1) = a (Identity Element)

Example 2.2. The following maps T are t-norms:

• T (x, y) = min{x, y} (Minimum t-norm)

• T (x, y) = x · y (Product t-norm)

• T (x, y) = max{0, x + y − 1} (ÃLukasiewicz t-norm)

Once a T -norm is chosen, the implication and biimplication connectives
are subsequently defined. To define a multivalued disjunction given a t-norm
T it is necessary to have a (strong) negation.

Definition 2.3. Let T be a t-norm.

• The residuation
−→
T of T is defined for all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1]|T (α, x) ≤ y}.

• The birresiduation
↔

T of T is defined for all x, y ∈ [0, 1] by

↔

T (x, y) = min{
−→
T (x|y),

−→
T (y|x)} = T (

−→
T (x|y),

−→
T (y|x)).

T-norms can fulfill several properties such as continuity, idempotency...
A very interesting property a t-norm can verify is Archimedeanity. We will
say that T is Archimedean if 0 is the only nilpotent element. Archimedean
t-norms are characterized in the following Theorem in terms of additive gen-
erators, which will prove to be operationally useful further.
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Theorem 2.4. [21] A continuous t-norm T is Archimedean if and only if
there exists a continuous and strictly decreasing function t : [0, 1] → [0,∞)
with t(1) = 0 such that:

T (x, y) = t[−1](t(x) + t(y))

where t[−1] is the pseudo inverse of t defined by:

t[−1](x) =







1 if x ≤ 0
t−1(x) if 0 ≤ x ≤ t(0)
0 if t(0) ≤ x

The function t will be called the additive generator of the t-norm.

Additive generators allow to transform expressions including t-norms and
its logical derivatives. This is very useful, as relational equations can be
rewritten as numerical ones which are more handly and easier to compute.

Proposition 2.5. Let T be a t-norm generated by an additive generator t.
Then:

• T (x, y) = t[−1](t(x) + t(y))

•
−→
T (x|y) = t[−1](t(y) − t(x))

•
←→
T (x|y) = t[−1]|t(y) − t(x)|

2.2.2 Powers of t-norms

One of the most active lines of research nowadays within Fuzzy Logic is to
modellize the inacuraccy and intrinsecal vagueness of language [29]. A very
interesting topic within this field is how to modellize linguistic reinforcement.
For instance how the predicate ”very near to four” can be defined from the
predicate ”near to four”.

Lofti Zadeh itself pointed this problem [52] [53] [54], and worked in the
problem of how to modellize linguistic hedges.

Since t-norms were established as the standard to model conjunction in
Fuzzy Logic this problem can be solved as follows. Let p(x) stand for a
fuzzy set measuring how near x is from four, then T (p(x), p(x)) can be seen
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as a measure of how much x is very near to four. Mathematically, we can
generalize this idea by means of powers of t-norms.

Let us define first the n‘th power of an object with respect to a t-norm.

Definition 2.6. Let T be a t-norm and n a natural number. We will call
the n’th power of T to:

T n(x) = T (
n

︷ ︸︸ ︷
x, x, ..., x)

To simplify notation sometimes we will denote T n(x) = xn.

It is possible to extend this definition to all positive rational numbers as
follows.

Definition 2.7. Let T be a t-norm and n a natural number. We will define
T to the power of 1/n as:

T 1/n(x) = sup
z∈[0,1]

T n(z) ≤ x

Naturally, xp/q(x) = (x1/q)p.

Finally, passing to the limit it is possible to define T r(x) for all r ∈ R+.

The following result is very useful, as it allows to calculate these powers
we have just defined by using an additive generator t of T , which makes
operations more manageable.

Proposition 2.8. Let T be an Archimedian t-norm with additive generator
t and r ∈ R+. Then:

xr = t[−1](r · t(x))

2.2.3 Indistinguishability Operators Theory Preliminaries

Let us define now the concept of indistinguishability operator. This object
will be the main actor of Chapter 3, and many operators and concepts will be
defined after indistinguishability operators. Mathematically, they are noth-
ing but the fuzzyfication of classical mathematical equivalence relations, and
in the literature have also been called similarities, fuzzy equalities or fuzzy
equivalence relations.
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The skill of identifying objects is deeply rooted in human intelligence and
reasoning. However, when it turns to modellize this ability things become
tough. Indistinguishability operators provide a good approach for this pur-
pose, as they measure a ”‘degree”’ of similarity between objects softer than
classical equality (things may be similar according to a certain feature and
not globally equal) and smoother than classical equivalence relations (as ob-
jects may have degrees of similarity between 0 and 1, not being fit to be
totally similar or dissimilar)

Definition 2.9. Let T be a t-norm. A fuzzy relation E on a set X is a
T -indistinguishability operator if and only if for all x, y, z ∈ X

a) E(x, x) = 1 (Reflexivity)

b) E(x, y) = E(y, x) (Symmetry)

c) T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Example 2.10. Let X = {x1, x2, x3} be a finite set of 3 elements and T the
ÃLukasiewicz t-norm. Then the relation E defined by the following matrix

E =





1 0.6 0.7
0.6 1 0.8
0.7 0.8 1





is a T -indistinguishability operator.

A very interesting fact about indistinguishability operators is that they
are dual with respect to distances. This is that given an indsitinguishability
E and a strong negation φ (for instance φ(x) = 1 − x) then 1 − E defines a
distance. Even more, all distances can be seen as the dual with respect to a
strong negation of an indistinguishability operator.

This fact is of extreme relevance because distances define metric spaces,
which are spaces where things can be measured. As all sciences use to need
some kind of metrics, without loss of generality we can consider that we have
indistinguishabilities operating on sets and defining these metric spaces. This
way indistinguishability operators become the key to understand the intuitive
and very human capability of ”‘measure”’.

Following from Section 2.2.2, we can define as well powers of T -indistinguishability
operators with respect to the t-norm T .
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Definition 2.11. Let E be a T -indistinguishability operator and r ∈ R+.
We define the r’th power of E as:

Er(x, y) = T r(E(x, y))

It can be proved that the power Er of a T -indistinguishability operator
E is a T -indistinguishability operator as well.

Theorem 2.12. Let E be a T -indistinguishability operator and r ∈ R+.
Then Er is a T -indistinguishability operator.

Indistinguishability operators can be generated in multiple ways. One of
the most simple is the indistinguishability operator related to a fuzzy subset.

Proposition 2.13. Let X be a set, T a t-norm and µ a fuzzy subset of X.
The fuzzy relation E on X defined by

Eµ(x, y) =
←→
T (µ(x), µ(y))

for all x, y ∈ X is a T -indistinguishability operator on X.

Whereas indistinguishability operators are the direct fuzzification of equiv-
alence relations, the set of extensional fuzzy sets related to an indistinguish-
ability operator defined below plays the role of the set of fuzzy equivalence
classes, with its unions and intersections.

Definition 2.14. Let X be a set and E a T -indistinguishability operator on
X. A fuzzy subset µ of X is called extensional if and only if:

∀x, y ∈ X T (E(x, y), µ(y)) ≤ µ(x).

We will denote HE the set of all extensional fuzzy subsets of X with respect
to E.

The following proposition provides a useful result to study whether a
fuzzy subset is extensional.

Proposition 2.15. Let X be a set, E a T -indistinguishability operator on
X and µ a fuzzy subset of X. Then:

µ ∈ HE ⇔ Eµ ≥ E
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One of the main results of the theory of indistinguishability operators
is the Representation Theorem. This theorem proves that any family of
fuzzy subsets on a set X generates a T -indistinguishability operator E on
X and, reciprocally, that every T -indistinguishability operator on X can be
generated by a family of fuzzy subsets.

Theorem 2.16. [44] Representation Theorem. Let R be a fuzzy relation on
a set X and T a continuous t-norm. Then R is an T -indistinguishability
operator if and only if there exists a family (µi)i∈I of fuzzy subsets of X such
that for all x, y ∈ X

R(x, y) = inf
i∈I

Eµi
(x, y).

It is well known that the set HE of extensional sets with respect to an
indistinguishability operator E coincides with the set of generators in the
sense of the Representation Theorem.

It has been proved that the set HE of extensional fuzzy subsets related to
an indistinguishability operator E can be fully characterized by he following
family of properties.

Proposition 2.17. [10] Let E be a T -indistinguishability operator and HE its
set of extensional fuzzy sets. Then, ∀µ ∈ HE, (µi)i∈I a family of extensional
sets and ∀α ∈ [0, 1] the following properties hold:

1.
∨

i∈I µi ∈ HE

2.
∧

i∈I µi ∈ HE

3. T (α, µ) ∈ HE

4.
−→
T (µ|α) ∈ HE

5.
−→
T (α|µ) ∈ HE

Theorem 2.18. [10] Let H be a subset of [0, 1]X satisfying the properties of
Proposition 2.17. Then there exists a unique T -indistinguishability operator
E such that H = HE.

The set of all sets of extensional sets on X will be denoted by H.

Following we define two operators φE and ψE that, given a fuzzy subset
µ, provide its best upper and lower approximation by extensional sets of E
respectively.
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Definition 2.19. Let X be a set and E a T -indistinguishability operator on
X. The maps φE: [0, 1]X → [0, 1]X and ψE: [0, 1]X → [0, 1]X are defined
∀x ∈ X by:

φE(µ)(x) = sup
y∈X

T (E(x, y), µ(y)).

ψE(µ)(x) = inf
y∈X

−→
T (E(x, y)|µ(y)).

φE(µ) is the smallest extensional fuzzy subset greater than or equal to µ;
hence it is its best upper approximation by extensional sets. Analogously,
ψE(µ) provide the best approximation by extensional fuzzy subsets less than
or equal to µ. These operators can be seen as a topological closure and
interior operator respectively, and appear as well in a natural way in the field
of fuzzy rough sets and modal logic where they stand for a fuzzy possibility
and necessity respectively [33].

An important property of upper and lower approximations is that they
are fix over extensional sets. This is that µ ∈ HE ⇒ φ(µ) = ψ(µ) = µ.

These operators can be completely characterized by the following families
of properties.

Theorem 2.20. [13] Given a set X and an operator φ: [0, 1]X → [0, 1]X , φ
is the upper approximation of a certain indistinguishability if and only if the
following properties are fulfilled.

1. µ ≤ µ′ ⇒ φE(µ) ≤ φE(µ′)

2. µ ≤ φE(µ)

3. φE(µ ∨ µ′) = φE(µ) ∨ φE(µ′)

4. φE(φE(µ)) = φE(µ)

5. φE({x})(y) = φE({y})(x)

6. φE(T (α, µ)) = T (α, φE(µ))

Theorem 2.21. [13] Given a set X and an operator ψ: [0, 1]X → [0, 1]X , φ
is the lower approximation of a certain indistinguishability if and only if the
following properties are fulfilled.
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1. µ ≤ µ′ ⇒ ψE(µ) ≤ ψE(µ′)

2. ψE(µ) ≤ µ

3. ψE(µ ∧ µ′) = ψE(µ) ∧ ψE(µ′)

4. ψE(ψE(µ)) = ψE(µ)

5. ψE(
−→
T (x|α)(y) = ψE(

−→
T (y|α)(x)

6. ψE(
−→
T (α|µ)) =

−→
T (α, ψE(µ))

2.2.4 Aggregation Theory Preliminaries

A transversal problem to almost all scientifical discipline is how to aggregate
information when there is multiple different data to be considered at the
same time. A natural way to face this problem is considering means. Be-
low we introduce the concept of quasi-arithmetic means, which are a slight
generaralization of classical arithmetic means.

Definition 2.22. Let t : [0, 1] → [−∞,∞] be a strict monotonic map and
x, y ∈ [0, 1]. The quasi-arithmetic mean mt of x and y is defined as

mt(x, y) = t[−1](
t(x) + t(y)

2
)

mt is continuous if and only if {−∞,∞} * Ran(t).

The quasi-arithmetic mean of two indistinguishability operators E, F
can be defined as the quasi-arithmetic mean of E and F taking the additive
generator of the t-norm as the monotonic map that defines the mean.

Proposition 2.23. Let T be an Archimedean t-norm with additive generator
t and E, F two T -indistinguishability operators on a set X. Then the natural
mean of E and F defined as:

mt(E,F )(x, y) = t[−1](
t(E(x, y)) + t(F (x, y))

2
)

is a T indistinguishability operator on X.

For the rest of the work, quasi-aritmetic means taking the additive gener-
ator of the (Archimedean) t-norm T as the monotonic map will be called
natural means. The term natural comes from the fact that chosen the
Archimedean t-norm T the mean is implicitelly fixed.
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2.3 Fuzzy c-Means Algorithm

In this section the Fuzzy c-Means (from now on FCM) clustering algorithm
will be explained in depth. This algorithm will be used in Chapter 4 in order
to segmentate biomedical images and its performance will be compared with
a watershed histogram-based segmentation technique.

FCM is an iterative algorithm that was developed by Dunn in 1973 [17]
and improved by Bezdek in 1981 [4]. The aim of FCM is to cluster a given
sample in to a given number C of fuzzy clusters.

Formally, the algorithm takes as input a p-dimensional sample X =
{xi}i=1,...,N and an integer number C of clusters to be found in the sample

and provides an output matrix U of dimension NxC such that
∑C

j=1 uij = 1
that represents the degree of membership of the i’th element of the sample
to the j’th fuzzy set (cluster).

Besides, the FCM algorithm is parametrized by two parameters. The first
one is called the fuzzifier and it will be represented by m and the second is
a distance function d. The fuzzifier m must be in the range (1,∞).

The algorithm tries to minimize the following objective function:

Jm =
N∑

i=1

C∑

j=1

um
ij · d(xi, cj)

where xi corresponds are the elements of the sample X, cj the centroid (center
of masses) of the j’th cluster and d the distance used.

In order to minimize this objective function the algorithm follows the
scheme below:

1. Initialize U , U0

2. At k step calculate the centers cj with Uk

cj =

∑N
i=1 um

ij · xi
∑N

i=1 um
ij
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3. Update Uk, Uk+1

uij =
1

∑C
k=1 (

d(xi,cj)

d(xi,ck)
)

2
m−1

4. If
∥
∥U (k+1) − U (k)

∥
∥ ≤ ǫ STOP; Else return to 2

The second step of the algorithm updates the centroids by calculating the
center of masses of the elements of the clusters.

The third step calculates the membership degree of each element to each
cluster according to the distance to the centroids.

In [17] it is proved that this iterative process converges toward a matrix
Uij that minimizes the objective function Jm.

It is a must to remark that though this algorithm has evolved up to being
one of the cornerstones of the applications of Fuzzy Logic, it is a computa-
tionally costly algorithm. This is because many operations, assignations and
iterations are usually necessary in order to obtain a good solution. One of
the problems is the fact of beginning with a random matrix Uij which implies
a random family of centers {cj}j=1,...,C at the first iteration.

In order to overcome this problem a strong effort has been done in the
research of heuristics and methods to improve the performance of the algo-
rithm. A review of the enhancements proposed in the literature can be found
at [5].

However, the exponential evolution of the processing power of computers
in the last decade has left aside this efficiency problem in general, as for few
dimensions and normal sizes of samples, FCM provides a good solution in a
very little amount of time.

Finally, it must be recalled that FCM needs a priori the number of clusters
to be found. For that reason, some kind of previous method must be used
in order to determine the number C of clusters to be found. In Chapter 4, a
watershed method will be used to state the number of clusters to be found
in a histogram.
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3 Indistinguishabilty operators theory

This chapter will be devoted to study in depth the concepts introduced in
Section 2.2 of indistinguishability operators, sets of fuzzy extensional subsets
and upper and lower approximation operators.

For the rest of the work, given a t-norm T , the set of all T -indistinguishability
operators will be recalled E , the set of sets of extensional fuzzy subsets re-
lated to T -indistinguishability operators will be named H, and the sets of
upper and lower approximations with the T t-norm will be recalled U and L
respectively.

In the first section it will be showed how the sets E , H, U and L can
be given a lattice structure. Further it will be explicitly proved that these
lattices are isomorphic.

The second section will deal with more complicated aggregation operators
such as natural means, and it will be studied how some results of the previous
section can be extended while others fail. Counterexamples will be provided
to illustrate the tricky points. This will be studied either in a finite and
non-finite case.

The third section will derive some properties of applying powers of t-
norms to E , H, U and L. These properties open some interesting lines of
research, either theoretical and practical, that will be explained in depth in
Chapter 5.

3.1 Structural Analysis of E, H, U and L

3.1.1 The Lattice Structure of E, H, U and L

In this section we will show how the sets E , H, U and L can be given a lattice
structure. In order to do so it will be necessary to define some previous con-
cepts to assure that both the union and intersection operations are internal
of the set.

The effort of finding the algebraic structure underlying these sets is nec-
essary to understand in depth how tight is the internal relation of the sets,
as well as the relations between them.
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First of all, let us recall the definition of transitive closure of a reflex-
ive and symmetric fuzzy relation (a proximity) which provides the smallest
indistinguishability operator containing it.

Definition 3.1. Let T be a t-norm and R a fuzzy proximity (a reflexive and
symmetric fuzzy relation) on a set X. The transitive closure R of R is the
T -indistinguishability operator on X defined by

R =
⋂

E∈A

E

where A is the set of T -indistinguishability operators on X greater than or
equal to R.

The transitive closure of a reflexive and symmetric fuzzy relation is tran-
sitive and thus an indistinguishability operator. Moreover, given a family of
indistinguishability operators, its intersection is also an indistinguishability
operator. However the union E ∪F does not preserve transitivity and hence
is not in general an indistinguishability operator. In order to close the union
under transitivity we can consider the operation E ∪ F .

This way, the set E becomes a lattice with the natural ordering E ≤ F
and the operations E ∩ F and E ∪ F .

A similar construction can be done with the set H. The intersection of
sets of extensional fuzzy subsets HE and HF preserves extensionality, but the
union does not. It becomes necessary then to define a closure for the union.

Definition 3.2. Let J ⊆ [0, 1]X . Its extensional closure J is defined by:

J =
⋂

H∈A,J⊆H

H

where A is the set of subsets of [0, 1]X satisfying the properties of Proposition
2.17.

Now the set H is a lattice with the ordering HE ⊆ HF and the operations
HE ∩ HF and HE ∪ HF .

An analogous construction can be done in the set of upper approximations
U . Below we define the concept of φ-closure of a map.
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Definition 3.3. Let f be a map f : [0, 1]X → [0, 1]X . The φ-closure f of f
is defined as:

f =
∧

f≤φ,φ∈U

φ

where U is the set of maps φ : [0, 1]X → [0, 1]X satisfying the properties of
Theorem 2.20.

Proposition 3.4. Let f be a map f : [0, 1]X → [0, 1]X . Then f ∈ U .

Proof. It is straightforward to check that f fullfills the properties of Theorem
2.20.

It is straightforward to see that U is a lattice with the ordering φE ≤ φF

and the operations φE ∧ φF and φE ∨ φF .

Finally, the case of lower approximations is dual to the construction
above. This is because lower approximations are in fact dual with respect to
upper approximations, as one is a closure operator and the other an interior
one.

Definition 3.5. Let f be a map f : [0, 1]X → [0, 1]X . The ψ-interior f of f
is defined as:

f =
∨

ψ∈L,f≤ψ

ψ

where L is the set of maps ψ : [0, 1]X → [0, 1]X satisfying the properties of
Theorem 2.21.

Proposition 3.6. Let f be a map f : [0, 1]X → [0, 1]X . Then f ∈ L.

Proof. It is straightforward to check that f fullfills the properties of Theorem
2.20.

Considering the ordering ψE ≤ ψF and the operations ψE ∧ ψF and ψE ∨
ψF , L is a lattice.
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3.1.2 Isomorphisms between the Lattices E, H, U and L

In this section it will be shown that E , H, U and L are isomorphic lattices.
Firstly, the bijections between them will be explicitly stated and it will be
shown how these bijections are compatible with the structure and the oper-
ations constructed in Section 2.

In Theorem 2.18 it is proved that E and H are in bijection. Following let
us state the bijections for upper and lower approximations.

Proposition 3.7. [13] Let φ : [0, 1]X → [0, 1]X be a map satisfying the
properties of Proposition 2.20. Then the fuzzy relation Eφ defined by:

Eφ(x, y) = φ({x})(y)

is a T -indistinguishability operator on X.

Proposition 3.8. [13] Let ψ : [0, 1]X → [0, 1]X be a map satisfying the
properties of Proposition 2.21. Then the fuzzy relation Eψ defined by

Eψ(x, y) = inf
α∈[0,1]

−→
T (ψ(

−→
T ({x}|α)(y)|α)).

is a T -indistinguishability operator on X.

It can be seen that the maps assigning E → φE and φ → Eφ are inverse
one from the other and therefore E and U are in bijection. A detailed proof
of this fact can be found in [13]. The same situation is given with lower
approximations.

The following result proves how the ordering between the lattices are
completely correlated through the bijections.

Proposition 3.9. Let E, F be two indistinguishability operators on X.
Then:

1. E ≤ F ⇔ HF ⊆ HE

2. E ≤ F ⇔ φE ≤ φF

3. E ≤ F ⇔ ψF ≤ ψE
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Proof. 1. Let µ ∈ HF . Then ∀x, y µ(x) ≥ T (F (x, y), µ(y)) ≥ T (E(x, y), µ(y)).
Hence µ ∈ HE.

2. Straightforward because T is increasing with respect to the first vari-
able.

3. Straightforward because
−→
T is decreasing with respect to the first vari-

able.

Finally, the following theorem shows how the structure given by the op-
erations is preserved through the bijections. Furthermore, it is proved how
the operations are transformed. As a corollary of this key theorem we will
have that E , H, U and L are isomorphic lattices.

Theorem 3.10. Let E,F be two T -indistinguishability operators on a set X.
Then:

1. HE∪F = HE ∩ HF

2. HE∩F = HE ∪ HF

3. φE∪F = φE ∨ φF

4. φE∩F = φE ∧ φF

5. ψE∪F = ψE ∧ ψF

6. ψE∩F = ψE ∨ ψF

Proof.

1. µ ∈ HE ∩ HF ⇔ µ ∈ HE and µ ∈ HF . This is equivalent to Eµ ≥ E
and Eµ ≥ F or Eµ ≥ E ∪ F and by the definition of the extensional
closure, this is equivalent to Eµ ≥ E ∪ F ⇔ µ ∈ HE∪F

2. ⊇)

E ∩ F ≤ E ⇒ HE ⊆ HE∩F .
E ∩ F ≤ F ⇒ HF ⊆ HE∩F .
Then HE ∪ HF ⊆ HE∩F ⇒ HE ∪ HF ⊆ HE∩F .

⊆)
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Let µ ∈ HE∩F . Let us suppose µ /∈ HE ∪ HF . Then there exists an
extensional set HG with indistinguishability operator G such that HG ⊇
HE ∪HF and µ /∈ HG ⇒ ∃(x, y) such that Eµ(x, y) < G(x, y). Without
loss of generality we can assume E(x, y) ≤ F (x, y). As HG ⊇ HE ∪HF ,
HE ⊆ HG and HF ⊆ HG ⇒ G ≤ E and G ≤ F . So

Eµ(x, y) < G(x, y) ≤ E(x, y) ≤ F (x, y). Hence

Eµ(x, y) < (E ∩ F )(x, y).

Therefore, µ /∈ HE∩F which contradicts our hypothesis.
So µ ∈ HE ∪ HF .

3. Let us recall φE ∨ φF = φG. We have to see that φG = φE∪F .

≤)
E ≤ E ∪ F ⇒ φE ≤ φE∪F

F ≤ E ∪ F ⇒ φF ≤ φE∪F

Hence, φE ∨ φF = φG ≤ φE∪F .

≥)
φG ≥ φE ⇒ G ≥ E
φG ≥ φF ⇒ G ≥ F
Hence, G ≥ E ∪ F ⇒ φG ≥ ψE∪F .

4. Let us recall φE ∧ φF = φG. We have to see that φG = φE∪F .

≥)
E ∩ F ≤ E ⇒ φE∩F ≤ E
E ∩ F ≤ F ⇒ φE∩F ≤ F
Hence, φE ∧ φF = φG ≥ φE∩F .

≤)
φG ≤ φE ⇒ G ≤ E
φG ≤ φF ⇒ G ≤ F
Hence, G ≤ E ∩ F ⇒ φG ≤ φE∩F .

5. Let us recall ψE ∧ ψF = ψG. We have to see that ψG = ψE∪F .
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≥)
E ≤ E ∪ F ⇒ ψE ≥ ψE∪F

F ≤ E ∪ F ⇒ ψF ≥ ψE∪F

Hence, ψE ∧ ψF ≥ ψE∪F ⇒ ψG ≥ ψE∪F .

≤)
ψG ≤ ψE ⇒ G ≥ E
ψG ≤ ψF ⇒ G ≥ F
Hence, G ≥ E ∪ F ⇒ ψG ≤ ψE∪F .

6. Let us recall ψE ∨ ψF = ψG. We have to see that ψG = ψE∪F .

≤)
E ∩ F ≤ E ⇒ ψE∩F ≥ E
E ∩ F ≤ F ⇒ ψE∩F ≥ F
Hence, ψE ∨ ψF = ψG ≤ ψE∩F .

≥)
ψG ≥ ψE ⇒ G ≤ E
ψG ≥ ψF ⇒ G ≤ F
Hence, G ≤ E ∩ F ⇒ ψG ≥ ψE∩F .

Corollary 3.11. E ∼= H ∼= U ∼= L

This result has a deep importance either from a theoretical and practical
viewpoint.

At a theoretical level it has just been proved that E , H, U and L are
isomorphic lattices, and hence despite its different semantic approach at a
structural level there is no difference between them.

From a practical viewpoint, these isomorphisms provide a dictionary to
translate information between the different lattices. This can turn to be
useful in situations where different attributes that have to be considered come
from different sources and are formally codified in different lattices. Knowing
that these lattices are equivalent and knowing how to move information from
one to the other allows us to overcome the problem of having data of different
nature to be considered at a time.
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The results of Theorem 3.10 can be summarized in the following diagram:

L ≈ U ≈ E ≈ H

ψE ∨ ψF ↔ φE ∧ φF ↔ E ∩ F ↔ HE ∪ HF

ψE ∧ ψF ↔ φE ∨ φF ↔ E ∪ F ↔ HE ∩ HF

3.2 Natural Means over E, H, U and L

3.2.1 The Finite Case

In this section natural weighted mean operators on E , H, U and L will be
studied. Specifically we will focus on analyzing if similar equalities to the
ones found in Theorem 3.10 hold with natural weighted mean operators. The
answer will be positive between E and H and negative with upper and lower
approximations. A counterexample will be provided at the end to illustrate
where equality fails.

In order to be able to define weighted natural means, we will assume in
this section that the t-norm is continuous Archimedean.

In sake of simplicity we have only considered quasi-arithmetic means of
two indistinguishability operators, though the generalization to a finite num-
ber of them is straightforward. In Section 7 the possibility of aggregating a
non-finite number of them will be studied.

First of all, let us recall the concept of quasi-arithmetic mean.

Definition 3.12. [1] Let t : [0, 1] → [−∞,∞] be a strict monotonic map and
x, y ∈ [0, 1]. The quasi-arithmetic mean mt of x and y is defined as:

mt(x, y) = t−1(
t(x) + t(y)

2
)

mt is continuous if and only if {−∞,∞} * Ran(t).

If we take as strict monotonic map the additive generator of a continuous
Archimedean t-norm T , we will talk of the natural mean with respect to T .
The term natural comes from the fact that chosen the t-norm, the mean is
fixed by this choice as there is a bijection between continuous Archimedean
t-norms and continuous quasi-arithmetic means.
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Proposition 3.13. [11] The map assigning every continuous Archimedean
t-norm with additive generator t the quasi-arithmetic mean mt is a bijection
between continuous Archimedean t-norms and continuous quasi-arithmetic
means.

Quasi arithmetic weighted means are defined below:

Definition 3.14. Let t : [0, 1] → [−∞,∞] be a strict monotonic map, x, y ∈
[0, 1]and r ∈ [0, 1]. The weighted quasi-arithmetic mean (with weight r) mr

t

of x and y is defined as:

mr
t (x, y) = t−1(r · t(x) + (1 − r) · t(y)).

We can observe that the parameter r defines an homotopy between x and
y which recovers the definition of quasi-arithmetic mean for r = 1

2
.

It can be proved that the natural weighted means of T -indistinguishability
operators is a T -indistinguishability operator as well. This way, natural
means can be seen as operators on E .

Proposition 3.15. [11] Let T be a continuous Archimedean t-norm with
additive generator t, E, F two T -indistinguishability operators on a set X
and r ∈ [0, 1]. Then the natural weighted mean of E and F defined as:

mr
t (E,F )(x, y) = t[−1](r · t(E(x, y)) + (1 − r) · t(F (x, y)))

is a T indistinguishability operator on X.

Natural weighted means can be defined as well over H, U and L as follows:

Definition 3.16. Let T be a continuous Archimedean t-norm with addi-
tive generator t, E, F two T -indistinguishability operators on a set X and
r ∈ [0, 1]. Then the set µ ∈ mr

t (HE, HF ) ∈ [0, 1]X and the operators
mr

t (φE, φF ),mr
t (ψE, ψF ) : [0, 1]X → [0, 1]X are defined in the following way:

• µ ∈ mr
t (HE, HF ) ⇔ ∃ν ∈ HE, ρ ∈ HF µ(x) = t[−1](r · t(ν(x)) + (1 −

r) · t(ρ(x)))

• mr
t (φE, φF )(µ)(x) = t−1(r · t(φE(µ)(x)) + (1 − r) · t(φF (µ)(x)))

• mr
t (ψE, ψF )(µ)(x) = t−1(r · t(ψE(µ)(x)) + (1 − r) · t(ψF (µ)(x)))
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We will prove that mt(HE, HF ) = Hmt(E,F ). The following definition and
lemmas are previous results to simplify the proof of the previous equality.

Definition 3.17. Let E be an indistinguishability operator on a set X. The
columns µx of E are defined as:

µx(y) = E(x, y) ∀x, y ∈ X.

Lemma 3.18. Let µx be a column of mr
t (E,F ). Then µx ∈ mr

t (HE, HF ).

Proof. µx is a column of mr
t (E,F ) if and only if µx(y) = mr

t (E,F )(x, y).
Then µx = mr

t (νx, ρx) with νx and ρx the corresponding columns of E and
F respectively.

Indeed µx(y) = mr
t (E,F )(x, y) = mr

t (E(x, y), F (x, y)) = mr
t (νx(y), ρx(y))

Lemma 3.19. [10] Let A, B be two families of fuzzy subsets of X. Then:

EA = EB ⇔ A = B

where EA and EB are the T -indistinguishability operators generated by the
families A and B according to the Representation Theorem 2.16 respectively.

Theorem 3.20. Let T be a continuous Archimedean t-norm with additive
generator t, E and F two T -indistinguishability operators on a set X with
associated sets of extensional fuzzy subsets HE and HF respectively and r ∈
[0, 1]. Then:

mr
t (HE, HF ) = Hmr

t (E,F )

Proof. ≤)
We will prove that mr

t (HE, HF ) ≤ Hmr
t (E,F ). This will prove the inequal-

ity, as mr
t (HE, HF ) is the smallest set of extensional fuzzy subsets greater

than or equal to mr
t (HE, HF ).

Let µ ∈ HE and ν ∈ HF . We have to see that

Emr
t (µ,ν) ≥ mr

t (E,F )

and this is equivalent to prove that

T (mr
t (E,F )(x, y),mr

t (µ(y), ν(y))) ≤ mr
t (µ(x), ν(x)).
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Expanding, this is analogous to prove that

t[−1](t(t−1(r·t(E(x, y))+(1−r)·t(F (x, y))))+t(t−1(r·t(µ(y))+(1−r)·t(ν(y)))))

≤ t−1(r · t(µ(x)) + (1 − r) · t(ν(x))).

Simplifying,

t−1(r · t(E(x, y)) + (1 − r) · t(F (x, y))) + r · t(µ(y)) + (1 − r) · t(ν(y))))

≤ t−1(r · t(µ(x)) + (1 − r) · t(ν(x))).

Which is equivalent to:

r · t(E(x, y)) + (1 − r) · t(F (x, y)) + r · t(µ(y)) + (1 − r) · t(ν(y))

≥ r · t(µ(x)) + (1 − r) · t(ν(x))

And this is true because µ ∈ HE and ν ∈ HF .
≥)
mr

t (HE, HF ) ≥ Hmr
t (E,F ) ⇔ Emr

t (HE ,HF ) ≤ mr
t (E,F ). We will prove this

last inequality.
Let µx be a column of mr

t (E,F ). Then thanks to Lemma 3.18 µ ∈
mr

t (HE, HF ) and

Emr
t (HE ,HF )(y, z) ≤ Eµx

(y, z) =
←→
T (mr

t (E,F )(x, y),mr
t (E,F )(x, z))

≤ mr
t (E,F )(y, z)

as
←→
T is T -transitive.
Hence Emr

t (HE ,HF ) ≤ mr
t (E,F ) or, equivalently, mr

t (HE, HF ) ≥ Hmr
t (E,F ).

This Theorem answers positively the question at the beginning of the
section. We have just proved constructively that it is possible to extend the
isomorphism found in the previous chapter to the field of natural weighted
means in the case of E and H. It would be expectable, given the (dual)
symmetry that has emerged along all the work between H, U and L that the
answer was positive either in the last two lattices. Counterintuitively, this is
not true and symmetry is broken at this point.

Below we will prove that half of the analogy is kept, as one inequality is
preserved when we consider the effect of natural means, either in U and L.
However, the other inequality fails as we will illustrate with a counterexample
that will show how we cannot overcome this fact.
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Proposition 3.21. Let T be a continuous Archimedean t-norm with additive
generator t, E and F two T -indistinguishability operators on a set X with
associated upper approximations φE and φF respectively and r ∈ [0, 1]. Then:

mr
t (φE, φF ) ≥ φmr

t (E,F ).

Proof. Let µ ∈ [0, 1]X be a fuzzy subset and x ∈ X. We have to see that

mr
t (φE, φF )(µ(x)) ≥ φmr

t (E,F )(µ(x)).

Expanding the expression we have to see that

t−1(r · t(sup
y∈X

t[−1](t(E(x, y)) + t(µ(y))) + (1 − r) · t(sup
y∈X

t[−1](t(F (x, y)) + t((µ(y))))

≥ sup
y∈X

t[−1](t(t−1(r · t(E(x, y)) + (1 − r) · t(F (x, y)) + t(µ(y))).

This is equivalent to

t−1(r · inf
y∈X

(t(E(x, y)) + t(µ(y))) + (1 − r) · inf
y∈X

(t(F (x, y)) + t(µ(y))))

≥ t−1( inf
y∈X

(r · t(E(x, y)) + (1 − r) · t(F (x, y)) + t(µ(y))))

or, equivalently,

r · inf
y∈X

(t(E(x, y)) + t(µ(y))) + (1 − r) · inf
y∈X

(t(F (x, y)) + t(µ(y)))

≤ inf
y∈X

(r · t(E(x, y)) + (1 − r) · t(F (x, y)) + t(µ(y))),

which is true because the addition of infima is smaller than or equal to
the infimum of the addition.

Proposition 3.22. Let T be a continuous Archimedean t-norm with additive
generator t, E and F two T -indistinguishability operators on a set X with
associated lower approximations ψE and ψF respectively and r ∈ [0, 1]. Then:

mr
t (ψE, ψF ) ≤ ψmr

t (E,F )

Proof. Let µ ∈ [0, 1]X be a fuzzy subset and x ∈ X.
Rewriting this inequality terms of t, it has to be proved that

t−1(r · t( inf
y∈X

(t[−1](t(µ(y)) − t(E(x, y))) + (1 − r) · t( inf
y∈X

(t[−1](t(µ(y)) − t(F (x, y))))

≤ inf
y∈X

t[−1](t(µ(y)) − t(t−1(r · t(E(x, y)) + (1 − r) · t(F (x, y)))))
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Simplifying we have the equivalent expression,

t−1(r · sup
y∈X

(t(µ(y)) − t((E(x, y))) + (1 − r) · sup
y∈X

(t(µ(y)) − t((F (x, y))))

≤ inf
y∈X

t−1(t(µ(y)) − r · t(E(x, y)) − (1 − r) · t(F (x, y))),

which is equivalent to

r · sup
y∈X

(t(µ(y)) − t(E(x, y))) + (1 − r) · sup
y∈X

(t(µ(y)) − t(F (x, y)))

≥ sup
y∈X

(t(µ(y)) − r · t(E(x, y)) − (1 − r) · t(F (x, y))).

And this is true because the addition of suprema is greater than or equal
to the supremum of the addition.

As it was discussed before, the reciprocal inequality does not hold and
hence it is not possible to reach equality as the following counterexample
shows.

Example 3.23. Let X be a finite set of cardinality 3. Let us consider the
following T -indistinguishability operators E and F with T the ÃLukasiewicz
t-norm.

E =





1 0.6 0.7
0.6 1 0.8
0.7 0.8 1



 F =





1 0.8 0.7
0.8 1 0.6
0.7 0.6 1





The natural mean mt(E,F ) of E and F is:

mt(E,F ) =





1 0.7 0.7
0.7 1 0.7
0.7 0.7 1





Let us consider the fuzzy subset µ =
(

1 1 0.7
)

µ ∈ Hmt(E,F ) since Eµ ≥ mt(E,F ) (Proposition 2.15).
µ ∈ Hmt(E,F ) and µ ∈ HF but µ /∈ HE.
Extensional fuzzy subsets are fixed points with respect to upper and lower

approximations, so:
φmt(E,F )(µ) = φF (µ) = µ, ψmt(E,F )(µ) = ψF (µ) = µ.
But µ /∈ HE ⇒ φE(µ) > µ and ψE(µ) < µ.
So φmt(E,F )(µ) < mt(φE, φF ) and ψmt(E,F )(µ) > mt(ψE, ψF ), and hence

equality is not reached.
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The differential fact between H and U , L that makes the difference which
breaks the symmetry is the following: Without considering closures it is
straightforward to prove the following inequalities:

• mr
t (HE, HF ) ≤ Hmr

t (E,F )

• mr
t (φE, φF ) ≥ φmr

t (E,F )

• mr
t (ψE, ψF ) ≤ ψmr

t (E,F )

If we take the closures defined in Section 4 in the previous expressions we
have that

• mr
t (HE, HF ) ≤ mr

t (HE, HF ) ≤ Hmr
t (E,F )

• mr
t (φE, φF ) ≥ mr

t (φE, φF ) ≥ φmr
t (E,F )

• mr
t (ψE, ψF ) ≤ mr

t (ψE, ψF ) ≤ ψmr
t (E,F )

And as it has been proved, taking the closure is the key to reach equality in
the first expression, but brings no new information to overcome the inequality
in the second and third case.

Finally, let us prove some final results around natural means applied on
U and L

Theorem 3.24. Let F , G be two T -indistinguishability operators on a set
X with associated upper and lower approximations φF , ψF , φG and ψG re-
spectively and r ∈ [0, 1]. Then:

• φEmr
t
(HF ,HG)

= φmr
t (F,G)

• ψEmr
t
(HF ,HG)

= ψmr
t (F,G)

Proof. From Lemma 3.19 Emr
t (HF ,HG) = Emr

t (HF ,HG).

From Theorem 3.20 mr
t (HF , HG) = Hmr

t (F,G).
Joining results, Emr

t (HF ,HG) = EHmr
t
(F,G)

= mr
t (F,G) ⇒ φEmr

t
(HF ,HG)

=

φmr
t (F,G) and ψEmr

t
(HF ,HG)

= ψmr
t (F,G).
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3.2.2 The Non-Finite Case

In some cases we have to aggregate a non-finite number of relations. For
example, if we need to calculate the similarity between fuzzy subsets. This
section will generalize the natural mean of T -indistinguishability operators
to a non-finite family of them.

Suppose that we have a family of T -indistinguishability operators (Ei)i∈[a,b]

on a set X with the indices in the interval [a, b] of the real line and that for ev-
ery couple (x, y) of X the map f(x,y) : [a, b] → R defined by f(x,y)(i) = Ei(x, y)
is integrable in some sense.

Definition 3.25. Let T be a continuous Archimedean t-norm with additive
generator t and (Ei)i∈[a,b] a family of T -indistinguishability operators on a set
X. The mean aggregation of the family (Ei)i∈[a,b] is the T -indistinguishability
operator E defined for all x, y ∈ X by

E(x, y) = t−1(
1

b − a

∫ b

a

t(Ei(x, y))di).

Proposition 3.26. This definition is independent of the generator of T
thanks to the linearity of integration.

Proof. If t′ = αt is another additive generator of T , then

t′−1(
1

b − a

∫ b

a

t′(Ei(x, y))di)

= t−1(
1

b − a

∫ b

a
αt(Ei(x, y))di

α
)

= t−1(
1

b − a

∫ b

a

t(Ei(x, y))di).

Proposition 3.27. The fuzzy relation E obtained in Definition 3.25 is a
T -indistinguishability operator on X.

Proof. It is trivial to prove that E is a reflexive and symmetric fuzzy relation.
Let us prove that it is T -transitive.
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Let x, y, z ∈ X.

T (E(x, y), E(y, z)

= t[−1](t ◦ t−1(
1

b − a

∫ b

a

t(Ei(x, y))di) + t ◦ t−1(
1

b − a

∫ b

a

t(Ei(y, z))di))

= t[−1](
1

b − a

∫ b

a

t(Ei(x, y))di +
1

b − a

∫ b

a

t(Ei(y, z))di)

= t[−1](
1

b − a

∫ b

a

(t(Ei(x, y)) + t(Ei(y, z)))dx).

Since every Ei is T -transitive,

t(Ei(x, y)) + t(Ei(y, z)) ≥ t(Ei(y, z)) ∀i ∈ [a, b]

and therefore

∫ b

a

(t(Ei(x, y)) + t(Ei(y, z)))di ≥

∫ b

a

t(Ei(x, z))di

Since t[−1] is a non increasing map, we get

T (Ei(x, y), Ei(y, z) ≤ Ei(x, z).

The most important necessity of aggregating a non-finite family of T -
indistinguishability operators is when we need to calculate the degree of
similarity between two fuzzy subsets µ and ν of a set X.

Probably the most natural way is comparing µ(x) and ν(x) for all x ∈ X

using
←→
T and then taking the infimum of all the results.

Definition 3.28. Let µ, ν be two fuzzy subsets of a set X and T a t-norm.
The degree of similarity ET (µ, ν) between µ and ν is defined by

ET (µ, ν) = inf
x∈X

←→
T (µ(x), ν(x)).
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However this definition suffers from the drastic effect of the infimum. For
example, if we have two fuzzy subsets µ, ν of a set X with µ(x) = ν(x)
for all x ∈ X except for a value x0 for which µ(x0) = 1 and ν(x0) = 0,
then ET (µ, ν) = 0 which means that both subsets are considered completely
different or dissimilar. An average of the values obtained for every x ∈ X
seems a suitable alternative.

Definition 3.29. Let µ, ν be two integrable fuzzy subsets of an interval [a, b]
of the real line. The averaging degree of similarity or indistinguishability
EA

T (µ, ν) between µ and ν with respect to a continuous Archimedean t-norm
T with additive generator t is defined by

EA
T (µ, ν) = t[−1]

(
1

b − a

∫ b

a

t(
←→
T (µ(x), ν(x)))dx

)

.

With this definition, the degree of indistinguishability of the two fuzzy
subsets considered after Definition 3.28 is 1, which is a very intuitive result.

Example 3.30. Let us consider the two fuzzy subsets µ and ν of the interval
[0, 2] defined by µ(x) = 1/2 and ν(x) = x/2 ∀x ∈ [0, 2]. Let Tα be the

Yager family of t-norms (Tα(x, y) = 1 − min(1, (1 − x)α + (1 − y)α)
1
α and

tα(x) = (1 − x)α a generator of Tα with α ∈ (0,∞)).

←→
Tα (x, y) = 1 − |(1 − y)α − (1 − x)α|

1
α

which implies that

←→
Tα (µ(x), ν(x)) = 1 − |(1 − ν(x))α − (1 − µ(x))α|

1
α

=

{
1 − ((1

2
)α − 1 − x

2
)α)

1
α if x > 1

1 − ((1 − x
2
)α − (1

2
)α)

1
α if x ≤ 1.

and therefore

EA
Tα

(µ, ν) = t[−1](
1

2
(

∫ 1

0

((1 −
x

2
)α − (

1

2
)α)dx) +

∫ 2

1

((
1

2
)α − (1 −

x

2
)α)dx))

= t−1(
1 − (1

2
)α

α + 1
) = 1 − (

1 − (1
2
)α

α + 1
)

1
α .
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If α = 1, then Tα is the ÃLukasiewicz t-norm T and in this case the previous
formula gives EA

T (µ, ν) = 3/4 whereas using the infimum to aggregate we
obtain ET (µ, ν) = 1/2.

Following the lines of research of this work let us now relate the sets HEi

of extensional fuzzy subsets of the family (Ei)i∈[a,b] with HE.

Proposition 3.31. Let T be a continuous Archimedean t-norm with additive
generator t, (Ei)i∈[a,b] a family of T -indistinguishability operators on a set X
and (µi)i∈[a,b] a family of fuzzy subsets of X with µi ∈ HEi

for all i ∈ [a, b]
and µ the fuzzy subset of X defined by

µ(x) = t−1(
1

b − a

∫ b

a

t(µi(x))di).

Then µ ∈ HE, where E is the T -indistinguishability operator mean aggrega-
tion of the family (Ei)i∈[a,b].

Proof. Since µi is extensional with respect to Ei,

µi(x) ≤ t[−1](t(Ei(x, y)) + t(µi(y)))

or
t(µi(x)) ≥ t(Ei(x, y)) + t(µi(y)).

t(µ(x) =
1

b − a

∫ b

a

t(µi(x))di

≥
1

b − a

∫ b

a

t(Ei(x, y))di +
1

b − a

∫ b

a

t(µi(y))di

= t(E(x, y) + t(µ(y)).

As happened in the previous section, the relationship between upper and
lower approximations lead to inequalities.

Proposition 3.32. Let T be a continuous Archimedean t-norm with additive
generator t, (Ei)i∈[a,b] a family of T -indistinguishability operators on a set
X and (φEi

)i∈[a,b] the family of corresponding upper approximations. Then
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the upper approximation φE of the T -indistinguishability operator E, mean
aggregation of the family (Ei)i∈[a,b] satisfies

φE(µ(x)) ≤ t−1(
1

b − a

∫ b

a

t(φi(µ(x)))di)

for all fuzzy subsets µ of X and x ∈ X.

Proof.

φE(µ(x)) = sup
y∈X

T (E(x, y), µ(y)) = sup
y∈X

t[−1](t(E(x, y)) + t(µ(y)))

= sup
y∈X

t[−1](
1

b − a

∫ b

a

t(Ei(x, y))di + t(µ(y)))

≤ t−1(
1

b − a

∫ b

a

t(φi(µ(x)))di).

Similarly the following result can be proved.

Proposition 3.33. Let T be a continuous Archimedean t-norm with additive
generator t, (Ei)i∈[a,b] a family of T -indistinguishability operators on a set
X and (ψEi

)i∈[a,b] the family of corresponding lower approximations. Then
the upper approximation φE of the T -indistinguishability operator E, mean
aggregation of the family (Ei)i∈[a,b] satisfies

ψE(µ(x)) ≥ t−1(
1

b − a

∫ b

a

t(ψi(µ(x)))di)

for all fuzzy subsets µ of X and x ∈ X.

3.3 Study of E, H, U and L under the Effect of an

Isomorphism of t-norms

In this section it will be studied how all the results developed in the previous
sections are affected if the t-norm is isomorphically changed and hence the
indistinguishability operator is changed as well. As it would be expectable,
it is proved that extensional fuzzy sets, upper approximations and lower
approximations can be directly translated through this isomorphism from
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one indistinguishability operator to the other one, so all the results shown in
this work are preserved.

First of all let us recall the definition of isomorphism of t-norms and of
indistinguishability operators.

Definition 3.34. [21] Two continuous t-norms T , T ′ are isomorphic if and
only if there exists a bijective map f : [0, 1] → [0, 1] such that f ◦ T =
T ′ ◦ (f × f).

Definition 3.35. [12] Given two t-norms T, T ′, a T -indistinguishability op-
erator E on a set X and T ′-indistinguishability E ′ on X ′, a morphism ϕ
between E and E ′ is a pair of maps ϕ = (h, f) such that the following dia-
gram is commutative

X × X
E

−−−→ [0, 1]


yh×h



yf

X ′ × X ′ E′

−−−→ [0, 1]

(i.e. f(E(x, y)) = E ′(h(x), h(y)) for all x, y ∈ X).
When h and f are bijective maps, ϕ is called an isomorphism.

In sake of simplicity we will take from now on h = IdX and X ′ = X.
This way, isomorphisms will be only characterized by the map f .

An interesting result is that isomorphism between t-norms implies directly
isomorphism between indistinguishability operators. The formal statement
of this fact is given below:

Proposition 3.36. Let f : [0, 1] → [0, 1] be an isomorphism between two
t-norms T and T ′ and E a T -indistinguishability operator on a set X. Then
E and f ◦ E are isomorphic indistinguishability operators.

Proof. Straightforward.

Lemma 3.37. [12] Let T , T ′ be isomorphic t-norms. Then
−→
T and

−→
T ′ are

isomorphic.

The following proposition is the key result of this section. It states that
under an isomorphism of t-norms defined by a map f either extensional
fuzzy subsets, upper approximations and lower approximations can be di-
rectly translated through this same map f .
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Proposition 3.38. Let f : [0, 1] → [0, 1] be a map defining an isomorphism
between two t-norms T and T ′. Let E be a T -indistinguishability operator on
a set X and f ◦ E a T ′-indistinguishability operator on X isomorphic to E.
Then:

• µ ∈ HE ⇔ f ◦ µ ∈ Hf◦E

• f ◦ φE = φf◦E

• f ◦ ψE = ψf◦E

Proof. Straightforward.

As sit was remarked in the discussion that opened this section, all the
structural analysis and relationship done between E , H, U and L was con-
ditioned by a previous choice of a certain t-norm. This final result is very
important because it overcomes the dependence on this choice as is states
that everything suits properly under isomorphism of t-norms. Hence, it has
been show that all the relations found between E , H, U and L are robust
with respect to the choice of the t-norm.

3.4 Powers of E, H, U and L

3.4.1 Powers of Indistinguishability Operators

The following two subsections will change the scope of interest of the previ-
ous subsections and will focus on studying the effect of the applications of
powers (as introduced in Section 2.2.1) on indistinguishability operators and
its related concepts.

It will be shown how the ordering on the real line derives an ordering on
the lattices E , H, U and L and some very promising results will emerge.

First of all, the following result is very useful, as it allows to calculate
powers as they were defined in 2.2.1 by using an additive generator t of T ,
which makes operations more manageable.

Proposition 3.39. Let T be an Archimedian t-norm with additive generator
t and r ∈ R+. Then:

xr = t[−1](r · t(x))
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We have defined powers with objects x. In particular, we can consider
the power of a T -indistinguishability operator E.

Definition 3.40. Let E be a T -indistinguishability operator and r ∈ R+.
We define the r’th power of E as:

Er(x, y) = T r(E(x, y))

It can be proved that the power Er of a T -indistinguishability operator
E is a T -indistinguishability operator as well.

Theorem 3.41. Let E be a T -indistinguishability operator and r ∈ R+.
Then Er is a T -indistinguishability operator.

It is remarkable that the order we have on the real line is preserved
order-reversed when we consider the associated powers of indistinguishabil-
ity operators. Moreover, it is straightforward to see that this application
is continuous and hence we can understand the increasing of the power as
an homotopy or smooth transformation from one indistinguishability to a
sharper or softer one.

From a linguistic viewpoint, this fact is trivial. Greater powers were
related with strengthening the predicate, hence if we consider Er and allow
r to grow, it is natural that the result of the power gets sharper.

Proposition 3.42. Let E be a T -indistinguishability operator and r, s ∈ R+.
Then:

r ≤ s ⇒ Er ≥ Es

Proof. r ≤ s ⇒ r · t(E) ≤ s · t(E)
And as t−1 is a monotone decreasing function:
t−1(r · t(E)) ≥ t−1(s · t(E)) ⇒ Er ≥ Es

In order to have continuity on the limits, we will define E0(x, y) =
1 ∀x, y ∈ X and E∞(x, y) = IdE(x, y).

This way we can see powers as homotopy operators that given any T -
indistinguishability operator E provide us a gradation from the universal
indistinguishability operator to the most sharp one passing through E when
r = 1.

46



As it follows from this discussion, there is a tight relation between the
ordering of powers and the ordering of indistinguishability operator. The
next result proves that this relation remains as well when we consider the
effect of natural means.

Theorem 3.43. Let E be a T -indistinguishabilty operator on a set X and
r, s ∈ R+. Then:

E = mt(E
r, Es) ⇔ r + s = 2

Proof. Let x, y ∈ X. Then:

mt(E
r(x, y), Es(x, y) = t−1( t(Er(x,y))+t(Es(x,y))

2
)

By Proposition 3.39 this is equal to:

t−1( t(t−1(r·t(E(x,y))))+t(t−1(s·t(E(x,y))))
2

)

Simplifying we have:

t−1( r·t(E(x,y))+s·t(E(x,y))
2

)

Which coincides with E(x, y) if and only if r + s = 2.

In particular we have that E = mt(1, E2)) where 1(x, y) = E0(x, y) =
1 ∀x, y. An interesting question that does not arise from the previous result
is whether given an indistinguishability operator E there exists an indistin-
guishability F such that E = mt(F, Id).

3.4.2 Powers over H, U and L

This section will extend the application of powers to the lattices H, U and
L.

First of all, let us prove the following lemma which will be useful further
as it allows to understand the condition of extensionality in terms of additive
generators.

Lemma 3.44. Let E be a T -indistinguishability operator on a set X. µ ∈ HE

if and only if ∀x, y ∈ X:

t(E(x, y)) + t(µ(y)) ≥ t(µ(x))

Proof. µ ∈ HE ⇔ T (E(x, y), µ(y)) ≤ µ(x) ⇔ t−1(t(E(x, y)) + t(µ(y))) ≤
µ(x).

And as t is a monotone decreasing function this is equivalent to t(E(x, y))+
t(µ(y)) ≥ t(µ(x))
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The following result proves how tight is the relation between the set of
extensionals HE of an indistinguishability operator E and the one of its
powers Er.

Proposition 3.45. Let E be a T -indistinguishability operator, HE its set of
extensional fuzzy subsets and r ∈ R+. Then

µ ∈ HE ⇔ µr ∈ HEr

Proof. By Lemma 3.44 µr ∈ HEr ⇔ t(Er(x, y)) + t(µr(y)) ≥ t(µr(x)).

Expanding by Proposition 3.39 this is equivalent to:

t(t−1(r · t(E(x, y)))) + t(t−1(r · t(µ(y)))) ≥ t(t−1(r · t(µ(x))))

Simplifying:

r · t(E(x, y)) + r · t(µ(y)) ≥ r · t(µ(x))

Which is equivalent to:

t(E(x, y)) + t(µ(y)) ≥ t(µ(x)) ⇔ µ ∈ HE.

The following lemma for extensional sets is analogous to the one for in-
distinguishability operators proved in Theorem 3.43 and is key to prove the
Theorem below.

Lemma 3.46. Let E be a T -indistinguishability operator over a set X, µ ∈
[0, 1]X a fuzzy subset and r, s ∈ R+ such that r + s = 2. Then:

µ = mt(µ
r, µs)

Proof. Let x ∈ X. Then:

mt(µ
r(x), µs(x)) = t−1( r·t(µ(x))+s·t(µ(x))

2
)

Which is equivalent to µ(x) because r + s = 2.

The next result shows how HE, φE and ψE can be obtained by considering
means of them under the effect of powers. This result can be useful in cases
where the effective computation of these concepts may be very costly but it
is easy to compute them with powers Er and Es of E such that r + s = 2.

Theorem 3.47. Let E be a T -indistinguishability operator over a set X,
r, s ∈ R+ such that r + s = 2. Then:

• HE = mt(HEr , HEs)
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• φE = mt(φEr , φEs)

• ψE = mt(ψEr , ψEs)

Proof. We will prove explicitly the equality in the case of sets of extensional
fuzzy subsets. With upper and lower approximations the proof is totally
analogous to the one of Lemma 3.46.

Let µ ∈ HE. By Proposition 3.45 we have µr ∈ HEr and µs ∈ HEs .

Besides, by Lemma 3.46 µ = mt(µ
r, µs) and hence HE = mt(HEr , HEs).

Finally, the following Theorem proves how the ordering r ≤ s we have over
the positive real line derives an ordering too between the sets of extension-
als, upper and lower approximations related to powers of indistinguishability
operators.

This fact takes us to a similar situation to the one with indistinguishability
operators where the use of powers provides homotopies between universal
extensional sets, upper and lower approximations and sharp crisp ones. From
a geometric and topologic viewpoint this turns out to be very interesting
because it allows to see the degradation of fuzzy equivalence classes by just
varying the power of E.

Theorem 3.48. Let E be a T -indistinguishability operator over a set X and
r, s ∈ R+. Then:

• r ≤ s ⇒ HEr ⊆ HEs

• r ≤ s ⇒ φEr ≥ φEs

• r ≤ s ⇒ ψEr ≤ ψEs

Proof. Straightforward from Lemma 3.42 and the Galois Connections be-
tween the lattices of T -indistinguishability operators, sets of extensional fuzzy
subsets, upper and lower approximations shown in [24].

These last results open a very interesting line of research.

An indistinguishability operator E can be understood as a filter on the
perception of reality that identifies objects. In this approach, extensional
sets turn to be nothing but the observable sets in X. This means that under
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the effect of E not every set is perceivable but only the ones that can be
discriminated by E.

For instance, given that our visual perception is limited, given a glass of
wine what we see is only a dark-red liquid flow. However, wine is composed
by many particles and different substances but to our vision these are indis-
tinguishable. For that reason, all these different objects are captured into
the same observable (extensional) set.

This example shows the importance of the approximation of fuzzy subsets
by extensional ones. In this paper we have stated and worked with two op-
erators that provided approximations: φE and ψE. These operators provide
the best upper and lower approximations of a fuzzy subset by extensionals.
However, it can be the case that despite being the best approximations con-
taining or being contained (respectively) in µ, there is an extensional set α
in the middle which is a much better approximation of µ in absolute terms.

This future line of research will be explained further in Chapter 5, as well
as other possible ideas that emerge from the theoretical work done on the
application of powers to E , H, U and L.
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4 Image Segmentation with Fuzzy c-Means

Whereas the previous chapter had a pure theoretical scope, this one will face
a practical biomedical segmentation problem. The challenge that emerges
from bringing together these two scientifical viewpoints of solving problems
will be treated in the next chapter.

As it was said in the introduction, in this chapter we will run a Fuzzy
c-Means algorithm to segment six real patients’ images. Four of these images
are microscopical captures of Bone Marrow and the last two come from mam-
mographies. The FCM algorithm will be ran after a previous preprocessing
of the data through a watershed histogram-based method.

In the literature, the output of a segmentation process on an image is the
same image labeled to discriminate the different objects. In this work the
output aimed is to obtain as many images as objects identified on the initial
one, and each image showing us one different object.

This chapter is structured as follows:

The first section will explain in depth the aim and interest of segmenting
Bone Marrow and Mammography images. The images to be segmentated
further will be introduced here.

The second one will show the resolution of the problem using the FCM
algorithm beginning from a histogram analysis. The adjustment of parame-
ters will be explained carefully and the final segmentation proposed by this
method will be shown.

4.1 Bone Marrow and Mammography Segmentation

Problem

For this problem we are going to work with six biomedical images. Figures
1, 2, 3 and 4 correspond to a bone marrow image where we are interested in
studying the White Blood Cells (from now on WBC) in the image. Theses
images have been provided by the Department of Pathology and Anatomical
Sciences Ellis Fischel Cancer Center of the University of Missouri-Columbia,
and correspond to microscopical captures of real patients. Figures 5 and 6
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Figure 1: Bone marrow image 1

are mammographies and we are interested in segmenting them in order to
find calcifications.

Despite the differences between these images, in order to segment them
they have been treated in the same way. This is because in spite of their
different origin and nature, at a technical level they are similar as both of
them are gray-scale images, and precisely gray-level is the feature that will
be used to perform clustering and image segmentation.

It is important to recall that the variability, unaccuracy and complexity
that this kind of biomedical images have makes it very difficult in general to
perform an efficient analysis of the images.

Segmenting WBC is useful in what is medically called Differential Re-
count. There are 5 different types of WBC: Neutrophils, Basophils, Eosinophils,
Lymphocytes and Monophytes. They can be distinguished studying th mor-
phology and geometry of the cores of the WBC, as it can be seen in Figure
7. Differential Recount test counts how many WBC of each class there are
in a certain sample.

These 5 types are normally within a certain proportion, however some
blood pathologies break the equilibrium between these 5 types and this is
very clearly seen in a Differential Recount. For instance, when a patient has
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Figure 2: Bone marrow image 2

Figure 3: Bone marrow image 3
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Figure 4: Bone marrow image 4

leukemia cancer this proportions are totally distorted, hence a Differential
Recount test is of great use for onchlogysts in order to diagnose this kind of
cancer.

On the other hand, the segmentation of mammographies aims at early
detection of mama tumors (or calcifications). Young women’s breasts have
many fibers and this fact complicates segmenting calcifications while older
women loose fiber and calcifications are more distinguishable. In Figures 9
and 10 the calcifications we are looking for are highlighted.

Hence, either in WBC images and mammographies we are not actually
interested in all the different objects identified on the image, but only on
those that show the pathology (in the case of mammographies) or those that
define the regions to study (WBC images).

Finally, the motivation on automatic segmentation methods for these
problems is to overcome subjectivity and non-controllable error. Let us il-
lustrate this statement with an example:

In the case of WBC Differential Recount, a manual analysis of an image
depends as much as 30% on the thresholding of the protocol used by each
hospital. This means that depending on where the study is done the resulting
proportions can vary up to a 30%. Automatic segmentation has a ”‘protocol”’
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Figure 5: Mammography 1
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Figure 6: Mammography 2
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Figure 7: Classification of WBC into 5 groups
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Figure 8: Capture from Bone marrow image 1 where different types of WBC
have been highlighted. The difference between them can be found reagrding
at the cores of the cells.

as well, but at least this one is non-subjective and intrinsically hardcoded
in the algorithm used. Hence, applied on different hospitals will provide no
differences because of this variability.

Further, a part from this 30% of variance among protocols, human error
has to be considered as well. It is well-known that a human valorative clas-
sification depends on the current state of the diagnoser and that this error is
non-controlable, as it depends on too many random factors. An automatic
segmentation method will provide errors as well, but the errors commited are
not subjected to so many variable factors. This fact makes it easier to keep
under control the error of the program.

4.2 Fuzzy c-Means Approach

Now that the problem is correctly stated, let us explain the method used to
solve it.

As said before, the FCM algorithm has been used after a histogram-based
watershed preanalysis of data. This preprocessing will be explained in the
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Figure 9: Caption of Mamography 1
which corresponds to a young breast.
Circled we find the calcification

Figure 10: Caption of Mamography
1 which corresponds to an old breast.
Circled we find the calcification
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first subsection.

In the following subsection it will be explained in detail how the FCM
algorithm has been used.

The third subsection will deal with the choice of the parameters in the
algorithm and some studies will be done to improve the results.

Finally, the output segmentation will be given either with bone marrow
images and mammographies, together with a discussion of the results ob-
tained.

4.2.1 Histogram preanalysis

The choice of using a histogram-based watershed method to preprocess the
data before using FCM has been done due to two reasons.

The first one is because this analysis proposes an amount of relevant peaks
on the histogram which give a clue of the number of clusters FCM has to
find. As said in Section 2.3, FCM algorithm needs as input the amount of
fuzzy subsets that has to find.

The second reason, related partially with the first one, has to do with
computational effort. As said in Section 2.3, FCM is a costly algorithm
and hence running it from raw data makes it quite inefficient. Plotting and
analyzing the histogram first simplifies and structure data, and so FCM can
work on data much more efficiently. Besides, the analysis of the histogram
provides as well a proposal of centers that are used by FCM as seeds to find
the best centroids. It will be shown further that there in these problems this
choice implies a slight advantage with respect with random initial seeding.

This watershed method runs in the following way:

Firstly, the medical image to be segmentated is loaded through a script
and transformed into a histogram. Figure 11 shows the histogram related to
Figure 1

Then the watershed method is applied in order to identify the relevant
peaks in the histogram. The number of relevant peaks is found within the
algorithm as well.
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Figure 11: Histogram related to Bone marrow image 1

A peak is meant to be relevant if the area defined under the curve and a
cut parallel to the x-axis is above a certain threshold. This is parametrized
by some parameters of the algorithm and can be changed in order to make
the algorithm more sensitive to finding more clusters or not. However, in the
case of WBC it is known that the number of clusters to be found in the final
segmentation is 4 and in the case of mammographies we will let the amount
of clusters vary and compare results. Thus, the parameters controlling the
sensitiveness of the program to finding more clusters have no further relevance
on this work and we will not get into details of them.

The watershed algorithm follows the following scheme:

1. fix k such that the whole histogram is under the waterlevel line x = k

2. while (peaks limit are disjoint)

3. reduce waterlevel k
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4. evaluate intersections {xi} between waterlevel and histogram

5. update peaks limits

6. if (peak was relevant) peak is relevant

7. if (peak was not relevant) Reevaluate relevance of the peak

8. end while

Figure 12 illustrates the process defined by the watershed algorithm.

Figure 12: Watershed algorithm. The waterlevel decreases iteratively and
the islands are identified as relevant or none relevant peaks according to
their are in the current step

Finally, given a raw medical image this algorithm provides an amount C
of relevant peaks and the maximums {cj}j=1,...,C of each peak that will be
used in the following step by the FCM algorithm as the number of fuzzy
clusters to be found and their initial centroids.

62



4.2.2 FCM method

After the histogram analysis, we have the histogram related to the initial
image and a partition of it in n relevant peaks.

As said in Section 2.3, the FCM algorithm follows the following scheme:

1. Initialize U , U0

2. At k step calculate the centers cj with Uk

cj =

∑N
i=1 um

ij · xi
∑N

i=1 um
ij

3. Update U0, U(k + 1)

uij =
1

∑C
k=1 (

d(xi,cj)

d(xi,ck)
)

2
m−1

4. If
∥
∥U (k+1) − U (k)

∥
∥ ≤ ǫ STOP; Else return to 2

Let us recall the notation used: {xi}i=1,...,N stand for the data sample,
{cj}j=1,...,C stand for the centroids of the clusters and Uij is a NxC matrix
that codifies the degree of membership of xi to cluster j.

In our problem, the data sample xi correspond to gray-levels, and hence
N = 256. As explained in Section 3.2.3 we will initially consider C to be equal
to the number of relevant peaks given by the histogram analysis. However,
as it will be shown below this parameter can be changed depending on what
we are looking for on the image.

Finally, as gray-level is a unidimensional space, the distance considered
has been the euclidean (which is the same as the Manhattan one in 1D
spaces). This choice has been done because it seems natural from the nature
of the problem. However, other distances could be considered as well and we
will regard this possibility in Section 5.1.
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Bone Marrow image 1 Mamography 1
Random seeding 22.8 29
Watershed seeding 22.1 28.4

Table 1: Difference on the number of iterations between watershed and ran-
dom seeding

4.2.3 Adjustment of parameters

In order to start the FCM algorithm we have taken as initial centroid seeds
the output maximums of the histogram watershed. On the contrary, classical
FCM usually starts with random centers.

Table 1 shows the differences between random and watershed seeding.
The table shows the average number of iterations taken by 10 runs of the
algorithm to converge using each method.

It must be recalled that the centers found in these 20 runs of the algo-
rithm have been always the same, for that reason the comparison may be
done taking into account only the number of iterations. The fact that the
algorithm always converges to the same solution shows that the problem is
well conditioned, and the solutions found are global optima.

As it can be observed, there is a slight improvement using watershed
seeding over random seeding. However, a further study should be done to an
analyze if this difference is statistically significant.

The other parameter to be adjusted id the fuzzifier m. Tables 2 and
3 show the output fuzzy clusters of the algorithm varying the value of the
parameter m. As it can be seen, for values over m = 5 the algorithm begins
to fall off.

Finally, the last parameter to be fixed is the number C of clusters to be
found. In the case of WBC, we will fix C = 4, as we know that there are

64



Center 1 Border 1 Center2 Border 2 Center 3 Border 3 Center 4
m=1.1 111.89 134 156.99 173 190.86 221 252.98
m=1.3 111.64 134 156.84 173 190.84 221 253.03
m=1.7 111.24 134 157.23 174 191.13 222 253.27
m=2.5 111.17 138 157.97 176 190.72 228 253.94
m=3.5 111.39 145 157.94 178 189.32 236 254.58
m=5 112.65 154 159.59 182 187.23 245 254.83
m=7 113.14 162 164.88 195 197.72 250 254.99

Table 2: Centers and borders between clusters varying m found on Bone
Marrow image 1

Center 1 Border 1 Center2 Border 2 Center 3 Border 3 Center 4
m=1.1 0.48 30 60.88 80 100.65 130 160.47
m=1.3 0.54 30 61.05 81 100.97 131 161.02
m=1.7 0.59 31 61.99 81 101.67 132 162.09
m=2.5 0.43 39 65.30 85 102.11 137 162.49
m=3.5 0.32 54 70.90 93 104.79 145 162.75
m=5 0.03 67 73.99 100 105.91 152 161.11
m=7 0.00 63 66.12 88 91.15 152 157.04

Table 3: Centers and borders between clusters varying m found on Mam-
mography 1
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4 classes to be found on the image: Background, Red Blood Cells, White
Blood Cells Cytoplasm and White Blood Cells cores. In the case of mammo-
graphies, the aim is different. We want to segmentate the image in order to
see if the algorithm finds the calcifications shown in Figures 9 and 10, hence
we will run the algorithm letting the number C of clusters to be found vary
from 4 to 6.

4.2.4 Resulting segmentation of images using FCM

Finally let us show the final segmentation of the target images. As said in
Section 4.2.3, the fuzzifier m of the algorithm has been fixed to m = 1.3 and
we have used watershed seeding.
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Figure 13: Segmentation of Bone Marrow Image 1 (Figure 1) in 4 clusters
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Figure 14: Segmentation of Bone Marrow Image 2 (Figure 2) in 4 clusters
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Figure 15: Segmentation of Bone Marrow Image 3 (Figure 3) in 4 clusters

69



Figure 16: Segmentation of Bone Marrow Image 4 (Figure 4) in 4 clusters
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Figure 17: Segmentation of Mamography 1 (Figure 5) in 4 clusters
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Figure 18: Segmentation of Mamography 1 (Figure 5) in 5 clusters
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Figure 19: Segmentation of Mamography 1 (Figure 5) in 6 clusters
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Figure 20: Segmentation of Mamography 2 (Figure 6) in 4 clusters
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Figure 21: Segmentation of Mamography 2 (Figure 6) in 5 clusters
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Figure 22: Segmentation of Mamography 2 (Figure 6) in 6 clusters

76



4.2.5 Discussion of the results obtained

Let us analyze now the results shown in Section 4.2.4.

The aim of segmenting Bone Marrow images was to develop an automatic
process to distinguish the White Blood Cells cores from the rest of the image
in order to perform a Differential Recount. As it can be seen in Figures 13,
14, 15 and 16 the segmentation of the cores is correctly achieved in the four
images.

A slight distortion can be seen in the segmentation of these images when it
comes to cluster Red Blood Cells. Several phenomena distort the expectable
output segmentation. The first of all, which can be seen very clearly in Figure
13, is that, due to external causes of how the sample has been prepared in
order to be microscopically captured, the gray level of the same object can
be different in the left and right side of the image. In the segmentation of
Figure 13 it can be observed that the RBC in the right side of the image are
clustered together with the cytoplasm of WBC, while RBC in the left side
of the image are clustered differently.

Another phenomena that brings difficulties is overlapping of RBC, which
makes the overlapped region darker and may bring errors to the segmenta-
tion. This can be seen in Figure 14 and Figure 16.

However, despite these unavoidable complications, the segmentation ob-
tained can be stated to be quite correct. Furthermore, restricting to the areas
of interest of the image (cores of WBC), the segmentation obtained is clear
and suitable for a further Differential Recount.

On the other hand, the goal of segmenting mammographies was to analyze
if an automatic FCM segmentation could cluster the calcifications shown in
Figures 8 and 9.

As it can be seen in Figures 17, 18, 19, 20, 21 and 22 in none of these
segmentations a specific cluster has been found for the calcifications. The
results have not been shown in this work but this was not achieved either
clustering into 7 and 8 classes. However, these segmentations actually provide
good Regions of Interest (ROIs), where a further image processing can be
done in order to automatically detect mama tumors. In Figure 19 a good
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ROI is obtained containing the calcifications of Figure 10.

An interesting phenomena can be observed in Figures 20, 21 and 22. A
deep look at the final segmentation shows that the calcification appears in
a soft gray in some of the clusters. Though the tumor is too little, and
hence the number of pixels within the tumor provide neither a relevant peak
in the histogram nor a cluster in the further FCM process, the phenomena
that makes the tumor actually distinguishable is a side effect of the FCM
algorithm. Let us make this point clear.

The FCM algorithm does not work over the raw image, but on the 1D
histogram of frequencies of gray-levels. The images shown in Section 4.2.4
are the translation to images of the clustering performed by FCM.

The real output of for instance clustering into 4 classes Mamography 2
(Figure 6) are the following fuzzy sets:

As it can be observed in Figure 23 there is a strange distortion in the
queue of the fuzzy sets at low intensities of gray-level. This is a theoretically
strange fact following the philosophy of the algorithm, but it provides good
results in our case. Because of this slight increasing (or decreasing depending
on the cluster) on the membership degree of these pixels to the cluster, it
comes that the tumor can be actually distinguished from the rest of the
cluster.

Finally, it can be stated that the method developed is robust (it does
not depend much on the choice of parameters), consistent (as it provides
unique solutions) and computationally quite fast. It has proved to be useful
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to achieve the goals established at the beginning of this Chapter and could
be used in real diagnosing situations, at least to determine ROIs. However,
in order to do so, a much more strict and exhaustive analysis and test of the
method should be done in order to assure its convergence and efficiency in
more situations and images.
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5 Future lines of research

As it was explained in the introduction of this work, up to now two disjoint
works have been done.

On one side, Chapter 3 devoted a strong effort on understanding in depth
formal fuzzy relations and fuzzy set theory. In this context four main concepts
were introduced: Indistinguishability Operators, Sets of Fuzzy Extensional
Sets and Upper and Lower Approximation Operators. It has been shown
that there exists a isomorphic relation between them at a lattice-level and
that this result is not kept when we consider further aggregation operators
like natural weighted means.

In Chapter 3 it was also studied how taking powers of the fixed t-norm
T can be seen as considering homotopies in the lattices E , H, U and L.

On the other hand, Chapter 4 focused on solving the practical problem
of segmenting medical images. The fuzziness of the approach was introduced
here by the classical Fuzzy c-Means Clustering Algorithm, and this method
was compared with an Histogram-based one.

As it can be seen, up to now we still haven’t overcome the Wall fuzzy
logic researchers use to run into, as we are constructing theory and attacking
practice in a disjoint way. However, it is a must to be recalled here that
this Master Thesis is an intermediate stage of a full PhD project. In this
sense, the research done up to now and explained in the previous chapters
is regarded by the author as a technical reinforcement of theory (Chapter 3)
and a fuzzy approach to practice (Chapter 4) in order to provide a suitable
context to bring it all together.

The aim of this section is to point the main lines of research the author
considers that are promising to build these bridges. Different ideas will be
considered in different subsections.

After all building a house is a tough task. First you must design the maps,
then prepare the field and afterward build the skeletic structure. Once here,
finishing the work is just a matter of filling the gaps. With the field prepared
(studied), and the skeletical structure built (chapters 3 and 4), this chapter
will provide the map for the next stages of the project./

80



5.1 Enhancing the FCM algorithm

One possible line of research is to try to enhance the FCM algorithm. This
can be done in several ways.

First of all, as it was explained in Section 2.3, one of the problems of this
algorithm is its computational cost. Since its proposal in 1981 [4], several
researchers have worked on this problem and proposed improvements in order
to reduce its computational time cost. A quick review of this improved FCM
algorithms can be found in [5]. The problem faced in this work has been
treated with the classical old FCM and due to the unidimensionality of the
B/W images time has not been a problem. However, colored images could be
considered as well (either RGB or HSI which is theoretically more suitable
as it is more orthogonal than RGB) and this would take the problem into a
3-D space where possibly this improvements should have to be considered.

Besides, FCM is an algorithm for general clustering. In the local problem
we are working on with images, the spatial location is an important variable
that should be considered. The author is already taking into account models
where the distance used by the algorithm is not only the euclidean between
the gray-level, but a linear combination of gray-level and euclidean distance
between pixels in the image.

d(p1, p2) = λ · dgray−level(p1, p2) + (1 − λ) · deuc(p1, p2)

This way, the algorithm could not just identify in the same cluster the
same class of objects but to discriminate all the objects in the image.

The problem that emerges in this approach is how to decide a priori the
number of clusters to be found by the algorithm, as this is one of the inputs
required to run it.

5.2 Indistinguishability-based FCM

Another possible idea to bring together practical FCM and theoretical indis-
tinguishability operators theory can also be derived from the idea of mod-
ifying the distance of the FCM algorithm. As it was explained in Chapter
2, there is a direct relation between distance operators and indistinguisha-
bilities, as they are reverse one from the other. Hence, instead of taking an
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arbitrary distance in the FCM algorithm, we could choose this distance as
the reverse of an indistinguishability.

The main gain of this approach with respect to the classical one is that this
indistinguishability operator can be built taking into account prior knowledge
on the field and thus it will be suitable and adaptaded to the specific problem.
On the contrary, classical FCM just takes an arbitrary distance, usually
euclidean or Manhattan, without any prior evidence that this choice suits
properly to the specific problem.

For instance, knowing that in Bone Marrow images we have 4 classes to
find and having an approximate estimation of the gray level associated to
each cluster we can define an indistinguishability (and hence a distance) that
takes into account this fact and its more sensitive around these gray levels
and less in the cues.

5.3 Taking the output fuzzy sets of the FCM algorithm

as generators of an Indistinguishability Operator

Another line of research that emerges from the usage of the FCM algorithm
on this kind of problems of image segmentation can be seen on the output of
the algorithm.

FCM takes as input the sample of data and the number n of clusters to
be found and provides an adjusted family of n fuzzy sets that segmentate the
biomedical image. It can be wondered then if the output fuzzy sets of the
algorithm are extensional (observable) with respect to the indistinguishability
operator defined by the reverse of the distance chosen for the algorithm. The
answer to this question is negative in general.

What can be done, though, is to take this fuzzy sets as the generators (in
the sense of the Representation Theorem) of an indistinguishability opera-
tor. This way, not only the fuzzy subsets become extensional which can be
methodologically interesting, but the FCM algorithm can be understood to
provide a model of how to understand ”‘similarity”’ in this particular prob-
lem, as well as a particular solution of clusters (fuzzy extensional sets now)
that segmentate the image.
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This idea is interesting, as it takes profit of one of the main strong points
of Fuzzy Logic: the plausibility and understandability of the models built.
Other methods and techniques (with statistical methods on top of this list)
can be very powerful and accurate, but the solutions found are the result of
a complicated operational numerical manipulation and cannot be compre-
hended ”‘why”’ this solution is correct and makes sense. On the other hand,
Fuzzy Logic techniques use to simplify the operational calculus (by means
of fuzzifying crisp concepts and introducing a new problem of interpretation
here) and at the same time provide a semantical meaning to the solution.

This previous discussion can be seen in this problem as follows: A classical
FCM that fuzzy subsets provides a model of ”‘what objects can be seen by an
eye”’ on a particular medical image. This semantically enhancement of FMC
by constructing the indistinguishability operator given by taking the output
fuzzy subsets as generators provides not only a model of ”‘what objects can
be seen by an eye”’, but a model (the indistinguishability) of ”‘how the eye
sees”’. Hence this holistic view is giving us a complete map of the act of vision
as we are modeling both the object and the subject, and we are not at the
plain problem solving level but transcending to the problem comprehension
level

5.4 Constructing a plausible model by means of iter-

ating the previous ideas

After the previous two lines of research, an idea that comes out here is to
iterate this process.

Given a particular image, a FCM algorithm can be ran in order to find
the clusters that segmentate this image. As said before, this fuzzy sets can
be taken as the generators of an indistinguishability operator that explains
how the similarity relation works on this particular image.

Then this indistinguishability operator can be reversed to define a new
distance that can be used to run a new FCM and iterate the process.

Algorithmically, this process would be the following:

1. Define the number of clusters and the distance d to be used by FCM.
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2. Run FCM algorithm with the given distance d.

3. Compute the indistinguishability operator E generated from the output
fuzzy sets.

4. Reverse the indistinguishability d = 1 − E.

5. if no improvement STOP; else Go to 2.

This algorithm can be seen as an iterative adjusting of the method in order
to fit the problem, at the same time that the indistinguishability operator
that defines the similarity model is enhanced as well.

Several further and deeper considerations should be made here. First of
all, in order to run this iterative process its convergence should be proved
first. Intuitively, this seems trivial as we are simply adjusting an algorithm
that in its first iteration provides a good solution to the problem. However,
in order to run this proposed method, this convergence should be shored up.

Another fact to take into account is overfitting problems. At the level of a
pure image segmentation problem overfitting is a harmless problem (because
we will not generalize the model, so overiterations will just converge to a
better image segmentation), but if we tried to extent this method as it can
be done to more fields within Machine Learning a diagnosis of the risk and
limits of overfitting with this method should be carried up.

5.5 A reverse approach toward diagnosing

Up to this point, all the ideas proposed have followed the main path defined
by applying FCM to biomedical images and enhancing this algorithm and
method. The last two ideas proposed change drastically this paradigm and
leave aside the FCM algorithm in order to face diagnosing problems from
other viewpoints.

The first of this ideas comes from analyzing the whole chain of diagnosing.
Up to this point, this process has had two steps as it is shown in the diagram
of Figure ??.

• Firstly an image segmentation is performed. In this work this step has
been done with a FCM algorithm, but as said in Section 2.1 several
methods can be used here.
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Figure 13: Current chain of automatic diagnosis. From raw image to final
diagnose

• The second step is to diagnose over the segmentated image. This can
be done either by an expert or automatically.

However, it can be seen that a certain error is committed in each of this
steps. This error is accumulative and more important: it is very difficult to
measure it accurately.

The idea that can be explored is to reverse this process. Instead of going
from the image to the diagnose, think Bayesian and go from the different
expected diagnoses to the suitability of these in the image. For instance in
the mammography images instead of delimitating the possible tumor, one
could modellize the different kinds of breast cancers and evaluate the degree
of similarity between the model and the input image.

This approach brings up several technical problems. On one side we have
that it can become computationally unaffordable to face a little model of a
few pixels with the whole image exhaustively (that is with all the connex
windows of this few pixels that can be found in the image). However, with
the use of some heuristics this problem could possibly be overcome.

The second problem is that our model is fix, whereas our tumor even if
its equal to the model can be rotated or bigger than our initial model. Thus,
we should analyze the degree of indistinguishability between our model and
the image windows modulo affine transformations.
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A deeper study of how indistinguishability operators are affected by affine
and other kind of topological transformations can be found in [34].

5.6 Focusing and unfocusing images

You can’t see the wood for the trees!

The last and most interesting possible future line of research to the view-
point of the author is the idea of using powers of indistinguishability operators
to model the concept of focusing and unfocusing an image.

Fixed a given image there are optical methods to focus and unfocus it.
The gain of this capability is that unfocused images loose details but allow
to see clearly which are the big structures. Because its the loss of mental
focus on the trees what allows to see the woods.

On the contrary, if it is possible to focus an image then all the small
details can be zoomed and taken into account.

Being able to adjust the parameter of image focusing facilitates segmen-
tation algorithms to find more easily whatever you want to find. Because in
some cases when you look for big structures details become noise.

This discussion motivates why at a practical level this is relevant. Theo-
retically this can be modeled with the powers of t-norms defined in Section
3.4.1 and 3.4.2. In this sections it was showed how letting the power vary pro-
vides an homotopy between the universal indistinguishability operator (which
models unfocused images where everything is ”‘equal”’) and the drastic one
(focused images, where every detail makes the difference).

Besides and recalling lines of research previously explained, taking the
indistinguishability operator that models the ”‘similarity”’ in the image and
letting the exponent to vary gives a complete model of the subjacent simi-
larity relation robust to focus and unfocusness.
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6 Concluding remarks

The aim of this work was to develop a framework to bring together high-level
Fuzzy Logic with Biomedical Engineering. In order to do so to main cores
have been developed.

In Chapter 3 several results within the theory of Indistinguishability Op-
erators have been derived. First of all a structural analysis of the lattice of
indistinguishability operators E , the one of sets of extensional fuzzy subsets
H and the ones of upper and lower approximation operators by extensional
fuzzy sets (U and L respectively) has shown that they are isomorphic and
it has been discussed why this result has a semantically deep impact. Fur-
ther natural weighted mean aggregation operators have been defined (either
in finite and non finite cases) and it has been studied and shown how the
previous results could not be extended to this new operation.

Furthermore, it has been studied how powers can be defined over t-norms,
and the results found following these definition have yield to a very interesting
and promising line of research explained in Section 5.6.

Besides, a biomedical image segmentation problem has been faced in this
work. Two different kind of images have been treated: Bone marrow micro-
scopical captures, where the cores of WBC were to be segmented in order to
perform a Differential Recount, and Mammographies, where the aim was to
find the tumors in the image.

In order to solve these problems, a double stage histogram watershed
method and Fuzzy c-Means has been used. The results found are promising
and a deeper study about the validity and accuracy of the method could be
done to strengthen the assertion that the method proposed works.

The work presented in this Master Thesis is an itermediate stage of a
whole PhD project. For that reason maybe the most intersting ideas of this
work can be distilled from the last chapter gathering future lines of research.
It is the work on these future lines what will provide the whole structure
that is expected to prove that high level Fuzzy Logic is useful for practical
contexts.

In this last chapter several different possible continuations to this work
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have been presented. All of them may bring new interesting problems and
challenges that the future research will have to find, face and solve. It is
the intention of the author to get deeper into the wild of Unknown following
these lines in the following years and complete an original PhD with proofs of
how FL has very much to say in pur comprehension of the world and derive
new results, methodologies and check points in the sake of Science.
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[3] Berger, H.: Über das elektrenkephalogramm des menschen. European
Archives of Psychiatry and Clinical Neuroscience, Vol 87 Number 1 527-
570 (1929)

[4] Bezdek, J.C.: Pattern recognition with fuzzy objective functions. Kluwer
Academic Publishers (1981)

[5] Bezdek, J.C.: Acceleration and Scalability for c-Means Clustering.
FUZZ’IEEE 2011 Taiwan. (2011)

[6] Bezdek, J.C., Keller J., Krisnapuram R., Pal N.R.: Fuzzy models and
algorithms for pattern recognition and image processing. The handbooks
of fuzzy set series. Kluwer Academic Publishers (1999)

[7] Bou, F., Esteva, F., Godo, L., Rodŕıguez, R.: On the Minimum Many-
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